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Abstract 
Water in the wet processes of leather manufacture acts as a solvent, transportation medium, support 

system and is an integral component of the collagen matrix stability at the macro and molecular levels.  

There have been proposals as to what extent water can be substituted with non-aqueous media, partly 

due to its role in collagen and processing. As the water content increases from bulk to float water, the 

system acts as a transport medium for chemical as well as a support system in processing vessels. 

Here, Deep Eutectic Solvents (DES) are investigated as an alternative solvent system to conventional 

tanning systems. The novel solvent is non-aqueous, has a high solubility for metal salts, low toxicity, 

is readily biodegradable and operates at variable temperatures without the release of harmful vapours.  

These properties make the DES system a potential alternative in leather processing, improving reagent 

uptake with the potential of lowering effluent discharge. The research focuses on the role of the 

solvent associated with stabilising collagen, such as the influence of inter- and intra-fibrillar, as well as 

bulk water, using type 2 DES systems. Thermal, mechanical analysis and electron microscopy were 

undertaken to determine the effects of the solvent system. The studies indicated that the solvent used, 

as well as the choice of counter ion, have an important effect on the thermal and mechanical stability 

of collagen. 
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1 – Introduction 
 

In the century and a half of the history of chromium tanning, the industrial process has been conducted 

in water.  Conventionally, leather production needs an average of 40 m3 of water per tonne of raw 

material during processing (Rydin, Black, et al. 2013, Manteiro de Aquim et al. 2009).  The water in 

the wet processes of leather manufacture acts as a solvent, transport medium, support system and is an 

integral part of the collagen (Bella, Brodsky, et al. 1995).  There are three types of water that can be 

identified in the collagenic structure; i) intramolecularly bound water, ii) intra- and interfibrillary 

bound water, which forms a sheath between fibrils and fibres by hydrogen bonding (Lees 2003, Reich 

2007, Steiner 2002) and iii) bulk water which acts as a solvent for the chemical modification of native 

collagen to be transformed into leather (Orgel, Miller, et al. 2001). Furthermore, the system acts as a 

transport medium for chemicals as well as a support system for the material in processing vessels.  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NECTAR

https://core.ac.uk/display/222836549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

XXXIII IULTCS Congress 

November, 24th – 27th, 2015 Novo Hamburgo/Brazil 
 

 

2 
 

Over the years, several attempts have been made to modify the solvent system, either by mixing water 

with miscible organic solvents or by substituting water by an immiscible organic solvent (Covington 

2011).  In this research, an entirely different approach is adopted wherein the reagent to be fixed in the 

tanning reaction is actually part of the solvent system, which is referred to as an ionic liquid or, more 

strictly, a deep eutectic solvent.  Clearly, one of the benefits of this new way of leather processing is 

the savings which can be made in the requirements for fresh water (Abbott, Alaysuy, et al. 2015). 

 

There are four types of deep eutectic solvent and can be generally represented below: 

 

 Type 1: Metal salt + organic salt 

 Type 2: Metal salt hydrate + organic salt 

 Type 3: Organic salt + hydrogen bond donor 

 Type 4: Metal salt (hydrate) + hydrogen bond donor 

 

A deep eutectic solvent (DES) is a type of ionic solvent composed of a mixture of two or more 

different chemical compounds, held together in a defined spatial arrangement by chemical bonds to 

have a melting point much lower than either of the individual components involved in the chemical 

reaction ().  The two solid compounds (A and B) shown in Figure 1 are mixed together to obtain an 

ionic liquid at the eutectic point. 

 

 
Figure 1: Schematic representation of a eutectic point on a two component phase diagram (Smith, 

Abbott, et al. 2014). 

 

The melting point of the mixture is dependent upon the interaction between the components at a 

defined pressure. Ionic compounds generally have a high melting point, but the ionic liquid melting 

point is lower due to the weaker electrostatic forces between oppositely charged ions (Smith, Abbott, 

et al. 2014, Abbott, Capper, et al. 2003, Abbott, Boothby, et al. 2004). If the eutectic-based systems of 

known chemical composition are dissolved in water, they revert into their constituent components 

(Abbott, Capper, et al. 2004).  

