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1  | INTRODUC TION

Addressing biodiversity loss is widely identified as a major envi‐
ronmental challenge of the 21st century (CBD, 2011). Of the many 

factors identified in the literature contributing to the changing sta‐
tus of biodiversity, a commonly occurring theme is the availability 
of sufficient habitat. Studies have shown that availability of habitat 
can significantly affect species’ population trends (Andren, 1994; 
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Abstract
The availability of suitable habitat is a key predictor of the changing status of biodiver‐
sity. Quantifying habitat availability over large spatial scales is, however, challenging. 
Although remote sensing techniques have high spatial coverage, there is uncertainty 
associated with these estimates due to errors in classification. Alternatively, the ex‐
tent of habitats can be estimated from ground‐based field survey. Financial and lo‐
gistical constraints mean that on‐the‐ground surveys have much lower coverage, but 
they can produce much higher quality estimates of habitat extent in the areas that 
are surveyed. Here, we demonstrate a new combined model which uses both types 
of data to produce unified national estimates of the extent of four key habitats across 
Great Britain based on Countryside Survey and Land Cover Map. This approach con‐
siders that the true proportion of habitat per km2 (Zi) is unobserved, but both ground 
survey and remote sensing can be used to estimate Zi. The model allows the relation‐
ship between remote sensing data and Zi to be spatially biased while ground survey 
is assumed to be unbiased. Taking a statistical model‐based approach to integrating 
field survey and remote sensing data allows for information on bias and precision to 
be captured and propagated such that estimates produced and parameters estimated 
are robust and interpretable. A simulation study shows that the combined model 
should perform best when error in the ground survey data is low. We use repeat 
surveys to parameterize the variance of ground survey data and demonstrate that 
error in this data source is small. The model produced revised national estimates of 
broadleaved woodland, arable land, bog, and fen, marsh and swamp extent across 
Britain in 2007.

K E Y W O R D S

Bayesian model calibration, data integration, field survey, Great Britain, peatland, remote 
sensing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/222836597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.ecolevol.org
mailto:﻿￼
https://orcid.org/0000-0003-4758-1482
http://creativecommons.org/licenses/by/4.0/
mailto:pehn@ceh.ac.uk


     |  8105HENRYS and JARVIS

Warren et al., 2001), range expansion rates (Hill et al., 2001; Wilson, 
Davies, & Thomas, 2010), and survival success (Krauss, Steffan‐
Dewenter, & Tscharntke, 2003). The quality and connectivity of the 
habitat also play crucial roles in the variation and change of species’ 
populations (Didham, Tylianakis, Gemmell, Rand, & Ewers, 2007; 
Lindborg & Eriksson, 2004). Hodgson, Moilanen, Wintle, and Thomas 
(2011) provide an excellent overview of published studies relating 
to the impact of habitat area, habitat quality, and spatial connec‐
tivity on species. Habitats are also important features within their 
own right as they are a key natural capital asset which can provide 
multiple benefits relating to food, clean air, recreation, clean water, 
and hazard protection (Mace, Hails, Cryle, Harlow, & Clarke, 2015). 
Understanding the spatial extent and distribution of any particular 
habitat is therefore important not only for understanding habitat 
fragmentation and loss, but also to anticipate any potential impact 
on species’ distribution and abundance and to effectively manage 
natural resources (Kareiva & Wennergren, 1995).

Accurately estimating habitat cover over large spatial scales is 
challenging. Two main approaches exist to extrapolate from a sub‐
sample of the area surveyed on the ground or to use remote sensing 
from satellites which can provide full census coverage. On‐the‐ground 
data may arise from surveys which predominantly focus on habitat 
monitoring (e.g., NCC English Field Unit, 1990) or that record habitat 
information as an additional measure as part of a wider environmental 
assessment (Norton et al., 2012) or focused taxonomic study (Baker 
& Gleed‐Owen, 2007; Risely et al., 2011). However, for large regions 
extensive, fully representative, ground‐based field survey is often im‐
practical or too expensive. Therefore, national estimates of habitat 
cover from on‐the‐ground surveys are derived by statistical extrapo‐
lation (Hamre, Domaas, Austad, & Rydgren, 2007; Howard, Watkins, 
Clarke, Barnett, & Stark, 2003; Martino & Fritz, 2008).

