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Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer’s 

disease
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1School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK 
2Institute of Health Research & Innovation, University of the Highlands and Islands, Inverness, UK

Abstract
Alzheimer’s Disease (AD) is the most common cause of dementia worldwide, normally affecting people 

aged over 65. Due to the multifactorial nature of this disease, a “multi-target-directed ligands” (MTDLs) 

approach for the treatment of this illness has generated intense research interest in the past few years. 

Vanillin is a natural antioxidant and it provides a good starting point for the synthesis of new compounds 

with enhanced antioxidant properties, together with many biological activities, including -amyloid peptide 

aggregating and acetylcholinesterase inhibiting properties. Here we report novel vanillin derivatives, bearing 

a tacrine or a naphthalimido moiety. All compounds exhibited improved antioxidant properties using DPPH 

assay, with IC50 as low as 19.5 M, FRAP and ORAC assays, with activities up to 1.54 and 6.4 Trolox 

equivalents, respectively. In addition, all compounds synthesized showed inhibitory activity toward 

acetylcholinesterase enzyme at molar concentrations using the Ellman assay. Computational docking 

studies of selected compounds showed interactions with both the catalytic anionic site and the peripheral 

anionic site of the enzyme. Furthermore, these compounds inhibited Aβ(1-42) amyloid aggregation using the 

fluorometric ThT assay, with compound 4 showing comparable inhibitory activity to the positive control, 

curcumin. At cellular level compound 4 (1 M) showed significant protective effects of neuroblastoma SH-

SY5Y cell line when treated with hydrogen peroxide (400 M). In our opinion, vanillin derivatives could 

provide a viable platform for future development of multi-targeted ligands against AD.

Keywords: Alzheimer’s Disease, Synthetic antioxidants, AChE inhibitors, Multitarget-directed ligands, 

Vanillin derivatives.
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Introduction
Amongst all neurodegenerative diseases, Alzheimer’s disease (AD) is the most common cause of dementia, 

mostly affecting people over the age of 65 1. In developed countries, AD is the fifth cause of death 2. AD is 

characterized by memory loss, confusion with space and time, speaking problems, poor judgment and 

changes in mood and personality. Due to increased life expectancy, 1 million new cases per year are 

expected by 2050 3. For this reason, there is an urgent need for effective therapies.

AD is a multifactorial disease normally characterized by neuronal loss and -amyloid deposition that leads to 

extracellular amyloid plaques in the cerebral cortex 4. Although the cause of these events is not fully 

understood, the “amyloid hypothesis” is the most recognized for development of AD 2. More recently, 

oxidative injury to macromolecules, including proteins, lipids and nucleic acids has been identified as a key 

feature in the development of AD, thus leading to the “oxidative stress hypothesis” 5. Finally, a decrease in 

acetylcholine availability at neuronal synapses is a common hallmark in AD patients 2, making this a 

possible therapeutic target.

Due to the many contributing factors involved in the development and progression of AD, the current trend 

of drug development based on a “one target-one molecule” point of view is no longer favored. A multi-

targeted approach, aimed at targeting different steps of the neurotoxic cascade, has started to attract much 

interest among the research community 6. In particular, the approach of designing multi-target agents against 

neurodegenerative diseases has shown an increase 7–9. For example, recent reports include multifunctional 

agent chromone-2-carboxyamidoalkylbenzylamines 10 and tacrine-8-hydroxyquinoline hybrids 11. Both 

groups of compounds target the cholinesterase enzymes acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE), act as chelating agent with copper ion and inhibit A42) aggregation. All 

these events play a crucial role in the onset and progression of AD. 

Multi-target compounds acting as antioxidants and acetylcholinesterase inhibitors including tacrine, a well-

known acetylcholinesterase inhibitor 12 and resveratrol, a strong natural antioxidant 13 have been recently 

reported 14. The compounds described in this work were strong inhibitors of acetylcholinesterase (with IC50 at 

nanomolar concentrations) and Aβ(1-42) aggregation, while showing antioxidant activities in the 2,2-diphenyl-

1-picrylhydrazyl (DPPH) assay comparable to Trolox 14. Furthermore several hybrids between tacrine and 

Trolox,  a common synthetic antioxidant, were previously reported; the compounds showed inhibitory 

activity toward AChE comparable to tacrine, with a two-fold decrease in the antioxidant activities in DPPH 

assay when compared to Trolox standard 15.

Previously, we reported novel vanillin derivatives with strong antioxidant properties; in particular, 

compound 2c (4,4',4'',4'''-((1,4-phenylenebis(azanetriyl))tetrakis(methylene))tetrakis(2-methoxyphenol)) 

exhibited remarkable scavenging activity toward DPPH free radical, as well as reducing activity in FRAP 

assay. In addition, the latter compound protected the SH-SY5Y neuroblastoma cell line against hydrogen 

peroxide (400 M) treatment, increasing the cell viability by 30% at compound concentrations as low as 10 

M 16. 
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Here we report the design and synthesis of four novel vanillin derivatives with multi-target functionalities 

that would be expected to exhibit antioxidant properties, as well as inhibitory AChE and amyloid Aβ(1-42)  

aggregation activities (Figure 1). Among the vanillin derivatives synthesized, three contained a 

naphthalimido moiety and one has a tacrine group.  It is noteworthy to mention previous work reporting a 

naphthalimido moieties linked with ranitidine to produce potential multi-targeted AD agents 17. The 

antioxidant properties, inhibitory AChE activity and -amyloid aggregation inhibitory properties and their 

protective effect on peroxide-treated neuroblastoma SH-SY5Y cells of all the compounds synthesized in this 

work will be discussed.

Figure 1. Rationale for the synthesis of vanillin derivatives 18,19.

The phenolic moiety, important for the antioxidant activity, was linked to the tacrine moiety, a well-known 

AChE inhibitor. Tacrine was substituted with a naphthalimido structure to determine the impact of the latter 

on AChE and -amyloid inhibitory activity. In addition, the aromatic linker was substituted with a propyl 

moiety, which shows similar distance between the two nitrogens (5.2 and 4.9 Å, respectively, calculated 

using PyMOL software) and more flexibility for the evaluation of its impact on AChE and amyloid Aβ(1-42) 

peptide inhibitory activities.

