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Abstract 

Current methods of clinical guideline development have two large challenges: 1) 

there is often a long time-lag between the key results and publication into 

recommended best practice and 2) the measurement of adherence to those 

guidelines is often qualitative and difficult to standardise into measurable impact. 

In an age of ever-increasing volumes of accurate data captured at the bedside in 

specialist intensive care units, this thesis explores the possibility of constructing a 

technology that can interpret that data and present the results as a quantitative 

and immediate measure of guideline adherence. 

Applied to the Traumatic Brain Injury (TBI) domain, and specifically to the 

management of ICP and CPP, a framework is developed that makes use of process 

models to measure the adherence of clinicians to three specific TBI guidelines. By 

combining models constructed from physiological and treatment ICU data, and 

those constructed from guideline text, a distance is calculated between the two, 

and patterns of guideline adherence are inferred from this distance. 

The framework has been developed into an online application capable of producing 

adherence output on most standardised ICU datasets. This application has been 

applied to the Brain-IT and MIMIC III repositories and evaluated on the Philips ICCA 

bedside monitoring system. Patterns of guideline adherence are presented in a 

variety of ways including minute-by-minute windowing, tables of non-adherence 

instances, statistical distribution of instances, and a severity chart summarising 

the impact of non-adherence in a single number. 
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Additional Resources 

Application 

The following application was created in support of this thesis and is available at 

the website link below. 

www.tbi-guidelineadherence.org 

For the purposes of access by examiners, two accounts have been created with the 

credentials below. A PDF user guide is available for download at the home page of 

the application. 

Username: examiner_external 

Password: aeNei4ph 

Username: examiner_internal 

Password: Teic4oph 

 

Code repository 

The code written to support the work performed in this thesis is available at the 

following repository link. A “Readme” guide is provided detailing the language and 

environment requirements for download and execution. 

www.github.com/astell/tbi_guidelineadherence 
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Summary 

Current methods of clinical guideline development have two large challenges: 1) 

there is often a long time-lag between the key results and publication into 

recommended best practice and 2) the measurement of adherence to those 

guidelines is often qualitative and difficult to standardise into measurable impact. 

In an age of ever-increasing volumes of accurate data captured at the bedside in 

specialist intensive care units, this thesis explores the possibility of constructing a 

technology that can interpret that data and present the results as a quantitative 

and immediate measure of guideline adherence.  

Clinical scope 

Though with potentially general application, the domain chosen was traumatic 

brain injury (TBI), specifically the threshold monitoring guidelines of ICP, CPP, and 

BP management. They were chosen due to the complexity and uncertainty 

inherent in TBI guidelines, combined with the availability of high-volume ICU data 

in the field. 

Hypotheses 

1) In high-resolution time-series clinical data, one can extract clinically-valid 

treatment processes for ICP/CPP management in TBI patients 

2) Having extracted treatment processes, one is able to develop a method to 

compare those against other treatment processes to establish the degree of 

similarity between them 

3) One can develop a computerised tool that readily quantifies and displays to 

clinical staff a metric of actual ICP/CPP management protocol adherence 

 

Methodology 

The main technological concept in this thesis is that of process models – a 

construct used in corporate and business domains to model time-varying processes 

and identify efficiencies. The process models were used to measure the adherence 

of clinicians to three TBI guidelines (ICP/CPP/BP monitoring thresholds) using 

physiological and treatment data from bedside machines in neurological ICUs.  
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Similarly, the relevant guideline texts from the Brain Trauma Foundation (BTF) 

were represented using Business Process Model Notation (BPMN) so that a 

comparable process model could be constructed. Building on previous comparison 

work between process models (Dijkman, Dumas and García-Bañuelos, 2009), a 

“distance” between the two models was then calculated and applied as a metric of 

guideline adherence, along with the qualitative components of that metric.  

This model was developed into a web-enabled application that can readily feed-

back the non-adherence measurements in a clinical environment for any given 

cohort of patients with standard physiological and treatment output. 

Evaluation of the system included: 

 Individual unit tests of general adherence cases (e.g. treatment not 

present), and cases specific to the individual BTF guidelines (e.g. presence 

of mass lesion/diffuse injury when following the ICP guideline).  

 Processing of guideline adherence output on three patients in the Philips 

ICCA system at the Queen Elizabeth University Hospital, Glasgow, and 

compared against the patient notes provided by the supervising neuro-

intensivists. 

 Accuracy of treatment annotation timing – a key component of the system – 

was evaluated by running a comparison of timing in a “live annotated” ICU 

dataset, against one produced in a regular ward shift. 

 A relationship between guideline adherence and patient outcome was 

investigated using logistic regression between the instances of non-

adherence and the 6-month Extended Glasgow Outcome Score (GOSe). 

The system was then applied to large-scale ICU datasets to further explore 

individual and aggregate information. One was a neurological specialist dataset 

(Brain-IT) and one a general non-specialist ICU dataset (MIMIC III). 

Non-adherence “distance” and duration was presented in a variety of ways to 

communicate as efficiently as possible how patient management is affected by 

guideline adherence. These included minute-by-minute windowing output (single 

number each minute, with component reasons viewable if desired), list per-patient 

of all non-adherence instances (also with component reasons) and a summary view 
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using inter-quartile range tables and box-plots (to understand the spread of non-

adherence durations). 

Results 

The following results were obtained from the four evaluations: 

1) For the unit tests with artificial data, the framework produced adherence 

output conforming to expected outcome 

2) For the investigation of timing accuracy, on the “live observed” data, 24 

events out of 32 across four patients were closely matched, with a mean 

distance of 3 minutes and a median of 1 minute. The “non-live” timings had 

no events matched within the asserted time limit (15 minutes) 

3) On the patient data with domain expert notes, 80% of treatment 

annotations were associated with EUSIG events and adherence output could 

be reasonably matched to the patient notes on two patients out of three. 

4) No statistically significant correlation was found between the guideline 

adherence output and 6-month patient outcome. 

From the large-scale datasets: 

1) Brain-IT had 17% of treatment annotations associated with EUSIG events, 

with instances of non-adherence detected according to all cases listed in 

the unit tests (with the exception of CPP pressor/fluid balance). Severity 

was reported as “mid-range” for nearly all patients. 

2) MIMIC III had 7% of treatment annotations associated with EUSIG events. 

Some instances of non-adherence patterns were detected with severity also 

reported as “mid-range”. 

Conclusions 

The conclusions relating directly to the three original hypotheses were:  

1) A treatment process for the management of ICP and CPP can indeed be 

derived from the analysis of physiological and treatment data  

2) This process can be compared against other processes of similar nature (in 

this, the BTF guideline represented in BPMN) to produce adherence output  
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3) The output of this comparison can be constructed into a clinically accessible 

tool – in this case a web-enabled application 

The overall achievement has been to provide a quantitative and standardised 

structure for the measurement of guideline adherence, using data from the ICU 

bedside and the guideline texts. 

Original contributions to research 

Technical 

 The application of process models to neuro-intensive data 

 The expression of the Brain Trauma Foundation guidelines as process models 

 The application of process model distance calculations to neuro-intensive 

data (and their use as a guideline adherence measure) 

 A novel method of presentation of guideline adherence results 

 A novel technological framework: the conversion of text guidelines and 

clinical data into comparable objects, the implementation of distance 

calculations to run the comparisons, the implementation of novel 

presentation techniques 

Clinical 

 A technological solution to provide direct and detailed information on 

guideline adherence and clinical management processes of ICP and CPP in 

neurological ICU data 

 

 

 

 

 

 



28 
 

1. Introduction 

Chapter summary 

The rise of clinical guidelines from evidence-based medicine is briefly described 

along with the availability of ICU data, which is often under-utilised. The general 

clinical goal of this thesis – improvement of knowledge about guideline adherence 

and the guideline themselves – is described, as well as the key requirements for a 

technological solution, which are: 

 High resolution physiological data 

 Comprehensive treatment data 

 The ability to combine these into a formal process-based expression 

 The ability to compare this formal expression against other similar process-

based entities (e.g. study protocols or local best practices) 

 

From this, three hypotheses have been developed: 

1) In high-resolution time-series clinical data, one can extract clinically-valid 

treatment processes for ICP/CPP management in TBI patients 

2) Having extracted treatment processes, one is able to develop a method to 

compare those against other treatment processes to establish the degree of 

similarity between them 

3) One can develop a computerised tool that readily quantifies and displays a 

metric of actual ICP/CPP management protocol adherence 

 

The work conducted to address these hypotheses has the following original 

contributions to the field: 

Technical 

 The application of process models to neuro-intensive data 

 The expression of the Brain Trauma Foundation guidelines as process 

models 

 The application of process model distance calculations to neuro-intensive 

data (and their use as a guideline adherence measure) 

 A novel method of presentation of guideline adherence results 
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 A novel technological framework: the conversion of text guidelines and 

clinical data into comparable objects, the implementation of distance 

calculations to run the comparisons, and the implementation of novel 

presentation techniques 

Clinical 

 A technological solution to provide a direct and detailed link between 

guideline adherence and clinical management processes of ICP and CPP in 

neurological ICU data 

 

Finally, the methodology used to achieve these goals is described in summary 

along with a brief outline of the rest of the thesis. 
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1.1. Background and rationale 

Evidence-based medicine (EBM) can be defined as “the conscientious, explicit and 

judicious use of current best evidence in making decisions about the care of 

individual patients” (Sackett et al., 1996). Though it has been practised as a 

method of applying medicine throughout history, it has only been formally 

recognised as a specific methodology in the latter half of the 20th century and has 

helped progress many fields of medical research (Howick, 2011). An important 

component in the development of a clinical evidence-base is the creation of 

clinical guidelines, which provide a standardised description of the current best 

practice in a particular field. 

Across many fields of clinical medicine, guidelines are used to inform and develop 

best practice. In order to understand whether these guidelines are being followed 

effectively, there are a variety of methods to monitor compliance. Common 

current methods to do this include post-hoc surveys or regular meetings after a 

hospital shift (or similar) to discuss different cases where perhaps the guideline 

was not adhered to, or negative outcomes were potentially avoidable (Levy et al., 

2010). 

Nearly all current methods have two features: 1) they are a qualitative evaluation 

and 2) there is often a long time-lag between the publication of survey or 

discussion of results, and their submission into either local best practice or to 

multi-centre evaluations for the further development of the guidelines. Whilst 

useful, these methods often do not make full use of the data and technology that 

is now available to many fields of clinical medicine. A potential advantage of using 

such data and technology would be quantitative evaluations (i.e. understanding 

the degree to which a guideline has been adhered to) and rapid feedback of non-

adherence to guidelines. 

The work presented in this thesis attempts to exploit those advantages by 

providing an ability to monitor clinical guideline adherence, as well as providing 

measurable quantitative feedback. Using data and technology currently available, 

the goal of the research is to express the structure of physiological and treatment 

patient data in such a way that can be immediately compared against best-

practice clinical (text) guidelines. The output of the research is to observe 
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adherence to best-practice guidelines over a study group, with a view to providing 

additional information to the clinical bedside. 

1.2. Scope – clinical and technical 

In critical care medicine – traumatic brain injury (TBI) as an example – technology 

has advanced throughout the late 20th and early 21st centuries to the point where 

nearly every modern intensive care unit (ICU) in the developed world has a 

multitude of high frequency data streams available, which can closely capture the 

application of clinical interventions and the physiological response of patients.  

The technologies that enable this output of raw data are well established, and the 

economics of data storage make retention of large volumes for extended periods a 

feasible option. However, the key to establishing the integrity of that data for a 

specific purpose – whether it is a multi-centre randomised controlled trial (RCT) or 

an audit of local clinical practices – is to monitor that raw data and understand the 

relationships between clinical treatments and physiological output. 

This process involves understanding that relationship at a level above the raw data 

output from bedside monitors. This could also be considered as observing data at a 

higher “layer of abstraction”. The raw physiological output consists of a series of 

numbers, which on their own mean very little, but with clinical context can be 

formed into structures that do have clinical meaning (for example an “adverse 

event” such as a sudden spike in blood pressure). When this is combined with 

clinical treatment information (such as the time and dose of a bolus of 

Noradrenaline) then patterns of clinical behaviour and patient response can be 

formed. 

If the algorithms used to extract and infer these patterns are valid, then it is very 

likely that this representation will be a highly accurate description of what 

actually happens in an ICU, due to the proximity to the actual data source, rather 

than having gone through several layers of interpretation in a qualitative survey or 

statistical analysis. In theory, it would be possible for such a system to work out – 

empirically from source – whether a specific process in the ICU has been followed, 

and if not, by how far it had deviated. 
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For specific processes, significant secondary inferences can also be made, which 

would fall into two categories depending on whether the output or the input of the 

process is being studied. For instance: 

1) Does a particular guideline recommendation actually work (viewing 

adherence output against patient outcome)? 

2) Has a particular protocol or guideline been applied correctly (viewing 

adherence input against the mandated guideline)? 

In practical terms, a requirement of monitoring guideline compliance in real-world 

clinical processes would be for that activity to inhabit a clinical work-flow with 

minimal impact (i.e. its presence must require no input from a clinician or obstruct 

clinical treatment). To achieve this, the concept of deviation from a process (or 

expressed conversely: the similarity of two processes) would have to be 

measurable using only data that is currently available. It would also have to be 

measured, calculated and expressed in a manner that would make clinical sense, 

using an interface that clinicians would be comfortable using and confident of its 

clinical efficacy. 

From all of these considerations, it is suggested that the development of a tool at 

the patient’s bedside to establish actual clinical practice, would help establish the 

integrity of protocol adherence in general. This in turn would provide stronger 

validation for clinical recommendations and guidelines, and also provide strong 

support for current techniques of analysing treatment effectiveness. 

To this end, the research described in this thesis aims to build an automated 

procedure that will evaluate the physiological and treatment information in 

several ICU datasets, extract the required clinical processes, then compare these 

processes with others of a similar nature (such as the recommended guidelines 

from literature). A quantitative measure of similarity, and therefore adherence, 

will then be available that can provide information on guideline effectiveness and 

compliance. This will in turn be available as a measure of baseline information 

that can be incorporated into subsequent studies. 
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The technical requirements to achieve this are as follows: 

 High resolution physiological patient data 

 Accurate and comprehensive treatment data 

 The ability to combine these into a formalised process expression 

 The ability to compare this formalised expression with other similar entities 

(such as guidelines, study protocols, institutional procedure, etc) 

Although the approach presented is general, the methodology must first be applied 

to a specific clinical domain to test its validity. The chosen area for this evaluation 

is traumatic brain injury (TBI), and specifically the management of intracranial 

pressure (ICP) and cerebral perfusion pressure (CPP). TBI has many features that 

make it a good candidate for study: the condition is complex and certainty in the 

guideline compilation and compliance is variable (Bullock, Chesnut and Clifton, 

1996), it is an environment that heavily uses modern technology that provides 

high-resolution ICU physiological and clinical treatment data streams (Shaw et al., 

2009), and the seriousness and prevalence of the condition means that any 

advances in the field have the potential to make large and positive impact on the 

population. 

1.3. Hypotheses 

In support of the discussion above, the following hypotheses have been 

formulated: 

1. In high-resolution time-series clinical data, one can extract clinically-valid 

treatment processes for ICP/CPP management in TBI patients 

a) Treatment processes for ICP and CPP management in TBI can be expressed 

by a work-flow data structure, comprised of “primitive” objects (a simple 

point value and time stamp) and “complex” objects (many values with 

interacting sub-structures). 

 

b) The treatment processes that are extracted are clinically meaningful and 

accurately reflect clinical management in a neurological ICU environment.  
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2. Having extracted treatment processes, one is able to develop a method to 

compare those against other treatment processes to establish the degree of 

similarity between them 

a) Treatment processes and other types of relevant process (e.g. protocols, 

guidelines, institutional policies) can be expressed in a standard form. 

 

b) This standard form expression can be compared in a measurable way. 

 

c) This standard form expression can be written in a computer-interpretable 

format. 

 

3. One can develop a computerised tool that readily quantifies and displays to 

clinical staff a metric of actual ICP/CPP management protocol adherence 

a) The standard form can be implemented in an application that can be 

integrated into a modern neurological ICU. 

 

b) The implementation provides meaningful and clinically useful feedback to 

clinicians. 

By addressing these specific hypotheses, it is believed that the answers will inform 

and progress the knowledge contributing to the collection and analysis of ICU data 

to support evidence-based tools in critical care medicine. 

1.4. Methodology and contributions 

There are several technological steps that are involved in this work: 

 The classification of events in physiological output known as EUSIG events 

(Edinburgh University Secondary Insult Grade), and compilation of an event 

log from this 

 The expression of those event logs as process models 

 The extraction of clinical guideline texts into process models 

 The comparison of two process models using complex similarity/distance 

algorithms 
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Together, these steps form the framework through which the possibilities of 

quantitative, real-time guideline adherence monitoring can be explored. Other 

technological and computational methods have been explored throughout the 

course of the research, and they will be discussed in the appropriate sections of 

the thesis. However, though there are always merits and drawbacks in the use of 

different technologies, the overall goal remains the establishment of such a system 

in principle. 

Event detection and representation from time-series data are common methods of 

data analysis in medicine. However, the automated semantic analysis of textual 

guidelines is an approach that has largely, to date, stayed in the realm of medical 

informatics research. Process models, at a general level, are processes of the same 

nature classified together into one model: a single process can be considered as an 

instantiation of that model. The use of process models and comparison/similarity 

calculations are borrowed from the field of business process management – most 

commonly used to describe real-world problems of project management and 

corporate efficiency (Panagacos, 2012). It has been used in isolated instances of 

medical problems, but again mainly in the logistical administration of hospitals and 

other large-scale corporate structures (where the fact that these structures are 

medical in nature is incidental) (Perimal-lewis et al., 2012). 

Figure 1.1 shows a simplified schematic of how the proposed framework in this 

thesis is used to convert ICU data and guideline text into comparable datasets. 

Step 1 is the translation of ICU data to an event log; step 2 in the conversion of 

this to a process model; step 3 is the formulation of the clinical guideline (Brain 

Trauma Foundation – BTF Guidelines) into a process model of similar format; and 

step 4 is the comparison between the two process models. 
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Figure 1.1: simplified schematic of the architectural process underpinning the proposed research 

From the hypotheses and methodology described, the specific original 

contributions of this thesis are: 

Technical 

 The application of process models to neuro-intensive data 

 The expression of the Brain Trauma Foundation guidelines as process models 

 The application of process model distance calculations to neuro-intensive 

data (and their use as a guideline adherence measure) 

 A novel method of presentation of guideline adherence results 

 A novel technological framework: the conversion of text guidelines and 

clinical data into comparable objects, the implementation of distance 

calculations to run the comparisons, the implementation of novel 

presentation techniques 

Clinical 

 A technological solution to provide direct and detailed information on 

guideline adherence and clinical management processes of ICP and CPP in 

neurological ICU data 
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1.5. Chapter outline 

The rest of this thesis will be divided up as follows: 

 Chapter 2: Background – TBI, clinical technology and data 

 Chapter 3: Literature review 

 Chapters 4 – 7: Method 

o Chapter 4: Expression of clinical guidelines as process models 

o Chapter 5: Translation of ICU data to process models 

o Chapter 6: Calculating distance and similarity of process models 

o Chapter 7: Framework implementation 

 Chapters 8 – 10: Results 

o Chapters 8: Evaluation 

 Unit testing of general and individual guideline cases 

 Treatment annotation timing verification 

 Domain expert information from a real clinical setting 

 Logistic regression of guideline adherence against 6-month GOS 

o Chapter 9: Application of framework to the Brain-IT dataset 

o Chapter 10: Application of framework to the MIMIC III dataset 

 Chapter 11: Discussion and future work 

 Chapter 12: Conclusion 

Chapters 2 and 3 will provide a more in-depth background to the work in both the 

clinical and technological fields, providing background and literature on the broad 

clinical issue as well as the issues specific to the domain under study (TBI). 

Chapters 4, 5, 6 and 7 detail the specific technological methods developed and 

their implementation. Chapter 8 describes the evaluation work of the framework 

and its application against various benchmarks such as the accuracy of treatment 

annotations, statistical relationship to 6-month patient outcome, and the 

experience of domain experts in the field. Chapters 9 and 10 detail the results of 

the system when run against two different large-scale ICU datasets (Brain-IT and 

MIMIC III). Finally, chapters 11 and 12 outline the discussion, conclusions and 

avenues for potential future work. Each chapter is preceded with a small summary 

of the chapter contents. 
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2. Background 

Chapter summary 

The clinical mechanisms underpinning traumatic brain injury (TBI) – in particular 

intracranial pressure (ICP) and cerebral perfusion pressure (CPP) – are described, 

providing background to the necessary data required for collection in this domain.  

 

The methods of data collection and synthesis for the development of TBI 

guidelines by the recognised leader in the field – the brain trauma foundation 

(BTF) – are then described. These are arrived at through meta-analyses of 

qualifying studies and trials and ascribed a confidence level out of three 

categories: option (level 3), guideline (level 2), or standard (level 1). A notable 

feature of the TBI domain is the lack of level 1 and level 2 recommendations. 

 

The theme of addressing uncertainty is further developed with a discussion of 

studies and novel methods that have been attempted to improve confidence in TBI 

guidelines. Notable are contradictory findings in various studies, the negative 

results (i.e. unable to ascertain clinical significance) in Cochrane reviews, and a 

novel attempt to improve study power post-hoc by the TBI-IMPACT group. 

 

Finally the current state-of-the-art in TBI data representation is discussed, with a 

view to exploiting this data to improve certainty in the output of TBI studies and 

trials. EUSIG (Edinburgh University Secondary Insult Grade) events are described 

as a pattern of representing physiological patient events – particularly relevant to 

ICP and CPP. Systems to interpret this are described, such as ICM+ and CareScape, 

and data repositories to build on this further are introduced, such as Brain-IT and 

CENTER-TBI. 
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The research questions addressed in this work are issues which are believed to be 

applicable to many clinical fields. However, as previously mentioned, in order to 

test the validity of the proposed approach a specific domain has been chosen: 

traumatic brain injury (TBI).  

2.1. Traumatic brain injury and intracranial pressure 

Traumatic Brain Injury (TBI) is defined as the damage sustained by the brain 

resulting from an external mechanical force, and is one of the leading causes of 

hospitalization, with almost 349,000 admitted to hospital in the UK in 2013-14 

(Headway, 2018). 

When the brain or skull is damaged due to an external force, there are many 

primary injuries that can result, including (but not limited to): hydrocephalus, 

brain oedema, tearing of axons, tearing of blood vessels resulting in formation of 

“mass” lesions (in this case, collections of blood) such as extradural, intradural or 

parenchymal haematomas.  

The management of these primary conditions is often the immediate concern of 

the physician, but there are also secondary injuries that can result, which involve 

the more-subtle relationship between brain volume and brain pressure. This 

relationship comes about because of the equilibrium that exists between the 

various components of the skull, based mainly on the assumption that the skull is 

an incompressible structure filled with fluid and different types of neuronal and 

vascular tissue. The formal expression of this is known as the Monro-Kellie 

hypothesis: 

 “The sum of volumes of brain, CSF, and intracranial blood is constant. An 

increase in one should cause a decrease in one or both of the remaining two.” 

(Mokri, 2001) 

Part of the outcome of this doctrine can be shown graphically as the relationship 

between intracranial pressure and intracranial volume (figure 2.1). As can be seen 

there is a mainly linear relationship until a critical intracranial volume is reached – 

the volume where “compensatory craniospinal volume” becomes exhausted (i.e. 

most of the available space within the skull-spinal axis is filled). Above this point, 
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the intracranial pressure then increases dramatically to any further increase in 

added volume (Reilly & Bullock, 2005). 

  

Figure 2.1: graph of cranio-spinal volume vs pressure, exemplifying the Monro-Kellie doctrine 

(Trauma, 2014) 

Focusing on the cranial component and following from this equilibrium 

relationship, are a variety of pressures and pressure gradients that exist within the 

skull. The most important function of these is to maintain constant cerebral blood 

flow (CBF), providing oxygen and nutrients to the brain. The brain is – unusually 

amongst human organs – highly sensitive to critically low blood flow and can 

quickly become ischaemic if deprived of that flow. This flow is maintained by a net 

pressure gradient across the cerebral vasculature, known as cerebral perfusion 

pressure (CPP), which is dependent upon intracranial pressure (ICP) and mean 

arterial pressure (MAP): 

CPP = MAP – ICP 

This pressure is important when looking at the process of cerebral auto-regulation. 

This is the process where – to protect the brain from ischaemia – a physiological 

mechanism balances small perturbations in the pressure-volume interdependence, 

to maintain the optimum blood flow (Reilly & Bullock, 2005). Auto-regulation is 

achieved primarily by small arteries that expand or contract depending on the 

chemical messages received from other physiological control systems. These 

methods of physiological control include nitric oxide as a chemical messenger, 

which affects the proteins that control the blood vessel wall response (also known 

as endothelins). Recent work in (Payne, 2016) also suggest contributory 

mechanisms of capillaries via pericytes may be involved.  
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Figure 2.2 shows the relationship between blood flow and pressure, where the 

auto-regulation mechanism is active and most effective. Auto-regulation is a 

biological feedback mechanism that works to adjust a system’s response to stimuli. 

Cerebral auto-regulation aims to maintain an adequate and stable cerebral blood 

flow. The edges of this curve indicate where the pressure is either too high or too 

low for auto-regulation to work effectively and where the disruption of regular 

organ function begins to occur. 

 

Figure 2.2: a graph of perfusion pressure versus blood flow, illustrating the curve of auto-
regulation (CVPhysiology, 2017) 

Measurement of the forces acting across the cerebral vasculature such as the ICP 

and CPP can be, and often are, used as secondary measures to indicate the status 

of the CBF.  However, they can also indicate the presence of complicating 

secondary injury factors in themselves. For instance, hypotension – an abnormally 

low blood pressure – can be detected by monitoring an increase in ICP, which can 

indicate an impending potentially fatal drop in cerebral blood flow. 

In terms of general treatment approaches for brain injury, it has traditionally been 

the case that clinical management has focused solely on the primary insult (the 

initial impact and injury). As such, consensus tended towards the idea that patient 

outcome was closely tied to the severity of these initial injuries in isolation. 

However, research over the last two to three decades suggests that secondary 

insults – such as altered CBF, cerebral edema, ischemia, hypoxia or hypotension – 

which may result from either developing patho-physiology from the primary injury 

or as an iatrogenic consequence of therapy, also have a significant impact on 

patient outcome, more than was previously thought (Jones et al., 1994). 
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When the primary injury results in a space occupying lesion that can be removed 

surgically, the primary management is surgical. In terms of treatment for these 

secondary insults, general medical opinion appears to be that for the non-surgical 

management there is no first-line therapeutic approach, due to the complex 

interplay of factors. However, there are principles of treatment that can aid the 

management of a patient suffering from TBI as shown in table 2.1 (Reilly & 

Bullock, 2005). 