Habitat coverage can also be estimated from remote sensing 
via satellites or unmanned aerial vehicles (UAVs) operating in the 
red, near or mid‐infrared spectral bands (Carrasco, O'Neil, Morton, 
& Rowland, 2019; Cruzan et al., 2016; Debinski, Kindscher, & 
Jakubauskas, 1999; Morton et al., 2011; Stratoulias, Balzter, Sykioti, 
Zlinszky, & Tóth, 2015). Remote sensing from satellites has an ad‐
vantage over ground‐based field surveys in that that the spatial 
distribution as well as the total area can be estimated thanks to its 
census coverage. However, remote sensing does not provide a di‐
rect measurement of habitat cover. Image pixels must be classified 
as belonging to a certain habitat using some classification algorithm 
on the raw spectral frequencies. The accuracy of the classification 
algorithm is dependent on the availability of high‐quality training 
data, and all algorithms will introduce some degree of error or un‐
certainty. In addition, bias may be introduced if, for example, there is 
any spatial variation in the relationship between optical frequencies 
and land cover due to climatic gradients, for example, which is not 
captured in the training data. The availability of sufficient image data 
can also be severely hampered by cloud cover.

Broadly speaking, the two available data sources to estimate 
national habitat cover therefore fall into the categories of high ac‐
curacy, unbiased but low‐coverage information (on‐the‐ground 

assessment) and lower accuracy, potentially biased high‐coverage 
information (remote sensing). To provide robust estimates of habi‐
tat extent, it would therefore be optimal to combine the data from 
both sources. Here, we present an approach to integrate data from 
remote sensing and ground survey within a single unified model to 
produce estimates of habitat extent at a national level for Great 
Britain. The approach presented provides a method to estimate the 
true, unobserved, habitat extent using multiple data sources, while 
quantifying and accounting for bias and variance in the data. We use 
the model to estimate the areal extent of a number of key broad 
habitats across Britain.

2  | MATERIAL S AND METHODS

2.1 | Data

Ground survey data came from the Countryside Survey (CS) of Great 
Britain (Brown et al., 2016; Norton et al., 2012), which is a nationwide 
assessment of stock and change of vegetation, soil, habitats, land‐
scape features, and freshwaters. The survey samples 1 km × 1 km 
squares across Britain within which all habitats and features are ac‐
curately mapped (according to a minimal mappable unit of 20  m2) 
and described. Survey squares are sampled randomly within 45 
strata known as land classes to ensure representative coverage of 
the environmental conditions across GB. Figure 1 shows the loca‐
tions of the 591 squares surveyed in 2007, the most recent survey to 
date. Every polygon within the square is assigned to a habitat type 
based on the UK's Joint Nature Conservation Committee's broad 
and priority habitat classifications (Jackson, 2000). Total habitat 
areas are then obtained by estimating the proportion of each habitat 
type within each of the sampling strata (Bunce, Barr, Clarke, Howard, 
& Lane, 1996; Howard et al., 2003). A generalized linear mixed model 
(McCulloch & Neuhaus, 2005) approach is used to estimate the aver‐
age proportion of each 1 km square covered by each specific habi‐
tat in each stratum, accounting for temporal correlation across the 
repeated surveys by inclusion of an AR(1) component in the model 
capturing correlation across the repeats, which are approximately 
every 10 years. The total area covered is then calculated by multiply‐
ing this estimate by the area of the respective stratum to produce a 
total estimated area of habitat per land class. Summing over all land 
classes provides a total area over Great Britain. Confidence intervals 
around these estimates are obtained using a bootstrap approach 
(Efron & Tibshirani, 1994) of resampling squares, with replacement, 
within strata.

The remote sensing product used was the 2007 Land Cover 
Map (LCM) of Great Britain (Morton et al., 2011,2014), which is a 
classification of satellite imagery compiled from Landsat, IRS, and 
SPOT into different habitat categories using maximum‐likelihood 
classification techniques. The satellite data are integrated with the 
Ordnance Survey master Map spatial framework (OS MasterMap 
Topography Layer, 2007) to provide a field parcel level, down to 
25  m resolution, habitat classification. Composite satellite images 
across different temporal periods are used in order to provide full 
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coverage of GB, though due to cloud cover and image availability, 
different regions are based on different composites. The maximum‐
likelihood classifier is based on training data obtained from an in‐
dependent field survey campaign providing reference points and 
associated land cover data. Reference points were specifically cho‐
sen to ensure that all land cover types, including rarer ones, were 
adequately covered. Areal extent of any individual habitat is simply 
calculated by summing parcel areas within each class. No confidence 
intervals are currently provided on these estimates. While there is a 
more recent version of the LCM, based on Sentinel 2 data from 2015 
(Rowland et al., 2017), the 2007 product was used here as it aligns 
with the temporal period covered by the CS field survey.

