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Abstract

When a system is measured, its state is changed. A mathematical consequence of this

statement is that scenarios in which a quantum system is measured repeatedly, or the

same system is used to measure many others, require the use of Kraus’s formalism. Three

projects which fall into this category are discussed in this thesis. One is of foundational

interest and two are more oriented towards experiment.

The first piece of work is an analysis of the uniqueness of each of Kraus’s formulae for

joint and conditional probabilities. Gleason, Busch and others were interested in whether

the probability rules of quantum mechanics were constructed ad hoc or whether they had

deeper significance. They showed that the Born rule was the only way of calculating quan-

tum probabilities consistent with some basic assumptions about the nature of a physical

theory. I extend this work to the sequential measurement case and show that no further

assumptions are required for joint, over single, probabilities.

A mathematical technique, the use of operator space, from that work is then developed,

in my second reported piece of work, for use as a tool in quantum cryptanalysis. I show that

calculations of the best eavesdropping strategies for quantum key distribution protocols

can be done in a straightforward manner. I rediscover optimal strategies for BB84 and

B92, two of the most commonly discussed protocols, and report a new attack for PBC00.

Multiple-copy state discriminators look for methods of distinguishing states given a

number of systems all in that state. An open question is whether a quantum memory, a

device which interacts with other systems and does not decohere, aids this problem. In

the third piece of work reported here, I compare the ability of two schemes, one which

uses a quantum memory and one which does not, for performing multiple-copy state

discrimination. One surprising result is that the scheme that uses quantum memory

always performs worse than the one which does not. Another is that both schemes tend to

the same limit in the case that the resource is an infinite number of copies. This suggests

that a quantum memory may not be helpful.
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These were moments, years,

Solid with reality, faces, namable events, kisses, heroic acts,

But like the friendly beginning of a geometrical progression

Not too reassuring, as though meaning could be cast aside some day

When it had been outgrown. Better, you said, to stay cowering

Like this in the early lessons, since the promise of learning

Is a delusion, and I agreed, adding that

Tomorrow would alter the sense of what had already been learned,

That the learning process is extended in this way, so that from this standpoint

None of us ever graduates from college,

For time is an emulsion, and probably thinking not to grow up

Is the brightest kind of maturity for us, right now at any rate.

John Ashbery, Soonest Mended
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Chapter 1

Introduction

That it is impossible to characterise perfectly a system with a single measurement, and

that the system’s state will be altered by that measurement, begs the question of how

much can be known about that system. Answering this leads to the field of quantum

information theory. The practical issue of extracting information from a quantum system

forms the basis of technological applications and highlights foundational issues. The latter,

of course, were well-known to many of the great innovators of the early twentieth century

(Einstein, Pauli, Dirac, etc.) but were passed over for several decades. As Olival Freire Jr.

has discussed [4], quantum foundations during this period became a clandestine subject,

published in unofficial journals and discussed in out-of-hours reading groups. It is probably

true that the motives behind this side-lining were practical: it was only in the 1980s that

it was possible to perform experiments on single quantum systems. This meant that

interpretational issues could be approached somewhat systematically, and also used as

the basis for technologies: above all, communication systems and computers. In the few

decades since then, measurement theory has been a rich topic for all kinds of researchers.

My doctoral work, which is brought together in this thesis, has covered both foundational

aspects as well as those more likely to have consequences for experimentalists. I have

focused on sequential measurements, processes in which the same system is measured

two-or-more times.

In Chapter 2, I present quantum theory, beginning from the standard set of von Neu-

mann postulates to introduce the language of quantum measurement theory: POVMs,

Kraus operators and Naimark dilation. Quantum key distribution and state discrimina-

tion, two key applications of this framework and those which form the basis of the latter

half of the thesis, are also introduced.

In Chapter 3, I examine the Kraus formalism in terms of postulates. Researchers

from von Neumann to Gleason to Busch have asked why the Born rule has the form that

it does. Over the past decade this kind of questioning has given rise to a field known as

quantum reconstructions, in which sets of operational postulates are proposed and used to

derive quantum theory. The idea behind this is that questions about the more mysterious

aspects (e.g., the measurement problem) can be understood more easily. Towards this

goal, I link Gleason and Busch’s analysis of the Born rule to Kraus’s formalism for joint

and conditional probabilities, an analysis which shows that no additional assumptions are
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needed to find the state-update rule.

The work in Chapter 4 develops, based on some aspects of the Kraus rule analysis,

a tool for developing eavesdropping attacks in quantum key distribution. The work in

quantum reconstructions leads to an understanding of sequential measurements in which

the space of two-time states is fundamental. In this framework, pre- and post-selection

appear as superoperators and Kraus operators appear as states, and this distinction maps

naturally onto that in quantum key distribution between Alice and Bob’s correlations and

Eve’s actions. With this framework, I am able to rediscover the optimal and well-known

attacks for BB84 and B92 and also find a novel optimal attack for a less-explored protocol,

PBC00, which uses the trine states. The surprising result here is that the optimal attack

does not give Eve information about the transmitted state, an unexpected result which is

counterintuitive but found naturally with the two-time state formalism.

In Chapter 5, I move onto a different topic: multiple-copy state discrimination. How to

successfully discriminate two states given a number of copies is still not a deeply explored

question, partly due to the difficulty in deriving analytic results. An open question is

whether a quantum memory is a useful resource in this problem. My contribution is to

calculate the probability of success for two different schemes, one which uses a quantum

memory and one which does not. They are both known to be optimal for discriminating

two pure states, but I apply them to mixed states representing imperfect preparation. Two

surprising results emerge. The first is that both schemes tend towards the same sub-unit

probability of success, in the many-copy limit. The second is that the local scheme, the

scheme that does not need a quantum memory, is better in all cases. Admittedly this

improvement is very small and probably not experimentally detectable, however it still

goes against the commonplace that it is always useful to be able to interact coherently.

I conclude with Chapter 6, in which I summarise the contents of the previous chapters

and discuss some possible paths towards future work in the fields of quantum reconstruc-

tions, eavesdropping strategies and multiple-copy state discrimination.
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Chapter 2

Background

One topic of this thesis is that there are many ways to present quantum mechanics. In

this thesis, I am mostly concerned with applications in measurement theory and so use the

relevant language of density matrices and POVM elements. To develop that framework, I

begin from the most common starting point: von Neumann’s postulates. The material in

§2.1-3 is taken from a variety of standard sources [5, 6, 7, 8, 9, 10, 11].

2.1 Basic theory

Pure states

The fundamental quantities in quantum mechanics are states and observables. The former

are represented by vectors, written as kets |ψ〉, in a complex valued Hilbert space H.

The association between states and vectors was formalised by von Neumann as his first

postulate. That states are written as vectors is a consequence of the fact that a quantum-

mechanical description of reality allows for a continuum of states. In any vector space, the

basis can be freely chosen and, because of this, quantum states can exist in superpositions.

If the set of vectors {|i〉} form a basis then the state may be written as

|ψ〉 =
∑
i

ai|i〉, (2.1)

in which the set of coefficients can be any complex numbers such that the state is nor-

malised. The set of kets also implies a set of bras 〈ψ|, which formally speaking are vectors

in the space of functionals, and allow inner products to be defined. If a second state is

written in the same basis as Eq. 2.1,

|φ〉 =
∑
j

bj |i〉, (2.2)

then the inner product is

〈ψ|φ〉 =
∑
i

a∗i bi. (2.3)

5
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The probabilistic description of quantum mechanics, which is introduced alongside the

idea of measurements, requires that the states are normalised. That is,

〈ψ|ψ〉 = 1. (2.4)

Observables

Alongside states, observables are the other basic quantity in quantum theory. These are

associated with operators, which can be defined more generally. An operator is an object

which acts upon one vector and outputs another. I am concerned in particular with linear

operators, which satisfy

A (|ψ〉+ |φ〉) = A|ψ〉+A|φ〉

(A+B) |ψ〉 = A|ψ〉+B|ψ〉

A (α|ψ〉) = αA|ψ〉. (2.5)

Here, A and B are the linear operators and α is any complex number. Linear operators

should be defined on the entire vector space so that, in this set of definitions and with a

slight abuse of notation, |ψ〉 and |φ〉 need not be states. Out of the whole class of linear

operators, quantum theorists finds particular use for those which are Hermitian. This is

due to a second postulate of quantum mechanics which associates physically observables

quantities with Hermitian operators: every mathematical object of this kind can be ex-

perimentally measured and vice versa. Hermitian operators are those which are the same

as their complex conjugate transpose, i.e., A = A†. (To be precise, this is the definition

of a self-adjoint operator. While these are actually distinct from Hermitian operators,

the manner of this distinction is not important in the applications required here.) The

eigenvectors of an operator are the set of kets |λi〉 satisfying

A|λi〉 = λi|λi〉. (2.6)

The objects λi are called eigenvalues. For Hermitian operators, they are positive, and this

can be used to verify whether or not a given operator is Hermitian. Any operator’s set of

eigenvectors forms a basis, called the eigenbasis, which spans the relevant Hilbert space.

That is, any state can be written in terms of the eigenvectors of a given operator. It is

often useful to write an operator in terms of outer products of its eigenvectors,

A =
∑
i

λi|λi〉〈λi|, (2.7)

which is called the spectral decomposition of an operator.

Quantum mechanics is an inherently probabilistic theory, and this indeterminacy enters

at the level of measurement. When a system in the state |ψ〉 is measured for the observable

A, the possible measurement outcomes are the set of eigenvalues associated with A. Only

one of these outcomes will occur, and the probability of that event is given by the Born
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rule, written in its most basic form as

P(λi|ψ) = |〈λi|ψ〉|2. (2.8)

Alongside the probability of individual outcomes, the measurement of a variable on a

system is associated with the average value that would be calculated for that variable

after many measurements. This quantity is the expectation value,

〈A〉 = 〈ψ|A|ψ〉, (2.9)

which follows from the Born rule and the spectral decomposition of the operator. It is

the sum of all possible values of that variable, weighted by the probability that they are

measured.

It is well known that a quantum measurement will alter the state of the measured

system. For measurements of the type considered by von Neumann, this behaviour is the

notorious wave function collapse. The claim is that when an observable A is measured

on a pure state with the outcome λi, the post-measurement state will be the associated

eigenvector, |λi〉, suitably normalised. This can be formalised by introducing the projector

Λi = |λi〉〈λi|, in which case the collapse of the state is

|ψ〉 → Λi|ψ〉
〈ψ|Λi|ψ〉

. (2.10)

This update is sometimes referred to as Lüder’s rule. Written in this manner, it generalises

readily to the framework of density matrices which I introduce in a later section.

An operator which is found to be very useful for various calculations is I, the identity.

This is the operator constructed so that I|ψ〉 = |ψ〉 for all possible states. It allows the act

of not measuring a system to be represented. In terms of an eigenbasis |λi〉 the identity is

I =
∑
i

|λi〉〈λi|. (2.11)

Composite Systems

A third postulate concerns the act of bringing together two or more systems. What is

meant by a system in this context is a degree of freedom, which is general enough to

include both spatially separated particles and two-or-more different variables on the same

particle. If one system is in the state |ψ〉A, defined by a vector on the Hilbert space HA,

and another system is in the state |φ〉B, similarly defined on HB, then the object which

describes the composite system is the tensor product, |ψ〉A ⊗ |ψ〉B, of those two states.

Composite states of this kind do not exhibit correlated measurement outcomes. However,

if HA⊗HB is an allowed state space, then by the first postulate it follows that any suitably

normalised vector on that space is also an allowed state of the composite system. This

claim introduces entanglement into quantum theory. My discussion here will be concerned

with the set of bipartite states shared between two systems however everything stated can

be generalised to multipartite states defined on more than two subsystems.

7
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Entanglement is the idea that measurements on composite systems, under specific

conditions, can be correlated despite (in principle, unlimited) spatiotemporal separation

of the two systems. This correlation occurs due to the collapse of one system due to the

measurement of the other, and not because both quantities were predetermined. This

concept rubs up against relativity in various ways which were later explored by Bell, and

which are best explained by Maudlin [12]. The most explored entangled states are the

Bell states, of which one example is

|Ψ+〉 =
1√
2

(|0A0B〉+ |1A1B〉) . (2.12)

To see that these two systems are entangled, consider that system B only is measured

such that the outcome is associated with the eigenvector |0〉. By the state-update rule,

this will leave the composite system in the state

|Ψ+〉 → (IA ⊗ |0〉〈0|B) |Ψ+〉
〈Ψ+| (IA ⊗ |0〉〈0|B) |Ψ+〉

= |0A0B〉. (2.13)

It is obvious that no measurement on system A could now be associated with the vector

|1〉, but this was possible before the measurement on B. Hence, the two systems are

correlated.

It is natural to ask which composite states are entangled and which are not. The

answer is that any non-entangled state is separable: it can be written as |ψ〉A⊗|φ〉B. The

possibility of changing basis (i.e., a state may appear inseparable in one basis but not

another) means that it is not always straightforward to determine whether or not a state

is entangled. The object which is required is the Schmidt rank. Consider a bipartite state

|ψ〉 =
∑
ij

cij |ai〉A|bj〉B, (2.14)

where {|ai〉} and {|bj〉} are two arbitrary bases for each space. The coefficients cij can

be considered the elements of a matrix C and the singular valued decomposition theorem

(which is introduced in Appendix A) states that this matrix can be decomposed into the

form C = UΣV †, where U and V are unitary operators and Σ is a positive semidefinite

diagonal matrix. This means that the matrix elements will satisfy cij =
∑

k uikσkvkj .

With this, the bipartite state can be written as

|ψ〉 =
∑
ijk

uikσkvkj |i〉A|j〉B

=
∑
k

σk

(∑
i

uik|ai〉A

)∑
j

vkj |bj〉B


=
∑
k

σk|uk〉A|vk〉B. (2.15)

The Schmidt decomposition is the name given to the structure seen in the third line of

8



Chapter 2

this calculation. The objects {σk} are the Schmidt coefficients and the number of them is

called the Schmidt rank. Entanglement theory states that if the Schmidt rank is greater

than one then the bipartite state cannot be written as a separable state and hence the

system is entangled.

Schrödinger’s Equation

I have mentioned one way, measurement, by which systems evolve. Such a change is

irreversible and transfers information out of the system. If a system does not interact

with another then it will instead evolve reversibly, according to Schrödinger’s equation:

ih̄
∂

∂t
|ψ〉 = H|ψ〉. (2.16)

All of the usual notation is adopted here: h̄ is the reduced Planck constant and H is

the Hamiltonian, the operator which governs the total energy in the system. In quantum

information theory it is more useful to replace this differential form with a unitary operator,

one for which UU † = U †U = I. If a system is known to be in the state |ψ0〉 at the time

t = 0 then it is assumed that at time t it will be in the state |ψt〉 = Ut|ψ0〉. The form of

the unitary operator must be found in terms of the Hamiltonian. I begin by substituting

|ψt〉 into Eq. 2.16 and then rearrange for

∂

∂t
Ut|ψ0〉 = − iH

h̄
Ut|ψ0〉. (2.17)

The form of the evolution is the same for all initial states which means that the unitary

must satisfy
∂

∂t
Ut = − iH

h̄
Ut. (2.18)

The usual solution of this differential equation is used and evolution under the Schrödinger

equation can be represented by the operator

Ut = exp

(
− i
h̄

∫ t

0
Hdt

)
, (2.19)

where the exponential is defined according to the usual rules for functions of operators. In

many situations the Hamiltonian will be time-independent and in this case the operator

has an even simpler form

Ut = exp

(
− i
h̄
Ht

)
. (2.20)

Unitary evolution represents reversible evolution, according to which there is a single state

associated with each time t for a given initial state. If a particular unitary is required

then it can be constructed by implementing the relevant Hamiltonian according to this

equation. Reversible evolution can also be performed in this manner on composite systems,

and in general unitary evolution of this kind will tend to increase the level of entanglement

between subsystems.

9
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2.2 Mixed states

The formulation, in terms of pure states and projective measurements, of quantum me-

chanics presented above can be used if three assumptions hold. Firstly, the system does not

interact with others, except for a possible measuring device. Secondly, an experimentalist

is able to characterise precisely the system at one point in time. Thirdly, all measure-

ments are ideal, so that outcomes correspond to pure states. All of these assumptions can

be relaxed and to do so density matrices and positive-operator-valued measurements are

required.

Density matrices

To introduce density matrices, the trace function Tr(A) is required. It is the sum of the

diagonal elements of a matrix, i.e.,

Tr(A) =
∑
i

〈i|A|i〉. (2.21)

A number of the trace’s properties will be required. It is a cyclic function: Tr(AB) =

Tr(BA). It is also invariant under changes of basis, so that the sum can use any set of

orthogonal vectors which span the space. It is linear: aTr(A) = Tr(aA) for a being any

number. These properties are used throughout.

The reason for the ubiquity of the trace operation in quantum theory is that it can be

used to rewrite the Born rule. I take Eq. 2.8 and multiply it by the identity in the basis

{|j〉}:

P(λi|ψ) = 〈ψ|λi〉〈λi|ψ〉

=
∑
j

〈ψ|j〉〈j|λi〉〈λi|ψ〉

=
∑
j

〈j|λi〉〈λi|ψ〉〈ψ|j〉

= Tr (PλiPψ) . (2.22)

I use the notation Pψ = |ψ〉〈ψ| for the projector associated with a state |ψ〉. With the

Born rule in this form, I am in a position to introduce the density operator. Mixed states

represent systems which are prepared probabilistically, i.e., a system is in the state |ψi〉
with the probability pi, where i = 0, 1 · · ·N . I label this ensemble ρ. The probability of a

given measurement outcome is calculated using the Born rule:

P(λi|ρ) =
∑
j

pjP(λi|ψj)

= Tr

Pλi∑
j

pjPψj

 . (2.23)

The linearity of the trace has been used to bring the probabilities pj and the sum into the
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argument. It is seen that probabilistic preparation can be mathematically represented by

replacing the pure state projectors Pψ with

ρ =
∑
j

pjPψj =
∑
j

pj |ψj〉〈ψj |. (2.24)

This object is the density matrix. Any positive, Hermitian operator with unit trace is a

possible density matrix. That it is positive ensures that it has a spectral decomposition

and so can be created by a probabilistic mixture of pure states. The requirement that

the trace is unity is the usual requirement that a set of probabilities sums to one. With

reference to the next chapter, it is interesting to note that the generalisation of pure states

would have been different had the Born rule not been equal to the squared amplitude of

the inner product of the measurement. It is this that allows the linear trace to represent

probabilities. Probabilistic mixtures would have a different structure if the Born rule

used, for example, the fourth power of the amplitude. This emphasises the necessary link

between the probability rule and the space of states, which link will be explored in much

greater detail in the next chapter.

All of the postulates concerning pure states generalise to density matrices. If a von

Neumann measurement has outcome |λi〉 then the density matrix ρ is updated by

ρ→ PλiρPλi
Tr (PλiρPλi)

(2.25)

and if instead the state evolves under the unitary Ut then the update will be

ρ→ UtρU
†
t . (2.26)

Composite systems

Composite systems are included in the obvious manner: if each of a pair of systems is

associated with density operators on HA and HB then any positive semidefinite operator

with unit trace on the product space will also be a possible state of the composite system.

Mixed states on the product space fall into three categories: uncorrelated, classically

correlated and entangled. Uncorrelated states are those that can be written as

ρAB = ρA ⊗ ρB. (2.27)

If the overall density operator can be written in this form, then joint probabilities factor

and are independent, so there is no correlation between the two measurements. It is also

possible to construct density operators that are weighted sums of these:

ρAB =
∑
i

piρ
i
A ⊗ ρiB. (2.28)

In such cases, the measurements will be correlated but in a classical manner, i.e., the

correlations are determined before the measurement takes place. The final possibility is,

of course, that the state cannot be written in either manner and in such cases the two

11



Kieran Flatt

systems are entangled. At the time of writing, there is no equivalent tool to the Schmidt

rank for diagnosing entanglement of density matrices.

It may be that an experimenter measures only subsystem on HB of a bipartite state.

The object that describes the measurement statistics in such a case is the reduced density

operator, calculated by taking the partial trace,

TrA (ρAB) =
∑
i

〈i|AρAB|i〉A, (2.29)

of the overall system. This objects reproduces all of the measurement statistics which

would be found by local measurements. If the joint state is separable, ρAB = ρA ⊗ ρB,

then the reduced density operator of system A and B will be ρA and ρB respectively. That

the partial trace is the unique way of ignoring some degrees of freedom in a composite

system is because it is the unique map which preserves the Born rule as the probability

rule.

Qubits

In this thesis I am always concerned with finite dimensional systems and almost always

concerned with qubits, which are ubiquitous throughout quantum information theory.

Qubits are the set of two-dimensional states (some common physical examples are the

polarisation of a photon or the spin of an electron). They are often written in the compu-

tational basis which consists of two orthogonal states labelled |0〉 and |1〉. A pure state of

the system is written in the bra-ket form

|ψ〉 = a0|0〉+ a1|1〉, (2.30)

where the coefficients are free to be any two complex numbers such that |a0|2 + |a1|2 = 1.

Occasionally it is handy to express the pure states of a qubit in the column vector notation:

ψ =

[
a0

a1

]
. (2.31)

It is useful to represents the states and operators of qubits with the Pauli operators, a

set of four orthogonal operators which, alongside the identity, form a basis in which all

two-dimensional operators can be written. In bra-ket notation the whole set is

I = |0〉〈0|+ |1〉〈1|

σx = |0〉〈1|+ |1〉〈0|

σy = i|1〉〈0|–i|0〉〈1|

σz = |0〉〈0| − |1〉〈1|. (2.32)

The Pauli operators, ignoring the identity, all have different eigenvectors. For σx they are

(|0〉± |1〉)/
√

2, for σy they are (|0〉± i|1〉)/
√

2 and for σz they are the computational basis,

|0〉 and |1〉. This allows them to be used as the basis for the concept of the Bloch sphere.

12
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This is a constructed used to pictorially represent states, as in Fig. 2.1 . It is a unit-radius

sphere in a space with the axes consisting of the eigenvectors of the three Pauli matrices.

The north and south poles correspond to the basis states |0〉 and |1〉 and all other points

which lie on the sphere are other pure state. Because the Pauli matrices form a basis for

all matrices in the space of qubits, any density operator can be written as a weighted sum

of them, in the form

ρ =
1

2
(I + uσx + vσy + wσz) , (2.33)

where u, v, w are three real numbers and must satisfy u2 +v2 +w2 ≤ 1 to ensure positivity

of the density operator. These three parameters are a set of coordinates which are the

components of the state’s vector on the Bloch sphere. If the equality is satisfied, the state

is pure and lies on the surface. Otherwise, if the sum of squares is less than unity, then

the density matrix corresponds to a mixed state. Because all qubit states lie on the Bloch

sphere, operations can be considered as maps between the related vectors on the Bloch

sphere. In particular, any unitary operation can be visualised as rotating a vector around

a particular axis by some angle.

Figure 2.1: The Bloch sphere is a visual way of representing qubits. Pure states are points
on the surface and mixed states are inside that surface.

Gate model

In classical information processing, it is common to represent processes by a sequence of

logic gates which act on one, two or more bits. By replacing the input bits with qubits, it

is also possible to present quantum processes in this manner. Quantum gates are usually

defined by their action on the computational basis |0〉, |1〉 and the action on all other states

follows from linearity and the superposition principle. I list some commonly used gates

here. It is not an exhaustive list. I discuss only the one and two qubit gates which will be

needed in what follows.

• Pauli gates. The most commonly used Pauli gate is the Pauli X, which simply
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implements the σx operation on the input qubit. This is the quantum equivalent of

the classical NOT gate: it transforms the basis states |0〉, |1〉 to |1〉, |0〉 respectively.

Of course, all other Pauli gates can implemented in a similar manner and correspond

to introducing different phase transformations: Y transforms |0〉 to i|1〉 and |1〉 to

−i|0〉; Z leaves |0〉 unchanged but maps |1〉 onto −|1〉. The notation used for these

three gates is:

X Y Z

In a quantum circuit diagram, the input is the left-most point and the gates act from

left to right, as in classical logic circuits.

• Hadamard. Another useful single qubit gate is the Hadamard gate, which maps

the basis states |0〉 and |1〉 onto |+〉 = (|0〉 + |1〉)/
√

2 and |−〉 = (|0〉 − |1〉)/
√

2

respectively. It is written in the same manner as the Pauli gates:

H

• CNOT. Among the possible two-qubit gates, the CNOT is particularly useful. This

gate takes in two qubits which are called the control and the target. If the control

qubit is in the state |0〉 then neither qubit is changed however if the control qubit is

in the state |1〉 then a NOT gate is performed on the target. The notation used for

this gate is

•

Here, the upper wire denotes the control and the lower wire denotes the target.

• Controlled rotations. The CNOT gate can be thought of as a controlled Pauli-X

gate. All other single qubit gates can be implemented in a controlled manner and

with the obvious notation:

•
H

where I use the Hadamard gate as an example only. Not only the Pauli gates but

a rotation by any angle around any axis of the Bloch sphere can be performed in a

controlled manner.

An important result of quantum information processing is the existence of universal

gate-sets: if one can implement particular pairs of gates then any unitary operation can

be performed. (The full result states that any unitary can be efficiently approximated in

this manner, but this difference is not significant at the level that gates are used here.) A

standard set of universal gates for actions on two qubits is the Hadamard gate and the

CNOT gate however others are possible. Related to this is the fact that each unitary can

be implemented in a number of different ways. One example, which is used in a later

section of this thesis, is that a controlled rotation can be implemented by a CNOT gate

with single qubit rotations.
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2.3 Generalised measurements

One of the von Neumann postulates states that quantum states are associated with vectors,

and these were generalised into positive operators. The same set of postulates also link

measurement outcomes to vectors: the eigenvectors of the measured variable’s Hermitian

operator. It should come as no surprise that measurement outcomes are generalised by

replacing these eigenvectors with matrices. These objects are the positive operator-valued

measurements, or POVMs. Two other names, POM (probability operator measure) and

effect, are used throughout the literature to refer to the same quantity. In this thesis I

use ‘POVM element’ and ‘effect’ both to refer to this quantity, only changing usage for

stylistic variation.

POVMs

In quantum information processing, it is often more useful to consider the probability of

a given measurement outcome rather than the variable which is being measured. This is

precisely analogous to classical information processing, for what is interesting in a Jacquard

loom is not the shape and width of the holes but whether or not there is a hole at a given

point. For the rest of the thesis I am concerned purely with this aspect of measurement.

The probability of a pure state outcome, according to the objects introduced so far, is

given by

P(λi|ρ) = Tr (Pλiρ) . (2.34)

As in the previous case, the generalisation is made intuitive by considering a noisy measure-

ment. This example is taken from Ref. [10]. I consider a two-outcome measurement, with

possible orthogonal outcomes |λ0〉 and |λ1〉, in which a faulty measuring device records

with probability p the outcome which did not occur. The probability of getting the zero

outcome is then

P(λ0|ρ) = (1− p)Tr (Pλ0ρ) + pTr (Pλ1ρ)

= Tr (((1− p)Pλ0 + pPλ1) ρ)

= Tr (π0ρ) . (2.35)

In the third line I introduce the object

π0 = (1− p)Pλ0 + pPλ1 (2.36)

to represent the zeroth measurement outcome. This object is the POVM element intro-

duced above. POVMs find two uses in quantum mechanics. Firstly, they can represent

imperfect measurements of the kind shown here. Secondly, it is often the case that one

does not want to perform a von Neumann measurement.

In general, a POVM is a set of operators {πi} which satisfy the following three condi-

15



Kieran Flatt

tions:

πi = π†i (2.37)

πi ≥ 0 (2.38)∑
i

πi = I. (2.39)

The first two of these are interrelated as any positive operator will be Hermitian, although

not vice versa. Hermiticity ensures that the POVM outcome is a physical observable;

this observable must be positive as it is a probability; a complete set of measurement

outcomes must sum to one, hence the third requirement. Any set of operators satisfying

these properties can be implemented as a POVM according to Naimark’s theorem, which

I introduce below.

Kraus operators

A property of von Neumann measurements is that the measured state is left in a pure

state. One way to understand this is that such measurements characterise precisely the

outcome. This is not true for the generalised measurements which are represented by

POVMs and which I consider here. The objects needed to describe the wider range of

state-updates are Kraus operators [13], which will play an important role throughout this

thesis. Kraus operators can also be called measurement operators or instruments, and

as with the other possible names for POVM elements I alternate usage only for stylistic

variation. Throughout the literature, one sometimes finds ‘effect’ used for Kraus operator

as well as POVM element but here I avoid that usage. In this section I begin by introducing

a general definition for Kraus operators and then present two different methods (one more

mathematical and another which is more physical) which justify their usage.

An effect πi is decomposed into the form

πi =
∑
ν

Aν†i A
ν
i . (2.40)

A decomposition of this form is not unique and can be done in an infinite number of

ways. The objects Aνi are the Kraus operators. If πi corresponds to the outcome of a

measurement on the state ρ then the system will be left in the state

ρi =

∑
ν A

ν
i ρA

ν†
i

Tr
(∑

ν A
ν
i ρA

ν†
i

) . (2.41)

In many of the scenarios that are discussed in this thesis, I am interested in non-degenerate

measurement outcomes. In such cases, there is just a single Kraus operator associated with

each effect. A decomposition which involves a sum, as above, is indicative of degenerate

measurement outcomes, i.e., one could map two measurement outcomes from one set onto

a single outcome in another. This idea is referred to as ‘coarse graining’.

If two measurements are performed on the same system, the joint measurement is also
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represented by a Kraus operator. If two measurement outcomes are represented by the

effects π
(1)
i = A†iAi and π

(2)
j = B†jBj then the state after both outcomes is

ρij =
BjAiρA

†
iB
†
j

Tr
(
BjAiρA

†
iB
†
j

) , (2.42)

and the joint probability of these two outcomes is

P(i, j|ρ) =
Tr(π

(2)
j AiρA

†
i )∑

ij Tr(π
(2)
j AiρA

†
i )
. (2.43)

The state update can be interpreted as a single transformation by introducing Aij = BjAi,

so that the transformation is

ρij =
AijρA

†
ij

Tr
(
AijρA

†
ij

) . (2.44)

I have restricted the set of measurements here to require just one Kraus operator but it is,

of course, possible to generalise the transformation to include more than one. The POVM

element associated with this outcome is πij = Aiπ
(2)
j A†i , which is positive for the same

reason that an updated density operator is positive.

The mathematical foundations of the Kraus operator formalism are in completely-

positive maps. Every state is associated with a density operator and so it must be true

that any physical transformation of a system will leave it in a state also associated with

a density operator, i.e., the map associated with the transformation must preserve the

positivity and trace of the density operator. As composite systems are also allowed, the

transformation must be completely positive: a map acting on HA only must preserve

positivity of states on HA ⊗ HB. That maps must be completely-positive and trace-

preserving (CPTP) enforces that they can be represented by Eq. 2.41 [14].

Naimark Dilation

A useful concept to keep in mind when thinking about Kraus operators is Naimark dila-

tion. System A is entangled with an ancilla, a secondary system labelled B. A measure-

ment of the first system is performed by measuring the ancilla. Naimark’s theorem states

there is a one-to-one mapping between this way to perform a measurement and the set

of POVMs. There are two sides to this claim. It says that every POVM can be imple-

mented in this manner. This is a result which explains why effects are such a powerful

construction: Naimark’s theorem says that every POVM which can be written down has

a physical counterpart. Conversely, it also claims that any measurement of this kind can

be represented by a set of effects. I now demonstrate the latter point.

I consider two systems. System A is prepared in the state ρA =
∑

i λi|λi〉〈λi|, where

{|λi〉} is the relevant eigenbasis. System B is prepared in the pure state |Ψ〉〈Ψ|. The

two systems are initially uncorrelated and are entangled by a unitary U . The process is

completed by a projective measurement on system B, which has outcome |i〉. I now show
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that this entire process can be described by POVM elements and Kraus operators which

act on the Hilbert space HA of system A only.

I start with the Kraus operators. The act of measuring system B only can be de-

scribed by the composite operator IA⊗ |i〉B〈i|B. The reduced density operator on A after

preparation, unitary interaction and measurement will be

ρiA = TrB

(
UρA ⊗ ρBU †IA ⊗ |i〉B〈i|B

)
=
∑
jk

λk〈j|
(
U |λkAΨB〉〈λkAΨB|U †IA ⊗ |i〉B〈i|B

)
|j〉

= 〈i|BU |Ψ〉BρA〈Ψ|BU †|i〉B. (2.45)

I identify the Kraus operators here by

Ai = 〈i|BU |Ψ〉B (2.46)

and so the state update is

ρiA = AiρAA
†
i . (2.47)

Up to a factor of normalisation, this is the state-update rule which is associated with Kraus

operators. The construction Eq. 2.46 is not limited to be a positive operator and so, as

an instrument, can be any operator. The only further generalisation which is possible is

that the state update is over a sum of such terms. It’s easy to see that such behaviour is

included by coarse-graining over the measurement results on B, i.e., allowing that multiple

outcomes occurred on that system.