Aim Therapy 

Lower intracranial volume: maintain or 

lower ICP: 

Brain volume, CSF volume, Blood 

volume 

Mannitol, steroids, surgery, CSF 

drainage, diuretics, controlled 

ventilation 

Correct gases: 

Hypoxia, Hypercapnia 

 

Controlled ventilation 

Improve brain perfusion: 

Blood flow, Blood pressure, Blood 

viscosity 

Calcium antagonists, Maintain blood 

volume, Haemodilution 

Table 2.1: treatment therapy and the immediate physiological target 

An important principle in the case of TBI is the reduction of intracranial pressure 

(ICP), which would require a reduction of the intracranial volume, by various 

means (e.g. reduction of blood volume, management of autoregulation, reduction 

of CSF volumes). The understanding of this approach is the pursuit of many TBI 

research communities throughout the world – for instance the three-yearly ICP 

conference (ICP 2019 Congress) – and motivates the specific gathering and analysis 

of physiological and treatment information relating to ICP and CPP. 

With this overview of the physiological mechanisms of TBI and the main treatment 

principles, specifically for issues in ICP management, we now look at the 

formulation and maintenance of the leading guidelines in TBI hosted by the Brain 

Trauma Foundation (BTF). 

2.2. TBI guidelines 

Clinical treatment guidelines provide a method to bridge the gap between 

evidence and clinical practice, standardize treatment practices, and improve 
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patient care. The compilation of guidelines is based upon a review of existing 

literature which can range from multi-centre randomized controlled trials to small 

scale studies. To reflect the range in evidence base, guidelines are often 

accompanied by an associated level of confidence which reflects the quality of the 

literature that led to a particular recommendation. As medical literature is 

constantly being updated, a natural feature of medical guidelines are for them to 

be constantly developed and refined as medical research and science progresses; 

in essence they can be considered as a “living document” (Kaiser and Miksch, 

2009). 

There are various sources of guidelines for the treatment of TBI, but those 

endorsed by the national health services of many developed countries (e.g. 

Scottish Intercollegiate Guideline Network (SIGN) and National Institute Centre of 

Excellence (NICE), for Scotland and England respectively) very often focus upon 

the immediate emergency triage that must be administered to a brain-injured 

patient before they are admitted to the intensive care unit (Harbour and Miller, 

2014). The most comprehensive guidelines in the area of TBI are published by the 

Brain Trauma Foundation (BTF), which cover all types of situations including 

intensive care stays, emergency accident-scene care, specific situations such as 

trauma sustained whilst in military combat, and of particular interest: long-term 

treatment and outcome effects (Bratton and Chestnut, 2006). 

The guidelines published by the BTF provide a common benchmark against which 

an institution can compare their procedures for the treatment of TBI. They are 

generally accepted as providing the best “gold standard” in TBI care, and have 

been associated with the development of TBI care management over the last two 

decades (Faul et al., 2007) However, despite the advances in the standardisation 

of TBI treatment through this guideline development process, non-adherence is 

still relatively commonplace, for a variety of reasons such as lack of awareness, 

agreement and familiarity with the guidelines (Hesdorffer and Ghajar, 2007). 

In recognition of the varying evidence used to generate guidelines and the 

effectiveness of those guidelines, the BTF provide a tabulation of the confidence 

level behind a specific treatment or guideline. Three broad classifications of 

guidelines exist in the BTF (in decreasing order of certainty): Standards, Guidelines 
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and Options. These classifications of specific guidelines are based in turn, on the 

classification of the supporting evidence: level 1, 2 and 3 treatment 

recommendations, supported by class 1, 2 and 3 evidence respectively (and again 

in decreasing order of certainty of efficacy). 

Level 1 None 

Level 2 Intracranial pressure (ICP) should be monitored in all salvageable 

patients with a severe traumatic brain injury (TBI; Glasgow Coma 

Scale [GCS] score of 3-8 after resuscitation) and an abnormal 

computed tomography (CT) scan. An abnormal CT scan of the head is 

one that reveals hematomas, contusions, swelling, herniation, or 

compressed basal cisterns. 

Level 3 ICP monitoring is indicated in patients with severe TBI with a normal 

CT scan if two or more of the following features are noted at 

admission: age over 40 years, unilateral or bilateral motor posturing, 

or systolic blood pressure (BP) < 90 mm Hg. 

Table 2.2: BTF guideline recommendations for Indications for Intracranial Pressure Monitoring 

As a relevant example the recommendations for “Indications for Intracranial 

Pressure Monitoring” are detailed in table 2.2 (Braintrauma, 2018)1. 

As is standard throughout the BTF guidelines, the text supporting these 

recommendations include an overview of the medical issue being discussed, more 

in-depth information on the scientific foundation for arriving at the conclusions 

that they have, key issues for future investigation, and a summary. Of particular 

relevance to this work is the outline of the literature review process that sourced 

the evidence-base for this information, which in this case is: 

                                                      
1 The text for table 2 had been originally written in mid-2014. Between then and late 2017 the BTF had 
significantly updated their website, along with much of the latest evidence supporting current 
recommendations from the 3rd to the 4th editions. Next to the ICP monitoring example there is now the 
following qualifying text, which neatly exemplifies the exact issue discussed in this chapter – i.e. that even 
though their criteria had become more strict between editions, they still did not have enough information to 
make strong recommendations: 
 
“The Level II and III recommendations from the 3rd Edition of these guidelines are not supported by evidence 
meeting current standards because they were derived from descriptive studies, or from studies that do not 
meet the current inclusion criteria for this topic. While no evidence is available from comparative studies to 
support a formal recommendation, the Committee chose to re-state here the 3rd Edition recommendations. 
The rationale for doing so is to maintain sufficient recognition of the patient characteristics associated with risk 
of increased intracranial pressure.” 
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“For this update, Medline was searched from 1996 through July of 2004 (see 

Appendix B for search strategy), and results were supplemented with literature 

recommended by peers or identified from reference lists. Of 36 potentially 

relevant studies, 12 were added to the existing table and used as evidence for this 

question (Evidence Tables I, II, and III)” 

The evidence tables themselves are divided into three, one each to support the 

three questions posed about intracranial hypertension (ICH) in the scientific 

discussion section: 

1. Which patients are at risk for ICH? 

2. Are ICP data useful? 

3. Does ICP monitoring and treatment improve outcomes? 

As examples, table 2.3 shows the most recent contributing study for each question 

(all supporting level 3 recommendations only). 

Overall, this process is an example of a meta-analysis of all available information, 

one of the most effective tools available for building an evidence-base of 

knowledge from study information. But there are many areas where the procedure 

can be significantly improved which is discussed in more detail in the next section. 
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Question Reference Description Conclusion 

1 (Miller et al., 

2004) 

82 severe TBI 

patients were 

retrospectively 

analyzed regarding 

initial CT findings 

relative to ICP 

CT findings regarding 

gray/white differentiation, 

transfalcine herniation, size 

of ventricles, and basilar 

cistern sulci are associated 

with, but not predictive of, 

intracranial hypertension 

2 (Servadei et al., 

2002) 

ICP ranges assessed 

in patients with 

traumatic 

subarachnoid 

hemorrhage to 

determine if there 

were any identifiable 

changes predictive of 

worsening CT 

findings 

ICP monitoring was the first 

indicator of evolving lesions 

in 20% of patients. 

However, in 40% of 

patients, CT worsening was 

not associated with ICP 

elevations, thus ICP 

monitoring alone may be 

inadequate to follow CT 

abnormalities 

3 (Aarabi et al., 

2006) 

Prospective 

observational study 

of 50 severe TBI 

patients, 40 with 

intractable ICH 

whose ICP was 

measured before 

decompressive 

craniectomy 

Of the subgroup of 40 

whose ICP had been 

measured before 

decompression, the mean 

ICP decreased after 

decompression from 23.9 to 

14.4 mm Hg (p < 0.001). Of 

the 30-day survivors of the 

total original group of 50 (n 

= 39), 51.3% had a GOS 

score of 4 or 5 

Table 2.3: most recent studies contributing to evidence supporting recommendations for 

“Indications for Intracranial Pressure Monitoring” 
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2.3. TBI studies and trials addressing evidence-base uncertainty 

Clinical studies and trials are one of the most effective and well-known methods 

for compiling a clinical evidence-base, such as those used to support clinical 

guidelines. There are varying degrees of accuracy and knowledge that can be 

extracted depending on the methods used (e.g. a randomised-controlled trial is 

considered the “gold standard” but can be prohibitively expensive to conduct, so 

in some areas less accurate study methods are acceptable). In TBI there is a lack of 

strong evidence to support current treatment practices, the main indicator of 

which is the lack of level 1 recommendations (“standard”) in the BTF guidelines. 

Currently the only Level 1 recommendation in the “Inhospital Severe TBI 

Guidelines” is against the use of steroids as a treatment, and throughout the 

guidelines the overwhelming majority of recommendations are of level 3 certainty 

(“option”), rather than level 2 (“guideline”) (Haddad and Arabi, 2012). 

Throughout the literature – discussed further in section 3.2 – there are many 

studies that support and also contradict the individual recommendations of the 

BTF guidelines. Examples of support include treatment using hyperventilation 

(Neumann et al., 2008), treatment through patient cooling (Harris et al., 2012), or 

treatment through the administration of barbiturates (Morrow and Pearson, 2010)). 

Examples that contradict the BTF, include (Pascual et al., 2011) where 

oxygenation treatments are evaluated and suggest that the BTF guideline-

mandated method may not be ideal. These studies and papers do make 

contributions to the evidence base, but it is notable that they are often smaller 

longitudinal studies, with confidence not sufficient to significantly influence the 

guidelines (i.e. with level 1 confidence). 

The accuracy of studies to build the evidence base in TBI can also be confounded 

by ethical considerations, which are particularly significant due to the complexity 

and sensitivity of the brain. The CRASH trial (Edwards et al., 2005) discovered a 

marked negative treatment effect in the administration of corticosteroids for 

traumatic brain injury, and was therefore halted on ethical grounds (Czekajlo and 

Milbrandt, 2005). That the use of steroids was detrimental was a surprising result 

in itself, as it had been used for years as standard treatment without the overall 

knowledge that it was doing more harm than good. As such the CRASH trial can be 
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considered as a successful scientific outcome. However, the trial was also 

(appropriately) stopped before completion, so the data also stopped being 

collected. It is likely that further information would help inform the community, 

and the clinical evidence-base, in even greater detail. 

Another related example is that of ICP monitoring which is an important potential 

avenue of treatment study, as it provides near-direct clinical insight into a 

patient’s ICP/CPP status. This in turn informs the administration (or not) of 

remedial treatments to manage ICP/CPP-related secondary insults, which are 

increasingly shown to affect the long-term patient outcome.  

This tension between clinical importance and invasiveness was present in the 

BEST-TRIP trial, a study conducted in Ecuador and Bolivia directly investigating the 

importance of ICP monitoring (Chesnut et al., 2012). The investigators of this study 

concluded that the study indicated no treatment effect in ICP monitoring, which 

would require a new assessment of future ICP monitoring methods and the ethical 

implications of whether this intervention would be administered. However, these 

conclusions have been challenged in the expert community as an over-

interpretation of results, with questions about the strict adherence to TBI 

guidelines in the study – given the resourcing of the participating centres – and the 

lack of data on arterial hypotension. The particular issue of ICP monitoring appears 

to be far from settled (Härtl and Stieg, 2013) and uncertainty in the evidence-base 

remains. 

Another method of mitigating against random effects of statistical uncertainty – or 

put a different way, understanding the significance of a single result against the 

overall landscape – is to analyse groups of studies systematically. These systematic 

reviews (or meta-analyses) combine the results of a number of similar studies to 

increase the “power” of the analysis. These techniques are well regarded, but can 

still be subject to issues arising from their constituent RCT analyses; issues such as 

publication, selection and agenda bias (Eysenck et al, 1994). Therefore, if these 

methodology issues exist in the trials used for the meta-analysis, the results of the 

meta-analysis will have corresponding low certainties. 
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One of the most comprehensive contributors to the field of evidence-based 

medicine is the Cochrane Collaboration (Cochrane, 2018), which provides a 

database of well-conducted RCTs and systematic reviews. The entry criteria are 

strict and therefore the reputation of information from a “Cochrane Review” is 

considered highly reliable. If a trial or study has a methodology which is at odds 

with the requirements for inclusion, they will simply not be included. In terms of 

TBI, there are various entries in the Cochrane database, such as (Harris et al., 

2012) (patient cooling), (Sahuquillo et al, 2006) (decompressive craniectomies) or 

(Roberts and Sydenham, 2009) (barbiturate therapy), but nearly all produce 

negative results, indicating no ability to comment on a treatment’s effectiveness 

(in this regard the clear outcome of the CRASH trial is unusual). So, although TBI 

research is represented with trials that are well conducted and follow sound 

methodological principles, the statistical significance of the results are often low. 

Therefore, the baseline of clinical understanding remains undetermined and the 

uncertainty in TBI treatment guidelines remains. 

A leading research group in TBI based in Antwerp, Belgium have attempted to 

address these issues using post-hoc statistical analysis. This analysis is known as 

the IMPACT project (McHugh et al., 2007) and attempts to extract further 

information from the low-power TBI datasets already in existence by modifying the 

statistical analyses of these data. They include the use of broad enrolment 

criteria; changing the outcome analysis from dichotomous (“good” and “bad”) to a 

finer-grained five-ordinal state (three “good” and two “bad”, with varying degrees 

of severity); and a covariate adjustment to baseline patient characteristics. 

Results from this approach appear to be inconclusive, but the possibility of 

manipulating the analysis in this way has yet to be ruled out as unviable (Maas et 

al., 2010). 

In summary, despite the available tools and other novel attempts to establish 

greater certainty in the formulation of TBI guidelines, much uncertainty remains. 

However, a key avenue that shows promise in reducing this uncertainty is the 

advance of technology and data in TBI. In the next section, the nature and 

representation of that data and technology is described in more detail. 
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2.4. Physiological and treatment representation using TBI data  

A modern intensive care unit is very much a “data rich” environment. Signal 

processing technology and the advance of Moore’s Law (an approximate doubling 

of transistor capacity every two years) have resulted in the feasibility of data 

collection and storage at an unprecedented scale. This in turn has led to ICUs (and 

neurological ICUs) that have many machines monitoring patients and producing 

large amounts of clinical information to aid with healthcare delivery. 

There are many types of data that come from this environment covering a wide 

spectrum of information and clinical behaviours: physiological output, 

drug/intervention treatment information, surgeries, routine and exceptional 

clinical events, and more. Arguably the most important are those of patient 

physiological signals (indicating their status and health), and clinical treatment. 

With these two types, it is possible to monitor – either in real-time or 

retrospectively – the status of a patient and their reaction to those clinical 

drugs/interventions. 

In terms of data structure, an important piece of related work was the 

identification of a “physiological monitoring event” from routinely collected 

physiological data, which includes the Edinburgh University Secondary Insult Grade 

(EUSIG) (Jones et al., 1994), the standard outline of which can be seen in figure 

2.3. It shows various structural features such as the event/clear hold-down (length 

of time for an event to have officially started/finished) and the threshold crossing 

value. This model can be used for data represented as a continuous time-series, 

which in the neurological ICU would include (amongst others): intracranial pressure 

(ICP), cerebral perfusion pressure (CPP), blood pressures (BP), central venous 

pressure (CVP), heart rate (HRT), temperature (Temp), respiration rate (RR), pulse 

oxygenation (SpO2), end-tidal carbon dioxide (ETCO2). 
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Figure 2.3: schematic outline of a physiological monitoring event, with ICP used as an example 

When analysing physiological data using these structural definitions of events, one 

of the key clinical questions is the specific physiological values that should be used 

for threshold crossing (e.g. a value of greater than 100 beats per minute (bpm) for 

heart rate) and hold-down times (e.g. greater than 100 bpm for 10 minutes). This 

is often a source of debate within the expert community. For instance, the 

numerical definition of a hypotensive event – one defined (semantically) as an 

abnormal drop in blood pressure – can be many and varied, involving not only 

different values (e.g. diastolic BP drops below 40 mmHg), but different parameters 

(e.g. mean BP or in the neurological case, cerebral perfusion pressure) (Eastridge 

et al., 2007). 

In the case of ICP – which, as discussed in sections 2.2 and 2.3, is believed to be a 

useful indicator of brain status, but is difficult to monitor practically – the 

uncertainty is such that there is even debate not only on the value of thresholds, 

but also the nature of how the data has been summarised (minute-by-minute or 

averaged wave-form values) (Shaw et al., 2009), or whether patient-specific 

thresholds can be identified by charting individual information on pressure-

reactivity index (PRx) versus ICP (Lazaridis et al., 2014). 

Systems such as ICM+ (Smielewski et al., 2005), Philips CareVue (CareVue, 2018) 

and Carescape monitors (GEHealthCare, 2018) are built to detect events as defined 

above. To enable decision support for clinicians, the focus of these systems is to 
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use this information to trigger real-time predictive alarms over a useful timescale. 

They often have the sophisticated ability to vary a threshold warning (e.g. heart 

rate goes above 100 bpm) in response to whatever the favoured clinical event 

definition is at a particular centre (Donald et al., 2012). The level of detail of raw 

data captured is very high (e.g. millisecond wave-form data), and again this 

contributes to the discussion in the expert community about the benefits of what 

level of detail is optimal for informing clinical behaviour (Hemphill et al., 2005). 

Although patient monitoring systems routinely capture physiological parameters, 

treatment annotations are much harder to capture, partly due to their nature, 

which can often be both irregular and highly dependent on human intervention 

(e.g. a clinician making a judgement call to administer a drug). 

Systems such as Philips CareVue have only recently moved forward in this regard 

by connecting drug pumps directly to the integrated data system. If this option is 

not available, then an alternative is manual clinical entry. This is an example of 

where older clinical practice in an ICU is “playing catch-up” to the technological 

environment (i.e. the physiological data streams) that surrounds it. A discussion is 

required, similar to that of data resolution and beyond the scope of this work, to 

understand if the wealth of information in a certain ICU environment, is actually a 

help or a hindrance to clinicians. Some studies have been conducted looking at the 

rates of annotation within an ICU to aid neurological studies, such as (Enblad et 

al., 2004) and have found that the numbers of actual treatments recorded could 

still be greatly improved. In fact, a significant proportion of treatments are 

delivered by hand rather than through drug pump infusion and thus remain 

dependent upon accurate timing event annotation by medical staff. 

To utilise such data and technology more broadly, information platforms have been 

developed a layer “above” the data coming from bedside machines. The Brain-IT 

consortium documented a full specification of data parameters within a 

neurological ICU (Nilsson et al., 2005), with a view to supporting future 

neurological monitoring projects. As data collection and storage technologies have 

advanced over the course of the last two decades, the outline of these schemas 

would often act as a roadmap of the ideal data to collect, whilst the 

implementation of collection would itself take many years to become an 
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achievable goal - relating to the Brain-IT schema, this type of implementation has 

included in projects such as AVERT-IT (Stell, Sinnott and Jiang, 2009)2. A separate 

initiative, focusing more intensively on robust data collection in the TBI field, is 

CENTER-TBI (CENTER-TBI, 2018). The project comprises many work packages 

covering both clinical and technological areas of research. One of the main 

technological goals is to make sure that the quality and coverage of data collected 

is as great as possible given the abilities that are now available from bedside 

machines in many neurological ICUs. 

It should be noted that such platforms are often driven by domain experts, and 

hence a possible source of bias is the clinician’s particular field of expertise. A key 

point in improving the process of understanding patient response is to use data 

that represents a “real” ICU as closely as possible and the barrier to using this data 

is often due to the problems involved in the methods of data collection. A 

pioneering project that has recognised this and built a dataset to support the use 

of this in future studies, is MIMIC III (Saeed, 2007), a repository of over 30,000 

individual, anonymised patient data records collected since 2003 from a series of 

ICUs. The combination of physiological and irregular treatment information 

together in one uniformly accessible and generalised data store is highly unusual – 

this is based on their findings but is also corroborated by the survey of literature in 

this thesis (chapter 3). 

 

Finally, a note on the inherent uncertainty in measurements of the pressures 

involved. ICP monitoring is most often achieved using ventricular and parenchymal 

catheters, inserted into the cranium. There are various brands of these catheters, 

and some ongoing work on non-invasive methods of measuring ICP (Ragauskas, 

2012), though these methods are yet to be widely adopted, likely due to their 

lower accuracy than direct methods. There is a reported “zero drift” on the latest 

parenchymal catheters (Brattan, 2007), however this has been tested in (Citerio, 

2008) and found to be not necessarily true under demanding clinical conditions 

(the conclusion is that this brand of catheter – the Neurovent-P – is as good as but 

not better than other catheters). The reported uncertainty in using such catheters 

                                                      
2 Disclosure of interest: the author did a significant amount of work for the AVERT-IT project 
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is around +/- 1.1 mmHg (Citerio, 2008), which provides a context for 

understanding the reality of threshold crossing in the earlier discussion. 

2.5. Discussion 

This section has covered the mechanisms of TBI, TBI guideline formulation, 

relevant TBI trials and studies, and some of the predominant data representations 

in TBI.  

One important and recurring issue that is directly relevant to this work is that of 

the uncertainty in the findings of TBI studies. There are many possible reasons for 

this, such as resourcing, legal issues, or socio-economic factors. But these are not 

necessarily specific to TBI and often apply to all medical domains. Exceptional 

medical conditions can be hampered by the lack of patients and data to work with 

(for instance, in a rare but life-threatening condition such as adrenal cancer). 

However, with TBI, there appears to be an inter-play between the complexity of 

the condition, the life-threatening severity and the required invasiveness of 

treatments, all of which combine to confound the establishment of clear base-lines 

of information that further research can be built upon.  

There are other general issues in trial and study reporting, which also contribute to 

this lack of knowledge. These include the communication of results and their 

subsequent formulation into guidelines. As mentioned in section 2.2, guidelines 

and other evidence repository tools are “living documents” requiring constant 

maintenance and update, and periods of years can go past before the central 

evidence-base is updated in a meaningful way. This can have a cyclical negative 

effect if practices and treatments don’t reflect current research knowledge. 

Another general issue is that of access to the raw trial data which can often be 

very limited. The output of the analysis is what is published and fed back into the 

scientific/medical community, and there is little actively-enforced regulation on 

providing the raw data. Though the greater awareness of initiatives such as 

clinicaltrials.gov, demanding clarity and openness of study/trial data 

(ClinicalTrials, 2018), is having a progressive influence on the transparency of data 

used for trials and studies. With the limited certainty that is a theme of the 
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guidelines on brain trauma, it is likely that this is a source of issue with the 

analyses performed on TBI data, and one that is generally under-reported. 

Finally, we see that due to the advances in technology, increasing amounts of 

representative data can be gathered from the bedside, interpreted and sent to 

larger data platforms to give an increasingly accurate view of patient information. 

As more and more advanced repositories develop, pioneering efforts to understand 

that data and technology may aid in establishing greater certainty to the 

formulation of TBI guidelines. 
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3. Literature review 

Chapter summary 

Literature in the following areas were reviewed and discussed in order to present 

a fuller understanding of the background and rationale behind this thesis, to 

survey similar work conducted in the field, and to identify the most relevant 

technological solution: 

 Issues of adherence to clinical guidelines in general 

 Issues of adherence specific to clinical guidelines in TBI 

 Novel attempts to improve adherence in general without technology (in 

general and TBI) 

 Novel attempts to improve adherence using state-of-the-art technology 

In general, the main issues preventing adoption of clinical guidelines involved 

methods of dissemination, the authority of guideline publishers, and the rise of 

personalised medicine as a counter-point to population-wide guidelines. 

Specific to TBI, the issues raised were more numerous but essentially the same as 

those mentioned in chapter 2. Namely: the low power of studies leading to 

uncertainty about recommendations, and contradictory findings for specific 

treatments, despite large-scale attempts at well-conducted meta-analyses. 

Two examples of non-technological attempts to improve adherence were 

discussed: the Surviving Sepsis campaign and the CENTER-TBI project. Both 

projects curate data manually with the intention of constantly updating large-

scale information for the improvement of source information. 

The review of state-of-the-art technology included decision support systems, 

smart-phone apps, clinical guideline formalisms and process models. Decision 

support was reviewed as an end-point goal of the work of this thesis, whilst the 

review of smart-phone apps addressed innovations at the point of information 

delivery.  

Representations of the nature of clinical guideline information were covered by 

guideline formalisms and ontologies (providing comprehensive domain context). 
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Though the full feature-set required when adopting clinical guideline formalisms 

and ontologies was deemed unnecessary for the work of this thesis, a sub-set of 

the features was found to be uniquely useful: the process-oriented nature of 

guidelines. This feature is well represented by the concept of process models, a 

technology commonly applied to business processes and logistical administration. 

Throughout the review, analysis of guideline adherence at a detailed level of 

clinical management appeared to be missing in general, and in TBI in particular. 

Traditional studies have a “low resolution” view of the details of clinical 

management, and technology that leverages these studies lack the detailed 

combination of physiological and treatment data. 

A section describing the aims of this thesis is outlined at the end of this chapter. 

It presents a framework proposal based on the review of the clinical domain and 

the surveyed technologies, to address the gap between clinical management and 

guideline adherence. 
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3.1. Adherence to clinical guidelines 

Clinical guidelines have contributed to standardized clinical practice and have 

advanced the quality of patient treatment for many decades. In more recent 

years, their development has followed a more rigorous process, using evidence-

based techniques to avoid bias of either specialisation or agenda (Watters, 2008). 

However, despite these systematic attempts at improvement, guidelines are not 

always followed, and this can be for a variety of reasons.  

3.1.1. Dissemination of clinical guidelines 

The basic methods of communication of clinical guidelines can often be a barrier 

to the adoption of the guideline procedure. Even if the information contained in 

the guideline has consensus in the community of experts that it serves, sometimes 

a lack of awareness of the official guideline can adversely affect adherence. 

As an example, in the provision of care for osteoarthritis (Nelson et al., 2013) 

findings indicated that there was relative agreement between the centres 

involved, on what treatments should be provided. This was despite large variation 

in familiarity and adherence with the official guidelines (79% of those surveyed 

said they were aware of the management guidelines, whilst 54% adhered). The 

study concluded that guidelines in this area were effective, but the methods of 

dissemination required improvement. So participating centres were indeed 

following broadly the same principles, but this was only partially due to the 

influence of the official guideline.  

Issues of dissemination appear as a common thread when evaluating adherence. 