Both the CS and the LCM therefore provide estimates of the areal 
extent of each broad habitat in Great Britain in 2007. Table 1 shows a 
comparison between the estimated extents for the two schemes. The 
reported total areas can vary dramatically between different habitat 
categories with no consistent difference between under‐ or overesti‐
mation of one scheme relative to the other. The two schemes also pro‐
vide estimates of the proportion of individual 1 km squares covered 
by each habitat type. For LCM, this covers every 1 km square in Great 
Britain, whereas for CS, proportions are only available from the 591 
sampled squares. Both approaches have some element of uncertainty 
associated with them. For the CS ground‐based estimates, this uncer‐
tainty is mainly due to the upscaling from sampled squares to large 
spatial regions, which one may think of as sampling uncertainty. In ad‐
dition to this, the sampling uncertainty is dependent on representative 

observations and any bias that may exist in the sample will potentially 
increase the overall uncertainty. Here, the CS sample is considered 
representative of different environmental conditions across GB due to 
the stratification by Land Class and we therefore assume this dataset 
is unbiased in the model. The LCM remote sensing‐based estimates 
contain uncertainty due to the classification of satellite imagery into 
habitat classes. We can think of this as model uncertainty. Neither 
estimate therefore perfectly reflects the true extent of GB habitats. 
Estimation of this underlying true state is the aim of the integrated 
modeling approach described below.

2.2 | Model

Let us focus on estimating the habitat extent of one particular habi‐
tat across Britain. We denote Zi as the true proportion of square i  
covered by the habitat in question, where i=1,… ,233286 repre‐
sents each 1 km by 1 km square in GB. We also take Qi to be the 
estimated proportion of square i  classified as that same habitat ac‐
cording to remote sensing data, in this case LCM, and Yi as propor‐
tion recorded from ground survey data, taken here to be from CS. 
Note that Yi is sparsely populated due to the sampling regime of CS. 
We assume that the ground survey data are an unbiased estimate 
of the true proportion with some measurement error. In practice, 
this error could be due to either misclassification of the habitat or 
to misspecification of the parcel boundaries within the square. We 
allow for the possibility of bias in the remote sensing data as evi‐
dence provided in Morton et al. (2011) suggests that this is possible 
due to the image classification on the spectral signal. This bias may 
not necessarily be spatially homogeneous due to the use of different 
composite images used in different regions and therefore we allow 
for spatially varying bias. We assume

where N0 represents the normal distribution truncated at 0 and

(1)Yi∼N0
(

Zi,�
2
)

(2)Qi∼N0
(

�i+�iZi,�
2
)

,

F I G U R E  1   Locations of 1 km × 1 km CS squares surveyed in 
2007

TA B L E  1   Reported estimates of total habitat area (in 000s ha) 
from the Countryside Survey (CS) and Land Cover Map (LCM)

Broad habitat CS LCM

Broadleaved, Mixed and Yew 
Woodland

1,406 1,319

Coniferous Woodland 1,319 1,440

Arable and Horticulture 4,608 6,219

Improved Grassland 4,494 5,528

Neutral Grassland 2,176 1,414

Calcareous Grassland 57 37

Dwarf Shrub Heath 1,343 2,039

Fen, Marsh, and Swamp 392 10

Bog 2,232 1,005



     |  8107HENRYS and JARVIS

and we are interested in estimating the true proportion Zi, shared 
across both models. The bias in the LCM estimates is a spatially 
varying function of the true proportion as α and β depend on the 
spatial location of square i (easting, East, and northing, Nrth). The 
parameters α and β represent the bias irrespective of and depen‐
dent on the true habitat patch size Zi, respectively, while δ1 and 
δ2 represent the constant element of the bias and θ1,…4 the spa‐
tial influence. Here, we use the truncated normal distribution as a 
reasonable alternative to a binomial or beta distribution due to the 
explicit specification of the variance parameters and the intuitive 
understanding, and identifiability, of all model terms. This would not 
be the case when using beta distribution, for example. The approx‐
imation is sufficient as the distribution is conditional on the true 
proportion for the given square Zi and sample size is typically large.

