OpenAIR @RGU RGU RGU RGU RGU RGU RGU ROBERT GORDON UNIVERSITY ABERDEEN

This publication is made freely available under ______ open access.

AUTHOR(S):	
TITLE:	
YEAR:	
Publisher citation:	
OpenAIR citation:	t statement:
This is the	: statement:
in	
(ISSN; e	ISSN).
OpenAIR takedowi	i statement:
Section 6 of the "I students/library/lib consider withdraw any other reason s the item and the na	Repository policy for OpenAIR @ RGU" (available from <u>http://www.rgu.ac.uk/staff-and-current-</u> <u>grary-policies/repository-policies</u>) provides guidance on the criteria under which RGU will ang material from OpenAIR. If you believe that this item is subject to any of these criteria, or for hould not be held on OpenAIR, then please contact <u>openair-help@rgu.ac.uk</u> with the details of ature of your complaint.
This publication is d	stributed under a CC license.

Lack of functional redundancy in the relationship between microbial diversity and ecosystem

2 **functioning.**

- 3
- 4 Manuel Delgado-Baquerizo^{*1,†}; Luca Giaramida^{1,2,3,4†}; Peter B. Reich^{1,5}; Amit N. Khachane¹, Kelly
- 5 Hamonts¹, Christine Edwards²; Linda Lawton²; Brajesh K. Singh^{*1,6}.
- 6
- ⁷ ¹Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW 2751, Australia.
- ⁸ ²IDEAS Research Institute, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen,
- 9 AB10 7GJ, UK.
- ³The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
- ⁴Assumption University, Bangkapi, Bangkok, 10240, Thailand
- ⁵Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA.
- ¹³ ⁶Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, NSW
- 14 2751, Australia.
- 15 [†] Equal author contribution
- 16

17	*Correspondence	authors.	E-mail:	M.DelgadoBaquerizo@westernsydney.edu.au	or
18	B.Singh@westernsy	dney.edu.au			
19					
20					
21					
22					
23					
24					
2 5					

26 Summary

27 1. Biodiversity is declining worldwide with detrimental effects on ecosystems. However, we lack a 28 quantitative understanding of the shape of the relationship between microbial biodiversity and 29 ecosystem function (BEF). This limits our understanding of how microbial diversity depletion can 30 impact key functions for human well-being, including pollutant detoxification. 31 2. Three independent microcosm experiments were conducted to evaluate the direction (i.e. positive, 32 negative or null) and the shape of the relationships between bacterial diversity and both broad (i.e. 33 microbial respiration) and specialized (i.e. toxin degradation) functions in five Australian and two UK 34 freshwater ecosystems using next-generation sequencing platforms. 35 3. Reduced bacterial diversity, even after accounting for biomass, caused a decrease in broad (i.e. 36 cumulative microbial respiration) and specialized (biodegradation of two important toxins) functions in 37 all cases. Unlike the positive but decelerating BEF relationship observed most frequently in plants and 38 animals, most evaluated functional measurements were related to bacterial diversity in a non-redundant 39 fashion (e.g. exponentially and/or linearly). 40 4. Synthesis. Our results suggest that there is a lack of functional redundancy in the relationship 41 between bacterial diversity and ecosystem functioning; thus the consequences of declining microbial 42 diversity on ecosystem functioning and human welfare have likely been considerably underestimated. 43 Kev-words: Bacteria; 44 Broad functions; Ecosystem services; Freshwater ecosystems; Microbial

45 richness; Pyrosequencing; Respiration; Specialized functions; Toxin degradation.

46

47

48

50 Introduction

51 A large body of literature has provided evidence that losses in biodiversity will negatively impact 52 ecosystem functions and services provided to humanity in both terrestrial and aquatic ecosystems 53 (Tilman et al. 1997; Cardinale et al. 2011; Isbell et al. 2011; Maestre et al. 2012). Most of the studies 54 conducted with plants and animals support a consensus view that the relationship between biodiversity 55 and ecosystem functioning (i.e. BEF relationship) follows a positive but saturating shape indicating 56 functional redundancy (Ehrlich & Ehrlich, 1981; Cardinale et al. 2011). A growing number of studies 57 also suggest that microbial diversity enhances ecosystem functioning (Downing & Leibold 2002; 58 Horner-Devine et al. 2003; Bell et al. 2005; Ptacnik et al. 2008; Langenheder et al. 2010; Peter et al. 59 2011a; Venail and Vives 2013). Unless there is a substantial functional redundancy in microbial 60 communities (Allison and Martiny 2008), any loss in microbial diversity would likely alter the 61 capacity of microbes to support ecosystem functions. However, none of the previous studies have 62 explicitly examined the shape of the microbial BEF relationship, leaving a wide gap of knowledge that 63 needs to be addressed (Bardgett and van der Putten 2014). Global environmental drivers such as climate change, land use intensification and nitrogen enrichment are impacting microbial diversity in 64 65 both terrestrial and aquatic ecosystems (Gans et al. 2005; Wall et al. 2010; Cardinale et al. 2012; Singh et al. 2014). In order to evaluate the global consequences of shifting microbial diversity on ecosystem 66 67 functioning, it is critical that we determine the shape of the microbial BEF relationship. However, we 68 lack both the theoretical framework and solid empirical data to understand the shape of the microbial 69 BEF relationship. This hampers our capacity to include microbial processes in ecosystem and earth 70 system simulation models, as well as in conservation and management policy decision making (Singh 71 et al. 2010; Bardgett & van der Putten 2014).

Given that bacterial communities play key roles in ecosystem functioning but are considered by far the most abundant and diverse living forms on Earth (Whitman *et al.* 1998; Singh et al. 2009), it is usually presumed that the microbial BEF relationship will show a high functional redundancy (Allison

75 and Martiny 2008). Previous studies suggested a wide range of shapes (mainly saturating or linear) for 76 the relationships between bacterial diversity and both broad and specialized ecosystem functions (Bell 77 et al. 2005; Ptacnik et al. 2008; Peter et al. 2011a; Ylla et al. 2013). However, none of these studies 78 have statistically and simultaneously tested for the shape of the microbial BEF relationship by 79 comparing multiple functions; such as Logarithmic, Michaelis-Menten [M-M], Linear, Power and 80 Exponential (Cardinale et al. 2011; Reich et al. 2012). Each of these models implies a different 81 ecological interpretation. For example, a linear BEF relationship suggests that each species has a 82 proportional effect on ecosystem functionality with no functional redundancy. The exponential 83 relationship suggests that a small decrease in species richness can have a high negative impact on 84 ecosystem functionality (also no functional redundancy). On the other hand, the logarithmic 85 relationship decelerates without saturating, suggesting that the initial loss of species has an impact, but 86 is minimal due to the redundancy on ecosystem functioning (functional redundancy; Yachi & Loreau 87 1999). Similarly, the M-M relationship saturates, which suggests that some species are completely 88 functionally redundant, and thus initial loss of diversity will not decrease functionality. Finally, the 89 power function (fitted as in Reich et al. 2012) can fit multiple shapes and may represent either 90 functional or no functional redundancy depending on each particular case. The lack of a quantitative 91 understanding of the shape of these relationships limits our capacity to accurately predict the 92 consequences of bacterial diversity reductions on critical functions and services for humanity; which 93 include pollutant detoxification, primary production and climate regulation (e.g. CO₂ exchange). 94 Both broad (widely distributed across living organisms, e.g. decomposition) and specialized 95 (conducted by particular groups of organisms, e.g. detoxification) functions are known to control key 96 ecosystem processes such as respiration (aggregate CO_2 fluxes) and toxin degradation, which are 97 critical for human well-being and development. Despite this fact, our current knowledge on how 98 microbial diversity relates to these two types of ecosystem functions are limited (Schimel et al. 2005). 99 It has been posited that broad functions may follow a different shape (i.e. saturating relationship; Yachi

& Loreau 1999) than specialized functions (i.e. immediate catastrophe; Cardinale *et al.* 2011). The
rationale for this hypothesis is that initial loss of diversity may modestly influence broad functioning
due to considerable redundancy among taxa in overall metabolic processes, but can collapse
specialized functions, which are linked to extremely narrow microbial groups (Schimel *et al.* 2005).
Determining the shape of the relationship between microbial diversity and both broad and specialized
functioning is critical to understand the impact that future losses of microbial diversity may have on
ecosystem functioning and human well-being.

107 Here, we conducted three independent microcosm experiments to evaluate the direction (i.e. 108 positive, negative or null) and the shape of the relationships between bacterial diversity for both broad 109 (i.e. microbial respiration) and specialized (i.e. toxin degradation) functions in five Australian and two 110 UK freshwater ecosystems. Freshwater ecosystems are of paramount importance for human well-being 111 since they provide water to Earth's 7 billion people for agriculture, industry, recreation and municipal 112 use (Sala et al. 2000; MEA 2005; Cardinale et al. 2012). In these ecosystems, microbial communities play an important role maintaining key processes such as freshwater purification (e.g. breakdown of 113 114 pollutants). We hypothesize that any loss in bacterial diversity will promote at least a proportional 115 depletion (no functional redundancy) in both broad and specialized functions. We propose this idea because even broad ecosystems functions such as microbial respiration rely on more complex 116 117 processes, including organic matter degradation (Schimel *et al.* 2005), which involve large and diverse 118 groups of specialized functions (e.g. lignin degradation: Horwath 2007; Ruiz-Dueñas & Martínez. 119 2009). To properly interpret any pattern in the microbial BEF relationship, we need to consider the 120 effects of microbial biomass, microbial composition, and other methodological issues. Moreover, if our 121 hypothesis is valid, the shape of the microbial BEF relationship should arguably be similar across 122 widely different systems (e.g. rivers, creeks and lakes) with different environmental status (e.g. pristine 123 and polluted).

12

125 Materials and methods

126 *Study sites*

127 This study was based in two UK (Scotland) and five Australian (New South Wales) freshwater

- 128 ecosystems. The five Australian sites belong to two independent microcosm studies including two
- 129 (Australia.1) and three (Australia.2) sites, respectively. The two UK sites: Loch Freuchie (LF,
- 130 56°31'6.93"N, 3°51'4.27"W) and Loch Rescobie (LR, 56°39'18.53"N, 2°47'43.00"W), represent
- 131 pristine and polluted lakes, respectively (SEPA 2010a; 2010b). The two Australia.1 sites: Hawkesbury
- 132 River (HR, 33°33'22.06"S, 151°14'21.36"E) and Farmers Creek (FC, 33°28'27.61"S, 150°7'59.61"E),
- 133 both represent polluted/high nutrient rivers belonging to the Hawkesbury-Nepean river system in New
- 134 South Wales. Finally, the three Australia.2 sites: Parramatta River (PAR, 33°48'13.49"S,

135 150°59'56.44"E), Richmond Lagoon (RLA, 33°35'35.99"S, 150°44'31.38"E) and Wheeney Creek

136 (WC, 33°25'32.49"S, 150°48'52.36"E) correspond to a polluted, and a pristine lake and a creek. We

137 would like to highlight that the studies conducted in UK, Australia.1 and Australia.2 are independent

138 from each other explaining the modest differences between experimental and sampling designs.

139 Water sampling

140 Three water samples (top 10cm) were randomly collected on August 2011 and February 2013 in the

141 UK and Australia.1 sites, respectively. In addition, one water sample was collected in May 2015 at

142 each location for the Australia.2 sites. In the case of Australia.1 and UK samples, the three water

143 samples collected from each site were used to generate the three replicates. Water was sampled in 1L

144 glass bottles wrapped in aluminum foil to minimize the input of light. One part of the water was

- 145 directly stored (non-sterile water used for the microbial inoculums), while the other part was filter-
- 146 sterilised via Stericup filters (0.22 µm, Millipore) and autoclaved at 121 °C for 20 minutes (sterile

147 water). Water was then stored at 4°C ready to be used for the next steps.