(Ansari et al., 2003) looked at beta-blocker use in heart failure and showed various 

methods and channels of disseminating the guideline information. These were to 

use a nurse facilitator (direct intervention by trained specialist), general education 

(documents, leaflets, etc) and clinical reminders (automated interventions). These 

all had different effects on adherence, with the nurse facilitator being the most 

successful. (Rood et al., 2005) indicated that a study of glucose measurement and 

regulation improves greatly when dissemination is provided through computer-

assisted, rather than through paper-based, means.  
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A systematic review of guideline dissemination strategies (Prior, Guerin and 

Grimmer-Somers, 2008) showed that the (non-) effectiveness of passive 

dissemination is a significant result. Similar to the (Ansari et al., 2003) study, 

where direct intervention is taken by a person or automated method, the 

adherence rate is markedly better than if the guideline document and information 

is published passively (e.g. using conferences, websites or didactic lectures).  

Other studies (Grol, 2001) and (Azocar et al., 2003) show that targeted and 

behaviourally “disruptive” methods are best for disseminating information and 

influencing clinical practice. Similarly (Grol and Grimshaw, 2003) and (Almatar et 

al., 2016) have shown that only comprehensive interventions on all levels of input 

and with specific targets and barriers identified stand a chance of influencing 

behaviour. Therefore, understanding the effectiveness of these different methods 

of dissemination is an important factor in developing tools to improve awareness 

and adherence (related to the third hypothesis of this thesis). 

3.1.2. Authority of guideline publisher 

An implicit assumption in the use of clinical guidelines is that they represent the 

most up-to-date knowledge in terms of clinical interventions, and the perceived 

quality and trustworthiness of the guideline itself can often go un-questioned. 

This authority is an important aspect when considering adherence and contributes 

to the many other human characteristics that mark whether a clinical guideline – 

which is not a legal mandate – should be followed. Examples of systematic reviews 

that have been conducted into the question of guideline authority in general 

health-care, includes: the evaluation of attitudes towards guidelines (Farquhar, 

Kofa and Slutsky, 2002), examination of bias in self-reporting and awareness of 

guidelines (Steinman et al., 2004), discussion of the positive and negative effects 

on clinical practice of guidelines (Grimshaw and Russell, 1993), and a more recent 

article that highlights the negative impact of the “evidence-based” movement, 

such as the volume of guideline evidence, and the mechanical implementation of 

the guideline in patient care (Greenhalgh et al., 2014). 

The results of these studies highlight issues that challenge conventional clinical 

wisdom – such as the large percentage of clinicians not meeting hypertension 
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guideline standards (medication prescription 67%, blood pressure management 

42%) despite these guidelines being largely unchanged for 30 years (Steinman et 

al., 2004). However, as highlighted in (Farquhar, Kofa and Slutsky, 2002), there is 

a general feeling that while clinical guidelines are a useful source of information, 

the associated administrative overhead that official compliance requires can cause 

institutions and clinicians to be tentative when considering full-scale adoption. 

(Grimshaw and Russell, 1993) conclude that, as a general rule, there is an 

unmistakeable improvement in clinical practice when clinical guidelines are 

adopted but their conclusions also showed vast variation in that improvement 

depending on other factors such as dissemination, education and resourcing 

(similar to the issues discussed in section 3.1.1). 

As discussed in (Watters, 2008) the move from general clinical practice guidelines 

to those underpinned by a systematic evidence base, does also vastly improve the 

quality of the guideline. This is due to the transparency of the guideline 

development process, along with the primary focus of removing systematic bias 

(compared to previous approaches which, with less transparency, often tended to 

reflect the treatment or economic goals of those developing the guideline). 

A final consideration on the authority of guideline developers is the possibility of 

competing sources of guideline publication, due to cultural, organisational or 

political reasons. One study looked into the nature of guideline development in 

general (Fervers et al., 2006). It concluded that there was a marked lack of trans-

contextual adaptation of guidelines – i.e. guidelines defined in one cultural and 

organisational setting were rarely, if ever, considered for other settings. This leads 

to an “organic” development of expert communities, the possibility of guidelines 

developing in parallel with – and isolation from – each development group and 

missing critical translational developments. Although this situation is not 

prevalent, where it does exist these factors undermine the systematic and 

evidence-based nature of clinical guidelines. Another study (Kearns, Moss and 

Kinsella, 2013) examined a specific case – management of patients with a 

fractured neck of femur – and found that the recommendations spanned many 

guidelines from across a spectrum of guideline-producing institutional bodies, with 
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some similarities but also conflicts that could lead to inconsistent patient care if 

followed to the letter.  

3.1.3. Personalized medicine 

A view-point that is gaining ground in general health-care and which can act as a 

counter-point to the use of medical guidelines is the notion of personalized 

medicine. This is where the priority is put on tailoring treatment for a patient’s 

specific case instead of abstracting the treatment process into something more 

general. (Goldberger and Buxton, 2013) provide a discussion about personalised 

medicine versus clinical guidelines, though they do not appear to provide strong 

arguments for evidence-based guidelines, choosing to hold guidelines as the 

authoritative position to be argued against, and provide counter arguments 

espousing the benefits of personalised medicine. Indeed, when reviewing this 

theme in literature, feelings on either side of the debate apparently run high, 

suggesting a level of “evangelism” when defending one of the two sides (Miles, 

Loughlin and Polychronis, 2008)3. 

However, more reasoned arguments have also been made, particularly involving 

the discussion of gene therapy, which is arguably where the link to individual 

personalisation is strongest. (Hamburg, 2010) discusses the potential for gene 

therapy as the field of translational research develops, where the identification of 

genetic markers in individuals will likely play a more prominent role in the 

development of clinical treatments at the phenotypic level. 

Despite the apparent “natural” opposition of personalised and evidence-based 

medicine, the overall argument made in papers such as (Goldberger and Buxton, 

2013), is one that this research work attempts to address: that there is a need for 

cautious interpretation of large-scale random controlled trials and studies. This is 

an over-arching problem that does not mean that the two approaches to treatment 

(guidelines vs personalized) necessarily have to be mutually exclusive. 

                                                      
3 For example, from the referenced paper: “… no author has been able to convincingly show the superiority of 
the Evidence-Based Medicine ‘approach’ [original quotation marks] and such assertions […] remain what they 
originally were: expressions of bald rhetoric and intellectually bankrupt hyperbole” 
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3.1.4. Summary 

From the areas covered in this section, we can see that a number of issues exist in 

general that are impediments to the successful adoption of clinical guidelines. 

Various methods are used to improve these adoption rates but with differing levels 

of success, and these issues are relevant to medicine in general. In the next 

section we look at the issues in adherence to guidelines specifically in the domain 

of TBI. 

3.2. TBI specific guidelines 

In 1994 the Brain Trauma Foundation (BTF) began an initiative to formulate 

treatments for brain injury into standardised, internationally-recognised 

guidelines. Since then studies have been conducted that show dropping mortality 

rates and improved long-term outcomes due to the adoption of these guidelines. 

One example is (Bratton and Chestnut, 2006), and another is (Tarapore et al., 

2016), both showing the continued trend of improvement through the last two 

decades. 

Evidence for this level of confidence in the guidelines is available: a survey of TBI 

management in 1995 (Ghajar et al, 1995), was one of the original studies that the 

BTF guidelines were formed in response to. When the numbers in that study are 

compared to those collected seven years later (Fakhry et al., 2004), an undoubted 

improvement in patient outcome is shown, largely attributed to the gradual 

adoption of BTF guidelines by many centres over this time period. 

However, adherence to the BTF guidelines is not universal – many studies outline 

their potential deficiency in various aspects such as hypothermia (Clifton et al., 

2001), intubation (Franschman et al., 2009) and the need for ICP monitoring 

(Chesnut et al., 2012). In one study (Lee et al., 2015), the investigation has 

focused on whether it is feasible, or even possible, to adhere to all 15 of the BTF 

guidelines when treating brain-injured patients. Their conclusions are that it is 

indeed a difficult objective to achieve and in many cases is also unnecessary. And 

in contradiction to (Tarapore et al., 2016), another study conducted by (Dawes et 

al., 2015) concludes that patient outcomes are in fact not statistically affected by 

strict adherence to the BTF guidelines. 
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However, whilst guideline non-adherence is a common issue across medicine for 

reasons of lack of awareness, familiarity, agreement, or outcome expectancy 

(Cabana et al., 1999), it is the case that studies investigating non-adherence to 

BTF guidelines are very focused in their rejection of the specific guideline. The 

NICE guidelines concerning treatment of TBI treatment in the UK (NICE, 2014) 

suggested that the key recommendation of “transfer the TBI patient to a hospital 

with a specialist neuro-trauma centre” is a grey area that causes many clinicians 

to reject the mandated guideline (though this is an issue affected by resourcing as 

well – if every hospital had a specialist neuro-trauma centre, the problem would 

not occur, a finding also supported by (Ghajar, 2000)). In another example, 

(Pascual et al., 2011) discusses the interventions mandated by the BTF guidelines 

when oxygenating the brain blood flow and conclude that those recommended 

actually worsen survival rates. ICP monitoring in particular, is an area that 

highlights the divided opinion of the expert community about the most appropriate 

treatment, demonstrating that much more work is required to underpin this 

particular BTF guideline. For instance, (Dawes et al., 2015) conclude that 

compliance with the BTF guideline on ICP monitoring and craniotomy has “minimal 

association with risk-adjusted outcomes in patients with severe TBI” whereas 

(Talving et al., 2013) conducting a very similar study conclude that “Patients 

managed according to the BTF ICP guidelines experienced significantly improved 

survival”. Evidently, uncertainty and disagreement surrounding the validity of 

many of the BTF guidelines still exists. 

Various studies have been conducted that investigate the adherence to BTF 

guidelines in regard to particular treatments. (Neumann et al., 2008) look at the 

administration of hyperventilation;  (Griesdale et al., 2010) quantified the 

adherence when applying an external ventricular drain to TBI patients; and 

(Griesdale et al., 2015) examined the association of CPP being maintained within 

the guideline range, with patient outcome. All report overall adherence to the BTF 

guidelines – associated with positive outcomes - but with notable exceptions 

largely delimited by geographical areas (e.g. in Europe, recommendations on early 

prophylactic hyperventilation and cerebral oxygenation monitoring are not 

followed in the majority of TBI centres (Neumann et al., 2008)). It is proposed that 

the overall adherence of specialist centres could be improved, but a critical point 
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is that all of these studies accept a priori that the BTF guidelines should be 

adhered to. 

Finally, the issue of regional and national differences is one that has received 

attention from studies in TBI, especially as the search for significant findings push 

clinicians to collaborate over wider areas, with potentially greater differences in 

treatment patterns. On one hand (Lingsma et al., 2011) conclude that differences 

in outcome between centres do not affect the treatment effect in TBI RCTs, as is 

commonly considered to be the case. On the other (Hukkelhoven et al., 2002) run 

a comparison of two RCTs for the same drug, Tirilizad (a drug to treat acute 

ischaemic stroke) and conclude that the differences in treatment patterns 

between centres, countries and continents are significant and do affect RCT 

outcomes. 

As already noted in chapter 2, there is large scope for uncertainty in the 

development of TBI guidelines, and this inevitably brings an unwillingness to fully 

adhere to a guideline. However, when discussing with a clinician (Dr Chris 

Hawthorne, University of Glasgow, 31st July 2018, pers. comm) in terms of specific 

parameter targets, they made the following two points when considering 

adherence, illustrating the pragmatic relationship developed with guidelines in the 

course of day-to-day routine: 

1. “There may become a point in patient care when the likelihood of survival is 

minimal and further aggressive treatment is felt to be futile. In these cases, 

non-adherence with guidelines may represent a decision to focus on palliative 

care rather than on targeting physiological parameters such as ICP and CPP.” 

2. “The BTF Guidelines are a very balanced and pragmatic set of guidelines that 

are extremely helpful to clinicians. However, little (if any) of the evidence is 

"level 1" and the guidelines themselves allow (indeed encourage) clinicians to 

consider the individual patient. This means that non-adherence in terms of 

targeting a specific CPP parameter may be common but may be acceptable 

within the scope of the guidelines.” 
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With this is mind, we now survey the areas where clinical guideline adherence has 

been improved using novel techniques, in a non-technological capacity and 

specifically for TBI. 

3.3. Novel attempts to improve adherence 

Evident from this review so far is that guideline adherence is subject to great 

variation. When considering how to improve adherence, the reasons outlined above 

can be broadly categorised into the result of one of two prime causes: being 

unwilling to adhere to a guideline and being unable to adhere. Whilst techniques 

to address the first category include improved dissemination, communication and 

various long-term social methods, improvements in the second category, which is 

usually functional in nature (e.g. lack of resources/time), can be approached using 

“behaviourally disruptive” methods. 

3.3.1. Data collection approaches 

Most attempts to improve adherence to guidelines in the medical domain involve a 

direct change or implementation of a care procedure. In these cases, the 

evidence-base for a guideline comes from a panel of experts in the field that have 

reached a consensus for various treatments. The novel attempts then concern the 

implementation of that guideline in patient care in a standardised and accountable 

way. 

A campaign that exemplifies this approach is “Surviving sepsis”, which targeted 

improvement of patient care by specifically supporting guideline adherence 

through the identification of resuscitation and management “bundles”. Part of this 

was an intensive data collection arm, which – in real-time – forced clinicians to 

systematically add data as part of clinical routine (Levy et al. 2010). The results of 

this work have shown a marked improvement in adherence to the guidelines, but 

an emergent complication was the lack of ability to stay current with the latest 

guidelines and update procedures to reflect this over a feasible timescale. 

Feedback from the first four years of this project into the re-development and 

improvement of sepsis guidelines has been cautiously optimistic (Dellinger et al., 

2013). And whilst not specifically providing a new type of analysis, a side-effect of 
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the rigorous collection is that it does provide a large repository of sepsis data that 

is potentially useful for future studies4,5. 

3.3.2. TBI-specific 

As mentioned in section 2.4, CENTER-TBI comprises many work packages covering 

both clinical and technological areas of research in TBI. Much of the work 

conducted by this group has established beyond doubt that large variation exists in 

the implementation and adherence rate to the TBI guidelines, even in large-

volume studies conducted in well-resourced specialist centres (Cnossen et al., 

2016a). A sub-set of this group, as part of the TBI-IMPACT project – also mentioned 

in section 2.3 – had attempted to address variation using post-hoc statistical 

techniques, but the results had been inconclusive (Maas et al., 2010).  

A central component of the CENTER-TBI initiative, extending on work begun in the 

TBI-IMPACT project, is the use of competitive effectiveness research (CER), which 

is a broad definition of various analytical tools. One of the main facets of CER is 

the use of “Living Systematic Reviews” (LSRs) – systematic reviews which are 

conducted with the express purpose of being updated at regular intervals, as 

opposed to being done “once and never again”. The cost of conducting such a 

review can be high, so keeping the study as a constantly updated document is a 

good way to maintain constancy without having the initial set-up costs of the study 

each time. As the CENTER-TBI project progresses, individual LSRs have yet to be 

developed, but evidence of their use and requirement are now starting to be 

published (Cnossen et al., 2016b), (Synnot et al., 2016). 

The use of the CENTER-TBI repository in this way, does leverage technology and 

data but still largely involves the manual collection and curation of that data. In 

the next section we now discuss direct technological (i.e. automated and semi-

automated) attempts to improve guideline adherence in general medicine. 

                                                      
4 The author of this thesis also witnessed a ward review meeting at the Glasgow Royal Infirmary, which was 
one of a set of regular sessions that are now in place due to the Surviving Sepsis campaign. The process was 
well established and made a comprehensive and detailed review of outcomes that week in the ward (death or 
discharge), how they related to the mandated guideline, and noted for feedback into the appropriate 
administration where any deviations had occurred. 
5 Since submission of this thesis, an app related to the Surviving Sepsis campaign has been released which 
neatly combines the output from this section (data collection) and 3.4.2 (apps) (Surviving Sepsis, 2019). 
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3.4. Technology – state-of-the-art 

When surveying the state-of-the-art in the context of improving clinical guideline 

adherence, there is a large landscape of technology to consider. However, to focus 

the work to the most relevant areas the review has been constrained to: a general 

(and brief) consideration of the role of decision support technology; the use of 

smart-phones and apps; clinical guideline formalisms and representations; and 

process models. 

3.4.1. Decision support 

Central to understanding the availability and utility of data in the ICU is being 

aware of the advances of ICU technology, particularly in the past four decades. 

One paper written in 1987 (Shortliffe, 1987) describes the concerns within the 

medical community that computerized support technology would outgrow its 

supporting role and end up replacing clinical decision-making. Nearly three 

decades on, this outcome has yet come to pass, and familiarity with techniques of 

artificial intelligence have eased these concerns6, with clinical judgement by a 

trained human still a required part of the interface with technology. However, the 

focus of research still remains upon understanding expert medical knowledge and 

problem-solving skills, and attempting to reproduce them with technology, in order 

to free resources for pursuing more advanced medicine. The pursuit of accuracy in 

this latter point of judgement is one of the main goals of the science underpinning 

decision support. 

As the mechanics of decision support strive for accurate automation, one way to 

measure progress is to look for metrics of efficiency. Hospital administrators may 

look at cost-benefits within a particular hospital, government health policy-makers 

will be concerned about cost-benefit to society as a whole, or the individual 

clinicians may look at overall patient outcome improvement. Whatever the 

targeted improvement is, there will be some metric associated with it, such as a 

protocol refinement of adult respiratory distress syndrome (ARDS) (East et al., 

1992) or enforcing adherence to diabetes guidelines (Lobach and Hammond, 1997).  

                                                      
6 More accurately: the concerns have eased “somewhat”. Debate in the area is still controversial. 
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Studies in other areas as diverse as chronic kidney disease (Ennis et al., 2015) and 

thyroid cancer management (Likhterov et al., 2016) support the conclusion that 

improvements in guideline adherence in these respective areas, improve similar 

metrics and – by extension – patient outcomes. It is in studies like these latter two 

that the connection between guideline adherence and decision support is made 

most explicit: in both, the concept of a retrospective assessment of protocol 

adherence helps understand why decisions in an ICU are taken, and the output 

allows later prospective decisions to be guided by understanding the effectiveness 

of the given protocol (also related to the third hypothesis of this thesis). 

3.4.2. Smart-phones and apps 

One method that has increased in step with the utility of personal smart-phones is 

the electronic application (or “app”). The physical proximity to a clinical 

professional and the increasingly-reliable connection to other digital assets over 

the Internet make this one of the most convenient technological interventions.  

This shift towards the use of smart-phones can be immediately seen in their 

adoption by major guideline developers in national health-services (e.g. the NICE 

guidelines for the NHS in England (NICE, 2014)). These provisions allow quick and 

easy access to guidelines for immediate consultation – useful in the clinical 

environment – but have yet to provide reliable dynamic interactivity in the update 

of the guidelines involved (the app is largely “broadcast only”). 

However, as fast-moving app development continues, various studies and pilot 

tests are now being carried out to include greater functionality that would allow 

more interactive access to a knowledge-base of clinical expertise. Some are 

specifically designed – similar to the NICE apps – to provide guideline expertise to 

professionals at the point-of-care, such as the “Sidelines Guidelines” app (Lee, 

Struik and Ahmed, 2016) which helps medical practitioners administer first-aid 

correctly during high-contact sports. Others focus on point-of-care help for a 

specific condition, such as a fitness and health app designed to provide aid in the 

case of seizure (Pandher and Bhullar, 2014). In this latter study, the focus was 

often on the development of the app and its ability to disrupt the behaviour of an 

epilepsy sufferer by providing immediate seizure management advice. 
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A further addition to this provision of clinical information at the point-of-care, is 

the integration of clinical guideline software into smart-phone apps, which is 

currently being conducted by the European MobiGuide project (MobiGuide, 2014). 

The anticipated outcome of this project is a direct stream of standardised 

guidelines, combined with personal digital health records, which interacts directly 

with patients (Peleg, Shahar and Quaglini, 2013). The interactions take the form of 

alerts and notifications with suggested corrective actions, so that adherence to the 

relevant protocol is maintained as closely as possible. Measurements of adherence 

improvement through this system can be seen at (Peleg, Shahar, Quaglini, Broens, 

et al., 2017a). 

Finally, another useful feature of apps is their ability to directly connect to 

medical registries, which focuses the input of information (usually in the form of a 

daily electronic diary) directly from the patient and synchronises with the central 

registry to allow accurate communication with their consulting clinician. Example 

apps of this type have been developed for rare diseases such as Niemann-Pick 

(Sinnott et al., 2015) or for public health challenges such as alcohol consumption 

(Zheng, Z, Bruns, L, Jr, Li, J, Sinnott, 2017). The improvement of adherence 

occurs as a third-party (the consulting clinician) can immediately see if the patient 

is non-adherent and take correcting action if appropriate 7.  

3.4.3. Clinical guideline formalisms and representations 

The behavioural disruption that the smart-phone app provides is almost always due 

to the convenient proximity of the knowledge base (the guideline data repository) 

to the end-point of information delivery (e.g. the patient or clinician). In this 

thesis however, the focus of the work is not only upon delivery but on the 

representation and processing of that information. The area relevant to this thesis 

is the use of electronic clinical guidelines, their formal specification as (realistic) 

medical processes, and their ability to be interpreted by both humans and 

computers. 

To illustrate clinical guideline formalisms, an example is the ProForma technology, 

a project developed by the COSSAC group (Fox, 2017). ProForma is a language 

                                                      
7 Disclosure of interest: the author works for the Melbourne eResearch Group, developing the registries that 
the apps referenced in this paragraph upload to. 
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specification designed to “support decision making and plan execution” for the 

authoring and execution of clinical guidelines. In order to build applications around 

this specification, the TALLIS software is required (COSSAC, 2014), around which 

various tools and tutorials are offered to build a complex clinical guideline object, 

which can then be “enacted”, and output received as to what a specific clinical 

decision should be, given the context of the guideline. 

 

Figure 3.1: illustration taken from (Fox, 2017) the ProForma application development tool (TALLIS) 

Similar language specifications and tools have been developed in this area. One of 

the most comprehensive comparison of these formalisms is (de Clercq et al., 

2004), which covers representations such as the Arden Syntax, GLIF, ProForma, 

Asbru and EON. This survey does not provide a “like-for-like” summary but does 

discuss the benefits and drawbacks of each representation (e.g. ProForma provides 

a low-level syntax; Asbru provides a rich set of temporal constructs though lacks an 

implementation engine; etc). It does note that as of the time of writing (2004), no 

single implementation had been created to enable these representations in the 

real world. However, the MobiGuide project – mentioned in section 3.4.2 – has 

aimed to implement these representations more robustly and has had moderate 
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success in introducing computer-interpretable guidelines into a clinical setting 

(Peleg, Shahar, Quaglini, Broens, et al., 2017b). 

Another application in this field is the use of ontology technologies. An ontology 

“encompasses a representation, formal naming, and definition of the categories, 

properties, and relations of the concepts, data, and entities that substantiate 

one, many, or all domains” (Ontology, 2018). Similar in theme to the descriptive 

and representative nature of formalisms described above, many groups developing 

clinical guideline formalisms have attempted to incorporate ontologies into their 

work, with the goal of introducing comprehensive context into the decision-making 

process, necessary for following clinical guidelines. 

An earlier paper by the same team that had compared clinical guideline formalisms 

(de Clercq et al., 2001) looked at the combination of ontologies with those 

formalisms. The primary argument was that the simple action-task descriptions of 

clinical guideline formalisms does not sufficiently capture enough information to 

represent and enact a guideline in the real world. Other research groups have 

approached this method of representation as well: two examples outlining the 

contemporary state-of-the-art were (Lezcano, Sicilia and Rodríguez-Solano, 2011), 

which discussed the integration of OWL (Web Ontology Language) and SWRL 

(Semantic Web Rule Language) frameworks in a clinical environment specifically 

for guidelines, and (Heymans, McKennirey and Phillips, 2011) which surveys the use 

of the SNOMED-CT – a computer-interpretable clinical terminology – and how it can 

be translated into an OWL standard ontology. 

After review of these technologies, amongst various criticisms, two stand out as 

the most relevant to this thesis. First, and most importantly, is the requirement to 

add information to imbue meaning to the data. Whilst the goal is laudable – to set 

up a uniform and interchangeable map of meaning between all entities on the 

Internet – the result often requires work by the end user (dealing with notations 

and languages, which are not their domain of expertise), or the same work by the 

informatics scientist (who is not a domain expert in whatever field of research 

they are requiring the input – e.g. clinical guidelines). This tends to result in an 

over-specification of functional requirements – e.g. the requirement for a large 

“enactment engine” in ProForma – and a requirement for extra work from both 
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parties. Second – in the case of ontologies – is the bias that can often creep into 

the specification. This is true of all descriptions (e.g. a database schema) but due 

to its comprehensive nature (the desire to “describe everything”), this bias can 

have a large negative impact on the data processing, which would be minimised if 

the descriptive part of the model is more constrained. 

An example paper describes the state-of-the-art in this area as of 2017 (Fox, 

2017), which summarises the use of the ProForma language, as part of the CREDO  

“cognitive computing” stack, after 20 years of development. Similar issues as 

those described above can be seen with this technology - there are still no agreed 

standards at a high-level (of use to the clinical community), the use of the 

technology requires tight integration with an over-specified language and 

implementation (the screenshots, such as figure 3.1, show interfaces that closely 

resemble technically-oriented development environments), and the reported study 

applications of the technology did not provide enough evidence of the formalism 

being reliable enough. Some were small, such as N=144 in (Bury et al., 2005),  

others had isolated statements of positive results (“Radiographers… performed 

better when using advice from the system”) without supporting numbers) (Taylor, 

Fox and Pokropek, 1999), whilst further had positive results based on general high-

level criteria (61% increase in recruitment based on main criteria only) (Patkar et 

al., 2012). 

Although there is substantial work in the field of guideline formalisms, it is felt 

that for the purposes of building a technology framework to address the particular 

challenges in this thesis, many of the characteristics that these digital guideline 

technologies – such as flow-control representation – appeared to be well 

represented by the more general concept of processes, and their classification as 

process models. 

3.4.4. Process models in a clinical context 

Process models are processes of the same nature that are classified together into a 

model (Process modelling, 2018). As the name suggests, they incorporate a 

process-based model, which is the most useful characteristic of the guideline 

formalisms discussed in section 3.4.3. This general feature is something relatable 

from many aspects of professional life, such as the development and use of flow-
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charts (states, actions, transitions between each, and decision points requiring 

contextual input) in many business and administrative contexts. 

The idea of layers of abstraction is pertinent to introduce here – these can be 

thought of as different layers of representation of data, which have, from the 

lowest level to the highest, increasing levels of sophistication and complexity. An 

example would be the raw physiological data from a bedside ICU machine at the 

lowest level (one number measuring a single parameter at a single time-point), 

leading to a clinical diagnosis from a clinician at the highest (a complex 

representation of data, based on inputs and context from many sources). 