I now show that this also leads to the POVM description of a measurement. To do

this I must show that the probability rule associated with this process is the Born rule in

terms of effects. I have

pi = TrAB

(
UρA ⊗ ρBU † (IA ⊗ |i〉B〈i|B)

)
= TrA

(
AiρAA

†
i

)
= TrA

(
ρAA

†
iAi

)
. (2.48)

To get from the first to the second line, I use the result of the previous calculation to get

at the Kraus operator description. The third line is then derived from the cyclicity of the

the trace function. The definition

πi = A†iAi (2.49)

relates the effect to the instrument, as was required before. This object is transparently

positive, and therefore Hermitian. Summing over all measurement results |i〉 gives the
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identity (
∑

i |i〉〈i| = I) which leads to the POVM elements forming a complete set:∑
i

πi =
∑
i

〈Ψ|BU †|i〉B〈i|BU |Ψ〉B

= 〈Ψ|BU †U |Ψ〉B
= 〈Ψ|B (IA ⊗ IB) |Ψ〉B
= IA (2.50)

All three properties are satisfied which means that Naimark’s model of a measurement

can be associated with a POVM. I have not proved the converse theorem, that all POVMs

can be interpreted in this way, but it is shown elsewhere [11]. The two proofs together

give a one-to-one mapping between the two concepts and give a useful model to keep in

mind when thinking about quantum measurements.

2.4 State discrimination

A common task in quantum information processing is state discrimination [15, 16]. An

experimenter has a system of which she knows not the state, but the finite set which that

state was drawn from. Her task is to perform a measurement which determines the state.

If the possible states are orthogonal pure states then it will be possible for her measurement

to leave her certain of the prepared state, by performing a von Neumann measurement

with the possible outcomes corresponding to the possible states. As is well-known, if

the states are non-orthogonal or mixed then they can never be perfectly distinguished.

This follows from the association between measurements and positive operators only. The

effects π0 and π1 can be used to represent the outcomes of a measurement which seeks

to distinguish |ψ0〉 from |ψ1〉. A perfect measurement will satisfy both 〈ψ0|π0|ψ0〉 = 1

and 〈ψ1|π0|ψ1〉 = 0. The first condition can be satisfied by requiring π0 = |ψ0〉〈ψ0| + π′0,

where π′0 is a positive operator on the rest of the space. With this definition, the second

condition is then |〈ψ1|ψ0〉|2 + 〈ψ1|π′0|ψ1〉 = 0. Both terms on the left-hand side must be

equal to zero but this can only hold if the two states are orthogonal. This demonstrates

that for non-orthogonal states it is impossible to perform perfect discrimination.

Instead, the task is to maximise a chosen figure of merit. There are two main senses

in which state discrimination can be optimised. In minimum-error discrimination, which

was pioneered by Helstrom [17], every measurement has an outcome although some of

them are incorrect. In unambiguous state discrimination, only a subset of measurements

are associated with a possible state but for those cases the experimenter knows with

certainty which state was prepared. Which type of measurement gives the maximum

success probability will depend upon the specific case which is investigated.

Here, in this background, I discuss the basic results of both types of state discrimination

and also cases in which there are several copies of the system. This material is used in

Chapters 4 and 5 of this thesis. Although state discrimination in general can concern the

problem of distinguishing between three-or-more states, I restrict myself to cases involving

two states.
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Minimum-error measurement

Minimum-error measurement is a method for discriminating states which always returns an

answer but without certainty. There are two interesting quantities. The first of these is the

highest probability of correctly identifying the state which can in principle be achieved.

The second is the measurement which achieves that success rate. Helstrom provided a

constructive proof which gives both [17, 18].

To derive the optimal measurement for discriminating two states is straightforward. A

system is in one of two states, ρ0 and ρ1 (prepared with probability p0 and p1 respectively)

and measured with outcomes π0 and π1 corresponding to the two possible states. The

probability that this measurement is successful is

Psucc = p0P(π0|ρ0) + p1P(π1|ρ1)

= Tr (p0ρ0π0 + p1ρ1π1) . (2.51)

The POVM must be complete, which means that π1 = I−π0. Using this to eliminate one

of the effects gives

Psucc = p1 + Tr [(p0ρ0–p1ρ1)π0] . (2.52)

The maximum probability occurs when π0 is a projector onto the eigenvector of p0ρ0–p1ρ1

with the highest eigenvalue. The best measurement that could be performed is one which

includes that as an outcome (similarly, π1 will be a projector onto the other eigenvector).

What value the probability takes in general will depend upon the form of the two density

operators however a simple result can be found for the case of two pure states. In this

case, ρk = |ψk〉〈ψk| with

|ψk〉 = cos(θ)|0〉+ (−1)k sin(θ)|1〉, k = 0, 1 (2.53)

where 0 ≤ θ ≤ π/4. Any pair of states in the Hilbert space can be written in this

manner without loss of generality. The two states are non-orthogonal, with an overlap

〈ψ0|ψ1〉 = cos(2θ). To find the Helstrom bound and Helstrom measurement, which are

the name given to the quantities under consideration, I require the eigendecomposition of

p0ρ0–p1ρ1 =

[
(p0–p1) cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) (p0–p1) sin2(θ)

]
. (2.54)

A calculation reveals that the eigenvalues associated with this operator are

λ± =
1

2

(
p0–p1 ±

√
1–4p0p1 cos2(2θ)

)
, (2.55)

which are associated with the eigenvectors

|φ±〉 =
1√
2

(√
1± (p0–p1) cos(2θ)

1–4p0p1 cos2(2θ)
|0〉 ±

√
1∓ (p0–p1) cos(2θ)

1–4p0p1 cos2(2θ)

)
|1〉. (2.56)

The vector |φ+〉 corresponds to the prepared state |ψ0〉. This measurement will succeed

20



Chapter 2

with a probability

Psucc =
1

2

(
1 +

√
1 + 4p0p1 cos2(2θ)

)
, (2.57)

This object is the Helstrom bound; no measurement achieves a higher success probability

for discriminating two pure states. If the states are equally likely, p0 = p1 = 1/2, then

the measurement becomes a projector onto the σx basis, |+〉, |−〉. This is diagrammed in

Fig. 2.2, where it is seen that these are the orthogonal pair which are symmetric around

those which are prepared. If the state |ψ0〉 is definitely prepared, p0 = 1, then the optimal

measurement is a projection onto the pair of states |ψ0〉 and |ψ0⊥〉, the latter of which

is the state orthogonal to the former. This is intuitive: one outcome must be the state

which was sent, as this ensures the correct outcome, and the other effect needs to complete

a basis for the Hilbert space. The POVM in this case can be thought of as hypothesis

checking, which seeks to confirm the prior knowledge. In the range 1 > p0 > 1/2, the

measurement rotates from one basis to the above.

So far I have discussed pure and mixed state discrimination if there are two possible

signal states. It is of course possible to discriminate three-or-more, and in this case

Helstrom’s conditions (∑
i

piρiπi

)
–pjρj ≥ 0 ∀j (2.58)

πi (piρi–pjρj) = 0 ∀i, j (2.59)

must be satisfied in their full generality. The second condition can be derived from the

first, i.e., they are not independent, and are both sufficient and necessary for an optimal

measurement. A general solution, in the same sense as for the two-state case, to this set

of conditions is not known but has been analysed for a small set of scenarios.

Unambiguous state discrimination

In unambiguous state discrimination schemes, a measurement with N + 1 possible out-

comes is required to distinguish N states from each other. This is because one of the

possible outcomes is inconclusive, i.e., if that outcome occurs the experimenter can only

guess which state was prepared according to the prior probabilities. Each of the other

outcomes corresponds to a possibly prepared state but, in contrast to the minimum-error

measurement, identifies that state with certainty. By incurring the cost of some incon-

clusive results, one is able to herald the success of the measurement. Unambiguous state

discrimination is less well-explored for mixed states, so I present here only the canonical

pure state formalism due to Ivanovic, Dieks and Peres [19, 20, 21].

Again, consider that the states |ψ0〉 and |ψ1〉 are prepared with probability p0 and p1

respectively. A POVM with elements π0, π1 which satisfy

〈ψ0|π1|ψ0〉 = 〈ψ1|π0|ψ1〉 = 0 (2.60)

will have the property that if π0 is found then |ψ1〉 could not have been measured: the
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Figure 2.2: Graph displaying the optimal measurements for distinguishing between two
states |ψ0〉 and |ψ1〉 are separated by an angle 2θ and which are prepared with varying
prior probabilities. All vectors should be normalised. In red is the basis |+〉, |−〉, which
is the optimal discriminating measurement if the two states are equiprobable. In green
is the other end of the scale. If one particular state is definitely prepared then the basis
must contain that state. In between, a general set of prior probabilities will mean that
the best measurement is satisfied by a basis |φ0〉, |φ1〉, defined according to the Helstrom
measurement in Eq. 2.56.
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prepared state is guaranteed to be |ψ0〉. The requirement can be achieved if π0 is a

projector onto the state orthogonal to |ψ1〉, and similarly for the other effect π1. However,

as the two prepared states are in general non-orthogonal, this measurement would not

satisfy π0 +π1 = I. By themselves the two projectors do not form a POVM. The solution

is to weigh each projector by some constant of proportionality and complete the space

with a third effect, π?. The overall POVM is now

π0 = a0|π1⊥〉〈π1⊥|

π1 = a1|π0⊥〉〈π0⊥|

π? = I − π0–π1. (2.61)

The third outcome, π?, is inconclusive as it is equally likely for both possible states:

〈ψ0|π?|ψ0〉 = 〈ψ1|π?|ψ1〉. As that outcome gives no information, the optimal scheme will

minimise the probability that it occurs, where the degrees of freedom to optimise over are

a0, a1. This process is subject to the further constraint that all three POVM elements

stay positive, so a0 and a1 must both be positive but not so large that π? < 0. I use the

same parameterisation for the states, Eq. 2.53 as before. A short calculation reveals that

the probability of the inconclusive result is

P? = p0P(?|0) + p1P(?|1)

= 1–(a0p0 + a1p1) sin2(2θ). (2.62)

Minimising this for general priors is not straightforward but was performed by Jaeger and

Shimony [22]. More useful is to focus on the equiprobable case, p0 = p1 = 1/2. In this case

the usual methods of constrained optimisation give a0 = a1 = 1/2 cos2(2θ). Substitution

into the above gives P? = cos(2θ) and hence

Psucc = 1− cos(2θ) = 2 sin2(2θ). (2.63)

This stays within the expected bound as 0 ≤ θ ≤ π/4. This quantity is the Ivanovic-

Dieks-Peres limit.

Unambiguous state discrimination becomes more complicated if there are more than

two pure states. In the two state case, what allows the scheme to work is that it is possible

to perform a measurement which rules out a state, i.e., in some sense it makes more sense

to say that π0 is associated with the state which isn’t |ψ1〉 than it does to say that it

identifies |ψ0〉. In the two-state case this is just semantics, but when more than two states

are involved then it is not. One requires a measurement which satisfies 〈ψi|πj |ψi〉 = 0

for all i 6= j, and this condition can only be satisfied if the set of states |ψi〉 are linearly

independent. This result was first shown by Chefles, who provided one of the only analyses

of the three-or-more state case [23].
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Multiple-copy discrimination

In some applications of quantum information processing, one needs to discriminate be-

tween a set of states given a resource of N copies of the state. In this scenario, it is

possible to outperform the single-copy Helstrom bound. If there are two signal states then

a global measurement of all N copies will in principle be able to reach the multiple-copy

Helstrom bound

PNsucc =
1

2

(
1 +

√
1 + 4p0p1 cos2N (2θ)

)
, (2.64)

where all symbols have the same meaning as when used above. At first glance, it is not

clear which measurement will reach this bound. The same reasoning as above suggests

that it is a POVM on the multiple-system Hilbert space H⊗N however this involves find-

ing the eigenvalues of the matrix p0ρ
⊗N
0 –p1ρ

⊗N
1 and it is not straightforward to perform

the eigendecomposition of an N dimensional operator, despite the possible symmetries.

Furthermore, in the absence of quantum memories, it is still experimentally difficult to

interact unitarily with so many systems, which leads to one asking whether it is possi-

ble to reach the Helstrom bound with just local measurements. Local measurements are

split into two classes. Fixed measurements are those in which the same measurement is

performed on each system and the overall result is assigned based on the majority result.

Adaptive measurements are those in which each measurement depends upon the previous

results.

For the basic case of discriminating two pure states, a local adaptive scheme is known

which reaches the Helstrom bound and it turns out to be the simplest form which one might

expect. At each stage, one performs the Helstrom measurement for the equivalent single

copy case, but updates the prior probabilitis p0 and p1 based upon the measurement record.

It even turns out that this Bayesian scheme is Markovian, in that it only depends on the

directly prior outcome: the best measurement at each stage consists of one of two POVMs,

corresponding to the measurement outcome at a previous stage. The signal state predicted

by the scheme is the outcome of the final measurement; it depends on no other results in the

measurement record. This scheme is discussed in Chapter 5, where I present the POVM

at each step and show that it reaches the Helstrom bound. There, it is contrasted with

a scheme called ‘quantum data gathering’, which requires a quantum memory and also

reaches the Helstrom bound. Despite its increased experimental complexity, the system

generalises straightforwardly to distinguish three-or-more pure states, which problem is

known to not be solved by Bayesian updating.

The task of optimally discriminating mixed, rather than pure, states in the multiple-

copy case is a much more difficult task, and I am aware of only numerical results in

this area. The first point to note is that the distinction between globally optimal and

locally optimal measurements breaks down. In the adaptive pure scheme, the measurement

which is performed on the first n < N qubits is also the measurement which would best

discriminate the two states if the resource was n qubits only in total. That scheme is

thus both globally optimal and locally optimal. For mixed states, this does not hold. A

counterintuitive result, for example, is that a locally-optimal adaptive scheme performs
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worse globally than a fixed, majority-voting scheme.

2.5 Quantum key distribution

Among the many proposed applications of quantum information theory, two uses have

received the most attention. Scalable quantum computers are believed to have intrinsic

advantages over their classical counterparts, but it seems likely that the technical jumps

needed to build a quantum computer will take at least a decade. Quantum communications

devices, on the other hand, are provably secure even with current technologies and are

commercially available. Quantum key distribution forms the basis of these devices [24].

It consists of a set of protocols which share a key between two parties (who we have come

to know as Alice and Bob) and which use the phenomenon of measurement backreaction,

which does not occur in classical signal transmission, to alert the legitimate parties to the

presence of an eavesdropper (Eve).

The resources required for a typical quantum key distribution protocol are a random

number generator, a quantum channel and a classical channel. The latter is authenticated,

so that the receiving party has confidence in the identity of the transmitter which is

typically achieved by transmitting a pre-shared set of bits. Alice uses the random number

generator to select, from a known set, a quantum state which is encoded on a quantum

system and sent to Bob. Bob measures the system. Each state that could have been

prepared as well as each possible outcome is assigned to one of the two classical bit values,

zero or one. After the set of measurements the two parties share information, over the

classical channel, which leaves them with correlated strings of bit values.

This correlated data can be used to form a shared secret key by a set of techniques

from classical cryptography. They first share a set of their classical bits which allow them

to characterise the quantum channel. At this stage they can detect the presence of Eve if

the noise is higher than expected. Even if an eavesdropper is present, it is still possible

for them to distil a secret key as long as the noise is below the quantum bit error rate,

an information-theoretic property of the protocol. Otherwise, they abort at this stage.

The next steps are reconciliation, which corrects for the noise in the channel and leaves

the two parties with a shared string (which nonetheless will be partially known by Eve),

followed by privacy amplification, which decreases the length of the string but leaves Alice

and Bob with a private key. The success of a protocol is quantified by the key rate, which

is the length of the private key that can be generated per unit time. It is this object which

researchers seek to maximise.

I have presented here the prepare-and-measure based scheme, in which Alice prepares a

qubit which is measured by Bob. It is common to find quantum key distribution analysed

using entanglement-based schemes. In such an approach, the two legitimate parties share

a maximally-entangled state, i.e., one of the four Bell states. Each party then measures

their qubit - Alice by implementing a POVM equivalent to her set of prepared states, Bob

with his original POVM. Formally, this scheme is equivalent to the prepare-and-measure

scheme. In entanglement-based quantum key distribution, Eve’s range of attacks can be

formulated in greater generality, which is why it is more prevalent in the literature.
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Eavesdropping and security

I have so far commented only upon the actions of the two legitimate parties. A third, Eve,

seeks to learn their private key and cryptanalysis partly involves determining her best

attacks. An assumption which underlies this analysis is Kirchoff’s principle, which states

that one should assume that the eavesdropper has access to all information (i.e., they know

the protocol, which states are being sent, all the classical announcements; the correlated

pairs of states which are associated with each bit value) apart from the measurement

outcomes.

The set of possible attacks are split into three classes, each of differing levels of com-

plexity [25]. The simplest attacks, and those which can be implemented with current

technology, are called individual attacks. Here, Eve interacts in the same way with each

transmitted qubit and is assumed to measure before reconciliation. (She may also measure

multiple qubits however each measurement must be the same.) Individual attacks are the

topic of Chapter 5 of this document. The most general type of measurement of this kind is

that Eve interacts each qubit with an ancilla which is then measured. A measurement of

this kind is the most general allowed on individual qubits as shown by Naimark’s theorem.

The next-simplest attacks are collective attacks. Eve requires one quantum memory

(i.e., a qubit which does not decohere) for each transmitted qubit. She interacts all

qubits with an individual quantum memory through a unitary, and stores them until

reconciliation has occured. Then, she performs a collective measurement (one on the

product system of all quantum memories) based on the announcement at this stage. As

might be expected, given that Eve has further information, she is able to learn more of

the key than in individual attacks.

The most general attacks are those in which Eve can do anything consistent with the

laws of quantum mechanics. The assumption which is relaxed, compared with collective

attacks, is that the unitary interactions are the same with each transmitted qubit. In

coherent attacks all N transmitted qubits interact with N quantum memories through a

unitary which is able to vary across all subspaces. The measurement, which depends upon

the announcement during reconciliation, can also be a global measurement on the product

space.

The technological advances required to perform collective or coherent attacks are un-

likely to occur for several years but one cannot base a communication system on the

principle that the eavesdropper is precisely as powerful as oneself. It is also reasonable

to require that any commonly used system will be able to withstand attacks that become

available in the next few years, as moving to a new security infrastructure can be highly

disruptive. For this reason, information-theoretic security, against arbitrary attacks is

required. Privacy amplification allows Alice and Bob to create a secret key from their

set of data after reconciliation. The amount of information in the final secret key is the

difference between that in the pre-privacy amplification bit string and the upper bound

on the information accessible to Eve, i.e., the secret key has length I(A : B)–IE where

I(A : B) is the mutual information between Alice and Bob. The measure of information

used depends on the type of attack considered; for individual attacks it is simply the Shan-

26



Chapter 2

non information as Eve is left with purely classical bit values, however, this changes for

the more general attacks. Security proofs consist of analyses of specific protocols which

find an upper bound on how much information Eve can extract, and this gives a level

of classical correlation, the quantum bit error rate, between Alice and Bob below which

a secret key can be generated. A full treatment of this subject is not required for what

follows and is quite involved.

Example: BB84

The discussion is clearer with a concrete example. By far the most widely discussed

quantum key distribution protocol is BB84. It was the first to be proposed, forms the

basis of most commercial technologies, and has the highest quantum bit error rate.

In BB84, Alice selects her qubits from a set of four possible states, either the computa-

tional basis |0〉, |1〉 or the σx basis, |±〉 = (|0〉±|1〉)/
√

2. The state is then sent to Bob who

performs a POVM corresponding to choosing one of the two bases, with equal probability,

as his measurement basis. Alice and Bob then announce in which basis they chose to

prepare and measure. Only if the two match are the outcomes kept in the record. Bob’s

outcome |0〉, for example, is consistent with all possible transmissions except |1〉, so he

requires Alice to say that she prepared in the computational basis in order that he knows

which state she did send. If there is no noise, or eavesdropper, then the two parties will

know each other’s record, and a key can be formed (the classical bit value 0 is assigned to

|0〉 and |+〉, the classical bit value 1 is assigned to |1〉 and |+〉). This step of the protocol

is then repeated for every qubit and the post-measurement processes (channel evaluation,

reconciliation, privacy amplification) are implemented.

If there is no eavesdropping, Alice and Bob will discard half of all qubits and will

be left with a secret key. An eavesdropper will hope to know the bit values in that key

and perform a measurement on the transmitted qubits. The fifth chapter of this thesis is

dedicated to optimising that attack and so I consider just a limited type of attack here:

measure-resend. Eve performs a von Neumann measurement individually on each qubit

and needs to calculate the best basis in which to perform it. The sense of optimality I

consider here is simply her chance of identifying which classical bit value, rather than the

state, Alice transmitted and assume she is not at this point worried about revealing herself

through Bob’s subsequent measurements. I assign to each of Eve’s outcomes the states

|E0〉 = cos(θ)|0〉+ sin(θ)|1〉

|E1〉 = sin(θ)|0〉 − cos(θ)|1〉. (2.65)

The task is to find the value of θ which maximises her chance of identifying Alice’s trans-

mitted bit value. To do this, I associate with each bit value a density operator

ρ0 =
1

2
(|0〉〈0|+ |+〉〈+|)

ρ1 =
1

2
(|1〉〈1|+ |−〉〈−|) . (2.66)
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The factor of one-half represents the fact that, given the bit value 0, each of the states

representing that bit will occur in half of cases. The probability that Eve gets the correct

outcome is

PE =
∑
i

P(E = i|A = i)P(A = i)

=
1

2
(〈E0|ρ0|E0〉+ 〈E1|ρ1|E1〉) . (2.67)

The factor of one-half here is the probability that Alice chose either zero or one as her bit

value. Evaluating the expectation values gives

PE =
1

4
(2 + cos(2θ) + sin(2θ)) . (2.68)

This function maximises when θ = π/8 to give PE = (2 +
√

2)/4 ≈ 0.85 as the highest

probability of Eve’s attack being successful. This attack is to measure in the

|0B〉 = cos(π/8)|0〉+ sin(π/8)|1〉

|1B〉 = sin(π/8)|0〉 − cos(π/8)|1〉 (2.69)

basis. This pair of vectors is known as the Breidbart basis. Here, I have simply given a

flavour as to how eavesdropping is optimised, as a precursor to the more involved calcu-

lations of Chapter 5, in which I consider a more general class of attack than projective

measurements.

Generalisations

I have restricted this introduction to the set of quantum-key-distribution protocols which

have two properties. Firstly, the bit values are encoded on discrete states (e.g., a photon’s

polarisation). Secondly, the security of the protocols relies on an assumption that Alice

and Bob have complete control over the devices they use. Both of these are technological

limitations and have been overcome both theoretically and in practice.

Discrete-state quantum key distribution, which is what I discuss above, has a limited

key rate due to the difficulty in detecting single photons. This issue is solved by continuous-

variable quantum key distribution [26, 25]. Instead of transmitting single photons, photons

in a coherent state can be sent and what is measured is the momentum-phase quadrature

of the photon. The absence or presence of a photon thus appear as regions of phase space

(Gaussian distributions around both the axis and a selected other point). Everything

else in a continuous-variable protocol is precisely the same. This modification allows

for an increased key-rate as quadrature measurements are implemented by heterodyne

and homodyne measurement, which are a more advanced technology than single-photon

detection.

The assumption that Alice and Bob can trust their measurement devices is relaxed in

device-independent and measurement-device independent protocols [27, 28, 29], in which

it can even be assumed that Eve has as much control over the devices as is allowed by
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the laws of quantum mechanics. If Alice and Bob share an entangled state, e.g., a Bell

state, this can be done by including a Bell test, which verifies that the correlations are

intrinsically quantum rather than classical, as one step of the protocol. If this test fails,

the legitimate users are alerted to the fact that their equipment is untrustworthy and can

abort the protocol.
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Kraus formalism from first

principles

A fundamental component of quantum theory is Born’s rule, which relates operators with

probabilities. In the most simple form, as a representation of an experiment in which a

pure state |ψ〉 is measured projectively, with outcome represented by the state |φ〉, it is

written as

P (φ|ψ) = |〈ψ|φ〉|2. (3.1)

It is not obvious why the rule has this particular form. After all, it is well known that

Born himself initially associated the wavefunction’s amplitude, rather than the squared

magnitude of that quantity, with the probability of finding a particle at a given point in

space [30]. In order that the theory did not contain negative probabilties, he corrected

himself to the accepted form in a footnote however a number of other forms can be

constructed on an ad hoc basis that also satisfy that requirement. Why does the formula

not use the fourth power of the magnitude, for example? A wide range of authors [31, 32,

33, 34, 35, 36, 37] have analysed this issue. They all find that it is impossible to construct

any probabilistic theories which deviate from this form while satisfying some basic physical

requirements.

Closely associated with the Born rule is what might be called Kraus’s rule [13], which

defines the joint probability of two particular consecutive outcomes when measuring the

same system, and which is discussed in §2.5. For convenience, I restate the probability

rule here. The probability of an experimental outcome associated with the effect π
(2)
j

following an outcome associated with the effect π
(1)
i = A

(1)†
i A

(1)
i , given that a system has

been prepared in the state ρ, is given by

P(i, j|ρ) =
Tr(π

(2)
j A

(1)
i ρA

(1)†
i )∑

ij Tr(π
(2)
j A

(1)
i ρA

(1)†
i )

. (3.2)

It is natural to ask, in a similar manner as above, which physical assumptions underpin

this equation. This is a non-trivial generalisation of the Born rule result(s) in that the

first measurement has a back-reaction onto the system’s state, given by the Lüders rule
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[38]. This begs the question of whether the state update rule is an additional assumption

on top of those needed for the probability formula.

I analyse the question of the uniqueness of Kraus’s rule in this chapter, which is

based on Ref. [1]. I will first contexualise my work with respect to the field of quantum

reconstructions and what I refer to as the Gleason-Busch theorem, which pinpoints the

sense in which the Born rule is unique. After that, I introduce some results from the theory

of operator space and use them to derive firstly the Born rule and then the Kraus rule.

Both of these are linked to a set of operational postulates related to the idea that counting

individual outcomes constitutes the measurement of a probability. The central point is

that measurement back-reaction is not an extra postulate in itself, but is part and parcel

of the same set of assumptions from which the Born rule arises. Finally, I provide some

short examples which link the mathematical objects used here back to standard quantum

theory, and connect this work to some other results, including two-time states and the

conditional state theory of Leifer and Spekkens.

3.1 Context

The earliest questions about the uniqueness of the Born rule can be dated back to the

publication of von Neumann’s Mathematical Foundations of Quantum Mechanics [39].

From a historical perspective, this is the first text to formulate quantum mechanics as a

self-consistent theory which is derived from a number of postulates, and von Neumann’s

framing has stayed with us until the present day. In this formulation, the basic assump-

tions which lead to quantum mechanics are not physical in nature but take the form of

mathematical statements, e.g., that observables are associated with Hermitian operators

defined upon a Hilbert space. This approach has issues, which I discuss below, but it allows

one to ask which aspects of the theory must be postulated and which can be derived.

An important early result in this area was Gleason’s theorem [31]. At that point

in time generalised measurements had not been formulated, and quantum foundations

was focused on the study of the yes-no questions which can be asked by von Neumann

measurements. These are associated with probabilties through the Born rule, considered

as a map from the set of projectors to the set of real numbers. Because this function

also requires a density matrix, the question of the Born rule’s uniqueness is also probing

the possibility of constructing a larger state space than that which can be represented by

density matrices. In particular, some physicists were hopeful that it would be possible to

introduce hidden variables through a hypothetical generalisation of Born’s rule [5, 6].

Von Neumann’s mathematical postulates can be replaced with alternative sets of min-

imal assumptions. For Gleason, these were that yes-no questions are associated with

projectors, that probabilities are positive and form a complete set, and that, if the sum

of two different sets of projectors is equal, then the sum of associated probabilities is also

equal. Formally, the third postulate is

P(Pij) = P(Pi) + P(Pj) (3.3)
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where Pij := Pi+Pj , P is the probability map (which is to be determined) and Pi = |i〉〈i|.
Gleason’s theorem then states that the only map which satisfies these three postulates is

P(Pi) = Tr(ρPi), the Born rule, if Pi lies in a Hilbert space of two or more dimensions. The

proof is geometric in nature and relies upon the transformation properties of the spherical

harmonics under the rotation group SO(3).

Equation 3.3 can be understood as a claim that instantaneous non-local communication

is impossible. Consider a three-level system spanned by the three orthonormal state

vectors |0〉, |1〉 and |2〉 as well as the following two possible sets of measurement outcomes:

{|0〉, |1〉, |2〉} and {|0〉, |+〉 = (|1〉+|2〉)/
√

2, |−〉 = (|1〉−|2〉)/
√

2}. These two measurements

correspond to a scenario in which, firstly, the zero outcome is filtered and those outcomes

are passed on to one party, and, secondly, the remaining systems are sent to another

party who measures in either the |1〉, |2〉 or |+〉, |−〉 basis. The fraction of states which is

received by the former party could, if Eq. 3.3 did not hold, then depend upon the latter

party’s choice of measurement, and this property could then be the basis of an instaneous

communication system. This is a stronger form of nonlocality than that represented by

the Bell inequalities, which require the two parties to share their measurement outcomes.

Thus, while no faster-than-light communication system could be constructed using the

latter, it could if the former kind of nonlocality held. Gleason’s theorem can then be

thought of as an affirmation that quantum mechanics must be local.

As important as Gleason’s theorem is, there are reasons to revisit it contemporarily.

The first is that a concept of measurement has been developed in the interim period

which associates possible outcomes with a greater class of objects than simply projectors

[9, 10]. It is not obvious whether this allows for a more general class of probability rules,

and thus states. A second issue is the somewhat opaque nature of Gleason’s geometric

proof. Significant study is required to understand his paper and the symmetry-theoretic

argument makes it difficult to connect the physical postulates to the final result [40]. For

both reasons, Busch [32] provided a simplified proof that the Born rule, alongside the

density matrix, is the only map between effects and the set of real numbers. I refer to

this more general result as the Gleason-Busch theorem and prove it below. That Busch’s

proof is much simpler is related to the larger set of measurements which he considers:

Gleason’s complicated formalism is designed to get around the issue that, in general, the

sum of two projectors is not itself a projector. However, summing two effects does produce

a third effect. Caves et al. [35] adapted Busch’s proof such that it was in a similar form

to Gleason’s result, and this was built on by Barnett et al. [34], who relaxed one of the

postulates and emphasised the Bayesian nature of quantum measurements. This allows

the probability rule which is associated with quantum retrodiction [41, 42] to be derived

from the same axioms.

Closely related to the work of Gleason and Busch is a movement in quantum founda-

tions away from providing interpretations of quantum theory and towards providing sets

of axioms from which quantum theory is derived: the field known as ‘quantum recon-

structions’ [33, 43, 44, 45, 46]. A typical work in this field will begin by providing a set of

physicial principles, then represent them mathematically, and then derive quantum theory

33



Kieran Flatt

from these axioms. In such a manner, any mystery about the theorems of quantum me-

chanics (e.g., problems concerning the distinction between reversible evolution under the

Schrödinger equation and irreversible ‘collapse’) is moved from the results themselves, now

clearly defined, to the initial set of axioms which are the only free choice in this form of

analysis. Quantum reconstructions are distinguished from previous axiomatisations (e.g.,

those due to von Neumann and Birkhoff [47] or Mackey [48]) by the physical nature of the

initial postulates.

One of the first publications along this line is that due to Hardy [33]. In this work he

introduces two parameters: N , defined as the number of states perfectly distinguishable

within a system, and K, the number of degrees of freedom, defined as the number of

measurements needed to distinguish two different states, within a system. Hardy then

provides a relationship between these two variables upon the basis of his ‘five reasonable

axioms’:

H1 Probabilities Pi are understood as the relative frequency of a given outcome i. For a

large enough sample, this probability will be constant between different runs of the

experiment.

H2 K is a function of N and takes the minimum value allowed by the five axioms,

i.e., the number of parameters needed to describe states is minimally linked to the

number of measurements needed to distinguish them.

H3 Systems of the same dimension (i.e., systems which can hold the same amount of

information) all behave the same.

H4 Composite systems A⊗B are multiplicative: KAB = KAKB and NAB = NANB.

H5 There exists a continuous reversible transformation of a system between any two

pure states.

These form a basis for deriving all relevant aspects of quantum mechanics: the Born rule,

the Hilbert space structure, the state update rule. Hardy starts by showing from H1 that

all probabilities can be associated with inner products, and it is the space on which these

inner products are defined which is fixed by the remaining axioms. This move is repeated

in my own work as in most research into quantum axioms. The fifth axiom is found to be

the most important as it is this that introduces the possibility of associating probabilities

with superpositions of what he calls ‘fiducial measures’, which are most straightforwardly

translated into the usual langugage as pure states. It is worth noting that this axiom has

been criticised for lacking the direct physical meaning of the other axioms [43]. What

does an instrumentalist mean when they say that transformations exist between two pure

states? Indeed, the continuity implicit here is very similar to a lemma in Gleason’s proof

that requires him to employ the theory of symmetries. However, this issue does not detract

from the main thrust of the paper: that it is indeed possible to provide simple physicial

principles for quantum theory.

In the years following Hardy’s paper, a number of other reconstructions have appeared

which are typically information-theoretic in nature. Among these the most notable is
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that due to Chiribella, D’Ariano and Perinotti [44, 46]. The main result of their work

is a demonstration that it is, in principle, not possible to construct a physical theory in

which state purification is possible without at the same time introducing the uncertainty

principle in the form of measurement back-reaction onto the system. This important

result emphasises that results which are previously thought of as independent may become

entwined upon closer inspection.

