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Abstract 
 

This paper investigates a dynamic model of a cable – mass system equipped with an auxiliary mass element to act as a transverse 

tuned mass damper (TMD). The cable length varies slowly while the system is mounted in a vertical host structure swaying at 

low frequencies. This results in base excitation acting upon the cable - mass system. The model takes into account the fact that 

the longitudinal elastic stretching of the cable is coupled with their transverse motions. The TMD is applied to reduce the 

dynamic response of the system. The parameters of TMD are selected by the application of a linearized model and a single-mode 

approximation. In this approach the excitation is represented as a narrow-band Gaussian process mean-square equivalent to a 

harmonic process. The deterministic model and stochastic model are used to predict and control the resonance response of the 

system. 
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1. Introduction 

 
Moving cable systems are deployed in many engineering systems. In some applications the length of cables vary 

during operation rendering the system non-stationary. For example, in hoist, elevator and mine lifting installations 

the payload- carrying cables moving at speed within a host structure have time-variant length and the natural 

frequencies vary with their length [1]. The modular cable - mass installations are mounted within host structures that 
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are often subject to environmental phenomena such as wind and seismic excitations [2]. The corresponding response 

and excitation mechanisms can be represented by deterministic functions or treated as stochastic processes [3,4]. In 

this paper a deterministic model and the corresponding stochastic model of a mass –cable system constrained to 

move vertically in a host structure are considered. The system is equipped with an auxiliary spring – damper - mass 

combination attached to the main (primary) mass to act as a tuned mass damper (TMD). In this arrangement the 

TMD can be applied to mitigate the effects of resonance when the frequency of the base motion becomes near the 

natural frequency corresponding to the primary mass – cable mode. 

 
2. Mathematical model 

 
2.1. System Configuration 

 
Fig. 1 shows a mass – vertical cable system mounted within a host structure with a primary mass M attached to the 

lower end of the cable of time-varying length L  L t  moving axially at transport speed V. The cable is mounted 

within a host structure of height AB = Z0 with its upper end passing thrpough O at the top of the structure. The mean 

quasi-static tension, mass per unit length, modulus of elasticity and cross-sectional metallic area of the cable are 

denoted as  T i   M  md   mL  x  g  a , m, E and A, respectively. The Eulerian spatial coordinate x is measured 

from the upper end downwards as shown. The lateral dynamic displacements of the cable are denoted as v(x,t). They 

are coupled with the longitudinal vibrations denoted as u(x,t). The mass M is constrained in the lateral direction by a 

linear spring of coefficient of stiffness k and can move in the vertical direction. Its lateral and longitudinal vibrations 

are denoted as vM(t) and uM(t), respectively. An auxilliary small mass md is attached to the main mass via a spring – 

dashpot system of coefficient of stiffness kd and coefficient of viscous damping cd, respectively. The auxilliary mass 

is constrained to mover horizontally with its motion denoted as zd. The equations of motion Eq. (1) are developed by 

applying the extended Hamilton’s principle. 
 

2 2 

m 
Dt2 

 EA x  0, m 
Dt 2 

 Tvxx  m  g  a  xvxx  vx   EA  vx x 
 0 

MvM   T i  L vx 
 
x  L 

 k  kd  zd   vM   cd  zd   vM    EA x  L 
vx x  L 

 0 (1) 

md zd   kd  zd   vM   cd  zd   vM    0,  M  md uM   EA 
x  L  

 0 

where   ux  v2 2 represents the axial strain, D   Dt     V   ( )t and ( )x represent partial derivatives 
t x 

with respect to time t and x, respectively, and T  M  md  mL g  a , where a represents the acceleration of the 

transport motion. For tensioned members such as metallic cables the lateral frequencies are much lower than the 

longitudinal frequencies. Thus, considering that the excitations frequencies are much lower than the fundamental 

longitudinal frequencies the longitudinal inertia of the cable can be neglected in the first equation in (1). Thus, this 

equation can be integrated to give ux  e t   v2 2 where e(t) represents the quasi-static axial strain in the cable. 
 