 

Figure 3.2: visual abstraction of the layers involved in process modelling (Kless, 1993) 

The use of a process model allows a specific level in these layers of abstraction to 

be chosen, which is an important flexibility that the over-prescription of the 

guideline formalisms prohibits. (Perimal-lewis et al. 2012) claims that the 

fundamental element required for the construction of a process model is the 

historical event log of a process, and this lends itself to the description of actions 

and reactions that occur in a medical context. This research area is referred to as 

“process mining” and is usually applied to the higher-level patient care work-flows 

within a hospital, such as transport of patients and allocation of resources such as 

bed-spaces. An example study like this would be (Mans, et al. 2009), which 

investigate the different management processes using various process mining views 

on flow-control structures, and how these can improve the organisation and 

performance within a hospital, by identifying redundant clinical pathways. 

This area is related to the more general domain of business process management 

(BPM) not usually realized as medical processes, but critical in the use of 

event/reaction flow-diagrams to formally describe processes that occur within 

complex organisations. An example of this is (van der Werf, Verbeek and van der 

Aalst, 2012), which looks at tools to automate the compliance of a business to 
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specific guidelines, typically referred to as an “audit”. The idea behind this work is 

to develop an awareness of the context of a process, which can often impact the 

perceived compliance to a guideline, without being evident in the audit itself. 

At one level, the process mining work referred to above nearly always focuses on 

the clinician behaviour as part of a corporate body, with a view to improving those 

corporate processes such as (Perimal-lewis et al. 2012). Pattern extraction science 

– at a lower level – focuses on mathematical techniques to detect individual 

events. The connection between these two levels, which is where the work of this 

thesis is focused, is rare, though does exist. (Huang, Lu and Duan, 2012) looks at 

the “clinical pathway” area, where a clinical event log is analysed, and common 

remedial medical behaviours are extracted. The work was validated by clinical 

experts as a true representation of some of their behaviours, but it did conclude 

that the general nature of the conclusions meant that more specific work was 

required, and that some critical behaviours were missed. This is an example of 

where the focus on a specific condition – in this case TBI – would help in identifying 

processes more exactly and in a way that is immediately useful to clinicians 

working in the ICU. 

 

 

 

 

 

 

 

 

 

 



75 
 

Aims of the thesis 

In general, there is much work that attempts to improve adherence to clinical 

guidelines, or to improve the quality of information that can be extracted from 

studies, in order to refine guidelines more effectively. Many use non-technological 

methods, whilst those using technology often either provide intervention at the 

point of care-delivery, such as apps, or require a large input of knowledge in order 

to model a clinical process, such as guideline formalisms. What appears to be 

missing is the ability to provide new information on a clinical management process 

to a clinician, with a minimal requirement for knowledge (i.e. the information is 

extracted using only what exists at the bedside already). With the abundance of 

data available from modern ICUs, and the particular problems facing the output of 

TBI studies, this would seem to be an avenue that may provide worthwhile results 

and it is this gap that this thesis intends to address. 

Throughout the course of the literature review, several pieces of technological 

work were encountered that appeared relevant to this goal. The first was work 

which combined the technologies of process mining and ontological descriptions of 

a medical environment in order to measure similarities between medical processes 

(Montani et al., 2014). At the time of publication (2014), this work appeared to 

share similar issues to those described in section 3.4.3, namely an over-

specification of the descriptive entities (in this case a use of “taxonomic distance” 

with a descriptive ontology, requiring large amounts of knowledge to be input) and 

the limited access to a practical implementation, which made testing the claims of 

the work difficult.  

However, the broader theory of calculating a distance between two process 

models, appeared to be a viable avenue of investigation. At the start of 2014, the 

work of  (Perimal-lewis, Vries and Thompson, 2014) had been published describing 

the application of process models to the administrative maintenance of medical 

domains, such as hospitals, and was already showing promise as a possible 

representation to use in this thesis. The shared elements of these two works 

provide a base theory to use when describing a generalised approach to 

representing guidelines and understanding differences between two time-varying 

protocols. 
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Further investigation into process models to represent guidelines generally, led to 

the use of Business Process Management Notation (BPMN) as a representation of 

the BTF guidelines. Authoritative work by a research group in Eindhoven, which 

had been used for comparison by the (Montani et al., 2014) team, appeared to be 

highly relevant, though not specifically tailored to the medical domain. Their use 

of BPMN in process models was documented in (Dijkman, Dumas and Ouyang, 2008) 

but the work that proved most useful had been published a year later in (Dijkman, 

Dumas and Garcia-Banuelos, 2009), where they robustly calculated the similarity 

“distance” between two process models using different algorithmic approaches. 

With these component technologies identified, it was possible to collate these 

approaches into a framework and return to the original clinical problem of 

representing and comparing two sets of clinical protocols – one from text 

guidelines, the other from actual clinical data. The final requirement was that 

there needed to be an understanding of the “level” at which the interpretation of 

guideline adherence can occur. To illustrate what this means, the following four 

levels of data interpretation were identified: 

1. Raw data from the bedside 

2. Clinical management processes 

3. Statistical analysis of studies 

4. Meta-analyses of grouped trials and studies 

From the review conducted, it was noted that the second level in this list was one 

that typically received less attention than the others - most often raw data would 

directly contribute to a statistical analysis, with no analysis or interpretation of 

what the grouped information means in a live ICU context (e.g. a coarse-grained 

binary classification of say, patients that have received steroids during a patient 

stay against those that haven’t).  

Therefore, two broad conclusions were drawn: 

1. There is a desire for improved guideline adherence through novel methods 

in general, and in the area of TBI in particular. 
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2. No single or group of technologies is sufficiently established to perform an 

analysis of clinical management processes for the purpose of understanding 

guideline adherence. 

Informed by this final discussion, the original hypotheses of this thesis were 

formulated: 

1. In high-resolution time-series clinical data, one can extract clinically-valid 

treatment processes for ICP/CPP management in TBI patients 

 

2. Having extracted treatment processes, one is able to develop a method to 

compare those against other treatment processes to establish the degree of 

similarity between them 

 

3. One can develop a computerised tool that readily quantifies and displays to 

clinical staff a metric of actual ICP/CPP management protocol adherence 

And using the technological components identified, a research plan was drawn up. 
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4. Expression of clinical guidelines as process models 

Chapter summary 

This chapter describes the process of expressing the BTF guidelines in a format 

that represents them as process models, and which can be later compared to a 

similar format derived from the real ICU data. 

The method used is a design language known as Business Process Modelling 

Notation (BPMN). The key features are introduced alongside a brief discussion of 

alternatives. 

The template BPMN diagram is shown with key activities described (such as event 

start, and clinical management reaction). Temporal event and activity 

annotations are briefly described (such as time-window size and time to 

treatment administration). 

The three threshold monitoring guidelines are described in text, then shown in 

BPMN representation. Finally, there is a brief discussion about validation in terms 

of the relationship of these guidelines to others in the BTF, the location of the 

implementation data for these models in the database, and the feedback from a 

domain expert presented with these diagrams (which, in brief, was: “reasonable, 

but beware of the wider clinical context”). 
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There are 18 TBI guidelines for severe in-hospital treatment, in the 4th edition of 

the official Brain Trauma Foundation TBI management document. These cover 

various types of injury and treatment (BrainTrauma, 2018) – three more than in the 

3rd edition8. Of these, the three guidelines that were specifically investigated were 

the monitoring thresholds for: 

 Systolic blood pressure (SBP) 

 Intracranial pressure (ICP) 

 Cerebral perfusion pressure (CPP) 

Clinically relevant thresholds for SBP, ICP and CPP are routinely debated and 

feedback from monitoring adherence to these guidelines in clinical environments 

would be of particular interest to the research community. 

The conversion of BTF guidelines to a process model takes the form of expression 

in a format known as Business Process Model Notation (BPMN) (Camunda, 2018). 

BPMN is a representation that expresses processes in a graphical format with basic 

features such as flow objects (e.g. events and activities), connecting objects (e.g. 

sequence and message flow) and artefacts (e.g. annotations). It shares features 

with other software design languages, such as activity diagrams in the more 

commonly used Unified Modelling Language (UML), but has a primary focus on 

processes rather than objects. The flow-charting features of UML were considered 

for the expression of the BTF guidelines but were rejected due to the 

characteristics of BPMN being directly relevant to process models.  

Another possibility for capturing the BTF guidelines was to use a domain ontology. 

This would be similar in implementation to the work that was originally conducted 

in this thesis for physiological event detection (see Appendix B). Greater context 

could potentially be captured using an ontology, but BPMN was still considered an 

better choice due to its ability to model combined temporal and spatial processes 

more readily. 

                                                      
8 During the course of this research work (2011 – 2018), the BTF guidelines underwent a major revision from 
their 3rd to the 4th edition. This highlighted many of the issues raised in chapters 2 and 3 about clinical 
guidelines, and is detailed in Appendix C. For the purposes of the main body of work, unless explicitly stated, 
the updated 4th edition guidelines are assumed. 
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For each guideline detailed in this chapter, the text is shown along with a BPMN 

diagram. The representation of all three guidelines follows a similar general 

structure, shown in figure 4.1, and can be considered as a template for all three 

guidelines. Starting at the top-left of the diagram: a pressure event occurs (with a 

trigger threshold value), and a treatment is applied (“clinical management 

reaction”). The level is checked again: if the pressure has returned to a “safe” 

level then the treatment cycle is stopped; if not, the process continues round the 

cycle again. Depending on the specific guideline there may be additional factors 

between the event start and the application of treatment.  

It is noted here that this template shows three event and activity “annotations”, 

additional to information derived from the BTF guidelines: 

 mandated time window size 

 nature of treatment (“repeat/single”) 

 time from treatment 

Though these annotations are not mentioned in the BTF guidelines, they were 

considered temporal requirements based on both feedback from a domain expert, 

and the application of common sense during evaluation of real datasets (e.g. 

specifying a time for a reaction to occur within). For clarity, and because they are 

constant across all guidelines, these annotations are omitted in figures 4.2-4.5. 
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Figure 4.1: a general BPMN “template” representation of the three threshold-monitoring BTF 

guidelines 

4.1. Systolic blood pressure 

There is a single, level 3, recommendation in the BTF guidelines for the monitoring 

of systolic blood pressure: 

 Level 3: “Maintaining SBP at >= 100 mm Hg for patients 50 to 69 years old 

or at >= 110 mm Hg or above for patients 15 to 49 or > 70 years old may be 

considered to decrease mortality and improve outcomes” 

This translates to the BPMN diagram shown in figure 4.2. An event occurs (systolic 

< 110 mmHg), the age is checked, and a treatment is applied. The SBP level is 

checked again – if the SBP has returned to a “safe” level (which varies depending 

on age – hence the BPMN “message” symbol) then the treatment cycle is stopped; 

or continues if not. 
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Figure 4.2: BPMN diagram of the systolic blood pressure monitoring process according to the BTF 

guidelines 

4.2. Intracranial pressure 

The BTF guidelines contains two recommendations for intracranial pressure 

monitoring (ICP): 

 Level 2b: “Treating ICP > 22 mm Hg is recommended because values above 

this level are associated with increased mortality” 

 Level 3: “A combination of ICP values and clinical and brain CT findings 

may be used to make management decisions” 

This translates to the BPMN diagram shown in figure 4.3. An event occurs (> 22 

mmHg), other evidence such as brain CT scans (diffuse injury II, III or IV) and other 

clinical findings (e.g. mass lesion), assigned and input by the treating clinician 

during the patient stay, are considered, and a treatment is applied. The ICP level 

is checked again – if the ICP has returned to a “safe” level then the treatment 

cycle is stopped; or continues if not. 



83 
 

 

Figure 4.3: BPMN diagram of the ICP monitoring process according to the BTF guidelines 

4.3. Cerebral perfusion pressure 

Two recommendations for the management of cerebral perfusion pressure (CPP) 

are contained in the BTF guidelines: 

 Level 2b: “The recommended target CPP value for survival and favourable 

outcomes is between 60 and 70 mm Hg. Whether 60 or 70 mm Hg is the 

minimum optimal CPP threshold is unclear and may depend upon the auto-

regulatory status of the patient” 

 Level 3: “Avoiding aggressive attempts to maintain CPP > 70 mm Hg with 

fluids and pressors may be considered because of the risk of adult 

respiratory failure” 

This translates to the BPMN diagram shown in figures 4.4 and 4.5. In figure 4.4, an 

event occurs (< 60 mmHg), auto-regulation is checked, and a treatment is applied. 

The nature of the treatment is checked in a feedback loop and the CPP level is 

checked again, depending on the optimised value, based on auto-regulatory status. 

If the CPP has returned to a “safe” level, then the treatment cycle is stopped; or 
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continues if not. Figure 4.5 shows the detail of the feedback loop between pressor 

and fluid management. 

 

Figure 4.4: BPMN diagram of the CPP monitoring process according to the BTF guidelines 

 

Figure 4.5: BPMN diagram of the detailed nature of the CPP treatment 
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4.4. Discussion 

Figures 4.1-4.5 represent a single instance of a reactive process to a trigger, which 

in each case, is a pressure-level threshold crossing. Therefore, continuous 

monitoring can be represented by repeating this individual cycle many times, 

creating a much larger process model. BPMN diagrams are usually written from left 

to right, but the choice of a looped display for these guidelines deliberately 

reflects this cyclical link between the conditional threshold values “guarding” the 

beginning and end of the process. 

Overlap from the other BTF guidelines can only be found in the guidelines referring 

to monitoring recommendations for ICP and CPP, and even here these only amount 

to stating that monitoring provides a general benefit to ICP/CPP management9. So 

there is no quantitative or structural impact on these BPMN process 

representations of the threshold guidelines. There are no contraindications in any 

of the other BTF guidelines, though the possibility exists that there may be wider 

clinical considerations that are not part of the BTF focus. 

In terms of the implementation of these models – in the datasets used to evaluate 

the work – SBP, ICP and CPP are available in the physiological data stream. 

Required corollary information such as age (SBP), CT/clinical findings (ICP), and 

ancillary monitoring, auto-regulation and pressor/water load (CPP) are available in 

the captured treatment data and clinical notes where available. All other 

contributing information is standardised into the treatment profile database 

(schema details are shown in chapter 5). This corresponds to the BPMN notion of a 

“rule engine” or the use of business rules to evaluate the steps in the process. 

Finally, the most complex of the manually extracted BPMN representations – 

cerebral perfusion pressure – was given to a domain expert for validation. As the 

                                                      
9 However, despite the lack of overlap, there were significant differences between the 3rd and 4th editions of 
the recommendations supporting ICP monitoring initiation. These do not bear directly on the work of this 
thesis but should be noted here. In particular the following two level 2b recommendations no longer meet the 
required level of evidence: 
 
“ICP should be monitored in all salvageable patients with a TBI (GCS 3-8 after resuscitation) and an abnormal 
CT scan. An abnormal CT scan of the head is one that reveals hematomas, contusions, swelling, herniation, or 
compressed basal cisterns.” 
 
“ICP monitoring is indicated in patients with severe TBI with a normal CT scan if >= 2 of the following features 
are noted at admission: age > 40 years, unilateral or bilateral motor posturing, or SBP < 90 mmHg.” 
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representations were structurally similar the feedback from this was considered 

applicable to all three. Though requiring an explanation of the notation, the 

expert confirmed that these were “reasonable” representations of the processes 

described, and that they were valid to follow in a neurological ICU context. 

However, it was suggested that as they represented a singular process they may 

lack surrounding contextual information which can be difficult to express in formal 

terms. As mentioned in the introduction to this chapter, the possibility of using an 

ontology to provide this context may be an avenue to explore in future work. 

From this work we now have three guidelines expressed in a common and 

comparable process model representation and can now construct a similar 

representation for the actual ICU data. 
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5. Translation of ICU data to process models 

Chapter summary 

This chapter outlines the conversion of the real ICU data into an event log – a 

sequential representation of EUSIG pressure events and treatment administration 

– and subsequently into a process model, comparable to the models generated in 

the last chapter from the BTF guidelines. 

The parameters of the EUSIG pressure events are described, which are a range of 

values for threshold and event/clear hold-down. The algorithm to extract this 

pattern from the physiological data is then described, along with the assumptions 

made in terms of associating treatment administration to events detected in the 

physiological output, and the association algorithm. 

The generation of process models from the event log is then described, along with 

the standardised database format that the event log is stored in, and also the 

BPMN template representation of the generated process model. Finally, a 

discussion of the attempts to generate the process model automatically, using a 

technique called “process mining”, is outlined, along with the advantages and 

disadvantages of manual versus automatic approaches, and why the manual one 

was finally settled upon. 
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5.1. Conversion of ICU data to event log 

To convert the ICU data into an event log, the word “event” is used to describe 

two separate entities and therefore requires clarification:  

 A pressure event – as defined by EUSIG (Jones et al., 1994) (see also section 

2.4) – is a pattern within time-varying physiological data, well established in 

clinical literature. Throughout the rest of this work this will be referred to 

as a “EUSIG-event”.  

 An event that constitutes the basic unit of an event log used to create a 

process model, is an object of higher order abstraction which consists of a 

“EUSIG-event” and an associated treatment annotation. 

5.1.1. EUSIG-event detection 

In order to detect EUSIG-events in time-varying physiological data, the following 

key structural characteristics are required: 

 

 Threshold – indicating when a EUSIG-event has started or finished by the 

physiological values crossing this value in one direction or the other 

 Hold-down – the minimum time for which consecutive physiological readings 

have remained above the threshold, indicating that a EUSIG-event has 

unambiguously occurred (i.e. confirmation of the EUSIG-event start) 

 Clear hold-down – the time for which consecutive physiological readings 

have remained below the threshold, indicating that a EUSIG-event has 

unambiguously finished (i.e. confirmation of the EUSIG-event end) 

 Duration – the length of time from the start of the hold-down to the start of 

the clear hold-down 

 Value range – the individual physiological readings during the EUSIG-event 

(sampled for this work at a rate of minute-by-minute) 

 

Therefore, the values input to a EUSIG-event pattern include the threshold 

crossing value, the direction of crossing, and the time definition of the event/clear 

hold-down. Table 5.1 shows the values that can be input for threshold, direction 

and hold-down, which will extract different overall pattern structures from the 

physiological data. 
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Parameter Threshold values 

(mmHg) 

Direction of 

threshold-

crossing 

Event/Clear Hold-Down 

(mins) 

ICP 15, 20, 25, 30, 35 Up 5, 10, 15, 20 

CPP 50, 60, 70 Down 5, 10, 15, 20 

SBP 90, 100, 110 Down 5, 10, 15, 20 

Table 5.1: list of physiological EUSIG parameters 

Figure 5.1 shows a schematic of a single physiological EUSIG-event, with a time-

window for treatment overlaid (the significance and use of time windows for 

association are discussed in sections 5.1.3 and 5.1.4.). A threshold is crossed and 

remains high for a specific period (the hold-down) indicating that a EUSIG-event 

has started. The clear hold-down indicates that the EUSIG-event has finished. Also 

shown are a treatment at a specific time-point and a time window overlaid for 

association of that treatment with the event. 

 

 

Figure 5.1: EUSIG-event definition for a given time-varying physiological data stream 

To borrow language commonly used in data science, this EUSIG-event pattern can 

be thought of as a complex “object” with various attributes. In the context of TBI, 

the structural details of this defined “object” are unlikely to change, as this is a 

generally accepted definition of a pressure event (Jones et al., 1994), (Donald et 
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al., 2012). This makes it a re-usable pattern, ideal for searching physiological 

time-series data. 

In terms of the variable values – intracranial pressure (ICP), cerebral perfusion 

pressure (CPP), and systolic blood pressure (SBP) – the optimum values 

recommended by the BTF guidelines of 22 mmHg (ICP), 60 mmHg (CPP), and 110 

mmHg (SBP), are supported by clinical literature. For instance, in studies outside 

those directly supporting the BTF threshold guidelines (e.g. class 2 studies (Berry 

et al., 2012), (Sorrentino et al., 2012), (Allen et al., 2014) for SBP, ICP and CPP 

respectively), the lowest grades of events listed in (Jones et al., 1994) are 20 

mmHg (ICP), 60 mmHg (CPP), and 90 mmHg (SBP). Similarly, in (Lazaridis et al., 

2014), a study is conducted into individualised ICP levels based on PRx (the 

pressure-reactivity index) and quotes the traditionally recommended levels of 

ideal ICP as 20-25 mmHg. 

With these key pieces of structural and numerical information about EUSIG-event 

definition in place, the program can be built that detects this pattern within the 

data-set and compiles the event log required to generate a process model. The 

algorithm driving the event detection is now described in section 5.1.2. 

5.1.2. Event-detection algorithm 

To detect the pattern described in section 5.1.1 from a physiological data stream, 

the following procedure is used. 

Step 1 – Create the list of parameter definitions in program memory ahead of 

processing the event-detection algorithm. A parameter in this context represents a 

physiological data stream – or a physical measurement of the patient’s brain (e.g. 

ICP). A representative parameter object is shown in figure 5.2. 
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Figure 5.2: ICU parameter object with event definition values 

Step 2 – Query the patient database for information10  

 For each patient, the data is read into an “n x n vector of vectors” (i.e. 

a matrix) 

 Each line in the “n x n vector of vectors” is a time-point (as the sampling 

rate is minute by minute, therefore each line increments by a minute) 

and each column is a particular parameter feed (see figure 5.3) 

 The header line is used to identify the column index for the parameter 

that is of particular interest (e.g. ICPm, CPP) 

 

Figure 5.3: example of one-line-per-timestamp structure (minute-by-minute sampling) 

Step 3 – For each parameter in the list, the event-detection algorithm detailed in 

figure 5.4 is executed. The algorithm uses the inputs from the patient parameter 

feeds, and for each definition of numerical variable (table 5.1) checks for event 

start (loop 2.4) or event clear (loop 2.3) to build the corresponding structure. 

Using this algorithm, the event structure can be extracted for all presented EUSIG-

event definitions. 

                                                      
10 Each line is processed in memory individually then written to persistent storage to make efficient use of 
memory heap space 
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Figure 5.4: the event detection algorithm, rendered in style recommended by (Zobel, 2014) 

5.1.3. Association of treatments with events 

Once the EUSIG-event pattern has been extracted from the physiological data, the 

next task is the association of treatment information with the EUSIG-events to 

create the event log. As described in section 2.4, features common to nearly all 

modern high-resolution ICU data-sets include the annotation of treatments 

administered to a patient during their stay in intensive care, for example a nurse 

administering analgesics to provide pain relief, or a ventilator machine being 

attached to a patient to allow steady assistance of breathing. 

Again, drawing on data science terminology, the structure of a treatment object 

varies depending on the nature of the treatment and can be simple or complex 

(see figure 5.5). In its simplest form a treatment would be represented by a 

timestamp, and a dosage of a certain amount of drug. A more complex 

representation would be, for instance, the attachment of the ventilator, which has 

start and end points, duration, and a range of values depending on the breathing 

assistance given. Other features could also be added to these lists (also increasing 

the complexity of the object structure). 
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Figure 5.5: schematic example of three treatment types – simple, complex, and time-varying 

Association between an event and an action can be calculated in many ways and to 

unambiguously establish causal association requires a lot of contextual 

information. Highly-targeted specification of the data-set would be the ideal 

method (e.g. a clinician directly highlighting for which event they are 

administering the treatment) but it is often the case that such specification is not 

available (Enblad et al., 2004). Therefore, any method that tries to establish this 

association can only do so to a limited degree of certainty. 

In the context of this thesis, the association being discussed is indeed causal (a 

treatment was applied in response to a particular event). If the treatment data is 

well annotated with contextual information, then a parameter target will have 

been explicitly noted. However, not all treatments will have annotations like this, 

and in any case, an independence of the treatment from the physiological events – 

at least in the mind of the clinician noting the treatment – does help achieve a 

truly independent representation of clinical management. 

Therefore, to account for these issues, the following assumptions have been made 

when it comes to treatment association with physiological events: 

 If multiple treatments fall within an event time window, then – subject to 

explicit contradictory information in all the multiple annotations – the first 

treatment is associated. 

 If multiple events of the same type occur in a short period, the associated 

time windows are conflated to one covering the full period (from the start 

of the first event to end of the time window after the last event) 
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 The treatment information has been reduced to the simplest point-like 

structure possible, consisting of: a timestamp, a value and a label. Where 

the treatments have more complex structures, the treatment information 

has been deconstructed to use the start and end points as the individual 

timestamps (as this state-change is the most significant part of the 

treatment). The start point is the information used for noting that an 

treatment annotation has occurred. 

These assumptions do add uncertainty to the process which is addressed in the 

discussion of this thesis (chapter 11). In the aggregate output of the Brain-IT 

dataset (section 9.4) the investigation of different values of thresholds sizes also 

attempts to mitigate this uncertainty by looking at the different range options. 

With these considerations in mind, the event detection algorithm is run against the 

physiological dataset and for each event detected, several time-windows differing 

in length (30, 60, 90 and 120 minutes) are overlaid, to identify associated 

treatments. 

5.1.4. Event/treatment association algorithm 

This association is implemented as follows: for each patient an “association 

object” is instantiated, shown in figure 5.6. It contains centre and patient 

identifiers, a list of EUSIG-events and treatment values (e.g. sedation), and a list 

of associated treatment times and association number counts. 

 

Figure 5.6: a patient association object 

To associate the events and treatments for each patient, all treatment information 

is retrieved, then for each parameter (defined in step (1) of event detection), 
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each hold-down definition, and each time-window definition, the association 

algorithm shown in figure 5.7 is run. 

 

Figure 5.7:  the treatment association algorithm, rendered in style recommended by (Zobel, 2014) 

Using this algorithm, treatment annotations are associated with the detected 

EUSIG-events, which are used in combination to create the event log, ready for 

process model generation. 

5.2. Process model creation from event log 

The output from the creation of the event log is the association of EUSIG-events 

with treatment information from TBI datasets. This data is then represented in a 

standardised format, so that future TBI datasets can be processed and compared in 

a similar way. Currently this standardised format is implemented in a MySQL 

database (known as the “treatment profile” database), and the entity-relationship 

diagram (the description of the database schema) is shown in figure 5.8. As noted 

in section 4.4, this corresponds to the BPMN notion of an “engine” database. 
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Figure 5.8: E-R diagram of the standardised “treatment profile” database. Strong key relations 
(where both entities can exist in their own right) between tables are denoted by an unbroken 

connecting line, with the foreign key in the table with the “tripod” arrow end. The single weak 

key relation (where one entity depends on the existence of another) is denoted by an broken line. 

As discussed in section 5.1, when considering the definition of an “event” whilst 

developing the process model, the event log actually encompasses both the EUSIG-

events and the application of treatments. This is the only abstraction that is made 

when constructing the standardised “treatment profile” database schema11. 