Page 3 of 27 MedChemComm

M
ed

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
8 

A
pr

il 
20

19
. D

ow
nl

oa
de

d 
by

 R
O

B
E

R
T

 G
O

R
D

O
N

 U
N

IV
E

R
SI

T
Y

 o
n 

4/
8/

20
19

 5
:1

7:
17

 P
M

. 

View Article Online
DOI: 10.1039/C9MD00048H

http://dx.doi.org/10.1039/C9MD00048H


Results and discussion

Chemical Synthesis
The synthesis of novel naphthalimido vanillin derivatives 1, 2, and 3 was achieved as depicted in Scheme 1 

using 2-(3-aminopropyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (I-1) as a precursor. The latter was 

synthesised from the reaction between naphthalic anhydride and 1,3-diamino propane  in ethanol according 

to previous work 20. Vanillin derivatives (1, 2, and 3) were then prepared by reacting vanillin or 

syringaldehyde with I-1 to afford the corresponding imines. The latter were then reduced in the presence of 

sodium borohydride in methanol (2, 86%) or propan-2-ol (3, 38%).

O
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O

+ H2N NH2
N

O

O

NH2
EtOH

I-1

1h, 78°C

N

O

O

NH2
MeOH+

O
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X

O

N

O

O

N

OH

O

X

MeOH or
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N

O

O

H
N

OH

O

X

X= -H
-OCH3

1. X= -H

2. X= -H
3. X= -OCH3

Scheme 1. Chemical strategy for the synthesis of derivatives 1-3.

The naphthalimido compounds (1, 2, 3) showed characteristic features in their 1H NMR spectra. The latter 

showed three sets of peaks between 8.65 and 7.74 ppm due to the benzo[de]isoquinoline-1,3-dione 

(naphthalimido) moiety along with two sets of peaks or a singlet between 7.01 and 6.50 ppm attributed to the 

vanillin or the syringaldehyde moieties, respectively. A singlet between 3.9 and 3.7 ppm is due to the 

methoxy group (in both vanillin and syringaldehyde structures) and the methylene (Ar-CH2-N) group 

respectively. The propyl groups in both compounds were identified by the presence of two triplets and a 

multiplet between 4.4 and 1.9 ppm.
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The reduction of compound 1, to generate compound 2, was confirmed by the disappearance of the singlet at 

8.2 ppm with the appearance of new singlet (CH2) at 3.76 ppm.

The presence of an extra methoxy group in compound 3 compared to compound 2 was also confirmed by the 

integration of the peak at 3.79 ppm (6 protons instead of 3).

The synthesis of compound 4 (Scheme 2) involved intermediates I-2 and I-3. Compound I-2 (67% yield) 

was prepared following the procedure described by Szymański, Zurek and Mikiciuk-Olasik, by reacting 

anthranilic acid with 2 equivalents of cyclohexanone in POCl3 (7.5mL) 21. Intermediate I-3 (39 % yield) was 

synthesized by the N-alkylation reaction between I-2 and of 2.5 equivalents of p-phenylenediamine in 1-

pentanol in the presence of catalytic amount of potassium iodide (KI). 

N

Cl

+

NH2

NH2

KI

24 hrs, 138°C
1-pentanol

N

NH

H2N

N

NH

HN

OH

O

24 hrs, 82°C
2-propanol

i) Vanillin
ii) NaBH4

I-3

4

NH2

O OH

+

O

24 hrs, 155°C
POCl3

N

Cl

I-2

Scheme 2. Chemical strategy for the synthesis of derivative 4.

The 1H NMR spectrum of compound 4 showed seven sets of peaks in the region between 7.6 and 6.5 ppm 

attributed to the aromatic protons of the tacrine, p-phenylenediamine and phenolic rings. Two multiplets and 

two triplets between 2.6 and 1.8 ppm of the tetrahydroacridine motif from the tacrine ring system and the 

singlet at 3.8 ppm were due to the methoxy group from the phenolic moiety.  (See experimental section and 

Supplementary Information, SI).

Antioxidant Activity

All compounds were evaluated for their antioxidant properties using three different assays (DPPH, FRAP 

and ORAC) with differing oxidative potential evaluating mechanisms (Table 1). DPPH assay was 

employed to evaluate the scavenging activity 22 of the novel vanillin derivatives whereas FRAP 

assay was selected in order to measure the electron transfer properties 23 of the latter. Finally, the 
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ORAC assay was utilized for the evaluation of the hydrogen atom transfer (HAT) abilities of our 

novel compounds emulating a more relevant environment to biological system 24.

Table 1. Antioxidant properties of vanillin derivatives.

Compound DPPH (IC50 M) FRAP (TE) ORAC (TE)

1 > 250 M 0.07 ± 0.002 2.1 ± 0.5

2 50.7 ± 0.8 0.26 ± 0.04 3.9 ± 1.3

3 19.5 ± 0.3 1.45 ± 0.02 2.0 ± 0.5

4 20.5 ± 0.3 1.54 ± 0.15 6.4 ± 1.6

Trolox 24.4 ± 0.9 1 1

Tacrine Inactive a Inactive a <0.01b

Results from each assay are expressed as a mean ± SD of three independent experiments. 
a Compounds were tested up to 250 M. Trolox was used as a positive control
b Reported by 25.

2,2-diphenyl-1-picrylhydrazyl (DPPH) Assay
Diphenyl-1-picrylhydrazyl (DPPH) is a stable organic nitrogen radical with an absorption maximum at 515 

nm. Its reduction in the presence of antioxidants, acting as free radical scavengers, was monitored 

spectrophotometrically 22. The IC50 value of each compound was determined (see Table 1). The imine 

compound 1 showed no IC50 up to concentration of 250 M whereas its corresponding reduced amine 

showed an IC50 of 50.7 M, confirming our previous finding that an imine exhibits lower activity in free 

radical scavenging compared with the corresponding amine 16. In addition, compound 3, bearing an extra 

methoxy group in the phenolic moiety compared to compound 2, turned out to be ~two-fold more active 

(19.5 M), confirming the important role of an extra methoxy group for the antioxidant activity. 

