

1	Testing post-IR IRSL luminescence dating methods in the southwest
2	Mojave Desert, California, USA
3	Andrew S Carr ¹ *, Alex S Hay ^{1*,} Mark Powell ¹ , Ian Livingstone ²
4	
5	
6	1: School of Geography, Geology and the Environment, University of Leicester, University Road,
7	Leicester LE1 7RH, UK
8	2: The Graduate School, University of Northampton, Northampton, NN2 7AL, UK
9	
10	*corresponding authors asc18@le.ac.uk and ash24@le.ac.uk
11	
12	

Abstract

- 14 The Mojave Desert presents an array of Pleistocene lacustrine deposits and aeolian landforms to
- 15 which, at times, it has proved challenging to apply luminescence methods. We tested the suitability
- 16 of K-feldspar post-IR IRSL methods using two sites with independent radiocarbon dating shorelines
- 17 at Harper Lake and Silver Lake considering: 1) overall performance of the post-IR IRSL 225°C
- 18 (pIRIR₂₂₅) protocol, 2) effect of test dose size on pIRIR₂₂₅ D_e, 3) anomalous fading correction of
- 19 pIRIR₂₂₅ ages; 4) preliminary single grain pIRIR₂₂₅ results.
- 20 We observe consistently good performance of the single aliquot pIRIR₂₂₅ protocol, with good dose
- 21 recovery, acceptable recycling ratios, low recuperation and low inter-aliquot scatter. The pIRIR₂₂₅
- ages for Silver Lake (8.8 \pm 0.4 and 11.3 \pm 0.5 ka) and Harper Lake (both 25.4 \pm 1.4 ka) are in
- 23 substantially better agreement with the independent dating than low temperature (50°C) IRSL and
- 24 quartz OSL ages. pIRIR₂₂₅ fading rates are reduced to ~2.0-2.5% per decade, but there remains a
- 25 tendency for under-estimation when using uncorrected ages. A need for fading correction is further
- 26 implied at Harper Lake via comparison with multi-elevated temperature (MET)-PIR age plateaus and
- 27 pIRIR₂₉₀ measurements, although at the younger Silver lake site these methods produce ages nearly
- 28 identical to the uncorrected pIRIR₂₂₅ ages. Preliminary single grain pIRIR₂₂₅ measurements suggest a
- 29 ~25-30% usable grain yield. At Silver Lake the single grain and single aliquot ages agree well despite
- 30 over-dispersion of the single grain equivalent dose distribution. At Harper Lake the single grain and
- 31 single aliquot pIRIR₂₂₅ ages also agree well, although a population of insensitive, lower D_e grains is
- 32 observed. These grains are not associated with significantly higher fading rates.

33

13

34

36 Introduction

37 The Mojave Desert (southwest USA) preserves abundant evidence for Pleistocene palaeo-lakes 38 (Enzel et al., 2003) and relict aeolian deposits (Lancaster and Tchakerian, 1996). Various 39 luminescence dating methods have been applied, including quartz optically stimulated luminescence 40 (OSL) (Bateman et al., 2012; Fuchs et al., 2015), K-feldspar thermoluminescence (TL) and infra-red 41 stimulated luminescence (IRSL; Clarke et al. 1995; Rendell and Sheffer, 1996). Presently there are 42 conflicting ages between studies (e.g. Rendell and Sheffer, 1996 and Bateman et al., 2012), within 43 sites (stratigraphic inversions), and contrasting results compared to independent dating (e.g. Owen 44 et al., 2007). Quartz may be an unreliable dosimeter in the Mojave due to its low sensitivity and a 45 contaminating K-feldspar signal (Lawson et al., 2012). K-feldspar is, however abundant in Mojave 46 sediments and is a potentially advantageous mineral choice given the relatively high environmental 47 dose rates (typically > 3 Gy ka⁻¹). Previous applications of K-feldspar IRSL (Rendell and Sheffer, 1996) 48 did not include anomalous fading correction and subsequent studies using low temperature IRSL 49 have reported variable, but sometimes high fading rates (Garcia et al., 2014).

50 We consider the reliability of K-feldspar ages derived via post-IR IRSL (pIRIR) methods, which 51 can isolate a slower (or non) fading IRSL signal (Thomsen et al., 2008; Buylaert et al., 2012). 52 Demonstrating the suitability of pIRIR approaches would be an important step in improving 53 chronological control in the Mojave, and recent applications have shown promise (McGuire and 54 Rhodes, 2015; Roder et al., 2012). We sampled two sites with independent dating to consider pIRIR 55 protocol performance.

56 Study sites

Two palaeo-lakes in the Mojave River catchment were analysed; Harper Lake and Silver Lake (Figure
1). Sourced in the San Bernardino Mountains to the southwest, the Mojave River experienced
episodes of perennial flow during the Pleistocene, periodically maintaining Lake Manix, Harper Lake
and the downstream Silver Lake. This catchment history is discussed elsewhere (Meek, 1999; Enzel
et al., 2003; Wells et al., 2003; Reheis et al., 2012; 2015).

62	Silver Lake formed part of pluvial Lake Mojave (Wells et al., 2003) (Figure 1a; 1c). Several
63	sites demonstrate lake high-stands (following Wells et al., 2003) at ~22-19 cal ka BP (18.4-16.6 ka;
64	"Lake Mojave 1") and ~16.6-13.3 cal ka BP (13.7-11.4 ka; "Lake Mojave 2"), with intermittent
65	inundation at 13.3-9.8 cal ka BP (~11.4-8.7 ka). A spit-shoreline complex at "Silver Quarry" (Ore and
66	Warren, 1978) was subject to a detailed investigation combining radiocarbon dating of the
67	freshwater bivalve Anodonta californiensis, quartz OSL and fine-grain K-feldspar IRSL Multi-Aliquot
68	Additive Dose (MAAD) methods (Owen et al., 2007). Our luminescence samples were obtained from
69	Owen et al.'s (2007) LithoFacies Associations (LFA) LFA8 (SL14-1; 0.4 m) and LFA6 (SL14-2; 1.2 m)
70	(Figure 1c). Using the BCal Bayesian analysis software (Table S2), Owen et al. (2007) assigned age
71	ranges of 12.1-11.6 cal ka BP to LFA 8 (7 dates) and 12.2-12.5 cal ka BP to LFA 6 (2 dates). Their
72	quartz OSL ages for LFA 8 (SL125) and LFA6 (SL126) were 6.6 \pm 0.7 ka and 6.5 \pm 0.6 ka respectively.
73	Harper Basin (Figure 1a) is presently isolated from the Mojave River, but was likely fed by
74	periodic Mojave River avulsions (Meek, 1999). Lake beds are exposed at 'Mountain View Hill' where
75	radiocarbon dates from A. californiensis shells of 24,055-33,059 cal yr. BP (24,440 \pm 2190 14 C yr BP)
76	and 28,375-29,790 cal yr. BP (25,000 \pm 310 14 C yr. BP) were first reported (with a third infinite age;
77	Meek, 1999). Garcia et al. (2014) presented eight new A. californiensis radiocarbon dates and
78	luminescence ages from coarse-grain (125-150 μ m) post-IR quartz SAR and fine grain (4-11 μ m) K-
79	feldspar MAAD IRSL (Figure 1b). The new radiocarbon dates ranged from 33,410 to 39,788, cal yr.
80	BP; Table S2; Figure 1b), with fading-corrected IRSL ages of 28 \pm 2 ka to 46 \pm 3 ka (7.2% per decade
81	fading rate). The quartz ages were substantially younger (17-19 ka). Garcia et al. (2014) argued for a
82	probable age of 40-45 ka, but there is variability within and between the radiocarbon and IRSL ages,
83	with the former close to the limits of the method. The independent dating control at Harper Lake is
84	thus less firm than Silver Lake. We sampled the same section and took samples from the beach unit
85	(figure 5 of Garcia et al., 2014) at 0.84 and 1.25 m (Figure 1c).