From this standardised format, it is now possible to create a process model that 

reflects what has occurred in the ICU. The general BPMN representation of this is 

shown in figure 5.9. This is the actual process model representing what has 

occurred in the ICU (c.f. the ideal process model, figures 4.2-4.5 in chapter 4, 

which represent what would occur if the guidelines were strictly adhered to). The 

main point of comparison between actual and ideal is the presence and nature of 

                                                      
11 Again, by making this abstraction, theoretically some information may be lost if the raw data fails to follow 
this structural definition of an event. However, dramatic differences in this structure are unlikely to be 
encountered. The most unusual difference found in the clinical literature was (Lazaridis et al., 2014), which 
used PRx values to calculate the optimum threshold-crossing value for ICP, and this still respected the basic 
structural definition of a EUSIG event. 
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the “clinical management reaction” activity (the dashed line representation in 

figure 5.9, which is added for clarity, and is not strict BPMN), though other 

attributes such as the time taken or single/repeat nature, also contribute to the 

comparison. Similar to the BPMN representations in the last chapter, the full 

process is constructed by concatenating each event represented together (similar 

to the “continuous monitoring” analogy, also in chapter 4). 

 

Figure 5.9: generic process model of reaction to a pressure event 

Whilst figure 5.9 shows a manually generated process model, another method of 

generating a process model is to do so automatically ("process mining"). For this 

thesis, this approach was initially attempted, and the output is detailed in 

Appendix D.  

In brief, repeated attempts to create process models automatically were highly 

susceptible to "noise" and produced output which bore no resemblance to real-

world processes within an ICU. During the development of the automated method, 

there were several steps of manual arbitration to modify the output which, when 

pursuing a realistic model, were occurring so frequently that a fully manual 
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generation was eventually considered acceptable. These arbitration points 

included the choice of miner program (e.g. the “simple heuristic miner”), the 

choice of algorithm (“alpha”), and the data range (e.g. selection and deselection 

of activity tags). 

When considering the impact of generating a process model manually versus one 

generated automatically, the following points for and against each approach were 

identified: 

 A manually generated process model is subject to similar assumptions and 

biases that would be present in the BTF guideline models (“ideal”) 

generated in chapter 4. Errors surrounding both these generation processes 

may therefore multiply. 

 An automatically generated process model was noisy and had relatively 

unrealistic output (i.e. diverged from the known real-world processes to an 

unrepresentative degree). Also, although subjective bias is less in 

automatically generated models, it is not removed completely, and often 

enters the calculation through the arbitration points mentioned above. 

With these arguments in mind, the construction of manually generated process 

models was considered a viable option and the work continued along this path. 
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6. Calculating distance and similarity of process models 

Chapter summary 

The two process models that have been derived in chapter 4 (the ideal guideline-

mandated process) and chapter 5 (the actual process that occurred in the ICU) – 

have been expressed in a common model notation (BPMN). This chapter now 

describes the calculation of a distance between those two models, which involves 

the evaluation of scalar and structural distances. 

The process model comparison work that this thesis references (Dijkman, Dumas 

and García-Bañuelos, 2009) is briefly discussed with emphasis on the comparison 

between a “pure” process model and an execution trace. 

The detailed method on how this comparison is applied in this thesis is then 

outlined, showing how the two process models (actual vs ideal) are evaluated on a 

minute-by-minute basis. The quantitative distances and weightings are then 

tabulated along with the qualitative reasons for non-adherence.  

Finally, a worked example is shown for illustration along with a brief discussion of 

the presentation of results: minute-by-minute windowing, interquartile range 

tables, and a grid providing a summary-measure estimate of the clinical severity 

as a result of the non-adherence. 
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As mentioned in chapter 3 (section 3.5), highly relevant research that looks 

explicitly at a calculation of distance between two process models, can be found in 

(Dijkman, Dumas and García-Bañuelos, 2009). Dijkman’s work proposes a method 

of comparing process models by converting the BPMN representation to a directed 

graph – a minor modification to a set of nodes (points on the model) and 

directional edges (connectors between those points) – then searching through a 

repository of process models and calculating a distance between each of those. 

The calculation itself is composed of three conversion steps: node label 

replacement (referred to as “string-edit similarity”), distance between two nodes 

(“graph-edit distance”), and a weighted description of that distance (“graph-edit 

similarity”). 

Other methods of calculating distances between complex, multi-dimensional 

objects exist. For the work of this thesis, two methods of comparison were 

considered: graph-based and document-based. These were chosen due to the 

process-oriented nature of guidelines and their communication in text documents. 

The latter of these methods primarily involves comparison of label strings with 

concepts such as a “bag of words”, where a distance between two texts is 

calculated based on the overall similarity of all the words in a document (similar in 

function to Google’s PageRank algorithm) (Xing and Ghorbani, 2004). Initially, this 

was considered the most appropriate technique, as the BTF guidelines were 

themselves text documents. However, a graph comparison approach was 

eventually settled on as the real ICU data processes had a flow-control structure, 

which could also be derived from the text of the BTF guidelines. This was 

considered to capture the processes more accurately that a document-based 

approach, and of the literature surveyed, the work by Dijkman appeared to be the 

most relevant. 

The final conversion step in (Dijkman, Dumas and García-Bañuelos, 2009) – the 

“graph-edit distance” – is a complex calculation, known as an “NP complete” 

problem as there are a vast (potentially infinite) number of distance solutions to 

find. Several algorithms to do these calculations were assessed within (Dijkman, 

Dumas and García-Bañuelos, 2009), each with different characteristics that trade-

off between completeness and efficiency: these are the “Greedy”, ”A-star”, 
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”Process heuristic”, and “Exhaustive” algorithms. Focusing on the algorithm’s 

performance in their paper, the conclusion was that the “Greedy” algorithm 

(searching for local optima) and “A-star” (a well-known shortest-distance 

algorithm) were the best performing in terms of speed versus acceptable 

completeness (“A-star” being slightly slower but more accurate). These algorithms 

do not play a significant role in the work of this thesis, as a relatively “simple” 

exhaustive algorithm was sufficient due to the constraints imposed by the problem 

addressed, such as the clear identification of start/end points in the EUSIG events, 

and the well-defined structure of the nodes being compared. However, a valid and 

likely avenue of future work would be to apply these algorithms to the problem 

space in this thesis for further efficiency gains, or to allow the expansion of the 

available categories to better reflect the detail of a neurological ICU. Therefore, 

the details of these algorithms are listed in Appendix E. 

To re-state for the work of this thesis: one process model – drawn from the BTF 

guideline – represents what the ideal clinical response would have been given the 

context of events, the patient situation, etc. The other process model is generated 

for the actual timeline from the treatment profiles database, which is a model 

representing what actually happened in the ICU for the same patient context. 

Therefore, an important point that should be emphasized is that the former is a 

“model”, in the purest sense of the word, whilst the latter is an execution trace – 

an “instantiation” of the process model using exact numerical input reported from 

the immediate situation12. In process model theory, it is considered acceptable to 

make interchangeable comparisons between these entities – a short discussion on 

this is available in (van der Aalst, de Medeiros and Weijters, 2006), describing the 

different levels of comparison available given local execution circumstances to a 

particular model. 

In summary, the distance between the actual and ideal processes is calculated 

using the main components of the conversion work established by Dijkman. The 

rest of this chapter now describes the detailed method for this implementation. 

                                                      
12 A useful analogy to consider for this concept is that the process model can be thought of as written code, 
whilst the execution trace can be thought of as the execution of that written code. 
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6.1. Process models for comparison 

The BPMN representations of both the guideline and the output from the ICU data 

have been constructed in chapter 4 (e.g. figures 4.4 and 4.5 for the CPP guideline) 

and chapter 5 (figure 5.9). To illustrate this more clearly, a time-varying 

comparison between the two has been drawn in figure 6.1, showing an 

“unwrapped” (left-to-right, rather than in a loop) version of the BPMN model and 

their points of comparison.  

When an event is triggered, for each minute of that event, a distance is calculated 

between the guideline process model (top) and the current state of the ICU output 

(bottom). This single evaluation is what is shown in figure 6.1. 

If a reaction is required by the guideline model (e.g. to administer hypertonic 

saline) and that reaction is not found in the ICU model at that time-point, then the 

distance between the two models will be greater than if it was found. The distance 

would also vary according to differing types of reactions. For instance, if 

hypertonic saline were required but vasopressors was found, the distance would be 

non-zero, but less than the maximum possible. If the reaction found is exactly the 

same as that required by the guideline, then the distance for that component 

would be zero. 

This evaluation occurs each minute that the event continues (figure 6.2) and 

therefore produces a distance number for each minute of that event. In this 

model, the greatest distance occurs if there is a mis-match between clinical 

management reactions. But smaller distances can also occur if there is a difference 

in the nature of the reaction (e.g. dosage) or the time taken to treatment. The 

size of these differences relative to each other is controlled by the assigned 

weightings (discussed in section 6.2). 
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Figure 6.1: Like-for-like comparison of the ideal and actual process models 

 

Figure 6.2: Implementation of the process model comparison conducted each minute 
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6.2. Quantitative and qualitative comparison detail 

Returning to the underlying theory, the three steps to calculate a distance 

between process models, are defined in Dijkman’s work as follows: 

 String-edit similarity – this is the direct similarity between two labelled 

nodes on the model. The primary attribute of a node is its label, and 

Dijkman approaches this with a view on the similarity of the literal strings 

themselves. In this situation however, the labels follow the assigned values 

relevant to the domain (in this case, an example is the categorisation of TBI 

treatments). A full list of the accepted node values is shown in table 6.1. 

 

 Graph distance – this is the number of steps that must be taken for one 

process model to become the equivalent of the other (including node 

substitutions, or string-edit similarity calculations). The steps involved can 

either be substitutions, insertions or deletions of either nodes or edges of 

the process model. 

 

 Graph-edit similarity – the final similarity calculation is produced by adding 

weighting “costs” to the steps achieved in the graph distance calculation. 

These weightings are outlined in table 6.2. 

The formal definition of node and edge substitutions in mathematical terms 

(according to Dijkman) is shown in figure 6.3. 

 

Figure 6.3: Mathematical expression of the weightings used in the graph-edit similarity calculation 

(Dijkman, Dumas and García-Bañuelos, 2009) 
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 wsubn – this co-efficient describes the weighting attached to the 

substitution of a node 

 wskipn – this co-efficient describes the weighting attached to the 

insertion/deletion of a node 

 wskipe – this co-efficient describes the weighting attached to the 

insertion/deletion of an edge 

 fsubn – the formula shown in figure 6.3 shows the graph-edit distance (itself 

made up of the string-edit distance (1.0 – Sim(n,m)) divided by the set of all 

nodes that have undergone substitution 

Table 6.1 outlines the possibilities for the labels in the nodes that make up the 

comparison (figure 6.1), represented as substitutions of the node. The options are 

categorical apart from the time taken, which is measured as continuous, but 

assigned to the node as a categorical full-minute number. 

Node Label options 

Treatment type Ventilation, Sedation, Analgesia, 

Paralysis, Volume expansion, Inotropes, 

Anti-hypertensives, Anti-pyretics, 

Hypothermia, Steroids, Cerebral 

vasoconstriction, Osmotic therapy, CSF 

drainage, Head elevation, Barbiturates, 

Other 

Nature of treatment Single, repeat 

Time taken Time between event and treatment 

Table 6.1: Node label possibilities for the different nodes in each process model 

The most likely structural change in the comparison of actual against ideal 

processes involves the treatment itself (the node labelled as “clinical management 

reaction” in figure 6.1). Therefore, the algorithm for calculating the structural 

difference between models is: 

 A node is deleted, which means that a corresponding edge is deleted as well 

 If the node is the “clinical management reaction” (i.e. a central node in the 

process): 
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o This deletes the entire group of nodes and associated edges (a major 

difference between the models) 

 Else (the node is peripheral in the process): 

o The node has either the “nature” or “time taken” label 

o The detailed specification of the structure is reduced (which is a 

relatively minor difference between the models) 

Considering the relative importance of the “clinical management reaction” node, 

and connecting edges, versus the other node types, table 6.2 outlines the 

weighting costs of each of the steps involved when comparing one model against 

the other (again with reference to figure 6.1).  

These weightings have been assigned as a measure of how important each 

difference is, relative to each other. For instance, the assignment of 0.99 to the 

central node being deleted, indicates this is the most important difference in the 

list (arrived at by adding the base cost of deleting a node, 0.75, and the node 

being central, which is 0.24). Correspondingly the lowest importance (“nature”) is 

assigned 0.25 as it is a relatively minor difference. These weightings have been 

chosen in attempt to model the importance of the different nodes as accurately as 

possible but require further calibration and consensus from clinical domain 

experts. 

Conversion step Normalised weighting (0 – 1) Variable 

Nature label switched 0.25 wsubn 

Time taken label switched 0.5 wsubn 

Treatment type label 

switched 

0.5 wsubn 

Node deleted (base cost) 0.75 wskipn (base) 

Edge deleted (base cost) 0.6 wskipe 

Deleted node is central 0.24 wskipn (additional) 

Deleted node is peripheral 0.08 wskipn (additional) 

Table 6.2: Weighting values of each step involved, when converting from one model to the other 

The calculations in figure 6.3 and the assigned weighting values from table 6.2 

provide quantitative information about guideline non-adherence. However, for 

multi-dimensional and interacting structures such as a guideline process, it is 
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important that the qualitative information supporting that numerical output is 

retained as well. For node deletion it is noted that there is a base and additional 

cost of deletion (so wskipn is repeated), the additional cost depending on whether 

the node deleted is central or peripheral. 

The qualitative reasons for non-adherence to a guideline are constructed by 

recording the individual steps taken to get from one model to the other. As the 

distance between one model and another is the shortest series of steps to convert 

one into the other (the “graph edit distance”), it follows that each documented 

step is being taken for “a reason”. The final (compound) list of these reasons 

provides the trace of qualitative information. In this way maximum information is 

retained throughout the evaluation of guideline adherence. Table 6.3 shows the 

one-to-one mapping of the qualitative reason for each step taken, when converting 

one model into another. 

Conversion step Qualitative reason for guideline deviation 

Nature label switched “Nature of treatment is different” 

Time taken label switched “Time taken to administer treatment is outside 

window” 

Treatment type label 

switched 

“Type of treatment is different” 

Node deleted “A component is missing: ” [component specified 

below] 

Edge deleted “A component is missing: ” [component specified 

below] 

Deleted node is central “Treatment” 

Deleted node is peripheral “Nature/Time taken” 

Table 6.3: Qualitative reasons for guideline deviation 

6.3. Worked example 

To give some practical context to the theory discussed in section 6.2, the following 

worked example demonstrates the calculation of guideline adherence. Figure 6.4 

shows the minute-by-minute output for the worked example described in this 

section. 
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Figure 6.4: Minute-by-minute output of guideline adherence of a single CPP EUSIG-event 
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6.3.1. Calculation template 

The following situation in an ICU provides the context: in response to a CPP event, 

a clinician has administered three doses of steroids within close proximity to each 

other and within 15 minutes of the event start. The guideline only recommends 

two doses within that time-frame. 

Therefore, the inputs to this calculation are:  

 A single CPP EUSIG event (< 50 mmHg) starting at 2004-05-28 05:17 

 Three steroid therapy treatments at 2004-05-28 05:22, 2004-05-28 05:24 

and 2004-05-28 05:26 (all within a 15-minute time-window since the 

EUSIG-event start). 

The anticipated outputs are: 

 The guideline adherence information will be composed of the following 

factors: 

o The incorrect type of treatment administered after a high-load of 

that treatment has been established (in this case the third instance of 

“steroid therapy”). 

o Time taken from the EUSIG-event start to treatment administration. 

o Default high non-adherence level once the time-window has expired 

and a further treatment has not been administered. 

For each time-point within the time-window, the calculation includes a 

measurement of distance for the five points of the model (with reference to figure 

6.1). Table 6.4 shows a template of how the distance weightings for this particular 

case are calculated. The five factors add together to create 100% of the single 

distance score (non-adherence), so the value of each contributes 20% of the overall 

score. The practical difference between guideline (ideal) and ICU (actual) is 

described in parentheses in the second column. Note that Type refers to the 

difference between actual administration and ideal, whereas Nature refers to any 

dose of a given drug. 
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Node Similarity weightings 

Event start 0.0 (no difference) 

Type 0.5 (load of treatment type is high) 

Time taken Time to treatment for each dose 

Nature 0.25 * number of doses over (+1) 

Check level 0.0 (no difference) 

Table 6.4: Template of values for each non-adherence instance 

6.3.2. Calculation instances 

In this calculation, the output shows four instances of non-adherence within the 

time-window 11.4%, 16%, 18.6% and a large distance of 36.2%13 outside it (figure 

6.4). 

The distance for the large “default” instance (36.2%) is calculated using the graph-

edit similarity formula as this is a comparison between two structurally different 

process models. Table 6.5 shows the contribution of each node to the overall 

guideline non-adherence distance. 

Node Similarity weightings (37.8% instance) 

Event start 0.0 

Type 0.56 

Time taken 0.54 

Nature 0.79 

Check level 0.0 

Table 6.5: Component contributions of each factor for the 37.8% instance 

These are arrived at using the weightings listed in table 6.2 and the following 

additional variable assignments: 

 fsubn = 1.0 (this is the substitution weighting, which in this case is a 

normalised value of 1.0 as it is at maximum with the missing node) 

 fskipn = fskipe = 0.6 (for Type – fraction of all nodes substituted = 3/5) 

 fskipn = fskipe = 0.2 (for Nature/Time taken – fraction of all nodes 

substituted = 1/5) 

                                                      
13 There is an issue with this figure, discovered post-submission, that leads it to be calculated as 37.8% 
(previously thought to be 36.2%). See Appendix F.3 for an explanation. Wherever the 36.2% figure is 
encountered with regard to the “default” distance, read 37.8%. 
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Using the similarity mapping shown in figure 6.3, the distance is calculated as 

follows: 

 ((wskipn * fskipn) + (wskipe * fskipe) + (wsubn * fsubn)) / (wskipn + wskipe + 

wsubn) 

Therefore, the similarity value of the “Type” component is (rounded to 2 decimal 

places): 

 ((0.6 * 0.99) + (0.6 * 0.6) + (0.5 * 1.0) / (0.99 + 0.6 + 1.0)) = 0.56 

The similarity values of the “Nature” component is: 

 ((0.2 * 0.83) + (0.2 * 0.6) + (0.25 * 1.0)) / (0.83 + 0.6 + 1.0)) = 0.54 

The similarity values of the “Time taken” component is: 

 ((0.2 * 0.83) + (0.2 * 0.6) + (0.5 * 1.0)) / (0.83 + 0.6 + 1.0)) = 0.79 

Add these five factors together to get the full contribution (normalised as a 

percentage): 

 ((0.0 + 0.56 + 0.54 + 0.79 + 0.0) / 5.0) = 0.378 = 37.8% 

For the distances within the time-window, the calculation follows the string-edit 

formula as the calculation between the two process models is structurally similar. 

Table 6.6 shows the contributing values. 

Node Similarity weightings (instances) 

16% 18.6% 11.4% 

Event start 0.0 0.0 0.0 

Type 0.5 0.5 0.0 

Time taken 0.3 0.43 0.56 

Nature 0.0 0.0 0.0 

Check level 0.0 0.0 0.0 

Table 6.6: Component contributions of each factor for the instances within the time-window (16%, 

18.6%, 11.4%) 

With the string-edit distance, the five factors are simply added up and normalised 

to a percentage, so the calculations and results are: 
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 ((0.5 + 0.3) / 5.0) * 100 = 16% 

 ((0.5 + 0.43) / 5.0) * 100 = 18.6% 

 ((0.56) / 5.0) * 100 = 11.4% 

6.3.3. Presentation 

Using these distance calculations, the final quantitative and qualitative 

expressions of guideline adherence are generated. The basic units of adherence 

are two – potentially interdependent – categories: degree of non-adherence 

(expressed as a percentage) and the duration of these levels of non-adherence (in 

minutes). The adherence levels detailed at each minute time-point of a patient’s 

stay are compiled into a set of contiguous “instances” of non-adherence. The blue 

line indicates the CPP level, whilst the red line indicates the corresponding level of 

guideline adherence. 

All non-adherence information for each patient can be viewed in the application 

referenced in the “Additional Resources” page at the front of this thesis. This 

particular (test) patient can be viewed by inputting the summary details shown in 

figure 6.5. 

 

Figure 6.5: Summary input information for the worked example 

Briefly, a more detailed description of the “default” distance, calculated at the 

beginning of this section, is merited here. This has been labelled as “default” due 

to its overwhelming prevalence in the datasets tested, and it being the value that 

the distance metric “defaults” to when the most common situation occurs: 

namely, when a treatment should have been administered in the time-window 

following an event (but hasn’t). The value is output at 36.2% in the cases reported, 

due to the choice of quantitative weightings (table 6.2). An intuitive assumption is 

that this case should have a distance score of 100%. However due to the fact that 
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the five components (figure 6.1) are evaluated semi-independently, each 

contributing 20% to the overall distance, and following the weightings applied, the 

common output – as worked through in this section – is 36.2%. Possible future work 

would be to calibrate this figure to have a more meaningful clinical analogue. The 

concept of this default distance is returned to in chapters 8, 9 and 10, in particular 

in section 9.3.2. 
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7. Framework implementation 

Chapter summary 

This chapter presents the implemented solution to the framework proposed in the 

thesis. The high-level design is introduced with a step-by-step description of each 

component, along with references back to the original hypotheses. 

The datasets to be used to evaluate the technology are then described including: 

Brain-IT (specialist neurological ICU data), MIMIC III (non-specialist ICU data), and 

ICCA (ICU data available from bedside machines, and accessible to a domain 

expert). 

The hardware and software implementations are described, with a brief 

description of the main code features implementing the key methods from 

chapters 4 to 6. 

The final section describes the presentation of the application. It is a web-

enabled system that provides adherence information on individual patients in a 

dataset, including minute-to-minute guideline adherence for a single patient stay, 

total duration and distance of non-adherence, and interquartile range spread to 

understand the significance of the different non-adherence instances. A novel 

method of presenting clinical severity of the combined output of guideline non-

adherence and duration using risk analysis charts is also described. 
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The overall goal of this framework is to represent both the BTF guidelines and the 

real ICU data as process models, then compare the distance between the two. 

Figure 7.1 shows a high-level schematic of the steps required to achieve this, 

reflecting the methodology outlined in chapters 4 to 6 (repeated from figure 1.1). 

 

Figure 7.1: Simple schematic of the architectural process underpinning the proposed research 

The steps involved in comparing two sets of process models in this context, are 

numbered in figure 7.1 and represent the following: 

1) Create an event log from the raw ICU data, using EUSIG event definitions 

2) Create a process model representation of the ICU data from that event log 

3) Create a process model representation of the BTF guidelines from their text 

4) Compare the two process models and evaluate how similar they are 

Recalling the hypotheses formulated for this thesis: 

1) In high-resolution time-series clinical data, one can extract clinically-valid 

treatment processes for ICP/CPP management in TBI patients 
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2) Having extracted treatment processes, one is able to develop a method to 

compare those against other treatment processes to establish the degree of 

similarity between them 

3) One can develop a computerised tool that readily quantifies and displays to 

clinical staff a metric of actual ICP/CPP management protocol adherence 

Steps 1 and 2 in figure 7.1 are directly related to the first hypothesis of this 

research work: a process model and event log generated from the raw data 

encapsulates a treatment process for ICP/CPP management. 

Step 4 in figure 7.1 relates to the second hypothesis: a comparison between 

treatment processes is performed between the process models generated from the 

raw ICU data and the BTF guidelines. Step 3 acts as an intermediate step for the 

second hypothesis: the process model is generated from the guidelines in order to 

perform the comparison. 

The third hypothesis is realised by the full implementation of the framework as a 

web-enabled application.  

7.1. Application to ICU datasets 

To apply the system to real TBI data, the following datasets have been sourced and 

have guided the development of this research: 

 Brain-IT (Piper et al., 2010) 

 MIMIC III (Saeed, 2007) 

 Philips ICCA (ICCA, 2018) 

These three datasets have been chosen as they represent common formats for the 

storage and processing of ICU data in a clinical and research setting. Brain-IT is a 

consortium that has developed a data schema specifically for the collection of TBI 

data, with a particular focus on the management of ICP/CPP. MIMIC III is a large-

scale repository of end-hour averaged data, chosen for its general focus on non-

specialist ICU data. The Philips ICCA system is a bedside data collection system 

that is used by many neurological ICUs in the developed world. 



117 
 

7.1.1. Specialist neurological ICU dataset (Brain-IT) 

The Brain-IT dataset is a collection of 262 TBI patients with clinical information 

collected from 22 specialist neurological ICUs across Europe. The data consists of 

physiological, treatment, lab results, surgeries, and other important clinical 

events, and was collected using a variety of technologies available at the time 

(2002 to 2007) such as interfacing with bedside monitoring machines to collect 

physiological data and using PDA Palm Pilots to collect treatment annotations. 

This dataset has been used as the primary one for implementation, due to its 

comprehensiveness, coverage and availability. The consortium focus on ICP/CPP 

management facilitates the identification of targeted treatments, but also 

represents a potential bias in treatment focus that must be considered when 

evaluating the final output. 

7.1.2. Non-specialist ICU dataset (MIMIC III) 

To provide a counterpoint to the specialist focus of the Brain-IT dataset, the MIMIC 

III dataset has been chosen specifically because its primary collection purpose is 

not TBI or ICP/CPP management. This allows the generality of the system to be 

evaluated and whether it can be transferred from one context to another using 

similar, but different, data structures.  

The MIMIC III dataset is a comprehensive collection of ICU data collected from 

wards across the United States from 2001 to 2012, with over 38,000 patient 

records. A sub-set of these patients are TBI and SAH (Sub-Arachnoid Haemorrhage) 

patients, which make them ideal candidates to standardise the output and run the 

guideline framework against. The structure is end-hour averaged physiological 

data, and the treatment data has a large coverage of the possible permutations of 

annotation labels strings (e.g. “CSF”, “cerebrospinal fluid”, “CS fluid”, etc). The 

challenge with this end-hour structure is viewing the output at a resolution that 

will give sufficient information to be useful in a clinical setting. 

7.1.3. ICU data collection system (ICCA) 

A set of annotated patient records were extracted from the Philips ICCA 

(IntelliSpace Critical Care and Anaesthesia) system. The intention of using this 

dataset was to make use of state-of-the-art ICU technology, in common use in 
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modern neurological ICUs. The physiological data structure is millisecond wave-

form, down-sampled to minute-by-minute for this work, whilst the treatment data 

is primarily ventilation support and drug administration. 

An additional feature of this dataset was that it was possible to use it to evaluate 

the guideline adherence system against patient context information provided by 

domain experts. To that end, a set of physiological and treatment data was 

compiled for three TBI patients, by two domain experts at the Queen Elizabeth 

University Hospital in Glasgow, UK. They were asked to provide notes on patient 

context and a brief rationale behind the clinical management of those patients. 

Some of the patients selected had contexts that specifically (and deliberately) 

provided circumstances where following the BTF guidelines was not the ideal 

clinical option. 