 

Compared to the currently used solvents, ionic liquids are distinctively beneficial for operating at 

variable temperatures without the release of harmful vapours (Liu, Zhao, et al. 2013). Ionic liquids 

allow a high solubility of metal salts, low toxicity and are readily biodegradable. These properties 

make ionic liquids the most promising solvents for the reduction of water in leather processing, 

improving uptake and possibly lowering the discharge to effluent treatment (Abbott, Alaysuy, et al. 

2015). 

 

This preliminary study focuses on type 2 (DES), in which the metal salt is chromium (III) chloride 

hydrate and the organic salt is choline chloride (although other quaternary ammonium salts can be 
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used) (Abbott, Capper, et al. 2004).  Here, results are reported from experiments which begin to define 

the impact of the new reactions and the limits to applicability in the leather industry. 

 

 

2 – Materials 
 

The materials used for the experiments were wet salted goat skins preserved in accordance to the 

European standard (EN 16055:2012) and sourced from the Institute of Creative Leather Technologies, 

University of Northampton, UK. The DES were synthesised with analytical grade chemicals from 

Sigma-Aldrich, in collaboration with University of Leicester (UK). The distilled water used for 

processes complied with the International Organisation for Standardisation (ISO 3696:1995). 

 

 

3 – Methods 
 

Type 2 Deep Eutectic Solvents (DES) were prepared by heating an organic salt and a metal salt 

hydrate at 70 °C (molar ratio 2:1 of choline chloride: chromium chloride hexahydrate respectively).  

Initial stirring using a glass rod, shortly after liquid begins to form a magnetic stirrer was utilised to 

maintain efficient combination of components.  

 

The goat skins were sampled in accordance with the Chemical, Physical and Fastness Test Sampling 

Location method (ISO 2418:2002). The pieces were processed using a standard recipe (up to and 

including the deliming step) to remove unnecessary components such as hair, fats, proteoglycans and 

globular protein with a final adjustment to a range of pH values: 2, 4, 6 and 8.  

 

An acetone dehydration process was implemented to extract residual water from the goat skin.  The 

goat skin samples were immersed in a bath of acetone which was replaced periodically until there was 

no observable change in the specific gravity of the solvent in a 24 hour period. Skins were then 

removed from the acetone bath and dried in a 40 °C oven overnight.  The fully dried skin was cut into 

1 cm2 pieces and ground in a cutting mill (Laarmann, CM100 model, Netherlands) in accordance to 

the Preparation of Chemical Test Samples (ISO 4044:2008).  

 

All samples were conditioned for 24 hours at 23 °C in conditioning cabinets (Sanplatec, Type A, 

Japan) each with a fixed relative humidity (0%, 33%, 50%, 76% and 98%) controlled by saturated salt 

solution (Table 1).  The pH of the conditioned samples was measured in accordance with the 

Determination of pH (ISO 4045:2008). 

 

Table 1: The cabinet conditions of leather samples prior to testing showing the saturated salt used to 

ensure that atmosphere and the relative humidity of that atmosphere. 

Relative Humidity of Atmosphere (%RH) Solution used 

0 P2O5 (not in solution) 

33 MgCl2
.6H2O 

50 RH of conditioned room 

76 NaCl 

98 CuSO4 

 

The goat skin powder was processed with DES in vials with varying conditions. All the experimental 

trials were carried out in triplicate in a water bath (Grant, OLS 200 model, United Kingdom). The 

parameters investigated were moisture, water content, pH, temperature, concentration of the chromium 

in DES and time.   

 

Water and moisture contents were calculated based on conditioned goat skin powder weight and 

provided as percentages. The pH of the skin powder was altered (2, 4, 6 and 8) during the final process 
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prior to drying. The temperature of each reaction was varied by altering the temperature of the water 

bath to the specified reaction temperature, allowing equilibration of the DES temperature before 

addition of goat skin powder. Concentration was calculated based on chromium content and is 

expressed as grams per litre. 

 

At the conclusion of each experiment, samples were rinsed with deionised water, vacuum filtered over 

a Buchner funnel with a Whatman number 541 filter paper. Consequently, the filtered samples were 

hydrated with distilled water for 24 hours and kept in vials for thermal analysis. 