86 Methods

87 180-250 µm quartz and K-feldspar grains were isolated, with K-rich feldspars obtained via density separation at 2.58 g cm⁻³ and etched in 10% HF for 10 minutes. All samples were analysed on a Risoe 88 89 DA20 TL/OSL reader, with quartz luminescence detected through a Hoya U340 filter and IRSL 90 through Schott BG39 and Corning 7-59 filters. Quartz equivalent doses on 2 mm aliquots were 91 determined using the single aliquot regeneration (SAR) protocol (Murray and Wintle, 2000) 92 employing post-IR (50°C) blue LED (125°C) stimulation. 2 mm aliquots of K-feldspar were analysed 93 using a pIRIR protocol comprising a 50°C IRSL stimulation and a subsequent 225°C stimulation 94 (henceforth pIRIR₂₂₅) with a 250°C preheat (1 minute). Anomalous fading rates were determined 95 following Auclair et al. (2003) with corrections following Huntley and Lamothe (2001), using the R 96 package "Luminescence" (Kreutzer et al., 2012).

97 Dose rates were determined using *in-situ* gamma spectrometry and ICP-MS (**Table S1**). We
98 used the estimated water contents of Owen et al. (2007) and Garcia et al. (2014) (10 ± 5 % and 14.5
99 ± 5% respectively). A 5 % absolute change in water content produces an age difference of 200-300
100 years at Silver Lake and ~380 years at Harper Lake.

101

102 Results

103 Silver Lake

pIRIR₂₂₅ ages (**Table 1 and Figure S1**) were obtained using a moderate (23% of D_e) test dose. Sample SL14-1 (LFA8) produced a fading-uncorrected pIRIR₂₂₅ age of 8.8 ± 0.4 ka, and sample SL14-2 (LFA6) an age of 11.3 ± 0.5 ka. The pIRIR₂₂₅ residual D_es following 48 hours of (UK) daylight were 0.8 and 1.0 Gy. A quartz OSL age of 5.2 ± 0.5 ka for SL14-1 (LFA8) is comparable to that of Owen et al. (2007) and is much younger than the radiocarbon dates. All quartz aliquots are rejected if the fast ratio criterion (average ratio 2.4 ± 1.7) is applied (Durcan and Duller, 2011) and in light of the signal contamination

test results (Figure S2, after Lawson et al. 2012;) this age is considered unreliable. We infer this
probably also applies to Owen et al.'s (2007) quartz ages.

112	The pIRIR ₂₂₅ ages are in better agreement with the radiocarbon dating (BCal ages 12.1-11.6
113	cal yr. BP and 12.5-12.2 cal. yr BP for LFA8 and LFA6). They show low D_e over-dispersion (3-6%;
114	Figure S1), good dose recovery (ratios 1.00 ± 0.01 (SL14-1) and 0.99 ± 0.01 (SL14-2)), low
115	recuperation (<2 % for all aliquots) and recycling ratios consistent with unity (e.g. SL14-1 average
116	1.02 \pm 0.02). The SL14-1 fading-uncorrected pIRIR ₂₂₅ age is younger than the LFA8 BCal radiocarbon
117	age range, although it is within uncertainties of the youngest radiocarbon date from this LFA (AP9;
118	9081-9322 cal. yr BP; Table S2; Figure S4). SL14-2 is within 2 sigma uncertainties of the LFA6 BCal
119	age (12.2-12.5 ka). Thus, although both $pIRIR_{225}$ ages show better agreement with the independent
120	dating, it is prudent to consider possible underestimation relative to the radiocarbon dating.
121	
122	Test dose size
123	Test dose size has been shown to impact sample D_e within pIRIR protocols (Li et al., 2014; Lui et al.,
124	2016; Yi et al., 2016; Colarossi et al., 2018). At Silver Lake the natural D_e was determined for test
125	doses between 4 and 65% of the expected D_e (Figure 2). The results suggest possible age
126	underestimation at low test doses (but note the uncertainties), with a much clearer tendency at high
127	doses. Moderate (23-30% of D_e) test doses produced ages closest the expected age. Considering the
128	dose response curves (DRC) for low (3.8%), moderate (27% of $D_e)$ and high (65% of $D_e)$ test doses
129	(Figure S3), low test dose DRCs saturate faster (D_0 = ~43 Gy compared to > 150 Gy for 27% test dose),
130	with little difference between moderate and high test doses. The age difference between moderate
131	and high test doses seems to reflect a lower Ln/Tn for the latter. The test dose used for the age
132	estimates in Table 1 (23%) is thus unlikely to be a source of age-underestimation.

133

134 Ages and fading rates

The pIRIR₂₂₅ fading rates are 2.1 \pm 0.3% and 0.7 \pm 0.3% per decade for SL14-1 and SL14-2 and fading correction brings them into better (SL14-1) and very good (SL14-2) agreement with the radiocarbon ages (**Table 1; Figure S4**). The fading rates for the IR 50°C are 6.5 \pm 0.3% and 5.6 \pm 0.4% for SL14-1 and SL14-2, but with fading-correction (10.3 \pm 0.6 and 12.4 \pm 0.8 ka) they show good correspondence with the fading-corrected pIRIR₂₂₅ and radiocarbon ages.