Interestingly, compound 4 showed similar activity to compound 3, although bearing only one methoxy group 

in its phenolic moiety (20.5 and 19.5 M, respectively). This confirms our previous finding regarding the 

increase of antioxidant activity due to the electronic conjugation between the two nitrogens and an aromatic 

ring.
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The compounds showed greater antioxidant activities compared to the tacrine-resveratrol hybrids reported by 

Jeřabek et al. which showed weak DPPH scavenging abilities due to the absence of phenolic moieties in their 

chemical structures 14.

Interestingly, tacrine turned out to be completely inactive at concentrations as high as 250 M, despite the 

fact it has a nitrogen atom linked with an aromatic moiety. The lack of activity can be explained by the 

absence of a phenolic moiety in the aromatic structure.

Ferric Reducing Antioxidant Power (FRAP) Assay
The FRAP assay is based on the reduction of the ferric-tripyridyltriazine complex by antioxidants and it was 

performed at pH 3.5. The ferrous-tripyridyltriazine complex that is formed after the reduction of the iron 

core leads to a measurable blue color (593 nm) 23. The results are expressed as Trolox Equivalent (TE) after 

comparison with the standard Trolox calibration curve. Again, compound 1 showed the lowest activity (0.07 

TE) (see table 1), almost 15 times less active than the standard Trolox. Its reduced derivative, compound 2, 

was almost 4 times less active than Trolox (0.26 TE), showing better performance compared to the 

corresponding imine (compound 1). In contrast, compound 3 showed a 5-fold increase in activity (1.45 TE) 

compared to compound 2 confirming the importance of the extra methoxy group in the phenolic moiety for 

improved activity in the FRAP assay. Compound 4 turned out to be the most active among the four vanillin 

derivatives (1.54 TE), confirming the role of the electronic delocalisation of the nitrogen electron in the 

antioxidant activity 16. Again, tacrine on its own showed to be completely inactive in this assay at 

concentrations as high as 250 M.

Oxygen Radical Absorbance Capacity (ORAC) Assay
ORAC assay is based on hydrogen atom transfer (HAT) mechanism and measures the ability of  antioxidants 

to inhibit the oxidation of the fluorescent probe fluorescein caused by peroxyl free radical generated by 

thermal decomposition of the 2,2’-azobis(2-amidinopropane) (AAPH) 26–28. The use of peroxyl free radical, 

which is commonly found in the body, makes this assay more relevant to biological systems 24.

All the novel vanillin derivatives showed improved antioxidant activities in this assay compared to the 

standard Trolox. Unlike the previous assays, the vanillin derivative 2 showed better activity compared to its 

corresponding syringaldehyde derivative 3 (3.9 and 2.0 TE, respectively) highlighting the deleterious impact 

of the extra methoxy moiety in the phenolic ring on ORAC assay. It is worth mentioning that vanillin itself is 

more active than syringaldehyde in this assay (2.2 and 1.5 TE, respectively) 16.

The imine 1 showed weaker scavenging activity compared to the amine 2 (2.1 and 3.9 TE, respectively) in 

this assay, confirming the role of the nitrogen’s electron availability in the antioxidant activity.

Finally, compound 4 showed the highest ORAC value (6.4 TE) highlighting the predominant role of 

electronic delocalisation in the peroxyl free radical scavenging activity.

The latter showed higher activities compared to the series of melatonin-tacrine hybrid reported by 

Rodriguez-Franco et al., which ORAC values were ranging from 1.7 - 4.0 TE 25.
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Cellular Protection 

MTT Assay
The production of reactive oxygen species is linked with cell death and it is a peculiar hallmark of many age-

related diseases 29. Based on all the above results, derivative 4 was found be the most active compound with 

regard to antioxidant properties. Therefore, the latter was chosen to study its ability to protect stressed cells. 

Neuroblastoma SH-SY5Y cell line was used for this purpose and the cell viability was determined 

spectrophotometrically using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. 

Hydrogen peroxide was used as a stressor to evaluate the protective effect of compound 4 against oxidative 

damage; cells were exposed for 24 hours with hydrogen peroxide (400 M) after pre-treatment (24 hours) 

with compound 4 at different concentrations, ranging from 0.01 to 5 M. 

The choice of the working concentration in the protective effect of compound 4 was based on its toxicity, 

after 24 hours, exposure towards SH-SY5Y neuroblastoma cell line. Compound 4 exhibited an IC50 of 45.1 ± 

3.5 M, although some toxic effect was observed at concentration of 25 M. No significant toxicity was 

however found at 12.5 M, hence the decision to work with 5 M which is significantly below the toxic 

concentrations (see Figure 2). Compound 4 showed strong protective effect against oxidative insult and the 

results are reported in Figure 2.
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Figure 2.  (Left) Toxicity of Compound 4 toward SH-SY5Y cells after 24 hours exposure. (Right) 
Protective effects of Compound 4 in hydrogen peroxide (400 M)- stressed cells. Cells were 
incubated for 24 hours with compound 4 at different concentrations before the addition of the 
stressor. After 24 hours, cell viability was measured through MTT assay. Values are expressed as the 
percentage of the untreated control and represented as mean ± SD of three independent experiments 
in each group. ***p < 0.001, **p < 0.01, *p < 0.05, ns no significantly different compared to the 
control.
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Compound 4 almost completely reversed peroxide-induced cell death at the highest concentration tested (5 

M); significant protection was seen at concentrations as low as 1 M.

No statistical protection was observed by the compound at the lowest concentrations tested (0.01 and 0.1 

M).

It is worth noting that the protective effects of compound 4 are comparable to our previously reported 

compound 2c, which showed an increase in peroxide-treated cell viability by 26% at 5 M, although 2c 

showed better antioxidant properties in both the DPPH, FRAP and ORAC assays 16.

AChE Inhibitory Activity
All the compounds were evaluated for their AChE inhibition properties according to Ellman’s method with 

minor modifications 30. Tacrine was used as reference standard and the results are reported in table 2.

Table 2. Cholinesterase AChE inhibitory activity of vanillin derivatives.

Compound AChE inhibition (IC50 M)

1 128.3 ± 6.1

2 10.1 ± 1.15

3 24.25 ± 1.35

4 2.13 ± 0.1

Tacrine 0.93 ± 0.09

                                    Results are expressed as a mean ± SD of three independent experiments.