148 Experimental design: dilution-to-extinction approach.

149 To develop bacterial diversity gradients, without using cultures, a dilution-to-extinction approach was

150 employed (Peter et al. 2011a). Here, we used two different versions of this approach including 151 replicated diversity levels (Australia.1 and UK sites) and non-replicated diversity gradient (Australia.2 152 sites) microcosms. The main reason to include these two approaches is that while replicated approaches allow us to statistically test for significant differences among dilution (i.e. diversity) levels 153 (e.g. ANOVA), a wider range of dilutions, instead of 3 replicates, should enable a better description of 154 the shape of the function. By using both replicated level and regression gradient approaches, we aim to 155 provide robust scientific rigor to our findings. To create a gradient in bacterial diversity, a dilution 156 157 series of the inoculum was prepared by serial transfer of the inoculum into sterile medium (1:10). 158 These dilutions were conducted in a laminar flow hood to avoid contamination. In all cases (replicated and non-replicated approaches), microcosms were constructed using the original sterilised water as 159 160 substrate, so we did not expect initial differences in substrate concentrations. In all cases, microcosms 161 were constituted in a final volume of 225mL.

Replicated studies (Australia.1 and UK): For the UK sites, dilutions of 10⁻¹, 10⁻⁴ and 10⁻⁷ were used, 162 while for the Australia.1 sites, dilutions of 1x (undiluted), 10^{-1} , 10^{-2} and 10^{-4} dilutions were used. Three 163 164 microcosms for each water dilution level were established, rendering a total of 42 microcosms (9 and 165 12 microcosms for each of the sites in the UK and Australia.1, respectively). We selected these 166 dilutions to cover a wide range of microbial diversity. Remaining dilutions not used throughout this 167 experiment were discarded due to time and space constraints. Sterile controls were included to ensure a lack of contamination in our microcosms. For these samples, we used a replicated approach to 168 169 statistically test for biomass influence on the relationship between microbial diversity and functionality 170 by using ANCOVA analyses (see details below).

171 *Gradient approach (Australia.2)*: For the three Australia.2 sites, we established a continuous gradient

172 (non-replicated design) from $10^{-0.18}$ to 10^{-7} ($10^{-0.18}$, $10^{-0.48}$, $10^{-0.78}$, 10^{-1} , $10^{-1.18}$, $10^{-1.48}$, $10^{-1.78}$, 10^{-2} , $10^{-1.18}$

- 173 ^{2.48}, 10^{-2.78}, 10⁻³, 10⁻³, 10⁻⁴, 10^{-4,48}, 10⁻⁵, 10^{-5.48}, 10⁻⁶, 10^{-6.48}, 10⁻⁷). A total of 57 microcosms (19 for
- 174 each location) were established.

All microcosms (Australia.1, UK and Australia.2) were incubated at 20 °C shaking at 70 rpm in
dark conditions during the biomass recovery stage (see below).

177 Biomass recovery stage.

To separate effects of bacterial diversity from effects of abundance, we allowed bacterial biomass to 178 179 recover (i.e. to achieve roughly similar levels of microbial biomass among microcosms for a particular 180 location; Fig. S1) before starting (time zero) our measurements of microbial functions. Moreover, we 181 measured the biomass across treatments, and statistically accounted for biomass in our analyses (see 182 details below). We used quantitative PCR (qPCR) to quantify microbial abundance in our microcosms. 183 This method has been reported to provide similar results to direct cell counting using microscopy (Al-184 Tebrineh et al. 2010; Perez-Osorio et al. 2010; Castillo et al. 2006; Ammann et al. 2012; Furukawa et 185 al. 2012). DNA extraction was carried out using the PowerWater DNA isolation kit (MoBio 186 Laboratories Inc.; Appendix S1). 16S rRNA qPCR was carried out using a modified protocol of Fierer 187 et al. (2005) and using a Rotor Gene-3000 (Corbett Research, Cambridge, UK; see Appendix S1 for 188 complete protocol).

189 For UK and Australia.1 sites (replicated studies), biomass recovery was tested by means of 190 bacterial 16S rRNA qPCR every three days starting from the moment when dilutions were made (till 191 biomass recovery). Biomass recovery along the dilution (diversity) range was achieved within 3 days 192 for LF, HR and FC, and within 6 days for LR (Fig. S1). Contrary to this, and based on previous 193 experience, biomass from the Australia.2 sites (gradient approach), were directly tested one week after 194 the time zero to ensure biomass recovery. We would like to highlight that we allowed biomass to 195 recover so that all dilutions from each location started with a similar biomass (not amongst locations; Fig. S1). 196

197 Assessment of microbial diversity

Similar to microbial biomass, microbial richness and composition were measured immediately before
starting (time zero) our measurements of microbial functions; first using T-RFLP (a rapid method that

provided results within 48 hours, Appendix S1 for methodological details) and then by next-generation
sequencing.

202 In the case of the UK and Australia.1 sites, we used 454 pyrosequencing (454 life-sciences); however, 203 because this technology was no longer available and supported by the sole provider (The Roche Ltd), 204 we used Illumina Miseq (Illumina Inc.), a similar but advanced next generation sequencing approach, 205 for Australia.2 sites (see Appendix S1). Regrettably, we failed to sequence 1/9 (LR), 2/9 (LF), 3/19 206 (PAR and WC) and 5/19 (RLA) of the water samples in the microcosms from UK and Australia.2 207 sites. Consequently, these samples were not used in further analyses. We used species richness (i.e. 208 number of OTUs at 97 % similarity from 454 or Illumina sequencing) as a proxy of diversity for 209 simplicity, but also because this approach was more commonly used in BEF literature (Gotelli & 210 Colwell 2001). The data were rarefied to ensure even sampling depth between samples (see Appendix 211 S1). Bioinformatic analyses were completed independently for each of our experiments (Australia.1, 212 UK and Australia.2). In all cases, bacterial richness was highly related to the Shannon and Simpson

213 diversity indexes calculated from next generation sequencing techniques (Table S1).

214 Broad functions

215 We first measured a broad ecosystem function (i.e. cumulative microbial respiration) in UK,

216 Australia.1 and Australia.2 sites. We selected microbial respiration because this general function is

217 widely distributed among different groups of microorganisms and it is considered as a good proxy of

total biological activity (Campbell *et al.* 2003; Schimel & Weintraub, 2003). The day immediately

219 after biomass recovery (the day in which we achieved roughly similar levels of microbial biomass

- among microcosms for a particular location), we transferred 40 mL of water from the original
- 221 microcosms to 125 mL serum bottles under sterile conditions. Water samples were incubated at 20 °C

with continuous shaking at 70 rpm to ensure oxygenation. Respiration was measured using an infrared

- 223 gas analyser (IRGA) every 2-3 days in each water microcosm for 13 and 18 days in the Australian
- 224 (Australia.1 and Australia.2) and UK sites, respectively (See Appendix S1 for details). We then

225 calculated the total cumulative microbial respiration in our microcosms from these individual

226 measurements. Finally, for the Australia.2 sites, we also measured the dissolved organic carbon (DOC)

227 at the end of the experiment using a TOC analyzer (Shimatzu, Japan).

228 Specialized functions

229 We measured two specialized functions (i.e. ability to degrade microcystin-LR and Triclosan) in the 230 two Australia.1 freshwater ecosystems. Degradation of Microcystin-LR (MC-LR) and Triclosan was 231 selected because these compounds are highly toxic, widely distributed and commonly used as proxies 232 of natural and artificial toxins, respectively (Edwards & Lawton, 2009; Lee et al. 2012). In parallel, we transferred 40 mL from the original microcosms to 125 mL serum bottles. Then, MC-LR (0.5 mg L^{-1}) 233 and Triclosan ($10\mu g L^{-1}$; Bhargava & Leonard, 1996) were added aseptically to the water microcosms. 234 235 Finally, we calculated the degradation rate constant k (after 16 days) for both MC-LR and Triclosan in 236 our microcosms as explained in detail in Appendix S1. In brief, samples were incubated at room 237 temperature (20 °C) with continuous shaking at 70 rpm to ensure oxygenation in the dark for 16 days. 238 Serum bottles were opened in sterile conditions every two days to allow oxygenation, taking 500 μ L 239 sub-samples for analysis every 4 days. Regarding MC-LR microcosms, sub-samples were analyzed by 240 HPLC (Edwards et al. 2008). Quantification of Triclosan was achieved using a commercial kit 241 (Abraxis kits, PA, USA). We then calculated the degradation rate constant k for both MC-LR and 242 Triclosan in our microcosms using a first order kinetic curve as per the FOCUS software tool 243 (http://focus.jrc.ec.europa.eu/dk/).

Statistical analyses I: testing the success of our experimental design: dilution-to-extinction approach.
The dilution-to-extinction approach used here mimics the response of natural communities, species and populations to environmental fluctuations where the rarest species are also more prone to extinction. In this regard, the dilution-to-extinction approach is considered as realistic as possible, and thus is an accepted method to quantify the effects of reductions in microbial diversity on ecosystem functionality (Peter *et al.* 2011a). To test whether we successfully achieved a diversity gradient from the dilution-to-

250 extinction approach, we first performed a one-way ANOVA to check for differences in the bacterial 251 diversity between dilution levels for the Australia.1 and UK sites (replicated design). Further post-hoc 252 analyses (i.e. Tukey) indicated that bacterial diversity consistently decreased with increasing dilution, 253 even at comparable biomass (Figs. S2-3). In this sense, significant differences were observed in 254 bacterial diversity across various dilution levels at all study sites (P<0.01; Figs. S2-3). In addition, we 255 conducted correlation (Pearson's) analyses between dilution level and bacterial diversity in 256 Australia.1/UK (replicated approach) and Australia.2 (non replicated approach) sites. Bacterial 257 diversity was negatively related to dilution level in all cases (P < 0.05). 258 Statistical analyses II: Comparing shapes of biodiversity and ecosystem functionality relationships 259 We first evaluated the direction (i.e. positive, negative or null) and shape of the relationship between 260 bacterial diversity and a broad ecosystem function (i.e. cumulative microbial respiration) in the 261 Australian (Australia.1 and Australia.2) and UK sites. Then, we assessed how bacterial diversity 262 related to two specialized functions (biodegradation of Microcystin-LR and Triclosan) in the two 263 Australia.1 freshwater ecosystems. To identify the best shape describing the relationship between bacterial diversity and functioning, we fitted five different functions that involve different biological 264 265 interpretations (Logarithmic, M-M, Linear, Power and Exponential; Cardinale et al. 2011; Reich et al. 2012). Essentially these five functions are included in two groups of ecological shapes for the 266 267 microbial BEF relationship: functional redundancy (logarithm and M-M) and no functional 268 redundancy (linear or exponential). The power function can fit multiple shapes and may represent either functional or no functional redundancy depending on each particular case. We selected the best 269 270 model fits by following Akaike Information Criteria (AICc; Burnham & Anderson, 2002). AICc is a 271 corrected version of AIC that is highly recommended when dealing with small samples size as is our 272 case (Burnham & Anderson, 2002). The lower the AICc index the better the model. Here, we consider 273 a \triangle AICc > 2 threshold (Burnham & Anderson 2002; Burnham *et al.* 2011) to differentiate between 274 substantially different models. In some cases, we were able to identify a single best function shaping

275 the microbial BEF relationship. This happened when a particular function (e.g. exponential) was much 276 better ($\Delta AICc > 2$) than the rest of the explored models (Logarithmic, M-M, Linear and Power). In 277 other cases, we were only able to differentiate among groups of functions (functional redundancy vs. no functional redundancy), but unable to identify the best function describing the shape of the 278 279 microbial BEF relationship. For example, if the best model linked to no redundant models (linear and 280 exponential and/or no redundant-power) was better ($\Delta AICc > 2$) than redundant models (logarithm and 281 M-M and/or redundant power), but similar to other functions within the same category (linear and 282 exponential and/or no redundant-power), we viewed this as providing evidence for a lack of 283 redundancy in the relationship between bacterial diversity and ecosystem functioning. However, if the 284 best redundant model was better ($\Delta AICc > 2$) than no-redundant models, but similar to other functions 285 within the same category (logarithm and M-M and/or redundant power), this indicated a redundancy in 286 the microbial BEF relationship. Once we identified the best group of models, we then used the most 287 representative function of this group (i.e. the one with the lowest $\Delta AICc$ value) in the main text. All 288 functions and AICc indexes were fitted using Sigmaplot (London, UK). 289 Statistical analyses III: Evaluating the effect of microbial biomass on our analyses 290 We conducted ANCOVA and partial correlation to quantify the effect of biomass on the function being 291 measured, and then partitioned that away from the diversity effect- hence the diversity effect tests 292 whether diversity matters even at a standardized biomass. It is important to clarify that by conducting 293 these analyses, we do not mean to express that biomass is not important for functionality. Contrary to 294 this, because of the huge importance of biomass on ecosystem functioning we have allowed biomass to 295 recover to roughly similar levels among microcosms before measuring functions and for statistical 296 analyses.