Closely related to the work which I am presenting here are two papers in particular.

One is an article by Cassinelli and Zanghi [49] which generalises Gleason’s theorem to find

the Lüders rule for updating states. This is of particular interest as it is an early example of

a demonstration that probability measures and state updates are closely linked, however

it is distinct from the work presented here for a number of reasons. One is that their

work does not proceed from physical postulates. Their work was performed in the context

of quantum logic and what might be understood as a linguistics-inspired framework for

deriving quantum mechanics, in which measurements are associated with truth statements,

and it becomes important to ensure that the implications and negation of that statement

are well-defined in the theory. This is very different from the operational arguments

that I present below. More importantly, their approach requires the use of a projector

which is orthogonal to that being mapped onto probabilties and such an object does not

exist for a general positive operator. Hence, their result cannot be generalised to include

effects. Further relevant work is that by Shrapnel et al. [50]. This axiomatic work begins

by assuming that transformations are defined by completely positive maps and use this,

alongside a set of postulates, to derive the Born rule and state update rule. This is the

opposite approach to that presented here, in which I make some assumptions about what

consitutes a measurement and then derive completely positive maps as a consequence of

these requirements. While Shrapnel et al.’s work is interesting, it lacks the instrumentalist

flavour that I seek, as the concept of a completely positive map is abstracted away from

the measurement process.

What I have taken from the various derivations of the Gleason-Busch theorem is some

specific insights about the mathematical representations required. From quantum recon-

structions, I have taken the need to ground any mathematical postulates in physical argu-

ments. I discuss these below, after a mathematical detour in which I introduce operator

space.

3.2 Operator space

As in most quantum reconstructions, I begin by establishing a link between probabilities

and inner products. The task is then to specify, based on a set of physical assumptions,

the vector space on which the inner product is defined. Before discussing my choice of

axioms, I introduce operator space. This is also known as Liouville space [51, 52]; both

names are used equivalently throughout.

Operator space is defined as the tensor product of a Hilbert space, H, with its dual

space, H†. The former can be considered the space of kets. The latter can be considered

the space of bras or, more formally, the space of maps between vectors in H and the set
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of complex numbers. An operator can be written as the outer product of a ket and a bra,

hence it should be no surprise that there is a mapping between the set of operators and

the just defined space. Typically, one writes

A↔ |A〉〉, (3.4)

i.e., an operator acting on vectors in H is itself a vector in operator space, the latter

indicated by a doubly angled ket. This mapping is a form of the Choi-Jamio lkowski

isomorphism [53, 54], which is between the sets of bipartite states and operations. One

interpretation of this is in terms of gate teleportation however, as will be discussed later,

this is not a unique reading [55].

I decompose the operator under consideration into an arbitrary basis in order to be

more precise about the mapping:

A =
∑
ij

aij |i〉〈j| ↔ |A〉〉 =
∑
ij

aij |ij†〉〉. (3.5)

Here, and in what follows, the superscripted dagger indicates a basis vector in the dual

space. As a particular example, I consider the identity operation in two dimensions. In

the Hilbert space representation this operator is

I =

1∑
i=0

|i〉〈i| = |0〉〈0|+ |1〉〈1|, (3.6)

and, following the above isomorphism, in the Liouville space representation it is

|I〉〉 =
1∑
i=0

|ii†〉〉 = |00†〉〉+ |11†〉〉. (3.7)

The relevance of operator space for the issue of probability rules becomes more clear when

the inner product is defined. It is straightforward to show that the natural way to define

inner products is to associate them with the trace rule in Hilbert space. This can be seen

by defining two operators, firstly A by Eq. 3.5 and secondly B by

B =
∑
ij

bij |i〉〈j| ↔ |B〉〉 =
∑
ij

bij |ij†〉〉. (3.8)

The trace over the product of these two operators is

Tr(B†A) =
∑
ij

b∗ijaij .
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Similarly, in operator space their inner product can be calculated

〈〈B|A〉〉 =
∑
ijkl

b∗ijakl〈〈ij†|kl†〉〉

=
∑
ijkl

b∗ijaklδikδjl =
∑
ij

b∗ijaij .

I use the usual notation for the Kronecker delta. Bringing together the above two results

gives

〈〈B|A〉〉 = Tr(B†A) (3.9)

and there is a natural association between inner products in the space of operators and

the trace operation in the space of states, a property known as the Hilbert-Schmidt inner

product [56]. The appearance of the dagger inside the trace is a choice; one could also

have the inner product as 〈〈B|A〉〉 = Tr(BA). If this inner product was used, then the

map from operator space to the dual space (i.e., from the space of double-angled kets to

double-angled bras) would not need complex conjugation of the coefficients. Throughout,

I have chosen to preserve that property from Hilbert space and so use the above form.

There is a greater freedom in the choice of inner product in that a linear map may act on

one of the two operators so that the inner product would instead be 〈〈B|A〉〉 = Tr(L(B†)A)

[57] however it will be seen later that this freedom has a natural interpretation in terms of

the measurement process such that I can use Eq. 3.9 without loss of generality. That the

inner product for operator space is the trace operation emphasises the close link between

inner products and probabilities.

The final obects to define are linear operators in Liouville space, which correspond to

superoperators in Hilbert space. As an example, I consider a transformation between two

operators A and B:

A→ B = L1AL
†
2, (3.10)

where L1 and L2 are two unconstrained operators. In operator space, this pair of opera-

tions are represented by single linear operator which can be defined as L = L1 ⊗ L2. The

operator space representation of the above transformation is

|A〉〉 → L|B〉〉 = (L1 ⊗ L2)|B〉〉. (3.11)

In order to make clear the objects that are being used here, it is useful to follow a basic

calculation using both standard Hilbert space quantum mechanics and the alternative

which I have introduced here. A simple scenario is that a system is prepared as |+〉 =

(|0〉 + |1〉)/
√

2 and then measured in the |0〉, |1〉 basis. A calculation of the outcome

probability and post-measurement state demonstrates the basic physics involved in such

a process.

In ‘standard’ quantum mechanics, one begins by writing down the density operator

ρ = |+〉〈+|, which represents the prepared state, and the projector P0 = |0〉〈0| associated
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with the relevant measurement outcome. The probability of this outcome is

P(0|+) = Tr(|+〉〈+|0〉〈0|) =
1

2
(3.12)

and the system’s post-measurement state will be

ρ→ ρ′ =
|0〉〈0|+〉〈+|0〉〈0|

Tr(|0〉〈0|+〉〈+|0〉〈0|)
= |0〉〈0|, (3.13)

where the denominator is a factor of normalisation. Both of these solutions are examples

of textbook quantum theory.

A different approach uses the framework of operator space. One starts by representing

the prepared state by the vector |ρ〉〉 = | + +†〉〉 and the projector by the vector |P0〉〉 =

|00†〉〉. Probabilities are calculcated by writing the Born rule as an inner product, using

Eq. 3.9:

P(0|+) = 〈〈+ +† |00†〉〉 =
1

2
. (3.14)

To find the post-measurement state, we can construct a superoperator. Following the

discuss above, the required object is P0 = |0〉〈0| ⊗ |0†〉〈0†| = |00†〉〉〈〈00†|. The operator

space analogue to the state-update rule is

|ρ〉〉 → |ρ′〉〉 =
|00†〉〉〈〈00†|+ +†〉〉
〈〈00†|+ +†〉〉

= |00†〉〉. (3.15)

The results obtained by using objects in operator space are precisely the same as those

found previously, demonstrating that it is possible to represent quantum theory in both

Hilbert and Liouville spaces. At this point I have given no justification for using the more

unfamiliar methods over the tried and tested formalism. Over the rest of this chapter,

I hope to demonstrate that operator space provides a natural framework for handling

sequences of quantum measurements.

3.3 Operational postulates

The aim of this chapter is to derive the framework of sequential measurement theory from

a small set of postulates. In keeping with the spirit of quantum reconstructions, these

are inspired by a straightforward interpretation of probabilities as representing relative

frequencies of measurement outcomes. However, the principles do not have the same

status as those that would be used in a quantum reconstruction. The reason for this is

that the postulates are formulated as restrictions upon a map which acts upon the set

of effects, without deriving the latter objects themselves as ingredients of measurement

theory. Indeed, it is not clear why one would make such a mathematical representation for

a physical process without prior knowledge of quantum theory. However, I would argue

that the application of this work is not limited by this, and could still find use as part of

a work which is wider in scope. The idea would be to derive, by adding further axioms,

the idea of using a positive operator to represent measurement outcomes. Here I follow
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the works of Gleason and Busch in which proofs start by considering effects to be a basic

quantity. For a sequence of measurements, this map will act upon the effect associated

with the later occuring outcome, and I will include the first by allowing the map to depend

on that measurement outcome. This cannot be the case for a single measurement and so,

strictly speaking, two maps are required, and hence two different sets of postulates. The

maps are associated with each other by an assumption of the measurement process’s causal

order.

3.3.1 Single measurements

I begin with the assumption that observables in quantum theory are associated with a

positive semi-definite operator, any POVM element πi. This is represented by the operator

space vector |πi〉〉. Probability rules are then understood as consisting of maps ν between

objects of this kind and real numbers. The term introduced by Gleason [31] for maps of

this kind is ‘frame functions’. Frame functions are related to probabilities by

(P0) P(i|s, x) = N(s, x)ν(|πi〉〉),

where s is the preparation procedure and x the measurement procedure (i.e., it represents

how the POVM is completed as well as the physical process which occured). The factor

N(s, x) is a normalisation constant which is allowed to depend upon the experimental

method but not the particular outcome. Postulate P0 is an assumption of noncontexuality,

here used to mean that the probability of an outcome associated with a particular POVM

element is the same however the set is completed, up to a constant of normalisation.

I make this requirement in order to prevent the kind of instantaneous communication

systems [5, 6] which were discussed in the context of Gleason’s theorem. It is worth noting

that, if quantum theory was contexual, then effects would no longer be able to consistently

define a particular measurement outcome. (This point is discussed by Caves et al. [35].

In summary, the point is that, if probabilities could depend upon more than one member

of a set, they would no longer be linear functionals of a single effect. Hence the POVM

description of a measurement would not be possible.) An element of noncontexuality is

being assumed implicitly.

On top of this generic definition, the other postulates are physically motivated require-

ments for the set of probabilities. For single measurements, I adapt Busch’s postulates

[32]:

(P1) 0 ≤ P(i|s, x) ≤ 1

(P2)
∑

i P(i|s, x) = 1

(P3) P(i|s, x) + P(j|s, x) + . . . = P(i or j or . . . |s, x) .

Each of these can be defended with reference to a simple, idealised, measuring device.

When one measures a single quantum system, this device counts the number of occurences

of a finite set of outcomes (N0 for one, N1 for another, etc.) and probabilities are then

assigned simply as the fraction of each outcome out of the total number N of measure-

ments: P0 = N0/N . If a large enough number of experiments are performed then one
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would expect this quantity to tend towards a constant value. The three postulates above

are then easily understood. P1 follows from the fact that the ratio of two positive integers

will be positive and P2 follows from the fact that one outcome must occur. The additivity

postulate, P3, codifies the concept of ‘coarse-graining’. Associate with two outcomes in

one description just a single outcome in a different description: i.e., outcome A is associ-

ated with outcomes zero and one. It must be true that PA = P0 + P1 = (N0 + N1)/N ,

which is what the third postulate requires. In the next section, it will be seen that these

assumptions alone are enough to ensure that the only probability measure is the Born

rule.

3.3.2 Sequential measurements

I derive also the Kraus rule [13], which requires a different set of postulates. The focus

is on processes in which a system is measured twice, with outcomes represented by the

POVM elements |π(1)i 〉〉 and |π(2)j 〉〉 respectively. I outline how to extend to cases involving

three or more measurements in a later section. In order to include the conditional nature

of quantum sequential measurements, I modify the noncontexuality postulate P0 to allow

the map to depend upon the first measurement outcome. I use the joint probability

distribution

(A0) P(i, j|s, x) = N(s, x)ωi(|π(2)j 〉〉).

The definition of N(s, x) as a representation of the contextual information can be kept

as long as one is careful to distinguish between that concept for individual and sequential

measurements (if it necessary to distinguish the two, I will use the symbol s′ for the

sequential case). This formula can be thought of as a manifestation of the idea that the

measurement sequence defined above can be thought of as a single measurement if the

preparation-first measurement segment is understood as a single preparation procedure.

As I keep the constant of proportionality as a representation of the general features of the

procedure, conditioning upon the first measurement is a property of the map. This is why

a different set of postulates is required: they are requirements upon a different map. It is

of course possible to take a different perspective, that the measurement sequence is still a

preparation and single measurement process but that both outcomes are associated with

a single operator, which can be labelled |πij〉〉. In this case, by P0 one has

P(i, j|s, x) = N(s, x)ν(|πij〉〉) (3.16)

= N(s′, x)ωi(|π(2)j 〉〉).

Thus the newly introduced map ωi is proportional to my initial construction and the only

way that this can hold is if the i-dependence appears as a map acting upon |π(2)j 〉〉, i.e. ,

ωi(|π(2)j 〉〉) = ν(Ti(|π(2)j 〉〉)). (3.17)

The reader should note that, at this point, I do not introduce Ti as a linear superoperator.

In principle there is enough freedom for it to be some other map and this usual requirement
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will be seen to emerge from the remaining axioms. When I derive the Kraus form, it is

the form of the new superoperator Ti that is found. I require that the joint probability

satisfies

(A1) 0 ≤ P(i, j|s, x) ≤ 1.

(A2)
∑

j P(i, j|s, x) = P(i|s, x).

(A3) P(i, j|s, x) + P(i, k|s, x) + . . . = P(i, j or k or . . . |s, x) .

These postulates can be thought of as straightforward generalisations of those introduced

above and have the same reasoning associated with them. Special attention may be paid

to A2, which is underpinned by another assumption: that of a specific causal order in

which the results of the first measurement may not depend upon the second. At this point

I could still consider a general causal order, i.e., a generalisation in which the results of the

first measurement can be influenced by later results. This would be in keeping with the

programme of research concerning ‘indefinite causual order’ [55, 58]. However, the method

that I follow is to assume the fixed causal order just discussed. One could also read an

assumption of noncontexuality in the same postulate, in the sense that this requires that

any post-processing (e.g., discarding) of specific measurement outcomes will not change

the probability that they occured in the first place.

The postulates are now used to reconstruct Born’s and Kraus’s rule, along with the

related concept of the state update rule and the idea of two-time states to represent pre-

and post-selection.

3.4 Single measurements

In this section I derive the Born rule, adapting Busch’s (and Barnett et al.’s) proof [32, 34]

of Gleason’s theorem to the language of operator space. This demonstrates my operational

approach and provides useful results for the next step, joint probabilities.

The first step towards the Born rule is to extend the additivity postulate, P3, to

allow for linearity, i.e., what is required is to show that ν(α|E〉〉) = αν(|E〉〉). I follow

the procedure of Barnett et al. Once linearity is established, the trace operation follows

directly. At this point I consider a set of vectors |E〉〉, |F 〉〉 . . .. These should correspond

to positive operators but, for the sense of establishing linearity, need not be effects. (Of

course, the interpretation in terms of experimental outcomes does not hold for the more

general set.) One must first note that, since all individual outcomes in an experiment

are subject to the same preparation and measurement context, the relevant probability

formulae will all contain the same N(s, x) and the additivity of probabilities (from P3)

extends to additivity over the map ν(·):

ν(|E〉〉) + ν(|F 〉〉) + . . . = ν(|E〉〉+ |F 〉〉+ . . .). (3.18)

Now, consider an integer n. By this sense of additivity,

nν(|E〉〉) = ν(|E〉〉) + ν(|E〉〉) + . . . = ν(n|E〉〉), (3.19)
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where n is an integer. The property of additivity enforces linearity over the integers. I

introduce a second integer, n′ and write

n′ν(
n

n′
|E〉〉) = ν(n|E〉〉) = nν(|E〉〉)

=⇒ n

n′
ν(|E〉〉) = ν(

n

n′
|E〉〉) (3.20)

and linearity is extended to all nonnegative rational numbers.

Linearity is extended to include the irrational numbers in the continuum limit. Though

a formal argument of this is used by Fuchs et al. [35], it is essentially a further assumption

that

αν (|E〉〉) = ν (α|E〉〉) (3.21)

for all 0 ≤ α ≤ 1. An instrumentalist might argue that linearity over the rational numbers

is enough. If probabilities are to be interpreted as relative occurences, it follows that all

relevant quantities are rational numbers.

Combining this result with the original P3, linearity can be formalised in

ν(
∑
i

αi|Ei〉〉) =
∑
i

αiν(|Ei〉〉), (3.22)

where αi may be any positive numbers. Linearity can be extended also to negative

and complex numbers through decomposition of the relevant operator onto the posi-

tive/negative or real/complex eigenvalues. However, here I am interested in just the

definition of the function for effects and for this set of operators it will always be possible

to work in a basis such that all coefficients are positive, hence the negative and complex

extensions are not be required.

Now that positive linearity has been established, the Born rule follows in just a few

lines. As I assume that the measurement is represented by a positive semidefinite operator

then it may be expressed as a vector

|πi〉〉 =
∑
λ

〈〈λλ†|πi〉〉|λλ†〉〉, (3.23)

in which the Hilbert space vectors |λ〉 are simply the eigenbasis of the POVM element πi.

The subscript i indicates that it is part of a set, though no reference will be made to the

other elements. From this and Eq. 3.22,

ν(|πi〉〉) =
∑
λ

ν(|λλ†〉〉)〈〈λλ†|πi〉〉. (3.24)

This is as an inner product, seen most clearly by defining |r〉〉 =
∑

λ ν(|λλ†〉〉)|λλ†〉〉, so

that the above result is

ν(|πi〉〉) = 〈〈r|πi〉〉. (3.25)

As inner products in Liouville space are associated with the trace operation, this is the

Born rule up to the normalisation constant. This should not surprise, as it is a long-
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established result that maps between vectors and real numbers are inner products [56]. A

few more steps, however, are required before it is explicitly the Born rule. In particular,

what remains to be seen is the physical interpretation of the vector |r〉〉. At this point,

the only physical postulate that has been used to arrive at the trace operation is P3 and

it is the others (P0-2) which will pin down the meaning. I begin by writing the result

explicitly as a probability, by P0:

P(i|s, x) = N(s, x)〈〈r|πi〉〉. (3.26)

By P2 I have ∑
i

P(i|s, x) = N(s, x)
∑
i

〈〈r|πi〉〉 = 1 (3.27)

and hence

N(s, x) =
1∑

i〈〈r|πi〉〉
. (3.28)

I anticipate the physical interpretation of this vector by defining |ρ〉〉 = |r〉〉/(
∑

i〈〈r|πi〉〉)
and the probability rule which has been derived is thus

P(i|s, x) = 〈〈ρ|πi〉〉. (3.29)

I have shown that this formula is the unique way to calculate probabilities from measure-

ment operators, given a small number of principles (additivity, noncontexuality). This

argument is a restatement, modified to a vector-space representation, of the Gleason-

Busch theorem’s proof. All that is left is to demonstrate that this result is consistent with

standard quantum mechanics: it must be shown that that the vector |ρ〉〉 is the operator

space equivalent of the density operator, i.e., that it has all the same mathematical prop-

erties. Firstly, due to postulate P1 the associated operator must have positive eigenvalues.

Secondly, by evaluating the inner product 〈〈I|ρ〉〉 it is established that Tr(ρ) ≤ 1. This

fact is related to the condition that the sum of POVM operators is equal to or less than

the identity, with unit trace occuring if all measurement outcomes are available and no

post-selection occurs. Both of these conditions may be relaxed and this would lead to a

sub-unit trace. The final step is to verify that the vector |ρ〉〉 is independent of |πi〉〉 as at

first glance this does not appear to be the case.

Independence can be demonstrated following another argument due to Barnett et al.

Consider two effects written in their eigenbases, i.e., |π0〉〉 =
∑

i λi|λiλ
†
i 〉〉 and |π1〉〉 =∑

j ηj |ηjη
†
j〉〉. The linearity of the function ν means that we must be able to extract

probabilities also from the sum of these two |π01〉〉 = |π0〉〉 + |π1〉〉, and linearity means

that we must have a single operator |ρ〉〉 which acts upon both. This vector can be written

in the two different bases as:

|ρ〉〉 =
∑
i

ν(|λiλ†i 〉〉)|λiλ
†
i 〉〉

=
∑
j

ν(|ηjη†j〉〉)|ηjη
†
j〉〉, (3.30)
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where the set of coefficients will always be positive. Any possible effect could also be

invoked alongside |π0〉〉 and thus |ρ〉〉 will have positive coefficients in all bases with doubled

labels, corresponding to the diagonal elements in the operator representation; |ρ〉〉 must

therefore be independent of the particular choice of measurement and hence is independent

of the effect that it acts upon. The final step is to note that, by a lemma shown by

Barnett et al. [34], any operator which has the same diagonal elements in all bases must

also have the same off-diagonal elements. For this reason, |ρ〉〉 must be unique, given that

the measurement statistics are already defined. The vector must be associated with the

overall probability distribution of outcomes.

The vector |ρ〉〉 is associated with a Hilbert space operator; has positive eigenvalues and

Tr(ρ) = 1; is independent of the individual effect which it maps onto a set of probabilities.

By definition, the normalisation constant N(s, x) depends upon the relevant quantum

system’s preparation as well as the measurement performed. It contains information about

the probabilities associated with the whole set of possible measurement outcomes. To

summarise, these are all the properties which one would typically associate with the density

operator, and this is how the vector |ρ〉〉 will be interpreted. It is thus safe to refer to Eq.

3.29 as the Born rule. By the Hilbert-Schmidt inner product this is

P(i|s, x) = Tr(ρπi). (3.31)

It is interesting to note that this equation has a Bayesian flavour to it: we can understand

the density operator as a representation of the a priori information one has about the

quantum system while the effect πi represents the probability of a given outcome. This

will again be seen in the results of the next section, in which I generalise this result to

include sequences of measurements.

3.5 Sequential measurements

I now present the main result of this chapter, a demonstration that Kraus’s probability

rule follows from the operational postulates presented above. To reiterate, though the

experimental validity of this formula is already well established, what is of interest here

is the sense in which the mathematical structure enforces that it is unique. The same

procedure as above is followed: I exploit the properties of vector spaces to show that an

inner product is the required form for the joint probability rule.

This derivation is quite involved so I summarise the proof here and diagram the logical

relations in Fig. 3.1. First, it is noted that the noncontexuality postulate, A0, implies

that the Kraus rule must be consistent with the Born rule. This statement then leads to

the linearity which was derived in that case being extended, with use of A3, to linearity

over positive numbers in the joint probability frame function. As in the Born rule proof,

I must ensure that probabilities are positive (by A1) and this fixes the form of the Kraus

operators. Finally, that the joint probabilities form a complete set (A2) means that the

set of Kraus operators forms a valid POVM.

In the Born rule derivation, I started by demonstrating that the map ν must be additive

44



Chapter 3

Positivity
(A1)

Noncontexuality
(A0)

Complete
(A2)

Linearity
(A3)

Joint probability rule
must be consistent with

Born rule

Joint probabilities are
inner product on

space of two-time states

Kraus operator
representation �ixed

Kraus operators
form a complete set

Figure 3.1: A diagram of the derivation of the joint probability rule, which makes explicit
how the four axioms fit into the proof. Statements further down the page are implied by
those which are further up the page and connected to them by a line.
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over all positive operators, as seen in Equation 3.22. The requirement here is that this

form of additivity extends to the map Ti, in effect showing that this map must take the

form of a linear superoperator. From A3 we have

ωi(|π(2)j 〉〉) + ωi(|π(2)k 〉〉) = ωi(|π(2)j 〉〉+ |π(2)k 〉〉). (3.32)

This is the same form as that for the map ν and so the same arguments can be applied

here in order to extend the linearity over positive superoperators. Thus,

αjωi(|π(2)j 〉〉) + αkωi(|π
(2)
k 〉〉) = ωi(αj |π(2)j 〉〉+ αk|π

(2)
k 〉〉), (3.33)

with α being positive numbers. I use the relationship between the maps ωi and ν, given

in Eq. 3.17, to introduce the map Ti:

αjν
(
Ti(|π(2)j 〉〉)

)
+ αkν

(
Ti(|π(2)k 〉〉)

)
= ν

(
Ti(αj |π(2)j 〉〉+ αk|π

(2)
k 〉〉)

)
. (3.34)

On the left hand side, the linearity of the map ν means that we can bring the coefficients

of α into the argument. Finally, as this must hold for the entire set of ν,

αjTi
(
|π(2)j 〉〉

)
+ αkTi

(
|π(2)k 〉〉

)
= Ti

(
αj |π(2)j 〉〉+ αk|π

(2)
k 〉〉

)
. (3.35)

This is a statement that Ti is a linear superoperator. As above, establishing this linearity is

the first step in deriving the Kraus rule and at this point only postulate A3 has been used.

The positivity and completeness of Ti is required by the remaining postulates and they

fix the map’s form. At this point it is helpful to make use of the inner product structure

derived from the single measurement case, Eq. 3.31, along with the identification of the

map as a superoperator, Eq. 3.35, to write the probability rule as

P(i, j|s, x) = N(s, x)〈〈ρ|Ti|π(2)j 〉〉. (3.36)

For future use, I am here explicit about the Hilbert spaces that each of these objects is

defined upon: ρ is an operator on Hin and π
(2)
j is an operator on Hout. These two are

Hilbert spaces associated with the preparation and second-measurement respectively. The

map can then be defined as:

Ti : Hout ⊗H†out → Hin ⊗H
†
in. (3.37)

The subscripts have been adopted in order to avoid confusion throughout the rest of this

section, in which operators are defined upon various combinations of the four Hilbert

spaces now in use.

While introducing operator space in this chapter I noted that, although the Hilbert-

Schmidt inner product is used throughout, there are many ways to define the inner product

in operator space, for example by including a linear superoperator. In Eq. 3.36 it can be

seen that joint probabilities enter in precisely that manner. In this equation, it is seen that

the map can also be thought of as acting upon the density operator |ρ〉〉 and this would
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be physically interpreted as a different preparation procedure. This is what was meant

when I stated that the more general definitions of inner products do not change how the

formulae are physically interpreted.

I now turn to the task of constraining the map, Ti, in such a way as to reconstruct the

Kraus form. The condition A1 can be written, using the new form, as

0 ≥ 〈〈ρ|Ti|π(2)j 〉〉 ≥ 1. (3.38)

I focus from now on solely on the bound from below (the requirement that the operator

be positive). That the probabilities are less than one is enforced by normalisation at a

later point. In fact the requirement of positivity needs to be made stronger. What is

actually required is complete positivity such that the above requirement holds even in

cases where Ti acts upon only a subsystem. This requirement is a corrolary of the fact

that my operational postulates must hold for all possible choices for ρ and π
(2)
j and, as

such, it is not a further postulate. The requirement in full is

〈〈ρ|TiA ⊗ IB|π(2)j 〉〉 ≥ 0, (3.39)

where HA and HB are two Hilbert spaces on which the vectors are to be defined and IB is

the identity operation on the latter. I have derived the requirement that transformations

are described by linear, completely positive superoperators. I begin by defining the two

vectors |ρ〉〉 and |π(2)j 〉〉. As both positive and Hermitian operators they can each be

written as a linear superposition of pure states and projectors. For this reason, I restrict

my attention to the simpler forms without loss of generality. I write |ρ〉〉 = |ψψ†〉〉 and

|π(2)j 〉〉 = |φjφ†j〉〉 and also define

|ψ〉 =
∑
i

λi|iAiB〉 (3.40)

|φj〉 =
∑
ik

c
(j)
ik |iAkB〉, (3.41)

where the Schmidt decomposition [9] has been used to write ψ in a basis such that λi ≥ 0.

The same basis has also been used to define the projective state although it no longer holds

that c
(j)
ik are always real numbers. From these bases I construct operator space vectors

|ρ〉〉 =
∑
ik

λiλk|iAiBk†Ak
†
B〉〉 (3.42)

|π(2)j 〉〉 =
∑
iklm

c
(j)
ik c

(j)∗
lm |iAkBl

†
Am
†
B〉〉. (3.43)
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Bringing all of this together I evaluate the left hand side of Eq. 3.39:

〈〈ρ|TiA ⊗ IB|π(2)j 〉〉 =
∑

iklmnp

λiλkc
(j)
lmc

(j)∗
np 〈〈iAiBk

†
Ak
†
B|TiA ⊗ IB|lAmBn

†
Ap
†
B〉〉

=
∑

iklmnp

λiλkc
(j)
lmc

(j)∗
np 〈〈iAk

†
A|Ti|lAn

†
A〉〉〈〈iBk

†
B|IB|mBp

†
B〉〉

=
∑

iklmnp

δimδkpλiλkc
(j)
lmc

(j)∗
np 〈〈iAk

†
A|Ti|lAn

†
A〉〉

=
∑
ikln

λiλkc
(j)
li c

(j)∗
nk 〈〈iAk

†
A|Ti|lAn

†
A〉〉. (3.44)

The right hand side of this equation is an inner product on the subspace A only. The

structure of this map can be clarified by replacing the subscripts for the input and output

spaces, as introduced earlier, in place of A. Inspection of the calculation up to this point

reveals

〈〈ρ|Ti ⊗ IB|π(2)j 〉〉 =
∑
ikln

λiλkc
(j)
li c

(j)∗
nk 〈〈iink

†
in|Ti|loutn

†
out〉〉. (3.45)

The requirement Eq. 3.39, which was derived from the postulates, is that this object is

positive for all choices of |ρ〉〉 and |π(2)j 〉〉. Writing about the above as an expectation value

will constrain Ti to be a positive superoperator. To bring about this form, I consider the

operator T ′i which is defined on the product space Hin ⊗H†out and satisfies

〈〈iinl†out|T ′i |kinn
†
out〉〉 = 〈〈iink†in|Ti|loutn

†
out〉〉. (3.46)

Using this definition, the constraint is

〈〈ρ|Ti ⊗ IB|π(2)j 〉〉 =

(∑
il

λic
(j)
li 〈〈iinl

†
out|

)
T ′i

(∑
kn

λkc
(j)∗
nk |kinn

†
out〉〉

)
= 〈〈Ψj |T ′i |Ψj〉〉 ≥ 0, (3.47)

in which I have introduced the notation

|Ψj〉〉 =
∑
kn

λkc
(j)∗
nk |kinn

†
out〉〉. (3.48)

Finally, a simple condition for positive probabilities in the operational framework employed

has been derived. Eq. 3.47 says that the requirement for an operator to be associated with

positive probabilities is that it has positive eigenvalues on the space Hin ⊗H†out. Vectors

on this space contain information about the preparation and second measurement. They

can be interpreted as two-time states, which are commonly understood as representing

pre- and post-selections [59, 60]. I discuss this point in further detail in the next section.

The positivity of T ′i on the space of two-time states is enough to constrain us to the Kraus

form, which follows as the superoperator must have an eigendecomposition on this space:

T ′i =
∑
k

|αik〉〉〈〈αik|. (3.49)
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Each vector |αik〉〉 =
∑

lm α
(ik)
lm |linm

†
out〉〉 here is eventually associated with the vector

space representation of a Kraus operator. At this point such an identification is only

intuitive, as they are not currently normalised and still need to be related to the second

measurement’s POVM element in the standard way. To return to my original formula of

joint probabilities, A0, so far I have shown that joint probabilities can be expressed as

P(i, j|s, x) = N(s, x)
∑
k

〈〈Ψj |αik〉〉〈〈αik|Ψj〉〉. (3.50)

I now demonstrate the identification of the vectors |αik〉〉, henceforth referred to as Kraus

vectors, with the Kraus operators by invoking A2. This task is most straightforward if I

use the simplified case that ρ = |ψ〉〈ψ| and π
(2)
j = |φj〉〈φj |, noting again that the positivity

of both operators in general means that there is no loss of generality by doing this. After

summing over all second outcomes, I have∑
j

P(i, j|s, x) = N(s, x)
∑

jklmnp

〈ψ|
(
α
(ik)
lm α(ik)∗

np |l〉〈n|〈φ
†
j |m

†〉〈p†|φ†j〉
)
|ψ〉

= N(s, x)
∑
klmnp

〈ψ|

α(ik)
lm α(ik)∗

np |l〉〈n|〈m|

∑
j

|φj〉〈φj |

 |p〉
 |ψ〉

= N(s, x)〈ψ|

(∑
klmn

α
(ik)
lm α(ik)∗

nm |l〉〈n|

)
|ψ〉, (3.51)

Completeness of the second measurement appears in two ways. It has been used above,

in the sense that
∑

j π
(2)
j = I, to derive the third line. Completeness was also formalised

in A2 which says that
∑

j P(i, j|s, x) = P(i|s, x). As P(i|s, x) = 〈ψ|π(1)i |ψ〉, the above is

consistent with this requirement only if

π
(1)
i =

∑
klmn

α
(ik)
lm α(ik)∗

nm |l〉〈n| =
∑
k

A†ikAik, (3.52)

where I use Aik for the Hilbert space operator which maps onto the operator space vector

|αik〉〉. This formula is the usual identification between POVM elements and Kraus oper-

ators, and so the result I have derived is seen to be consistent with standard measurement

theory. The effect can also be written as

π
(1)
i =

∑
n

〈n†|α(ik)
lm 〉〉〈〈α

(ik)
lm |n

†〉, (3.53)

where {|n〉} is any complete basis for the output space, following the labelling for the

daggered/non-daggered spaces given above. This result says that the Kraus vector is

associated with the Hilbert space operator of its related POVM element by tracing out

the output space. The freedom which is implicit in this is the same as the usual choice

one has in decomposing an effect into a set of Kraus operators.