All compounds tested showed weak to good inhibitory activity, with compound 4 the most active, with an 

IC50 value ~2 times higher than the standard tacrine (IC50 of 2.13 and 0.93 M, respectively). The results 

obtained here for the positive control tacrine agree with the data previously reported (IC50 value of 0.9 µM 

for tacrine) 31. However, compound 4 showed lower activity compared to related tacrine derivatives reported 

by Luo et al. which turned out to be several fold-times more active than tacrine 32. This could be explained 

by the presence of long alkyl chains in the compounds reported by the authors, which show great flexibility 

and adaptability within the narrow gorge of AChE compared to compound 4 that shows lower flexibility, on 

account of the aromatic ring linked to the tacrine moiety. The imine derivative (compound 1) was found to 
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be the weakest inhibitor, with an IC50 of 128.3 M. By contrast, its reduced form (compound 2) showed an 

increase in activity of 13-fold (IC50 of 10.1 M). This could be explained by the fact that compound 1, which 

bears an imino group, will show less flexibility compared to compound 2 (amine) due to the rigidity of the 

double bond, thus showing reduced flexibility in the narrow gorge of the AChE enzyme. Finally, the 

presence of an extra methoxy group in the phenolic moiety, as in the case of compound 3, caused a two times 

fold reduction in the AChE inhibition when compared with compound 2 (24.25 and 10.1 M, respectively). 

Molecular Modelling
To understand better the molecular elements that contribute to the AChE inhibitory activities of these 

vanillin derivatives, molecular binding studies of compounds 2 and 4 with TcAChE (PDB code: 2CMF) 33 

were performed. Several studies reported the crystal structure of AChE from Torpedo Californica. The active 

site lies at the bottom of a 20 Å deep gorge and it is characterized by the presence of three main residues 

(SER-200, GLU-327, and HIS-440), which form the esteratic site involved in the hydrolysis of acetylcholine, 

and a catalytic anionic site (CAS), characterized by the presence of TRP-84, which plays a fundamental role 

in binding the acetylcholine molecule through a cation-π interaction with its positive quaternary nitrogen 34, 

and PHE-330 35. Finally, the peripheral anionic site (PAS) lies at the top of the gorge, approximately 20 Å 

above the active site. The PAS is involved in binding acetylcholine at the first step of the catalytic pathway. 

It is composed of residues TYR-70, ASP-72, TYR-121, TRP-279, and TYR-334 36.

Ligand optimization was performed using Chemdraw 16.0 (Cambridgesoft, Waltham, MA) and Chem3D 

Ultra 16 version (Cambridgesoft, Waltham, MA) using a MM2 force field energy minimization tool. Protein 

optimization was performed using Autodock Vina 1.1.2 37. The results were then visualized using PyMOL 

(the PyMOL Molecular Graphics System, Version 2.0.7 Schrödinger, LLC). 

For the validation of the docking model, the original ligand in the 2CMF structure was redocked. The 

binding energy obtained was -14.6 kcal/mol, indicating high affinity of the latter for the AChE molecule. In 

addition, the comparison of the positions of the original and redocked ligands resulted in a RMSD score of 

0.598 (see Figure 3), confirming the effectiveness of the Autodock Vina software.
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Figure 3. Redocking of the bis-tacrine derivative in Torpedo Californica AChE (2CMF) for the 
docking validation; in yellow, the ligand from the original crystal and in red, the ligand generated 
by redocking. 

The binding scores for compounds 2 and 4 were -12.0 and -13.3 kcal/mol, respectively, matching the in vitro 

results obtained in the Ellman assay with the highest AChE inhibitory activity displayed by compound 4. 

Figure 4 shows the interactions of compound 2 and 4 within the gorge of the enzyme.
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Figure 4. Predicted binding model of compounds 2 (a and b) and 4 (c and d) within the 
Acetylcholinesterase gorge. Compounds 2 and 4 are in green sticks whereas the amino acids involved 
in the interactions are in grey. Hydrogen bonds are shown as yellow dashed lines. In both models, 
the aromatic moieties of the compounds are stacked between the residues PHE-330 and TRP-84 (a 
and c). The two carbonyl groups from compound 2 for hydrogen bonds with the residues ASP-72, 
TYR-334, and SER-122 whereas the protonated nitrogen in the quinoline moiety of compound 4 forms 
hydrogen bond with the oxygen of the carbonyl group in HIS-440. In addition, the two OH-π 
interactions occur between the hydroxy groups of TYR-334 and SER-122 and the aromatic linker of 
compound 4. Finally, both compounds bind to TYR-121 and TRP-279 in the PAS to ILE-287 (b and 
d).

Interestingly, the napthalimido moiety of compound 2 is situated between amino acids PHE-330 and TRP-84 

through π-π stacking, whereas the two carbonyl groups are involved in hydrogen bonds with hydroxy groups 

of residues amino acids ASP-72, TYR-334 (3.2 and 1.9 Å, respectively) and SER-122 (2.5 Å) (Figure 4a). In 

contrast, the molecular modelling studies reported by Gao et al. on their ranitidine derivatives bearing  

naphtalimido moieties demonstrated strong interactions of the latter structure with the residue TRP-286 of 

mouse AChE, equivalent to tcAChE, TRP-279 at the entrance of the gorge, in the PAS of the AChE 17,38. 

Furthermore, hydrogen bonds are established between the phenolic group of the phenolic moiety and the 

carbonyl group of ILE-287 (2.7 Å) and between the nitrogen and the hydroxy group of TYR-121 (2.1 Å). 

a b

c d
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Finally, hydrophobic interactions between the phenolic moiety and TRP-279 are apparent (Figure 4b). 

Similarly, the tacrine moiety of compound 4 is stacked between PHE-330 and TRP-84. However, the 

charged nitrogen of tacrine provides a cation-π interaction with TRP-84, whereas the protonated nitrogen in 

the quinoline ring establishes a hydrogen bond (2.0 Å) with the carbonyl group of the main chain of HIS-440 

(Figure 4c). Two OH-π interactions are established between the hydroxy group of SER-122 and TYR-334 

and the aromatic linker of compound 4. In addition, the phenolic moiety is involved in hydrogen bonding 

with two amino acids of the PAS (TYR-121, 2.2 Å and TYR-334, 3.8 Å), along with another hydrogen bond 

with ILE-287 (3.9 Å) and hydrophobic interactions with TRP-279 (Figure 4d). 