Because differences in biomass can influence microbial diversity-functions relationships, the differences detected in biomass at the beginning of the measurements (Fig S1) (i.e. even after our best effort at biomass recovery) might have influenced the results. To assess this, for the Australia.1/UK

300	sites (replicated design), we statistically tested for any effect of these biomass differences among
301	treatments by conducting a two-way ANCOVA (analyses of covariance) for each of the broad
302	(microbial respiration) and specialized (MC-LR and Triclosan) functions, including site and dilution
303	gradient as fixed factors and bacterial biomass based on qPCR (at the beginning of the experiment but
304	after recovery; Fig S1) as a co-variable. Similar analyses were conducted to confirm the effect of
305	bacterial diversity on the degradation of both MC-LR and Triclosan in the Australia.1 freshwater
306	ecosystems. Besides ANCOVA analyses for replicated design, we conducted partial correlation to
307	confirm the relationship between microbial diversity and ecosystem functionality after controlling for
308	biomass (as measured with qPCR). ANCOVA, ANOVA and partial correlation analyses were
309	performed using SPSS 15.0 software (SPSS Inc., Chicago, IL, USA).
310	Statistical analyses IV and V: considering other methodological issues on our analyses
311	Further analyses were conducted to consider the effects of microbial composition on our analyses. We
312	first used Random Forests analyses (Breiman, 2001) to explore whether the microbial diversity effect
313	on ecosystem functionality (broad and specialized) remained important after considering main
314	bacterial groups in our analyses (Appendix S2). Random forest is a novel machine-learning algorithm
315	that extends standard classification and regression tree (CART) methods by creating a collection of
316	classification trees with binary divisions (Breiman, 2001; Delgado-Baquerizo et al. 2015). Unlike
317	traditional CART analyzes, the fit of each tree is assessed using randomly selected cases (1/3 of the
318	data), which are withheld during its construction (out-of-bag or OOB cases). The importance of each
319	predictor variable is determined by evaluating the decrease in prediction accuracy (i.e. increase in the
320	mean square error between observations and OOB predictions) when the data for that predictor are
321	randomly permuted. This decrease is averaged over all trees to produce the final measure of
322	importance (Breiman, 2001; Delgado-Baquerizo et al. 2015). Here, we used Random Forest modeling
323	to simultaneously evaluate the relative importance of microbial richness and composition (originally
324	main bacterial phyla and axes from 2D nMDS analyses at the OTU level) on ecosystem functioning

325 (Appendix S2).

326 We further evaluated the effect of other methodological issues (e.g. filtering type, CO_2 fluxes 327 measurement and shift in microbial richness and composition during incubation period) on our 328 analyses (Appendix S3). As explained above the water used for microcosm preparation was filtered 329 (0.22µm), with the exception of undiluted samples (1x microcosms in Australia.1 sites). Thus, it may 330 be argued that filtering can be a bias explaining the differences among microcosms in Australia.1 sites 331 (Note that this issue does not affect UK and Australia.2 sites which did not include 1x microcosms). 332 Moreover, it could be argued that the responses in microbial respiration (i.e. broad functioning) that we 333 reported here may be the consequence of a non-linear CO₂ release from water; and thus that CO₂ could 334 be taken up by the water and not released into the headspace unless there is a lot of CO_2 being 335 produced. Finally, both microbial richness and community composition might have changed during the 336 incubation period during which ecosystem functions were measured, thereby biasing responses in 337 ecosystem functioning. We evaluated the effects of filtering type, CO₂ fluxes measurement and shift in 338 microbial richness and composition during incubation period on our analyses in Appendix S3.

339

340 **Results**

341 Bacterial diversity showed a positive relationship with both broad and specialized functions in 342 freshwater ecosystems (Figs 1-3 and Figs S4-7). This was true in all studied ecosystems and for 100% 343 of the measured functions (11 of 11). We were able to successfully identify a best group of models 344 (functional vs. no functional redundancy) shaping the microbial BEF relationship in 7 of 11 cases 345 (Table S2). In 6 of 7 cases, the best models supported a lack of functional redundancy in the microbial 346 BEF relationship (linear and/or exponential and/or no redundant-power shapes; Figs 1-3; Table S2); 347 indicating a major loss of function with the initial loss of diversity (Fig 4; Table S2). In particular, we 348 have 1 of 7 cases of exponential/no redundant-power shapes (i.e. broad functioning in PAR; Fig. 2b; 349 Table S2), 2 of 7 cases of linear/exponential/no redundant-power shapes (i.e. specialized functioning in

350 FC; Fig. 3a.1 and b.1; Table S2) and 3 of 7 exponential shapes (i.e. broad functioning in LF and HR 351 and specialized functioning in HR; Figs. 1b and c and 2b.1; Table S2). Thus, most of the identified 352 shapes for the microbial BEF relationship showed no functional redundancy patterns for broad (3 of 4 353 cases; HR, LF and PAR; Figs. 1 and 2) and specialized (3 of 3 cases; FC for MC-LR and FC and HR 354 for triclosan degradation; Fig. 3) functioning, respectively. The only evidence of any redundancy 355 whatsoever was Loch Rescobie in the UK where we found a near-linear but only very slightly 356 saturating Michaelis-Menten relationship between bacterial diversity and cumulative microbial 357 respiration (Fig 1d; Fig. 4). In the other 4 of 11 cases (i.e. broad functioning in FC, WC and RLA and 358 specialized functioning in HR), we were not able to differentiate the best shape of the microbial BEF 359 relationship among different groups of models including functional redundancy and no-functional 360 redundancy (Δ AICc < 2; Table S2).

361 There were significant but minor differences in biomass among dilution treatments after the 362 biomass recovery phases, at the start of the experiment (time zero; Fig S1), however proportionally 363 much smaller than the differences in diversity among dilution treatments (Fig S2). To address this potential confounding factor in the present study, we tested for differences among treatments and for 364 365 the effects of both biomass and diversity in the statistical analyses. In these ANCOVA analyses, we found significant differences between dilution treatments for all the measured functions ($P \le 0.001$), 366 but no significant main effects from bacterial biomass (P > 0.275) were observed on these functions 367 368 (Table S3). This indicates that the differences in Figs 1-3 arise from differences in diversity, not in 369 bacterial biomass, supporting the robustness of our results. Similarly, partial correlation analyses 370 provide evidence that the positive relationship between microbial diversity and ecosystem functionality 371 is maintained after controlling for biomass (Table S4).

As expected, we found some differences in bacterial composition across dilution levels
(Appendix S2). To account for these differences and test whether diversity is still important compared
to composition, we used Random Forest analyses. This approach provides insights on the relative

importance a several group of predictors (bacterial composition and diversity) on a particular response
variable (functions). Our Random Forest analyses (Figs S8-9) indicated that changes in microbial
diversity were more important (MC-LR degradation and microbial respiration) or similarly as
important (e.g. Triclosan degradation) for ecosystem functioning as changes in microbial communities.
Finally, further analyses provided evidence that key methodological details such as filtering
type, CO₂ fluxes measurements and shift in microbial composition during incubation period are not
influencing our results (Appendix S3).

382

383 Discussion

384 Our experimental results unequivocally show microbial diversity enhances function (11 of 11 cases) and provide evidence that there is often a lack of functional redundancy in the relationship between 385 386 microbial diversity and broad and specialized ecosystem functioning. In particular, 6 of 11 of 387 regressions followed linear, exponential and/or no redundant-power shapes, while only 1 was slightly 388 decelerating (and the others four could not be distinguished in this regard). These observations are 389 consistent with previous reports of positive effects on microbial diversity on selected functions 390 (Downing & Leibold 2002; Horner-Devine et al. 2003; Bell et al. 2005; Ptacnik et al. 2008; Peter et al. 391 2011a; Ylla et al. 2013), that however, did not explicitly check for the shape of the microbial BEF 392 relationship.

393 Strikingly, while most of the classic studies assessing the links between changing biodiversity 394 and ecosystem functioning have observed a positive but decelerating relationship between BEF in 395 plant and animals (Tilman *et al.* 1997; Cardinale *et al.* 2011), here we show that the shape of this 396 relationship does not follow generally the same pattern in bacterial communities. The differences in the 397 shape of the BEF relationship may be related to the particular manner in which these groups of 398 organisms obtain their resources (Begon *et al.* 2006). For example, all plants acquire C, water and 399 nutrients in the same general manner and do not require pre-processing by other plants prior to doing

400 so (in fact, such "pre-processing" largely represents resource competition among all species in the 401 community). In other words, in plant ecosystems, if one species disappears, in general, others will 402 acquire the unused resources in its place – thus moving the system only very slightly down the 403 decelerating functional redundancy curve (Cardinale et al. 2011). On the contrary, the resource 404 consumption structure of freshwater bacterial communities, linked to key processes such as 405 decomposition, is distinct because resources for some species only become available once other 406 species have degraded and consumed a part of that resource. For example, the observed abrupt 407 reduction in cumulative microbial respiration (aggregated process as defined in Schimel et al. 2005) 408 with decreasing bacterial diversity may be the consequence of a decrease in the microbial community 409 capacity to break down complex and recalcitrant polymers into simpler and more labile monomers 410 (organic matter degradation) which are rapidly consumed and largely respired (i.e. complementary 411 hypothesis; Loreau and Hector 2001; Schimel et al. 2005; Horwath 2007). Organic matter degradation 412 usually involves many different specialized functions (e.g. lignin degradation), and is known to require 413 the cooperation of large and diverse groups of micro-organisms (Horwath 2007). In this regard, any 414 depletion in bacterial diversity may limit aggregated processes such as microbial respiration (Schimel 415 *et al.* 2005) to the most labile C sources, negatively impacting upon this ecosystem function. 416 Supporting this notion, in Australia.2 microcosms, where we measured dissolved organic carbon 417 (DOC) at the end of the experiment, we found a negative relationship between microbial diversity and 418 DOC in all three studied sites (WC: Pearson's r = -0.65; P = 0.003; PAR: Pearson's r = -0.47; P =419 0.064; RLA: Pearson's r = -0.58; P = 0.032). This reduction in DOC was negatively related to microbial respiration (WC: Pearson's r = -0.76; P = 0.001; PAR: Pearson's r = -0.53; P = 0.038; RLA: 420 421 Pearson's r = -0.45; P = 0.10); and suggests that a reduction in ecosystem functioning (e.g. microbial 422 respiration) linked to losses in microbial diversity may impact upon important processes such as 423 organic matter decomposition, promoting the accumulation of DOC in water with low levels of 424 microbial diversity.

425 Consistent with the results observed for broad functions (at least in aggregated processes such 426 as microbial respiration), we found a lack of functional redundancy in all three of the cases in which 427 we identified the shape of the microbial BEF in specialized functions such as MC-LR and Triclosan 428 degradation linked to bacterial diversity depletion. On the contrary to broad functions such as organic 429 matter decomposition, which involve a large group of diverse microorganisms, specialized functions 430 such as MC-LR and Triclosan degradation are carried out by small groups of microorganisms 431 (Edwards & Lawton, 2009; Lee et al. 2012). Losses in the diversity of these particular groups of 432 microorganisms, in parallel to the overall bacterial diversity depletion, may collapse the different 433 metabolic routes and steps that allow the degradation of these toxins, explaining the observed 434 exponential decrease in MC-LR and Triclosan degradation. These results can have important 435 implications for freshwater ecosystems and human well-being. Both natural (i.e. MC-LR) and artificial 436 (i.e. Triclosan) toxins such as used in this study are known to have negative effects on human health, 437 vegetation growth, and animal and plant metabolism (Edwards & Lawton, 2009; Lee et al. 2012). A 438 decrease of the natural capacity of ecosystems to remove nutrients and break down pollutants will 439 increase the cost of water treatments as well as the percentage of people exposed to unclean water 440 (Vörösmarty et al. 2010; Cardinale et al. 2012).