2.2. Base Excitation 

 
The host structure is subjected to bending deformations acting as base excitation and described by the polynomial 

shape function      3 2   2 3   (see Fig. 1), where   z  Z0   with z denoting a coordinate measured from  ground 
level and Z0  representing the height at the top end of the cable. In this scenario the structure undergoes harmonic 

motions  v0 t   of  frequency  0   and  amplitude  A0,  measured  at  the  level   Z0  .  Thus,  at  the  upper  end  the 

displacements of the cable are v(0, t)  v0 (t) . In order to accommodate the base excitation in the equations of 

motion (1) the overall lateral displacements of the cable – mass system are expressed by Eq. (2). 
 

v(x, t)  v (x, t)  

1 
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It is assumed that the variation of length L with time is small. Thus, L is a slowly varying function in time meaning 

that the change of L(t) over a period corresponding to the fundamental frequency of the system is small compared to 

L [3]. In order to represent this fact a slow time scale defined as   єt , where where є  1 is a small parameter, is 
introduced. This parameter is quantified as  є  V 0 L0  where 0  denotes the lowest natural frequency and L0 is 

the corresponding length of the cable [5]. Considering that L  L   the relative lateral displacements are then 

expressed using the finite series given by Eq. (3). 
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Fig. 1. Model of the mass – cable system under consideration: (a) undeformed configuration, (b) deformed configuration. 

 
 

 

v (x, t; )  n  x; L   qn t 
n 1 

 

(3) 

 

where n  x; L    are orthogonal trial functions depending on the spatial coordinate and are varying slowly with 
the  length  of  the  cable.  The  trial  functions  satisfy  the  homogenous  boundary  conditions  and  are  defined  as 

n x; L    sin n L   x ,   n  1, 2, , N ,  with  N  denoting  the  number  of  terms/  modes  taken  in  (3).  The 

slowly varying eigenvalues n   are defined by the frequency equation given as 
 

 
k  

M 
T  2 


sin  L  T 

 
 

  cos  L  0, T  T i  L  M  m  g  a   (4) 
 m   Md    n  n Md   n n Md d 

 

The generalised coordinates qn t  are time-dependent and fast varying. Using (2), (3) together with (4) in the 

equations of motion, orthogonalising with respect to the trial functions, when terms O(є) and O(є2) are neglected, 

equations Eq. (5) and Eq. (6) result. 
 

N       N     1 

mr qr   krqr    Krn qn   kd   zd   vM   cd   zd   vM  r  L  EAe  rnqn        L  r  L v0   Qr 

n 1 

md zd   kd   zd   vM    cd   zd   v   Zd , 

  n 1 
L 

M  md uM   EAe t;   0, 

 (5) 
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2.3. Single-mode approximation 

 
Consider   a   single-mode   approximation   and   the   rth   mode   with   the   relative   displacements   expressed as 
v (x, t; )  r  x; L   qr t  . The equations of motion (5) are then expressed as (7), where  k   kr  Krr ,   (0) , 

 

  r r (1) , (2) 
r r are known slowly varying coefficients and the modal damping is introduced through the coefficient 

cr   2mr  r  r ,  r   . The linearized lateral response (uncoupled from the longitudinal mode) of the main 

mass can then be defined by a set of two equations (8). 
 

 
m q 

  c q  k q  k  z    L q   c  
 z     L q    L  EAe 




 q 
 L  1







 L v 
 
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r   r r   r r   r d  d r r  d  d r r  r r 

 rr   r L r 0 


 r 

(7) 

md zd   kd  zd   r  L qr   cd  zd   r  L qr   Zd t;  ,  M  md uM   EAer   0 
 

mr qr   cr qr   k q  kd  zd  r  L qr   cd  zd  r  L qr r  L  Qr , 
 

(8) 

md zd   kd zd r  L qr   cd zd  r L qr   Zd 

 

3. Stochastic excitation model 

 

The motion v0 (t) of the host structure is seldom exactly harmonic. For example, the excitation due to the action of 

wind is usually a wide-band stochastic process. Then the response in the fundamental mode is a narrow-band 

process with a centre frequency equal to the fundamental natural frequency 0 . The stochastic motion could be 

determined from the analysis of the structure response. Alternatively, it may be assumed that v0 (t) is a narrow-band 

process mean-square equivalent to the harmonic process with the amplitude A0 and the frequency 0 . The motion 

v0 (t)  must  be  continuous  together  with  its  first  and  second  derivatives  v0 (t)  and  v0 (t) .These  conditions  are 
satisfied by assuming that the motion v0 (t) is the response of the second order auxiliary filter to the process X (t) , 

which is in turn the response of the first-order filter to the Gaussian white noise  (t) excitation [6]. The governing 