Inhibition of Self-Mediated Aβ(1-42) Aggregation
Aβ(1-42) amyloid aggregation is a hallmark of AD, contributing to the deposition of extracellular amyloid 

plaques in the cerebral cortex 2. The ability of the compounds to inhibit the self-mediated aggregation of 

amyloid Aβ(1-42) peptide was tested using Thioflavin T (ThT) fluorescence assay 32 with some modifications.  

The assay is based on the enhanced fluorescence of ThT upon binding to amyloid fibrils 39. All the 

compounds were tested at concentration of 10 M using a final concentration of Aβ(1-42)  peptide of 10 M as 

well. Curcumin was used a positive control. The results are shown in Figure 5.

                                              
Compounds (10 M)

A
m

yl
oi

d 
ag

gr
eg

at
io

n 
(%

)

A 4
2 C

ontro
l

Curcu
min

Tac
rin

e 1 2 3 4
0

50

100

*** ***

ns

ns * *

Figure 5. Aggregation inhibitory effects of vanillin derivatives towards amyloid Aβ(1-42) peptide. All the 
compounds were tested at concentration of 10 M. Values are expressed as the percentage of the control and 
represented as mean ± SD of three independent experiments in each group. ***p < 0.001, **p < 0.01,                 
*p < 0.05, ns no significantly different compared to the control.

All compounds showed good to excellent inhibitory properties toward peptide aggregation, with the 

exception of compound 1, which showed no significant inhibition compared with the amyloid control. 

Compounds 2 and 3 showed similar activities, inhibiting Aβ(1-42) peptide aggregation by 30.4 and 33.2%, 
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respectively. Compound 4 inhibited the Aβ(1-42)  peptide aggregation by 77.1% showing similar activity to the 

positive control curcumin (75.9%) and related tacrine-based derivatives reported by Luo et al. 32. 

Interestingly, tacrine alone did not show significant inhibition toward Aβ(1-42)  peptide aggregation. The Aβ(1-

42)  peptide aggregation inhibitory activities of compounds 2, 3, and 4 could be explained by the work of 

Reinke and Gestwicki, which suggested the importance of two aromatic end groups capable of taking part of 

hydrogen bonding 40. All of the compounds described in this work bear a hydroxy group in the phenolic 

moiety that can be involved in hydrogen bonding. However, compound 1 did not show significant Aβ(1-42) 

peptide aggregation inhibition compared to the control, despite bearing two aromatic end groups and the 

hydroxy substituent. This may be explained by the length of the linker between the two aromatic end groups, 

which is shorter in compound 1 compared to compounds 2 and 3 due to the imino double bond. In fact, 

Reinke and Gestwicki reported that the optimal length of the linker lies between 8 and 16 Å. The length of 

the linker in compound 1 is 6.9 Å compared to compounds 2, 3, 4, and positive control curcumin (7.3, 7.3, 

8.7, and 9.2 Å respectively). Finally, the remarkable activity of compound 4 in this assay could be explained 

by the presence of the aromatic linker, which confers low flexibility important for the aggregation inhibitory 

activity 40. We would like note that all the biological activities observed with our most active 

compounds are within the same range of activities reported by others working in similar field 41–43.

Conclusions

A series of vanillin derivatives was synthesized and found to have similar antioxidant activity to the 

reference antioxidant, Trolox, except for compound 1. The results obtained in antioxidant assays 

agree with our previous study regarding the structure activity relationship for this class of 

antioxidants 16. Compound 4 displayed the highest antioxidant properties among the vanillin 

derivatives, showing similar activity to Trolox in DPPH and FRAP assays. However, the latter 

vanillin derivative turned out to be six times more active than Trolox in the ORAC assay, which is 

more relevant to the biological systems, involving the use of peroxyl free radicals. To date, there 

has been limited evidence of multi-target-directed ligands with antioxidant activity in ORAC assay 

as strong as this vanillin derivative for example. 44. Furthermore, compound 4 exhibited protection 

of SH-SY5Y cell line against hydrogen peroxide; at concentrations of 5 M, which turned out to be 

completely safe in this cell line, the compound reversed peroxide-induced death by 30% after 

treatment with hydrogen peroxide (400 M) for 24 hours and showed significant protection at 

concentration as low as 1 M. In addition, the compounds showed inhibitory properties toward eel 

AChE, with IC50 ranging from 2.13 to 128.3 M with the most active compound (4) 2-fold less 

active than the reference agent, tacrine. Computational docking studies suggested that compounds 2 

and 4 could bind both the CAS and the PAS of the AChE enzyme through interaction with different 
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amino acids residues. Although a reduced activity of AChE inhibitory activity was observed with 

compounds 4, the overall activity is well compensated by its enhanced antioxidant properties (due 

to the p-phenylenediamine linker). All the derivatives, except compound 1, showed inhibitory 

activities against the self-mediated aggregation of amyloid peptide, with compound 4 being the 

most active, reducing Aβ(1-42) peptide aggregation by 77.1% and showing similar activity to 

curcumin (75.9%). Taken together, the vanillin derivatives reported in this work could provide a 

viable platform in the development of multi targeted AD therapy.

Experimental section
All the reagents were purchased from Sigma-Aldrich and Fisher Scientific unless otherwise stated. MTT was 

purchased from ACROS organics. Amyloid Aβ(1-42) was purchased from Calbiochem. All 1H and 13C spectra 

were collected using a Magnet Ultrashield Bruker 400 MHz spectrometer. Low-resolution mass spectrometry 

was performed using Agilent Technologies 1200 series. High-resolution mass spectrometry was performed at 

EPSRC National Mass Spectrometry Service Centre at Swansea University, Swansea, using Thermo 

Scientific LTQ Orbitrap XL or Waters Xevo G2-S spectrometers. The progress of each reaction was 

monitored by thin layer chromatography (TLC aluminium foil silica gel 60 with fluorescence indicator 254 

nm, Sigma-Aldrich) through UV light (254-265 nm). Column chromatography was carried out using silica 

gel (Alfa Aesar 70-230 mesh) as the stationary phase and chloroform/methanol as the mobile phase. The 

chemical drawing and nomenclature of the compounds were applied according to ChemBioDraw Ultra 

version 16.0 (CambridgeSoft). Neuroblastoma SH-SY5Y cells were from the European Collection of 

Authenticated Cell Cultures (ECACC). Cells were maintained at 37 °C (5% CO2) in DMEM medium 

(containing GlutaMAX-1 with 25 mM HEPES), supplemented with 10% (v/v) Foetal Bovine Serum (FBS) 

and 1% Penicillin/Streptomycin (10 mg/mL). 