441 Notably, the low redundancy of the microbial BEF relationship in our short-term study seems 442 to match with the reported long-term responses of the shape of the plant BEF relationship (Duffy, 443 2009; Reich et al. 2012). Recent studies suggest that although the shape of the plant BEF relationship 444 is strongly saturating during the first years in BEF experiments, it became much less saturating over time (Duffy, 2009; Reich et al. 2012). In this regard, the recent BEF literature suggests that because of 445 446 the common short time-scale employed in most terrestrial BEF experiments (≈ 2 years), classic studies 447 conducted with macro-organisms may have underestimated the importance of biodiversity on 448 ecosystem functioning; as the relationship becomes less saturating and more linear with time (Reich et 449 al. 2012; Mora et al. 2014). This pattern of similarity of long-term plant BEF responses and short-term

microbial BEF responses could be related to the different life characteristics (e.g. growth and 450 451 reproduction rates) of these groups of organisms and thus the different time needed for biotic 452 interactions to develop. For example, microbes have a much more rapid life cycle (i.e. hours to days) 453 than macro-organisms (i.e. months to decades; Schmidt et al. 2007). This fact may promote a fast 454 establishment of positive effects from microbial diversity on ecosystem functioning, such as those 455 linked to both horizontal (i.e. symbiosis, competition and mutualism; Reiss 2009) and vertical (i.e. 456 multi-trophic food web interactions; Duffy et al. 2007) species interactions; whereas such interactions 457 can take much longer to develop in plant and animal communities. Thus, our results support the notion that because of their fast growth and life cycle (e.g. up to 1×10^7 faster than animals; Schmidt *et al.* 458 459 2007), the full spectrum of biotic interactions fueled by bacterial diversity can play out quickly, and 460 bacterial communities in natural systems likely have little to no redundancy. In this respect, our study 461 provides a strong experimental framework to test for ecological questions related to community 462 interaction and succession that would take much longer to find an answer if using an experimental 463 approach involving longer life cycle organisms such as plants or animals (Mora *et al.* 2014). 464 It is important to note that the dilution-to-extinction approach used here is well-known to affect both 465 diversity and biomass, making results derived from this approach potentially difficult to interpret, if 466 steps to account for their co-variance are not taken (as was done in this study). The potential difficulty 467 can arise as both higher biomass and higher diversity could result in higher rates of functional 468 processes. In previous studies, this potential confounding of biomass and diversity was not accounted 469 for (Peter et al. 2011a; Ylla et al. 2013). Here, we allowed biomass to recover at all dilution levels, and used ANCOVA and partial correlation analyses which indicated that the differences in Figs 1-3 arise 470 471 from differences in diversity, not in bacterial biomass. They therefore provide support for our 472 interpretation of the magnitude and shape of the relationship between bacterial diversity and broad and 473 specialized ecosystem functioning. Overall, the large reduction in functioning linked to bacterial 474 diversity losses, observed in all of the studied systems and functions, suggests that all bacterial species

475 are required to maintain both broad and specialized functions in freshwater ecosystems (i.e. no 476 redundancy). In addition to accounting for biomass, we explored the effect of microbial composition 477 on the reported microbial BEF relationships. Our Random Forest results (Figs S8-9) support the 478 finding that, in general, changes in microbial richness seem to be more important for ecosystem 479 functioning (microbial respiration, MC-LR and Triclosan degradation) than changes in microbial 480 composition. Even so, the relative abundance of particular groups of microbes such as Proteobacteria 481 and Actinobacteria were also important predictors of broad and specialized functioning in our study 482 (Figs. S9-10), highlighting the importance of bacterial composition as a driver of ecosystem 483 functioning (selection/sampling effect; Loreau and Hector 2001). Both Proteobacteria and 484 Actinobacteria are highly functional microbial communities which possess an impressive array of 485 genes allowing the breakdown of different organic components (Trivedi et al. 2013).

486 In conclusion, our findings provide direct evidence that similar to macro-organisms (plants and 487 animals), declining microbial diversity has direct, adverse consequences for important ecosystem 488 broad (aggregated) and specialized functions and the services they provide. However, unlike the 489 classical positive but decelerating relationship between ecosystem functions and macro-organism 490 species richness, we most often found a lack of functional redundancy in the relationship between 491 freshwater bacterial diversity with both broad and specialized ecosystem functions (exponential and 492 linear and/or no functional-power functions). These results suggest that a loss of even a small number 493 of bacterial species can have a strongly negative impact on overall ecosystem functioning and services, 494 adversely affecting both freshwater ecosystems and human welfare.

495

496 Acknowledgments

497 We thank Fernando T. Maestre (Universidad Rey Juan Carlos, Spain) and Nico Eisenhauer (University

498 of Leipzig, Germany) for helpful comments on previous versions of the manuscript, and all the

499 technicians and colleagues that helped with the field surveys and laboratory analyses. In addition, we

500	thank Jasmine Grinyer for revising the English of this manuscript. This research is supported by the
501	ARC project (DP13010484). The authors declare no competing financial interests.
502	
503	Data accessibility
504	Data from this study are available in Appendix S4.
505	
506	References
507	Allison, S.D. & Martiny, J.B.H. (2008). Resistance, resilience, and redundancy in microbial
508	communities. Proc Natl Acad Sci USA 105, 11512-11519.
509	Al-Tebrineh, J., Mihali, T.K., Pomati, F. & Neilan, B.A. (2010). Detection of saxitoxin-producing
510	cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR.
511	Appl Environ Microbiol. 76: 7836-42.
512	Ammann, T.W., Bostanci, N., Belibasakis, G.N. & Thurnheer, T. (2013). Validation of a quantitative
513	real-time PCR assay and comparison with fluorescence microscopy and selective agar plate
514	counting for species-specific quantification of an in vitro subgingival biofilm model. J
515	Periodontal Res. 48, 517-26.
516	Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity and ecosystem functioning.
517	<i>Nature</i> 515, 505–511.
518	Bhargava, H.N & Leonard, P.A. (1996). Triclosan, Applications and Safety. Am. J. Infect. Control 24,
519	209-218.
520	Begon, M., Townsend, C.R. & Harper, J.L., (2006). Ecology From Individuals to Ecosystems
521	(Blackwell Publishing, MA, USA, ed.4).
522	Bell, T., Newman, J.A., Silverman, B.W., Turner, S.L. & Lilley, A.K., (2005). The contribution of

523 species richness and composition to bacterial services. *Nature* 436, 1157-1160.

- 524 Breiman, L. (2001) Machine Learning 45, 5 (2001).
- Burnham, K.P. & Anderson, D.R. (2002). Model Selection Multimodel Inference A Practical
 Information-Theoretic Approach second edition (Springer, NY, USA).
- 527 Burnham, K. P., Anderson, D.R. & Huyvaert. K.P. (2011). AIC model selection and multimodel
- 528 inference in behavioral ecology: some background, observations, and comparisons. *Behav*.
- 529 *Ecol. Sociobiol.* 65, 23-35.
- 530 Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S. & Potts, J.M. (2003). A Rapid
- 531 Microtiter Plate Method To Measure Carbon Dioxide Evolved from Carbon Substrate
- 532
 Amendments so as To Determine the Physiological Profiles of Soil Microbial Communities by
- 533 Using Whole Soil. *Appl Environ. Microbiol.* 69, 3593-1599.
- 534 Cardinale, B.J. *et al.* (2011). The Functional Role Of Producer Diversity In Ecosystems. *Am J Bot* 98,
 535 572-592.
- 536 Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace,
- 537 G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B.,
- Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012). Biodiversity loss and its impact on
 humanity. *Nature* 486, 59-67.
- 540 Castillo, M., Martín-Orúe, S.M., Manzanilla, E.G., Badiola, I., Martín, M. & Gasa, J. (2006).
- 541 Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by
 542 real-time PCR. *Vet. Microbiol.* 114, 165-70.
- 543 Delgado-Baquerizo, M., Gallardo, A., Covelo, F., Prado-Comesaña, A., Ochoa, V., Maestre, F.T.,
- 544 2015. Differences in thallus chemistry are related to species-specific effects of biocrust-forming
 545 lichens on soil nutrients and microbial communities. Functional Ecology, 29, 1087–1098.
- 546 Downing, A.L. & M. Leibold, (2002). Ecosystem consequences of species richness and composition in
 547 pond food webs. *Nature* 416, 837-41.
- 548 Duffy, J.E., B.J. Cardinale, K.E. France, P.B. McIntyre, E. Thébault, & Loreau. M. (2007). The

- 549 functional role of biodiversity in food webs: Incorporating trophic complexity. Ecol. Lett. 10,
 550 522-538.
- 551 Duffy, J.E. (2009). Why biodiversity is important to the functioning of real-world ecosystems. *Front* 552 *Ecol. Environ.* 7, 437-444.
- 553 Edwards, C. & Lawton, L. (2009). Advances in Applied Microbiology (Academic Press., London, UK).
- Ehrlich, P.R. & Ehrlich, A.H., (1981). *Extinction, The causes and consequences of the disappearance of species* (Random House, New York, USA).
- 556 Fierer, N., Jackson, J.A., Vilgalys, A. & Jackson, R.B., (2005). Assessment of soil microbial
- community structure by use of taxon-specific quantitative PCR assays. *Appl Environ Microbiol*71, 4117-4120.
- 559 Furukawa, K., Noda, N., Tsuneda, S., Saito, T., Itayama, T. & Inamori Y. (2006). Highly sensitive
- real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase
 A gene. *J Biosci Bioeng.* 102, 90-6.
- 562 Gans, J., Wolinsky, M., Dunbar, J. (2005). Computational improvements reveal great bacterial
- 563 diversity and high metal toxicity in soil. *Science* 309, 1387–1390.
- Gotelli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity, procedures and pitfalls in the
 measurement and comparison of species richness *Ecol Lett* 4, 379-391.
- Horner-Devine, M.C., Leibold, M.A., Smith, V. & Bohannan, B.J.M. (2003). Bacterial diversity
 patterns along a gradient of primary productivity. *Ecol. Lett.*, 6, 613-622.
- 568 Horwath, W. (2007). Soil Microbiology and Biochemistry (Springer, NY, USA).
- Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W.S., Reich, P.B., *et al.* (2011). High plant
 diversity is needed to maintain ecosystem services. *Nature* 477, 199-202.
- 571 Lee, D.G., Zhao, F., Rezenom, Y.H., Russell, D.H. & Chua, K.H. (2012). Biodegradation of triclosan
- 572 by a wastewater microorganism. *Water Research* 46, 4226-4234.

- 573 Loreau, M., Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments.
 574 *Nature* 412, 72-76.
- 575 Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M. et al.
- 576 (2012). Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. *Science*577 335, 214-218.
- 578 Millennium Ecosystem Assessment (2005) *Ecosystems and Human Well-Being, Biodiversity Synthesis*579 (World Resources Institute, Washington, DC).
- 580 Mora, C., Danovaro, R., & Loreau, M. (2014). Alternative hypotheses to explain why biodiversity-
- 581 ecosystem functioning relationships are concave-up in some natural ecosystems but concave-
- down in manipulative experiments. Scientific Reports, *Nature*, 4, 5427.
- 583 Pérez-Osorio, A.C., Williamson, K.S. & Franklin, M.J. (2010) Heterogeneous rpoS and rhlR mRNA
 584 levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms,
- sampled by laser capture microdissection. *J Bacteriol*. 192, 2991-3000.
- 586 Peter, H., Beier, S., Bertilsson, S., Lindström, E.S., Langenheder, S. & Tranvik, L.J. (2011a).