140 The need for fading correction of the post-IR IRSL signal may be removed by using a higher temperature second IR stimulation (pIRIR₂₉₀; Buylaert et al., 2012). This is usually at the 141 142 expense of a larger unbleached/residual IRSL signal (Kars et al., 2014) and in water-lain deposits, it 143 may be advantageous to utilise a more easily bleached signal (i.e. pIRIR₂₂₅). To assess this further, we 144 compared the pIRIR₂₂₅ ages and independent ages with the pIRIR₂₉₀ (Buylaert et al., 2012) and 145 multiple elevated temperature (MET) PIR (Li and Li, 2011) methods. For sample SL14-1, we observe 146 possible MET-PIR plateau above 200°C, but the 250°C age (8.8 ± 0.5 ka) matches the fading-147 uncorrected pIRIR₂₂₅ age (Figure 3). Although pIRIR₂₉₀ and MET-300°C data are broadly within this 148 range, they show more inter-aliquot scatter, perhaps indicating the unsuitability of higher 149 preheating/stimulation temperatures. Increasing the first stimulation temperature (for pIRIR₂₂₅) to 150 80°C or 110°C increases the age of SL14-1 to 9.9 ± 0.4 and 9.7 ± 0.4 ka, perhaps implying removal of 151 a fading-prone signal. However, the trend does not continue with higher (180°C) first stimulation 152 temperatures (8.7 \pm 0.5 ka). Thus, the MET-PIR 250°C age, pIRIR₂₉₀ and the uncorrected pIRIR₂₂₅ age 153 for SL14-1 all fall at the lower edge of the expected BCal age range (Figures 3 and S4) and it is presently unclear whether the MET plateau represents a non-faded age. 154

155 Single grain analysis

The single aliquot data show limited inter-aliquot scatter, but given potential signal averaging for Kfeldspars (Trauerstein et al. 2014) and the lacustrine context, preliminary single grain measurements were conducted for SL14-1. Grains were mounted on single aliquot disks and stimulated with the IR LED. A dose recovery experiment was conducted, comprising room temperature IR bleaching for 200

	seconds and a 33 Gy dose. Of 96 analysed, 22 grains produced acceptable signals (lest dose > 3
161	sigma above background, recycling ratios between 0.8 and 1.2, recuperation < 5%). The central age
162	model (CAM) dose recovery ratio was 1.02 \pm 0.03 (identical to arithmetic mean). The D $_{\rm e}$ over-
163	dispersion from the dose recovery experiment was low at 3.3 \pm 0.4% (cf. Rhodes, 2015; Brown et al.,
164	2015). This OD was added to the individual grain D_e uncertainties for analysis of the natural D_e . A
165	natural equivalent dose was derived from 21 grains (of 96 measured). The data show significant (37
166	\pm 6 %) over-dispersion, but the CAM-derived age (8.9 \pm 0.9 ka) is identical to the single aliquot result
167	(Figure 4). The distribution of grain brightness (Figures 4 and S5) is skewed (50% of light sum from
168	18% of grains), but there is no relationship between grain sensitivity and equivalent dose (c.f.
169	Rhodes, 2015), nor is there a correlation between grain fading rates and equivalent dose.
170 171	Harper Lake Harper Lake produced two identical pIRIR ₂₂₅ ages (test dose 10% of D _e) of 25.4 ± 1.4 ka (Table 1;
172	Figure S1). The fading-uncorrected ages are within uncertainties of one of Meek's (1999)
173	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain
173 174	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain IRSL age (28 \pm 2 ka) (Garcia et al., 2014; Figure S6). pIRIR ₂₂₅ data show good dose recovery (0.98 \pm
173 174 175	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain IRSL age (28 \pm 2 ka) (Garcia et al., 2014; Figure S6). pIRIR ₂₂₅ data show good dose recovery (0.98 \pm 0.01 (HL14-1) and 0.97 \pm 0.01 (HL14-2)), good recycling ratios (averages 1.01 \pm 0.02 and 1.02 \pm 0.02)
173 174 175 176	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain IRSL age (28 \pm 2 ka) (Garcia et al., 2014; Figure S6). pIRIR ₂₂₅ data show good dose recovery (0.98 \pm 0.01 (HL14-1) and 0.97 \pm 0.01 (HL14-2)), good recycling ratios (averages 1.01 \pm 0.02 and 1.02 \pm 0.02) and low recuperation (all aliquots < 0.5%). Residuals following 48 hours of daylight were 5.5 and 3.5
173 174 175 176 177	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain IRSL age (28 \pm 2 ka) (Garcia et al., 2014; Figure S6). pIRIR ₂₂₅ data show good dose recovery (0.98 \pm 0.01 (HL14-1) and 0.97 \pm 0.01 (HL14-2)), good recycling ratios (averages 1.01 \pm 0.02 and 1.02 \pm 0.02) and low recuperation (all aliquots < 0.5%). Residuals following 48 hours of daylight were 5.5 and 3.5 Gy. The 50°C IR ages are 13.0 \pm 0.7 ka and 13.9 \pm 0.8 ka. Quartz performance was poor (Figures S2
173 174 175 176 177 178	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain IRSL age (28 \pm 2 ka) (Garcia et al., 2014; Figure S6). pIRIR ₂₂₅ data show good dose recovery (0.98 \pm 0.01 (HL14-1) and 0.97 \pm 0.01 (HL14-2)), good recycling ratios (averages 1.01 \pm 0.02 and 1.02 \pm 0.02) and low recuperation (all aliquots < 0.5%). Residuals following 48 hours of daylight were 5.5 and 3.5 Gy. The 50°C IR ages are 13.0 \pm 0.7 ka and 13.9 \pm 0.8 ka. Quartz performance was poor (Figures S2 and S6) with most aliquots rejected for excessive recuperation (average ~13%) using late
173 174 175 176 177 178 179	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain IRSL age (28 ± 2 ka) (Garcia et al., 2014; Figure S6). pIRIR ₂₂₅ data show good dose recovery (0.98 ± 0.01 (HL14-1) and 0.97 ± 0.01 (HL14-2)), good recycling ratios (averages 1.01 ± 0.02 and 1.02 ± 0.02) and low recuperation (all aliquots < 0.5%). Residuals following 48 hours of daylight were 5.5 and 3.5 Gy. The 50°C IR ages are 13.0 ± 0.7 ka and 13.9 ± 0.8 ka. Quartz performance was poor (Figures S2 and S6) with most aliquots rejected for excessive recuperation (average ~13%) using late background subtraction. A quartz age for HL14-1 from 3 acceptable aliquots using early background
173 174 175 176 177 178 179 180	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain IRSL age (28 ± 2 ka) (Garcia et al., 2014; Figure S6). pIRIR ₂₂₅ data show good dose recovery (0.98 ± 0.01 (HL14-1) and 0.97 ± 0.01 (HL14-2)), good recycling ratios (averages 1.01 ± 0.02 and 1.02 ± 0.02) and low recuperation (all aliquots < 0.5%). Residuals following 48 hours of daylight were 5.5 and 3.5 Gy. The 50°C IR ages are 13.0 ± 0.7 ka and 13.9 ± 0.8 ka. Quartz performance was poor (Figures S2 and S6) with most aliquots rejected for excessive recuperation (average ~13%) using late background subtraction. A quartz age for HL14-1 from 3 acceptable aliquots using early background subtraction was 25.7 ± 4.4 ka, and 23.6 ± 2.8 ka for the single acceptable aliquot using late
173 174 175 176 177 178 179 180 181	radiocarbon ages, lower than all other radiocarbon ages, and within uncertainties of one fine-grain IRSL age (28 ± 2 ka) (Garcia et al., 2014; Figure S6). pIRIR ₂₂₅ data show good dose recovery (0.98 ± 0.01 (HL14-1) and 0.97 ± 0.01 (HL14-2)), good recycling ratios (averages 1.01 ± 0.02 and 1.02 ± 0.02) and low recuperation (all aliquots < 0.5%). Residuals following 48 hours of daylight were 5.5 and 3.5 Gy. The 50°C IR ages are 13.0 ± 0.7 ka and 13.9 ± 0.8 ka. Quartz performance was poor (Figures S2 and S6) with most aliquots rejected for excessive recuperation (average ~13%) using late background subtraction. A quartz age for HL14-1 from 3 acceptable aliquots using early background subtraction was 25.7 ± 4.4 ka, and 23.6 ± 2.8 ka for the single acceptable aliquot using late background subtraction.

