

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Evolutionary Algorithms for Real-Time
Artificial Neural Network Training

Ananda Jagadeesan, Grant Maxwell and Christopher MacLeod

School of Engineering, The Robert Gordon University
Schoolhill, Aberdeen, UK

Abstract. This paper reports on experiments investigating the use of
Evolutionary Algorithms to train Artificial Neural Networks in real time.
A simulated legged mobile robot was used as a test bed in the experi-
ments. Since the algorithm is designed to be used with a physical robot,
the population size was one and the recombination operator was not
used. The algorithm is therefore rather similar to the original Evolu-
tionary Programming concept. The idea is that such an algorithm could
eventually be used to alter the locomotive performance of the robot on
different terrain types. Results are presented showing the effect of various
algorithm parameters on system performance.

1 Introduction

Artificial Neural Networks (ANNs) are normally trained before use, off-line. On-
line learning, in complex Neural Networks - for example, those designed for
pattern classification - has proved difficult and complex solutions like Adaptive
Resonance Theory [1] have had to be applied. This is because learning new
patterns effectively means altering the State Landscape of the network.

However, in some cases - for example, in many Control Systems - On-Line
Learning is possible because, in contrast with Pattern Recognition, the network
parameters may only have to change gradually as the controlled system changes.
As an example, consider a legged mobile robot walking across a series of different
ground types (for example, sandy, rocky or boggy). Obviously, in this case, for
optimum locomotive efficiency, the robot will have to alter its gait pattern in
response to the conditions underfoot. It may have to shorten its stride, for exam-
ple, when moving from a hard to a sandy surface. One possible way to achieve
this is for the robot’s leg parameters (such as stride length, etc) to be under the
control of a series of learned or pre-programmed gait patterns. However, this has
the disadvantage of complexity and inflexibility. This latter point is illustrated
when we consider the situation which might occur if the robot meets a surface
for which it has not been prepared. Since it has no way of finding a suitable gait
pattern, it has to lumber on with the “best guess”.

The idea behind the Real-Time Evolutionary Algorithm (RTEA) is to con-
stantly alter the robot’s locomotive algorithms by a small random amount, eval-
uating corresponding changes to the fitness function (in the first approximation,

the efficiency of walking). Mutations which cause beneficial changes in fitness
are kept; those which make the situation worse are discarded. In this way, the
robot’s control system is constantly seeking a better solution to the walking
problem and will move towards such a solution, even when the robot moves onto
a different surface.

Artificial Neural Networks were used to control the robot’s legs, rather than
direct control (for example, an algorithm generating a rhythmical step pattern),
so that lessons learned from the experience could be applied more generally to
other neural network controlled systems. Such networks are commonly used to
control a variety of different mechanical and mechatronic systems.

2 Robotic Test System

It was decided to use a quadruped robotic system as a test bed for the neural
network since it represented a generalised control system and also it has been
used successfully several times in the past. The system is similar to that used
by Muthuraman [2] and McMinn [3] for work on Evolutionary ANNs. Due to
space restrictions here, only a brief overview of the system is given. The leg
model used is a simulated linear servo mechanism with two active degrees of
freedom, as shown in Fig. 1. The leg advances forward by one unit on receiving
a positive pulse for one clock cycle and backward on receiving a similar negative
going pulse. A similar arrangement is used to lift and lower the leg. The robot
is driven forward when the legs are in contact with the ground and moving in
the correct direction, the distance moved being equal to leg units moved under
these conditions.

Second degree
of freedom –
moves leg
backward and
forward

Main
body of
Robot

First degree of
freedom – moves leg
up and down

Floor

Fig. 1. Model of Robot Leg (Front View).

The neurons used in the network produce a positive followed by a negative
pulse to drive the leg as shown in Fig. 2. Four evolvable parameters (D1, D2, Ton1

and Ton2) are associated with each neuron; these are trained by the real-time
EA.

 D1

Ton1

D2

Ton2

Fig. 2. Neuron Output.

The fitness function of the robot is a programmable combination of three
factors - Stability, Fuel Consumption and Distance Travelled. The weighting
between these can be changed in order that the system can develop different
gaits. Stability takes into account the inclination of the robot and how many
feet it has on the ground over its walking cycle. Fuel Consumption is related
to the powered phase of leg use. Finally, Distance Travelled is measured, as
indicated above, using the leg movements.

3 Neural Network Design

Several common network topologies and neuron types were tried at the start of
the project. From these experiments, two important principles were discovered.

Firstly, neuron types with built in threshold functions (for example, Thresh-
old Perceptron types) performed poorly. This was because either many small or
a single large mutation is required to overcome the threshold and this causes
large jumps in the network’s fitness function, rather then small adjustments,
making the global minima difficult to find. Therefore, for success, it is impor-
tant to choose a unit which alters its behaviour gradually in order to avoid this
problem.

Secondly, the network topology is equally important. Fully connected net-
works perform badly because mutations in one side of the network affect the
other side. In the case of the legged robot used in the experiments, this meant
that changes in one system of legs caused changes in an unrelated system and
so the network fitness tended not to increase. Of course, it is often useful to pro-
vide some connection between different synchronised networks within a system
like this and an effective network was one which took its overall timing from a
master clock. Networks with recurrent connections performed poorly for similar
reasons. The network topology is shown in Fig. 3. The outputs are taken from
the child neurons (marked C); two are required for each leg (one for each degree
of freedom).

M = mother
neurons (generate
basic clock pulses)

C = Child neurons
(have behaviour
shown in Fig. 1)

C CM

C CM

C CM

C CM

Fig. 3. Network Topology.