To estimate the parameters in the above model, as well as the 
unknown Zi, we use an MCMC approach embedding the model 
within a Bayesian framework. With uninformative priors, the 
model can be too flexible and the MCMC chain can struggle to 
converge to a consistent parameter set. This is due to the trade‐
off that would exist between the model assuming confidence in 
the Qi or alternatively Yi and parameter estimates varying accord‐
ingly. This is often referred to as being nonidentifiable. Additional 
information is therefore needed to set informative priors or to 
constrain model parameters. Within the CS ground survey, an 
extensive quality assurance (QA) exercise is coordinated that in‐
volves a significant proportion of squares independently resur‐
veyed by a different field team with similar levels of expertise 
(Norton, Scholefield, Maskell, & Smart, 2007). The resurvey takes 
place immediately following the initial survey so that features 
should be identical between the two visits. This extra information 
therefore provides us with an estimate of the variance (σ2) asso‐
ciated with the ground survey estimates Yi. An informative prior 
can therefore be placed on σ which enables the parameters to be 
identifiable and the MCMC algorithm to reach convergence due to 
the reduction in induced flexibility. The overall model can hence 
be seen as a specific case of Bayesian model calibration (e.g., Van 
Oijen, Rougier, & Smith, 2005). The model was fitted using the 
JAGS software (Plummer, 2003) called via R (R Core Team, 2016) 
using the rjags library (Plummer, 2016). This uses a form of Gibbs 
sampling algorithm whereby an adaptive rejection Metropolis 
sampler is the main workhorse.

2.3 | Simulation study

To evaluate the potential of a combined approach, utilizing both the 
ground survey and the remote sensing data, and to understand its 
accuracy, we conducted a simulation study. The purpose of the simu‐
lation study was to simulate hypothetical data where the total habi‐
tat extent was known and could be compared against estimates from 
the proposed model and estimates from either the ground survey 
sample‐based approach only or the remote sensing census approach 

only. To generate the simulated data, we first simulated some true 
proportions of habitat cover per cell on a 100 by 100 grid accord‐
ing to a truncated normal distribution with mean given by a single 
random draw from a uniform distribution (0, 0.2) and variance given 
by a single random draw from a uniform distribution (0.01, 0.05). Full 
coverage estimates, representing the remote sensing data, are then 
generated from these true values with some standard deviation, 
corresponding to �in Equation 2, governed by a single draw from a 
uniform distribution (0, 0.15). A value for the systematic bias, � in 
Equation 2, was taken from a uniform distribution (−0.02, 0.02) and 
added to the simulated estimate. This was hence taken to be a con‐
stant value that did not vary spatially, effectively taking �1 and �2 to 
be equal to 0. The bias represented by � was ignored, and therefore, 
� was set equal to 1. Therefore, the simulated remote sensing data 
included some error (�) and also some constant bias (�), but did not 
include bias which varied with the true habitat value (i.e., � was set 
to 1). Sample estimates, representing a typical ground survey, are 
then also generated for a subset of 25 grid cells according to the 
true value with standard deviation (corresponding to � in Equation 1) 
drawn from a uniform (0, 0.02) distribution. Therefore, the simulated 
ground survey was unbiased, but included a small amount of error. 
This process was repeated 1,000 times to generate 1,000 estimated 
datasets representing both the census coverage remote sensing data 
and the sample‐based ground survey data. Due to the drawing of pa‐
rameters from uniform distributions at each iteration, performance 
under a range of different distributional assumptions is incorporated 
within the simulated data rather than from fixed parameterizations 
at each iteration.

In addition to this, the whole process was repeated once more 
with the variance on the ground survey estimates, �, taken as a 
sample from a uniform distribution on (0, 0.2) to investigate how 
this increased uncertainty would impact on the conclusions of the 
combined model. This simulation would therefore allow us to de‐
termine the effectiveness of a combined approach when data from 
both sources are highly variable. Each of the simulated datasets was 
analyzed using the same model as presented in the previous section 
to compare the estimated results to the truth.