For Harper Lake, the effect of test dose size was investigated with a dose recovery experiment and
using the natural IRSL D_e (Figure 2). The natural measurements show little sensitivity to test dose
size, but the lowest test dose (2.5%) produced significant inter-aliquot scatter. The dose recovery

experiment suggests underestimation at test doses >30% of D_e, with a relatively low test dose (8%)
giving the best dose recovery (0.98 ± 0.01; n=3). For both the natural and dose recovery
measurements, the DRCs behave as per Silver Lake, with faster saturation for the lowest test doses
(D₀ of 100 ± 3 Gy for the 2.5% test dose vs. 306 ± 52 Gy for 48% test dose) and indistinguishable
DRCs for moderate (23%) and high (65%) test doses (Figure S3). Despite this, lower test doses
produced the best dose recovery, with a tendency for lower Ln/Tn ratios rather than a changing DRC
at high test doses. The latter was not observed in the natural D_e measurements.

193 Fading rates

194 The 50°C IR fading rates are 10.6 ± 2.0 % and 9.4 ± 1.0 % per decade for HL14-1 and 14-2, resulting in 195 large uncertainties with fading-correction. The pIRIR₂₂₅ fading rates are comparable to Silver Lake 196 $(2.0 \pm 0.4 \text{ and } 2.4 \pm 0.2 \%)$, but the MET-PIR plateau for HL14-2 more unambiguously implies a need 197 for fading correction (Figure 3), with the 250° C age of 35.4 ± 2.5 ka within uncertainties of several of 198 Garcia et al.'s (2014) radiocarbon ages (Figure S6). The pIRIR₂₉₀ ages are comparable to this ($33.4 \pm$ 199 1.9 ka and 37.3 ± 2.3 ka for HL14-1 and HL14-2 respectively; Figures 3 and S6), although the pIRIR₂₉₀ 200 dose recovery results for HL14-1 ($1.07 \pm 0.05 \text{ n}=2$) (natural dose plus a 66.5 Gy dose) hint at 201 potential overestimation. The fading-corrected pIRIR₂₂₅ ages for both HL14-1 and HL14-2 are 29.0 ± 202 1.9 ka and 29.8 ± 2.0 ka, placing them good agreement with Meek's (1999) radiocarbon ages, but 203 still somewhat lower than Garcia et al.'s (2014) radiocarbon ages (Figure S6) and most of their IRSL 204 ages.

205 Single grain analysis

28 of 96 grains from HL14-1 produced acceptable luminescence characteristics. The distribution of 207 grain brightness (**Figure S5**) is skewed (~20% of grains account for 50% of the light sum) and the 208 equivalent dose distribution is over-dispersed (29 ± 4%, with 3.3% added to individual uncertainties). 209 A cluster of lower D_e grains are also insensitive (**Figure 4**), but are not associated with higher fading 210 rates (**Figure S7**). The CAM D_e using all grains is 94.0 ± 6.2 Gy, but increases to 112.4 ± 6.1 Gy when

211 the brightest 50% are used (n=14), and the D_e distribution becomes less dispersed (OD 16 ± 4%). The 212 (fading uncorrected) age using the brightest grains (26.8 ± 1.9 ka) is indistinguishable from the single 213 aliquot age. Individual grain fading rates range from 11% to -6% per decade. Although the 214 uncertainties are large, the mean is comparable to the single aliquot analysis (2.8 % per decade).

Discussion

215

216 Comparison with independent dating is limited by several factors. For Harper Lake there are inconsistencies between the radiocarbon chronologies of Meek (1999) and Garcia et al. (2014). 217 218 Garcia et al.'s (2014) preferred site age was older still at 40-45 ka (citing palaeosol ages in the down-219 catchment Lake Manix Basin (Reheis et al., 2012) and noting that post-depositional contamination 220 would tend to make radiocarbon ages too young; see also Reheis et al., 2015). However, the precise 221 reasons remain unclear, and the spread of ages makes interpretation difficult (Reheis et al., 2015). 222 The impact of the hard-water effect on radiocarbon ages was suggested by Owen et al. (2007) to be 223 < 150 years, although Berger and Meek (1992) reported offsets up to 450 years. For luminescence 224 ages there are also potential offsets from water content estimation. Using water contents at 225 saturation (~35%) or akin to the modern values (2 %) results in pIRIR₂₂₅ ages of 8.5-9.6 ka for SL14-226 1/LFA8 and 23.8-27.8 ka for HL14-1. Given these are extreme values, it is unlikely that this alone 227 accounts for any differences (for Harper Lake particularly).

228 Nonetheless, the pIRIR225 ages show substantially better agreement with the independent 229 dating than the 50°C IR and quartz OSL ages (Table 1; Figures S4 and S6). The single aliquot pIRIR₂₂₅ 230 data are highly reproducible and an absence of overestimation at either site implies incomplete 231 bleaching is not an issue, despite the lacustrine contexts. Lower 50°C IR ages reflect a need for 232 anomalous fading correction (noting the inter-site variability) (Table 1), while quartz underestimation reflects low sensitivity and (probably) a significant contaminating non-quartz signal 233 234 (Figure S2). At Harper Lake a small proportion of quartz aliquots produce ages in better agreement 235 with the pIRIR₂₂₅ ages with early background signal subtraction or if the fast ratio (Durcan and Duller,

2011) is employed as screening methods (Hay, 2018). The aliquot rejection rate is high and the ages
are still lower than the fading-corrected pIRIR₂₂₅ ages, and much of the independent chronology.
Quartz ages not employing such rigorous screening (at least, quartz of local origin) should be
considered with care.