 

The blotted samples weighing between 2 mg and 8 mg were placed in 30 μl gold plated high pressure 

crucibles for analysis using the Differential Scanning Calorimetry (DSC). Measurement was 

undertaken at a heating rate of 5 °C/min for the temperature range from 25 °C to 120 °C for all 

experiments. 

 

 

4 – Results and Discussion 
 

4.1. Effect of moisture content on type 2 DES processed goatskin powder. 

 

The thermal analysis of goatskin powder samples processed at different moisture contents (3 to 24%) 

showed they did not acquire additional stability when compared with the control Ts  60.4 °C ± 0.8 °C 

(ρ≥0.05, Kruskal-Wallis test).  The molecular water dominates the structure when the skin samples 

were fully hydrated.  

 

4.2. Effect of water content on type 2 DES processed goatskin powder.  

 

The thermal analysis results in Figure 2 illustrate the necessity for water to act as a transport medium 

for the DES to interact with the active sites of the collagen triple helix molecule. They show that the 

shrinkage temperature is dependent on the water content of the starting material, because there is a 

significant difference (ρ≤0.05) in shrinkage temperature as the water is increased; however there is no 

significant difference in the water content region 200% to 500% (ρ≥0.05). The shrinkage temperature 

increases compared to the control sample from 60.4 °C to 74.2 °C at 100% water content because of 

the requirement of the higher water content in the collagenous structure to facilitate the ionic 

mechanism of fixation. 

 

 
Figure 2: The effect of substrate water content on the hydrothermal stability of chromium tanned 

goatskin powder processed with the type 2 DES system. Water content was varied by 100% w/w, 

200% w/w, 300% w/w, 400% w/w and 500% w/w. Constant parameters: DES concentration of 5 g/l, 

temperature of 45 °C, pH 8 and processed for 24 hours. Control is the native collagen. 

 

The moderate shrinkage temperatures observed are consistent with the view that chromium (III) 

molecular ions are capable of conferring only moderate hydrothermal stability in the absence of a 
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second agent for locking the ions together within the supramolecular matrix around the triple helices 

(Covington 2011).  

 

4.3. Effect of pH on type 2 DES processed goatskin powder. 

 

The thermal analysis results in Figure 3 illustrate that at pH 2, below the isoelectric point when the 

collagen is positively charged, the type 2 DES species interacted less with the collagen compared with 

pH 4 and above, more negatively charged carboxyl groups are available.  There is a significant 

difference (ρ≤0.05) when the pH increases from 2, however there is no significant difference in 

shrinkage temperature above pH 4 (ρ≥0.05), although the observed trend in diminishing shrinkage 

temperature may be due to chromium species precipitating and interfering with the fixation reaction. 

 

 
Figure 3: The effect of pH on the hydrothermal stability of goatskin powder processed with the type 2 

DES system, pH was varied by 2, 4, 6 and 8. Constant parameters: DES concentration of 5 g/l, 

temperature of 45 °C, water content of 300% w/w and processed for 24 hours. Control is the native 

collagen. 

 

4.4. Effect of temperature on type 2 DES processed goatskin powder. 

 

The thermal analysis results in Figure 4 illustrate that temperature from 25 °C to 55 °C does not 

significantly change the interaction of the type 2 DES species with the collagen (ρ≥0.05). The rate of 

reaction at which the type 2 DES species interact with the collagen appears not to be dependent on the 

temperature.  However, as referred to above, the reaction has reached its maximum effect at the lowest 

temperature.  This means that the process may be more rapid than the conventional aqueous reaction, 

which is highly dependent on temperature. 

 

 
Figure 4: The effect of temperature on the hydrothermal stability of goatskin powder chromium 

tanned with the type 2 DES system. Temperature was 25 °C, 35 °C, 45 °C and 55 °C. Constant 

parameters: DES concentration of 5 g/l, water content of 300% w/w, pH 8 and processed for 24 hours. 

Control is native collagen. 
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4.5. Effect of type 2 DES concentration on processed goatskin powder. 