7.2. Implementation 

The guideline adherence application has two main modules. The first is a 

standalone program, written in the Java programming language, that translates 

the raw ICU patient data into an event log. The two main classes in this program 

are: 

 “TreatmentAnalysis” – this interfaces with the ICU patient data format (e.g. 

MS Access, MS SQL Server) and translates that format into a standardised 

representation of physiological and treatment information 

 “EventDetection” – which, based on input EUSIG definitions, converts the 

physiological data into higher level abstraction events and stores them in 

the treatment profile database (algorithm and database details are 

described in chapter 5). 

The second module is the guideline adherence calculation program, which is also 

coded in Java and in the web-enabled version, Java Server Page (JSP). It is an n-

tier web application, connected to the standardised treatment profile database 

and indexed on the unique patient IDs of each dataset. 

There are four components of the code that merit a brief description: 
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 The process model is represented as a complex object with component 

objects of nodes and edges. These nodes and edges are collection variables 

for each process model instance, with n-1 edges where there are n nodes. 

 The evaluation of the distance between process models is represented by 

composing the ideal process model, composing the corresponding actual 

process model for that time-point, and calculating the distance between the 

two. 

 The string-edit and graph-edit calculations include the specific, non-

abstracted information relevant to each guideline, with business logic rules 

to apply that information. 

 Contextual input from the guidelines (e.g. check age for SBP, check mass 

lesion presence for ICP, check fluid/pressor load for CPP) is present in two 

places: one on the original event detection algorithm, and one within the 

individual time-point distance calculation. 

The programs are run on a virtual machine hosted by the NeCTAR (“National 

eresearch Collaboration Tools And Resources”) cloud platform at the University of 

Melbourne, running the Ubuntu 16.04 (Xenial) amd64 operating system, on a 

machine with 1 VCPU, 4Gb of memory and 30Gb of storage, and the Java Virtual 

Machine (JVM) modified to make use of all of the available memory14. 

It is noted that the event information (EUSIG-event plus treatment annotation) is 

stored as formatted (re-usable) information in the treatment profiles database. 

Higher order information used in the process model creation (e.g. auto-regulatory 

status, brain/clinical CT findings, etc) are taken directly from the individual data 

repository (e.g. Brain-IT, MIMIC III, etc). 

A web-application was chosen for ease of communication of results and to provide 

general (but gated) access to the research community. If converted to a bedside 

application, to evaluate adherence in real-time, it would be better developed as a 

standalone program, for reasons of security (less exposed threat surface to general 

Internet) and speed (programmatic access to dedicated memory with local 

                                                      
14 The “JAVA_OPTS” runtime variable is set with the flag “-Xmx4096m” 
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response speeds, rather than communication across wider networks). However, for 

a non real-time audit application, a web application would still be appropriate. 

The code is available for download and execution at the repository referenced in 

the “Additional Resources” page at the front of this thesis. 

7.3. Presentation 

The guideline adherence output is obtained through the presentation pages of the 

web-enabled application. When selecting information, several choices are 

available, such as dataset, individual patient ID, and various options relating to 

event definition (e.g. threshold level, event hold-down size, etc) and options 

relating to display (e.g. “show default instance”, “select event ID”). 

7.3.1. Worked example 

Repeating the core concepts from section 6.3, the basic units of adherence are 

two – potentially interdependent – categories: degree of non-adherence (expressed 

as a percentage) and the duration of these levels of non-adherence (in minutes). 

The adherence levels detailed at each minute time-point of a patient’s stay are 

compiled into a set of contiguous “instances” of non-adherence. The final overall 

adherence information for a single patient stay is compiled from these instances of 

non-adherence and is presented in five sections. 

7.3.1.1. Minute-by-minute output 

Figure 7.2 (repeated from figure 6.4) shows the physiological read-out of a 

particular event in a patient’s stay. The guideline adherence level is overlaid on a 

separate series, detailing the quantitative level of non-adherence and listing the 

reasons contributing to that level at each time-point. The qualitative components 

of that non-adherence level can be viewed by clicking upon the individual time-

point on the non-adherence series. 
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Figure 7.2: Minute-by-minute output of guideline adherence of a single CPP EUSIG-event 
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7.3.1.2. Instances of non-adherence 

Figure 7.3 shows the total time spent at a particular (unique) level of non-

adherence in a patient’s stay, and the reasons contributing to that level.  

 

Figure 7.3: Aggregated instances of non-adherence (for worked example in section 6.3) 

7.3.1.3. Contributing reasons of non-adherence 

The reasons listed in the previous two sections are shown in a stacked bar-chart 

(figure 7.4) to visualise the contributing weight of each. 

 

Figure 7.4: Stacked bar chart visualising the relative contributions of each reason to each instance 

level (for worked example in section 6.3) 

7.3.1.4. Representative distribution of non-adherence instances 

The Interquartile range of each adherence aspect is measured and shown in figure 

7.5. The minimum, q1, mean/median, q3 and maximum quartiles are displayed 

(along with visualised box-plot in figure 7.6) of the levels of non-adherence, the 

durations of non-adherence, and two combinatorial metrics of the level and 

duration: “A” which equals (duration / level), and “B” which equals (duration * 



123 
 

level). Note that the large “default” instance has been removed from figures 7.5 

and 7.6 to show the variation in more detail. 

 

Figure 7.5: An interquartile range of non-adherence for worked example in section 6.3, with 

default instance removed 

 

Figure 7.6: Box-plot representation of the interquartile range of the “Duration” aspect shown in 

figure 7.5 

7.3.1.5. Severity chart 

In an attempt to apply real clinical interpretation to the guideline non-adherence 

output, the factors of non-adherence level and duration must be considered in 

combination. Therefore, as mentioned in section 7.3.1.4, two metrics are defined 

to indicate this relationship: 

 Duration / Non-adherence (A) 

 Duration * Non-adherence (B) 

To represent this relationship visually, a severity chart is presented that plots both 

metrics (the mean values of the metrics for all the non-adherence instances) 

against each other (figure 7.7 for the worked example in section 6.3).  
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Figure 7.7: Mean values of the two metrics (A and B) plotted against each other in the severity 

chart 

The clinical analogue of these combinations is that if A is very high or very low, the 

severity occupies either of the two mid-range quadrants. If A tends to 1, then it is 

either in the least or most significant quadrants. To ascertain which of these latter 

quadrants the output occupies, B indicates either high (most significant) or low 

(least significant). The axes are calculated by taking the maximum and minimum 

values from the set of non-adherence instances output by this patient’s stay (the A 

metric normalised to lie between 0 and 1). The thresholds are calculated by taking 

the mid-point of the maximum absolute range of the two contributing factors – 

duration and non-adherence distance – for that patient. Refining where these 

thresholds should be placed would be follow-up work (discussed further in chapter 

11). This method of presentation has been drawn from the domains of business 

process modelling and risk analysis (Magic Quadrant, 2018) and is hoped to provide 
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a single point of useful, clinical interpretation (i.e. in one representation, how 

severe has the impact of guideline non-adherence been – high, low or mid-range) 

over the distributed output.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
15 Since the viva examination of this thesis, the rationale for the severity chart has changed to supporting a 
linear scale (measuring metric B only). See Appendix F.2 for further details. 
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8. Evaluation 

Chapter summary 

This chapter details the methods and results of four evaluations, which were 

conducted to assess the performance of the framework against key clinical 

aspects. These included:  

 A performance test of the framework’s primary functions 

 An evaluation of annotation timings on typical ICU datasets 

 An evaluation of the framework with contextual domain expert information 

 An investigation into the possible relationship between the adherence 

output and patient outcome 

Framework function performance – the individual components of the BTF 

guidelines that contribute to the overall adherence output were tested in this 

section. Two tests were run to confirm the contribution of two general aspects of 

the system:  

1) Whether the association of a treatment annotation with a EUSIG-event (within 

or outside a set time-window) can provide adherence information. 

2) Whether a breach of a limit on the number of drug administrations can provide 

adherence information. 

A further three tests were run to confirm the individual aspects of each separate 

monitoring-threshold guideline: 

1) Whether the effect of age on the BPs guideline can be detected. 

2) Whether the effect of mass-lesion/diffuse injury presence on the ICP guideline 

can be detected. 

3) Whether the effect of pressor/fluid load balance on the CPP guideline can be 

detected. 

The results of all the unit tests confirmed expected guideline adherence 

information. 

Evaluation of annotation timing - a study was conducted to investigate the 

accuracy of treatment annotation timing. A set of three Traumatic Brain Injury 
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(TBI) and five Sub-Arachnoid Haemhorrage (SAH) patients with annotation 

information recorded by a live observer were compared to the corresponding 

physiological information produced for them from the local bedside ICCA system. 

The distances from the “live” annotations to the corresponding marker in the 

physiological output were recorded. 

This was repeated for a second set of patients (x3 TBI), which had treatment 

annotations produced by regular “non-live” annotations (e.g. at the end of an ICU 

ward shift). Similarly, the timing distances from the recorded annotations to the 

corresponding marker in the physiological output were recorded. 

The live annotations provided highly accurate timing information: in four 

patients, 24 events out of 32 were closely matched, with a mean distance of 3 

minutes between events and a median of 1 minute. The non-live timings had no 

events matched within the asserted time limit (15 minutes), and timing distances 

of hours when that time limit was removed. 

Evaluation with domain expert information – guideline adherence was 

calculated for three TBI patient datasets extracted from the ICCA bedside system. 

These cases were presented alongside clinical notes that outlined the different 

patient contexts. The results from the adherence information showed that Patient 

#1 indicated non-adherence from the type of drug administered, with a spike in 

non-adherence due to high dosage; patient #2 indicated high severity of guideline 

non-adherence; patient #3 indicated a low number of associated events and 

treatment annotations, resulting in a mid-range severity output. When cross-

referenced with patient context, all patients indicate required refinements of the 

framework. 

Evaluation of relationship to patient outcome – a unique feature of the Brain-IT 

dataset is the capture of 6-month GOSe score indicating patient outcome post-

injury and discharge. Using this information a logistic regression was performed 

between the guideline adherence information and the patient 6-month GOSe. No 

statistically significant relationship was found. 
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8.1. Unit testing 

This section outlines the steps taken to make sure that each aspect of the 

guideline adherence calculation performed correctly given the appropriate 

situation. Two tests were performed which evaluated two general aspects common 

to all three guidelines (treatment presence and dosage level), and a further three 

were performed to test the unique aspects of the individual guidelines (age effect 

on SBP, mass lesion/diffuse injury effect on ICP and pressor/fluid load on CPP). As 

the aim of these tests was to identify issues with the performance of the 

adherence algorithm, test patient data had been created. Section 8.3 details 

performance of the system on real-world (unedited) datasets. 

8.1.1. General tests 

Two tests were run to confirm two general features of the adherence framework. 

The two cases are the presence of a treatment annotation within the specified 

time-window, and a treatment annotation either not present or outside the time-

window. The anticipated outcome was variation due to the presence of the 

associated treatment (lower than default output) and variation due to a dosage 

considered too high (higher than surrounding context). Table 8.1 outlines the 

short-hand notation used for reporting the results: there are four possible states of 

two features (output #1 – the dosage – can either be H (high) or L (low), and output 

#2 – the presence – can either be I (in) or O (out)). Therefore, to test all use-cases, 

contexts of HI, HO, LI or LO are constructed and tested. 

Feature Notation 

Treatment dosage too high (over x2 doses) H (high) 

Treatment dosage within range L (low) 

Treatment inside time-window I (in) 

Treatment outside time-window O (out) 

Table 8.1: Notation indicating the use-case being tested 

8.1.1.1. Testing presence of annotation within and outside time-window 

For this particular evaluation, treatments were artificially added to the dataset. 

Table 8.2 shows the base-line parameters used for most of these tests (general and 
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ICP). Different events were required for the BPs and CPP unit tests, which are 

shown in tables 8.3-8.5. 

Feature Value 

Patient 15026161 

EUSIG definition ICPm with threshold of 15 mmHg 

Hold-down 5 mins 

Time-window 15 mins 

Event index 0 

Event start 01:58 on 2004-05-28 

Event end 02:55 on 2004-05-28 

Table 8.2: Base-line features used for unit tests 

Using these features, the LI case (dosage within range, treatment within time-

window) was tested as follows: 

 Add a treatment (any type) inside the time-window at 02:08 on 2004-05-28 

The result – shown in figure 8.1 – indicated a guideline adherence value of 12.6% 

until the end of the time window was reached, when the adherence level goes 

back to a default value of 36.2%. The 12.6% value came from the time taken to 

treatment, with type and nature being fully adherent in this case (and therefore 

contributing zero to the distance value). 
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Figure 8.1: Unit test #1 – a treatment annotation occurs within the 15-minute time window since 

event start 
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The LO case (dosage within range, treatment outside time-window) was tested as 

follows: 

 Add a treatment (any type) outside the time-window at 02:18 on 2004-05-

28 

The result – shown in figure 8.2 – indicated a guideline adherence value of 36.2%, 

which dropped to 20% when the treatment was encountered and went back to 

36.2% once the time-window had expired (i.e. 15 minutes later). Note: the flag 

doesn’t show for this annotation, which is a deliberate user-interface choice. 

The initial high output was due to no treatment being found within the time-

window since the EUSIG-event start. The drop to 20% indicated a treatment now 

encountered, but outside this initial time-window, which resulted in a higher 

adherence level than before. This reverted back to the default value as the time-

window expired and no further treatment was found. 
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Figure 8.2: Unit test #2 – a treatment annotation (not shown) occurs outside the time window 

since the event start 
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8.1.1.2. Testing dosage administered 

The LI case (dosage within range, treatment within time-window) had been tested 

in section 8.1.1.1. with the result shown in figure 8.1. This served as a benchmark 

against which to test the dosage/nature component of the output. 

The HI case (dosage too high, treatment(s) within time-window) is tested as 

follows: 

 Three treatment annotations (same type – in this case steroid therapy) are 

added within the time-window at 02:04 on 2004-05-28, 02:06 on 2004-05-

28, and 02:08 on 2004-05-28 

The result – shown in figure 8.3 – showed a stepped output of adherence with 

contiguous instances of 7.4%, 10%, 12.6% and finally the default value of 36.2%. 
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Figure 8.3: Unit test #3 – three treatment annotations within a time-window since the event start 
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The HO case (dosage too high, treatment(s) outside time-window) was tested as 

follows: 

 Three treatment annotations (same type – in this case steroid therapy) are 

added, two within the time-window, one outside, at 02:08 on 2004-05-28, 

02:13 on 2004-05-28, and 02:18 on 2004-05-28 

The result – shown in figure 8.4 – showed a stepped output of adherence with 

contiguous instances of 12.6%, 19.4%, 20% and finally the default value of 36.2%. 

Note that the annotation flag at 02:18 does not show. 
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Figure 8.4: Unit test #4 – three treatment annotations, two within the time window, the third (not 

shown) outside the time window 
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The first two unit tests illustrated the difference in impact of a treatment 

annotation which occurred within the prescribed time window and one that did 

not. The latter reduced the adherence level from the default value of 36.2%, but 

only to 20%, whereas the former is considered more “adherent” and therefore had 

a level of 12%. 

A similar difference in pattern occurred between tests #3 and #4: several stepped 

levels of adherence occurred after the first measurement (15 minutes after the 

event start), which were separated by the time taken from the event start to the 

administration of the treatment. This same stepped output was present in test #4, 

but the distances were greater due to the fact of the final treatment annotation 

being outside the time window. 

8.1.2. Unit tests for individual guidelines 

Each individual BTF guideline has a component unique to that guideline only. 

These can manifest in two ways: either in the choice of EUSIG definition to render 

the physiological output (e.g. depending on the patient age, a BPs EUSIG definition 

of 100 or 110 mmHg is selected) or in the individual distance evaluation at a 

specific time-point (e.g. the presence of a mass lesion in an ICP adherence 

reading, causing the adherence value to be different to when the lesion is not 

present). The following three tests (with two expected outcomes each) verify 

these unique components. 

8.1.2.1. Systolic Blood Pressure (BPs) 

The recommendations from the BTF guidelines on BPs manifest in the two 

physiological patterns, which result from the two EUSIG threshold definitions (100 

and 110 mmHg respectively). This was tested as follows: 

 Add a treatment (any type) inside the time-window after a BPs event 

occurring (>110 mmHg) at 02:22 on 2004-05-29 (event 1). Event detail 

shown in table 8.3. 

 Add a treatment (any type) inside the time-window after a BPs event 

occurring (>100 mmHg) at 09:02 on 2004-05-29 (event 0). Event detail 

shown in table 8.4. 
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Feature Value 

Patient 15026161 

EUSIG definition BPs with threshold of 110 mmHg 

Hold-down 5 mins 

Time-window 15 mins 

Event index 1 

Event start 02:13 on 2004-05-29 

Event end 03:17 on 2004-05-29 

Table 8.3: BPs definitions used for first BPs unit test 

Feature Value 

Patient 15026161 

EUSIG definition BPs with threshold of 100 mmHg 

Hold-down 5 mins 

Time-window 15 mins 

Event index 0 

Event start 08:54 on 2004-05-29 

Event end 09:22 on 2004-05-29 

Table 8.4: BPs definitions used for the second BPs unit test 

The results of these tests – shown in figures 8.5 and 8.6 – indicated adherence 

relating to the time taken to treatment and the default values resulting outside 

the time window. The adherence values thus showed the impact that age has upon 

the guideline adherence output (albeit in temporal output only). 
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Figure 8.5: Unit test of BPs (110 mmHg threshold) guideline 
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Figure 8.6: Unit test of BPs (100 mmHg threshold) guideline 
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8.1.2.2. Intracranial Pressure (ICP) 

The unique feature of the ICP guideline from the BTF is the presence or not of a 

mass lesion or diffuse injury. This was tested as follows: 

 Add a treatment (any type) inside the time-window at 02:08 on 2004-05-28 

(event 0) on patient 15026161, which has a mass lesion/diffuse injury. 

 Add a treatment (any type) inside the time-window at 02:08 on 2004-05-28 

(event 0) on patient 15026161 (inputs artificially modified) which has no 

mass lesion/diffuse injury (therefore the treatment was not necessarily 

merited). 

The results of these tests – shown in figures 8.7 and 8.8 – indicated the standard 

12.6% distance defaulting to 36.2% outside the time window, when the mass 

lesion/diffuse injury was present, as the treatment was merited in this case (figure 

8.8). When the mass lesion/diffuse was not present, the distance within the time 

window was 22.6%, larger as a warning that the treatment was not necessarily 

merited. 
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Figure 8.7: Repeat of (general) unit test #1, which shows ICPm distance within time-window in the 

presence of a diffuse injury 
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Figure 8.8: Repeat of (general) unit test #1, which shows ICPm distance within time-window 

without the presence of a diffuse injury 
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8.1.2.3. Cerebral Perfusion Pressure (CPP) 

The unique feature of the CPP guideline in the BTF is the choice between 

administration of pressors and fluids depending on the context of patient history 

(the relationship is inverse, so if the pressor-load is high, fluid is recommended 

and vice versa). This was tested as follows: 

 Add three treatments inside the time-window after CPP event 1 on patient 

15026161, x2 inotropes at 05:22 and 05:24 on 2004-05-28, and x1 of 

osmotic therapy at 05:26 on 2004-05-28. 

 Add three treatments inside the time-window after CPP event 1 on patient 

15026161, all inotropes at 05:22, 05:24 and 05:26 on 2004-05-28. 

Feature Value 

Patient 15026161 

EUSIG definition CPP with threshold of 50 mmHg 

Hold-down 5 mins 

Time-window 15 mins 

Event index 1 

Event start 05:17 on 2004-05-28 

Event end 06:04 on 2004-05-28 

Table 8.5: CPP definitions used for all CPP unit tests 

Note that because the treatments were all within the time-window of this event 

and that the maximum dosage was three, then the other factors (time-taken and 

nature) were controlled and only the type difference was being tested. 

The results of these tests – shown in figures 8.9 and 8.10 – were contiguous 

instances of adherence at 16%, 8.6%, 11.4% and finally reverting to the default 

value of 36.2% in figure 8.9.  

In figure 8.10, where pressors were administered despite the pressor-load already 

being high, gave contiguous instances of 16%, 18.6%, 11.4% and the default value 

of 36.2%. The middle level was higher due to this extra (non-recommended) 

administration of pressors. 
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Figure 8.9: Unit test #6 – testing the pressor/fluid balance in the CPP guideline (x2 inotropes and 

x1 osmotic) 
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Figure 8.10: Unit test #7 – testing the pressor/fluid balance in the CPP guideline (x3 inotropes) 
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There is another component of the CPP guideline, not tested here, which is the 

value of CPPopt. This is dependent on the status of the patient’s cerebral 

autoregulation and has an impact on the EUSIG definition of the CPP physiological 

reading (similar to the difference in BPs threshold definition dependent on age). 

This will be future work for the refinement of this system16. 

8.1.3. Discussion 

These unit tests have shown the output that results when individual adherence 

circumstances are input to the system. Two output patterns predominate: small 

(but significant) variation when a treatment is encountered within the time-

window since the start of a EUSIG-event, and much larger periods of “default” 

adherence levels when a treatment is not encountered. This binary pattern is 

expected but underlines the importance of accurate and plentiful treatment 

annotations, both for the best performance of this system, and for accurate data 

capture in general. 

The variation that occurs within the time-window output should be the initial main 

focus of adherence measurement or guideline improvement. The adherence levels 

presented above indicate a “first cut” of the output given the assigned weightings 

attached to the reasons for non-adherence, and future work would include the 

refinement of these weightings in order to better understand the clinical priorities 

in a given moment (additional insight into this can be found in section 8.3 using 

the ICCA dataset). 

 

 

 

 

 

 

                                                      
16 The methods and API for this was implemented in the code but relied upon a moving calculation of the 
Pearson correlation coefficient, which was not providing suitable output by the time of thesis submission. 
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8.2. Evaluation of treatment annotations timings 

An early finding of this thesis was that the accuracy of treatment annotations, in 

particular the timing, was one of the most important aspects in obtaining reliable 

adherence output. This section describes a validation study that was conducted to 

establish how accurate clinical annotations are, in a real and representative 

clinical environment. 

8.2.1. Study description and method 

This validation study was conducted using a neuro-intensive ICU dataset that was 

compiled for a previous project, attempting to improve arterial hypotension in ICU 

patients by detecting and analysing artefacts in physiological data streams (Lal et 

al., 2015). In order to identify the artefacts, a live observer had been required to 

monitor the management of patients in the ICU and make annotations when a 

clinically relevant action or event occurred. This generated a unique neurological 

ICU dataset which included “live” treatment annotations. 

This set of “live” annotations was used to measure the difference in timing from 

the annotation (manually recorded) to the corresponding marker in the 

physiological data readouts for a given patient (e.g. ABP drops to near zero, or 

registers volatile output, when a blood sample is taken). The same process was 

repeated for a dataset that had been annotated in a “normal” ICU environment 

(“non-live”), to attempt to find an estimate of the difference between annotation 

timings in that ideal situation, and those in regular, resource-limited ones. 

Therefore, the two specific research questions that were considered for this study 

were: 

1. Given ideal conditions (a dedicated research nurse standing at the bed-space 

annotating events as they occur – “live”) - what is the average/range of timing 

differences between the event annotation time and the actual event as 

measured from the physiological data? 

2. Given “real-world” conditions where the normal bed-side nurse is annotating 

events when they can (“non-live”) - how does the difference in timing 

(average/range) compare against the “live” ideal conditions? 
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To investigate these questions, a list of annotations consisting of treatments that 

could be clearly identified on a physiological output (e.g. BP sampling, BP 

transducer goes to zero, patient is turned/moved, etc) was drawn up. The term 

used to describe these events is a ‘zero-drop event’. Both datasets (live and non-

live annotations) were then examined and occurrences of these treatment 

annotations in the physiological output identified and compared against the 

manually observed and recorded events. The average timings between both sets of 

events (annotation to physiological event) was noted. 

8.2.2. Results 

In the “live” dataset, there were 4 patients with a total of 32 “zero-drop” events. 

In the “non-live” dataset, there were 3 patients with a total of 27 “zero-drop” 

events. 

The time distance between the zero-drop in the physiological data and the 

treatment annotation was limited to 15 minutes (considered a reasonable time to 

assert that the two recordings are the same physical event). Table 8.6 shows the 

live dataset events in this group (24 out of 32). No matches were found in the non-

live dataset (0 out of 27). 

Patient ID Timestamp Annotation Zero-drop 

start 

Distance 

(mins) 

CSO_0083 30/10/2014 

21:25 

Blood sample 30/10/2014 

21:26 

1 

CSO_0083 31/10/2014 

00:08 

Blood sample 31/10/2014 

00:09 

1 

CSO_0083 31/10/2014 

06:04 

Blood sample 31/10/2014 

06:07 

3 

CSO_0083 31/10/2014 

06:37 

Zero ABP reading 31/10/2014 

06:51 

11 

CSO_0083 31/10/2014 

18:27 

Zero ABP reading 31/10/2014 

18:39 

12 

CSO_0083 31/10/2014 

18:37 

Blood sample 31/10/2014 

18:39 

2 
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CSO_0083 31/10/2014 

20:49 

Zero ABP reading 31/10/2014 

20:50 

1 

CSO_0083 01/11/2014 

06:25 

Blood sample 01/11/2014 

06:37 

12 

CSO_0083 01/11/2014 

06:37 

Zero ABP reading 01/11/2014 

06:38 

1 

CSO_0083 01/11/2014 

07:00 

Zero ABP reading 01/11/2014 

07:01 

1 

CSO_0086 04/11/2014 

07:46 

Zero ABP reading 04/11/2014 

07:47 

1 

CSO_0086 04/11/2014 

14:35 

Blood sample 04/11/2014 

14:36 

1 

CSO_0086 03/11/2014 

08:50 

Blood sample 03/11/2014 

08:51 

1 

CSO_0086 03/11/2014 

16:42 

Blood sample 03/11/2014 

16:43 

1 

CSO_0086 04/11/2014 

06:21 

Blood sample 04/11/2014 

06:22 

1 

CSO_0112 27/11/2014 

14:45 

Zero ABP reading 27/11/2014 

14:59 

14 

CSO_0112 27/11/2014 

14:57 

Blood sample 27/11/2014 

14:59 

2 

CSO_0115 01/12/2014 

19:01 

Blood sample 01/12/2014 

19:02 

1 

CSO_0115 02/12/2014 

02:09 

Blood sample 02/12/2014 

02:10 

1 

CSO_0115 02/12/2014 

06:22 

Blood sample 02/12/2014 

06:23 

1 

CSO_0115 02/12/2014 

20:53 

Blood sample 02/12/2014 

20:54 

1 

CSO_0115 03/12/2014 

00:02 

Blood sample 03/12/2014 

00:03 

1 
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CSO_0115 03/12/2014 

04:18 

Blood sample 03/12/2014 

04:19 

1 

CSO_0115 03/12/2014 

06:41 

Blood sample 03/12/2014 

06:43 

1 

Table 8.6: Live dataset events 

Total zero-drop events with no corresponding annotation found were: 27 (non-

live), 8 (live). 