The final piece of the puzzle is to fix the normalisation factor N(s, x), which follows

from rewriting Postulate A2 so that it concerns the sum over both outcomes. Again I
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begin by summing Eq. 3.50 and look at the simpler case (of projective measurements and

pure state preparation) in order to write

∑
ij

P(i, j|s, x) = N(s, x)〈ψ|

∑
ijk

〈φ†j |αik〉〉〈〈αik|φ
†
j〉

 |ψ〉 = 1. (3.54)

As the states |ψj〉 are normalised, the above holds only if

N(s, x)
∑
ijk

〈φ†j |αik〉〉〈〈αik|φ
†
j〉 = I, (3.55)

where the identity I here acts on the input space, according to the labelling given above. It

is useful to note that, due to the requirement that the second measurement be complete,

I have
∑

j |φ
†
j〉〈φ

†
j | = I. For this set of projectors to be complete we must have that

{|φ†j〉} forms a complete orthonormal basis of the space and thus the sum over these states

in the above equation acts as a trace over the output space. It is also clear from this

that N(s, x) = 1 as long as the vectors |αik〉〉 are suitably normalised. To emphasise the

distinction, I will henceforth denote the normalised Kraus vectors associated with each

of these as |Aik〉〉. This shouldn’t be too surprising, as any contexuality associated with

the first measurement has already been hidden inside the density matrix as part of the

single measurement derivation. From Eq. 3.53 this is simply the usual requirement that

the POVM elements associated with the channel are complete.

I have derived the Kraus rule as an extension of the Gleason-Busch theorem. Given

that measurements are described by effects (i.e., positive operators on Hilbert spaces), the

unique map from a pair of measurement outcomes to the set of real numbers which is

consistent with the set of postulates A1-3 is given by

P (i, j|s, x) =
∑
k

〈〈Ψj |Aik〉〉〈〈Aik|Ψj〉〉 (3.56)

in which |Ψj〉〉 is a vector containing information about the preparation and second mea-

surement. While it has a different form to the usual Kraus rule as a trace function, it is

straightforward to see that the two formulae are equivalent by considering again pure state

preparation and a projective second measurement. Writing all three objects in the same

basis, |Aik〉〉 =
∑

lmA
(ik)
lm |lm

†〉〉, |ρ〉〉 =
∑

qr λqλ
∗
r |qr†〉〉 and |π(2)j 〉〉 =

∑
st β

(j)
s β

(j)∗
t |st†〉〉.

From these objects I evaluate first the two-time state vector as |Ψj〉〉 =
∑

qt λqβ
(j)∗
t |qt†〉〉.

From the above probability rule,

P(i, j|s, x) =
∑
k

|λ∗qβ
(j)
t A

(ik)
qt |2

= Tr

(
π
(2)
j

∑
k

AikρA
†
ik

)
, (3.57)

where the second line uses the usual isomorphism between operator space and Hilbert

space quantities.
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State update rule

An auxillary result which follows from the above calculation is the state update rule. I

use Bayes’s rule to acquire the conditional probability P(j|i, s, x) and expect that this

would behave as a single measurement, with the measured state being that associated

with update of the initial state by the first measurement. Again, I use the simplified case

in which |ρ〉〉 = |ψψ†〉〉 and |π(2)j 〉〉 = |φjφ†j〉〉. Then,

P(j|i, s, x) =
P(i, j|s, x)

P(i|s, x)

=

∑
k〈〈Ψj |Aik〉〉〈〈Aik|Ψj〉〉

〈〈ρ|π(1)i 〉〉

=
〈φj | (

∑
k〈ψ|Aik〉〉〈〈Aik|ψ〉) |φj〉
〈〈ρ|π(1)i 〉〉

= Tr

(
π
(2)
j

∑
k〈ψ|Aik〉〉〈〈Aik|ψ〉
〈〈ρ|π(1)i 〉〉

)
. (3.58)

The state update is identified as

ρ→ ρ′ =

∑
k〈ψ|Aik〉〉〈〈Aik|ψ〉
〈〈ρ|π(1)i 〉〉

=

∑
k AikρA

†
ik

Tr(ρ
∑

k AikAik)
(3.59)

from the fact that P(j|i, s, x) = Tr(ρπ2). Alongside the rule associated with joint prob-

abilities in quantum mechanics, the Lüders rule [38] has been derived. However, none

of the postulates concern the measurement dynamics. Importantly, this means that no

further assumptions are needed for the dynamics of measurement on top of the proba-

bilistic description: the Born rule and wavefunction collapse are part and parcel of the

same mathematical structure, which arises as measurements are associated with positive

operators, given some reasonable postulates which a probability rule must satisfy.

3.6 Comments

The work presented here exhibits close links with a number of other areas of research. I

discuss a number of these in this section.

Earlier, I discussed Hardy’s work in quantum reconstructions and noted that it begins

by showing that probabilities can be treated as inner products on a given space, and that

once this is shown the task mathematically becomes to pinpoint precisely which space

these inner products are defined upon. For single measurements, as has been shown, this

is operator space, which has the trace operation as its inner product. While progressing

to derive the analogous result for sequential measurements, I skipped over this point and

instead focused on treating the channel as a superoperator. This was a choice, made

to present the derivation in a greater clarity. Instead, it is possible to treat joint and

conditional probabilities also as inner products. The alternative calculation is sketched out
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here. Eq. 3.36, which for reference says that P (i, j|s, x) = 〈〈ρ|Ti|π(2)j 〉〉 (where constants

and degenerate channels have been ignored for simplicity), can be written as

P(i, j|s, x) = Tr
(
Ti|π(2)j 〉〉〈〈ρ|

)
= Tr

(
T i|Ψj〉〉〈〈Ψj |

)
(3.60)

In the same way that the trace operation in Hilbert space can be represented by an

inner product in Liouville space, this trace can also be represented by an inner product

in a superoperator space (i.e., Hin ⊗ H†in ⊗ Hout ⊗ H
†
out). The probability rule is once

again an inner product and the task is to find the relevant objects such that this inner

product is always positive. The final mathematical structures which result are precisely

the same. Such an approach would drive home the link between traces, inner products and

probabilities which much work in generalised probabilities and quantum reconstructions

relies on.

A more important link is with the two-time state formalism of Aharonov and Vaidman

[59, 60]. A two-time state is the product state of a preparation and measurement, as

well as superpositions of these objects, and is most commonly used to represent pre- and

post-selection. Mathematically, these objects are precisely the vectors |Ψj〉〉, defined on

Hin ⊗ Hout and separated in the same way, that were introduced above. The two-time

state interpretation of a sequential measurement process is that vectors on Hin evolve for-

ward in time while those on H†out evolve backwards in time, collapsing on any intermediate

measurements. Probabilities are then calculated from these objects by taking inner prod-

ucts with another object, associated with any operations between the two, analagous to

that found above. One way to understand my work is as an axiomatic foundation for the

two-time state formalism, although the interpretation in terms of time evolution does not

follow from what has been shown above. Silva et al [61] have provided an analysis which

shows that such objects are created experimentally by pre- and post-selection. A system is

prepared in the state |ψ〉 and sent to an observer, who performs any measurement before

returning the modified system to the preparer. The first party then measures and keep the

state only if the desired result |φ〉 is the outcome. Measurements on the resulting system

can be used to reconstruct the same statistics of the second party’s measurement as found

for the equivalent two-time state, |ψφ〉. This picture will be useful to keep in mind for the

next chapter, when I use the framework in the context of quantum key distribution.

An important tool in quantum information theory is the Choi-Jamio lkowski isomor-

phism [53, 54]. There are two statements associated with this theorem although the

distinction is rarely made. Choi’s isomorphism [53] is between the set of operators on a

Hilbert space H and the set of vectors upon the doubled space H⊗H. It says that every

operator can be represented as a bipartite state and vice versa. This is often understood

as a theorem which allows quantum-gate teleportation. In gate teleportation, Alice has

access to qubits A and B and Bob has access to qubit C. Alice begins with the state ρA

and the two parties share a Bell state |Ψ+〉BC . The aim is to leave Bob with the state

E(ρ), in which E is some map. It is a form of state teleportation in which the gate is
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implemented during teleportation, and of course one way to do this is to teleport the state

and have Bob perform the gate locally. As the steps here are on two different spaces (the

first on HA⊗HB, the second on HC) they commute and can be implemented in a different

order. If Bob first performs the map E on his qubit before the state teleportation, the

state which the two parties share is the Choi state associated with that map. This is the

link between Choi’s isomorphism and gate teleportation. Jamio lkowski’s [54] is similar

although the mapping is between operators on H and vectors on the space H⊗H†, where

the dagger indicates the dual space. It is the mathematical theorem upon which operator

space is based. There is a subtle distinction between the two in that only one is basis

dependent. Choi’s map was seen to arise naturally in the derivation above; it is expressed

in Eq. 3.46 which defines T ′i as an operator on Hin ⊗ H†out. Similarly, in Eq. 3.60 we

see the superoperator T i : Hin ⊗Hout → H†in ⊗H
†
out appearing; this is the Jamio lkowski

representation of the channel. These maps are visualised in Fig. 3.2. The choice between

Kraus operator and Choi-Jamio lkowski representation of sequential measurements is the

only freedom available, and the underlying mathematical structure is fixed.

To emphasise the distinction between the superoperator Ti, which was initially intro-

duced and the Choi superoperator T ′i , it is useful to discuss the different representations

of the identity superoperator. One is a map of the type I : Hin⊗H†in → Hout⊗H
†
out which

leaves states invariant (i.e, I|λ〉〉 = |λ〉〉 ∀ |λ〉〉). For a two-dimensional Hilbert space, this

is

I = |00†〉〉〈〈00†|+ |01†〉〉〈〈01†|+ |10†〉〉〈〈10†|+ |11†〉〉〈〈11†|. (3.61)

This object is different to those of interest here, which are the Choi operators on the space

Hin ⊗ H†out. These objects are obtained from the ‘original’ maps by the permutation of

indices defined in Eq. 3.46. Doing this for each term individually in I one finds

I ′ = |00†〉〉〈〈00†|+ |00†〉〉〈〈11†|+ |11†〉〉〈〈00†|+ |11†〉〉〈〈11†|

= |I〉〉〈〈I|. (3.62)

That there are two different representations of the identity initially seems strange but

becomes more intuitive if it is noted that the identity in one case acts upon two-time

states rather than states in the more traditional sense. In fact, if one is not careful upon

this point then we can quickly get nonsensical results: for example by considering that

the probability of measuring the outcome |1〉 if the state |0〉 was prepared is given by

P(0|1) = 〈〈01†|I|01†〉〉 = 1.

As discussed earlier, an operator’s Choi-Jamio lkowski isomorphism is often interpreted

as the channel which teleports it. This channel has also been analysed as a quantum comb

and as a conditional state. Quantum combs [62, 63] are the main analytic tool used when

analysing quantum networks, which are mathematical objects which combine channels

and POVMs. The comb is given by the Choi-Jamio lkowski operator which represents a

given quantum network. This is closely linked to what was demonstrated above, in which

a Kraus operator is represented by the Choi vector |Aik〉〉 associated with its channel.

However, clearly the maps Hin → Hout which have been used are particularly simple forms
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Figure 3.2: A visualisation of the different Hilbert spaces which are used throughout this

proof, showing the objects (density matrix ρ, POVM element π
(2)
j and Kraus operators

Aik) which are associated with each pair. Each of the four relevant Hilbert spaces is
associated with a different colour and shape according to the upper half of the figure. The
maps can then be written as in the lower half.
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of quantum network which involve just two Hilbert spaces and hence the more complex

cases (involving, for example, concatenations of multiple channels or large numbers of

Hilbert spaces) are not included.

Leifer and Spekkens [55] find that the Jamio lkowski operator of a channel is best inter-

preted as the conditional state of the two Hilbert spaces which it relates (and which they

associate with spacetime regions rather than the traditional states). This is an operator

on a product space defined such that the probability distributions of individual measure-

ments are found by tracing out either space. A similar result is found here: in Eq. 3.53,

the effect for the first measurement is derived by tracing out the space associated with the

second measurement. Their article uses this isomorphism to put acausal conditional prob-

abilities (on spatiotemporally separated regions) on a similar footing to causally related

conditional probabilities. Both of our works use that the space of two-time states and the

space of channels are isomorphic, however I consider only a single causal structure and so

do not derive their full formalism.

Finally, so far I have provided a derivation for the probability rule for two measurements

only. It is natural to ask whether the results generalise to processes involving three or more

measurements and the methods developed are easy to generalise. For a non-degenerate

measurement, the probability rule is written as

P(i, j|s, x) = 〈〈ρ|A(1)
i |π

(2)
j 〉〉, (3.63)

as seen in Eq. 3.46. At this point it is easy to see that the probability rule associated with

a potential third measurement would straightforwardly take the form

P(i, j, k|s, x) = 〈〈ρ|A(1)
i A

(2)
j |π

(3)
k 〉〉. (3.64)

By considering the preparation-and-first-measurement events are a single preparation, I

now introduce |ρ′i〉〉 = A
(1)
i |ρ〉〉, so that the rule is 〈〈ρ′i|A

(2)
j |π

(3)
k 〉〉, precisely the same as

in the two-measurement case. The rest of the calculations follow the method used earlier,

and would result in the three-measurement Kraus rule as well as all the associated state

update rules and conditional probabilities. In this and the two measurement case discussed

in the main text above I’ve examined multiple measurements on the same system, however

a natural further generalisation would be to look at cases where two or more different

systems are measured. This would bring the work presented here closer to the quantum

networks and conditional states formalisms.

3.7 Basic examples

In this chapter it is seen that the formalism of two-time states emerges as a natural

framework for sequential measurements. As this framework may be unfamiliar, it is useful

to explore some short worked examples. In the next chapter, I develop the formalism

more fully and show that it can be used to develop attacks for quantum key distribution

protocols. Here I look at two shorter examples, demonstrating the impossibility of partial
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transposition and analysing an interferometry experiment.

3.7.1 Partial transposition

The transposition, which is positive but not completely positive, is a commonly discussed

example of an unphysical map [10]. It finds practical application in entanglement detec-

tion. If the density matrix on HB only of a bipartite state ρAB is tranposed, an operation

I denote P, then the updated state ρB = TrA(P(ρAB)) is positive, while the overall den-

sity matrix can have negative eigenvalues. In the framework used here, this can be seen

straightforwardly by writing out the superoperator P and verifying that it cannot be

written in the form required by Eq. 3.49. Transposition is a map that acts as follows:

P(|0〉〈0|)→ |0〉〈0|

P(|0〉〈1|)→ |1〉〈0|

P(|1〉〈0|)→ |0〉〈1|

P(|1〉〈1|)→ |1〉〈1|, (3.65)

which is expressed as the following superoperator

P = |00†〉〉〈〈00†|+ |10†〉〉〈〈01†|+ |01†〉〉〈〈10†|+ |11†〉〉〈〈11†|. (3.66)

Here I have followed Eq. 3.46 in order that this operator is on the correct Hilbert space

however, as the index structure is identical for the alternative configuration, the subscripts

are dropped. The condition for allowed operations is that they are positive semi-definite,

therefore to show that an operation is disallowed it must be shown that it has negative

eigenvalues. In matrix notation the superoperator is

P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (3.67)

and the eigenvalues λ are found in the usual manner, by solving the equation |P −λI| = 0.

This reveals three degenerate eigenvectors with eigenvalue λ = 1 and one with eigenvalue

λ = −1, a negative value which shows that the superoperator cannot be associated with

any physical action. This result has been arrived at by transforming the problem into

an eigenvalue calculation, a tool that recurs throughout the next chapter. That negative

probabilities occur can be seen by considering the follow series of events. A bipartite

system on HA ⊗HB is prepared in the maximally entangled Bell state |Φ+〉 = (|0A0B〉+

|1A1B〉)/
√

2. System A only is transposed followed by a measurement with the outcome

|Ψ−〉 = (|0A1B〉 − |1A0B〉)/
√

2. What is the probability of this outcome? I begin by
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constructing the two-time state,

|Φ+Ψ†−〉〉

=
1

2

(
|00†〉〉A|01†〉〉B − |01†〉〉A|00†〉〉B + |10†〉〉A|11†〉〉B − |11†〉〉A|10†〉〉B

)
, (3.68)

which represents the preparation and measurement events. The probability that this

occurs, given the discussed operation, is

〈〈Φ+Ψ†−|PA ⊗ IB|Φ+Ψ†−〉〉

=
1

2
〈〈Φ+Ψ†−|

(
−|10†〉〉A|00†〉〉B − |10†〉〉A|11†〉〉B + |01†〉〉A|00†〉〉B + |01†〉〉A|11†〉〉B

)
= −1

2
, (3.69)

where the identity operation performed on B is again IB = |I〉〉〈〈I| (as was discussed

above). The impossibility of physical transposition is made evident by the appearance of

a negative probability.

3.7.2 Interferometry

Interferometers are ubiquitous pieces of equipment in optics. A photon enters a beam-

splitter and travels down two arms of different length, such that a phase difference φ is

introduced and the state becomes |ρ〉 = (|0〉 + eiφ|1〉)/
√

2. The two paths are combined

through a second beamsplitter and the photon is measured in the |±〉 = (|0〉 ± |1〉)/
√

2

basis. It is well known that an interference pattern will be displayed in such a case if we

post-select on a given outcome, but that this interference pattern will be lost if a which-

way measurement is performed to localise the photon within a given arm. This simple

experiment can be used to present some of the objects used in my formalism.

We can begin by constructing the two-time state associated with post-selection on a

given outcome, for which I choose |+〉. The two-time state is given by

|ρ,+〉〉 = |ρ+†〉〉

=
1

2
(|0〉+ eiφ|1〉)(|0〉+ |1〉)

=
1

2
(|00†〉〉+ |01†〉〉+ eiφ|10†〉〉+ eiφ|11†〉〉. (3.70)

The act of not measuring the path information can be represented by the identity super-

operator, I = |I〉〉〈〈I|, so the probability of outcome |+〉 is

P(+|ρ) = 〈〈ρ,+|I〉〉〈〈I|ρ,+〉〉. (3.71)

As 〈〈I|ρ,+〉〉 = (1 + eiφ)/2, this probability is

P(+|ρ) =
1

4
(1 + e−iφ)(1 + eiφ) =

1

2
(1 + cos(φ)). (3.72)

The interferometer displays an interference pattern. This is not a surprising result, however
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it has allowed me to demonstrate how to construct the two-time states, which are used

heavily in the next chapter. The next object to calculate is the equivalent probability in

the case that the path degree of freedom is measured interstitially. I consider that the

experimenter chooses to measure the arm associated with |0〉. For this measurement I

require a Kraus operator such that the associated effect is π0 = |0〉〈0|. Remembering

that POVM elements are found by tracing out the daggered space of the superoperator,

there is some freedom in how to complete the channel. I emphasise this point by writing

the transformation as |0ψ†〉〉〈〈0ψ†|, where |ψ〉 can be any normalised state. In this case,

following the usual probability rule

P(0,+|ρ) = 〈〈ρ,+|0ψ†〉〉〈〈0ψ†|ρ,+〉〉, (3.73)

for which we can readily evaluate 〈〈0ψ†|ρ,+〉〉 = (〈ψ†|0†〉+ 〈ψ†|1†〉)/2 and hence find

P(0,+|ρ) =
1

4

(
〈0†|ψ†〉+ 〈1†|ψ†〉

)(
〈ψ†|0†〉+ 〈ψ†|1†〉

)
(3.74)

As there is no dependence upon φ here, it is seen that a which-way measurement has

destroyed the interference. Again, this is a well-established result however it has allowed

me to demonstrate how to use the formalism, in particular highlighting the freedom in

assigning Kraus operators from effects.

3.8 Summary

The Kraus formalism has long been the accepted method for handling joint and conditional

probabilities in quantum theory. In this chapter, I showed why it plays such an important

role: the probability rule is unique in the sense that there is no other linear map from

positive operators to probabilities. As a corrollary, the state-update rule associated with

the back-reaction of the measurement follows from the same axioms. Furthermore the

structure of the two-state vector formalism emerges as the natural way to handle pre- and

post-selection. I also provided some simple examples, meant to highlight the properties of

the different objects that have arisen in the operator space formalism.

In the next section I provide further examples, demonstrating that the formalism has a

role to play in quantum cryptography. This emphasises an important practical application

that may be found for foundational work of this kind. It is likely that users of the new

quantum technologies, as people unfamiliar with quantum theory, are likely to be sceptical

when first introduced to ideas such as the uncertainty principle. The axiomatic approach

used here demonstrates that security in fact relies upon some not-so-strange sounding

assumptions.

58



Chapter 4

Two-time states for quantum key

distribution

Quantum key distribution (QKD) is a set of protocols which distribute a key, for use in

cryptographic exchanges, between two communicating parties and which use the quan-

tum mechanical concept of measurement disturbance to ensure that any eavesdropping is

flagged to the legitimate users [64, 65]. In a typical prepare-and-measure scheme [10], one

of these parties will produce a quantum state, the signal, and send it through a quan-

tum channel to a second party who measures the state. I follow standard procedure in

naming the transmitter Alice and the receiver Bob. After Bob’s measurement, one of the

two users publically shares information which allows for a pre-determined subset of send-

measure correlations to be saved. This process is called sifting. Finally, logical bit values

are assigned. According to the principle of measurement disturbance, any interlocutor

hoping to know which states were exchanged will leave a measurable trace of their activ-

ity: Alice and Bob could in principle uncover them by examining the final set of logical

bits. Nonetheless, this illegitimate party (Eve) will attempt to hide behind systemic noise.

Quantum cryptanalysis partly involves calculating her best strategy. There is much more

to QKD than the outline I’ve sketched here and the reader is directed to §2.5 for a more

wide-ranging discussion.

In designing her eavesdropping strategy, Eve needs to take into account correlations

between events in the past (e.g., the signal prepared by Alice) and the future (e.g., Bob’s

measurement outcomes and the results of the sifting process). There is some friction

between this picture and quantum mechanics as it is typically presented, in which there is

a preparation procedure followed by a sequence of measurements. In the previous chapter,

I introduced a framework which is ideally suited for the task at hand. There, I associate

two-time states with the preparation and second measurement in a two-measurement

process. In a prepare-and-measure QKD scheme, these two events are the actions of the

legitimate users. Also, I associated the quantum channel with the Choi-Jamio lkowski

vector of the Kraus operator, an object which I called the Kraus vector. This is the piece

of the scheme associated with eavesdropping.

In this chapter, which is adapted from Ref. [2], I show that the formalism of two-time

states and Kraus vectors can be used to optimise eavesdropping strategies. Typically,
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the problem is transformed into that of finding the eigenvalues of superoperators. After

some slight modifications of the framework so that it is more suited for this task, it is

applied to three QKD protocols: BB84 [66], B92 [67] and PBC00 [68]. The former two

are both well studied in the literature and I acquire the known best schemes. For PBC00,

which is less well-explored, a novel result is found: that the best attack does not transfer

any information about the signal states to Eve. All of this work is then linked to other

aspects of quantum cryptanalysis, for example the recently popular measurement device

independent schemes.

4.1 Framework

In the previous chapter I showed, from some basic physical assumptions about quantum

theory, that the Kraus rule is the unique joint probability rule. This led me to employ

an operator space formalism in which different aspects of a preparation-measurement-

measurement scheme are associated with two-time states (for the preparation and second

measurement) and Kraus vectors (for the first measurement). This separation maps neatly

onto the knowledge which Eve can use to design her eavesdropping strategies. For refer-

ence, the probability rule which was derived is

P(i, j|s, x) =
∑
k

〈〈Ψj |Aik〉〉〈〈Aik|Ψj〉〉. (4.1)

The object denoted |Ψj〉〉 in this equation is the two-time state and is used in the calcu-

lations of this chapter to represent correlations between Alice’s preparations and Bob’s

measurements. If their actions are limited to preparing pure states |ψ〉 and measuring

projectively |φj〉 then the two-time state has the form |Ψj〉〉 = |ψφ†j〉〉. The other ob-

ject that appears in the probability rule is the vector |Aik〉〉, which is isomorphic to the

Kraus operators Aik which act in the usual Hilbert space formalism. This formula can be

rewritten as

P(i, j|s, x) =
∑
k

〈〈Aik|Ψj〉〉〈〈Ψj |Aik〉〉. (4.2)

It is seen that, whereas the channel was initially seen to act as a superoperator acting

upon the two-time state, it is equally valid to think of the two-time state as a super-

operator acting upon the intermediate measurement outcome. In terms of information

processing, this can be associated with the act of pre- and post-selection. In quantum key

distribution schemes, Alice and Bob share classical bits in terms of correlations between

particular preparations and measurements; the calculations performed below all begin by

constructing a superoperator in terms of the relevant two-time states.

I will use the above probability rules to construct figures of merit which quantify the

amount of knowledge Eve can extract from each qubit. Before doing so, I simplify the

problem by limiting the range of possible attacks.

I have already made one restriction in setting up the problem by assuming that collec-

tive and coherent attacks, which take information from more than one Alice-Bob qubit,

are disallowed. The reason for this is that the derivations of eavesdropping strategies
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are to be understood partly as a demonstration of the capabilties of the operator space

formalism for sequential measurements. I would also argue that investigating particular

subsets of attacks can help us to gain insights into the underlying logic of QKD protocols

and this will be demonstrated in particular for the three-state protocol PBC00.

A further limit I place on Eve’s attacks is that she associates a single Kraus operator

with each bit value. There is a good reason to do this, which is that such a measurement

can be seen to be minimally disturbing, in the sense that the post-measurement state

will be closer to the initial state than if multiple Kraus operators were allowed. This is

most easily seen by showing that any two-index Kraus operator can be implemented in

two stages. I define Ai = Uiπ
1
2
i and A′ik = Aikπ

− 1
2

i U †i as the Kraus operators representing

this two-stage process, where π
1
2
i is an effect depending on the required instrument; it is

seen that Aik = A′ikAi, so that the operator of interest can be represented in this form,

and also that
∑

iA
†
iAi =

∑
ik A

′†
ikA
′
ik = I, so that each of these steps is in itself a valid

measurement. The two-index attack Aik is implemented by a single index operator Ai

followed by a second measurement and, as such, will disturb the incoming state more than

Ai by itself would. For this reason, in deriving the eavesdropping strategies I associate a

single operator |Ei〉〉 with each classical bit value.

With these assumptions in place, Eq. 4.2 is rewritten as

P(i, j|s, x) = 〈〈Ei|Sj |Ei〉〉. (4.3)

I have introduced the notation Sj for the superoperator associated with Alice and Bob’s

correlations, which is to be formed of outer products of two-time states (as well as sums

of these). In this sense, the superoperator is similar to density operators, which are

also formed of outer products of states. Eve’s attack is represented by the Kraus vector

|Ei〉〉, with the notation changed to avoid confusion with Alice’s preparation. In what

follows, I first construct the superoperator relevant to the particular QKD protocol which

is analysed. I use this, along with Eq. 4.3, to maximise a set of figures of merit (soon to

be introduced) by allowing the set |Ei〉〉 to vary while ensuring simultaneously that they

form a complete set, ∑
n

〈n†|Ei〉〉〈〈Ei|n†〉 = I. (4.4)

A discussion of this point surrounds Eq. 3.52, in the previous chapter. The set of |n〉 here

is any complete set of basis vectors that span the Hilbert space.

There are a number of senses in which an eavesdropping task might be said to be

optimal. In this work I consider two figures of merit. As I am only considering individual

attacks, rather than providing a full security analysis, each value seeks to quantify the

amount of information which Eve gains from a single qubit. One is the probability that

all three parties agree on the bit value, denoted P(A = E = B) and the other is the

probability that all three agree conditioned upon agreement between the two legitimate

users, P(A = E = B|A = B). Of course, these two are related by the usual rule of
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conditional probability:

P(A = E = B|A = B) =
P(A = E = B)

P(A = B)
. (4.5)

On the denominator of the expression on the right hand side of this equation appears

the term for Alice and Bob’s agreement. It is this figure which quantifies Eve’s ability

to avoid detection. After their processes of sifting and privacy amplification, the two

legitimate parties will announce a number of their bits and with this information will

estimate P(A = B) in order to decide whether or not an eavesdropper has been present.

In an ideal system any errors herald Eve but in reality there will be some inherent noise and

Eve will be safe if the induced noise is low enough, as Alice and Bob are forced to assume

that all errors are due to Eve. Rigorous security proofs provide quantum bit error rates

Q below which the key can be made secure through techniques of privacy amplification.

I provide this latter quantity alongside the probability P(A 6= B) = 1 − P(A = B) that

the two legitimate users disagree with each other as to the bit value, which helps to

contextualise the attack.

I take advantage of the principle of bit symmetry, by which I mean that, given the

high level of symmetry in the protocols under consideration, it should hold that if all

three parties relabel which measurement outcomes correspond to which bit values then

all probabilities are invariant. A particular example would be all parties agreeing on a

particular bit value: the probability that all three bit values are zero should be equal

to the probability that all three bit values are one. This is expressed algebraically as

〈〈E0|S0|E0〉〉 = 〈〈E1|S1|E1〉〉 and used to simplify some of the expressions that appear. In

fact, as shown by Fuchs et al. [69], this places no restrictions upon the possible schemes

that Eve may consider as there always exists a bit-symmetric attack which can reach the

same value for the figures of merit that I consider as one which is not bit symmetric. This

property also simplifies the search for optimised Kraus operators in a different way. In the

case that the quantum system being represented is a qubit, Eq. 4.4 implies that∑
i

Tr (|Ei〉〉〈〈Ei|) = 2. (4.6)

As each bit value is associated with a single Kraus operator and these operators are

symmetric, this equation implies that 〈〈E0|E0〉〉 = 〈〈E1|E1〉〉 = 1 and hence the vectors

which I seek below must be normalised.

4.2 General results

The sifting stage in a QKD protocol will remove, from the measurement record, anys

outcomes which are irrelevant to the final key. It is directly after this stage that the classical

bit values are assigned, and it is these bit values which are represented by superoperators.

In particular these superoperators represent post-selection of the three possible outcomes.

Two possible outcomes are those in which the parties share a bit value: Alice and Bob

both believe the bit value is either 0 or 1. I assign to these cases the superoperators S0
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and S1. These are constructed of outer products of the two time states, |Ψj〉〉, which

represent the correlations which leave Alice and Bob with that shared information, as well

as sums of those. For example, if a protocol states that Alice sending the state |0〉 and

Bob measuring the state |0〉 gives them a bit value of 0 then the associated superoperator

will be S0 = |00†〉〉〈〈00†|; if the protocol also specifies that Alice sending |1〉 and Bob

measuring |1〉 results in that bit value then the superoperator will include this outer

product, i.e., S0 = |00†〉〉〈〈00†|+ |11†〉〉〈〈11†| in this artificial example. In a similar manner

the superoperator SX will represent those outcomes in which Alice and Bob disagree about

the value of the key’s bit, i.e., Alice believes that it is 0 but Bob believes that it is 1 or

vice versa. In general, it is true that Eve can change the sifting rate by her actions and

this dynamic is captured by the superoperator SS = S0 + S1 + SX which represents the

chance that a given qubit is not sifted from the final key (as all non-sifted bits must be

agreed or disagreed upon by the two legitimate parties).

From these superoperators it is possible to arrive at general results which can then be

applied in the case of specific eavesdropping protocols to find optimal strategies. This is

the route that I take here. It has the advantage of separating out the features which are

true of all eavesdropping protocols from those which arise in specific cases.

For each protocol, two strategies are derived which are each optimal in different senses.

These are represented by different figures of merit. As I explained, one is the probability

that all three parties agree upon the bit value. Such an event is conditional upon a given

bit value of the timeslot not being removed during the sifting process, and so the quantity

is most generally expressed by

P(A = E = B) =

∑
i P(B = E = i|A = i)P(A = i)

P(S)
, (4.7)

where i gives the bit value and where I have denoted by P(S) the probability of a given

bit not being sifted, which in full is

P(S) =∑
i

P(B = E = i|A = i)P(A = i) +
∑
ij

P(B = i, E = i or j|A = j)P(A = j) (4.8)

as sifting occurs in the set of cases for which neither party assigns a bit value. All of

the protocols considered here are unbiased in the sense that all signal states are sent by

Alice with equal probability and so the probabilities P(A = i) will be factored out of both

numerator and denominator. Using that fact, and writing the probabilities in terms of

superoperators (Eq. 4.3), gives

P(A = E = B) =

∑
i〈〈Ei|Si|Ei〉〉∑

i〈〈Ei|(S0 + S1 + SX)|Ei〉〉
. (4.9)

This is further simplified using bit symmetry, as outlined above. This enforces that, for

the measurement outcomes which I am searching for, 〈〈E0|S0|E0〉〉 = 〈〈E1|S1|E1〉〉 and

similarly for the other sets of bit values. With these rules the vector |E1〉〉 is eliminated
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and the figure of merit is expressed as

P(A = E = B) =
〈〈E0|S0|E0〉〉

〈〈E0|(S0 + S1 + SX)|E0〉〉
. (4.10)

At first glance this formula suggests that it is possible to ensure agreement between all

three parties by enforcing that 〈〈E0|(S1 + SX)|E0〉〉 = 0, however it is not possible for

this condition to hold in general. If only the two outcomes |E0〉〉 and |E1〉〉 form a given

measurement, this condition is equivalent to the statement that the probability of shared

bit value 1 and the probability of disagreement are both equal to zero or, to take a

more concrete example, P(B = 0, E = 0|A = 1) = P(B = 1, E = 0|A = 1) = 0.