587 Function-specific response to depletion of microbial diversity. *ISME J* 5, 351-361.

- 588 Peter. H., P., Ylla, I., Gudasz, C., Romaní, A.R., Sabater, S. & Tranvik, L.J. (2011b).
- 589 Multifunctionality and Diversity in Bacterial Biofilms. *Plos ONE* 6, e23225.
- 590 Ptacnik, R., Solimini, A. G., Andersen, T., Tamminen, T., Brettum, P., Lepistö, L., Willen, E. &
- 591 Rekolainen, S. (2008). Diversity predicts stability and resource use efficiency in natural
- 592 phytoplankton communities. *Proc Natl Acad Sci USA 105*, 5134–5138.
 593 doi:10.1073/pnas.0708328105.
- 594 Reich, P.B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S.E., Flynn, D.F.B., Eisenhauer, N. (2012).
- 595 Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades. *Science* 336, 589596 592.
- 597 Reiss, J., Bridle, J.R., Montoya, J.M. & Woodward, G., (2009). Emerging horizons in biodiversity and

- 598 ecosystem functioning research. *Trends Ecol Evol* 24, 505-514.
- Ruiz-Dueñas, F.J. & Martínez, A.T., (2009). Microbial degradation of lignin, how a bulky recalcitrant
 polymer is efficiently recycled in nature and how we can take advantage of this. *Microb*
- 601 *Biotechnol* 2, 164–177.
- 602 Sala, O.E. (2000). Global Biodiversity Scenarios for the Year 2100. Science 287, 1770-1774.
- Schimel, J.P. & Weintraub, M.N., (2003). The implications of exoenzyme activity on microbial carbon
 and nitrogen limitation in soil, a theoretical model. *Soil Biol Biochem* 35, 549-563.
- Schimel, J.P., Bennett, J. & Fierer, N. (2005). *Biological diversity and function in soils* (Cambridge
 University Press, Cambridge, UK).
- 607 Schmidt, S.K., Nemergut, D.R., Cleveland, C.C., Reed, S.C. & Weintraub, M.N. (2007).
- Biogeochemical Consequences of Rapid Microbial Turnover and Seasonal Succession in Soil.
 Ecology 88, 1379-1385
- 610 SEPA (2010a). Water body information sheet for water body 100226 (Loch Rescobie) available via,
- 611 http,//www.sepa.org.uk/water/river_basin_planning/waterbody_data_sheets.aspx. Last Accessed
- 612 21/01/2013.
- 613 SEPA (2010b). Water body information sheet for water body 100242 (Loch Freuchie) available via,
- 614http,//www.sepa.org.uk/water/river_basin_planning/waterbody_data_sheets.aspx.Last615Accessed 21/01/2013.
- 616 Singh, B.K., Campbell, C., Sorensen, S.J., Zhou, J., (2009) 'Soil genomics is the way forward', *Nature*617 *Rev Microbiol* 7, 756-757.
- 618 Singh, B.K., Bardgett, R.D., Smith, P. & Reay, D.S., (2010). Microorganisms and climate change,
- 619 terrestrial feedbacks and mitigation options *Nature Rev Microbiol* 8, 779-790.
- 620 Singh, B.K., Quince C, Macdonald, C.A., Khachane, A., Thomas, N., Al-Soud, W.A., Sørensen, S.J.,
- 621 He, Z., White, D., Sinclair, A., Crooks, B., Zhou, J. & Campbell, C.D. (2014). Loss of

- 622 microbial diversity in soils is coincident with reductions in some specialized functions.
- 623 *Environm. Microbiol.* 16, 2408-2420.
- Tilman, D., Lehman, D. & Thompson, K. (1997). Plant diversity and ecosystem productivity,
 Theoretical considerations. *Proc Natl Acad Sci USA* 94, 1857.
- 626 Trivedi, P., Anderson, I.C., Singh, B.K. (2013), Microbial modulators of soil carbon storage:
- 627 integrating genomic and metabolic knowledge for global prediction. *Trends in Microbiol.* 21,
 628 641–651.
- Venail P. & Vives M.J. (2013). Phylogenetic distance and species richness interactively affect the
 productivity of bacterial communities. *Ecology* 94, 2529-2536.
- 631 Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A. & Green, P. (2010).
 632 Global threats to human water security and river biodiversity. *Nature* 467, 555-561.
- Wall, D.H., Bardgett, R.D. & Kelly, E.F. (2010). Biodiversity in the dark. *Nature Geosci.*. 3, 297298.
- Whitman W.B., Coleman, D.C. & Wiebe, W.J. (1998). Prokaryotes, The unseen majority *Proc. Natl. Acad. Sci USA*, 95, 6578-6583.
- Yachi, S. & Loreau, M., (1999). Biodiversity and ecosystem productivity in a fluctuafing environment,
 the insurance hypothesis. *Proc Natl Acad Sci USA* 96, 1493-1506.
- Ylla, I., Peter, H., Romaní, A.M. & Tranvik, L.J.I. (2013). Different diversity-functioning relationship
 in lake and stream bacterial communities. *FEMS Microbiol. Ecol.*, 85, 95-103.
- 641
- 642
- 643
- 644
- 645

647 Figure legends

648 Figure 1. Relationship between bacterial richness (number of OTUs) obtained via 454 pyrosequencing 649 and broad ecosystem functioning (cumulative microbial respiration over approximately two weeks) in 650 both Australian: a) Farmers Creek and b) Hawkesbury river and UK: c) Loch Freuchie and d) Loch 651 Rescobie microcosms (n = 3 replications at each initial dilution level). The solid lines represent the best model. The solid lines represent fitted regressions for the best model. The long dashed lines 652 653 represent fitted regressions for alternative models to the best model. The short dashed lines represent 654 fitted linear regression and indicate that we failed to identify the best shape for this microbial BEF 655 relationship. See Table S2 for AICc values. Figure 2. Relationship between bacterial richness (number of OTUs) obtained via Illumina Miseq and 656 657 broad ecosystem functioning (cumulative microbial respiration over approximately two weeks) in

658 Australia.2 sites. The solid lines represent fitted regressions for the best model. The long dashed lines

659 represent fitted regressions for alternative models to the best model. The short dashed lines represent

660 fitted linear regression and indicate that we failed to identify the best shape for this microbial BEF

relationship. See Table S2 for AICc values.

Figure 3. Relationship between bacterial richness (number of OTUs) obtained via pyrosequencing and the degradation rate constant k for both specialized functions: Mycrocystin-LR (a) and Triclosan (b) biodegradation (proportion of toxin degraded day⁻¹) in two Australia.1 freshwater ecosystems: Farmers Creek (1) and Hakwesbury river (2; n = 3). The solid lines represent fitted regressions for the best model. The long dashed lines represent fitted regressions for alternative models to the best model. The short dashed lines represent fitted linear regression and indicate that we failed to identify the best shape for this microbial BEF relationship. See Table S2 for AICc values.

669 Figure 4. Summary results on the shape of the microbial BEF relationship. Following our results, there

670 is a lack of functional redundancy in the relationship between microbial diversity with ecosystem

671 functioning which range from i) immediate catastrophe: even small losses in species richness can lead

- to a large decline in ecosystem functioning to ii) proportional loss: each species has a proportional
- 673 effect on the ecosystems functioning. In this graph, we only represent those cases in which we
- 674 successfully differentiate between functional and no functional redundancy (7 of 11 cases). We failed
- to identify the best shape for the microbial BEF relationship in the other 4 of 11 cases.
- 676

677 Supporting Information

- 678 Additional Supporting Information may be found in the online version of this article:
- 679 Appendix S1. Supplementary methods.
- 680 Appendix S2. Statistical analyses IV: Evaluating the effects of microbial composition on our analyses.
- 681 Appendix S3. Statistical analyses V. Evaluating the effects of filtering style, CO₂ fluxes measurements
- and shifts in microbial composition and diversity during incubation period on our analyses.
- **Figure S1.** Bacterial biomass over time at different dilution levels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for Australia.1}$
- and 10^{-1} , 10^{-4} and 10^{-7} for UK) estimated for: a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie
- and d) Loch Rescobie. The different labels $(1x, 10^{-1}, 10^{-2}, 10^{-4} \text{ and } 10^{-7})$ represent the exponent of each
- 686 dilution level. Significant differences arising from one-way ANOVA analyses for each of the time with
- 687 time as a fixed factor are as follows: ns = p > 0.05, * p < 0.05 and ** and p < 0.01. Error bars indicate
- 688 standard error (n=3). Arrows indicate the beginning of the experiment.
- 689 Figure S2. Bacterial richness (number of OTUs) estimated via pyrosequencing for the different
- 690 dilution levels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for Australia.1 and } 10^{-1}, 10^{-4} \text{ and } 10^{-7} \text{ for UK})$ at the beginning of
- 691 the experiment for: a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie.
- Error bars indicate standard error (n=3). The different labels $(1, 10^{-1}, 10^{-2}, 10^{-4} \text{ and } 10^{-7})$ represent the
- 693 exponent of each dilution level. Lower case letters represent the groups created by ANOVA post-hoc
- tests which compare bacterial richness among dilution levels.
- 695 Figure S3. Relationship between the dilution to extinction gradient and bacterial diversity for
- 696 Australia.2 sites. Solid lines indicate either exponential or linear fits.

Figure S4. Cumulative microbial respiration for the different dilution levels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for})$ 697 Australia.1 and 10^{-1} , 10^{-4} and 10^{-7} for UK) for: a) Farmers Creek, b) Hawkesbury river, c) Loch 698 Freuchie and d) Loch Rescobie. The different labels $(1, 10^{-1}, 10^{-2}, 10^{-4} \text{ and } 10^{-7})$ represent the exponent 699 700 of each dilution level. Error bars indicate standard errors (n=3). Lower case letters represent the groups created by ANOVA post-hoc tests which compare bacterial richness among dilution levels. 701 702 **Figure S5.** Changes in microbial respiration with time during the functionality assay for a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. The different labels (1. 10⁻¹. 10⁻². 703 10^{-4} and 10^{-7}) represent the exponent of each dilution level. Error bars indicate standard error s (n=3). 704 Differences among dilution treatments and time for microbial respiration of each studied site were 705 evaluated using two-way ANOVAs, with dilution treatment as a fixed factor and repeated measures of 706 time. 707

Figure S6. Scatter plots illustrating the dependency between cumulative microbial respiration and the
dilution to extinction gradient for Australia.2 sites.

Figure S7. Mycrocystin-LR (a) and Triclosan (b) biodegradation rate constant k (proportion of toxin degraded day⁻¹) for the different dilution levels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for Australia.1 and } 10^{-1}, 10^{-4} \text{ and}$ 10⁻⁷ for UK) for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ for UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ for UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-7} \text{ or UK})$ for the different dilution level have been created by ANOVA post-hoc tests which compare bacterial richness among dilution levels.

Figure S8. nMDS graph exploring the effect of the different dilution levels on bacterial composition at
a OTUs level for Australia.1, UK and Australia.2 sites.

718 Figure S9. Random Forest mean predictor importance (% of increase of mean square error) of

719 microbial richness and composition (i.e. relative abundance of main groups of microorganisms or main

axes from a nMDS including information at a OTUs level) as drivers of cumulative microbial

respiration in this study for the Australia.1, UK and Australia.2 sites. This accuracy importance

measure was computed for each tree and averaged over the forest (5000 trees). Significance levels are

723 as follows: *P < 0.05 and **P < 0.01.

Figure S10. Random Forest mean predictor importance (% of increase of mean square error) of microbial richness and composition (i.e. relative abundance of main groups of microorganisms or main axes from a nMDS including information at a OTUs level) as drivers of MC-LR and Triclosan degradation in this study for the Australia.1 sites. This accuracy importance measure was computed for each tree and averaged over the forest (5000 trees). Significance levels are as follows: **P* < 0.05 and ** *P* < 0.01.

Figure S11. Calibration curve for microcosm CO_2 emissions. A known amount of CO_2 was added to 40ml of water in a 125ml serum bottle. Bottles were shaken for 10 min and then the concentration of 732 CO_2 was measured using an IRGA PP systems WMA2 (Amesbury, MA, USA).

Table S1. Correlation (Spearman's ρ) between bacterial diversity (bacterial richness obtained via 454

pyrosequencing for Australia.1 and UK and Illumina Miseq for Australia.2) and Shannon and Simpson

735 diversity (obtained via 454 pyrosequencing for Australia.1 and UK and Miseq Illumina for

Australia.2). FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch

737 Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon.

738 **Table S2.** Model fit statistics and AICc index for the different functions describing the relationship

between bacterial species richness based on 454 pyrosequencing / Illumina Miseq (X) and ecosystems

740 functions (cumulative microbial respiration, Microcystin-LR and Triclosan; Y). AICc measures the

relative goodness of fit of a given model; the lower its value, the more likely it is that this model is

correct. Two models models with $\Delta AICc > 2$ are substantially different. The selected models are in

bold. FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie; WC =

744 Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon. The power function can fit

745 multiple shapes and may represent either functional or no functional redundancy depending on each

746 particular case.