                                                                       

Synthesis of 2-(3-aminopropyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione – I-1                                                              

1,8-Naphthalic anhydride (2 g, 10 mmol) was dissolved in ethanol (100 mL); 1,3-Diaminopropane (1.48 g, 

20 mmol) was carefully added to the solution and stirred under reflux for 1 hour. The resulting precipitate 

was filtered and the filtrate concentrated using a rotary evaporator. The solid obtained was washed several 

times with diethyl ether to give a pale-yellow solid as the product (yield: 56%).
1HNMR: (CDCl3 solvent peak δ:7.27), 8.63-7.76 (m, Ar-H, 6H), 4.32-4.29 (t, N-CH2-CH2, J = 6.8 Hz, 2H), 

2.80-2.77 (t, CH2-NH2, J = 5.6 Hz, 2H), 1.95-1.89 (m, CH2-CH2-CH2, J = 13.6 Hz, 2 H), 1.52 (b, NH2, 2H). 
13CNMR: (CDCl3 solvent peak δ: 77.4-76.8) 164.4, 134.0-122.65, 39.48, 37.77, 32.19. LRMS calcd for 

C15H15N2O2 [M+H]+  255.1, m/z found 255.0.
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Synthesis of 2-(3-((4-hydroxy-3-methoxybenzylidene)amino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-

dione – 1                                                       

Vanillin (0.5 g, 3.3 mmol) was dissolved in methanol followed by the addition of 2-(3-aminopropyl)-1H-

benzo[de]isoquinoline-1,3(2H)-dione (0.83 g, 3.3 mmol). The reaction was left to stir overnight at RT. The 

solution obtained was concentrated through rotary evaporation and the solid obtained was dissolved in DCM 

(25 mL) and extracted 3 times with saturated NaHCO3 (20 mL). The organic layer was collected and dried 

with anhydrous sodium sulfate and concentrated through rotary evaporator to afford an orange solid (yield: 

73%).
1HNMR: (CDCl3 solvent peak δ:7.30), 8.61-6.85 (m, Ar-H, 9H), 8.22 (s, Ar-CH=N, 1H), 4.39-4.35 (t, N-

CH2-CH2, J = 6.8 Hz, 2H), 3.81 (s, -OCH3, 3H), 3.79-3.77 (t, CH2-N=CH, J = 6.8 Hz, 2H), 3.77-3.75 (t, N-

CH2-CH2-, J = 6.8 Hz, 2H), 2.26-2.23 (m, CH2-CH2-CH2, J = 14.0 Hz, 2H). 13CNMR: (CDCl3 solvent peak δ: 

77.4-76.7) 164.3, 161-107.8, 59.47, 55.87, 38.95, 29.17. HRMS calcd for C23H21N2O4 [M+H]+ 389.1497, m/z 

found 389.1497.

Synthesis of 2-(3-((4-hydroxy-3-methoxybenzyl)amino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione - 2

0.4 g of 2-(3-((4-hydroxy-3-methoxybenzylidene)amino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (1 

mmol) were dissolved in methanol, then 0.057 g of NaBH4 (1.5 mmol) added. The reaction was stirred for 2 

hour and concentrated through rotary evaporation. The solid obtained was dissolved in DCM and extracted 3 

times with NaHCO3 (20 mL). The organic layer was collected and dried with anhydrous sodium sulfate and 

concentrated through rotary evaporation to afford a pale-yellow solid (yield: 86%). 1HNMR: (CDCl3 solvent 

peak δ:7.31), 8.65-6.82 (m, Ar-H, 9H), 4.34-4.31 (t, N-CH2-CH2, J = 7.2 Hz, 2H), 3.91 (s, -OCH3, 3H), 3.76 

(s, Ar-CH2-N, 2H), 2.78-2.74 (t, CH2-CH2-N, J = 6.8 Hz, 2H), 2.05-2.01 (t, CH2-CH2-CH2, J = 6.8 Hz, 2H). 
13CNMR: (CDCl3 solvent peak δ: 77.4-76.7) 164.3, 146.61-110.9, 55.9, 53.8, 46.4, 38.3, 28.3. HRMS calcd 

for C23H23N2O4 [M+H]+ 391.1652, m/z found 391.1651.

Synthesis of 2-(3-((4-hydroxy-3,5-dimethoxybenzyl)amino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione 

- 3                                          

Syringaldehyde (0.29g, 1.57 mmol) was mixed with methanol (8 mL) followed by the addition of 2-(3-

aminopropyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (0.40g, 1.57 mmol). The solution was refluxed for 2 

hours and left stirring overnight at RT to yield a red solution. The solvent was evaporated under reduced 

pressure to yield a red solid which was suspended in propan-2-ol followed by the addition of NaBH4 (3.0 

mmol). The solution was refluxed for 48 hours. At the completion of the reaction, the solvent was removed 

under vacuo to afford a solid. The latter was collected by filtration, washed thoroughly with water and 

methanol to yield the final product (38%) . 1HNMR: (CDCl3 solvent peak δ:7.20), 8.53-6.50 (m, Ar-H, 8H), 
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4.23-4.20 (t, N-CH2-CH2, J = 6.8 Hz, 2H), 3.80 (s, -OCH3, 6H), 3.64 (s, Ar-CH2-N, 2H), 2.68-2.64 (t, CH2-

CH2-N, J = 6.8 Hz, 2H), 1.95-1.91 (t, CH2-CH2-CH2, J = 6.8 Hz, 2H). 13CNMR: (CDCl3 solvent peak δ: 77.4-

76.7) 164.3, 147.1-104.9, 56.2, 54.2, 46.5, 38.3, 28.3. HRMS calcd for C24H25N2O5 [M+H]+ 421.1758, m/z 

found 421.1756.