This can only hold in two cases. One is that P(E = 0|A = 1) 6= 0, so that we have

P(B = 0|A = 1) = P(B = 1|A = 1) = 0 according to Bayes’s rule. but this would imply

that Bob may believe the bit value to be neither zero nor one, which is obviously absurd.

The other possibility is that P(E = 0|A = 1) = 0. This condition can only hold if Eve’s

POVM element has zero overlap with the density matrix associated with Alice’s signal,

and this cannot be done if Alice sends a mixed state. It is seen that in general no attack

can give Eve all of the legitimate user’s shared key string. In order to maximise Eq. 4.10

it is necessary to inspect the specific form in each case.

The second figure of merit which I calculate is the probability that all three par-

ties agree, conditioned upon agreement between the two legitimate users. As the set of

outcomes satisfying the latter condition is included in the set of non-sifted results, the

superoperator SX need not be used and this probability can be written as

P(A = E = B|A = B) (4.11)

=

∑
i P(B = E = i|A = i)P(A = i)∑

i P(B = E = i|A = i)P(A = i) +
∑

ij P(B = i, E = j|A = i)P(A = i)
.

Again, that Alice’s signal states are equiprobable and that Eve’s attacks are bit symmetric

allow this expression to be written solely in terms of the vector |E0〉〉:

P(A = E = B|A = B) =
〈〈E0|S0|E0〉〉

〈〈E0|(S0 + S1)|E0〉〉
. (4.12)

This result has the suprising implication that, for any quantum key distribution protocol,

it is possible for Eve to uncover all bit values used from the subset in which Alice and

Bob have a shared bit value. This will be the case if she constructs Kraus operators which

satisfy

〈〈E0|S1|E0〉〉 = 0. (4.13)

If this condition is satisfied then P(A = E = B|A = B) = 1. The reason that this will be

possible in all cases for this figure of merit but not the former is that there is no further

requirement for Eve to satisfy; she need not ensure simultaneously that 〈〈E0|SX |E0〉〉 = 0

and so, in contrast to the previous figure of merit, can always construct a measurement

such that she knows the entire bit string for this subset of qubits. Of course, Eve will

pay the price of introducing errors which reveal her actions. In general, a whole class of
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measurements will satisfy this condition and further considerations must be used to pick

out a particular measurement. Below, I am guided by Eve’s desire to hide.

4.3 BB84

4.3.1 Scheme

The first and most well-explored QKD scheme is due to Bennett and Brassard and was

published in 1984. Hence, it is known as BB84 [66]. This scheme uses four different

qubit states: the computational basis states |0〉 and |1〉 and the σx eigenbasis states

|+〉 = (|0〉 + |1〉)/
√

2 and |−〉 = (|0〉 − |1〉)/
√

2, which can correspond to the horizontal-

vertical versus diagonal polarisations of a photon in an optical scheme. Alice has access to

a random number generator. She prepares a system in one of these four states with equal

probabilities and sends it to Bob. The latter measures with a POVM corresponding to

suitably weighted projectors onto the same set of states and records his outcome. After this

is repeated for all N resource qubits, one of the two parties will for each qubit announce

only the basis from which their state is drawn. In the cases that the two parties agree on

the basis then they know unambiguously that they each agree with the other assuming

that there is no noise on the channel and no eavesdropping has occured. Otherwise, there

is ambiguity in the shared information and those qubits need to be discarded. For example,

if Alice sends the state |0〉 and Bob announces that his result was in the computational

basis then each knows the other’s bit value. However, Bob’s outcomes |+〉 or |−〉 are

consistent with both |0〉 and |1〉 being transmitted and therefore the two parties cannot

share information. After the sifting, classical bit values are assigned to each slot. I use

the convention in which zero is assigned to |0〉 and |+〉 and one is assigned to |1〉 and |−〉.
In this manner, Alice and Bob are able to share a string of bits which form their secret

key.

A large literature exists on the security of and possible attacks upon the BB84 protocol,

and it has formed the basis for experimental QKD [70, 71]. The information-theoretic

security has been proven under a number of different conditions [72], most famously in

an analysis by Shor and Preskill [73]. At the time of writing, the variant of BB84 which

performs best is a modification by Gottesman and Lo [74] in which Alice and Bob both

make public announcements after the protocol. For that routine, security holds up to

a noise level of Q = 18.9%. Alongside this full-blown security analysis a wide range of

specific attacks have been considered. The simplest possible is that Eve measures the sent

qubit projectively and resends based upon her result. As is shown in §2.5, the pair of

states which maximise her chance of correctly identifying the bit are those which form

the Breidbart basis. If this attack is performed then the probability that all three parties

subsequently share a qubit is P(A = E = B) = (3 + 2
√

2)/8 ≈ 0.73, however it is possible

to do better, in terms of the figures of merit considered here. Eve’s most general possible

scheme is to entangle the signal qubit with a probe and then measure the latter. By

allowing for this more general set of attacks, researchers have been able to show that

Eve’s best action is to perform a CNOT gate, acting in the Breidbart basis, in which the
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sent qubit is the target and the control is her own suitably prepared probe. This attack

is known as the Fuchs-Peres-Brandt attack [69, 75, 76] and is derived below as the attack

which maximises the probability of conditional agreement.

4.3.2 Eavesdropping strategy

I now turn to the task of optimising Eve’s action and begin by representing the measure-

ments associated with bit value 0 and 1 as |E0〉〉 and |E1〉〉 respectively.

The first step is to construct the relevant superoperators which are associated with

Alice and Bob’s postselection. In the BB84 protocol, the resultant bit value is 0 in two

cases: either, Alice sends the state |0〉 and Bob measures with |0〉 as the outcome, or,

Alice sends the state |+〉 and Bob measures with |+〉 as the outcome. As discussed above,

this information is represented by the superoperator

S0 = |00†〉〉〈〈00†|+ |+ +†〉〉〈〈+ +† |. (4.14)

Similarly, the bit value 1 is assigned to a timeslot in the cases that Alice and Bob agree that

the sent state was either |1〉 or |−〉. These two cases are represented by the superoperator

S1 = |11†〉〉〈〈11†|+ | − −†〉〉〈〈− −† |. (4.15)

In terms of these two definitions, the probability that all three parties agree upon the bit

value in a given timeslot, conditioned upon the fact that the bit value was not discarded

during the sifting stage of the protocol, is given by Eq. 4.10. In fact the BB84 protocol in

particular is simpler than others to work with as the rate of sifting is independent of Eve’s

attack. The reason for this is that sifting depends only upon Bob’s choice of measurement

basis, and is independent of the state preparation and measurement outcome. Formally

this manifests in the fact that SS = S0 + S1 + SX = 2I (I here is the identity operator

which has the property I|A〉〉 = |A〉〉 for all |A〉〉; see previous chapter for discussion of

this point) and so the probability rule is simplified to

P(A = E = B) =
〈〈E0|S0|E0〉〉

2
. (4.16)

This figure can be straightforwardly maximised by letting the eavesdropper’s Kraus vectors

be proportional to the eigenvector of the relevant superoperator which has the largest

eigenvalue. The Kraus vector must also be normalised. For the current case, then, the

form of |E0〉〉 that maximises its expectation value upon S0 is

|E0〉〉 =
1

N0

(
|00†〉〉+ |+ +†〉〉

)
. (4.17)

The normalisation constant N0 here must be such that 〈〈E0|E0〉〉 = 1. For this to hold

then N0 =
√

3. The relevant eigenvector of S1 is evaluated in a similar manner. Bringing
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both results together, I represent the overall strategy by the two Kraus vectors

|E0〉〉 =
1√
3

(
|00†〉〉+ |+ +†〉〉

)
|E1〉〉 =

1√
3

(
|11†〉〉+ | − −†〉〉

)
. (4.18)

The associated eigenvalue is :

S0|E0〉〉 =
1√
3

(
1 + 〈〈00†|+ +†〉〉

)(
|00†〉〉+ |+ +†〉〉

)
=

3

2
|E0〉〉. (4.19)

This result is used to evaluate Eq. 4.16 and I find that

P(A = E = B) =
3

4
(4.20)

is the maximum value that this probabilty can take.

As the reader will be more familiar with the Hilbert space formalism for quantum me-

chanics, it is helpful to represent the measurement in that form. By the usual isomorphism

between the Kraus vectors and operators in Hilbert space, the operation can be expressed

using the Pauli operators as

E0 =
1√
3

(|0〉〈0|+ |+〉〈+|)

=
1

2
√

3
(2I + σx + σz) .

E1 =
1√
3

(|1〉〈1|+ |−〉〈−|)

=
1

2
√

3
(2I − σx − σz) . (4.21)

It is also useful to know the probability that this measurement results in Alice and

Bob disagreeing upon the bit value of the key in a given slot. This probability quantifies

the possibility that they will discover Eve’s action and abort the protocol. In the BB84

strategy, disagreement occurs if Bob’s measured state is orthogonal to that sent by Alice.

The probability is best calculated using the superoperator SX introduced earlier which,

for this case, takes the form

SX = |01†〉〉〈〈01†|+ |10†〉〉〈〈10†|+ |+−†〉〉〈〈+−† |+ | −+†〉〉〈〈−+† |. (4.22)

In terms of this object, the probability that the two legitimate parties disagree is then

P(A 6= B) =
1

4
(〈〈E0|SX |E0〉〉+ 〈〈E1|SX |E1〉〉) . (4.23)

The factor of 1/4 is again calculated from the sifting operator. It corresponds to the fact

that Alice chooses between four equiprobable states. In order to evaluate this expression,
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the expectation of the operator SX under the pair of Kraus vectors (Eq. 4.18) is required.

Taking |E0〉〉 as a concrete example, one finds first

SX |E0〉〉 =
1

2
√

3

(
|01†〉〉+ |10†〉〉+ |+−†〉〉+ | −+†〉〉

)
(4.24)

and, from this, the expectation value is

〈〈E0|SX |E0〉〉 =
1

3
. (4.25)

Precisely the same value is found for the other measurement outcome, which one might

expect given the symmetry of the protocol. Overall the probability that Alice and Bob

disagree, given that Eve has used her best attack, is

P(A 6= B) =
1

6
. (4.26)

The next figure of merit to be analysed is the probability that the three parties agree

conditioned upon agreement between the two legitimate parties. For the previously derived

optimal scheme, Eq. 4.21, this is evaluated from the quantities derived so far:

P(A = E = B|A = B) =
P(A = E = B)

1− P(A 6= B)
=

3/4

1− 1/6
=

9

10
(4.27)

however it may be expected that Eve can do better, at the cost of introducing errors,

especially given that she knows more about the correlations between Alice and Bob in the

considered scenario. In §4.2, Eq. 4.13, I showed that any measurement such that |E0〉〉
has an overlap of zero with S1 will cause all three parties to agree under the conditions of

this figure of merit. Any |E0〉〉 of the form

|E0〉〉 = a|0+†〉〉+ b|+ 0†〉〉 (4.28)

satisfies this requirement, as can be seen by inspecting Eq. 4.15. The two coefficients here

can be freely chosen, subject to the contraint that the vector |E0〉〉 is normalised, i.e.,

a2 + ab+ b2 = 1 (4.29)

must hold. The other measurement outcome |E1〉〉 is that which is zero when acted upon

by the superoperator S0 and must take the form

|E1〉〉 = a|1−†〉〉+ b| − 1†〉〉, (4.30)

again subject to the same constraints. To emphasise: any normalised vectors satisfying

the above two equations will form a measurment in which P(A = E = B|A = B) = 1.

What distinguishes the attacks is the varying levels of noise that they introduce. As

an example, I consider the simplest case: a = 1, b = 0. This is the pair of vectors

|E0〉〉 = |0+†〉〉, |E1〉〉 = |1−†〉〉 (or, alternatively the measurement can represented by the
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operators E0 = |+〉〈0|, E1 = |−〉〈1|). The first outcome is impossible if Alice sends that

state |1〉 and that result, E0, will leave all other signal qubits in the state |+〉. Of these

three preparations, |0〉 and |+〉 will lead to agreement between Alice and Bob and for

|−〉 they will disagree, however, this latter possibility is not part of the subset of events

considered by this figure of merit. Overall, Bob will definitely receive either |+〉 or |−〉
and for both of these states there is a fifty percent chance that he disagrees with Alice as

to which state was sent. Hence P(A 6= B) = 1/2 for this measurement. It is natural to

minimise the noise as a means of selecting from the wider space of possible measurements.

This is a constrained optimisation task: I require the minimum of P(A 6= B) subject

to constraint Eq. 4.29. The first step is to write this quantity in terms of a and b:

P(A 6= B) = 〈〈E0|SX |E0〉〉+ 〈〈E1|SX |E1〉〉 =
1

2

(
a2 + b2

)
. (4.31)

In order to optimise this subject to the constraint, I introduce the function

F (a, b) =
1

2

(
a2 + b2

)
+ λ

(
a2 + b2 + ab− 1

)
, (4.32)

where λ is a variable which is to be found. Optimisation will occur when ∂F (a, b)/∂a =

0 = ∂F (a, b)/∂b and these two constraints collectively enforce that a = b and fix λ = 2/3.

Substituting a = b into Eq. 4.29 gives a = ±1/
√

3, the two possible solutions here being

equivalent measurements up to a phase which does not contribute to the measurement

process. I choose the uppermost value of a and the measurement which is found to

maximise P(A = E = B|A = B) while simultaneously minimising P(A 6= B) is represented

by the pair of vectors

|E0〉〉 =
1√
3

(
|0+†〉〉+ |+ 0†〉〉

)
|E1〉〉 =

1√
3

(
|1−†〉〉+ | − 1†〉〉

)
. (4.33)

All that remains is to make a link between this and the Fuchs-Peres-Brandt attack, which

was stated above to be Eve’s best attack for the BB84 protocol. This is seen most straight-

forwardly by writing the two vectors in their Kraus operator representation:

E0 =
1√
3

(|+〉〈0|+ |0〉〈+|)

=
1√
6

(σx + σz + I) ,

E1 =
1√
3

(|−〉〈1|+ |1〉〈−|)

=
1√
6

(σx + σz − I) . (4.34)

Any set of Kraus operators can be implemented by a CNOT gate which acts in the basis

in which they are mutually diagonalised. Here, this is the Breidbart basis therefore I have

arrived at the Fuchs-Peres-Brandt attack [69, 75, 76]. While this was already established
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as Eve’s best attack in the BB84 protocol, it has been found here as the solution to a

two step calculation. A general class of measurements was seen to solve and eigenvalue

problem and this class was selected from by contrained optimisation.

4.4 B92

4.4.1 Scheme

The second illustration of my method for finding optimal eavesdropping strategies is an

analysis of B92, a protocol developed by Bennett who realised that the BB84 protocol

could be performed with just two states [67]. In this scheme Alice sends either |0〉 or |+〉
with equal probability and Bob measures in the same manner as in the previously discussed

strategy, using a POVM consisting of equally weighted projectors onto |0〉, |1〉, |+〉, |−〉. If

the received states are either |0〉 or |+〉 then Bob does not know which state was sent, as

both |0〉 and |+〉 would be consistent with his result. He announces either outcome and

those qubits are sifted from the final key. However, in the case that his outcome is |−〉 then

he knows that |+〉 could not have been sent (as it is orthogonal to the measured state) and

so Alice must have prepared |0〉. These outcomes are recorded and assigned classical bit

value 0. Similarly, if he measures |1〉 then |+〉 must have been sent and these qubits are

given the classical bit value 1. In this manner, a key can be formed. More generally, any

two non-orthogonal signal states can be used and a relevant POVM constructed, however

the analysis is exactly the same and so I consider only one particular case.

There is a well-known vulnerability to B92 in that Eve can perform unambiguous state

discrimination on the incoming bits [15, 19, 20, 21, 77]. The result of this is that she is

able to characterise precisely in which state Alice prepared her qubit, at the cost of having

no knowledge of the sent state for some subset of results. For this reason, the protocol is

only secure up to a noise level of Q = 3.4% [78, 79].

4.4.2 Eavesdropping strategy

I proceed as in the BB84 analysis, constructing superoperators associated with Alice and

Bob’s shared bits as well as disagreement between them. There is an added complexity for

B92 over BB84 in that, as the post-selected measured states do not form an orthogonal

set, it is possible for Eve’s measurement to change the amount of sifting which occurs.

This is also handled using a superoperator. Using all of these objects, expressions for the

various figures of merit will be found and then maximised, again as an eigenvalue problem.

The two shared-bit superoperators are

S0 = |0−†〉〉〈〈0−† |

S1 = |+ 1†〉〉〈〈+1†|. (4.35)

Both of these forms can be seen by noting which correlations correspond to which classical

bits in the protocol. I also construct a superoperator associated with the sifting that

occurs. This includes, as well as the shared bits, those cases in which Bob measures the
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state |1〉 given that Alice has sent the state |0〉, which cannot occur in the absence of an

eavesdropper but which are induced by Eve’s measurements. The piece which is associated

with cases in which Alice and Bob disagree is

SX = |01†〉〉〈〈01†|+ |+−†〉〉〈〈+−† |. (4.36)

The set of outcomes that are not sifted is associated with the superoperator SS , which

may be written in terms of the above objects as SS = S0 +S1 +SX . As shown in Eq. 4.10,

the value P(A = E = B) is given most simply in terms of the Kraus vector |E0〉〉 only.

At first glance it seems possible to find a measurement in which 〈〈E0|(S1 +SX)|E0〉〉 = 0,

which would give P(A = E = B) = 1. This would be the case if

|E0〉〉 = A| − 0†〉〉, (4.37)

in which A is a variable. The symmetric result associated with the other bit value is

|E1〉〉 = A|1+†〉〉. (4.38)

However, this cannot be a complete measurement and there must be another outcome

associated with each bit value. Why? As discussed following Eq. 4.10, it cannot be true

that 〈〈E0|(S1 + SX)|E0〉〉 = 0, as this implies some nonsensical results (e.g., Bob finding

neither bit value for some qubits). Another way to see that this pair of measurement

outcomes is unphysical is by checking the normalisation condition, Eq. 4.4, which requires

that A satisfies

A2 (|1〉〈1|+ |−〉〈−|) = I. (4.39)

On the right hand side is the identity and on the left hand side the only freedom is

a constant of proportionality. The bracketed object is clearly not proportional to the

identity and so no measurement can be performed which is satisfied by |E0〉〉 and |E1〉〉 in

their current form. The solution to this problem is to introduce a third possible outcome,

|E?〉, which allows the set of outcomes to be completed and yet is associated with neither

classical bit. If I allow that Eve associates the bit value 0 with the timeslot in half of

the cases in which she gets this result, and the bit value 1 in the other half, then it is no

longer true that either bit value is encoded in just a single Kraus vector and there is no

issue with normalisation. The requirement that the measurement with all three outcomes

be trace-preserving is

A2 (|1〉〈1|+ |−〉〈−|) +
∑
i

〈i†|E?〉〉〈〈E?|i†〉 = I. (4.40)

The third measurement outcome tells Eve nothing about the key which is being shared

and so the optimal scheme minimises the chance that this outcome happens. However,

that outcome must still correspond to an effect and hence π? =
∑

i〈i†|E2〉〉〈〈E2|i†〉 must
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be a positive operator. The operator π? can be expressed, following Eq. 4.40, as

π? = I −A2 (|1〉〈1|+ |−〉〈−|)

= (1− A2

2
)|0〉〈0| − A2

2
(|0〉〈1|+ |1〉〈0|) + (1− 3A2

2
)|1〉〈1|. (4.41)

The task is to maximise A (which parameterises the likelihood of either of the two useful

outcomes) while ensuring that π? ≥ 0. The two eigenvalues of this operator are found to

be λ = 1− (2±
√

2)A2/2. In order that π? be postive semi-definite I need to consider only

the lowermost of these two eigenvalues. Setting this to zero gives A2 = 2−
√

2 and so π?

has a single non-zero eigenvector |ψ?〉. Any |E?〉〉 satisfying the pair of equations

π? =
∑
i

〈i†|E?〉〉〈〈E?|i†〉 = |ψ〉〈ψ|

|ψ〉 =

√
2−
√

2

2

(
(−1−

√
2)|0〉+ |1〉

)
(4.42)

is an optimal measurement. This freedom in choosing the Kraus operator is the same as

one has in mapping effects onto their associated instruments. What has been shown is

that Eve is best-served by performing unambiguous state discrimination: she can know

the sent state precisely for some subset of qubits at the cost of losing all information about

the rest of them. As mentioned above, this is well established to be the weakness of the

B92 protocol.

The probability that all three parties agree upon the bit value, conditioned upon

agreement between the legitimate users, is the second figure of merit considered in each

of these demonstrations. This object can be maximised in the same manner as in the

previously discussed cases. As shown in Section 3.3, one can always satisfy P(A = E =

B|A = B) = 1 by finding a pair of Kraus vectors such that 〈〈E0|S1|E0〉〉 = 0, i.e., one

ensures that Eve can never get the outcome 0 in the cases which Alice and Bob assign to

1, and vice versa. The pair of outcomes satisfying this condition is

|E0〉〉 = a| − ψ†〉〉+ b|φ0†〉〉

|E1〉〉 = c|1λ†〉〉+ d|ρ+†〉〉. (4.43)

The space of measurements of this form is large: there are four complex variables a, b, c, d

as well as four states |ψ〉, |φ〉, |λ〉, |ρ〉, though not all objects may be freely chosen given

the requirements of bit symmetry and trace preservation which I am enforcing for Eve’s

attacks. I begin by using the requirement of bit symmetry, extending the attack so that

it is symmetric even in the cases in which Alice and Bob disagree upon the bit value,

outcomes outside the regime in which it acts. That the probability of all three parties

finding the same outcome should be equal for both bit values, zero and one, gives

|a〈−†|ψ†〉+ b〈0|φ〉|2 = |c〈1†|λ†〉+ d〈+|ρ〉|2. (4.44)

I now consider the cases in which Alice and Eve agree with each other but not with Bob
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(i.e., A = 0, B = 1, E = 0 and A = 1, B = 0, E = 1). These will occur with equal

probability if

|a〈1†|ψ†〉|2 = |c〈−†|λ†〉|2. (4.45)

Finally, the third condition is arrived at by enforcing bit symmetry between those in which

only Eve and Bob agree with each other although not with Alice. I find

|b〈+|ψ〉|2 = |d〈0|ρ〉|2. (4.46)

There is, of course, a fourth condition: that Alice and Bob agree with each other but not

with Eve, but this set is a subset of the cases in which Alice and Bob agree in general.

As the figure of merit I consider enforces the latter set, this is not a further requirement.

Guided by these formula, I choose a particular subset of measurements which satisfy this

set without requiring further optimisation. By inspection, it is seen that Eqs. 4.44, 4.45

and 4.46 are all satisfied if |ψ〉 = |−〉, |φ〉 = |0〉 and |ρ〉 = |+〉. Furthermore, in order to

contrast with the measurement derived from the previous figure of merit, I choose to look

at attacks which preserve the trace with only two outcomes, i.e., I disallow unambiguous

state discrimination. This choice of states is a = c and b = d, and the two-outcome

measurement is complete if∑
ij

〈i†|Ej〉〉〈〈Ej |i†〉

=

(
a2

2
+

3b2

2
+ ab

)
|0〉〈0|+ b2 − a2

2
(|0〉〈1|+ |1〉〈0|) +

(
3a2

2
+
b2

2
+ ab

)
|1〉〈1|

= I. (4.47)

It is easily seen that the parameterisation which satisfies this is a = b = 1/
√

3, so that the

Liouville space representation of the measurement is

|E0〉〉 =
1√
3

(
| − −†〉〉+ |00†〉〉

)
|E1〉〉 =

1√
3

(
|+ +†〉〉+ |11†〉〉

)
. (4.48)

As in the previous case it is useful for the reader to have this written out in the Kraus

operator representation:

E0 =
1√
3

(|−〉〈−|+ |0〉〈0|)

=
1

2
√

3
(2I + σz − σx)

E1 =
1√
3

(|1〉〈1|+ |+〉〈+|)

=
1

2
√

3
(2I − σz + σx) . (4.49)

In order to make clear that this measurement acts as expected, I consider a specific run
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in which Alice prepares her qubit in the state |0〉. In one sixth of cases, Eve incorrectly

identifies the bit value as 1, corresponding to the Kraus operator |E1〉〉 and, if this occurs,

the state sent on to Bob will be |+〉. At this point, it is definite that he disagrees with

Alice as the outcome |−〉, which for him is associated with the bit value 0, cannot occur.

Thus, Eve’s measurement will ensure that if she has the wrong bit value then so does

Bob, which is what I have required of this optimal measurement. Alice and Bob may still

disagree in some of the cases in which Eve has correctly identified Alice’s bit value and a

value of P(A 6= B) = 1/5 is found for this attack on the B92 protocol.

4.5 PBC00

4.5.1 Scheme

The third and final measurement that I consider is PBC00, which uses three trine states

to share Alice and Bob’s bits [68]. This set of states can be parameterised as

|ψk〉 =
1√
2

(
|0〉+ ei2πk/3|1〉

)
, (4.50)

in which k = 0, 1, 2 and which in an optical communication system would correspond to

three equiangular linear polarisations of a photon. Alice picks one of these three states with

equal probability and transmits it to Bob. The latter measures such that the corresponding

POVM

πk =
2

3
|ψk〉〈ψk| (4.51)

is a set of projectors onto the anti-trine ensemble

|ψk〉 =
1√
2

(
|0〉 − e−i2πk/3|1〉

)
, (4.52)

which is the set of states which are orthogonal to the trine states, 〈ψk|ψk〉 = 0. It is

impossible for Bob to measure the state orthogonal to that which was sent and he has

equal probability of measuring each of the two remaining states. Alice now announces

one of the states which she did not send. There are two possibilities: based upon his

measurement, Bob either already knows this, in which case he announces as such and

both parties discard the qubit from their key; otherwise, this is new information and both

parties now know which state Alice sent without that piece of information being announced

publicly. This shared information forms the basis for constructing a classical key. Logical

bit values are assigned as such: if Alice announces that she didn’t send the state one step

clockwise of that which she did, the bit value is 0. If the former is one step anti-clockwise

of the latter, the bit value is 1.

As a concrete example, consider that Alice sends a qubit in the state |ψ0〉. In the

absence of any change of this state due to the quantum channel, Bob will find either the

outcome |ψ1〉 or the outcome |ψ2〉 with equal probability. If he finds the former then he

knows with certainty that Alice sent either |ψ0〉 or |ψ2〉. If Alice subsequently announces

that she did not send |ψ1〉 then Bob can still not discover which state she did send. This
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result cannot be used as part of the key. On the other hand, Alice may announce that she

didn’t send |ψ2〉. In this case Bob knows that neither |ψ1〉 nor |ψ2〉 were sent and hence

|ψ0〉 must be the transmitted state. As the state which Alice announced was one step

clockwise of that which she sent, the bit value assigned in this case is 0. An important

point is that the classical bit value is decided upon at the point of the announcement,

rather than when the state is sent. It is seen that this has interesting implications for the

optimal eavesdropping strategy.

Although specific eavesdropping strategies are not explored in the literature for the

three-state scheme, security proofs have been performed which show that protocol is secure

against intercept-resend attacks up to an error rate of Q = 9.81% [80, 81]. The protocol

has also been experimentally demonstrated [82].

4.5.2 Eavesdropping strategy

In order to find the optimal eavesdropping strategies for this scheme, I again start by

constructing the superoperators which represent shared bit values:

S0 =
1

2

(
|ψ0ψ

†
2〉〉〈〈ψ0ψ

†
2|+ |ψ1ψ

†
0〉〉〈〈ψ1ψ

†
0|+ |ψ2ψ

†
1〉〉〈〈ψ2ψ

†
1|
)

=
3

8

(
I − e−i2π/3|00†〉〉〈〈11†| − ei2π/3|11†〉〉〈〈00†|

)
. (4.53)

S1 =
1

2

(
|ψ0ψ

†
1〉〉〈〈ψ0ψ

†
1|+ |ψ1ψ

†
2〉〉〈〈ψ1ψ

†
2|+ |ψ2ψ

†
0〉〉〈〈ψ2ψ

†
0|
)

=
3

8

(
I − ei2π/3|00†〉〉〈〈11†| − e−i2π/3|11†〉〉〈〈00†|

)
. (4.54)

A factor of 1/2 is required in both to bring into the calculation that Alice’s announcement

will cause fifty percent of outcomes to be sifted. As there is no chance that the announce-

ment can cause sifting if Bob measures the state orthogonal to that which she did send,

the disagreement superoperator is

SX = |ψ0ψ
†
0〉〉〈〈ψ0ψ

†
0|+ |ψ1ψ

†
1〉〉〈〈ψ1ψ

†
1|+ |ψ2ψ

†
2〉〉〈〈ψ2ψ

†
2|

=
3

4

(
I − |00†〉〉〈〈11†| − |11†〉〉〈〈11†|

)
. (4.55)

The sifting factor could have been moved into the definition of the figures of merit however

defining the superoperators in this manner ensures that SS = S0 +S1 +SX and allows me

to use the same general results, Eq. 4.10 and 4.13, as in other cases.

I turn first to the figure of merit P(A = E = B) and remind the reader that this was

shown in Eq. 4.10 to be a ratio of the expectation values of S0 and SS both acting upon

the vector |E0〉〉. The important insight here is to note that both of those superoperators

differ from the identity only in terms of outer products of |00†〉〉 and |11†〉〉. It must be

true that the Kraus vector which maximises this ratio is a superposition of these two basis

vectors, as adding any further terms would just decrease the constant of normalisation

without increasing the overall probability of success. The bit symmetric pair of outcome
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vectors is

|E0〉〉 =
1√
2

(
|00†〉〉+ eiφ|11†〉〉

)
|E1〉〉 =

1√
2

(
|00†〉〉+ e−iφ|11†〉〉

)
(4.56)

and the optimisation task is simply to find the value of φ such that P(A = E = B) is

maximised. It is interesting to note that these correspond to two unitary transformations:

the former is a rotation by φ anti-clockwise around the Bloch sphere and the latter is a

rotation by the same angle in the opposite direction. (The corresponding Kraus operators

are E0 = (|0〉〈0|+ eiφ|1〉〈1|)/
√

2 and E1 = (|0〉〈0|+ e−iφ|1〉〈1|)/
√

2, both of which can be

seen to satisfy the usual condition UU † = U †U = I up to a factor of 1/2, which represents

Eve’s probability of choosing either.) That this operator is unitary implies the remarkable

result that Eve gains no information about Alice’s state from her intervention! This is an

artifact of something I point out above: that the bit value in this strategy is not assigned

based upon the choice of signal state, but only upon Alice’s later announcement. Eve’s

best strategy is to change the state which Bob receives and in this manner choose which

signal states are subsequently sifted.

The superoperator which represents sifting is found to be

SS = S0 + S1 + SX =
3

2

(
I − 1

4

(
|00†〉〉〈〈11†|+ |11†〉〉〈〈00†|

))
(4.57)

which gives, by substitution into Eq. 4.10,

P(A = E = B) =
1− cos(2π3 − φ)

4− cos(φ)
. (4.58)

One can straightforwardly maximise this expression, i.e., solve for dP(A = E = B)/dφ = 0

in the standard manner. This process reveals that the optimal strategy gives P(A = E =

B) = 3/5 when the angle satisfies sin(φ) = −5
√

3/14, a measurement which has an

associated error rate of P(A 6= B) = 2/15. While the particular angle seems odd at first,

it can be rationalised to a degree. There is a π/6 phase difference between the expressions

for the probability being either sifted or post-selected. The angle φ = sin−1(−5
√

3/14)

lies somewhere between the two.

The other figure of merit considered is the probability that all three parties agree,

conditioned upon agreement between Alice and Bob. As was seen, this probability can

always be made equal to one by satisfying the requirement 〈〈E0|S1|E0〉〉 = 0, i.e., that

there is no chance of Alice and Bob sharing the bit value one if Eve measures zero. As S1,

given by Eq. 4.54, differs from the identity only in the basis vectors |00†〉〉 and |11†〉〉 (as

was true for the previous calculation), I again consider attacks of the form taken in Eq.

4.56. A quick calculation reveals that the requirement is

〈〈E0|S1|E0〉〉 =
3

8

(
1− cos(

2π

3
+ φ)

)
= 0, (4.59)
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which is trivially solved by φ = −2π/3, a more understandable angle of rotation than that

calculated above as it corresponds to moving between different choices of trine state. Due

to the conjugation introduced by moving between Liouville space and the Hilbert space

operator representation, this corresponds to a clockwise rotation of 2π/3 around the Bloch

sphere.