240 Limited sensitivity of the natural De to test dose size is observed for test doses between 5 and ~56% of D_e at Harper Lake and between 5 and 30% at Silver Lake. There is a clear impact on the 241 242 DRC for very small test doses (Figure S3), but this does not result in consistently higher or lower D_e 243 estimates (note the scatter for the low test doses for the Harper Lake natural signal; Lui et al., 2016). 244 At Harper Lake the dose recovery data appear more sensitive to test dose than the natural D_e data 245 (Yi et al., 2016). There is a significant correlation between Lx background and the Tx initial signals for 246 all test dose analyses (Colarossi et al., 2018), and the slope of this relationship increases at higher 247 test doses. There is a tendency towards poorer dose recovery at high test doses at Harper Lake. This 248 is due to a lower Ln/Tn (Figure S3), which is also seen in natural D_e data at Silver Lake. The reason(s) 249 for this is(are) not clear, but it implies an effect on the initial natural dose/test dose measurement.

250 At Silver Lake the fading-uncorrected pIRIR₂₂₅ ages are close(SL14-2) or fall below (14-1) the 251 radiocarbon age ranges. For SL14-1 especially this implies fading correction (2.1% per decade) is 252 necessary (Table 1). The MET-PIR data do not unambiguously support this however, although a small 253 increase in the first stimulation temperature does increase the sample age. At Harper Lake most 254 results from the independent dating and the MET-PIR / $pIRIR_{290}$ data more strongly indicate that 255 fading correction of the pIRIR₂₂₅ ages (2.0-2.4% per decade) is required. The MET-PIR plateau (200-256 250°C) and pIRIR₂₉₀ data fall within the lower range of Garcia et al.'s (2014) radiocarbon dates. The 257 fine-grain MAAD IRSL ages (*ibid*) show less consistency than our coarse-grain pIRIR₂₂₅ and pIRIR₂₉₀ 258 ages (samples ALG-HL-OSL2 vs ALG-HL-OSL3 in Garcia et al., 2014), which perhaps reflects 259 uncertainty imparted when correcting the former for the high 50°C IR fading rates at this site (Table 260 **1**), which was also based on fading analysis of a single sample.

261 The preliminary single grain data indicate (from dose recovery data) rather low "intrinsic" 262 over-dispersion (using the IR LED), but this requires further investigation (c.f. Rhodes, 2015). The 263 limited number of grains should be kept in mind. There is variability in both the signal contribution 264 from individual grains (Figure S5) and in the presence of a "declining baseline" (i.e. systematically 265 lower D_es for the dimmest grains; Rhodes, 2015; Figure 4; Figure S7). At Harper Lake using the 266 brightest grains reduces OD and moves the resulting age closer to the independent dating (Lamothe 267 et al., 2012), but the result is still within uncertainties of the age obtained using all the grains. Such a 268 relationship is not seen at Silver Lake. At Harper Lake the insensitive, lower De grains do not have 269 higher fading rates (Figure S7). The internal K/Rb contents of the grains were not assessed, but some 270 studies suggest that K content may not be strongly associated with grain sensitivity (Smedley et al., 271 2012) or fading rate (Trauerstein et al., 2014).

272 Conclusions

273 The pIRIR₂₂₅ protocol shows significantly better agreement with independent dating than the 50°C IR 274 and quartz OSL ages in the Mojave region studied. Quartz consistently and significantly 275 underestimates expected sample ages. At both sites the pIRIR₂₂₅ ages show improved agreement 276 with the independent dating after fading correction, with the MET-PIR and pIRIR₂₉₀ results showing even better agreement with independent ¹⁴C ages (of Garcia et al., 2014) at Harper Lake. However, 277 278 this is not always the case, as at the younger Silver Lake site the SL14-1 MET-PIR and pIRIR₂₉₀ ages 279 are identical to the uncorrected pIRIR₂₂₅ age. The pIRIR₂₂₅ measurements show limited sensitivity to 280 test dose size at Harper Lake, but at both sites the DRCs saturate faster for low test doses and 281 underestimate for high test doses at Silver Lake. The latter is not observed at Harper Lake where the 282 dose recovery data seem to be more sensitive to test dose size than the natural De measurements. 283 Contrasting single grain behaviors are also observed, notably in the presence of less sensitive, lower 284 D_e grains at Harper Lake. This mirrors some previous work in suggesting, at least for some sites, that 285 the brightest K-feldspar grains may provide a better estimate of burial dose.

286 Acknowledgments

- ASH was supported by NERC studentship 1358108. Rob Fulton, Jason Wallace and Simon Benson are
- thanked for logistical support. An anonymous reviewer is thanked for very constructive comments.
- 289
- 290 References
- Auclair, M., Lamothe, M. Huot, S. 2003. Measurement of anomalous fading for feldspar IRSL using
 SAR. Radiation Measurements 37, 487-492.
- Bateman, M.D., Bryant, R.G., Foster, I.D.L., Livingston, I. Parsons, A.J. 2012. On the formation of sand
 ramps: A case study from the Mojave Desert. Geomorphology 161-162, 93-109.
- Berger, R., Meek, N. 1992. Radiocarbon dating of *Anodonta* in the Mojave River basin. Radiocarbon,
 34, 578-584.
- 297 Brown, N.D., Rhodes, E.J., Antinao, E.V., McDonald, E.V. 2015. Single grain post-IR IRSL signals of K
- feldspar of alluvial fan deposits in Baja California Sur, Mexico. Quaternary International 362, 132-138.
- Buylaert, J-P., Jain, M., Murray, A.S., Thomsen, K.J., Theil, C. Sohbati, R. 2012. A robust feldspar
 luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435-451.
- 302 Colarossi, D., Duller, G.A.T., Roberts, H.M. 2018. Exploring the behaviour of luminescence signals
- from feldspars: Implications for the single aliquot regenerative dose protocol. RadiationMeasurements. 109, 34-44.
- Clarke, M.L., Richardson, C.A., Rendell, H.M., 1995. Luminescence dating of Mojave Desert sands.
 Quaternary Science Reviews 14, 783-789.
- 307 Durcan, J.A., Duller, G.A.T. 2011. The fast ratio: A rapid measure for testing the dominance of the
 308 fast component in the initial OSL signal from quartz Radiation Measurements 46, 1065-107.
- Enzel, Y., Wells, S.G. Lancaster, N. 2003. Late Pleistocene lakes along the Mojave River, southeast
 California. Geological Society of America, Special Papers, 368 pp.61-78.
- Fuchs, M., Dietze, M., Al-Qudah, K., Lomax, J. 2015. Dating desert pavements first results from a
 challenging environmental archive. Quaternary Geochronology 30, 342-349.
- Garcia, A.L., Knott, J.R., Mahan, S.A., Bright, J. 2014. Geochronology and paleoenvironment of pluvial
 Harper Lake, Mojave Desert, California, USA. Quaternary Research 81, 305-317.
- 315 Hay, A.S. 2018. The influence of complex topography on aeolian sediment accumulation and
- preservation: an investigation of morphology and process history. Unpublished PhD thesis,University of Leicester.
- Huntley, D.J., Lamothe, M. 2001. The ubiquity of anomalous fading in K-feldspars and the
 measurement and correction for it in optical dating. Canadian Journal of Earth Science 38, 10931106.
- 321 Jefferson, G.T. 2003. Stratigraphy and palaeontology of the middle and late Pleistocene Manix
- Formation, and paleoenvironments of the central Mojave River, southern California. Geological
 Society of America, Special Papers, 368, 43-60.