Synthesis of 9-chloro-1,2,3,4-tetrahydroacridine - I-2

Intermediate I-2 was prepared following the procedure reported in literature 21. To a mixture of anthranilic 

acid (1.85 g, 1.3 mmol) and cyclohexanone (2.6 mL, 2.6 mmol), 15 mL of POCl3 (0.16 mol) was added in an 

ice bath. The mixture was heated under reflux and stirred for 24 hours, then cooled and concentrated under 

reduced pressure. The residue was diluted with ethyl acetate (50 mL), neutralized with saturated Na2CO3 (30 

mL) and washed 3 times with brine (30 mL). The organic layer was dried and the product was recrystallized 

from acetone (yield: 67%).
1HNMR: (CDCl3 solvent peak δ:7.20), 8.11-7.45 (m, Ar-H, 4H), 3.07-3.04 (t, Ar-CH2-CH2, J = 5.2 Hz, 2H), 

2.97- 2.94 (t, Ar-CH2-CH2, J = 6.4 Hz, 2H), 1.92- 1.84 (m, CH2-CH2, 4H). 13CNMR: (CDCl3 solvent peak δ: 

77.8-76.7) 159.6- 123.7, 34.3, 27.6, 22.72, 22.68. LRMS calcd for C13H13ClN [M+H]+ 218.7, m/z found 

218.1.

Synthesis of N1-(1,2,3,4-tetrahydroacridin-9-yl)benzene-1,4-diamin - I-3

9-chloro-1,2,3,4-tetrahydroacridine (107 mg, 0.5 mmol) was dissolved in 1-pentanol (5 mL) followed by the 

addition of KI (80 mg, 0.5 mmol) and heated under reflux. Then, p-phenylenediamine (135 mg, 1.25 mmol) 

was added and the mixture stirred for 24 hours. The solution was concentrated under pressure and the solid 

obtained dissolved in 50 mL of DCM and extracted 3 times with Na2CO3 (50 mL). The organic layer was 

dried through rotary evaporation and the crude was purified through column chromatography (DCM/MeOH 

99:1) to afford a brown solid (yield 39%).
1HNMR: (CDCl3 solvent peak δ:7.30), 8.04-6.61 (m, Ar-H, 8H), 5.95 (s, Ar-NH-Ar, 1H), 3.59 (s, Ar-NH2, 

2H), 3.20-3.17 (t, Ar-CH2-CH2, J = 6 Hz, 2H), 2.72-2.69 (t, Ar-CH2-CH2, J = 6.4 Hz, 2H), 1.98- 1.95 (m, -

CH2-CH2-, J = 5.6 Hz, 2H), 1.95- 1.89 (m, -CH2-CH2-, J = 5.6 Hz, 2H). 13CNMR: (CDCl3 solvent peak δ: 

77.4-76.7) 141.7- 116.1, 33.8, 25.2, 24.9, 22.8, 22.7. LRMS calcd for C19H20N3 [M+H]+ 290.2, m/z found 

290.2.

Synthesis of  2-methoxy-4-(((4-((1,2,3,4-tetrahydroacridin-9-yl)amino)phenyl)amino)methyl)phenol - 4

I-3 (50 mg, 0.17 mmol) was dissolved in 2-propanol (10 mL) followed by the addition of vanillin (20 mg, 

0.13 mmol). The reaction was stirred under reflux and monitored through TLC; when the vanillin spot had 

disappeared, the solution was cooled down and NaBH4 (25mg, 0.7 mmol) was added. The solvent was dried 
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and the solid obtained was purified through column chromatography (DCM/MeOH 99:1) to afford an orange 

solid (yield 46%).
1HNMR: (CDCl3 solvent peak δ:7.19), 8.05-6.50 (m, Ar-H, 11H), 4.14 (s, Ar-CH2-N, 2H), 3.81 (s, -OCH3, 

3H), 3.13-3.11 (t, Ar-CH2-CH2, J = 5.6 Hz, 2H), 2.95-2.93 (t, Ar-CH2-CH2, J = 7.2 Hz, 2H), 2.60- 2.56 (m, -

CH2-CH2-, J = 6.4 Hz, 2H), 1.86- 1.80 (m, -CH2-CH2-, J = 12.4 Hz, 2H). 13CNMR: (CDCl3 solvent peak δ: 

77.4-76.7) 146.8- 110.3, 56.0, 48.8, 45.82, 25.0, 22.7, 22.3. HRMS calcd for C27H28N3O2 [M+H]+ 426.2176, 

m/z found 426.2172.

DPPH Assay

The ability of the compounds to scavenge DPPH free radical was determined following the procedure 

reported by Payet, Sing and Smadja with some modifications in a 96-well set-up 22. A dilution series of 

antioxidants ranging from 1.5 to 750 M was made in Eppendorf® tubes, then 50 L were transferred to the 

corresponding well, while 50 L of vehicle (methanol) were used as negative control wells. 100 L of DPPH 

solution (0.1 mM) were added to each well followed by incubation in the dark for 30 min. Absorbance was 

then measured at 517 nm using a Bio-Rad iMark microplate reader.

FRAP Assay

The reducing properties of the compounds was tested through the FRAP assay following the method 

described by Firuzi et al. with minor modifications in a 96-well plate 23.  FRAP reagent was prepared by 

mixing 2.5 mL of 10 mM TPTZ (in 40 mM HCl) with 2.5 mL of 20 mM FeCl3 (in deionized water) and the 

volume brought to 30 mL with 300 mM sodium acetate buffer (pH 3.6). A dilution series of antioxidants and 

Trolox ranging from 500 to 5000 M was made in Eppendorf® tubes, then 10 L of each was pipetted in the 

corresponding well in a 96 well-plate along with 190 L of FRAP reagent. The plate was stored in the dark 

for 30 minutes before the absorbance was measured at 593 nm using a Bio-Rad iMark microplate reader.