This attack corresponds to Eve choosing the bit value which all three parties share,

at the cost of of introducing a high error rate. This dynamic can be seen most clearly by

considering a particular run of the protocol. I again consider those cases in which Alice

sends |ψ0〉. If Eve chooses the bit value zero then, without extracting any information

from the signal qubit, she rotates the state by 2π/3 and so sends on the state |ψ1〉 to the

receiver. There is now no chance that Bob’s outcome is |ψ1〉, which would be required in

order for him to believe that one is the shared bit value. At this point, the only way that

the two legitimate users can share a bit value is if Bob’s measurement outcome is |ψ2〉 and

Alice then announces that she did not send |ψ1〉; all other cases will either be sifted (Bob

measures |ψ2〉 and Alice announces that she didn’t send |ψ2〉) or lead to disagreement

between the two legitimate users. It follows from this discussion that there is an induced

error rate of P(A 6= B) = 2/3 due to Eve’s attack. Evaluating P(A 6= B) confirms this.

4.6 Comments

As a tool for developing eavesdropping strategies, the two-time state formalism is seen to

be effective. In all cases, the task of finding optimal strategies in terms of a given figure of

merit is transformed into just a few lines of calculation. Furthermore, I have found that

interesting insights are still to be gained by investigating specific attacks even in the era

of, for example, device independent QKD. One aspect which is highlighted here is that the

optimal attack is highly dependent on how bit values are assigned to the signal qubits. For

B92, just a single signal state is associated with each classical bit value and Eve is then

required to characterise precisely the sent state. This contrasts with PBC00 for which the

classical bit value is not associated with any particular state and for which Eve’s attack

does not extract any quantum information. BB84 lies somewhere in the middle. This

insight may help in designing future protocols.

Throughout this chapter, it has been assumed that quantum key distribution schemes

are implemented in their ‘prepare-and-measure’ form, in which a signal qubit is transmitted

by one party and then received by a second party. Within the literature on quantum

security, an alternative approach is more common in which ‘entanglement-based’ routines

are analysed. The resource in such schemes is that the two legitimate users share a

maximally entangled Bell state (e.g., |Φ+〉). Each party then measures their part of

the state in an equivalent manner to their preparation or measurement in the associated

prepare-and-measure routine. In full security proofs the entanglement based scheme is

found to be simpler to analyse although that is not the case for analysing specific attacks,

as I have done here. A further reason is more philosophical. Some parties remain sceptical

as to the true security advantage allowed by key distribution routines based upon quantum

mechanics. Using the prepare-and-measure scheme allows for the principles upon which
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security is based to be pinpointed, as in the previous chapter.

To some extent, choosing which framework (either measurement- or entanglement-

based) to analyse in is a matter of taste, as the two are formally equivalent. In any QKD

routine Alice and Bob’s actions must determine pure states, otherwise it would be impos-

sible for the receiving party to know with confidence that their resultant bit value is the

same as the transmitter. I denote by |ψA〉 and |ψB〉 two particular outcomes associated

with Alice and Bob’s respective measurements in the entanglement based scheme. The

probability distribution of these outcomes is P (A,B) = |〈ψA|〈ψB|Φ+〉|2. It is seen that

Alice and Bob’s measurements are already represented by a bipartite state in this frame-

work. Indeed, it is the two-time state |ΨB〉 ↔ |ψAψB〉 which I have used throughout (to

be precise, it is the Jamio lkowski isomorphism of the two time state rather than the Choi

isomorphism). Eve’s attacks in the entanglement-based scheme will act as a channel on

the bipartite state therefore, if her attack is associated with a Kraus operator E†i , the

state is written as E†i ⊗ I|Φ+〉. This form is the same as the objects |Ei〉〉 which I have

used throughout. The overall probability rule which includes Eve’s attacks is

P (A,B,E) = |〈ψA|〈ψB|Ei ⊗ I|Φ+〉|2

= 〈Φ+|Ei ⊗ I|ψAψB〉〈ψAψB|E†i ⊗ I|Φ
+〉. (4.60)

It can be seen that the expression for probability on the second line here is the same to Eq.

4.3, up to a choice of either Choi or Jamio lkowski isomorphism. Thus, the two frameworks

are formally equivalent.

Another area of quantum cryptography is closely related to the two-time state formal-

ism which I have used. This is the set of device independent (DI) and measurement-device

independent (MDI) schemes [27, 28, 29]. The development of research into these areas is

required by the necessity that a typical quantum-communications user will not be able to

fully control all devices in their system. For example, components may be purchased from

a third party who may or may not take advantage of the buyer’s trust. To get around this

possibility, DI and MDI protocols allow for full security even if an eavesdropper is in full

control of the quantum channel. This is done by including Bell tests upon entangled states

as part of the routine in such a way as to alert Alice and Bob if the equipment is behaving

in a predictable (and hence, not fully quantum) manner. On a formal level the reason

that these schemes are interesting here is that they typically require Alice and Bob to send

qubits to a central untrusted server. For a similar reason as in the entanglement-based

schemes, a probability rule emerges which is similar to that from two-time states. As

security proofs in MDI analyses are typically simpler than those for measurement device

dependent schemes, this suggests that it may be possible to map results from the former

field onto the latter. This would be a job for future research.

4.7 Summary

In the previous chapter I derived several aspects of sequential measurement theory based

upon some assumptions that we would want the probability rule to have, such as noncon-
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texuality and completeness. This analysis suggested a framework of two-time states and

Kraus vectors for the natural way to handle series of measurements. As a demonstration

of this point, this chapter includes analyses of three different quantum key distribution

protocols: the well-explored BB84 and B92 protocols and the lesser-examined PBC00. I

gain some general insights into the possiblity of maximising my two figures of merit.

Some natural extensions of this work present themselves. One could modify the scheme

so that it more closely represents practical implementations, for example, by allowing for

loss in the quantum channel. I have also pointed out above that the method of analysis

is similar in spirit to that used in MDI and DI quantum key distribution, suggesting that

there may be fruitful applications in using the two-time state formalism to results in that

field. However, for the remainder of this thesis I turn my attention to a different problem

entirely: multiple-copy state discrimination.
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Multiple-copy state discrimination

with noisy preparation

Throughout this thesis I have been writing, sometimes quite abstractly, on the topic of

quantum measurement. In this chapter I consider a problem, multiple-copy state discrimi-

nation, which is more concrete than the axiomatic analysis of Chapter 3. To begin, I recap

some basic concepts. If two states are orthogonal, then it is always possible to distinguish

them with certainty. More generally, if the two states are non-orthogonal, then this cannot

be done. The topic concerned with understanding this issue is called state discrimination

[10, 15, 17, 83] and much research on this topic is concerned with finding the optimal

measurement, i.e., minimising the probability of either incorrectly, or inconclusively, iden-

tifying the state. Unambiguous state discrimination [15, 19, 20, 21], definitively identifies

the state in some measurements but in the rest is inconclusive. This chapter focuses on the

other approach, minimum-error discrimination, in which every outcome gives an answer

but at the cost of finding the incorrect outcome in some cases. One aims to minimise the

error probability and the best-case value is given by the Helstrom bound [10] which, for

two equiprobable pure states, is

PH =
1

2

(
1 +

√
1− cos(2θ)

)
, (5.1)

in which 2θ is the angle between the states to be discriminated. This was introduced in

§2.4, where a more detailed discussion can be found, but is repeated here for convenience.

Here, I am concerned with multiple-copy state discrimination [84, 85, 86, 87], in which

there are two-or-more systems in a given state. State-discrimination schemes for multiple

copies are roughly grouped into two categories: local, in which each system is indepen-

dently measured (allowing that the measurement which is performed can depend on the

previous outcomes), and collective, in which a single measurement is performed on the

overall product system. An example of each kind is discussed below. At the most general

level, allowing that any number of initial states could be prepared, and that these states

are either pure or mixed, some broad features emerge. In general, that is for discriminat-

ing two or more states which may or may not be pure, one can do better by measuring

collectively rather than locally. This turns out not to hold for two-pure-state discrimina-
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tion. As I show below, there exists a local scheme that is able to do as well as the best

collective protocol [88, 89, 90]. Both schemes are able to reach the Helstrom bound, which

for N copies becomes

PNH =
1

2

(
1 +

√
1− cosN (2θ)

)
. (5.2)

A further distinction can be made between global and local properties in terms of what is

optimal, as well as measurement, and this leads to some counterintuitive results [86], par-

ticularly when applied to mixed-state discrimination. In the case of local measurements,

the distinction between local and global optimality is the idea that there exists a scheme

in which one identifies the state at each stage with suboptimal probability but overall,

by taking the transmitted state to be the most commonly found outcome, does reach the

related Helstrom bound. Strangely, this holds even if one performs the same measurement

on each system. Such odd results highlight one useful property of multiple-copy state

discrimination: it allows researchers to test their understanding of quantum measurement

theory. It also has practical applications and one example is metrology: environmen-

tal details are imprinted onto a quantum state and measuring the probe corresponds to

measuring that property, e.g., the direction of a magnetic field.

In this chapter, the question that I look to answer is: does having access to a quantum

memory improve the resilience of the measurement scheme to noise? In particular, I

take one example of local measurement (Aćın et al.’s local adaptive scheme [88]) and

one example of collective measurement (Blume-Kohout et al.’s quantum data gathering

[91]) and calculate the probability that the scheme, as designed for distinguishing pure

states, correctly identifies the transmitted state in the prescence of preparation noise.

In any actual protocol, it will be impossible to perfectly prepare the resource systems.

Instead of pure states, it is instead mixed states which must be discriminated. Two

surprising results are found. In the many-copy limit, I show that both schemes tend

to the same probability of success, which is less than one. I also find that the local

adaptive measurement scheme consistently outperforms quantum-data-gathering, which

goes against the accepted wisdom that ‘nonlocality without entanglement’ is always useful

[85, 92, 93]. In the first section, I define some basic quantities that are used throughout.

Following that, I present detailed algebraic derivations for the success probability of both

schemes in the prescence of noise. The final section compares the performance of the two

schemes and considers how they might be improved.

5.1 Basic model

In this chapter, I derive the probability of success for two multiple-copy state-discrimination

schemes (local adaptive measurements and coherent measurements). In principle either of

these schemes could be tailored to discriminate in a large range of situations. The most

general case would be that any number of copies of any number of pure or mixed states can

be prepared in a Hilbert space of any dimension. However, I restrict myself to the simplest

non-trivial case: two non-orthogonal pure states, of which there are N copies, defined on

a two-dimensional space. This allows me to find analytic solutions for the probability in
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a way that is not possible in general.

Any pair of non-orthogonal states can be parameterised by

|ψk〉 = cos(θ)|0〉+ (−1)k sin(θ)|1〉, (5.3)

with k = 0, 1. The overlap of the two possible states defined in this way is cos(2θ). In an

ideal multiple-copy state discrimination scheme one has N copies of |ψk〉, i.e., the multi-

partite state |ψk〉⊗N , however I assume here that there is some noise in the preparation

such that this does not hold. In practice, it is never possible to prepare a state perfectly in

a chosen pure state. Even if tomography is performed for a large number of copies then θ

will only be restricted to some probability distribution of non-zero width. To model this,

I associate with each system Si a level of noise, represented by a change δθi in the angle

which parameterises the state. The actual state of the system will then be

|ψ̃(i)
k 〉 = cos(θ + δθi)|0〉+ (−1)k sin(θ + δθi)|1〉. (5.4)

The values of the noise parameter δθi on each system are uncorrelated in this model and

are related to the preparation fidelity F of the experimental apparatus. I assume that

the probability distribution of the noise is symmetric, i.e., that P(δθi) = P(−δθi). One

could be more specific about the type of noise (i.e., usually one would assume that it is

Gaussian) however this level of detail is not needed to relate the fidelity to the probability

of success. By definition, the fidelity is given by the average overlap of the pure state Eq.

5.3 and that in Eq. 5.4. The latter object will be |〈ψ̃(i)
k |ψ

(i)
k 〉|

2 = cos2(δθ) and therefore

〈cos2(δθi)〉 = F. (5.5)

Here, 〈·〉 has its usual meaning as the average, here taken over the noise distribution. From

this it is easy to see that

〈sin2(δθi)〉 = 1− F (5.6)

and hence

〈cos(2δθi)〉 = 2F − 1. (5.7)

The above three results all follow simply from the definition of fidelity. I can furthermore

use the assumption that the noise is symmetric about δθ = 0 for

〈sin(2δθi)〉 = 0. (5.8)

It turns out that these four basic results are all that is needed to calculate the probabilty

of success for each of the schemes which are considered here. With these results, it is

possible to characterise, with a single parameter F , the noise on each of the individual N

systems. Because the noise on each qubit is independent, one may average over the noise

on each state individually.
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5.2 Local adaptive measurement

The main aim of this work is to ask whether collective, rather than individual, measure-

ments are more successful at discriminating imperfectly prepared states. As an example

of an individual measurement scheme, I consider the local adaptive scheme.

5.2.1 Scheme

I follow here the scheme of Aćın et al. [88] although similar results have been acquired

by others [89, 90]. The main result of their work is a demonstration that it is possible to

reach the Helstrom bound for the two bipartite states |ψk〉⊗N by performing just individual

measurements on each of the copies and allowing for each measurement to depend upon

the measurement record. The scheme which does this and which I develop in more detail

shortly turns out to be Bayesian updating, by which is meant that after each outcome

one simply updates their prior probabilities associated with the preparation of each of the

two states and then performs the associated Helstrom measurement. What is particularly

surprising is that the measurement which should be performed at the nth step is dependent

only upon the single result at the (n− 1)th step, i.e., if the outcome associated with |ψ0〉
was found at the prior stage then one measurement is performed; if instead |ψ1〉 was found

then a different measurement is optimal. In this sense, the scheme is Markovian.

Aćın et al.’s scheme acts in the following manner. A projective measurement is per-

formed upon each of the N copies and the user’s final guess is that the prepared state is

that associated with the final measurement only. The measurement which is performed

at each step is represented by a projector onto the state

|ω(iNxN−1)〉 = cos(φx − iN
π

2
)|0〉+ sin(φx − iN

π

2
)|1〉. (5.9)

In this formula iN = 0, 1 represents the outcome of the measurement of the Nth qubit;

xN−1 is the measurement record which is thought of as a bit string of all previous outcomes.

For maximum notational clarity, a short example is one in which zero followed by one

were the outcomes of two consecutive measurements. This would be represented in the

notation introduced here by i1 = 0, i2 = 1, x1 = 0 and x2 = 01, i.e., x are bit strings and

i are individual outcomes. The angle φx depends on the measurement record (I omit the

subscript N − 1 on x here for neatness; different notation is introduced below for other

bit strings) and is to be found such that the overall probability of success is optimal. I

consider just the case in which |ψ0〉 and |ψ1〉 occur with equal probability and then the

success probability is

Pad
N =

1

2

∑
x

(
|〈ω(0xN−1)|ψ0〉|2P(xN−1|0) + |〈ω(1xN−1)|ψ1〉|2P(xN−1|1)

)
, (5.10)

in which P(xN−1|0) is the probability that the bit string xN−1 occured given that the

state |ψ0〉 was prepared. The sum is over all possible bit strings of length (N − 1) as the

probability of an overall outcome for the scheme is dependent upon the final outcome only.
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The authors then show that this figure is maximised if the angle φx satisfies

cos(2φx) = (−1)iN−1 cos(2θ)

√
1− cos2N−2(2θ)

1− cos2N (2θ)
, (5.11)

and for reference I derive this result in Appendix B of this thesis. On the right hand side

the only appearance of the measurement record is in the value iN−1, which is the outcome

of the measurement directly previous to the one being considered. This is the sense in

which the scheme is Markovian. The authors are able to show that this scheme reaches

the Helstrom bound for the measurement, i.e., if there is no noise in the preparation

Pad
N =

1

2

√
1− cos2N (2θ). (5.12)

The method which they use to show this does not generalise to the noisy case and so,

below, I present an alternate calculation which, though it is somewhat more involved, can

be extended to cases with imperfect preparation fidelity.

5.2.2 Success probability

The central value which is calculated here is the probability Pad
N of identifying the correct

state. This calculation is fairly technical and so I summarise the structure here. Firstly, I

perform the calculation in the perfect-fidelity case: I show that Aćın et al.’s local adaptive

scheme satisfies the Helstrom bound. This is done by deriving an inductive relationship,

one which relates Pad
N to Pad

N−1, which is then solved. Secondly, I introduce noise into the

model which results in a different form for the inductive expression. This is again solved

analytically. Finally, I discuss the behaviour of the protocol in the case of a large number

of copies. In this regime it is possible to derive the success probability differently and this

is found to agree with the many-copy limit of the general formula.

I begin with the clean case. Eq. 5.10 is to be evaluated as a function of the overlap

cos(2θ) of the two possible states. This calculation requires the probability that one finds

either 0 or 1 on the final measurement:

P(0|x, 0) = |〈ω(0xN−1)|ψ0〉|2 =
1

2
(1 + cos(2θ) cos(2φx) + sin(2θ) sin(2φx))

P(1|x, 1) = |〈ω(1xN−1)|ψ1〉|2 =
1

2
(1− cos(2θ) cos(2φx) + sin(2θ) sin(2φx)) . (5.13)

Substituting these formulae into Eq. 5.10 gives

Pad
N =

1

2

[
1 +

1

2

∑
x

(sin(2θ) sin(2φx) (P(x|0) + P(x|1))

+ cos(2θ) cos(2φx) (P(x|0)− P(x|1)) )

]
. (5.14)

At this point the two trigonometric functions of φx, both of which are evaluated from Eq.
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5.11, are used in the function, which becomes

Pad
N =

1

2

[
1 +

1

2

sin2(2θ)√
1− cos2N (2θ)

∑
x

(P(x|0) + P(x|1))

+
1

2
cos2(2θ)

√
1− cos2N−2(2θ)

1− cos2N (2θ)

∑
x

(−1)iN−1(P(x|0)− P(x|1))

]
. (5.15)

Given that a bit value is prepared, some entry must appear in the measurement record.

This means that the first sums that occur in this expression are over complete sets of

outcomes, and
∑

x(P (x|0) + P (x|1)) = 2. The second sum can be evaluated by using the

rules of conditional probability. In the above expression, x is the list of possible outcomes

of the first (N − 1) measurements. I adopt ẋ to denote the series of the first (N − 2)

results, so that

P(x|a) = P(iN−1ẋ|a) = P(iN−1|ẋ, a)P(ẋ|a). (5.16)

The relevant sum is hence∑
x

(−1)iN−1(P(x|0)− P(x|1))

=
∑
ẋ

∑
iN−1

(−1)iN−1(P(iN−1|ẋ, 0)P(ẋ|0)− P(iN−1|ẋ, 1)P(ẋ|1)), (5.17)

where I have also separated out the sum into contributions to x from ẋ and from the

penultimate outcome. From Eq. 5.13 each of the sums involved in the right hand side can

be evaluated. A general expression is found:∑
iN−1

(−1)iN−1P(iN−1|ẋ, a)

= cos(2θ) cos(2φẋ) + (−1)a sin(2θ) sin(2φẋ) (5.18)

in which a = 0 or 1. The above two results combine for∑
x

(−1)iN−1(P(x|0)− P(x|1)) =
∑
ẋ

(sin(2θ) sin(2φẋ)(P(ẋ|0) + P(ẋ|1))

+ cos(2θ) cos(2φẋ)(P(ẋ|0)− P(ẋ|1))) . (5.19)

This expression is then compared with Eq. 5.14, the initial probability formula. It is seen

that the right-hand side of the above expression is precisely the same as the series in Eq.

5.14 except that it is over the series ẋ (the first N − 2 results) instead of x (the first N − 1

results). Hence, ∑
x

(−1)iN−1(P(x|0)− P(x|1)) = 2
(

2Pad
N−1 − 1

)
(5.20)

and an inductive expression for the probability of success has been found:

Pad
N =

1

2

[
1 +

sin2(2θ) + cos2(2θ)
√

1− cos2N−2(2θ)(2Pad
N−1 − 1)√

1− cos2N (2θ)

]
. (5.21)
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The solution to this equation is the Helstrom bound, Eq. 5.2, as claimed above. To verify

this, substitute Pad
N−1 = (1 +

√
1− cos2N−2(2θ))/2 into the right hand side:

Pad
N =

1

2

[
1 +

sin2(2θ) + cos2(2θ)(1− cos2N−2(2θ))√
1− cos2N (2θ)

]

=
1

2

[
1 +

√
1− cos2N (2θ)

]
. (5.22)

The final piece is to verify that this satisfies also N = 1, so that the chain of induction

holds. In this scheme, one is required to perform the single-copy Helstrom measurement

on the first qubit, and so the proof that Pad
1 has the above form is the same as the

original derivation of the single-copy pure-state Helstrom bound, which I provided in §2.4.

Interested readers should consult that discussion for more details. That the inductive

measurement has this structure is due to the Markovianity of the scheme, i.e., it depends

upon just the previous outcome rather than the entire measurement record. I have followed

Aćın et al. by demonstrating that this measurement is as successful as any possible

measurement for distinguishing pure states. In the case that the preparation is imperfect,

the discrimination is instead between mixed states. To emphasise, what I want to know is

how well the pure-state scheme does in this context. I apply the Markovian scheme used

here, rather than true Bayesian updating, and seek an analogue of Eq. 5.22. The solution

to this problem is what I now present.

As stated above, the first step that this calculation requires is to derive an expression

which is equivalent to Eq. 5.21 but is valid in the case that there is preparation noise.

The objects which change if the system is noisy are the expressions for the probability of

measuring a set of outcomes x given that the state |ψa〉 was sent. The generalisation of

this result is what leads to a different success probability and is found by replacing the

state overlap in Eq. 5.13 such that it is instead between the measured state and the noisy

state, Eq. 5.4. The general result which I find is

P(iN−1|x, a) = |〈ω(iN−1x)|ψ̃(i)
a 〉|2

=
1

2

[
1 + (−1)iN−1 (cos(2θ + 2δθN ) cos(2φx) + (−1)a sin(2θ + 2δθN ) sin(2φx))

]
=

1

2

[
1 + cos(2δθ)(−1)iN−1 (cos(2θ) cos(φx) + (−1)a sin(2θ) sin(2φx))

+ sin(2δθ)(−1)iN−1 ((−1)a cos(2θ) sin(2φx)− sin(2θ) cos(2φx))
]
. (5.23)

Here, a = 0, 1 signifies the state which was transmitted. At this point I can apply the

results from averaging over the noise’s probability distribution, Eqs. 5.7 and 5.6. The

expectation value of this probability is found to be

P(iN−1|x, a) =

1

2

[
1 + (2F − 1)(−1)iN−1 (cos(2θ) cos(2φx) + (−1)a sin(2θ) sin(2φx))

]
. (5.24)

I start from the same position as before, Eq. 5.10, and substitute instead this result for
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the probabilities of the final outcome. The result of this process is almost precisely the

same although, as might be expected from the form of the conditional probability just

above this sentence, an extra factor of (2F − 1) appears before the sum in Eq. 5.14. I

have

Pad
N =

1

2

[
1 +

1

2
(2F − 1)

∑
x

(sin(2θ) sin(2φx) (P (x|0) + P (x|1))

+ cos(2θ) sin(2φx) (P (x|0)− P (x|1)) )

]
. (5.25)

The substitution of the measurement angle φx and the algebraic manipulation of the

resultant expression proceed exactly as in the noiseless case, and the resultant expression

for the probability of success with a resource of N qubits, in terms of the equivalent

probability of success with (N − 1) qubits, is given by

Pad
N =

1

2

[
1 + (2F − 1)

sin2(2θ) + cos2(2θ)
√

1− cos2N−2(2θ)(2Pad
N−1 − 1)√

1− cos2N (2θ)

]
. (5.26)

Again, this is an inductive formula which connects Pad
N with Pad

N−1. Despite the simplicity

of the generalisation, the analytic solution to this result is much more complicated than

in the noiseless case. After some playing around, I find the solution in terms of a series

SN :

Pad
N =

1

2

[
1 + (2F − 1)N

√
1− cos2N (2θ) +

sin2(2θ)√
1− cos2N (2θ)

SN

]
. (5.27)

I have introduced the notation

SN =
N∑
i=1

(2F − 1)N+1−i(1− (2F − 1)i−1) cos2N−2i(2θ), (5.28)

which helps to condense some of the calculations which follow. I now verify that this

solves the above equation and then evaluate the geometric summations which appear in

the series term. This will give the overall probability of success. As before, that this is

the solution can be most easily seen by first writing out the (N − 1) term:

Pad
N−1 =

1

2

[
1 + (2F − 1)N−1

√
1− cos2N−2(2θ) +

sin2(2θ)√
1− cos2N−2(2θ)

SN−1

]
. (5.29)

This must then be substituted into the right hand side of Eq. 5.26. If this gives the general
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formula for the solution, Eq. 5.27, that solution is valid. I find

Pad
N =

1

2

[
1 + (2F − 1)

sin2(2θ)√
1− cos2N (2θ)

+(2F − 1)N cos2(2θ)
1− cos2N−2(2θ)√

1− cos2N (2θ)
+ (2F − 1)

cos2(2θ) sin2(2θ)√
1− cos2N (2θ)

SN−1

]

=
1

2

[
1 + (2F − 1)N

1− cos2N (2θ)√
1− cos2N (2θ)

+
sin2(2θ)(2F − 1)√

1− cos2N (2θ)

(
1− (2F − 1)N−1 + cos2(2θ)SN−1

)]
. (5.30)

It is seen, by examining the definition of the series, that SN = (2F −1)(1− (2F −1)N−1 +

(2F−1) cos2(2θ)SN−1) and so the above equation demonstrates the validity of the solution

which I have provided. The easiest way to see that the second line of this equation follows

from the first is by multiplying the second term by the factor 1+(2F−1)N−1−(2F−1)N−1

and grouping relevant terms. All that remains is to evaluate the series, Eq. 5.28, which

consists of two geometric summations and which are evaluated in the usual manner. After

some simplfication, I am left with

SN = (2F − 1)
1− (2F − 1)N cos2N (2θ)

1− (2F − 1) cos2(2θ)
− (2F − 1)N

1− cos2N (2θ)

1− cos2(2θ)
. (5.31)

Between this and Eq. 5.27, I have an expression for the probability of success for the local

adaptive measurement scheme which is applied to noisy qubits. This is to be compared

with the probability of success for an equivalent scheme which uses a quantum memory.

After deriving the equivalent expression to Eq. 5.30, I compare and contrast the behaviour

of these two functions. Before doing so, I hope to persuade the reader that Eq. 5.30 is

indeed the correct result.

5.2.3 Many-copy limit

It is natural, for a number of reasons, to investigate the many-copy limit. Understanding

the behaviour of Aćın et al.’s scheme in this regime gives a better feel for how it works

in general. Also, as the protocol behaves differently, it is possible to use an alternative

method to calculate the probability of success for a large number of copies. It can thus be

used as a check of the final result, Eq. 5.30, found in the previous section. The N → ∞
limit of that equation is

lim
N→∞

Pad
N =

1

2

[
1 +

(2F − 1) sin2(2θ)

1− (2F − 1) cos2(2θ)

]
= 1− 1− F

1− (2F − 1) cos2(2θ)
. (5.32)

With this expression alone some basic checks can be done. If the fidelity is perfect, F = 1,

the above expression is unity: a user of the local adaptive scheme would know for sure

89



Kieran Flatt

which state had been prepared if they could measure an infinite amount of copies. This

seems intuitive and is backed up by the Helstrom bound. Another parameter of interest

is the angle between the two states. If the two states are precisely the same, |ψ0〉 = |ψ1〉,
then it must be impossible to distinguish them and so there is a 50 % probability of

success. It cannot be the case that identical mixed states can be distinguished and so the

probability must again be one-half. (However, it might be noted that these two limits do

not commute. I discuss point in more detail in §5.4.) Again, this is confirmed by looking

at the above equation: if θ = 0 then the probability of success is given by one-half. It can

also be seen that, as 1/2 ≥ F ≥ 1, the fraction on the right-hand side will also lie in the

same range and hence the probability is never negative or greater than one, two results

which would suggest that this expression is invalid.

A final check can be performed by returning to the local adaptive scheme, in particular

the measurement angles given by Eq. 5.11. In the limit of an infinite number of copies

that equation becomes

lim
N→∞

cos(2φx) = (−1)iN−1 cos(2θ). (5.33)

This equation tells us that, as N gets large, the scheme tends towards hypothesis checking:

if one measurement identifies that the state |ψ0〉 was sent, the next measurement consists

of a von Neumann measurement of that state paired with its orthogonal partner. In the

perfect-fidelity case, if one repeated this measurement an infinite number of times then

every subsequent outcome would be |ψ0〉 however, in the presence of noise, sometimes

the outcome will be |ψ1〉 and then the measurement switches to checking that |ψ1〉 was

prepared. Thus, if there is any noise in the system then a user can never have complete

confidence in their state identification.

The probability of success for the scheme of repeated hypothesis checking can be

evaluated straightforwardly. There are two probabilities of interest. One is the probability

P(a|iN−1 = a, a) that the Nth measurement is correct given that the (N − 1)th was also

correct. The other is the probability P(a|iN−1 = a, a), the probability that the Nth

measurement was correct even though the measurement directly previous to that was

incorrect. By definition, the former is simply the fidelity:

P(a|iN−1 = a, a) = F. (5.34)

The other quantity is given by

P(a|iN−1 = a, a) = |〈ψa|ψ̃a〉|2

= (cos(2δθ) cos(2θ)− sin(2δθ) sin(2θ))2

= F − cos2(2θ)(2F − 1). (5.35)

The probability Pad
N+1 of success when measuring qubit SN+1 can then be expressed in
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terms of the probability of success on the previous qubit

Pad
N+1 = P(a|iN−1 = a, a)Pad

N + P(a|iN−1 = a, a)(1− Pad
N )

= FPad
N + (F − cos2(2θ)(2F−))(1− Pad

N )

= F − cos2(2θ)(2F − 1) + cos2(2θ)(2F − 1)Pad
N . (5.36)

Repeated application of this formula gives a general expression for the probability of

success after N ′ more measurements are made.

Pad
N+N ′ = (cos2(2θ)(2F−1))N

′
P ad
N +(F−cos2(2θ)(2F−1))

N ′−1∑
i=0

(cos2(2θ)(2F−1))i. (5.37)

I am interested in the many-copy limit. If I take the limit N ′ →∞ in the above, the first

term vanishes, as 0 ≤ (2F − 1) cos2(2θ) ≤ 1, and I am left with

lim
N ′→∞

Pad
N ′ = (F − cos2(2θ)(2F − 1))

∞∑
i=0

(
cos2(2θ)(2F − 1)

)i
=
F − cos2(2F − 1)

1− cos2(2F − 1)

= 1− 1− F
1− cos2(2θ)(2F − 1)

. (5.38)

This is the same result as derived above for the general form of the local adaptive mea-

surement scheme. Here it has been arrived at in terms of the scheme’s limiting form, in

which one checks their guess by performing the relevant projective measurement. This

backs up the general result.

5.3 Quantum data gathering

There is some debate in the literature as to whether state discrimination can usefully take

advantage of a quantum memory, i.e., a resource qubit which is not allowed to decohere

throughout the experiment. One scheme which uses such a device is quantum data gath-

ering. In this chapter I introduce the scheme and again find the probability of success in

the perfect and imperfect preparation scenarios.

5.3.1 Scheme

Quantum data gathering, which was introduced by Blume-Kohout et al. [91], is an alter-

native multiple-copy state discrimination scheme. Given N qubits which are all prepared

in one of two states, the protocol will predict the state with the maximum possible prob-

ability, that given by the Helstrom bound. It is a form of collective measurement and

uses a probe qubit on top of the N resource qubits. This probe qubit is initialised in a

fiducial state and then interacts unitarily with each of the N qubits, after which it is itself

measured using the Helstrom measurement for the two possible final states. This scheme

can be generalised to distinguish between a greater number of possible states.
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I first describe the behaviour of the scheme if the measured qubits have all been

prepared perfectly. A probe qubit is initialised the state |0〉A, where the subscript A

identifies the probe space. For only the first qubit, the interaction is a SWAP. This, of

course, leaves the sample qubit S1 in the state |0〉S1 and the probe in the state |ψk〉A.

An interaction then occurs between the probe and the second qubit, labelled S2. This

interaction is such as to leave the probe in the state

|ψ(2)
k 〉A =

√
1

2
(1 + cos2(2θ))|0〉A + (−1)k

√
1

2
(1− cos2(2θ))|1〉A, (5.39)

while leaving the sample qubit in the state |0〉S2 . The probability of successfully distin-

guishing |ψ(2)
0 〉 from |ψ(2)

1 〉 is now identical to the probability of successfully distinguishing

|ψ0〉⊗2 from |ψ1〉⊗2, as the overlap of both pairs of states is cos2(2θ). The subsequent

interactions all follow this pattern. After interacting with N qubits, the state of the probe

will be

|ψ(N)
k 〉A = cos(θN )|0〉A + (−1)k sin(θN )|1〉A, (5.40)

where I have introduced the notation

cos(θN ) =

√
1

2
(1 + cosN (2θ)). (5.41)

All interactions are such as to leave the sample qubit in the state |0〉SN . Thus, the action

of each unitary can be written as Un|ψk〉Sn |ψ
(N−1)
k 〉A = |0〉Sn |ψ

(N)
k 〉A. A full description of

the behaviour must also include the states which are orthogonal to this basis and, though

there is some freedom, it seems natural to choose Un|ψk⊥〉Sn |ψ
(N−1)
k⊥ 〉A = |1〉Sn |ψ

(N)
k⊥ 〉A.