3  | RESULTS

We used the proposed model to estimate the total coverage of four 
habitats (broadleaved woodland, bog, arable, and fen, marsh and 
swamp) across Britain. The QA data available from the CS suggested 
small variation between the two independent repeat visits to the 
same square across all habitats (Norton et al., 2007). This infor‐
mation was used to provide informative uniform priors for all four 
habitats for σ. As this variation in this standard deviation parameter 
was known to be relatively small across all habitats, while τ remains 
highly flexible in its specification, more “weight” is effectively given 
to the CS data within the model framework.

Results from the model show bias in the LCM data across all 
habitats, which appears to have a significant spatial effect. This is 

�i=�1+�1Nrthi+�2Easti, �i=�2+�3Nrthi+�4Easti,
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demonstrated by the parameter estimates in Table 2 where the cred‐
ible intervals obtained from the posterior distribution do not contain 
0 for at least one of the � parameters across all four habitats. Maps 
of � and � shown in Appendix S1 provide a visualization of the spatial 
bias for each broad habitat. They differ in each case both in terms of 
the effect size and the main direction of the gradient, highlighting 
the importance of this flexible spatial effect in the model. This spa‐
tial effect may be a result of the use of different composite images 
across the region, due to cloud cover, resulting in spatially explicit 
bias or where the timing of images used differs across the region. 
The CS results are unbiased and have low variation demonstrated by 
the estimates (σ2) shown in Table 2, which are relatively low for all 
habitats. This is not surprising as the model imposes that the CS data 
are unbiased and an informative and small prior for � has been used. 
The variance related to the LCM data (τ2) is generally much lower 
with the exception of fen, marsh, and swamp (FMS). In this case, the 
variance estimates are extremely small and the R2 values showing 
the relationship between the CS and LCM data, shown in Table 3, are 
extremely low. In this case, the model did not converge most likely 
due to the large discrepancy in the raw data between the two data 
sources and as such the parameter estimates should not be trusted. 
This highlights a potential issue with the joint modeling approach 
when there is little agreement between individual data sources.

Estimates of the total extent of each broad habitat across Britain 
are shown in Table 3. The revised estimates for each of the four 
habitats seem sensible and consistent with the previously reported 
estimates shown in Table 1, though care should be noted with the 
FMS estimates as mentioned. It is also worth noting that the revised 
estimate for broadleaved woodland is lower than both the reported 
CS and LCM estimates. Though one might intuitively assume a joint 
estimate would fall between the two, there are no reason and no 

imposition within the model that the revised estimate should. The 
combined approach has the advantage of utilizing the high‐quality 
CS data to achieve unbiased estimates, while maintaining the census 
coverage offered by LCM.

Results from the simulation study are shown in Figure 2 where 
both plots show the estimated versus true total areas based on LCM‐
type census coverage only (blue), ground survey samples only (red), 
and the combined model (black). The left‐hand plot shows results 
when error in the ground survey data is low and the right plot when 
the error can be large. In the left‐hand plot, the combined model 
performs best with a greater predictive accuracy of the truth con‐
firmed by root–mean‐square error (RMSE) values, which represent 
error in estimated coverage, shown in Table 4. Whereas when the 
error in the ground data can be high (right‐hand plot, Figure 2), the 
combined model performs relatively poorly and the LCM‐type cen‐
sus is optimal, also confirmed by RMSE (Table 4). This highlights the 
issue of estimating a latent variable, in this case the true proportion 
Z, from two sources with high variation in each. Parameters within 
the model, shown in Equations 1 and 2, can be difficult to estimate, 
unidentifiable, and may fail to converge.

4  | DISCUSSION

We have presented a method to jointly analyze data on habitat 
coverage from two distinct sources, which we took to be ground‐
based field survey and remote sensing derived data, within the same 
framework to estimate habitat extents across large regions. The sim‐
ulation study showed that the proposed method performs well when 
the uncertainty in the ground‐based data is low. It offers a significant 
improvement over using each data source independently and has the 

TA B L E  2   Parameter estimates from joint models fitted to broadleaved woodland, bog, arable and fen, marsh, and swamp