- Kars, R.H., Reimann, T., Wallinga, J. 2014. Are feldspar SAR protocols appropriate for post-IR IRSL
 dating? Quaternary Geochronology 22, 126-136.
- Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fisher, M., Fuchs, M. 2012. Introducing an R
 package for luminescence dating analysis. Ancient TL 30, 1-7.
- Lamothe, M., Barré, M., Huot, S., Ouimet, S. 2012. Natural luminescence and anomalous fading in Kfeldspar. Radiation Measurements 47, 682-687.
- Lancaster, N., Tchakerian, V.P. 1996. Geomorphology and sediments of sand ramps in the Mojave.Geomorphology 17, 151-165.
- Lawson, M.J., Roder, B.J., Stang, D.M., Rhodes, E.J. 2012. OSL and IRSL characteristics of quartz and
 feldspar from southern California, USA. Radiation Measurements 47, 830-836.
- Li, B., Li S-H. 2011. Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction. Quaternary Geochronology 6, 468-479.
- Li, B., Jacobs, Z., Roberts, R.G. Li, S-H. 2014. Review and assessment of the potential of post-IR IRSL
- dating methods to circumvent the problem of anomalous fading in feldspar luminescence.
- 338 Geochronometria 41, 178-201.
- Lui, J., Murray, A.S., Sohbati, R., Jain, M. 2016. The effect of test dose and first IR stimulation
 temperature on post-IR IRSL measurements of rock slices. Geochronometria 43, 179-187.
- McGuire, C., Rhodes, E.J. 2015. Determining fluvial sediment virtual velocity on the Mojave River
 using K-feldspar IRSL: Initial assessment. Quaternary International 362, 124-131.
- Meek, N. 1999. New discoveries about the Late Wisconsinan history of the late Mojave River system.
 San Bernadino County Museum Association Quarterly 46, 113-117.
- Murray, A.S. Wintle, A.G. 2000. Luminescence dating of quartz using an improved single-aliquot
 regenerative-does protocol. Radiation measurements 32, 57-73.
- Ore, H.T., Warren, C.N. 1978. Late Pleistocene-early Holocene geomorphic history of Lake Mojave,
 California. Geological Society of America Bulletin 82, 2553-2562.
- Owen, L.A., Bright, J., Finkel, R.C., Jaiswal, M.K., Kaufman D.S., Mahan, S., Radtke, U., Schneider J.S.,
- 350 Sharp, W., Singhvi, A.K., Warren, C. 2007. Numerical dating of a Late Quaternary spit-shoreline
- 351 complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the
- 352 applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance,
- 353 U-series and amino acid racemization methods. Quaternary International 166, 87-110.
- Reheis, M.C., Bright, J., Lund, S.P., Miller, D.M., Skipp, G., Fleck, R.J. 2012. A half-million-year record
- of paleoclimate from the Lake Manix Core, Mojave Desert, California. Palaeogeography,
- 356 Palaeoclimatology, Palaeoecology 365, 11-37.
- Reheis, M.C., Miller, D.M., McGeehin, J.P., Redwine, J.R., Oviatt, C.G., Bright, J. 2015. Directly dated
 MIS 3 lake-level record from Lake Manix, Mojave desert, California, USA. Quaternary Research 83,
 187-203.
- Rendell, H.M., Sheffer, N.L. 1996. Luminescence dating of sand ramps in the Eastern Mojave Desert.Geomorphology 17, 187-197.

- 362 Rhodes, E.J. 2015. Dating sediments using potassium feldspar single-grain IRSL: initial
- 363 methodological considerations. Quaternary International 362, 14-22.
- Roder, B., Lawson, M., Rhodes, E.J. Dolan, J., McAuliffe, L., McGill, S. 2012. Assessing the potential of
- luminescence dating for fault slip rate studies on the Garlock fault, Mojave Desert, California, USA.Quaternary Geochronology 10, 285-290.
- Smedley, R.K., Duller, G.A.T., Pearce, N.J.G., Roberts, H.M. 2012. Determining the K-content of
 single-grains of feldspar for luminescence dating. Radiation Measurements 47, 790-796.
- Thomsen, K.J., Murray, A.S., Jain, M., Bøtter-Jensen L. 2008. Laboratory fading rates of various
 luminescence signals from feldspar-rich sediment extracts. Radiation measurements 43, 1474-1486.
- 371 Trauerstein, M., Lowick, S.E., Preusser, F., Schlunegger, F. 2014. Small aliquot and single grain IRSL
- and post-IR IRSL dating of fluvial and alluvial sediments from the Pativilca Valley, Peru. Quaternary
 Geochronology 22, 163-174.
- Vermeesch, P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial
 plots. Radiation Measurements 44, 409-410
- 376 Wells, S.G., Brown, W.J., Enzel, Y., Anderson, R.Y., McFadden, L.D. 2003. Late Quaternary geology
- and paleohydrology of pluvial Lake Mojave, southern California. Geological Society of America,
 Special Papers 358. 79-114.
- 379 Yi, S., Buylaert, J-P., Murray, A.S., Lu, H., Thiel, C., Zeng, L. 2016. A detailed post-IR IRSL dating study
- of the Niuyangzigou loess site in northeastern China. Boreas 45, 644-657.

382

Figure 1: A) Map of the Mojave River catchment, showing the major palaeo-lakes and the present Mojave River course. B) Site stratigraphy with previously published (calibrated) radiocarbon dates and luminescence ages for Harper Lake. C) Silver Lake stratigraphy and calibrated radiocarbon age ranges (modified after Owen et al. 2007).

388

389

Figure 2: Relationship between test dose size and sample age for (A) Silver Lake SL14-1 and (B)
Harper Lake HL14-1. In A the horizontal line shows the lower 11.6 ka BCal estimate for LFA8 (see
Table S2). In B the lowest calibrated (median value) radiocarbon age for HL14-1 is shown with a solid
line; (Meek, 1999), with the natural luminescence signal as filled circles. The HL14-1 dose recovery
results (open squares) are shown on the secondary Y axis and the dashed line marks a dose recovery
ratio of 1. Averages and standard deviations of 3 aliquots are shown.