This extension can be taken advantage of as a diagnostic for the success of the protocol,

as I discuss below. In terms of the computational basis of each object, the unitary which

performs in such a manner is

Un|0Sn0A〉 =
cos(θ) cos(θn−1)

cos(θn)
|0Sn0A〉+

sin(θ) sin(θn−1)

cos(θn)
|1Sn0A〉

Un|1Sn1A〉 =
sin(θ) sin(θn−1)

cos(θn)
|0Sn0A〉 −

cos(θ) cos(θn−1)

cos(θn)
|1Sn0A〉

Un|1Sn0A〉 =
sin(θ) cos(θn−1)

sin(θn)
|0Sn1A〉+

cos(θ) sin(θn−1)

sin(θn)
|1Sn1A〉

Un|0Sn1A〉 =
cos(θ) sin(θn−1)

sin(θn)
|0Sn1A〉 −

sin(θ) cos(θn−1)

sin(θn)
|1Sn1A〉. (5.42)

The total space of the product state |ψk〉⊗N has 2N dimensions, however not all of the

space is required to construct an optimal measurement. Product states lie in a subspace

of the overall Hilbert space of the sample qubits, and this subspace has been mapped onto

the two dimensions of the probe’s Hilbert space.

After information is extracted from all N sample qubits, the probe is measured us-

ing the Helstrom measurement, i.e., projectively onto the eigenvalues of |ψ(N)
0 〉〈ψ(N)

0 | −
|ψ(N)

1 〉〈ψ(N)
1 |. In the perfect fidelity case this measurement succeeds with the optimal prob-

ability. Otherwise, it has a smaller chance of success. I calculate the relevant Helstrom
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measurement at the point that it is required.

5.3.2 Gate implementation

It is useful to know how to perform the quantum-data-gathering routine physically for a

number of reasons. From the perspective of understanding the scheme’s resilience to noise,

knowing how many gates are required can place an upper-bound on the level of gate noise.

Though I am in this thesis primarily focused on the preparation noise on the measured

qubits, the gate noise will also limit the possibility of successfully performing any coherent

measurement. In particular, and as discussed in the §2.2, it is two-qubit gates which cause

the most trouble when processing quantum information. In any physical system (e.g., ion

traps, NV centres) there is typically a particular two-qubit gate which can be performed

most reliably and which allow a full set of quantum operations to be performed. The most

commonly used is the CNOT gate and I express the required unitary in terms of these

and single-qubit rotations.

To summarise, the gate sequence which satisfies the above unitary is a CNOT with

the sample as the control and the probe as the target, followed by a controlled rotation

which has the sample as its target. As a controlled rotation can be implemented by single

qubit rotations and one CNOT, two CNOTs are required at each stage in the protocol.

I now show this in more detail. This can most easily be seen by introducing the

defintions

cos(φN ) =
cos(θ) cos(θN−1)

cos(θN )
sin(φN ) =

sin(θ) sin(θN−1)

cos(θN )

cos(ξN ) =
cos(θ) sin(θN−1)

sin(θN )
sin(ξN ) = −sin(θ) cos(θN−1)

sin(θN )
. (5.43)

In terms of this parameterisation, the unitary can be succinctly written as

UN |0SN 0A〉 = (cos(φN )|0〉SN + sin(φN )|1〉SN ) |0〉A
UN |1SN 1A〉 = (sin(φN )|0〉SN − cos(φN )|1〉SN ) |0〉A
UN |1SN 0A〉 = (− sin(ξN )|0〉SN + cos(ξN )|1〉SN ) |1〉A
UN |0SN 1A〉 = (cos(ξN )|0〉SN + sin(ξN )|1〉SN ) |1〉A. (5.44)

The first step is to note that what is required is a rotation which is controlled upon ad-

dition, in the computational basis, of the bit values of the probe and sample respectively;

if SN and A agree then one rotation is performed; if they disagree then another is per-

formed. This function can be implemented by first using a CNOT gate, with the probe as

its target, which will act to register the parity of the two qubits on the targeted system.
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This gate updates the basis vectors to

|0SN 0A〉 → |0SN 0A〉

|1SN 1A〉 → |1SN 0A〉

|1SN 0A〉 → |1SN 1A〉

|0SN 1A〉 → |0SN 1A〉. (5.45)

One sees that the following action completes the unitary. If the probe is now in the state

|0〉, then the unitary operation

W0(φN ) =

[
cos(φN ) sin(φN )

sin(φN ) − cos(φN )

]
(5.46)

should act on the sample state. If instead the probe is in the state |1〉, then

W1(ξN ) =

[
cos(ξN ) sin(ξN )

− sin(ξN ) cos(ξN )

]
(5.47)

is the sample-operation which should occur. The easiest way to achieve this action is to act

firstly and unconditionally upon the sample state with W0(φN ) and then, conditioned upon

the probe state, to perform a third unitary, W0(φN−ξN ) = W1(ξN )W †0 (φN ) on the sample

state. A controlled rotation can be implemented by performing a CNOT sandwiched

between two rotations. In this case the latter operations must both be W0((φN − ξN )/2),

which can be seen most easily by noting that a controlled operation can be written as a

four-by-four matrix with the identity in the upper-left quadrant, the desired operation in

the lower-right quadrant and zeroes elsewhere. Bringing all of this together, the sequence

of operators gives[
W0(

φN−ξN
2 ) 0

0 W0(
φN−ξN

2 )

][
I 0

0 σx

][
W0(

φN−ξN
2 ) 0

0 W0(
φN−ξN

2 )

]

=

[
W0(

φN−ξN
2 )W0(

φN−ξN
2 ) 0

0 W0(
φN−ξN

2 )σxW0(
φN−ξN

2 )

]

=

[
I 0

0 W0(φN − ξN )

]
, (5.48)

which is the desired matrix. I have arrived at a gate scheme which, using just CNOTs,

implements the unitary. The quantum circuit corresponding to this appear in Fig. 5.1.

|ψ〉SN • W0(φN ) W0(φN − ξN ) W0(φN − ξN )

|ψ〉A •

Figure 5.1: Quantum circuit which performs the unitary operation required for quantum
data gathering. Gate W0 defined in text.

It is beyond the scope of this work to provide a bound on the contribution to the
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success probability due to gate noise, however a high-level argument is quick to introduce.

Typically, gate fidelity is measured by the diamond norm [94, 95, 96]. This quantity is a

measure defined on the space of matrices. It is not straightforward to work with, hence

the limited scope of this argument. The only property of the diamond norm relevant here

is that it satisfies the triangle inequality, in terms of distances between gate sequences.

That is, if a state is acted on by either the channel E followed by E′ or the channel F

followed by F ′, the distance between the state after these processes is characterised by the

distance ‖E · E′ − F · F ′‖�, which can be bounded by

‖E · E′ − F · F ′‖� ≤ ‖E − F‖� + ‖E′ − F ′‖� (5.49)

as was shown by Aharanov et al. [97]. Thus the distance between the ideal gate sequence

E⊗N and the noisy implementation Ẽ⊗N will be bounded by

‖E⊗N − Ẽ⊗N‖� ≤ N‖E − Ẽ‖�. (5.50)

I have shown that 2N CNOT gates will be needed to implement the routine and so the

diamond norm of the overall gate sequence is at most 2N times the diamond norm of

the distance between the individual CNOT gate and the noisy equivalent. In the final

step of the quantum data gathering protocol, the actor seeks to distinguish between the

two possible final states of the probe qubit. These two possible states will be shifted by

the same amount, proportional to the diamond norm of the overall gate sequence. So,

based on the argument here, I can say that the probability of success will decrease by a

quantity proportional to 2N . However, finding the relevant constant of proportionality

is not straightforward. Sanders et al. find that the relation between the gate fidelity

(the typically quoted quantity) can depend on the specific form of noise [98] and so a

more-detailed model is needed to take this calculation further. I have considered only the

two-qubit gates here as they will dominate the gate error. Single qubit gates have a much

greater fidelity.

5.3.3 Success probability

My strategy for calculating the overall probability of success is to write each interaction

as a Kraus operator acting on the probe. This is done by considering that the sample

qubits are subsequently measured in the computational basis. If such a measurement is

not performed then the density operator which they measure is represented by summing

over both outcomes. This is the same as tracing out the interaction. I calculate the density

operator of the probe after interacting with N of the qubits and the success probability is

then calculated as the expectation value of the relevant projector. This method also allows

one to calculate the probability that specific measurement records occur, if the samples

are subsequently measured. Such a tool is useful in examining possible modifications of

the scheme, as will be seen later.
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The two Kraus operators, written in the computational basis |0〉, |1〉, are:

M
(n)
0,k = 〈0|SnUn|ψ̃k〉Sn

=

 cos(θ+δθn) cos(θ) cos(θn−1)
cos(θn)

(−1)k sin(θ+δθn) sin(θ) sin(θn−1)
cos(θn)

(−1)k sin(θ+δθn) sin(θ) cos(θn−1)
sin(θn)

cos(θ+δθn) cos(θ) sin(θn−1)
sin(θn)

 ,
M

(n)
1,k = 〈1|SnUn|ψ̃k〉Sn

=

 cos(θ+δθn) sin(θ) sin(θn−1)
cos(θn)

(−1)k+1 sin(θ+δθn) cos(θ) cos(θn−1)
cos(θn)

(−1)k sin(θ+δθn) cos(θ) sin(θn−1)
sin(θn)

− cos(θ+δθn) sin(θ) cos(θn−1)
sin(θn)

 . (5.51)

These act upon the Hilbert space HA only. The first of these outcomes can be considered

as indicating success, in the sense that if the fidelity is perfect, all information about the

sample is transferred onto the probe. The second Kraus operator, which is not designed

with this process in mind, will thus transfer information about the perpendicular state onto

the probe. It can be considered as a failure of the protocol. In this sense, one can think

about the subsequent sample measurement as a diagnostic of the scheme’s performance.

It is useful at this point to rewrite these operators in terms of the probe basis at each

state, i.e., the behaviour of interest is how the basis vectors |ψ(n−1)
k 〉 and |ψ(n−1)

k⊥ 〉 are

mapped on to those vectors |ψ(n)
k 〉 and |ψ(n)

k⊥ 〉 which form a natural basis for the next stage

of the protocol. This can be done if I first introduce the rotation matrix[
|0〉
|1〉

]
=

[
cos(θn) sin(θn)

(−1)k sin(θn) (−1)k+1 cos(θn)

][
|ψ(n)
k 〉
|ψ(n)
k 〉

]
. (5.52)

The Kraus operators can be written in a form more useful for calculation, one in terms of

rotations between the two relevant bases. I have

M
(n)
0,k =

[
cos(θn) (−1)k sin(θn)

sin(θn) (−1)k+1 cos(θn)

]

×

 cos(θ+δθn) cos(θ) cos(θn−1)
cos(θn)

(−1)k sin(θ+δθn) sin(θ) sin(θn−1)
cos(θn)

(−1)k sin(θ+δθn) sin(θ) cos(θn−1)
sin(θn)

cos(θ+δθn) cos(θ) sin(θn−1)
sin(θn)


×

[
cos(θn−1) sin(θn−1)

(−1)k sin(θn−1) (−1)k+1 cos(θn−1)

]

=

[
cos(δθn) 0

− sin(2θ) sin(δθn) cos(2θn−1)
sin(2θn)

cos(2θ+δθn) sin(2θn−1)
sin(2θn)

]
. (5.53)

Similarly, the other Kraus operator is rewritten as

M
(n)
1,k =

[
0 sin(2θ + δθn)

− sin(δθn) sin(2θn−1)
sin(2θn)

sin(δθn) cos(2θn−1)−sin(2θ+δθn) cos(2θn)
sin(2θn)

]
(5.54)

To avoid any confusion, it must be emphasised that these two matrices include a basis

rotation and hide the index of the transmitted state in such a matter. For example, the top
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left element in each case corresponds to the coefficient of the object |ψ(n)
k 〉〈ψ

(n−1)
k |. Written

in this manner, the forms for the two update matrices at each stage can be understood

more clearly as successes and failures. In particular, that the upper-right element of M
(n)
0,k

is zero means that a series of previous failures will not increase the probability of succeeding

at a later point in the protocol. Conversely, the zero-valued upper-left element of M
(n)
1,k

says that a failure at any point in the protocol will delete all of the previously acquired

information, leaving the probe uncorrelated to the state which it is hoping to identify.

This suggests that there is potential for modifying the scheme: after each interaction, the

sample can be measured in the computational basis. If the measurement outcome is |1〉
then the user would reinitialise the probe and the next two interactions would be a SWAP

followed by U2. As more and more interactions occur, the greater the chance of losing all

information, i.e., the outcome |1〉, and the user is forced to consider how the increased

probability of overall success at each point plays off against the probability that all will

be lost. These dynamics are discussed in greater detail in a later section. Here, I assume

that the sample is not measured, and sum over all outcomes.

I use these objects to calculate the overall probability that, given a resource of N

sample qubits, the quantum data gathering protocol correctly identifies the relevant state.

I first aquire, by successive use of the above Kraus operators in the usual state update

rule, a general formula for the density matrix ρ
(n)
k of the probe after interacting with n

of the qubits. With ρ
(n)
k in place then one must simply use the Born rule to acquire the

probability of the state associated with |ψ0〉 being the measurement outcome given that

state |ψ0〉 was sent, for example.

The first probe-sample interaction is a SWAP gate. At all points I assume that there

is no noise in the gates themselves but on the preparation only. It is easy to see that the

probe’s state after this gate is

ρ
(1)
k = (cos(δθ1)|ψk〉+ sin(δθ1)|ψk⊥〉) (cos(δθ1)〈ψk|+ sin(δθ1)〈ψk⊥|)

=

[
cos2(δθ1) cos(δθ1) sin(δθ1)

cos(δθ1) sin(δθ1) sin2(δθ1)

]
. (5.55)

The basis in which each ρ
(n)
k is written is that of the ideal (noiseless) probe state at that

point (i.e., |ψ(n)
k 〉) as well as the state orthogonal to that. In this manner, the index k is

hidden inside the matrix’s basis. As I assume that the noise on each individual qubit is

independent, I can average over the noise parameter at each stage. The density matrix

after the first step is

ρ
(1)
k =

[
F 0

0 1− F

]
. (5.56)

This is a result which could have been constructed without calculation. It follows from the

definition of the fidelity. In the case that F = 1 then the probe is in the state |ψ(n)
k 〉. The

lowest possible value of F is 1/2, and at this point the state becomes maximally mixed.

I can use this form to find ρ
(2)
k , which allows me to guess at the structure of the more
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general result ρ
(N)
k . I have

ρ
(1)
k → ρ

(2)
k = M

(2)
0,kρ

(1)
k M

(2)†
0,k +M

(2)
1,kρ

(1)
k M

(2)†
1,k . (5.57)

The calculations are much more concise if each term on the right hand side here is evaluated

individually and then both results brought together. Firstly,

M
(2)
0,kρ

(1)
k M

(2)†
0,k

=

[
F cos2(δθ2)

−F sin(2θ) cos(δθ2) sin(δθ2) cos(2θ)
sin(2θ2)

−F sin(2θ) cos(δθ2) sin(δθ2) cos(2θ)
sin(2θ2)

F sin2(2θ) sin2(δθ2) cos2(2θ)+(1−F ) cos2(2θ+δθ2) sin
2(2θ)

sin2(2θ2)

]

=

[
F 2 0

0 (1−F )(1−F+2(2F−1) cos2(2θ)−(3F−1) cos4(2θ))
sin2(2θ2)

]
. (5.58)

In the second line of this equation I have averaged over the noise variable δθ2 in keeping

with what has been presented above (strictly speaking the two lines of this equations are

not equal (the second should include as at this point I have not averaged over δθi) however

I have chosen to keep the notation as simple as possible and hope that the meaning at

each point is clear). This choice of basis hides the digit k and shows the advantage of

folding the state to be discriminated into the basis. The second piece of interest is

M
(2)
1,kρ

(1)
k M

(2)†
1,k

=

[
(1− F ) sin2(2θ + δθ2) 0

0 F sin2(2δθ2) sin
2(2θ)+(1−F )(sin(δθ2) cos(2θ)−sin(2θ+δθ2) cos(2θ2))2

sin2(2θ2)

]

+
(1− F ) sin(2θ + δθ2)(sin(δθ2) cos(2θ)− sin(2θ + δθ2) cos(2θ2))

sin(2θ2)

[
0 1

1 0

]

= (1− F )

[
F + (2F − 1) cos2(2θ) 0

0 F+(1−2F ) cos2(2θ)+(3F−2) cos4(2θ)+(1−2F ) cos6(2θ)

sin2(2θ2)

]

+ (1− F )
cos2(2θ2) sin2(2θ)

sin2(2θ2)
σ(2)x . (5.59)

Here, σx is the Pauli matrix and the superscript attached to it indicates that the basis is

the same as for the other piece. I have expressed both of these forms in terms of orders of

cos2(2θ) only for ease of reading. It is useful to note here that sin2(2θ2) = 1 − cos4(2θ).

Bringing both results together gives the density matrix of the probe qubit after interacting

with just two samples

ρ
(2)
k = M

(2)
0,kρ

(1)
k M

(2)†
0,k +M

(2)
1,kρ

(1)
k M

(2)†
1,k

=

[
F − (1− F )(2F − 1) cos2(2θ) 0

0 (1− F )(1 + (2F − 1) cos2(2θ))

]

+ (1− F )
cos2(2θ) sin2(2θ)

sin2(2θ2)
σ(2)x . (5.60)
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This object is the density matrix of the probe once it has interacted with the first two

sample qubits, both of which are in a mixed state associated with noise governed by

the parameter F . One can convince themself further that this is the correct form by

considering two properties which we would expect of a density matrix. Firstly, it satisfies

Tr(ρ
(2)
k ) = 1, the usual normalisation condition. Secondly, in the perfect-fidelity limit

F = 1 only the upper-left element of the matrix remains. This corresponds to the probe

being found in the state |ψ(2)
k 〉, i.e., that which would be found in the clean case. Here, it

is found as a specific point of a larger space.

That the state takes this form - a matrix with diagonal elements plus one which is

proportional to σx - suggests a possible route towards my main target, the density matrix

after interactions with any number of the sample qubits. This route is to calculate what

happens to each of those pieces when the two updating matrices act upon them. What is

found is that the dynamics of the probe are governed by the following two forms:[
an 0

0 1− an

]
→

[
an+1 0

0 1− an+1

]
+ bn+1σ

(n+1)
x

σ(n)x → cn+1σ
(n+1)
x . (5.61)

I have used an, bn, cn to represent various pieces of the density matrix after i interactions.

Using the forms of M
(n)
0,k and M

(n)
1,k which I derived above it is possible to find those pa-

rameters as functions of F and θ. The result is, once again, a set of geometric summations

which can be evaluated to give an analytic expression for the overall probability of suc-

cess when measured by the minimum-error measurement. The rest of the calculation is a

purely algebraic exercise, of which the next step is to evaluate the parameters an, bnandcn.

The first piece to analyse is the form of the update for a normalised matrix which

has only diagonal elements. That is, I consider a generic matrix in which the upper-left

element is an and the lower-right element is 1−an. How is this object updated by the two

Kraus operators? I begin by calculating the form of each term independently and then

sum. Each of the following is the result of performing the relevant matrix multiplication

using the basic form of the two matrices, and then averaging over δθn. These calculations

follow the method used above for the two qubit case and the algebra procedes largely the

same way.

The first piece of the calculation is

M
(n)
0

[
an−1 0

0 1− an−1

]
M

(n)†
0

=

[
an−1F 0

0 an−1
(1−F ) sin2(2θ) cos2(2θn−1)

sin2(2θn)
+ (1− an−1) sin

2(2θn−1)(F cos2(2θ)+(1−F ) sin2(2θ))

sin2(2θn)

]
(5.62)
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and the second piece is

M
(n)
1

[
an−1 0

0 1− an−1

]
M

(n)†
1

=


(1− an−1) 0

×
[
F sin2(2θ) + (1− F ) cos2(2θ)

]
an−1

(1−F ) sin2(2θn−1)

sin2(2θn)

0 +(1− an−1)
(1−F ) cos(2θn−1)+(2−F ) cos(2θn)+(1−2F ) cos(2θn+1)

sin2(2θn)


+ (1− an−1)

(1− 2F ) cos(2θn) sin2(2θ)

sin(2θn)
σ(n)x . (5.63)

The sum of these two pieces gives the update for that part of the density matrix. After

some algebraic manipulation it is possible to simplify the bottom right term greatly and

the resulting object is

∑
i

M
(n)
i

[
an−1 0

0 1− an−1

]
M

(n)†
i

=


an−1 cos2(2θ)(2F − 1) 0

+F sin2(2θ) + (1− F ) cos2(2θ)

0 1− an−1 cos2(2θ)(2F − 1)

−F sin2(2θ)− (1− F ) cos2(2θ)


− (1− an−1)

(2F − 1) cos(2θn) sin2(2θ)

sin(2θn)
σ(n)x . (5.64)

In this equation, the upper-left and lower-right elements explicitly sum to one so it clear

that the update is trace preserving.

I also require the equivalent update for the σx piece. For M
(n)
0,k the result (after matrix-

multiplication and subsequent averaging over δθn) is

M
(n)
0,k σ

(n−1)
x M

(n)†
0,k =

F cos(2θ) sin(2θn−1)

sin(2θn)
σ(n)x

+
2(1− F ) sin2(2θ) cos(2θn−1) sin(2θn−1)

sin2(2θn)

[
0 0

0 1

]
. (5.65)

In a similar manner I find that the other piece is

M
(n)
1,k σ

(n−1)
x M

(n)†
1,k = −(1− F ) cos(2θ) sin(2θn−1)

sin(2θn)
σ(n)x

− 2(1− F ) sin2(2θ) cos(2θn−1) sin(2θn−1)

sin2(2θn)

[
0 0

0 1

]
. (5.66)

Hence, the sum of these two pieces is

∑
i

M
(n)
i,k σ

(n−1)
x M

(n)†
i,k =

(2F − 1) sin(2θn−1) cos(2θ)

sin(2θn)
σ(n)x (5.67)
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and the probe’s updates always follow the structure which I presented above. There are

two pieces to the density matrix at each point: a part with elements only along the diagonal

and a part which is proportional to the σx matrix when it is written in the probe basis

relevant to that stage of the measurement. With Eqs. 5.64 and 5.67 I am in a position

to calculate the density matrix for a given generic case. For convenience it is useful to

introduce the following notation

x = cos2(2θ)(2F − 1) (5.68)

y = F sin2(2θ) + (1− F ) cos2(2θ) (5.69)

rn =
cos(2θn) sin2(2θ)(2F − 1)

sin(2θn)
(5.70)

sn =
sin(2θn−1)(2F − 1) cos(2θ)

sin(2θn)
. (5.71)

In terms of these parameters the two expressions involved in the state update can be

expressed as

∑
i

M
(n)
i,k

[
an−1 0

0 1− an−1

]
M

(n)†
i,k

=

[
xan−1 + y 0

0 1− xan−1 − y

]
− (1− an−1)rnσ(n)x (5.72)∑

i

M
(n)
i,k σ

(n−1)
x M

(n)†
i,k = snσ

(n)
x . (5.73)

Repeated applications of these formulae to the initial density matrix, which I have written

above, result in a density matrix

ρ
(N)
k =

[
AN 0

0 1−AN

]
−BNσ(N)

x , (5.74)

in which

AN = FxN−1 + y
N−2∑
i=0

xi (5.75)

BN =

N−1∑
i=1

(1−Ai)ri+1

N∏
j=i+2

sj . (5.76)

I have a formula for the density matrix of the probe after interacting with N qubits.

The first piece to evaluate is the series in AN . This is the straightforward expression of

geometric summation:

N−2∑
i=0

xi =
1− xN−1

1− x

=
1− cos2N−2(2θ)(2F − 1)N−1

1− cos2(2θ)(2F − 1)
. (5.77)
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The first term is

AN = F cos2N−2(2θ)(2F − 1)N−1

+
(
F sin2(2θ) + (1− F ) cos2(2θ)

) 1− cos2N−2(2θ)(2F − 1)N−1

1− cos2(2θ)(2F − 1)

= 1− (1− F )
1− cos2N (2θ)(2F − 1)N

1− cos2(2θ)(2F − 1)
. (5.78)

The next step is to use this to evaluate the other coefficient, BN . The expression Eq. 5.76

for this gives

BN =

N−1∑
j=1

(1−Aj)rj+1

N∏
i=j+2

si

=
N−1∑
j=1

[
(1− F )

1− cos2j(2θ)(2F − 1)j

1− cos2(2θ)(2F − 1)

×cos(2θj+1) sin2(2θ)(2F − 1)

sin(2θN )
(cos(2θ)(2F − 1))N−j−2

]
. (5.79)

After a few lines of rearrangment one finds that this can be written as

BN = (1− F ) cosN−1(2θ)(2F − 1)N−1
sin2(2θ)

sin(2θN )

N−1∑
j=1

1− cos2j(2θ)(2F − 1)j

(2F − 1)j
. (5.80)

Once again, the task has come down to evaluating a pair of geometrical progressions for

objects containing cos(2θ) and (2F − 1). After evaluating these terms using the standard

formula and then simplifying as much as possible, I have

BN = (1− F )
sin2(2θ) cosN−1(2θ)

sin(2θN )

×
(

1− (2F − 1)N−1

1− (2F − 1)
− cosN+1(2θ)(2F − 1)N−1

1− cos2N−2(2θ)

1− cos2(2θ)

)
. (5.81)

The denominators of the two fractions inside the brackets on the right hand side can both

be simplified further, to 1 − F and sin2(2θ) respectively. I have chosen to leave them

in their current form as it makes clear that there are no issues when taking the limits

F → 1 and θ → 0. At this point it worth pausing with the calculation to summarise what

has been achieved so far. The quantum data gathering routine uses N copies of one of

two possible quantum states |ψk〉. The information on each of these is transferred to a

probe which is initialised in the fiducial state |0〉. After interacting with all N copies, and

assuming that the experimenter does not measure the sample qubits subsequently, the

probe will be found in a state ρ
(N)
k . This state can be defined in terms of two coefficients,

AN and BN using equations 5.74, 5.78 and 5.81. These objects are calculated from the

original Kraus operators which were constructed to represent the update of the probe state

if the unitary used at each stage either succeeds or fails. To find the probe’s state both

outcomes are summed. Once the probe is in this state it is measured with a minimum-
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error measurement corresponding to the two possible probe states which would occur in

the F = 1 (noisless) cases. This part of the scheme is introduced to the analysis now.

Minimum-error measurement of the probe seeks to distinguish the two states which

the probe can be in for a given preparation. In the noiseless case this will be the pair of

non-orthogonal states parameterised by

|ψ(N)
k 〉 = cos(θN )|0〉+ (−1)k sin(θN )|1〉, k = 0, 1 (5.82)

which is repeated here for convenience. As is well known, the minimum-error measurement

for two states ρ0 and ρ1 consists of projecting onto the eigenvectors of the difference

between them, ρ0 − ρ1, the so-called Helstrom measurement. In the calculations so far I

have worked in the basis |ψ(N)
k 〉, |ψ(N)

k⊥ 〉. This is the natural basis to work in as it hides the

label of the particular state k. I introduce also |ψ(N)
k 〉 to represent the state that has not

been transmitted. In terms of the calculational basis, that state can be written as

|ψ(N)
k 〉 = cos(2θN )|ψ(N)

k 〉+ sin(2θN )|ψ(N)
k⊥ 〉. (5.83)

Using this, one can evaluate the required matrix as

|ψ(N)
k 〉〈ψ(N)

k | − |ψ(N)
k 〉〈ψ

(N)
k | = sin(2θN )

[
sin(2θN ) − cos(2θN )

− cos(2θN ) − sin(2θN )

]
. (5.84)

As stated above, the measurement which maximises the chance of correctly identifying

the transmitted state is that which consists of a projection onto the eigenvalues of this

matrix [17, 18] (correct identification corresponding to the positive eigenvalue; incorrect

identification corresponding to the negative eigenvalue, due to how the task has been set

up). One finds in the usual way that the two eigenvectors (with eigenvalues ±1) are

|ψ(N)
+ 〉 =

√
1 + sin(2θN )

2
|ψ(N)
k 〉+

√
1− sin(2θN )

2
|ψ(N)
k⊥ 〉 (5.85)

|ψ(N)
− 〉 =

√
1− sin(2θN )

2
|ψ(N)
k 〉 −

√
1 + sin(2θN )

2
|ψ(N)
k⊥ 〉. (5.86)

The probability of successfully identifying the transmitted state (to reiterate: given that

there is noise in the sample’s state but that the state discrimination is identical to that in

the noiseless case) will be PQDGN = 〈ψ(N)
+ |ρ(N)

k |ψ
(N)
+ 〉. The probe’s density matrix is split

into two pieces and I evaluate the expectation value which is associated with each of those

seperately. One finds

〈ψ(N)
+ |

[
AN 0

0 1−AN

]
|ψ(N)

+ 〉 =
1

2
(1− sin(2θN )) + sin(2θN )AN

〈ψ(N)
+ |σ(N)

x |ψ(N)
+ 〉 = cos(2θN ). (5.87)

Finally, I am in a position to evaluate the probability that the quantum data gathering

routine correctly discriminates two quantum states. In terms of AN and BN , which appear
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above in equations 5.78 and 5.81 respectively, one finds

PQDGN = 〈ψ(N)
+ |ρ(N)

k |ψ
(N)
+ 〉 (5.88)

= 〈ψ(N)
+ |

[
AN 0

0 1−AN

]
|ψ(N)

+ 〉 −Bn〈ψ(N)
+ |σ(N)

x |ψ(N)
+ 〉

=
1

2
(1− sin(2θN )) + sin(2θN )AN − cos(2θN )BN .

Putting all pieces into one expression, this result is

PQDGN =

=
1

2

(
1 +

√
1− cos2N (2θ)

)
− (1− F )

1− cos2N (2θ)(2F − 1)N

1− cos2(2θ)(2F − 1)

√
1− cos2N (2θ)

− (1− F ) sin2(2θ) cos2N−2(2θ)
1√

1− cos2N (2θ)

×
(

1− (2F − 1)N−1

1− (2F − 1)
− cos2(2θ)(2F − 1)N−1

1− cos2N−2(2θ)

1− cos2(2θ)

)
(5.89)

I have, finally, arrived at an expression for the probability that the quantum data gathering

routine successfully identifies the transmitted state if that state is prepared imperfectly.

For reference, the Helstrom bound is PNH = (1 +
√

1− cos2N (2θ))/2, the leading order

term here. (I have substituted objects written in terms of cosN (2θ) for those such as

sin(2θN ) in order to make the relation to the Helstrom bound explicit.) This expression

can be compared with that which was derived for an equivalent local scheme and which

is written in Eq. 5.27. Both expressions have a roughly similar structure: a leading term

which is the Helstrom bound follow by two terms which are proportional to 2PNH − 1 and

the reciprocal of that quantity respectively. The two cases have different coefficients in

each case. I discuss how the two schemes behave numerically in more detail below. For

now it is useful to provide some basic checks that the current result, Eq. 5.89, behaves

healthily. One thing that would be expected is that the success-probability would become

equal to the Helstrom bound in the limit that there is no noise. This can be seen easily as

the two terms in which the quantum data gathering probability differs from the Helstrom

bound both contain factors of 1 − F and as such they go to zero in the perfect-fidelity

limit. Another test-case is letting the two states to be discriminated be the same state,

represented by θ = 0. If the two states are the same then no measurement can distinguish

them and, as noise effects both states equally, this should still be true irrespective of F ’s

value. In this limit I consider in turn each of the three terms in Eq. 5.89: the first, which is

the Helstrom bound, goes to 1/2; the second term disappears as it contains 1− cos2N (2θ);

and the third goes to zero as it is proportional to sin2(2θ). (One must be careful with the

latter limit due to a denominator which also goes to zero, however there is no issue.) Thus

I have recovered from the general formula that two identical states are indistinguishable.

In both of the cases that I have presented, I find that the calculated results agree with

what must have been true a priori, and have further confidence that the general form is

correct. In the next section, I present this function graphically for a selection of parameters

104



Chapter 5

and compare the function to the equivalent result for local adaptive measurement. Before

doing so, I look at the limit of a large number of copies as another test of the formula.

5.3.4 Many-copy limit

Just as in the local adaptive scheme for quantum state discrimination, it is instructive to

look at the limiting behaviour of the protocol: how does the unitary act after interacting

with a large number of copies? The probability of success can be calculated for this

measurement, and compared with the many-copy limit which is derived from the general

form of the probability of success, Eq. 5.89. Finding that both are equal encourages one

that the original calculation was performed correctly. The many-copy limit for Eq. 5.89

is

lim
N→∞

PQDGN = 1− 1− F
1− cos2(2θ)(2F − 1)

. (5.90)

A quick look at the equivalent result for local adaptive measurements, Eq. 5.32, might

surprise the reader: the two schemes have precisely the same many-copy limit! Despite

the great differences between the two protocols, both of them tend towards having the

same resilience to preparation noise. This seems to indicate that the above expression

is fundamental in some way. Unfortunately I do not currently have an explanation for

this result, by which I mean an interperation of what that physical formula represents. It

should be noted that, in both cases, the scheme aims to distinguish between two mixed

states (the noisy case) but uses a scheme designed for pure states. This suggests that

the many-copy limit which is derived in both cases is a systematic limit which could be

bettered by altering the scheme.