Table 8.7 shows the average time distance (mean and median) for recorded 

annotation time to the nearest event detected in the live physiological dataset. 

Dataset Annotation 

number 

Mean distance 

(mins) 

Median distance 

(mins) 

Live 24 3 1 

Table 8.7: Live average time distance for all recorded zero-drop events to first-encountered 
annotation 

8.2.3. Discussion 

8.2.3.1. Data processing issues 

As the study concerned real-world data, there were several issues encountered 

during processing: 

 The “zero drops” were not always easy to identify. For instance, there had 

to be a robust definition of “zero”, as many machine outputs give readings 

of high volatility, rather than a simple disconnected value (e.g. high 

negative values, or “close to” zero). 

 Similar to the problem of association of events with treatments, it is not 

always clear which zero drop relates to which annotation. The 

correspondence in the live annotated dataset was so high that this problem 

was minimal in that dataset but became much more of an issue in the non-

live dataset (to the point where clinical sense of the output was effectively 

lost). A mitigation for this was to set the time-window cap mentioned 

previously (in this case 15 minutes). 

 The physiological data is provided in waveform format, thus gives readings 

per milliseconds. This was originally condensed to minute-by-minute (similar 
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to the resolution of the Brain-IT dataset) but it became obvious that zero-

drop events often have a duration lower than a minute, and the resolution 

was raised to second-by-second. This sampling frequency was deemed to be 

the most relevant to the problem space (e.g. blood sampling would never 

take less than 1 second), but the choice of resolution may still require 

future consideration. 

8.2.3.2. Interpretation 

The goal of this study was to use a unique feature of the CSO neuro-intensive 

dataset, to provide some additional insight into the timing accuracy of treatment 

annotations in a neurological ICU. 

The results show that when observed in real-time, the accuracy of timing does 

correspond well to the physical output of the physiological data at the bedside. 

However, the comparison against the non-live dataset was inconclusive. With no 

matching annotations at all, it is possible that the discrepancy between manual 

recording of annotations and the physiological output was so great, that none 

showed in this small analysis. To clarify, it should be noted that even though these 

annotations are performed at the end of a ward shift, the distance is from the 

time recorded in the annotation (at some point during the ward shift), and not the 

actual time of recording. Therefore, the discrepancies occur due to the mis-

remembering of times, rather than a systematic error. As this analysis should 

theoretically match between hours, it is unrealistic to think that these 

discrepancies are all due to this issue (or that shift nurses would get the timings so 

wrong), therefore the analysis should be performed again to verify this. 

Another possibility in this result is the approach to annotations in this particular 

sample set: it may be the case the events selected are recorded once per ward 

shift by agreement between staff. 

The high accuracy correspondence of the live observer is obviously very useful but 

also inefficient when considering the resources required (24 - high-skill - man-

hours per day). The more immediate benefits would be to pursue similar 

accuracies through automated means, such as the automated tracking of drug 
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infusions, ventilation application or thermal cooling through “smart” blankets and 

beds. 

A comparative timing measure was unable to be obtained in this study, so an 

understanding of the “average” timing errors was therefore not possible. However, 

if the study were repeated and a value obtained for the non-live dataset, this 

could be incorporated into the confidence with which an adherence pattern 

obtained from the framework can be interpreted. 
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8.3. Evaluation of framework with domain experts 

The purpose of this section was to verify the framework against contextual 

information from clinical domain experts, who work in neurological ICUs and would 

be the target users of the system in its production form. A dataset collected from 

the Philips ICCA (IntelliSpace Critical Care and Anaesthesia) system was chosen for 

this evaluation as it is a popular bedside patient management software commonly 

used in intensive care units in the UK and is familiar to the domain experts. 

8.3.1. Method 

Three TBI patients were selected for analysis by the domain experts, with the 

following data characteristics:  

 A prevalence of EUSIG events in the ICP output 

 Active management of ICP required 

 Two patients (#1 and #3) required non-intervention due to the nature of the 

ICP events 

 One patient (#2) had one large refractory event throughout the course of 

their stay 

Clinical management of the patients was carried out in accordance with a number 

of relevant treatment protocols and guidelines (not just BTF) which deliberately 

tested the ability of this system to provide useful guidance despite competing 

clinical priorities and possible co-morbidities. 

As already mentioned in section 7.1.3, the physiological data structure of the ICP 

data in the ICCA dataset was millisecond wave-form, down-sampled to minute-by-

minute for this evaluation. A code modification of the system was required in the 

“TreatmentAnalysis” module to perform this conversion. This was achieved by 

averaging the contributing millisecond readings across the corresponding minute, 

which would incur some loss of precision in the recorded variation across that 

minute (considered acceptable at this resolution). The treatment data was 

primarily ventilation support and drug administration, obtained by manual inputs 

to, and then drawn from, the integrated ICCA system. 

The results of guideline adherence output from these patients are presented in 

three sections: 
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1) An audit of overall counts of EUSIG-events and treatment annotations 

2) Overall adherence measures for all three patients, according to the 

presentation features described in section 7.3.1, including non-

adherence instance tables; a chart of contributing reasons; an 

interquartile range of instances; a severity chart 

3) Individual instances of non-adherence shown in a time-varying chart 

(section 7.3.1.1). 

The detailed clinical notes for the individual patients were as follows17: 

 Patient 1 - “Infusions of propofol, morphine, midazolam, nor-adrenaline; 

Repeat CT scan on 12/07/2017 - decision to stop sedation, disconnect ICP 

and assess; Repeat CT scan performed - no surgical options; Decision that as 

ICP not controlled by medical management - remove ICP monitor, stop 

sedation and assess” 

 Patient 2 - “ICP consistently >20, overall upward trajectory of ICP (despite 

infusions of Propofol 2% 400 mg/hr; Morphine 3 mg/hr; Midazolam 13 

mg/hr 11:00; Cisatracurium 30 mg/hr; Thiopentone 125 mg/hr 14:00; Nor-

adrenaline 0.1 mg/hr 13:34 - increased to 0.2 mg/hr at 14:00” 

 Patient 3 - “ICP > 20; Associated with rise in ETCO2; Optimisation of 

ventilation by increasing pressure support (documented at 0900 

15/12/2016); Decrease in CO2 leads to decrease in ICP” [Therefore non-

intervention was recommended as the ICP increase was expected to be 

transient] 

8.3.2. Audit: event and treatment counts 

The summary numbers in table 8.8 were compiled from the database once the 

ICCA sample dataset had been processed into the “treatment_profiles” database. 

Total EUSIG event number: 21 

 

 

                                                      
17 These are reproduced verbatim except the square brackets in patient 3, which were added as a separate 
note by one of the clinicians to provide added clarity. 
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Threshold value (mmHg) Hold-down value Count 

10 20 3 

15 20 10 

20 20 2 

25 20 3 

30 20 3 

Table 8.8: Count of individual ICPm EUSIG events from the ICCA sample dataset 

Total treatment annotation number: 1721 

Treatment Count 

Ventilation 406 

Propofol 119 

Noradrenaline 234 

Co-Amoxiclav 12 

Morphine 388 

Potassium Chloride 37 

Carbomer Ointment 13 

Hydrocortisone 1 

Salbutamol 28 

Magnesium Sulphate 11 

Calcium Gluconate 2 

Ranitidine 13 

Omeprazole 13 

Midazolam 55 

Mannitol 1 

Glycophos 75 

Metoclopramide 14 

Benzylpenicillin 25 

Temocillin 8 

Amoxicillin 12 

Paracetamol 54 

Lactulose 19 

Senna 19 

Phosphate-Sandoz 21 

Carbocisteine 27 
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Furosemide 1 

Metronidazole 27 

Clindamycin 27 

Laxido PO/NG 7 

Enoxaparin 3 

Ceftriaxone 5 

Sando-K 17 

Meropenem 18 

Clotrimazole 9 

Table 8.9: ICCA treatment counts 

For each time-window value, 8 EUSIG events were associated with treatments, 

which was 80% of the most numerous definition (an ICP threshold value of 15 

mmHg for a hold-down time of 20 minutes, which was the only hold-down 

definition available in this sample set – see discussion below). This suggests that 

the count of annotations was high relative to the physiological output (c.f. to the 

numbers presented for the older Brain-IT dataset in chapter 9). 

8.3.3. Overall adherence measures 

For the three patients the results are presented as: 

 Table of non-adherence instances 

 Charts of contributing reasons 

 Interquartile range table and box-plots (“duration with default state 

removed” as example) 

 Severity charts 

8.3.3.1. Patient #1 

Most instances for patient #1 are variation due to the time to treatment and a 

contributing factor of incorrect type. However, for two instances, the 

dosage/nature is a contributing factor as well. The majority of the non-adherence 

is spent in the default state (36.2%) and a lower, but similar value of 30%. The 

distribution appears to be spread evenly through all four factors 
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Figure 8.11: Instances of non-adherence for Patient #1 

 

Figure 8.12: Reasons contributing to the different instances of non-adherence for Patient #1 

 

Figure 8.13: Interquartile range table for instances of non-adherence for Patient #1 with the 

default state (36.2%) removed 
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Figure 8.14: Box-plot of the duration aspect of non-adherence 
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Figure 8.15: Severity chart of the non-adherence instances for Patient #1 

8.3.3.2. Patient #2 

In this case there is only one instance for the whole patient stay, which is the default 

instance (36.2%). 

 

Figure 8.16: Table of instances for patient #2 
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Figure 8.17: Contributing reason to non-adherence for Patient #2 

 

Figure 8.18: Interquartile range table for Patient #2 

 

Figure 8.19: Boxplot of interquartile range of Duration of patient #2 
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Figure 8.20: Severity chart for Patient #2 

8.3.3.3. Patient #3 

 

Figure 8.21: Table of instances for Patient #3, with the default instance (36.2%) removed 
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Figure 8.22: Contributing reasons for Patient #3 

 

Figure 8.23: Interquartile ranges for Patient #3 

 



164 
 

Figure 8.24: Boxplot visualisation of the Duration aspect of Patient #3 

 

Figure 8.25: Severity chart of Patient #3 

8.3.4. Individual charts of adherence 

 

Figure 8.26: Summary criteria for event 0 with patient #1 
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Figure 8.27: Timeline of event 0 ICPm 
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Figure 8.28: Summary criteria for event 0 in patient #3 
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Figure 8.29: Timeline of event 0, patient #3 
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8.3.5. Discussion 

Some general issues identified in this evaluation were the presence of EUSIG-

events that only had hold-down definitions of 20 minutes (i.e. no events were 

detected with hold-down values lower than 20 mins). It is uncertain whether this 

was an issue of data processing or if this was a clinician choice (no action unless 

event held-down for 20 minutes) that manifested in the data. It would be 

anticipated that at least some events would be detected that were sub-sets of that 

maximum value (e.g. 5, 10 and 15 minutes), therefore this needs to be further 

investigated and confirmed that these are in fact the only physiological events 

detected. 

Another issue was the categorisation of treatments. The direct drug name was 

listed in the treatment tables of the framework database, which can either be 

categorised according to the Brain-IT listing or can be individually incorporated 

into the framework (e.g. the drug name specifically listed in the code where 

pressors/fluids are captured to evaluate the type comparison in the CPP 

guideline). This categorisation would specify the measurement of adherence 

output more closely. 

Patient 1 – The guideline adherence value on patient 1, event 0 (figure 8.27), 

largely flips between 30% and 36.2% based on whether it has recently encountered 

a treatment or not. From the overall adherence information for patient 1 (figure 

8.11), it can be seen that the drug type contributes consistently to all non-

adherence instances with this patient – this is believed to be because the 

treatment data has been categorised under the individual drug names rather than 

into drug family types, resulting in the fact that the type is always returned as 

“not recommended”. Therefore, when a treatment is encountered the base level 

of adherence is generally 30% (composed of a type issue, plus the treatment being 

outside a given time window). This could be a reasonable representation of the 

contextual statement “ICP not controlled by medical management” for this patient 

(in the associated clinical notes). 

Patient 2 – this patient has no treatment associations. The output is believed to be 

due to the refractory nature of the ICP increase (mentioned in the patient notes). 

This failure to associate annotations with a single, large EUSIG-event comes back 
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to the issue of time-window definition (mentioned in section 8.1). In this case, as 

the physiological output never returns to a “sub-threshold” position, the pattern 

matching algorithm is never reset and no treatment is associated even though 

there are many recorded. This should obviously be refined as an edge-case of the 

system. 

The overall adherence output also reflects the lack of variation: one instance only 

(figure 8.16), one contributing reason (figure 8.17), and a highly skewed 

interquartile range output (figures 8.18 and 8.19). The severity chart (figure 8.20) 

shows the number being as severe as possible. This is indeed a severe case – 

however the severity is flagged by the (incorrect) reason of lack of treatments, 

rather than the escalating patient context (refractory ICP event) which is not 

addressed by the BTF guidelines therefore not captured in this system. 

Patient 3 – The number of treatments for patient 3 is much lower than the other 

two, and therefore the default instance of non-adherence is larger (figures 8.21 

and 8.22 from overall adherence information for patient 3). This leads to a severity 

value that occurs around the middle of the chart, an outcome which suggests that 

a small perturbation could have large effects on the considered severity (i.e. it 

would move it across the border between quadrants, though this measure is 

somewhat subjective). The main issue with the outputs from patient 3 is that when 

it is cross-referenced back to the original patient notes – which specified that the 

ICP EUSIG-events in this patient were occurring transiently and were apparently 

linked to the rise and fall of the patient’s ETCO2 – the consistent management 

position was to take no action. The guideline adherence framework fails to capture 

this nuance when presenting output, which again leads to an over-statement of the 

lack of annotations. However, the variation when a ventilation treatment is 

encountered captures at least part of this clinical management process. 
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8.4. Evaluation of framework against patient outcome (GOS) 

The Glasgow Outcome Score (GOS) provides an insight into the status of a patient 

six months after the initial brain injury and is on an 8-point scale (GOS-e or 

“extended” from the original 5-point GOS) as shown in table 8.10. 

Score / Label Description 

1 – Death Severe injury or death without recovery of 

consciousness 

2 – Persistent vegetative 

state 

Severe damage with prolonged state of 

unresponsiveness and a lack of higher mental functions 

3 – Lower severe 

disability 

4 – Upper severe 

disability 

Severe injury with permanent need for help with daily 

living 

5 – Lower moderate 

disability 

6 – Upper moderate 

disability 

No need for assistance in everyday life, employment is 

possible but may require special equipment 

7 – Lower good recovery 

8 – Upper good recovery 

Light damage with minor neurological and psychological 

deficits 

Table 8.10: Extended Glasgow Outcome Score (GOS-e) and label, with the associated description 

The ordinality of this score can be used in different ways, but for the purposes of 

understanding the relationship to guideline distance/duration, scores 1-4 are 

classified as “poor” (or value “1”), and scores 5-8 are classified as “good” (or 

value “0”). Therefore, given a set of guideline non-adherence instances for 

different time durations, we can assess whether there is any correlation with the 

outcome of a patient. Examples of similar “adjusted” assessments of other 

variables’ influence on patient outcome from traumatic brain injury can be found 

in (Edwards et al., 2005) and (Güiza et al., 2013). 

8.4.1. Materials and Method 

The Brain-IT core data-set is a repository of 262 patients drawn from specialist 

neurological centres around Europe, collected with a view to enabling post-hoc 

analyses (Shaw et al., 2009). A comprehensive collection of TBI data with 
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physiological, treatment, laboratory, surgery and other clinical events, with a 

particular focus on the management of ICP and CPP, it forms a detailed 

retrospective view of physiological and treatment data that is well suited to 

analyses such as the research work in this thesis. This is used for this statistical 

evaluation due to the presence of 6-month GOSe information for each patient in 

this cohort. 

The steps towards understanding the influence of guideline deviation and 

correcting for the influence of known TBI factors, are: 

 Create a “null” model – this is an “average” model, effectively a 50:50 

guess on what the GOS will be in 6 months. It is hoped that information 

about guideline deviations will be at least better than this. 

 Create a set of “unadjusted” models – these are univariate models that 

show the relationship between the GOS and the covariates (in this case 

guideline non-adherence distance and duration) and with the known factors 

influencing TBI outcomes (Edwards et al., 2005). These factors are: age, 

GCSm, pupil reactivity, major extra-cranial injury, and CT scan availability. 

 Create an “adjusted” model – this is a model including all the unadjusted 

co-variates that may have significance in explaining the model error (i.e. 

have a p-value less than 0.1).  

 Check the variance between the models – this is a method to test if a 

change has had a positive effect on the overall nature of the model, by 

comparing the change in variance between the models. 

To implement this, the output of all instances of guideline deviation (each 

instance containing a duration and a distance of deviation from the ideal 

guideline), are written to a spreadsheet. The first three models use a binomial 

logistic regression and the final comparison uses the “analysis of variance” 

(ANOVA) methodology. 

A further consideration is the possibility that the two covariates – distance and 

duration of guideline adherence – are related. Therefore, an analysis of variance 

between the two unadjusted models is run as well. 
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8.4.2. Results 

To run the logistic regression, the instance data is loaded, split between 

training/test (80/20 to optimise the variance between both performance and 

prediction), and fitted using the glm (generalized linear model) package in R, run 

on Ubuntu Xenial (16.04). 

The duration and distance measures were repeat measures so an average of both 

was used for each patient line. The following column headers were used, with 249 

instances (one line per patient, 13 removed due to lack of output, and Patient ID 

removed as it was an index only): 

 GOSe 

 Average duration of non-adherence 

 Average non-adherence level 

 Age 

 GCS motor 

 Left pupil reaction 

 Right pupil reaction 

 Facial injury 

The availability of CT scan was not individually identified in the Brain-IT dataset so 

was not included on the list. Facial injury was the closest single data point to 

capture “extra-cranial injury”, which is the actual indicator from the 

CRASH/IMPACT studies. 

8.4.2.1. Null model 

The null model was constructed by running a regression against the mean of the 

GOS alone. 

Model: GOS ~ 1 

Call: glm(formula = GOS ~ 1, family = binomial(link = "logit"),data = train) 
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Min 1Q Median 3Q Max 

-1.238 -1.238 1.118 1.118 1.118 

Table 8.11: Deviance residuals of the null model 

 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) 0.1402 0.1418 0.989 0.323 

Table 8.12: Coefficients of the null model 

8.4.2.2. Unadjusted models – guideline adherence 

The unadjusted model for adherence distance was created by running a regression 

against the GOS using the average of all instances for each patient. The intercept 

had a p-value < 0.1. 

Model: GOS ~ Avg.distance 

Call: glm(formula = GOS ~ Avg.distance, family = binomial(link = "logit"),data = train) 

Min 1Q Median 3Q Max 

-1.5656 -1.2091 0.8337 1.1488 1.1820 

Table 8.13: Deviance residuals of the unadjusted distance model 

 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) 0.87802 0.49460 1.775 0.0759 

Avg.distance -0.02455 0.01561 -1.572 0.1158 

Table 8.14: Coefficients of the unadjusted distance model 

The unadjusted model for adherence duration was created by running a regression 

against the GOS using the average of all instances for each patient. 

Model: GOS ~ Avg.duration 

Call: glm(formula = GOS ~ Avg.duration, family = binomial(link = "logit"),data = train) 

Min 1Q Median 3Q Max 

-1.4933 -1.2180 0.9905 1.1393 1.2020 

Table 8.15: Deviance residuals of the unadjusted duration model 
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 Estimate Std. Error z value Pr (>|z|) 

(Intercept) -0.057743 0.219086 -0.264 0.792 

Avg.duration 0.003917 0.003349 1.170 0.242 

Table 8.16: Coefficients of the unadjusted duration model 

8.4.2.3. Unadjusted models – known TBI predictors 

The unadjusted model for age was created by running a regression against the GOS 

of the patients. The intercept had a p-value < 0.05 and Age had a p-value < 0.01. 

Model: GOS ~ Age 

Call: glm(formula = GOS ~ Age, family = binomial(link = "logit"),data = train) 

Min 1Q Median 3Q Max 

-1.6202 -1.1608 0.8055 1.1335 1.4811 

Table 8.17: Deviance residuals of the unadjusted age model 

 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) -0.667656 0.315721 -2.115 0.03446 

Age 0.022767 0.008023 2.838 0.00454 

Table 8.18: Coefficients of the unadjusted age model 

The unadjusted model for GCSm was created by running a regression against the 

GOS of the patients. The intercept had a p-value < 0.05 and GCSm had a p-value < 

0.1. 

Model: GOS ~ GCSm 

Call: glm(formula = GOS ~ NSH_Adm_GCS_Motor, family = binomial(link = "logit"),data = train) 

Min 1Q Median 3Q Max 

-1.3974 -1.1559 0.9723 1.1094 1.3292 

Table 8.19: Deviance residuals of the unadjusted GCSm model 

 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) 0.67435 0.32989 2.044 0.0409 

NSH_Adm_GCS_Motor -0.17072 0.08922 -1.914 0.0557 

Table 8.20: Coefficients of the unadjusted GCSm model 
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The unadjusted model for left pupil reaction was created by running a regression 

against the GOS of the patients. Left pupil reactivity had a p-value < 0.01. 

Model: GOS ~ Left pupil reactivity 

Call: glm(formula = GOS ~ NSH_Adm_Left_Pupil_Reaction, family = binomial(link = "logit"),data = 

train) 

Min 1Q Median 3Q Max 

-1.6651 -1.1144 0.7585 1.2417 1.2417 

Table 8.21: Deviance residuals of the unadjusted left pupil reaction model 

 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) -0.1499 0.1654 -0.906 0.36472 

NSH_Adm_Left_Pupil_Reaction 1.2486 0.4189 2.980 0.00288 

Table 8.22: Coefficients of the unadjusted left pupil reaction model 

The unadjusted model for right pupil reaction was created by running a regression 

against the GOS of the patients. Right pupil reactivity had a p-value < 0.01. 

Model: GOS ~ Right pupil reactivity 

Call: glm(formula = GOS ~ NSH_Adm_Right_Pupil_Reaction, family = binomial(link = "logit"),data = 

train) 

Min 1Q Median 3Q Max 

-1.6459 -1.1272 0.7726 1.2285 1.2285 

Table 8.23: Deviance residuals of the unadjusted right pupil reaction model 

 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) -0.1193 0.1630 -0.732 0.46418 

NSH_Adm_Right_Pupil_Reaction 1.1754 0.4417 2.661 0.00778 

Table 8.24: Coefficients of the unadjusted right pupil reaction model 

The unadjusted model for facial injury was created by running a regression against 

the GOS of the patients. The intercept had a p-value < 0.1. 

Model: GOS ~ Facial injury 
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Call: glm(formula = GOS ~ Injury_Facial, family = binomial(link = "logit"),data = train) 

Min 1Q Median 3Q Max 

-1.6006 -1.2055 0.8067 1.1495 1.1495 

Table 8.25: Deviance residuals of the unadjusted facial injury model 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) 0.95551 0.52623 1.816 0.0694 

Injury_Facial -0.01779 0.01093 -1.627 0.1037 

Table 8.26: Coefficients of the unadjusted facial injury model 

8.4.2.4. Adjusted models 

The model for adherence duration and distance (combined) was created by running 

a regression against the GOS using the average of all instances for each patient and 

testing for the relationship between the two parameters. The intercept had a p-

value < 0.1 and the Avg.distance contribution had a p-value < 0.05. 

Model: GOS ~ Avg.duration * Avg.distance 

Call: glm(formula = GOS ~ Avg.duration * Avg.distance, family = binomial(link = "logit"),data = 

train) 

Min 1Q Median 3Q Max 

-1.7507 -1.1708 0.7915 1.1707 1.3059 

Table 8.27: Deviance residuals of the distance/duration model 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) 1.0001521 0.5224688 1.914 0.0556 

Avg.distance -0.0397791 0.0176229 -2.257 0.0240 

Avg.duration -0.0178465 0.0311498 -0.573 0.5667 

Avg.distance:Avg.duration 0.0007396 0.0009062 0.816 0.4144 

Table 8.28: Coefficients of the distance/duration model 

The model for all known TBI indicators (referred to here as the CRASH/IMPACT 

model) was created by running a regression against the GOS using all five 

covariates listed above. GCSm and left pupil reaction had a p-value < 0.05 and Age 

had a p-value < 0.01. 

Model: GOS ~ CRASH/IMPACT model (known TBI indicators) 
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Call: glm(formula = GOS ~ Age + NSH_Adm_GCS_Motor + NSH_Adm_Left_Pupil_Reaction +   

NSH_Adm_Right_Pupil_Reaction + Injury_Facial, family = binomial(link = "logit"), data = train) 

in 1Q Median 3Q Max 

-1.98821 -1.02000 0.00016 1.05666 1.75047 

Table 8.29: Deviance residuals of the CRASH/IMPACT model 

 Estimate Std. Error z value Pr (>|z|) 

(Intercept) 16.65411 1400.33243 0.012 0.99051 

Age 0.03226 0.01113 2.898 0.00376 

NSH_Adm_GCS_Motor -0.25987 0.10644 -2.441 0.01463 

NSH_Adm_Left_Pupil_Reaction 1.47781 0.75293 1.963 0.04968 

NSH_Adm_Right_Pupil_Reaction -0.41107 0.80073 -0.513 0.60770 

Injury_Facial -0.34513 28.00665 -0.012 0.99017 

Table 8.30: Coefficients of the CRASH/IMPACT model 

The model for the CRASH/IMPACT model with guideline adherence information 

added was created by running a regression against the GOS using all five covariates 

listed above and the duration/distance covariates. Age and GCSm had p-values < 

0.01, distance/duration had p-values < 0.05 and left pupil reaction and distance * 

duration had p-values < 0.1. 

Model: GOS ~ CRASH/IMPACT model with guideline adherence 

Call: glm(formula = GOS ~ Age + NSH_Adm_GCS_Motor + NSH_Adm_Left_Pupil_Reaction + 

NSH_Adm_Right_Pupil_Reaction + Injury_Facial + Avg.distance * Avg.duration, family = 

binomial(link = "logit"), data = train) 

Min 1Q Median 3Q Max 

-1.72050 -0.93226 0.00015 0.93286 1.98057 

Table 8.31: Deviance residuals of the CRASH/IMPACT model 
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 Estimate Std. Error z value Pr (>|z|) 

(Intercept) 1.641e+01 1.397e+03 0.012 0.99063 

Age 4.017e-02 1.225e-02 3.280 0.00104 

NSH_Adm_GCS_Motor -3.090e-01 1.129e-01 -2.737 0.00620 

NSH_Adm_Left_Pupil_Reaction 1.384e+00 8.039e-01 1.722 0.08506 

NSH_Adm_Right_Pupil_Reaction -1.441e-01 8.473e-01 -0.170 0.86495 

Injury_Facial -5.748e-01 2.795e+01 -0.021 0.98359 

Avg.distance 3.195e-01 1.336e-01 2.390 0.01683 

Avg.duration 1.691e-01 8.296e-02 2.038 0.04150 

Avg.distance:Avg.duration -4.475e-03 2.389e-03 -1.873 0.06111 

Table 8.32: Coefficients of the CRASH/IMPACT model 

8.4.2.5. Analysis of variance 

The deviance between the duration and null models was not high and without 

statistical significance. 