399

Figure 3: MET-PIR plateaus and pIRIR₂₂₅ and pIRIR₂₉₀ age estimates for samples SL14-1 and HL14-2.
 The BCal age range is shown for SL14-1 (with the median calibrated age for the youngest sample
 (AP9) also shown). The range of calibrated radiocarbon ages (median calibrated values in Table S2)

404 are plotted for Harper Lake. Note that the Harper Lake quartz age is from sample HL14-1 (Table 1).

Figure 4: Single grain radial plots (Vermeesch, 2009) for samples SL14-1 and HL14-1. The samples are
 grey-scaled by sensitivity (first (background subtracted) test dose response in counts s⁻¹ Gy⁻¹). For
 Harper Lake the two sigma lines are centred on the CAM estimate for all accepted grains, with the
 marker line indicating the single aliquot CAM D_e. Similarly, the marker line for SL1-1 is the single

- 410 aliquot CAM D_e.

Sample	CAM D _e IR 50 (Gy) (n)	Age IR50 (ka)	Age IR50 (ka) Fading correct	CAM D _e pIRIR ₂₂₅ (Gy) (n)	Age pIRIR ₂₂₅ (ka) ⁻	Age pIRIR225 (ka) Fading correct	Single grain CAM De pIRIR225 (Gy) (n)	Single grain age- pIRIR225 (ka)	CAM D _e pIRIR ₂₉₀ (Gy) (n)	Age pIRIR ₂₉₀ (ka) ⁻	CAM D _e Quartz* (Gy) (n)	Age quartz (ka)
SL14-1	25.2 ± 0.95 (20)	6.36 ± 0.30	10.3 ± 0.6	34.9 ± 1.2 (20)	8.8 ± 0.4	10.1 ± 0.5	35.3 ± 3.22 (21)	8.9 ± 0.9	33.1 ± 1.29 (4)^	8.4 ± 0.4	16.3 ± 2.0	5.2 ± 0.6
SL14-2	37.4 ± 1.23 (19)	8.26 ± 0.40	12.4 ± 0.8	51.2 ± 1.6 (19)	11.3 ± 0.5	11.9 ± 0.6	nd	nd	nd	nd	nd	nd
HL14-1	54.4 ± 1.91 (22)	13.0 ± 0.70	42.1 ± 20	107 ± 3.5 (22)	25.4 ± 1.4	29.1 ± 1.8	94.0 ± 6.2 (28)	22.4 ± 1.8 [#]	140 ± 4.8 (8)	33.4 ± 1.9	85.6 ± 13.8 (3)	25.6 ± 4.3
HL14-2	56.9 ± 2.12 (20)	13.9 ± 0.80	34.6 ± 7.8	104 ± 3.2 (20)	25.4 ± 1.4	29.9 ± 1.8	nd	nd	152 ± 7.0 (8)	37.3 ± 2.3	nd	nd

413 **Table 1**: Equivalent doses and associated age estimates for the various K-feldspar IRSL methods and the quartz SAR.

414

415 [•] No residual subtraction was performed

416 *For Harper Lake the quartz D_e is derived from three acceptable aliquots using early background subtraction

417 # 112.4 ± 6.1 Gy and **26.8 ± 1.9 ka** using the brightest 50% of grains

418 ^Excluding high outlier aliquot with $D_{e/age}$ of 42 Gy/ 10.8 ka (Figure 3)

419

420

422 Supplementary material – Carr et al.

423

Sample	U	Th	К	Grain size	Int. beta	Ext. beta	Gamma	Cosmic	Total
	(nnm)	(ppm)	(%)	(µm)	dose rate	dose rate	dose rate	dose rate	dose rate
	(66)	(PP)	(//)		(Gy ka⁻¹)	(Gy ka⁻¹)	(Gy ka⁻¹)	(Gy ka⁻¹)	(Gy ka⁻¹)
SL14-1	4.08	8.99	1.66	180-250	0.99 ± 0.07	1.54 ± 0.11	1.23 ± 0.48	0.21 ± 0.01	3.96 ± 0.14
SL14-2	2.54	14.2	2.16	180-250	0.99 ± 0.07	1.76 ± 0.13	1.60 ± 0.59	0.19 ± 0.01	4.53 ± 0.16
HL14-1	1.17	4.52	3.02	180-212	0.85 ± 0.06	1.89 ± 0.20	1.24 ± 0.51	0.21 ± 0.01	4.19 ± 0.17
HL14-2	1.97	4.01	2.85	180-212	0.85 ± 0.06	1.86 ± 0.14	1.19 ± 0.48	0.20 ± 0.01	4.10 ± 0.16

424 **Table S1**: Details of dose rate determinations

425 - Gamma dose rate derived from *in-situ* gamma spectrometry.

426 - Beta dose rates were derived from ICP-MS of sample tube ends, corrected for grain size following

427 Mejdahl (1979) and Redhead (2002) and water content following Aitken (1985) using element

428 conversion factors of Guerin et al. (2011). Water contents were 10 ± 5% and 14.5 ± 5% following

429 Owen et al. (2007) and Garcia et al. (2014) (respectively). Measured water contents were 0.6-0.8%
430 (Harper Lake) and 1.2-1.9% (Silver Lake).

431 - U, Th and K contents derived via ICP-MS with relative uncertainties of 10% (U and Th) and 5% (K).

- Internal K and Rb contents were 12.5 ± 0.5 % and 400 ± 100 ppm (Huntley and Baril 1997; Huntley
and Hancock, 2001).

434 - Cosmic dose rates following Prescott and Hutton (1994).

435

- 437 **Table S2**: Published radiocarbon dates from Owen et al. (2007), Garcia et al. (2014) and Meek (1999)
- 438 and their calibration using INTCAL13 (Reimer et al., 2013) and CALIB (Stuiver and Reimer, 1993)). The
- 439 UCLA and UCR codes for Harper Lake relate to Meek (1999).