4 Real-Time Evolutionary Algorithm Parameters

The parameters of the RTEA were tested to establish their effect on system
performance. The first to be tested was the effect of mutating all the parameters
in the system compared with mutating only one at a time. Figure 4 shows the
effect of mutating all the parameters compared with the fitness profile of only
mutating one at a time. This experiment was done over a wide variety of system
setups and parameter variation (over 2000 experiments representing all possible
variations of system setup). Each point on the graph is the average of 81 such
experiments. We might expect this effect to be even greater if we used mutation
with an expectation value of zero [4]; however, this was not tested.

Success Rate: Mutate All -v- Mutate One By One

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Experiment Number

F
it

n
es

s Mutate All - 19004
Generations

Mutate One By One -
19632 Generations

Fig. 4. The effect of mutating each parameter singly or in groups.

The effect of choosing a uniform versus a normal (Gaussian) distribution [4]
is shown in Fig. 5. In this case the normally distributed numbers proved more
effective. As before, the graph shows the effect over the whole range of system
setup.

Mutate All: Normally -v- Uniformly

80

85

90

95

100

105

110

115

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Experiment Number

F
it

n
es

s

Normally

Uniformly

Fig. 5. The effect of Gaussian and Uniform mutation.

When performing these experiments, we have not allowed error increases to
escape from local minima (which some algorithms such as simulated annealing
do allow). The reason for this is that, in the case of this system, we are operating
quite close to equilibrium. Should the system have to change gait (for example,
from a walk to a trot), then this facility would have to be utilised.

In many such systems, mutation size is controlled by distance from equi-
librium; examples include simulated annealing, where an artificial temperature
controls mutation size [5], and Evolutionary Strategies with its one in five rule [4].
Tests were therefore conducted to establish how distance from equilibrium in-
teracted with mutation size. It was found that these generalisations do not nec-
essarily apply; Fig. 6 demonstrates this. In this graph disturbance range means
distance from equilibrium (higher is further) and mutation rate is the average
size of the mutation. Again, this is averaged over all system parameters.

5 Conclusion

The conclusions which were drawn from these experiments were that Real-Time
Evolutionary Algorithms can optimise Neural Networks on-line in certain ap-
plications. Such applications are principally those in which small changes are
needed to “tune” the performance of the system and include many types of
control system.

1

1.5

2

2.5

3

1

1.5

2

2.5

3
98

100

102

104

106

108

110

Mutation Range
1−> −2 to +2
2−> −6 to +6
3−> −10 to +10

Disturbance Range −v− Mutation Range
Uniform Mutation : Mutate All

Disturbance Range
1−> −2 to +2
2−> −6 to +6

3−> −10 to +10

F
itn

es
s

Fig. 6. Relationship between average mutation size and distance from equilibrium.

In such systems the type of neuron unit and network topology types are
critical. The neuron unit should be one where output changes gradually with
input and the network topology should be a feedforward type where unnecessary
lateral connections are suppressed.

The experiments confirm that many of the recommendations for off-line op-
timization using EAs also apply on-line. These include that normal distributions
and variable mutation rates are effective.

References

1. G. A. Carpenter and S. Grossberg, ART - 2: self organisation of stable category
recognition codes for analog input patterns, Applied Optics, 26:4919-4930, 1987.

2. S. Muthuraman, G. M. Maxwell and C. MacLeod, The Evolution of Modular
Artificial Neural Networks for Legged Robot Control. In proceedings of the In-
ternational Conference on Neural Networks and Neural Information Processing
(ICANN/ICONIP 2003), 488-495, Istanbul (Turkey), June 2003.

3. D. McMinn, C. MacLeod and G. M. Maxwell, Evolutionary Artificial Neural Net-
works for Quadruped Locomotion. In proceedings of the International Conference
on Neural Networks (ICANN 2002), 789-794, Madrid (Spain), August 2002.

4. H.-P. Schwefel. Evolution and Optimum Seeking, Wiley, New York, 1995.
5. P. P. C. Yip and Y. Pao, Growing Neural Networks using Guided Evolutionary

Simulated Annealing. In proceedings of the International Conference on Evolution-
ary Programming, 17-20, Istanbul (Turkey), June 1994.

	coversheetConferences
	icann_ananda

	OA: GREEN
	OA Logo:
	AUTHORS: JAGADEESAN, A., MAXWELL, G. and MACLEOD, C.
	TITLE: Evolutionary algorithms for real-time artificial neural network training.
	YEAR: 2005
	Publisher citation: JAGADEESAN, A., MAXWELL, G. and MACLEOD, C. 2005. Evolutionary algorithms for real-time artificial neural network training. Lecture notes in computer science [online], 3697, Proceedings of the 15th international conference on artifical neural networks (ICANN 2005): formal models and their applications, 11-15 September 2005, Warsaw, Poland, part 2, pages 73-78. Available from: https://dx.doi.org/10.1007/11550907_12
	OpenAIR citation: JAGADEESAN, A., MAXWELL, G. and MACLEOD, C. 2005. Evolutionary algorithms for real-time artificial neural network training. Lecture notes in computer science, 3697, Proceedings of the 15th international conference on artifical neural networks (ICANN 2005): formal models and their applications, 11-15 September 2005, Warsaw, Poland, part 2, pages 73-78. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Version: AUTHOR ACCEPTED
	Publisher: SPRINGER
	Conference: the 15th international conference on artifical neural networks (ICANN 2005): formal models and their applications, 11-15 September 2005, Warsaw, Poland
	ISBN: 9783540287551
	eISBN: 9783540287568
	ISSN: 0302-9743
	Set statement: The final publication is available at Springer via http://dx.doi.org/10.1007/11550907_12
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2016-09-16T11:37:54+0100
	OpenAIR at RGU