147	Table S3. Summary results of the two-way	ANCOVA analyses carried out with the ecosystem
-----	--	--

- 748 functions (cumulative microbial respiration, Microcystin-LR and Triclosan) as dependent variables and
- the site (FC and HR for Australia and LF and LR for UK) and dilution $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for})$
- Australia and 10^{-1} , 10^{-4} and 10^{-7} for UK) as fixed factors. Bacterial biomass was always included as a
- 751 co-variable. df = degrees of freedom. P values below 0.05 are in bold. FC = Farmers Creek; HR =
- Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie.
- 753 Table S4. Partial correlation (Pearson's r) between bacterial richness (obtained via 454
- pyrosequencing for Australia.1 and Uk and Illumina Miseq for Australia.2) and ecosystem functions
- controlling for biomass. FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR =
- Loch Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon.

757

758

Broad functioning

Bacterial diversity (number of OTUs)

Figure 1. Relationship between bacterial richness (number of OTUs) obtained via 454 pyrosequencing and broad ecosystem functioning (cumulative microbial respiration over approximately two weeks) in both Australian: a) Farmers Creek and b) Hawkesbury river and UK: c) Loch Freuchie and d) Loch Rescobie microcosms (n = 3 replications at each initial dilution level). The solid lines represent the best model. The solid lines represent fitted regressions for the best model. The long dashed lines represent fitted regressions for alternative models to the best model. The short dashed lines represent fitted linear regression and indicate that we failed to identify the best shape for this microbial BEF relationship. See Table S2 for AICc values.

Figure 2. Relationship between bacterial richness (number of OTUs) obtained via Illumina Miseq and broad ecosystem functioning (cumulative microbial respiration over approximately two weeks) in Australia.2 sites.

The solid lines represent fitted regressions for the best model. The long dashed lines represent fitted regressions for alternative models to the best model. The short dashed lines represent fitted linear regression and indicate that we failed to identify the best shape for this microbial BEF relationship. See Table S2 for AICc values.

Figure 3. Relationship between bacterial richness (number of OTUs) obtained via pyrosequencing and the degradation rate constant k for both specialized functions: Mycrocystin-LR (a) and Triclosan (b) biodegradation (proportion of toxin degraded day-1) in two Australia.1 freshwater ecosystems: Farmers Creek (1) and Hakwesbury river (2; n = 3). The solid lines represent fitted regressions for the best model. The long dashed lines represent fitted regressions for the best model. The short dashed lines represent fitted linear regression and indicate that we failed to identify the best shape for this microbial BEF relationship. See Table S2 for AICc values.

Figure 4. Summary results on the shape of the microbial BEF relationship. Following our results, there is a lack of functional redundancy in the relationship between microbial diversity with ecosystem functioning which range from i) immediate catastrophe: even small losses in species richness can lead to a large decline in ecosystem functioning to ii) proportional loss: each species has a proportional effect on the ecosystems functioning. In this graph, we only represent those cases in which we successfully differentiate between functional and no functional redundancy (7 of 11 cases). We failed to identify the best shape for the microbial BEF relationship in the other 4 of 11 cases.

Supplementary information

Appendix S1. Supplementary methods.

DNA extraction. 25 mL of water from each bottle were filtered (0.2 μ m, Stericup filter unit, Millipore) and the filters were stored in sealed sterile Petri dishes at -20 °C until DNA extraction. DNA extraction were carried out using the PowerWater® DNA Isolation Kit (Mobio, Carlsbad, USA) following the manufacturers protocol, except that the DNA was eluted in 50 μ L and not in 100 μ L as suggested by the manufacturer.

Quantitative PCR. qPCR assays were carried out on a Rotor Gene-3000 (Corbett Research, Cambridge, United Kingdom) in polypropylene thin-walled tubes. Each 25 µL reaction contained: 12.5 µL of GoTaq® qPCR Master Mix (Promega), 1 µL of bovine serum albumin (20 mg mL-1; Roche), 0.625 µL of primer EUB338 (20 µM, Seq: ACTCCTACGGGAGGCAGCAG) (Kolb et al. 2003), 0.625 µL of primer EUB518 (20 µM, Seq: ATTACCGCGGCTGCTGG) (Muyzer et al. 1993), 5.25 µL of nuclease-free water (Promega) and 5 µL of template. PCR conditions were: 5 min at 95°C, followed by 30 cycles of 94°C for 30 s, 56°C for 30 s, 72°C for 60 s and 83°C for 15 s. To produce an amplicon standard, a plasmid containing the target regions was constructed and used as the template for PCR. Amplified products were run on 2% agarose gel to confirm specificity. Standard curves were generated in duplicate via 10-fold dilutions of the quantified PCR amplicon. At least five non-zero standard concentrations per assay were included, with standard concentration ranging from 10^{-9} to 10^{-2} copies μ L⁻¹. Melting curve analysis was carried out following each assay during the optimization stage of the assay to verify the specificity of the fluorescence signal, however once the assay gave optimal results (i.e. $R^2 > 0.99$ and efficiency at 100±5%) melting curve was removed to shorten the assay run time. Target copy numbers for each reaction were calculated assuming a product size of 200 bp from the standard curves, which in all assays gave optimal correlation coefficient and efficiency.

454 pyrosequencing analyses (Australia.1 and UK). Due to the low concentration of DNA in individual samples, 16S rRNA gene amplicons were used as the template DNA. Amplicons were produced using three sets of primer (bacteria 16S genes). The amplicons were then cleaned up using Wizard® SV Gel and PCR Clean-Up System (Promega) following manufacturer protocol. 454 Pyrosequencing of 16S rRNA gene was performed on a Roche Junior Titanium Series. A 466-bp fragment of 16S rRNA gene was amplified using the modified primers 341F (CCTAYGGGRBGCASCAG) and 806R (GGACTACNNGGGTATCTAAT; Caporaso et al. 2010). Data analyses, including assessment of main bacterial phyla abundance, were performed using the 'Quantitative Insights Into Microbial Ecology' (QIIME v 1.6.0) software package (Caporaso et al. 2010). Barcode, linker primer and reverse primer sequences were removed from the raw sequence

reads using the 'split_libraries.py' script while setting minimum sequence length of 200 and minimum quality score of 20. The 'Acacia' tool was used with default options to remove pyrosequencing noise (Bragg *et al.* 2012). Potential chimeras were removed using the UCHIME chimera detection utility of the USEARCH v6.0.307 tool (Edgar *et al.* 2011). Similar sequences were binned into OTUs using 'UCLUST' method (minimum pairwise identity of 97%). OTU abundance tables were constructed using QIIME. Taxonomy was assigned to OTUs using Greengenes database version 13_5 (DeSantis *et al.* 2006; McDonald *et al.* 2012). Alpha diversity metrics were calculated on the rarefied OTU table. We used data rarefied at 4672 sequences for UK and 1366 for Australia.1 sites to ensure even sampling depth between samples.

Illumina Miseq analyses (Australia.2). Samples were sequenced using the Illumina MiSeq platform and the same primers as used for 454 pyrosequencing sequencing. Low quality regions (Q < 20, 5 bp and 76 bp from forward and reverse reads, respectively) were trimmed from the 5' end of the sequences using SEQTK (https://github.com/lh3/seqtk) and the paired ends were joined using FLASH (Magoc & Salzberg 2011). Primers were removed from the resulting sequences using SEQTK and a further round of quality control was subsequently conducted using trimmomatic (Bolger et al. 2014), applying the sliding window: 4:20 option and setting the minimum sequence length at 200. The resulting sequences were subsequently screened in MOTHUR (Schloss et al. 2009) to discard sequences with ambiguous characters or more than 8 homopolymers. Operational Taxonomic Units (OTUs) were built at 97% sequence similarity using UPARSE (Edgar 2013). Singletons were discarded, as well as chimeric sequences identified by the UCHIME algorithm using the SILVA gold 16S rRNA gene reference database (Edgar et al. 2011). OTU abundance tables were constructed by running the usearch global command and uc2otutab.py script (http://www.drive5.com/). Taxonomy was assigned to OTUs in MOTHUR using the naïve Bayesian classifier (Wang et al. 2007) with a minimum bootstrap support of 60% and the Greengenes database version 13_5 (DeSantis et al. 2006; McDonald et al. 2012). The OTU abundance table was rarefied at 22118 sequences to ensure even sampling depth between samples. Alpha diversity metrics (bacterial richness and Shannon diversity) were calculated on the rarefied OTU table using MOTHUR (Schloss et al. 2009).

Terminal restriction fragment length polymorphism analyses (T-RFLP; All samples). Regarding T-RFLP analysis, amplicons for terminal restriction fragment analysis were produced using the bacterial 16S primer sets: 63F (CAGGCCTAACACATGCAAGTC) and 1087R (CTCGTTGCGGGACTTACCCC) primer sets (Lane, 1991). For PCR amplification of the bacteria 16S rRNA gene, the reaction mix (50 μ L) consisted of: 1 x NH4 reaction buffer, 2 mM MgCl2, 400 μ M of each deoxynucleoside triphosphate, and 2.5 U of Biotaq DNA polymerase (all reagents from

BIOLINE, UK), 20 µg bovine serum albumin (BSA, Roche Diagnostics, UK) and 5 µL of template DNA. Bacterial primers were used at a concentration of 200 nM. PCR reactions were performed with a DYAD DNA Engine Peltier thermal cycler (MJ Research, Waltham, MA). The cycle consisted of 5 min at 95°C, followed by 30 cycles of denaturing at 94°C for 30s, annealing at 55°C for 30s, elongation at 72°C for 1 min, and a last cycle of 10 minutes extension period at 72°C. PCR amplicons were purified using the Wizard® SV Gel and PCR clean up system (Promega) following the manufacturer instructions. Once the samples were purified using the commercial kit, the concentration and purity of DNA were measured using a NanoDropTM 1000 spectrophotometer (Thermo Scientific). DNA concentration estimates were then used to normalize the amount of DNA at the restriction digestion step. The pools of bacterial DNA were digested at 37°C for 3 hours with the restriction enzyme HhaI (Promega) following manufactures guidelines in a 10 µL reaction. DNA fragment analysis was carried out on an ABI PRISM® 3130xl Genetic Analyzer (Applied Biosystems). After ensuring that the quality of the capillary electrophoresis run was satisfactory, relative abundance tables were obtained for statistical analysis that was carried out with GenStat (version 11.1, VSN). Before statistical analysis, only terminal fragments in the length range 30-500 base pairs were selected to comply with the range of the T-RFLP standard. Baseline was set up based on overall fluorescence noise of each run to exclude peaks resulting from technical artifacts. Also, peaks with relative abundance below 5% were removed from analysis and remaining peaks were combined when differing for less than one base pair.

Broad functions (All microcosms). We first measured a broad ecosystem function (i.e. cumulative microbial respiration) in UK, Australia.1 and Australia.2 sites. The day immediately after biomass recovery stage (day in which we achieved roughly similar levels of microbial biomass among microcosms for a particular location), we transferred 40 mL of water from the original microcosms to 125 mL serum bottles under sterile conditions. Water samples were incubated at 20 °C with continuous shaking at 70 rpm to ensure oxygenation during 13 and 18 days for the Australian (Australia.1 and Australia.2) and UK sites, respectively. Bottles were wrapped with aluminium foil to ensure minimal exposure to light. Microbial respiration was measured using an infrared gas analyser (IRGA: EGM-4, PP systems for UK and WMA2, PP systems for Australia.1 and Australia.2 sites) in each of these serum bottles. Respiration was measured every 2-3 days in each water microcosm for 13 and 18 days in the Australian (Australia.1 and Australia.2) and UK sites, respectively. Gaseous samples (10 mL) from the headspace of each serum bottle were taken using syringes just before opening the bottle for atmospheric re-equilibration at each sampling time. The samples were injected into the IRGA to obtain the CO₂ concentration. Thus, each measurement represents the CO₂ accumulated in each microcosm

after 2-3 days. From one time step to the next, we calculated the difference in CO_2 concentration relative to ambient. Finally, we calculated the total cumulative microbial respiration in our microcosms from these individual measurements (expressed as $\mu g CO_2$).