Sample	Site	Material	¹⁴ C age (years)	2 sigma calibrated range (cal yr. BP) (probability)	Median age (cal yr. BP)
AP9	Silver Lake LFA8	Anodonta californiensis shell	8240 ± 40	9081-9322 (0.92)	9210
AP10	AP10 Silver Lake LFA8		9290 ± 50	10,285-10,590 (0.98)	10,481
AP11	AP11 Silver Lake LFA8		9880 ± 40	11,213-11,362 (0.98)	11,271
AP12 Silver Lake LFA8		Anodonta californiensis shell	9790 ± 40	11,272-11,407 (0.76)	11,216
AP3 Silver Lake LFA8		Anodonta californiensis shell	9970 ± 40	11,259-11,509 (0.79)	11,393
AP5 Silver Lake LFA8		Anodonta californiensis shell	10,320 ± 40	11,975-12,245 (0.79)	12,132
AP6 Silver Lake LFA8		Anodonta californiensis shell	10,430 ± 40	12,106-12,437 (0.88)	12,310
AP4 Silver Lake LFA6		Anodonta californiensis shell	10,420 ± 40	12,400-12,531 (1.00)	12,292
AP1 Silver Lake LFA6		Anodonta californiensis shell	10,480 ± 40	12,375-12,565 (0.84)	12,453
ALG-HV-04	Harper Lake Mudflat	Anodonta californiensis shell	32,830 ± 370	36,043-38,152 (1.00)	36,927

ALG-HV-07	Harper Lake Mudflat	Anodonta californiensis shell	32,580 ± 350	35,707-37,733 (1.00)	36,564
ALG-HV-06 Harper Lake Beach		Anodonta californiensis shell	35,230 ± 490	38,709-40,884 (1.00)	39,778
ALG-HV-03	Harper Lake Beach	Anodonta californiensis shell	31,440 ± 310	34,722-36,004 (1.00)	35,328
ALG-HV-05	Harper Lake shoreface	Anodonta californiensis shell	30,340 ± 260	33,895-34,790 (1.00)	34,342
ALG-HV-02	Harper Lake shoreface	Anodonta californiensis shell	33,080 ± 370	36,312-38,332 (1.00)	37,262
ALG-HV-08	Harper Lake shoreface	Anodonta californiensis shell	29,210 ± 240	32,829-33,881 (1.00)	33,412
ALG-HV-09	Harper Lake shoreface	Anodonta californiensis shell	32,540 ± 300	35,750-37,495 (1.00)	36,483
UCR2867	Harper Lake upper shell horizon	Anodonta californiensis shell	25,000± 310	28,375-29,790 (1.00)	29061
UCLA 2627A Harper Lake upper shell horizon		Anodonta californiensis shell	24,440 ± 2190	24,055-33059 (1.00)	28,576

Figure S2: Quartz IR-bleaching and thermal quenching contamination test results (following Lawson et al., 2012) for the Silver Lake and Harper Lake coarse-grained quartz extracts. Also shown is a
sample from the modern Mojave River bed (filled triangle) to provide a comparative indication of
the behaviour of quartz in the wider Mojave catchment. The grey circle indicates the typical range
for quartz extracts with a bright, fast component-dominated quartz OSL signal (samples from
numerous locations around the world as analysed in our laboratory).

Figure S3: The effect of test dose size on dose response curve form, as derived from pIRIR₂₂₅ natural
D_e measurement sequences. The data are averages of three aliquots and have been normalised to
the 40 Gy (SL14-1) and 90 Gy (HL14-1) regeneration doses. The lower Ln/Tn for the highest test dose
at Silver Lake is indicated. At Harper Lake the lower Ln/Tn value relates to the lowest (2.5%) test
dose.

Figure S4: Compared age estimates for the Silver Lake Silver Quarry site LFA 8 and LFA6 as obtained

467 in this study and by Owen et al. (2007). The grey boxes represent the BCal age ranges (*ibid*).

Figure S5: pIRIR₂₂₅ single grain brightness distributions for samples SL14-1 and HL14-1.

475 **Figure S6:** Compared age estimates for the Harper Lake Mountain View Hill site, plotted by depth,

including the post-IR IRSL and quartz OSL ages from this study, the MAAD IRSL, quartz OSL ages and

477 calibrated radiocarbon ages from Garcia et al. (2014), and the calibrated radiocarbon ages reported

in Meek (1999). The two upper-most radiocarbon samples are from Meek (1999) and have been

- assigned arbitrary depths for the purposes of illustration.
- 480

481

Figure S7: Left: The relationship between individual grain pIRIR₂₂₅ fading rates and single grain D_e for
sample HL14-1. Right: Single grain equivalent doses plotted by rank sensitivity (following Rhodes,
2015) for HL14-1. The dashed line is the CAM D_e for all grains and the solid line the CAM D_e for the

485 brightest 50% of grains (112 \pm 6 Gy).

487 References

- 488 Aitken, M.J 1985. Thermoluminescence Dating. Academic Press, 370p
- Garcia, A.L., Knott, J.R., Mahan, S.A., Bright, J. 2014. Geochronology and paleoenvironment of pluvial
 Harper Lake, Mojave Desert, California, USA. Quaternary Research 81, 305-317.
- 491 Guérin, G., Mercier, N., Adamiec, G. 2011. Dose-rate conversion factors: update. Ancient TL 29, 5-8.
- Huntley, D.J., Baril D.J. 1997. The K content of the K-feldspars being measured in optical dating or in
 thermoluminescence dating. Ancient TL 15, 11–13
- Huntley, D.J., Hancock, R.G.V. 2001. The Rb contents of the K-feldspars being measured in optical
 dating. Ancient TL 19, 43–46
- Lawson, M.J., Roder, B.J., Stang, D.M., Rhodes, E.J. 2012. OSL and IRSL characteristics of quartz and
 feldspar from southern California, USA. Radiation Measurements 47, 830-836.
- Meek, N. 1999. New discoveries about the Late Wisconsinan history of the late Mojave River system.
 San Bernadino County Museum Association Quarterly 46, 113-117.
- 500 Mejdahl, V. 1979 Thermoluminescence dating: beta-dose attenuation in quartz grains.501 Archaeometry 21, 61-72.
- 502 Owen, L.A., Bright, J., Finkel, R.C., Jaiswal, M.K., Kaufman D.S., Mahan, S., Radtke, U., Schneider J.S.,
- 503 Sharp, W., Singhvi, A.K., Warren, C. 2007. Numerical dating of a Late Quaternary spit-shoreline
- 504 complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the
- applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance,
- 506 U-series and amino acid racemization methods. Quaternary International 166, 87-110.
- Prescott, J.R., Hutton, J.T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR
 dating: Large depths and long-term time variations. Radiation Measurements 23, 497-500.
- 509 Readhead, M.L., 2002. Absorbed dose fraction for ⁸⁷Rb beta particles. Ancient TL 20, 25-29.
- 510 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H.,
- Edwards, R.L., Friedrich, M. Grootes, P.M. 2013. IntCal13 and Marine13 radiocarbon age calibration
 curves 0–50,000 years cal BP. Radiocarbon 55, 1869-1887.
- 513 Rhodes, E.J. 2015. Dating sediments using potassium feldspar single-grain IRSL: initial
 514 methodological considerations. Quaternary International 362, 14-22.
- Stuiver, M. Reimer, P.J., 1993. Extended ¹⁴C data base and revised CALIB 3.0 ¹⁴C age calibration
 program. Radiocarbon 35, 215-230.
- 517 Vermeesch, P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial
 518 plots. Radiation Measurements 44, 409-410