 

The higher the concentration of a reactant, the more chance the molecules in the type 2 DES have in 

colliding with the active sites of the collagen, as indicated by the Figure 5, so the shrinkage 

temperature increases with increasing concentration from 1.25 g/l to 5 g/l.  There is a significant 

difference (ρ≤0.05) when the concentration increases from 1.25 g/l to 5 g/l, but further increase in the 

concentration does not show a significant difference (ρ≥0.05).   

 

As already discussed, these values are approaching the maximum possible value of shrinkage 

temperature with the concentration of 5 g/l under these experimental conditions. 

 

 
Figure 5: The effect of chromium concentration on hydrothermal stability of goatskin powder 

processed with the type 2 DES system.  Concentration was varied: 1.25 g/l, 2.5 g/l, 5 g/l, 10 g/l and 20 

g/l. Constant parameters: water content of 300% w/w, temperature of 45 °C, pH 8, and processed for 

24 hours. Control is the native collagen. 

 

4.6. Effect of incubation period on type 2 DES processed goatskin powder. 

 

The thermal analysis of samples processed for different times illustrates that reaction period does not 

significantly change the interaction of the type 2 DES species with the collagen (ρ≥0.05), so, under the 

given experimental conditions, maximum shrinkage temperature was achieved within two hours.  This 

indicates that the fixation reaction is rapid and may be faster than the conventional process. 

 

4.7. Effect of different counter-ions on type 2 DES processed goatskin powder 

 

The thermal analysis results in Figure 6 demonstrate the effect of washing the type 2 DES chromium 

tanned goatskin powder with a solution of sodium sulfate. This resulted in an elevated shrinkage 

temperature.  

 

The rationale of the experiment relates to the link-lock theory of tanning (Covington 2010).  Moderate 

shrinkage temperature is achieved by chromium (III) molecular ions acting individually in the 

supramolecular matrix, the ‘polymer in the box’ (Miles, Avery, et al. 2005), merely interfering with 

the shrinking mechanism.  The presence of ions such as sulfate, which can interact powerfully with the 

aquo ligands of the chromium (III) molecular ions via hydrogen bonding, creates a new matrix which 

resists shrinking strongly and is observed as high shrinkage temperature. 
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Figure 6: Effect of the sulfate counterion on the hydrothermal stability of the type 2 DES processed 

goatskin powder. The concentration of sodium sulfate was 0.125 M, 0.25 M and 0.5 M. Control is the 

DES tanned goat skin Ts  86.4 °C ± 0.8 °C. 

 

The resulting shrinkage temperatures are elevated in comparison with the untreated control, but there 

is no apparent effect due to sulfate offer, nor are the values as high as conventionally chromium tanned 

leather.  However, this may merely be the influence of the experimental conditions and the nature of 

the substrate.  But, the principle is demonstrated.  

 
The results obtained in this preliminary study are consistent with what is already known about the 

conventional chromium tanning process.  This might be considered surprising, because the chromium 

species in the ionic liquid are in a very different chemical state compared to solute chromium sulfate 

tanning salt in aqueous solution.  Nevertheless, it has been demonstrated that chromium fixation can 

occur and the reaction appears to be faster and less reliant on specific conditions than the water-based 

process. 

 

However, the understanding of the new reaction must be tempered by the recognition that moderate 

shrinkage temperature is easy to achieve.  What is less easy is the attaining of high hydrothermal 

stability, which is only possible by satisfying the requirements of the link-lock sequence of events.  It 

is those elements of the mechanism which have to be incorporated into the new ionic liquid process if 

it is to rival conventional operations. 

 

 

5 – Conclusion 
 

The application of ionic liquids in the heterogeneous technology of leather making is a paradigm shift.  

The delivery of chromium (III) molecular ions into the collagen matrix is fundamentally different from 

conventional processing and the results reflect the difference.  However, it is clear that the mechanism 

of chromium fixation via the structural water around the collagen triple helix may not be significantly 

adversely affected.  Therefore, it can be assumed that there is value in pursuing these studies, in 

particular to investigate the novel chemistry options offered by the myriad variations of ionic solvents 

possible.  This is important in extending the properties and performance of leather and other 

biomaterials. 
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