  δ1 δ2 θ1 θ2 θ3 θ4 σ2 τ2

Broadleaved woodland

50% −0.340 0.475 5.34E−07 3.18E−07 2.40E−07 3.86E−07 3.04 17.54

2.50% −1.150 0.383 −1.03E−06 −6.64E−07 6.80E−08 2.23E−07 3.94 19.61

97.50% 0.435 0.571 2.25E−06 8.88E−07 4.04E−07 4.81E−07 2.48 15.63

Bog

50% 1.019 1.242 −5.23E−06 3.42E−06 −3.63E−06 −1.28E−07 3.56 111.11

2.50% 0.213 0.070 −7.45E−06 2.05E−06 −4.26E−06 −6.24E−07 4.00 142.86

97.50% 1.863 1.642 −3.50E−06 4.78E−06 −1.10E−07 4.14E−07 2.70 41.67

Arable

50% −0.424 0.467 7.67E−07 4.43E−07 7.61E−07 2.22E−07 2.65 90.91

2.50% −1.552 0.412 −3.35E−06 −1.30E−06 6.97E−07 1.42E−07 3.83 100.00

97.50% 1.466 0.515 3.25E−06 1.56E−06 8.87E−07 2.66E−07 1.87 76.92

Fen, marsh, and swamp

50% 0.616 −0.338 −1.29E−06 −2.13E−08 2.25E−06 −7.02E−07 10.20 0.01

2.50% 0.366 −0.552 −1.87E−06 −3.68E−07 1.55E−06 −1.53E−06 11.36 0.03

97.50% 0.847 −0.084 −1.06E−06 2.41E−07 3.11E−06 6.34E−07 9.17 0.01

Note: Shown are the 50th percentile and 2.5th and 97.5th percentiles from the taken from the posterior distributions for each parameter.
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potential to overcome uncertainty issues present in each of the data 
sources. In the example presented, the variability in ground‐based 
data was known to be low based on QA data collected alongside the 
main ground survey data.

The simulation study also showed that when there was a high 
degree of uncertainty in the ground survey data, then there was no 
benefit in combining. This is because when there are disagreement 
and large variation in the two data sources, the model has no way 
of knowing which is “correct” and can essentially calibrate the data 
most closely reflecting the truth using the other dataset and hence 
induce bias. What is also clear is that when there is high uncertainty 
in the data collected and this is ignored, the inference can be far 
worse. The simulation study therefore highlights the importance of 
QA procedures to provide some understanding of the potential un‐
certainty associated with data collection so that informed decisions 
can be made about when to use integrated modeling.

The model used is a particular form of latent variable model, 
where the unknown in this case represents the true coverage pro‐
portion of habitat per kilometer square. Latent variable models can 
often suffer issues with convergence and identifiability, as we have 
seen in some cases here. In such cases, informative priors can over‐
come convergence issues. For estimating habitat extents, informa‐
tion from the QA survey was used to provide an informative prior 
on the error in the CS data which provided enough information for 
the model to converge. Therefore, a robust QA procedure that can 
ascertain variability in observations can not only help to determine 
whether integrated modeling is appropriate, but also provide infor‐
mation for the prior distributions used in the modeling approach.

Effective QA exercises, such as that undertaken in the CS, may 
be more complex to apply to remote sensing data but should be seen 
as essential for ground‐based survey. This level of QA should be 
perfectly possible in citizen science schemes as well as professional‐
based survey as the only requirement is for independent resurvey of 
a random subset of sites. The extra information that such exercises 
can provide with respect to quantifying uncertainty (Scott & Hallam, 
2003) can be critical for robust methods and models such as that 
presented here.

When there is disagreement between data sources, this could 
be due to a number of reasons and it is important to recognize the 
limitations of each dataset and potential ecological differences prior 
to a joint modeling exercise. For example, the case study showed 
that there was no agreement (R2 < 0.01) between FMS coverage be‐
tween CS and LCM. This is a known issue as FMS can be comprised 

of different land cover types and typically occurs in small patches 
that fall below the minimum mappable unit of the remotely sensed 
LCM (0.5 ha). Therefore, there may be a difference in the ecological 
interpretation of the FMS habitat category between the two data‐
sets, meaning that an integrated model may not be appropriate for 
estimating the extent of this habitat. Similarly, the coverage of bog 
across CS and LCM showed limited agreement (R2 = 0.143) which 
may reflect differences in definitions of bog habitats between the 
two datasets as well as challenges in identification of this habitat 
type via remote sensing.