ORAC Assay

The ability of the compounds to prevent oxidative degradation of fluorescein was measured using ORAC 

assay following the previously protocols reported with minor modifications on a black-walled 96-well plate 
16,22,45.

A dilution series of antioxidants and Trolox was made in phosphate buffer (75 mM, pH 7.4) in Eppendorf® 

tubes and 25 L of each was transferred into the corresponding well whereas 25 L of phosphate buffer was 

added in the control wells.

150 L of 25 nM sodium fluorescein solution was added in each well and the plate was incubated at 37°C for 

30 minutes.
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Finally, 25 L of 0.15 M AAPH solution was added in the positive control and in the antioxidant wells 

whereas 25 L of phosphate buffer was added in the fluorescein control.

The fluorescence was measured every 2 minutes over a period of 2 hours (485/20 nm excitation, 525/20 nm 

emission) using a BioTek Synergy HT microplate reader.

MTT Assay

Cell survival after treatment with H2O2 (400 M) was assessed using the MTT cell assay, using a procedure 

similar to previous publications 16,46. SH-SY5Y cells were seeded (7000 cells/well) in a 96-well plate. After 

adhesion (24 h), cells were treated with different concentrations of compound 4, ranging from 0.01 to 5 M, 

and incubated for 24 h. 

Subsequently H2O2 solution was added to the positive control and the test drug wells, followed by incubation 

for another 24 h.  After incubation, all the solutions were removed from all the wells and 100 L of MTT 

solution (1 mg/mL) was added in each well. The plate was wrapped in aluminum foil and incubated for 4 h at 

37 °C. 

The solutions in each well were removed by pipette and 100 L of DMSO added to each well to dissolve the 

formazan crystals. The plates were gently shaken for 20 minutes and the absorbance measured at 490 nm 

with a Bio-Rad iMark microplate reader. Cell viability was expressed as a percentage of the absorbance from 

control cells.

AChE Inhibition Assay

The inhibitory properties of compounds toward AChE was determined through Ellman method with some 

modifications 30. A 22 U/mL stock solution of AChE from Electrophorus electricus was prepared in 20 mM 

tris HCl pH 7.5 and diluted 1/100 before use. A 3 mM (5,5'-dithiobis-(2-nitrobenzoic acid)) solution was 

prepared by dissolving 0.1189 g of DTNB in 0.05 M phosphate/ 0.09 M hepes buffer (pH 7.5). A 15 mM 

acetylthiocholine iodide solution was prepared by dissolving 0.1084 g of compound in deionized water. A 

dilution series of compounds (in methanol) was made in Eppendorf® tubes and 25 L of the latter was 

pipetted in the corresponding well in a 96-well plate along with 125 L of DTNB solution and 25 L of 

diluted AChE solution. 25 L of methanol were added in the control wells. The plate was incubated for 10 

minutes at 37°C then 25 L of acetylthiocholine iodide solution were added to each well and incubated for 

another 10 minutes. The absorbance was measured at 415 nm using a Bio-Rad iMark microplate reader.

Molecular Modelling

For the docking procedure, the pdb structure of 2CMF (Torpedo californica AChE in complex with a bis-

tacrine linked by a five-carbon spacer) was taken from Protein Data Base (http://www.rcsb.org). The choice 

of the TcAChE instead of an electrophoresus electricus model of AChE (which was employed for the 
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Ellman assay) was based on the good resolution of the structure (2.5 Å), the similarity of the ligand in the 

structure with compound 4 and the unavailability of high resolution eeAChE structures 47. It is worth noting 

the high degree of identity between TcAChE and EeAChE 48. Water molecules and the original ligand were 

removed from the protein structure and polar hydrogens and charges were added. The protein was saved as 

pdbqt file. The 3D structures of compounds 2 and 4 were built using ChemDraw 16.0 (Cambridgesoft, 

Waltham, MA) and Chem3D Ultra 16 version (Cambridgesoft, Waltham, MA) and its MM2 force field 

energy minimization tool. The structures were saved as pdb file. The ligands and the macromolecule were 

then loaded into AutoDock Vina 1.1.2 (Molecular graphics laboratory, The Scripps research group, La Jolla, 

CA) and prepared for docking. Docking was performed on a grid box (40x40x40 Å) centered on the active 

site of AChE (residue TRP-84). The lowest energy conformation of each ligand enzyme complex was 

selected for analyzing the interactions between AChE and the inhibitor and the results were visualized using 

PyMOL (the PyMOL Molecular Graphics System, Version 2.0.7 Schrödinger, LLC).  

ThT Assay

The ability of the compounds to inhibit self-mediated amyloid Aβ(1-42) aggregation was determined through 

the fluorometric ThT assay following the method described by Luo et al. with some modifications 32. A 500 

M stock solution of amyloid Aβ(1-42) peptide was prepared by dissolving 0.25 mg of the peptide in 110 L 

of DMSO. The solution was aliquoted in Eppendorf tubes and stored at -20°C.

Briefly, 2 L of peptide solution was pipetted in 96 L of 10 mM phosphate/ 10 mM NaCl buffer (pH 8) 

along with 2 L of inhibitor solution (dissolved in DMSO) or 2 L of DMSO (for the control). The final 

concentrations of both the amyloid peptide and inhibitors were 10 M. The solutions were incubated for 24 

hours at 37°C. Then, 300 L of 50 mM glycine/ NaOH buffer (pH 8.5) containing 5 M of ThT was added 

to all the samples.

Each solution was transferred into a cuvette and the fluorescence was measured using a Perkin Elmer LS55 

luminescence spectrometer (excitation 446 nm, emission 490 nm).

Statistical Analysis

Data are shown as mean ± standard deviation (SD) and all the experiments were conducted on at least 3 

separate occasions. Statistical analysis was performed using GRAPH PAD prism (6.00 for Windows, 

GraphPad Software, La Jolla California USA, www.graphpad.com) using ONE WAY ANOVA and 

Bonferroni's multiple comparison test. Significant differences are labelled accordingly (ns - not significant, p 

< 0.05*, p < 0.01**, p < 0.001 ***).
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Novel vanillin-tacrine hybrid acting as AChE and Aβ(1-42) amyloid aggregation inhibitor with strong 
antioxidant properties enhanced by the p-phenylenediamine linker.
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