Specialized functions (Australia.1). We measured two specialized functions (i.e. ability to degrade microcystin-LR and Triclosan) in the two Australia.1 freshwater ecosystems. In parallel, we transferred 40 mL from the original microcosms to 125 mL serum bottles. Then, MC-LR (0.5 mg L^{-1}) and Triclosan (10 µg L⁻¹) were added aseptically to the water microcosms. Bottles were wrapped with aluminium foil to ensure minimal exposure to light. Samples were incubated at room temperature (20°C) and with continuous shaking at 70 rpm to ensure oxygenation in the dark for 16 days. Serum bottle were opened in sterile conditions every two days to allow oxygenation, taking aliquots (500 µL) for analysis every 4 days. Regarding MC-LR microcosms, aliquots were frozen, freeze-dried, reconstituted in 80% aqueous methanol and centrifuged at $15000 \times g$ then the supernatant analyzed by HPLC (Edwards et al. 2008). HPLC eluents were milli-Q water-0.05% trifluoroacetic acid (TFA) (Fisher Scientific, Leicestershire, UK) and acetonitrile (Rathburn, Walkesburn, UK) 0.05% TFA, the latter being used as the ion pairing agent. The detector resolution was set at 1.2 µm and data were acquired in the wavelength range 200-400 µm. Separation was obtained with a Sunfire C18 column (2.1 mm i.d. x 150 mm long x 5 µm particle size) supplied by Waters corporation (Wilmslow, UK) kept at a temperature of 40 °C. The instrument used was a Waters 2695 Separation Module with a Waters 2996 Photodiode Array Detector (Waters, Elstree, UK) at a flow rate of 0.3 mL min⁻¹. Finally, quantification of Triclosan was achieved using a commercial kit (Abraxis kits, PA, USA) that applies the principles of enzyme linked immunosorbent assay (ELISA) with quantitation range from 0.05 to 2.5 ppb. Prior to analysis, samples were diluted with the diluent provided by the manufacturer to meet the assay specifications. We then calculated the degradation rate constant k for both MC-LR and Triclosan in our microcosms using a first order kinetic curve as per the FOCUS software tool (http://focus.jrc.ec.europa.eu/dk/). The FOCUS tool requires the percentage of remaining compound in the flask at the different sampling time in order to calculate the degradation rate constant k (proportion of toxin degraded day⁻¹) and the half life (DT-50 in days; time required for 50% dissipation of the initial concentration). For degradation with first order kinetic, k and DT-50 are linked by the relation $DT-50 = \ln(2) k^{-1}$.

Appendix S2. Statistical analyses IV. Evaluating the effects of microbial composition on our analyses.

First, we obtained information on the relative abundance of main bacteria phyla for the Australia.1, UK and Australia.2 sites using next generation sequencing. Moreover, we used a non-metric

multidimensional ordination (nMDS) on the matrix of bacterial composition at a OTUs level to obtain a metric of community composition at the lowest taxonomic rank. The two-dimensional nMDS solution sufficed to represent the data. We conducted nMDS ordinations on previously normalized data (Z-score) with the PRIMER v6 statistical package for Windows (PRIMER-E Ltd., Plymouth Marine Laboratory, UK), using the Bray-Curtis similarity measure.

We then conducted a classification Random Forests analysis (RF; Breiman, 2001) to assess the relative importance of bacterial composition (i.e. relative abundance of main bacterial and phyla or main axes from a nMDS) and richness in controlling both broad and specialized functions, and to explore whether the microbial richness effect on ecosystem functionality was still important after considering main bacterial groups in our analyses. Random Forest is a novel machine-learning algorithm that extends standard classification and regression tree (CART) methods by creating a collection of classification trees with binary divisions (Wei et al. 2010). Unlike traditional CART analyses, the fit of each tree is assessed using randomly selected cases (1/3 of the data), which are withheld during its construction (out-of-bag or OOB cases). The importance of each predictor variable was determined by evaluating the decrease in prediction accuracy (i.e. increase in the mean square error between observations and OOB predictions) when the data for that predictor are randomly permuted. This decrease was averaged over all trees to produce the final measure of importance (Wei et al. 2010). This accuracy importance measure was computed for each tree and averaged over the forest (5000 trees). In RF, the different microbial variables (microbial diversity and percentage of abundance of the main groups of microorganisms) were included as predictor of the different functions in this study (response variables). We conducted these analyses independently for Australia.1, UK and Australia.2 sites because of the different next generation sequencing approaches (454 pyrosequencing vs. Illumina MIseq) and rarefaction levels used in this study. In addition, we merged those sites from Australia.1/UK (Farmers Creek, Hawkesbury River, Loch Freuchie and Loch Rescobie) and Australia.2 (Wheeney Creek, Parramatta River and Richmond Lagoon) to improve our number of samples. These analyses were conducted using the randomForest package (Liaw & Wiener, 2002) for the R statistical software, version 3.0.2 (http://cran.r-project.org/). The significances of the model and the cross-validated R^2 were assessed with 5000 permutations of the response variable using the A3 R package (Fortmann-Roe, 2013). Similarly, the significance of the importance measures of each predictor (here microbial variables) on the response variable (functions) was assessed by using the rfPermute package for R (Archer, 2013).

Proteobacteria was the dominant phylum of bacteria in all our sites ranging from 60 to 95%, followed by *Bacteroidetes* and *Actinobacteria* that ranged from 3 to 25% and from 1 to 9%,

respectively. As expected, we found some differences in composition across dilution levels. For example, relative abundance of *Proteobacteria* increased with dilution level in five of our seven sites (Spearman $\rho > 0.825$; P < 0.05), whereas relative abundance of other phyla such as *Actinobacteria* (5 of 7; Spearman $\rho < -0.732$; P = 0.001), *Bacteroidetes* (4 of 7; Spearman $\rho < -0.567$; P = 0.022) and *Gemmatimonadetes* (4 of 7; Spearman $\rho < -0.552$; P = 0.026) proportionally decreased with dilution level. To account for these differences and test whether diversity is still important compared to composition, we used Random Forest analyses. Our Random Forest analyses (Figs S8-10) indicated that, in general, changes in microbial diversity were more important (MC-LR degradation, Triclosan degradation and cumulative microbial respiration) for ecosystem functioning as changes in microbial community composition (relative abundance of main bacterial phyla and main axes from a nMDS).

Appendix S3. Statistical analyses V. Evaluating the effects of filtering style, CO₂ fluxes measurements and shifts in microbial composition and diversity during incubation period on our analyses.

Here, we conducted further analyses considering the effects of filtering style, CO_2 fluxes measurements and shifts in microbial composition and diversity during incubation period on our analyses. The main goal of the analyses conducted in this appendix was to explore whether any of these important factors could have influenced the reported relationship between microbial diversity and ecosystem functioning. Please, notice that because of the differences in terms of experimental design and measured variables across microcosm studies, we conducted these analyses for the microcosms for which this information was available (indicated in brackets).

Filtering style (Australia.2). Because the water used for microcosm preparation was filtered (0.22µm), with the exception of the undiluted samples (1x microcosms in Australia.1 sites), it may be argued that filtering can be a bias explaining the differences among microcosms. Thus, for a subset of our microcosms (Australia.2) we prepared parallel microcosms with (0.22µm; included in the main text) and without filtering (both of them autoclaved). We selected microcosms 1x, 10^{-1} , 10^{-3} , 10^{-5} and 10^{-7} to cover the whole dilution gradient. We measured cumulative respiration in both water-filtered and no filtered microcosms to explore whether similar respiration trends were found in both water-filtered and non filtered microcosms. Our results supported that filtered and non filtered microcosms provide exactly the same results for the three water systems included here (Wheeny Creek: Pearsons'r = 0.98; *P* = 0.004; Richmond Lagoon: Pearsons'r = 0.98; *P* < 0.001; and Parramata River: Pearsons'r = 0.99; *P* < 0.001).

CO2 fluxes measurements (Milli-Q water). It could be argued that the responses in microbial

respiration that we reported here may be the consequence of a non-linear CO_2 release from water; and thus that CO_2 could be taken up by the water and not released into the headspace unless there is a lot of CO_2 being produced. Such a process could produce the linear or accelerating pattern observed. To discard this issue we prepared 18 water microcosms (40 mL of water) in 125mL serum bottles using Milli-Q water and injected different CO_2 concentrations in water across these microcosms. We then incubated these bottles for 10 minutes at 150rpm and measured the concentration of CO_2 in the headspace with an infrared gas analyser (IRGA PP systems WMA2, Amesbury, MA, USA) as explained in the Material and Method section of this manuscript. Results indicate that CO_2 release follows a linear trend (Fig S10), discarding any bias in our posteriori analyses.

Shift in microbial richness and composition during incubation period (Australia.1 and UK). It

could be argue that both microbial richness and community composition might have changed during the incubation period during which ecosystem functions were measured. To address this important point, we measured richness and composition at the end of the experiment (after 2 weeks incubation period) in two of our experiments (Australia.1 and UK) using 454 sequencing (UK) and T-RLFP (Australia.1), respectively. We then conducted further analyses to explore the relationship of microbial diversity and composition at the beginning and at the end of the experiment (linear regressions for microbial richness and mantel tests using Bray-Curtis similarity for microbial composition) to ensure that the reported patterns in richness and composition were maintained for each dilution during these two weeks incubation period. Note that in the case of 454 data, the matrix of composition was analysed at the OTU level.

In all cases (two sites from Australia.1 and two sites from UK), microbial richness at the beginning of the experiment was highly related to those at the end of the experiments (LF: Pearson's r = 0.84, P = 0.010; LR: Pearson's r = 0.95, P < 0.001; HR: Pearson's r = 0.75, P = 0.019; FC: Pearson's r = 0.58, P = 0.10). Similarly, microbial composition at the beginning of the experiment was highly related to the one at the end of the experiments (LF: Pearson's r = 0.94, P < 0.001; LR: Pearson's r = 0.75, P < 0.001; HR: Pearson's r = 0.75, P < 0.001; LR: Pearson's r = 0.75, P < 0.001; HR: Pearson's r = 0.56, P < 0.001; FC: Pearson's r = 0.26, P = 0.050). Thus, albeit differences along time are probable, these results support the main patterns in bacterial richness and composition are maintained with time.

References:

Archer, E., (2013). *Estimate permutation p-values for importance metrics*. R package version 1.5.2.
Bolger, A.M., Lohse, M. & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114-2120.

- Bragg, L., Stone, G., Imelfort, M., Hugenholtz, P. & Tyson, G.W. (2012). Fast, accurate errorcorrection of amplicon pyrosequences using Acacia. *Nature Methods* 9, 425-426.
- Breiman, L. (2001) Machine Learning 45, 5 (2001).
- Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N. et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335-336.
- DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalev, i D., Hu, P., Andersen, G.L. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. *Applied and Environmental*, *Microbiology* 72, 5069-72.
- Edgar, R., Haas, B.J., Clemente, J.C., Quince, C., Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27, 2194-2200.
- Edgar, R.G. et al. (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. *Nature Methods* 10, 996-998.
- Edwards, C.D., Fowler, G.N. & Lawton, L.A. (2008). Biodegradation of microcystins and nodularin in freshwaters. *Chemosphere* 73, 1315-1321.
- Fortmann-Roe, S. (2013). Accurate, Adaptable and Accessible Error Metrics for Predictive Models. R package version 0.9.
- Kolb, S., Knief, C., Stubner, S. & Conrdad, R. (2003). Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. *Applied and Environmental Microbiology* 69, 2423-2429.
- Liaw, A. & Wiener, M. (2002). Rnews, 2/3, 18.
- Magoc, T., Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. *Bioinformatics* 27, 2957-2963.
- McDonald, D., Price, M.N., Goodrich, J. et al. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. *The ISME Journal* 6, 610-618.
- Muyzer, G., De Waal, E.C., Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Applied and Environmental Microbiology*, 59, 695-700.
- Schloss, P.D. et al. (2009) Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities Applied And Environmental Microbiology 75, 7537-7541.

Lane, D.J. (1991). Nucleic Acid Techniques in Bacterial Systematics (John Wiley and Sons, NY, USA)

- Wang, Q. et al. (2007) Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy.*Applied and Environmental Microbiology* 73, 5261-5267.
- Wei, C-L., Rowe, G.T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M.J., et al. (2010). Global Patterns and Predictions of Seafloor Biomass Using Random Forests PLOS ONE 5, e15323.

Figure S1. Bacterial biomass over time at different dilution levels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for Australia.1 and } 10^{-1}, 10^{-4} \text{ and } 10^{-7} \text{ for UK})$ estimated for: a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. The different labels $(1x, 10^{-1}, 10^{-2}, 10^{-4} \text{ and } 10^{-7})$ represent the exponent of each dilution level. Significant differences arising from one-way ANOVA analyses for each of the time with time as a fixed factor are as follows: ns = p > 0.05, * p < 0.05 and ** and p < 0.01. Error bars indicate standard error (n=3). Arrows indicate the beginning of the experiment.