The model presented has application beyond habitat extent as 
remote sensing data are increasingly being used to look at addi‐
tional environmental indicators (Lawley, Lewis, Clarke, & Ostendorf, 
2016; O'Connor et al., 2015; Pettorelli, Safi, & Turner, 2014). In such 
circumstances, the model presented could offer significant advan‐
tages by combining the remote sensing data with ground‐based 
field survey data collected as part of a citizen science or profes‐
sional survey campaign. Typically, such data are used alongside 
the remote sensing data to provide a simple scaling or conversion 
metric that is not spatially explicit nor is the uncertainty in this 
propagated through to the end result (Lawley et al., 2016; Tebbs, 
Remedios, Avery, Rowland, & Harper, 2015; Wanders, Karssenberg, 
Roo, Jong, & Bierkens, 2014). The model we have presented would 
enable a spatially explicit calibration of the remote sensing data, 
while accounting for uncertainty, using detailed ground‐based ob‐
servation that could significantly improve estimation and inference 
of key environmental indicators. In addition to this, the model itself 
could also be extended to incorporate a temporally explicit com‐
ponent. Estimating land cover change is known to be challenging 
and can often have a high degree of uncertainty (Prestele et al., 
2016), potentially due to changing quality and availability of sat‐
ellite data. Therefore, using an approach similar to that presented 
here to account for the changing uncertainty, calibrated alongside 
ground‐based data could enable robust estimation of land cover 
change metrics. There is also the potential to evolve the model into 
a joint distribution modeling framework (e.g., Pollock et al., 2014) 
such that data at different scales or sampled at different locations 
could be incorporated in the same model and analyzed together. 
While this is possible, building on the approach presented here, we 
see this as a nontrivial exercise and we would expect issues around 
convergence and identifiability.

In the model presented, we have used the truncated normal 
distribution, which for the particular example was shown to be 

Habitat
Total Est 
(000s ha)

Difference from CS 
estimate

Difference from 
LCM estimate

R2 between 
CS and LCM

Broadleaved 
woodland

1,176 −230 −143 0.475

Bog 1,025 −1,207 20 0.143

Arable 5,408 800 −811 0.857

Fen, marsh, and 
swamp

193 −199 183 0.000

TA B L E  3   Estimated total area of each 
broad habitat across Britain (in 000s ha) 
together with differences from previously 
reported estimates from CS and LCM as 
shown in Table 1 and the R2 value of the 
relationship between the CS square values 
and corresponding LCM values
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appropriate. However, there are obvious circumstances whereby 
this distribution would not be sufficient and alternatives could and 
should be used. In such cases, the truncated normal could be reason‐
ably exchanged for a beta, negative binomial or Tweedie distribution, 
for example. This may require some reparameterization of the model 
to relate mean and variance parameters to the respective scale and 
shape parameters and additional constraints added to ensure proper 
distributions. Where reasonable to do so, use of the truncated nor‐
mal has the advantage of intuitive parameterization, reasonable ap‐
proximation, and fast computation (Bhattacharya & Rao, 2010).

There is also potential to extend the model beyond consid‐
eration of two data sources to multiple data sources. This would 
be reasonably straightforward to do, merely introducing another 
component into the model beyond Equations 1 and 2. Additional 
data would have the potential of increasing the precision of the 
joint model estimates further, leading to more accurate estimates 
of broad habitat extent way beyond any assessment made from 
individual sources. However, there is also the possibility that 
model parameters are harder to estimate and identifiability is a 
greater issue. As with the two data source case presented, there 
is a trade‐off based on agreement across data sources, variabil‐
ity in each bias. Depending on the agreement, the level of uncer‐
tainty acceptable for convergence and model performance within 

each specific data source will vary. With the increase in citizen 
science data and opportunistic data, there is a growing volume of 
data that is potentially information‐rich but has high variability. 
For incorporation into the model framework presented here, we 
stress the importance of some QA exercise and the value of ex‐
ploratory analysis to determine agreement and overlap across all 
data sources.

Overall, we therefore believe that the approach presented has 
large potential for improving the estimates of status and trend of key 
environmental indicators over large regions.
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Standard deviation of ground 
survey proportions Combined model

Remote sensing 
census only
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survey only

Uniform(0, 0.02) 82.50 183.59 137.97
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tom line).

TA B L E  4   Root‐mean‐square error 
values for the different approaches to 
estimating habitat coverage compared to 
the known true coverage
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