For local adaptive measurement, I showed how the behaviour of that scheme in the

many-copy limit had some intuitive properties, as a hypothesis-checking measurement,

and was able to derive the relevant probability using that picture. Here, I do the same

for quantum data gathering. In this limit, one finds that cos(θN ) = sin(θN ) = 1/
√

2. The

‘natural basis’ (as I have been referring to it) of the probe in this limit thus becomes

|ψ(N)
0 〉 = |+〉 |ψ(N)

1 〉 = |−〉 (5.91)

and the unitary (see Eq. 5.44) becomes

UN |0SN 0A〉 = cos(θ)|0SN 0A〉+ sin(θ)|1SN 0A〉 = |ψ0SN 0A〉

UN |1SN 1A〉 = sin(θ)|0SN 0A〉 − cos(θ)|1SN 0A〉 = |ψ0⊥SN 0A〉

UN |1SN 0A〉 = sin(θ)|0SN 1A〉+ cos(θ)|1SN 1A〉 = |ψ1⊥SN 1A〉

UN |0SN 1A〉 = cos(θ)|0SN 1A〉 − sin(θ)|1SN 1A〉 = |ψ1SN 1A〉. (5.92)

Due to the form of the probe in this limit, it is useful to write the action of the unitary so

that the probe term is written in terms of the σx basis and the sample is written in terms

of the transmitted states (and those which are orthogonal to them). The most intelligible
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way to express this unitary is in the form

UN |ψ0SN+A〉 = |0SN+A〉

UN |ψ0⊥SN+A〉 = |1SN−A〉

UN |ψ1SN−A〉 = |0SN−A〉

UN |ψ1⊥SN−A〉 = |1SN+A〉. (5.93)

This shows that the unitary can be interpreted in a similar manner to the limiting case: as

hypothesis checking. I associate the probe state |+〉 with the belief that the transmitted

state was |ψ0〉. If the probe starts off in the former state and interacts with a sample state

in the latter, it will stay in the state |+〉 and leave the sample in the state |0〉, such as

the protocol is designed for. If, however, the probe is in the state |+〉 and then interacts

with a sample in the state |ψ0⊥〉, the former will be left in the state |−〉 (corresponding to

guessing that the transmitted state was |ψ1〉) and the former left in the state |1〉, which

signals a ‘failed’ protocol. Of course, this cannot occur unless there is noise in the state

preparation; in the noiseless case the probe will stay in the state |+〉 after all interactions.

The scenario which occurs if the most likely transmitted state was instead |ψ1〉 is the same

but with the roles of |+〉 and |−〉 reversed.

Unfortunately, there is no obvious method of calculating the many-copy limit of the

quantum data gathering in the same way as is possible for the local adaptive scheme.

However, a similar calculation is possible which uses the limit form of the Kraus operators,

which I label M∞i,k and which have a much simpler form than the general case:

M∞0,k =

[
cos(δθN ) 0

0 cos(2θ + δθN )

]

M∞1,k =

[
0 sin(2θ + δθN )

− sin(δθN ) 0

]
. (5.94)

These operators are written in the computational basis, as are all of the operators in this

limit. As I showed earlier, the density matrix when written in the natural basis will consist

of two pieces: a trace-one operator with only diagonal terms and an operator proportional

to σx. I only need to find out how these pieces update in the many copy limit and,

beginning with the latter, I consider each in term. A quick calculation reveals that

σx →
∑
i

M∞†i,k σxM
∞
i,k = (2F − 1) cos(2θ)σx (5.95)

is how the σx piece of the density operator will be updated after each interaction. The

effect is only to multiply the piece by a factor which is less than one. I am here interested

in the limit of an infinite number of copies. It is clear that this term will be suppressed,

tending to zero in that limit, and the only contribution to the many-copy density matrix

will come from the other term. After one interaction the state update of a trace-one,
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diagonal matrix is[
A 0

0 (1−A)

]
→
∑
i

M∞†i,k

[
A 0

0 (1−A)

]
M∞i,k

=

[
(2F − 1) cos2(2θ)A 0

0 −(2F − 1) cos2(2θ)A

]

+

[
F − (2F − 1) cos2(2θ) 0

0 1− F + (2F − 1) cos2(2θ)

]
. (5.96)

I have broken the resulting operator into two terms. The first of these contains the

parameter A, which is between one and zero, and characterises the probe’s density operator

at a given point in the protocol. It is seen that, as for the σx term, this term has been

multiplied by a positive factor which is less than one and so, if the state is updated many

times, that term’s contribution will tend to zero. What remains is a different, diagonal

trace one matrix. The upper-left term will be the probability of success (as the two post-

interaction states are orthogonal in this regime) and after a little consideration it is seen

that this has the form

PQDG∞ =
(
F − (2F − 1) cos2(2θ)

) ∞∑
i=0

cos2i(2θ)(2F − 1)i

= 1− 1− F
1− cos2(2θ)(2F − 1)

. (5.97)

I have once again arrived at the same value for the many-copy limit of multiple-copy data

gathering schemes as was arrived at in previous calculations (the local adaptive scheme,

and above as the limit of another function). The calculation here should be easier to

follow, and the many-copy limit of the interaction operator’s structure shows that the two

methods have a similar underlying logic.

5.4 Comments

In the previous two sections, I derived analytic expressions for the probability that the local

adaptive and quantum-data-gathering schemes correctly identify the noisy equivalents of

the pure states which they were designed for. In this section, I compare the two schemes

in more detail and discuss how each can be improved.

In Figures 5.2 and 5.3 are plots showing the behaviour of the two functions, Eqs.

5.30 and 5.89, for two different fidelities (F = 0.95 and 0.99) and two different angles

(θ = π/6 and π/8) so that there are four plots overall. Each graph also displays the

Helstrom bound for the perfect fidelity case of that angle. Despite the range of parameters

given, the same basic behaviour reoccurs. In all cases, the two schemes approach the same

asymptote, as was seen earlier, and differ relatively little before that. There is a slight

advantage to using the local adaptive scheme, as it more quickly approaches the asymptote

in all cases. Admittedly that improvement is small (for example, in the F = 0.99 cases I

find numerically that the difference is in the fourth or fifth decimal place), but that there
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is any improvement is interesting in itself. It is typical to think that the global optimum

of all measurements will be one which requires coherence, i.e., corresponds to measuring

components of the product state which are not in the two dimensional subspace of the

relevant states. However, here this is not the case. This result is in keeping with previous

results in which local measurement is also generally better and it also holds in those cases

that the improvement is very small [99]. As would be expected, for both schemes it is still

seen the performance gets worse, in terms of the number of copies needed to get close to

the asymptotic value, if either the preparation is more noisy (F is smaller) or the possible

states are closer together (θ is smaller).

It must be emphasised that in both cases here I have taken the schemes as they are

optimised for pure states but applied them to mixed states. It is obvious that, if one is to

take into account the noisiness, this cannot be the best scheme as I have shown that the

infinite-copy limit has an upper bound of the probability which is less than one. It must

be true that there exists a scheme which discriminates perfectly in this limit. A straight-

forward argument leads to this conclusion: if one ignored the set of possibly transmitted

states and performed tomography, the mixed state could be characterised completely and

this would definitively identify the index of the transmission. It cannot be true that having

some initial information causes one to perform worse, ergo, a discrimination scheme must

be able to also reach the same bound. For both local adaptive measurement and quantum

data gathering, an obvious method for improving the scheme exists.

In the local adaptive protocol, an important feature of Aćın et al.’s scheme is that

it is Markovian, by which is meant that the measurement performed on the Nth copy

of the sample depends only upon the result of the (N − 1)th measurement. Thus, their

result does not utilise the entire measurement record. A true Bayesian scheme would be

to update the probabilities which are used in deriving the Helstrom measurement after

each sample, based upon all previous outcomes. One would expect that this improves the

probability of success.

In the quantum data gathering protocol, the scheme can be made more flexible and thus

perform better by measuring the samples after performing the protocol. To recap, in that

scheme the sample qubit is left in the state |0〉 after the unitary if there is no noise but if the

preparation is imperfect, then the sample qubit’s post-interaction state can be something

else. I took this into account by associating the state |1〉 with a failure. Importantly, it can

be seen from the construction of the relevant Kraus operator in Eq. 5.54 that a failure in

the scheme is irreversible: one loses all information about the state before measurement.

In deriving Eq. 5.89, I sum over all possible measurement records, i.e., the experimentalist

is assumed to ignore the possible outcomes. A method that might be expected to improve

the scheme is to measure instead the sample qubits after the interaction and, if one finds

that it is the state |1〉, to start the protocol again. An issue with this approach is that the

probability that an interaction fails at some point increases linearly with the number of

interactions. The question one is lead to is: when to stop? Presumably if one has access

to one hundred copies of a state and has successfully interacted with ninety-nine of those,

the small increase in the probability of success is not worth the risk of losing all the data
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Figure 5.2: These plots display the three functions governing the probability of success for
mutliple-copy state discrimination as a function of increasing number of resource qubits.
Here the two plots display the success rate for discriminating two states, separated by an
angle θ = π/8 as defined in the text, which have been prepared with fidelities F = 0.95
and F = 0.99. The Helstrom bound which is plotted is that for distinguishing between
the two relevant pure states.
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Figure 5.3: These plots display the three functions governing the probability of success for
mutliple-copy state discrimination as a function of increasing number of resource qubits.
Here the two plots display the success rate for discriminating two states, separated by an
angle θ = π/6 as defined in the text, which have been prepared with fidelities F = 0.95
and F = 0.99. The Helstrom bound which is plotted is that for distinguishing between
the two relevant pure states.
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so far gathered. To answer this question requires a better understanding of how quickly

the success-probability function approaches its asymptote.

To approximate the asymptotic behaviour of the function, I write the success proba-

bility from Eq. 5.89 as

PQDGN =

(
lim
N→∞

PQDGN

)
− εQDGN . (5.98)

The quantity εN thus quantifies how close the function is to the asymptote at a given value

of N . As I am interested in the point at which it is very close to that limit, I wish εN to be

small and as such can approximate the function. I Taylor-expand the various expressions

in that function so that it is written as a series in terms of cos2(2θ) and (2F − 1) to the

power of N and ignore all but the first order. The result can then be rearranged so that

it gives the number of measurements required for a given proxmity to the limit:

N ≈
log

(
cos2(2θ)εQDGN

2F (1−F )

)
2 log (cos(2θ))

. (5.99)

The quality of this approximation can be checked by evaluating a specific case. I consider

that I wish to achieve a distance of εN = 0.01 from the best possible accuracy for an

experiment in which θ = π/6 and in which the fidelity reaches F = 0.99. The choice of

ε = 0.01 here is somewhat arbitrary although it seems reasonable to only require that the

experiment only runs as well as the fidelity allows, i.e., ε = 1− F , and this also simplifies

the above expression (which contains ε/(1 − F )). Evaluating that formula with these

parameters gives N ≈ 1.49, so we would need only two copies to come within one-percent of

the many-copy limit. If both the many-copy limit and the success-probability are evaluated

with the relevant choices of the various parameters then I find PQDGN −
(

limN→∞ PQDG2

)
=

0.016, so the approximation is good within half-a-percent. Direct evaluation then finds that

in fact three, rather than two, copies are required to achieve that level of success. A similar

result is found if the same angle is used with a fidelity of F = 0.95, with evaluation of the

approximate expression giving N = 4 for the required number of copies but calculating

directly from Eq. 5.89 telling us that N = 5 is the correct result. The approximation is

fairly good. The main takeaway from these calculations should be that, in general, only a

small number of copies are needed to perform the quantum data gathering routine as well

as possible.

Based on this analysis, one might suggest a modification of the routine which takes

into account the possibility for post-selection. An experimentalist would then: calculate

the number N from the above equation; interact her probe with each sample-qubit as

specified in the above unitary operations while measuring the samples in the computational

basis; when she has N successes, measure the probe; when a failure occurs, start from

the beginning. However, a calculation reveals that there are some subtleties with this

approach, the reason being that the probability of getting a succession of successes in even

a very fidelitous, yet still imperfect, protocol is low enough to cancel out the advantage due

to those successes. A short calculation demonstrates this property. I distinguish between

two probabilities: P(succ), which is the overall probability of success, and P(succ|ρN0 ), the
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probability that the correct transmission is correctly identified, conditioned upon successful

interactions with N qubits in a row. As before, the calculation must begin by calculating

the probe’s density matrix after N such interactions. That is, I must calculate

ρ
(N)
0,k =

M
(N)
0,k M

(N−1)
0,k · · · ρ(1) · · ·M (N−1)†

0,k M
(N)†
0,k

Tr(M
(N)
0,k M

(N−1)
0,k · · · ρ(1) · · ·M (N−1)†

0,k M
(N)†
0,k )

. (5.100)

I begin by evaluating the numerator of this equation, in the same manner as I have done

previously, by deriving an inductive expression and evaluating the resultant terms for

general N . One finds

M
(N)
0,k M

(N−1)
0,k · · · ρ(1) · · ·M (N−1)†

0,k M
(N)†
0,k = (5.101)[

FN 0

0 (1− F ) sin2(2θ)

sin2(2θN )

(
FN−1 cos2(2θN−1) + (1− F + (2F − 1) cos2(2θ))N−1

) ] .
In terms of this quantity, all the relevant quantitites - P(ρN0 ), P(succ|ρN0 ), P(succ) - can

be found directly. These are:

P(ρN0 ) = Tr(M
(N)
0,k M

(N−1)
0,k · · · ρ(1) · · ·M (N−1)†

0,k M
(N)†
0,k )

P(succ|ρN0 ) = 〈ψ(N)
+ |ρ(N)

0,k |ψ
(N)
+ 〉

P(succ) = P(succ|ρN0 )P(ρN0 ) =

= 〈ψ(N)
+ |M (N)

0,k M
(N−1)
0,k · · · ρ(1) · · ·M (N−1)†

0,k M
(N)†
0,k |ψ

(N)
+ 〉. (5.102)

I now evaluate the relevant probabilities. To make the discussion concrete, and in keeping

with the above numerical calculations, I use the case F = 0.99, θ = π/6, however the broad

picture (i.e., how the different quantities play off against each other) holds in general. I

showed above that one needs to interact successively with three qubits in order to get

within .01 of the asymptotic limit, which suggests that one might want to use a modified

scheme of stopping the process once three successive interactions have been performed

without failing. In this case, if the scheme is run without checking the sample qubits the

asymptotic value is limN→∞ PQDGN ≈ 0.9868. This can be constrasted with the probability

that the probe is measured successfully, conditioned upon three successful probe-sample

interactions, for which one finds P(succ|ρN0 ) = 0.9948 through numerical evaluation, which

is a clear improvement. However, this is not the whole picture as one also needs to know

the probability that the probe is left in the state ρN0 , which turns out to be P(ρN0 ) = 0.9713.

In this modification of the scheme, the overall success-rate is P(succ) = 0.9713× 0.9948 =

0.9662, so that inspecting the qubits has made the protocol perform worse. There are

some caveats to the conclusion the modified scheme is worse. One is that success of the

scheme is now signalled. As in unambiguous state discrimination, a minimum error overall

is sacrificed in order to improve the probability of correct identification in a subset of cases.

For some experiments, it may be that this scheme provides a more useful characterisation of

the state. Another point is that the overall probability of success depends upon how large

the reserve of sample qubits is. In many applications one will have access to many more
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than the three qubits required here. The question then becomes: what is the probability of

getting three, for example, good outcomes in a row across the total measurement record?

The combinatorics involved in this case are too complicated to generate analytic results but

it seems likely that taking this account gives favour to the modified scheme, especially as

one stops gaining much information after the third or fourth measurement in the standard

case.

Finally, there is a subtle point concerning the asymptotic behaviour. Eq. 5.32 provides

an example of non-commuting limits for the two cases F = 1 and θ = 0. If the limit is

first taken to F = 1, the fraction term of this formula becomes equal to zero and thus

the probability of success becomes equal to unity, regardless of the angle between the two

states. This is, of course, the expected behaviour for almost all possible states, apart

from one point: that θ = 0, i.e., that the two states become identical. In that case the

best guess at the transmitted state will always have a fifty-percent probability of success,

however many times it is measured. That result is seen when the many-copy limit is

evaluated at θ = 0 directly: irrespective of F , the fraction becomes 1/2 and hence so

does the overall probability of success. The order in which those two cases is evaluated

must be done angle-first and this is an example of non-commuting limits. However, for all

other cases this issue does not exist. The reason for this odd behaviour is that the original

measurements are ill-defined in such a limit. In the quantum-data-gathering protocol this

is because the two-dimensional subspace which is occupied by the product states |ψ〉⊗N ,

which information is copied onto the two dimensions of the probe qubit, becomes a one-

dimensional subspace. As long as one is careful about this limit, though, the issue can be

avoided.

5.5 Summary

In this chapter, I have analysed the noise-resilience of two multiple-copy state-discrimination

schemes. Local adaptive measurement is an individual scheme, in which each qubit is mea-

sured. The quantum data gathering scheme interacts all qubits coherently with a probe

and extracts a single measurement datum. If the qubits are prepared perfectly then both

schemes reach the Helstrom bound. I set out to find out if there is a difference in the re-

sponse of each protocol if the measured qubits are imperfectly prepared. This lead me to

two surprising conclusions. Firstly, I showed that the local scheme always outperforms the

collective scheme, a result which goes against the commonly held notion that a quantum

memory is always useful [85, 93].

The other unexpected result is that both probabilities converge upon the same asymp-

totic limit. This is rather tantalising, as it suggests that the systematic error (applying

the best measurement for F = 1 generally) has some generic features. An obvious starting

point for future work on multiple-copy state discrimination is to explore this behaviour.

Another natural extension of the work presented here is to derive analytic results for true

Bayesian updating for the local adaptive scheme applied to the noisy states, one that uses

the whole measurement record rather than the Markovian scheme relevant for the case of

pure states. Though most analyses of mixed-state discrimination are numerical, it is likely
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that this simplified case is tractable. In general, more analytic results in the area would

help. Investigating Bayesian updating for a limited set of mixed states, and understanding

when it is no longer optimal, would be a good starting place.
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Conclusion

A quantum measurement will change the state of the measured system. In this thesis,

I have explored a few implications (some rather abstract, others more practical) of this

statement.

Kraus gave us a calculational framework for sequences of measurements. Why is this

framework the only game in town? This is the first question that I answer in this the-

sis. Following work by Hardy, Busch, Gleason and others, my answer was that Kraus’s

probability rule is the unique map from pairs of positive operators to real numbers which

is consistent with some (hopefully reasonable sounding) propositions about the nature of

quantum measurement. My propositions are based on a counting argument, with which

I contest that probability measurements must be thought of as relative frequencies of

different outcomes. The mathematical argument uses a trick common to many works in

the field of quantum reconstructions: I first show that probabilities can be represented as

inner products, and then find the space on which these inner products take place. This

space turns out to be the space of two-time states. I find the joint probability rule and

from it the state-update rule follows.

Quantum reconstructions continues to draw attention for physicists with foundational

questions. Between my initial work and the writing of this thesis, the most significant

contribution has come from Masanes et al. who provide a new derivation of the Born rule

[37]. Essentially, it is a statement that the Born rule is the only associative map from

rays to real numbers. On the face of it, this is in keeping with many of the works that

I’ve discussed throughout. However, unlike that work, the more recent results uses the

Schrödinger evolution of the quantum state as part of the proof. An obvious implication

is that unitary and non-unitary quantum evolutions can be considered two sides of some,

deeper, process. However, the mechanism by which this occurs has not yet been mapped

out. Also, like many works in the field (a categeory in which I include my own work) they

assume that a measurement is a special type of quantum evolution which maps a state

onto a real number, rather than deriving this behaviour from an underlying framework.

My feeling is that, going forward, quantum reconstructions need to provide sets of axioms

which are unrelated to measurements and yet which imply both Schrödinger’s and Lüders’

equations for updating quantum states. This would help to clarify the measurement

problem in more depth but, for that reason, is obviously a difficult task.
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I followed this foundational discussion with an eavesdropping analysis for some quan-

tum key distribution protocols. The former work led me to see that the natural space

to represent sequences of measurement outcomes is the two-time state space. I wanted a

physical problem which used the relevant objects in this space and noted that they map

onto the actions of the different parties that take part in quantum key distribution; the

problem that I chose was to optimise eavesdropping attacks in the individual measure-

ment regime. BB84 and B92, the two protocols which are most often discussed, were

re-analysed alongside PBC00, which is not as well-explored. I found that BB84 is best

attacked by the Brandt-Peres-Fuchs attack; that B92 is best attack with unambiguous

state discrimination; and that PBC00 is weak against qubit-rotation attacks. The final of

these is particularly surprising as it means that an eavesdropper does not need to know

which state is sent in order to known which bit was set. This highlights that the map

between signal states and bits is key to the security of quantum key distribution routines.

If this work has further applications, they are likely to be in the field of device-

independent key distribution, which I showed has a similar probability rule. It may be

that general security proofs can be developed for these schemes using the tools that I

developed. This point should be explored further.

The third strand of work presented here is an analysis of multiply-copy state discrim-

ination in the noisy preparation regime. A variety of protocols are able to reach the

Helstrom bound for situations in which one needs to distinguish between two pure states

and has access to multiple copies of those states but it is not obvious how well those

protocols perform if those pure states are replaced with mixed states. I showed that the

Bayesian local adaptive measurement scheme is better than the collective quantum data

gathering at distinguishing between two pure states if they have been prepared imper-

fectly, and also showed that both schemes have the same many-copy limit of their success

probability.

While the two-pure-state regime of multiple-copy state discrimination is more-or-less

solved, all other possibilities are almost unexplored, and almost no analytic results have

been found. While this is mostly due to the difficulty of calculation in this area, some

work should be possible. I expect that, for the range of mixed states which I look at in

the work presented here, i.e., those of the form F |ψi〉〈ψi|+(1−F )|ψi⊥〉〈ψi⊥| with i = 0, 1,

the optimal measurement scheme should be tractable. A natural starting point would be

an analysis of the true Bayesian updating scheme, one in which each measurement uses

the entire measurement record, for this set of states. It should be possible to find the

probability of success for this scheme, and even to verify whether or not it is optimal.

Even if it is sub-optimal, such an analysis might provide some intuition for some of the

odder results which appear in multiple-copy mixed-state discrimination. A move into the

problem of discriminating three-or-more states is probably more difficult and will likely

have to wait until experimental accuracy has improved.
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Singular-value decomposition

The Schmidt decomposition of a bipartite state is a powerful tool in quantum informa-

tion as it can be used to diagnose entanglement in a bipartite state. The possibility of

performing the Schmidt decomposition follows from the singular value decomposition of a

matrix. In this appendix I introduce the concept of singular value decompositions, prove

that they will always be possible, and introduce a worked example.

The basic theorem of singular value decompositions is that there will always exist

a diagonal matrix Σ and unitary matrices U and V such that any matrix A can be

decomposed into the form

A = UΣV †. (A.1)

This construct is used in a number of places in this thesis in its application in the Schmidt

decomposition, which can be used to diagnose entanglement and which forms the basis of

the method of quantum data gathering in Chapter 5. In quantum mechanics one is always

concerned with square matrices however this theorem holds more generally.

I begin by demonstrating that it is always possible to decompose A in this manner.

The proof uses the object A†A, which is clearly positive semi-definite (as is AA†). For this

reason it has a unique spectral decomposition in terms of eigenvectors λi and eigenvectors

|λi〉, such that

A†A|λi〉 = λi|λi〉. (A.2)

I act on each side of this equation with A to produce

AA†A|λi〉 = λiA|λi〉. (A.3)

This demonstrates that A|λi〉 is an eigenvalue of the positive operator AA†. Thus, the set

of objects |ψi〉 = A|λi〉/
√
λi form a normalised, orthogonal basis for the space. I evaluate

〈ψi|A|λj〉 =
√
λiδij (A.4)

which verifies that the operator can be ‘diagonalised’ as a map between the two bases I

am using. The final step is to write this operator in a particular basis, which I label {|i〉}.
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I define the unitaries U and V such that U |i〉 = |ψi〉 and V |i〉 = |λi〉. Then, from Eq. A.4,

〈i|U †AV |j〉 =
√
λiδij (A.5)

and it is clear that Σ = U †AV is a positive semi-definite operator. This can be rearranged

for A = UΣV †. This is the main content of the singular value decomposition theorem.

An example will make this concept clearer. I consider the matrix

A =

[
2 2

−1 1

]
. (A.6)

According to the proof of the theorem above, the object that I need to evaluate is A†A.

The eigenvectors of this matrix form the elements of the unitary operator V . I find

A†A =

[
5 3

3 5

]
(A.7)

which has normalised eigenvectors v1 = [1/
√

2,−1/
√

2]T and v2 = [1/
√

2, 1/
√

2]T so that

V =

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
. (A.8)

I can use this to find the elements of Σ and U given that I know AV = UΣ. The left-hand

side of this equation is

AV =

[
0 2

√
2

−
√

2 0

]
. (A.9)

The unitary operation U can be written so that its elements are two normalised column

vectors u1, u2 and the operator Σ is diagonal, with upper-left element σ1 and lower-right

element σ2. The product of these two matrices is UΣ = [σ1u1, σ2u2] Hence, from the above

I have

σ1u1 =

[
0

−
√

2

]
. (A.10)

Which implies that σ1 =
√

2 and u1 = [0,−1]T . Similarly, evaluating the other piece gives

σ2 = 2
√

2 and u2 = [1, 0]T . Bringing everything together I have

Σ =

[ √
2 0

0 2
√

2

]
, U =

[
0 1

−1 0

]
, V =

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
. (A.11)

Which can be seen to satisfy A = UΣV † upon evaluation. U and V are two unitaries and

Σ is a diagonal matrix. Writing A in this form is the singular value decomposition.
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Local-adaptive measurement

In this appendix I derive the best measurement strategy for the local-adaptive measure-

ment scheme. The measurement at each stage is written as

|ω(iNxN−1)〉 = cos(φx–iN
π

2
)|0〉+ sin(φx–iN

π

2
)|1〉, (B.1)

in which i is the individual measurement outcome at that stage; xN is the measurement

record up to that point; and φx is a parameter derived from that measurement record.

This notation is all introduced in the main body of the text, following Eq. 5.9. The free

parameter, φx, can be varied to reach the highest possible probability of success and the

result, as mentioned in the text, is that this satisfies

cos(2φx) = (−1)iN−1 cos(2θ)

√
1–4p0p1 cos2N−2(2θ)

1–4p0p1 cos2N (2θ)
. (B.2)

The surprising point is that the only piece of the measurement record which appears in

this formula is iN−1. This is the result directly prior to the measurement, and so the

scheme is said to be Markovian. This is the behaviour that I derive here.

The probability that the scheme succeeds is given by

PadN =
∑
x

(p0P(0|x, 0)P(x|0) + p1P(1|x, 1)P(x|1)) . (B.3)

The pieces P(a|x, a) can be evaluated in terms of the two angles φx and θ and substituted

into this equation. The first part of this requires the formula

P(iN |x, a) =
1

2

(
1 + (−1)iN cos(2θ) cos(2φx) + (−1)iN+a sin(2θ) sin(2φx)

)
, (B.4)

for the probability of the outcome iN on the final qubit given that the state ψa was sent

and that the first (N − 1) outcomes have resulted in a bit string x, which formula I use

repeatedly throughout this derivation. Substitution of this into the above probability
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formula gives

PadN =
1

2

∑
x

(p0P(x|0) (1 + cos(2θ) cos(2φx) + sin(2θ) sin(2φx))

+p1P(x|1) (1− cos(2θ) cos(2φx) + sin(2θ) sin(2φx))) , (B.5)

The maximum point occurs when the differential of this function is equal to zero, which

means that the requirement is

dPadN
dφx

=
∑
x

((p0P(x|0) + p1P(x|1)) sin(2θ) cos(2φx)

− (p0P(x|0)− p1P(x|1)) cos(2θ) sin(2φx)) = 0. (B.6)

In the local-adaptive scheme, there is no distinction between local and global optimisation;

it is assumed in advance that the best scheme will be locally optimal and only later shown

that this also leads to the globally optimal result, the Helstrom bound. If local optimality

is assumed, then the above equation must hold for all x and so each term in the sum will

be equal to zero. The condition is

sin(2θ) cos(2φx) (p0P(x|0) + p1P(x|1)) = cos(2θ) sin(2φx) (p0P(x|0)–p1P(x|1)) . (B.7)

After a small amount of rearrangement this can be written solely in terms of cos(2φx)

only:

cos(2φx) =
p0P(x|0)–p1P(x|1)√

(p0P(x|0) + p1P(x|1))2–4p0p1P(x|0)P(x|1) cos2(2θ)
cos(2θ). (B.8)

The next step is to simplify this object, which can be done by showing that the product

P(x|0)P(x|1) is proportional to the squared-sum (p0P(x|0)+p1P(x|1))2. This is done with

the usual rules of conditional probability to expand each (N − 1)-length bit string x in

terms of the final value, iN−1 and the previous (N − 2)-length bit string which I label ẋ.

I use again Eq. B.4, replacing x by ẋ and iN by iN−1. I consider first the product of

probabilities, which is

P(x|0)P(x|1) = P(ẋ|0)P(ẋ|1)P(iN−1|ẋ, 0)P(iN−1|ẋ, 1). (B.9)

I can then evaluate the probabilities of iN−1 on the right hand side using the previously

written formula. After several lines of manipulation, this simplifies to

P(x|0)P(x|1) =
1

4

(
cos(2θ) + (−1)iN−1 cos(2φẋ)

)2
P(ẋ|0)P(ẋ|1). (B.10)

I also require the squared-sum mentioned above. This is acquired in a similar fashion,

by writing the bit-string probability in terms of its final value, substituting in for that
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probability and then simplifying. The result of this process is the relation

(p0P(x|0) + p1P(x|1))2 = (p0P(iN−1|ẋ, 0)P(ẋ|0) + p1P(iN−1|ẋ, 1)P(ẋ|1))

=
1

cos2(2θ)

1

4

(
cos(2θ) + (−1)iN−1 cos(2φẋ)

)2
× (p0P(ẋ|0) + p1P(ẋ|1))2. (B.11)

With these two results, I find the expression

cos2(2θ)
(p0P(x|0) + p1P(x|1))2

P(x|0)P(x|1)
=

(p0P(ẋ|0) + p1P(ẋ|1))2

P(ẋ|0)P(ẋ|1)
. (B.12)

This can be used iteratively to find an expression for the left-hand-side fraction in terms

of the equivalent expression for the zero-length bit strings only. In that case, one can use

the single-qubit Helstrom bound to satisfy the expression and this leads to the result

P(x|0)P(x|1) = cos2N−2(2θ)(p0P(x|0) + p1P(x|1))2. (B.13)

With this expression B.8 can be simplified and I am left with

cos(2φx) = sgn (p0P(x|0)− p1P(x|1)) cos(2θ)
1–4p0p1 cos2N−2(2θ)

1–4p0p1 cos2N (2θ)
. (B.14)

The final step is to introduce the Markovianity; this is done by simplifying the expression

sgn (p0P(x|0)− p1P(x|1)). This is done by expanding the argument of sgn in terms of

the final measurement result only, and then substituting the relevant expression for the

probability that it has the outcome iN−1 in terms of θ and φx:

p0P(x|0)–p1P(x|1) = p0P(iN−1ẋ|0)P(ẋ|0)–p1P(iN−1ẋ|1)P(ẋ|1)

=
1

2
(p0P(ẋ|0)–p1P(ẋ|1))

+
1

2
(−1)iN−1 cos(2θ) cos(2φẋ) (p0P(ẋ|0)–p1P(ẋ|1))

+
1

2
(−1)iN−1 sin(2θ) sin(2φẋ) (p0P(ẋ|0) + p1P(ẋ|1)) , (B.15)

At this point I substitute in the sine and cosine of the parameter φẋ in place of the

expressions for probability, using Eq. B.8. After a small amount of manipulation I arrive

at

p0P(x|0)–p1P(x|1) = R(ẋ)

(
cos(2φẋ)

cos(2θ)
+ (−1)iN−1

)
. (B.16)

The term R(ẋ) is introduced to simplify the expression and brings together several pieces

of the equation. All that is relelvant here is that it is always positive, so the specific form

does not contribute to the sign. To determine the sign of this function I need to consider

only the piece inside the brackets. By definition, −1 < cos(2φẋ)/ cos(2θ) < 1. This can be

seen from the definition above. It follows from the fact that cos(2φẋ) is the overlap of the
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two most-likely states at a given point in the function. In the limit of many copies this

must tend towards zero monotonically, and so it will always be smaller in magnitude than

the prior overlap, cos(2θ), though may have a different sign. For this reason, the sign of

the overall object depends upon only iN1 ; if this is zero, then the object is positive, and if

it is one, then the object is negative. Thus,

sgn(p0P(x|0)–p1P(x|1)) = (−1)iN−1 . (B.17)

Bringing this together with Eq. B.14 gives

cos(2φx) = (−1)iN−1 cos(2θ)

√
1–4p0p1 cos2N−2(2θ)

1–4p0p1 cos2N (2θ)
, (B.18)

which is the form of the adaptive measurement, first derived by Acin et al, which I require

and which is used in the main body of this thesis.
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