Dilution-to-extinction gradient

Figure S2. Bacterial richness (number of OTUs) estimated via pyrosequencing for the different dilution levels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for Australia.1 and } 10^{-1}, 10^{-4} \text{ and } 10^{-7} \text{ for UK})$ at the beginning of the experiment for: a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. Error bars indicate standard error (n=3). The different labels $(1, 10^{-1}, 10^{-2}, 10^{-4} \text{ and } 10^{-7})$ represent the exponent of each dilution level. Lower case letters represent the groups created by ANOVA post-hoc tests which compare bacterial richness among dilution levels.

Figure S3. Relationship between the dilution to extinction gradient and bacterial diversity for Australia.2 sites. Solid lines indicate either exponential or linear fits.

Broad functioning

Figure S4. Cumulative microbial respiration for the different dilution levels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for Australia.1 and } 10^{-1}, 10^{-4} \text{ and } 10^{-7} \text{ for UK})$ for: a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. The different labels $(1, 10^{-1}, 10^{-2}, 10^{-4} \text{ and } 10^{-7})$ represent the exponent of each dilution level. Error bars indicate standard errors (n=3). Lower case letters represent the groups created by ANOVA post-hoc tests which compare bacterial richness among dilution levels.

Broad functioning

Figure S5. Changes in microbial respiration with time during the functionality assay for a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. The different labels $(1, 10^{-1}, 10^{-2}, 10^{-4} \text{ and } 10^{-7})$ represent the exponent of each dilution level. Error bars indicate standard error s (n=3). Differences among dilution treatments and time for microbial respiration of each studied site were evaluated using two-way ANOVAs, with dilution treatment as a fixed factor and repeated measures of time.

Figure S6. Scatter plots illustrating the dependency between cumulative microbial respiration and the dilution to extinction gradient for Australia.2 sites.

Australia.1

Figure S7. Mycrocystin-LR (a) and Triclosan (b) biodegradation rate constant k (proportion of toxin degraded day⁻¹) for the different dilution levels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for Australia.1 and } 10^{-1}, 10^{-4}$ and 10^{-7} for UK) for: 1) Farmers Creek and 2) Hawkesbury river. The different labels $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4})$ represent the exponent of each dilution level. Error bars indicate standard errors (n=3). Lower case letters represent the groups created by ANOVA post-hoc tests which compare bacterial richness among dilution levels.

Figure S8. nMDS graph exploring the effect of the different dilution levels on bacterial composition at a OTUs level for Australia.1, UK and Australia.2 sites.

Figure S9. Random Forest mean predictor importance (% of increase of mean square error) of microbial richness and composition (i.e. relative abundance of main groups of microorganisms or main axes from a nMDS including information at a OTUs level) as drivers of cumulative microbial respiration in this study for the Australia.1, UK and Australia.2 sites. This accuracy importance measure was computed for each tree and averaged over the forest (5000 trees). Significance levels are as follows: *P < 0.05 and ** P < 0.01.

Specialised functioning

Figure S10. Random Forest mean predictor importance (% of increase of mean square error) of microbial richness and composition (i.e. relative abundance of main groups of microorganisms or main axes from a nMDS including information at a OTUs level) as drivers of MC-LR and Triclosan degradation in this study for the Australia.1 sites. This accuracy importance measure was computed for each tree and averaged over the forest (5000 trees). Significance levels are as follows: *P < 0.05 and **P < 0.01.

Figure S11. Calibration curve for microcosm CO_2 emissions. A known amount of CO_2 was added to 40ml of water in a 125ml serum bottle. Bottles were shaken for 10 min and then the concentration of CO_2 was measured using an IRGA PP systems WMA2 (Amesbury, MA, USA).

Table S1. Correlation (Spearman's ρ) between bacterial diversity (bacterial richness obtained via 454 pyrosequencing for Australia.1 and UK and Illumina Miseq for Australia.2) and Shannon and Simpson diversity (obtained via 454 pyrosequencing for Australia.1 and UK and Miseq Illumina for Australia.2). FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon.

	Shann	on	Simpso	Dn	
Site	ρ	Р	ρ	Р	
FC	0.944	< 0.001	0.867	< 0.001	
HR	0.993	< 0.001	0.919	< 0.001	
LF	0.964	< 0.001	1.000	< 0.001	
LR	0.976	< 0.001	0.967	< 0.001	
WC	0.868	< 0.001	0.802	< 0.001	
PAR	0.903	< 0.001	0.857	< 0.001	
RLA	0.833	< 0.001	0.874	< 0.001	

Table S2. Model fit statistics and AICc index for the different functions describing the relationship between bacterial species richness based on 454 pyrosequencing / Illumina Miseq (X) and ecosystems functions (cumulative microbial respiration, Microcystin-LR and Triclosan; Y). AICc measures the relative goodness of fit of a given model; the lower its value, the more likely it is that this model is correct. Two models models with Δ AICc > 2 are substantially different. FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon. The power function can fit multiple shapes and may represent either functional or no functional redundancy depending on each particular case.

							Selected	Model
Function	Site	Model	\mathbf{R}^2	P	AICc	DeltaAIC	c Model(s) group
Microbial respiration	FC	Logarithmic ¹	0.755	< 0.001	150.556	8.553		
		2 Michaelis-Menten	0.879	< 0.001	142.024	0.021	√	Redundancy
		Power ³	0.867	< 0.001	142.008	0.005	1	No redundancy
		Linear ⁴	0.879	< 0.001	142.003	0.000	1	No redundancy
		Exponential ⁵	0.858	< 0.001	142.856	0.853	1	No redundancy
	HR	Logarithmic ¹	0.570	0.004	151.273	11.223		
		Michaelis-Menten ²	0.696	< 0.001	147.104	7.054		
		Power ³	0.712	< 0.001	146.455	6.405		
		Linear ⁴	0.747	< 0.001	144.891	4.841		
		Exponential ⁵	0.831	< 0.001	140.050	0.000	1	No redundancy
	LF	Logarithmic ¹	0.510	0.071	87.981	25.952		
		Michaelis-Menten ²	0.833	0.004	80.437	18.408		
		Power ³	0.957	< 0.001	70.8561	8.827		
		Linear ⁴	0.856	0.002	79.381	17.352		
		Exponential ⁵	0.988	< 0.001	62.029	0.000	1	No redundancy
	LR	Logarithmic ¹	0.855	0.001	92.642	18.245		
		Michaelis-Menten ²	0.985	< 0.001	74.397	0.000	1	Redundancy
		Power ³	0.982	< 0.001	75.860	1.463	1	Redundancy
		Linear ⁴	0.979	< 0.001	76.891	2.494		
		Exponential ⁵	0.900	< 0.001	89.699	15.302		
	WC	Logarithmic ¹	0.618	< 0.001	128.676	2.116		
		Michaelis-Menten ²	0.618	< 0.001	128.689	2.129		
		Power ³	0.659	< 0.001	126.863	0.303	1	Redundancy
		Linear ⁴	0.665	< 0.001	126.560	0.000	1	No redundancy
		Exponential ⁵	0.637	< 0.001	127.839	1.279	1	No redundancy
	PAR	Logarithmic ¹	0.310	0.025	183.116	5.414		
		Michaelis-Menten ²	0.374	0.011	181.543	3.841		
		Power ³	0.508	0.001	177.702	0.000	✓	No redundancy

		Linear ⁴	0.389	0.005	180.068	2.366		
		Exponential ⁵	0.449	0.002	178.394	0.692	1	No redundancy
	RLA	Logarithmic ¹	0.333	0.030	148.144	1.159	1	Redundancy
		Michaelis-Menten ²	0.263	0.060	149.544	2.559		
		Power ³	0.386	0.017	146.985	0.000	1	No redundancy
		Linear ⁴	0.352	0.025	147.738	0.753	1	No redundancy
		Exponential ⁵	0.373	0.020	147.288	0.303	1	No redundancy
MC-LR	FC	Logarithmic ¹	0.637	0.002	-73.932	4.959		
		Michaelis-Mente	n^2 0.629	0.002	-73.689	5.202		
		Power ³	0.760	< 0.001	-78.891	0.000	1	No redundancy
		Linear ⁴	0.749	< 0.001	-78.385	0.506	1	No redundancy
		Exponential ⁵	0.719	< 0.001	-77.006	1.885	1	No redundancy
	HR	Logarithmic ¹	0.435	0.019	-68.094	2.982		
		Michaelis-Menten ²	0.481	0.012	-69.124	1.952	1	Redundancy
		Power ³	0.533	0.007	-70.384	0.692	1	No redundancy
		Linear ⁴	0.506	0.009	-69.707	1.369	1	No redundancy
		Exponential ⁵	0.559	0.005	-71.076	0.000	1	No redundancy
Triclosan	FC	Logarithmic ¹	0.479	0.012	-37.780	6.432		
		Michaelis-Mente	$n^2 0.622$	0.002 -4	1.624	2.588		
		Power ³	0.670	0.001	-43.240	0.972	1	No redundancy
		Linear ⁴	0.641	0.002	-42.241	1.971	1	No redundancy
		Exponential ⁵	0.695	< 0.001	-44.212	0.000	1	No redundancy
	HR	Logarithmic ¹	0.686	< 0.001	-41.396	24.152		
		Michaelis-Menten ²	0.842	< 0.001	-49.687	15.861		
		Power ³	0.910	< 0.001	-56.444	9.104		
		Linear ⁴	0.862	< 0.001	-51.258	14.290		
1		Exponential	0.958	< 0.001	-65.548	0.000	1	No redundancy

$$Y = a + b \cdot \log(X)$$

$$Y = a + b \cdot x$$

$$Y = a + b \cdot X$$

$$Y = a + b \cdot X$$

$$Y = a \cdot e^{bX}$$

Table S3. Summary results of the two-way ANCOVA analyses carried out with the ecosystemfunctions (cumulative microbial respiration, Microcystin-LR and Triclosan) as dependent variables and

the site (FC and HR for Australia and LF and LR for UK) and dilution $(1, 10^{-1}, 10^{-2} \text{ and } 10^{-4} \text{ for}$ Australia and 10^{-1} , 10^{-4} and 10^{-7} for UK) as fixed factors. Bacterial biomass was always included as a co-variable. df = degrees of freedom. *P* values below 0.05 are in bold. FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie.

Location	Function	Factor	df	F	Р
Australia.1	Microbial respiration	Biomass	1	0.834	0.376
		Dilution	3	39.007	<0.001
		Site	1	0.254	0.621
		Dilution x Site	3	1.871	0.178
		Res	15		
UK		Biomass	1	0.125	0.733
		Dilution	2	36.734	<0.001
		Site	1	4.709	0.062
		Dilution x Site	2	2.531	0.141
		Res	8		
Australia.1	Microcystin-LR	Biomass	1	0.043	0.839
		Dilution	3	12.457	<0.001
		Site	1	0.033	0.859
		Dilution x Site	3	0.499	0.688
		Res	15		
	Triclosan	Biomass	1	1.28	0.275
		Dilution	3	16.03	<0.001
		Site	1	0.26	0.615
		Dilution x Site	3	1.24	0.330
		Res	15		

Table S4. Partial correlation (Pearson's r) between bacterial richness (obtained via 454 pyrosequencing for Australia.1 and Uk and Illumina Miseq for Australia.2) and ecosystem functions controlling for biomass. FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon.

Function	Sito	Daramatar	
Function	EC		0.807
	FC		-0.001
		P-value	<0.001
	HR	Pearson's r	0.861
		P-value	0.001
	LF	Pearson's r	0.938
		P-value	0.006
	LR	Pearson's r	0.994
		P-value	< 0.001
	WC	Pearson's r	0.821
		P-value	< 0.001
	PAR	Pearson's r	0.694
		P-value	0.004
	RLA	Pearson's r	0.564
		P-value	0.045
MC-LR	FC	Pearson's r	0.769
		P-value	0.006
	HR	Pearson's r	0.667
		P-value	0.025
Triclosan	FC	Pearson's r	0.644
		P-value	0.032
	HR	Pearson's r	0.928
		P-value	< 0.001