equations are 
 

v0 t   2 f 0v0 t    2v t   X t  ;  X t    X t    2 S0 t   (9) 
 

where damping ratio  f of the filter defines its band width,  is the filter variable, S0 is the constant level of the 

power spectrum of the white noise. Consider the linearized single-mode approximation (8). The augmented state 

vector defined as  YT 
(t)  [qr , qr , zd , zd , v0 , v0 , X ]  is then governed by the following set of stochastic equations 

dY(t)  AY(t)dt  bdW t   
 

(10) 
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where W (t) is the standard Wiener process (corresponding to the Gaussian white noise  (t) ) and A is the state 

matrix defined in terms of the system coefficients. The differential equations governing the second-order statistical 

moments of the state vector Y(t) , i.e. the covariance matrix RYY  E[YYT ] are then represented by Eq. (11). 
 

d 
R  AR  R AT  bbT 
 

 
(11) 

dt YY YY YY 

 

4. Parametric case study 

 
A parametric study has been conducted which involves the primary mass M = 6768 kg constrained in the horizontal 

direction by a spring of constant k = 2.8 kN/m, suspended on nr = 6 steel wire ropes. The ropes have mass per unit 

length mr = 2.18 kg/m and longitudinal stiffness EA = 22.889 MN/m2, each. In the scenario considered the system is 

ascending from the lower level, when the initial length of the ropes is L(0) = 258.66 m, upwards at speed of 2.5 m/s. 
The travel height is 200 m so that the length of the ropes changes from L(0) to Lmin = 58.66 m during the travel. The 
height of the host structure is Z0 = 261.86 m. The host structure is subjected to the fundamental resonance sway of 

frequency 0  0.6597 rad/s (0.105 Hz)  and the amplitude of the sway at the top level (corresponding to Z0) is A0 = 

0.1 m. In this example a TMD system of mass ratio   md    mre  0.05   and the optimum damping ratio determined 

as  op  0.13 is considered to mitigate the effects of transition through the first (fundamental) lateral mode 

resonance of the mass-cable system. The frequency of base excitation becomes tuned to the fundamental mode 

during the travel when the length of the suspension ropes L is approximately 161 m (see Fig. 2 (a)). It should be 

noted that the fundamental longitudinal frequencies (determined as M  keq / meq , where keq  nr EA L , 

meq  M  nrmr L 3 and shown vs. L in Fig. 2(b)) are of over one order of magnitude higher than the fundamental 

lateral frequencies. Fig. 2(c) shows the lateral response vM of the primary mass vs. time, determined by numerical 

simulation of nonlinear model Eq. (7), where r = 1 is used and the damping ratio 1  0.1  is assumed. The response 

plots with the TMD action (red line) and the response without TMD being applied (black line) are superimposed on 

each other, demonstrating that the fundamental mode resonance oscillations are becoming attenuated (the largest 

amplitude is reduced by about 34%). The corresponding longitudinal motions uM, coupled with the lateral mode, are 

shown in Fig. 2(d). It is evident that the longitudinal response, which is three orders of magnitude smaller than the 

lateral response, is attenuated by the action of TMD on the lateral mode. Fig. 2(e) shows that in the resonance region 

the lateral response determined by the numerical simulation of linear model (8) (blue dashed line) is almost identical 

to the response determined from the nonlinear model (7) (red line). The linearized approximation (8) has been used 

to develop Eq. (11) to study the effects of stochastic excitation on the behaviour of the system. Fig. 3 shows the 

variance functions  2 
M 

for speeds of 1.5, 2.5 and 3.5 m/s, respectively. It is evident that the higher the speed the 

lower the scatter levels of the response. 

 
Concluding remarks 

 
The proposed mathematical model accommodates the nonlinear effects of cable stretching and is used to determine 

the response of the system under the excitation caused by low frequency sway motions of the host structure. The 

lateral response of the system is then approximated by a single-mode formulation. In this approach the mode 

corresponding to the main mass motion should be chosen in order to implement the TMD action. The approximation 

is used to implement stochastic excitation model. In this model the excitation is represented as a narrow-band 

Gaussian process mean-square equivalent to a harmonic process. The proposed linear approximation then leads the 

determination of covariance matrix with its elements showing the statistical scatter of the response of the system. 

The dynamic behaviour of the system can readily be investigated by the application of numerical techniques. The 

case study presented in the paper demonstrates the effectivness of the proposed modelling approach. 
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