Model 1: GOS ~ Avg.duration 

Model 2: GOS ~ 1 

 Resid. Df Resid. Dev Df Deviance Pr (>Chi) 

1 198 274.83    

2 199 276.28 -1 -1.451 0.2284 

Table 8.33: Analysis of variance between duration and null models 

Similarly, the deviance between the distance and null models was not high and 

without statistical significance. 

Model 1: GOS ~ Avg.distance 

Model 2: GOS ~ 1 

 Resid. Df Resid. Dev Df Deviance Pr (>Chi) 

1 198 273.63    

2 199 276.28 -1 -2.6503 0.1035 

Table 8.34: Analysis of variance between distance and null models 

Between each other, the relationship did not appear to correlate in a statistically 

significant way (low deviance and no significant p-value). 
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Model: Avg.distance ~ Avg.duration 

 Df Deviance Resid. Df Resid. 

Dev 

Pr (>Chi) 

NULL   199 276.28  

Avg.distance 1 2.6503 198 273.63 0.10353 

Avg.duration 1 4.1174 197 269.51 0.04244 

Avg.distance:Avg.duration 1 0.6706 196 268.84 0.41284 

Table 8.35: Analysis of variance between distance and duration models 

When the adjusted models were compared, the explanatory power of the model to 

patient GOS was largely explained by the CRASH/IMPACT model (large deviance 

with significant p-value). 

Model 1: GOS ~ CRASH/IMPACT model * Duration/Distance 

Model 2: GOS ~ CRASH/IMPACT model 

 Resid. Df Resid. Dev Df Deviance Pr (>Chi) 

1 135 153.25    

2 138 168.22 -3 -14.969 0.001843 

Table 8.36: Analysis of variance between CRASH/IMPACT model with adherence and 
CRASH/IMPACT model without 

8.4.3. Discussion 

Through the creation of the regression models in this section, the possible 

relationship between the guideline adherence output and patient outcome was 

investigated. When combined with the known indicators in the CRASH/IMPACT 

studies, the instances of guideline adherence failed to have a statistically 

significant bearing on the explanatory power of the models. 

This is not unexpected, partly due to the weightings used in numerically evaluating 

the adherence instances, and the low treatment associations in the Brain-IT 

dataset (see chapter 9). It is possible that with calibration of the weightings and 

applied to a dataset with a higher density of treatment annotations it may have 

some relationship. 

8.5. Evaluation summary 

The evaluations performed in this chapter indicated satisfactory performance in 

capturing guideline adherence information at a clinical management level (section 
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8.1) and successfully provided representation against contextual information from 

real patient notes in an ICU setting (section 8.3). Accurate timing of treatment 

annotations was identified as a key requirement in section 8.1, and an attempt 

was made to quantify this timing difference in section 8.2. Unfortunately, the 

results of section 8.2 only provided information in the ideal “live” situation, but 

this in itself was an indicator of the required improvement in annotation timings 

(ideally by automated means). Section 8.4 failed to find a statistical relationship 

between the adherence output and patient outcome though it is hoped with more 

refinement of the weightings involved, this may improve. 
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9. Application of framework to neurological ICU dataset: Brain-IT 

Chapter summary 

In this chapter, the process model guideline adherence framework is applied to 

the Brain-IT dataset to evaluate its performance on real-world data. 

The information extracted from the Brain-IT dataset is presented in five sections: 

1. The number of identified events based on the EUSIG definitions 

2. Generation of the event log showing the association of treatment 

annotations with EUSIG-events and the distribution of treatment categories 

3. The individual patient output of the comparison of the resulting process 

models for selected patients: 

a. Minute-by-minute adherence 

b. Total duration and levels of non-adherence 

c. Interquartile ranges showing statistical spread (impact and 

relevance) of non-adherence 

d. “Default” vs “non-default” non-adherence instances 

e. Interquartile ranges with default instances removed (highlighting 

different sources of non-adherence variety) 

f. Contribution of non-adherence reasons 

g. Clinical severity charts 

4. Additional insights from applying the guideline adherence framework on 

the Brain-IT dataset, including the impact of overlaying a clinical response 

time-window, and the treatment category distribution 

Overall, the physiological data is comprehensive and the EUSIG event pattern 

easily extracted. However, the annotation frequency and density in the dataset 

overall is low, leading to low association numbers with EUSIG. Despite this low 

resolution, clear indications of guideline adherence were found within the 

dataset, suggesting that the framework does provide viable output for measuring 

guideline adherence. 
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The Brain-IT core data-set is a repository of 262 patients drawn from specialist 

neurological centres around Europe, collected with a view to enabling post-hoc 

analyses (Shaw et al., 2009). A comprehensive collection of TBI data with 

physiological, treatment, laboratory, surgery and other clinical events, with a 

particular focus on the management of ICP and CPP, it forms a detailed 

retrospective view of physiological and treatment data that is well suited to 

analyses such as the research work in this thesis. 

9.1. EUSIG-event detection 

The first stage of evaluation of this dataset is to detect physiological EUSIG 

(Edinburgh University Secondary Insult Grade) events. 

9.1.1. Coverage 

The coverage of physiological parameters in the database is summarised in table 

9.1. “Coverage” is defined by dividing the number of data points that are not 

“null” or blank by the overall number of data points for that physiological stream 

and calculating the resulting percentage. Parameters with coverage less than 10% 

are omitted as contributing negligible information to the analysis. 

ICU Parameter Coverage 

RR 26% 

HRT 87% 

BPs 84% 

BPd 84% 

BPm 96% 

ICPm 84% 

CVPm 20% 

CPP 82% 

TC 70% 

SaO2 82% 

SaO2pls 23% 

ETCO2 19% 

Table 9.1: Physiological parameter coverage in Brain-IT 
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By inspecting the coverage for the data points used, a level of initial confidence 

can be gained to see how well represented the parameters in the dataset are. If 

the parameter is well covered, it is a reasonable expectation that the event 

detection algorithm will produce useful information. From the results shown in 

table 9.1, we can see that the pressure measures are all at least above 80%, 

including those of particular interest: mean intra-cranial pressure (ICPm), cerebral 

perfusion pressure (CPP) and systolic blood pressure (BPs). 

9.1.2. EUSIG-event definitions 

Following from the description of EUSIG definitions of ICP, CPP and SBP events 

(table 9.2), ten threshold definitions are used to cover the range of clinically 

relevant definitions. 

Parameter Threshold values 

(mmHg) 

Direction Event Hold-Down (mins) 

ICP 10, 15, 20, 25, 30 Up 5, 10, 15, 20 

CPP 50, 60, 70 Down 5, 10, 15, 20 

SBP 100, 110 Down 5, 10, 15, 20 

Table 9.2: Definitions of raised ICP, lowered CPP and lowered SBP events 

Similarly, four values are applied representing the differences in hold-down and 

clear hold-down times: 5, 10, 15 and 20 mins. Therefore, there are a total of 40 (= 

10 * 4) ways that a physiological monitoring event can be detected in a dataset. 

9.1.3. EUSIG-event counts 

The event detection algorithm has been applied to the 40 definitions of EUSIG 

events. Tables 9.3-9.5 and figures 9.1-9.3 show the count of individual events for 

each EUSIG definition across all 262 patients (with all profiles now stored in the 

treatment profile database after processing). 
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Threshold value 

(mmHg) 

Hold-down value Count 

10 20 2585 (abs) 

15 20 2797 (abs) 

20 20 1631 (abs) 

25 20 643 (abs) 

30 20 280 (abs) 

10 15 +732 

15 15 +991 

20 15 +686 

25 15 +318 

30 15 +132 

10 10 +1408 

15 10 +1799 

20 10 +1452 

25 10 +714 

30 10 +316 

10 5 +3697 

15 5 +5130 

20 5 +4213 

25 5 +2266 

30 5 +1088 

Table 9.3: Event count for each ICP EUSIG definition (x20). The first five definitions are an 
absolute count, whilst the following fifteen give the additional count, as the hold-down values are 

subsets of each other. 
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Figure 9.1: Event count distribution for ICP 

Threshold value 

(mmHg) 

Hold-down value Count 

50 20 537 (abs) 

60 20 1874 (abs) 

70 20 3048 (abs) 

50 15 +252 

60 15 +670 

70 15 +1080 

50 10 +534 

60 10 +1491 

70 10 +2085 

50 5 +1759 

60 5 +4261 

70 5 +6278 

Table 9.4: Event count for each CPP EUSIG definition (x12). The first three definitions are an 
absolute count, whilst the following nine give the additional count, as the hold-down values are 

subsets of each other. 
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Figure 9.2: Event count distribution for CPP 

 

Threshold value 

(mmHg) 

Hold-down value Count 

100 20 512 (abs) 

110 20 1371 (abs) 

100 15 +193 

110 15 +450 

100 10 +384 

110 10 +935 

100 5 +1334 

110 5 +2677 

Table 9.5: Event count for each SBP EUSIG definition (x12). The first two definitions are an 
absolute count, whilst the following six give the additional count, as the hold-down values are 

subsets of each other. 
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Figure 9.3: Event count distribution for SBP 

Figures 9.1 to 9.3 show these event count results for ICP, CPP and SBP as bar 

charts. The column number in each chart is the total for that parameter (e.g. ICP 

has 20 corresponding to the five threshold definitions multiplied by the four hold-

down values). The interpretation of the cyclical shape for every set of hold-down 

definitions is as follows: as the hold-down value for that particular definition 

increases, the number of EUSIG-events captured goes down (e.g. a EUSIG-event 

with a hold-down value of 20 minutes will be less common than one with a 5-

minute hold-down). However, slightly less intuitively, the individual numbers vary 

according to definition: e.g. the most populous number of events in ICP, in each 

hold-down definition cycle, come from having a monitoring threshold of > 15 

mmHg. This represents a minima inflection point, discussed further in section 9.5 

(additional information from treatment associations).  

From this initial evaluation of event count numbers, the EUSIG-event pattern has 

clear representation in the Brain-IT dataset and can be used as a basis for assessing 

a wider picture of clinical management. The next step is to attempt to apply the 

association of treatment annotations to these event counts to generate an event 

log. 

9.2. Generation of an event log 

To generate the full event log that can then be turned into a process model, 

requires the association of treatment annotations with physiological events. 
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Referring back to section 5.1 and the relative definitions of the word "event": the 

convention in this thesis is to use "EUSIG-event" to refer to the pattern in the 

physiological output described by a threshold, a hold-down and a clear hold-down; 

whilst "event" (singular) refers to a EUSIG-event and an associated treatment. 

Multiple instances of this latter definition are chained together to form the full 

patient event log described in this sub-section.  

The treatment labels in the Brain-IT dataset follow the well-defined categories in 

that data schema and can be associated with the EUSIG-events subject to the 

considerations listed in section 5.1.3 (i.e. multiple treatments and multiple 

overlapping event time-windows being treated as one). The event log generated 

from this process is then available to be converted into a process model.  

9.2.1. Treatment categories 

Table 9.6 shows the treatment categories, and overall count of individual 

annotations, that have been identified by the Brain-IT consortium as being critical 

to identify information relevant to the management of ICP, CPP and SBP. 

Treatment category Count 

Ventilation 474 

Sedation 1796 

Analgesia 1732 

Paralysis 1790 

Volume expansion 3063 

Inotropes 860 

Anti-hypertensives 86 

Anti-pyretics 1294 

Hypothermia 99 

Steroids 68 

Cerebral vasoconstriction 24 

Osmotic therapy 1773 

Cerebrospinal fluid (CSF) drainage 661 

Head elevation 676 

Barbiturates 136 

Other 4603 

Table 9.6: Overall treatment category count (total = 19135) 
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9.2.2. Treatment association and event log 

To show the representation of instances of treatment/event associations, table 9.7 

shows an example of the count of events with associated treatments expressed as 

an absolute number count and a percentage of overall events for that definition 

(see table 9.8 for the absolute ICP event number). The definition selected is the 

ICP threshold value of 15 mmHg, for a hold-down time of 5 mins. 

Time-window 

(mins) 

Count 

(absolute) 

Count (%) 

15 1822 17.2 

30 1982 18.7 

45 2197 20.8 

60 2246 21.3 

Table 9.7: Number of events with associated treatments depending on the time-window definition 

chosen 

Figure 9.4 shows this variation across the five definitions of ICP threshold 

monitoring, with a constant hold-down time of 5 minutes. 

 

Figure 9.4: ICP associated treatment count, varied by time-window 

Overall there are 19135 annotated treatments in the dataset. Table 9.8 shows the 

absolute number of patients and events that have associated treatments, and the 

percentage relative to the total number of both (patients and events) for the same 

definition as above (ICP > 15 mmHg for hold-down of 5 minutes). This validation 

check shows that whilst the pattern is a good representation of EUSIG-events, it 

does not necessarily cover the entire patient cohort, and could be improved to 
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capture greater accuracy (see the discussion later in this chapter and in chapter 11 

on the quality and frequency of treatment annotations). 

Patients (absolute) Events (absolute) Patients (% of total) Events (% of total) 

187 1822 71.3 17.2 

Table 9.8: Number of patients and EUSIG-events with associated treatments expressed as absolute 
and percentage of total of each for a definition of ICP > 15 mmHg for a hold-down value of 5 

minutes and a time-window of 15 minutes 

This figure of 17.2% is low, though it should be highlighted here that there is 

believed to be a bug in the data processing, the impact of which is to halve the 

actual number of treatment associations, meaning the true value is closer to 34%. 

(See Appendix F for details.) 

To convert this association information into an event log, the EUSIG-event and 

associated treatment instances are collated per-patient and represented as shown 

in figure 9.5 as an example for patient 15138374. 

 

Figure 9.5: Snippet of the event log for patient 15138374 

9.3. Process model comparison – individual output 

As described in chapter 6, the event log can now be converted to a process model 

and evaluated for guideline adherence. 

9.3.1. Minute-by-minute, aggregate and statistical spread of non-adherence 

The following five patients have been selected to indicate information relating to 

different classes of non-adherence that have appeared during the dataset 

assessment. They have been selected from the patients that had treatment 

associations (and hence varied adherence information) and display different 

characteristics that exemplify the possible outcomes from this framework. Within 

those parameters and that patient subset, they are structurally representative of 

the variation shown by the framework over the whole dataset. 

The timeline captions indicate the reasons for the pattern of non-adherence for 

that event (e.g. “treatment missing”, “dosage too high”, etc). As before, each 
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patient has an accompanying table showing the aggregate (total) non-adherence 

duration and level, as well as an interquartile range table showing the statistical 

spread of the various instances of non-adherence (one feature repeated visually as 

an example box-plot diagram). Table 9.9 shows the EUSIG-event definitions used 

for these examples. 

Feature Value 

EUSIG definition ICPm with threshold of 15 mmHg 

Hold-down 5 mins 

Time-window 15 mins 

Table 9.9: EUSIG definition details that the following five examples are sourced from 

9.3.1.1. Patient 4026626 

For this patient, when the Analgesia has been applied the non-adherence distance shows 

2%, which is very adherent to the guideline (treatment present, recommended for this 

context and not over dosage). Once the time-window period has passed, the event 

continues but a recent treatment is now missing, therefore the non-adherence jumps back 

to the “default” level of 36.2%. 
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Figure 9.6: Patient 4026626, event 1 



193 
 

 

Figure 9.7: Total output for patient 4026626 

 

Figure 9.8: Interquartile range table for patient 4026626 

 

Figure 9.9: Box-plot visualisation of interquartile ranges of Non-adherence aspect 
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9.3.1.2. Patient 15138374 

In this case the adherence level begins at 8.6% due to earlier annotation still being recorded, 

the window goes back to default for one minute (36.2%) then drops again due to the 

Volume Expansion treatment. 
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Figure 9.10: Patient 15138374, event 0 
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Figure 9.11: Total table for patient 15138374 

 

Figure 9.12: Interquartile range table for patient 15138374 
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Figure 9.13: Interquartile range for Duration for patient 15138374 

 

9.3.1.3. Patient 26138262 

This patient shows a recurrent administration of sedation/analgesia in one patient. The 

stepped non-adherence score is due to the combined issues of going outside a time-window 

and reaching a “too high” dose. 
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Figure 9.14: Patient 26138262 – shows a recurrent administration of sedation/analgesia in one 

patient 
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Figure 9.15: Total table for patient 26138262 

 

 

Figure 9.16: Interquartile range table for patient 26138262 
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Figure 9.17: Box-plot visualisation of the A metric (Duration / Non-adherence) for patient 

26138262 

 

9.3.1.4. Patient 4026152 

This patient has a type aspect featuring as the ICP guideline is being assessed and the 

patient does not have a mass lesion or diffuse injury recorded (all others do). 
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Figure 9.18: Patient 4026152, event 19 
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Figure 9.19: Total table for patient 4026152 

 

Figure 9.20: Interquartile range table for patient 4026152 
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Figure 9.21: Box-plot visualisation of the B metric (Duration * Non-adherence) for patient 4026152 

 

9.3.1.5. Patient 64816161 

This patient was chosen as they had verifiable “too high” administrations of a particular 

treatment category (Analgesia). However, these did not register on the framework, possibly 

because the administration occurred outside a reaction time window. 
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Figure 9.22: Patient 64816161, event 0 
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Figure 9.23: Total table for patient 64816161 

 

Figure 9.24: Interquartile range table for patient 64816161 
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Figure 9.25: Box-plot visualisation of the Non-adherence aspect for patient 64816161 

The five patients show various classes of non-adherence. Most have a large time 

period where treatment annotations haven’t been associated with corresponding 

EUSIG-events (see section 9.3.2). This large presence of default time periods can 

be seen in the highly skewed interquartile ranges (see the box-plots in figures 71, 

74 and 87). However, the multiplicative nature of the A and B metrics causes the 

distribution of values to be much more evenly spread. 

Some patient records are very adherent in places, for instance patient 4026626 

shows a distance of only 2% within a specified time window as the treatment 

annotation is present, recommended and not (yet) over a considered dosage limit. 

Patient 26138262 shows non-adherence due to dosage limits being breached. 

Patient 64816161 should show similar dosage output but doesn’t due to the 

(suspected) reason that this has occurred outside the time window. Patient 

4026152 shows a contribution of type, as they do not have a mass lesion or diffuse 

injury, which is an assessed component of the ICP guideline. The instance shown in 

patient 15138374 shows a spike due to the presence of a treatment, the time-

window expiring, then another treatment immediately bringing the adherence 

distance down again. 
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9.3.2. “Default” instances of non-adherence 

Three classes of time period can be applied to this analysis of non-adherence: 

 Time period where a clinical reaction is not required 

 Time period where a clinical reaction is required but not provided 

 Time period where a clinical reaction is required and is provided 

A result that has emerged from the listing of non-adherence instances for a large 

dataset such as Brain-IT, was that for every patient, there would be a long period 

of a single level of non-adherence. This has been referred to as the “default” 

instance for a patient and is likely represented by the second category (clinical 

reaction required, but not provided). A possible clinical interpretation of this is 

that there are often periods where a clinician must gauge a patient’s status during 

a EUSIG-event, before administering a treatment (taking time to make a clinical 

judgement rather than immediately following the guideline). It is also likely to be 

due to instances where a clinical prognosis is so poor that all interventions or none 

(palliative care) are enacted (Dr Chris Hawthorne, University of Glasgow, 31st July 

2018, pers.comm). A third – and very likely – reason is that the annotations have 

not been recorded, an estimation of the error that this phenomenon introduces 

was the purpose of the validation step taken in section 8.2. 

An example of this can be seen in figures 88 and 89 (for patient 15138374).  

 

Figure 9.26: The total table for patient 15138374 with the “default” state highlighted 
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Figure 9.27: The total table for patient 15138374 with the “default” state removed 

This information can be useful in itself to understand the nature of guideline 

adherence (e.g. do different management strategies have different “wait and see” 

times, and if so, does this impact on the patient outcome). However, a secondary 

step to this is to remove this “default” instance, and thereby understand what 

variation contributes to a non-adherence score, when in the more “active” time 

periods of clinical management. 

Figures 9.26 and 9.27, show one patient with this default state retained (figure 

9.26) and the state removed (figure 9.27). The variation of non-adherence reasons 

is evidently different in these two cases, which gives potentially more detailed 

information about the reasons/levels for non-adherence during the patient stay 

(figure 9.28). This feature of being able to view the spread of non-adherence 

instances with and without the “default” instance showing is built into the web 

application as a “view toggle”. 

 

Figure 9.28: Interquartile range table for patient 15138374, but with default state removed 

Figures 9.29 to 9.36 show the difference between all four aspects for this patient 

(15138374) when the default state is retained (figures 9.29 to 9.32) or removed 

(figures 9.33 to 9.36). 
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Figure 9.29: Interquartile range for Non-adherence aspect for patient 15138374 (default state 

retained) 

 

Figure 9.30: Interquartile range for Duration aspect for patient 15138374 (default state retained) 

 

Figure 9.31: Interquartile range for (Duration / Non-adherence) aspect for patient 15138374 
(default state retained) 
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Figure 9.32: Interquartile range for (Duration * Non-adherence) aspect for patient 15138374 

(default state retained) 

 

Figure 9.33: Interquartile range for Non-adherence for patient 15138374 with default state 

removed 

 

Figure 9.34: Interquartile range for Duration for patient 15138374 with default state removed 
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Figure 9.35: Interquartile range for (Duration / Non-adherence) for patient 15138374 with default 

state removed 

 

Figure 9.36: Interquartile range for (Duration * Non-adherence) for patient 15138374 with default 
state removed 

9.3.3. Variation in reasons for non-adherence 

The variation in reasons for non-adherence, is shown for all five patients in figures 

9.37 to 9.41. This lists all the instances occurring in a single patient stay and 

visualises the contribution of the reasons to the overall non-adherence level. 
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Figure 9.37: Contributing reasons to the variation in 4026626 

 

Figure 9.38: Contributing reasons to the variation in 15138374 

 

Figure 9.39: Contributing reasons to the variation in 26138262 
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Figure 9.40: Contributing reasons to the variation in 402615 

 

Figure 9.41: Contributing reasons to the variation in 64816161 

This feature allows the full qualitative composition of the overall quantitative 

score to be shown (or expressed another way: the trail of reasons for this non-

adherence). 

9.3.4. Overall clinical severity of non-adherence 

Finally, the clinical severity of the non-adherence instances, by combining 

duration and distance, is evaluated and presented using the risk-analysis grids 

(figures 9.42 to 9.46), which are the mean of the combinatorial metrics A (duration 

/ distance) and B (duration * distance). The resulting quadrants are: bottom-left 
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(green) is least severe, top-right (red) most severe, and the opposing two (blue) 

are mid-range severity. 

 

Figure 9.42: Severity chart for patient 4026626 
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Figure 9.43: Severity chart for patient 15138374 
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Figure 9.44: Severity chart for patient 26138262 
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Figure 9.45: Severity chart for patient 4026152 
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Figure 9.46: Severity chart for patient 64816161 

All five of the severity charts generated by these Brain-IT examples, give severity 

indicators that occupy the top-left (mid-range) quadrant. The interpretation is 

that despite variations in the adherence information, in aggregate the instances 

are providing approximately similar output. The likelihood is that this common 

output is due to a similar volume of treatment annotations within the dataset (as 

discussed in section 9.2, the association of EUSIG-event and treatments are not 

numerous), so the output is dominated by the “treatment missing” non-adherence 

reason. 

9.4. Additional dataset information 

Two points of additional interest were derived from the Brain-IT dataset. First was 

the impact of laying the time-window over the physiological/treatment 
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information, in terms of the events counted. Second was the derivation of the 

distribution of treatments 

9.4.1. Impact of treatment association time-window on event counts 

Additional to the event log, the association of a treatment with an event provides 

a modifying parameter to the overall event number count. An inference that can 

be made is that this modification indicates a “preferred” event definition that 

clinicians are more likely to react to. The effects of this modification can be most 

clearly seen in the bar chart that represents the number of events with an 

associated treatment per definition per hold-down value, with a time-window of 

30 minutes, shown in figure 9.47, when compared to the unmodified count in 

figure 9.1 (section 9.1.3). 
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Figure 9.47: Number of ICP events that have treatment associations when a time window of 30 

minutes is applied 
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The graph shape in figure 9.47 is evidently different from the event count numbers 

in isolation in figure 9.1. It is now the definition of ICP > 20 mmHg with hold-down 

of 5 minutes that appears to be most numerous, rather than ICP > 15 mmHg, which 

would suggest that this definition input is triggering a larger number of clinical 

responses (as administered treatments). A further clinical interpretation of these 

graphs can be seen in the shape of the distribution as the time-window increases 

towards the asymptote of infinite time. According to the association algorithm 

presented in section 5.1.4 the number of events with treatment associations will 

approach the total event number as the time-window approaches infinity (i.e. with 

a sufficiently large time-window, every event will have an associated treatment). 

Figure 9.48 demonstrates this progression of the distribution shape of the ICP 

events with treatment associations as they move through the other three time-

window definitions (10, 15 and 20 minutes). The result is that definition #2 

gradually predominates again. 
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Figure 9.48: The three other time-window definitions (20, 15 and 10 mins) for ICP event and 
treatment association, with event count on vertical axis and ICP definition/time window on 
horizontal (labels removed for space). As the time-window increases (top to bottom), the 

distribution shape reverts back to that of the event count without treatment association. 
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9.4.2. Treatment distribution 

For every combination of EUSIG definition and treatment association time-window, 

a composition of the treatment categories included in the list can be constructed. 

This allows a “map” of predominating treatment protocols to be constructed which 

could be, for instance, later used as a refinement on the specific treatments 

outlined in a guideline. Figure 9.49 shows the treatment distribution for an ICP 

threshold of > 20 mmHg with a hold-down value of 5 minutes and a time-window 

for association of 30 minutes (selected due to its predominance discussed in 

section 9.2.3). The top three treatments applied in this instance are paralysis 

(18.2%), sedation (17.2%) and osmotic therapy (16.2%), from an absolute number of 

582 events with treatment associations. 

 

 

Figure 9.49: Treatment distribution for an ICP threshold > 20 mmHg with a hold-down value of 5 

minutes and a time-window of association of 30 minutes 

9.4.3. Centre-specific information 

Similarly, using the unique centre reference identifier in the dataset, the same 

contributing information can be used to create a treatment composition for each 

individual centre. For example, the top three treatments for the centre in 

Uppsala, Sweden were paralysis (32.9%), analgesia (13.4%) and a joint third place 

(11.4%) for ventilation, volume expansion and sedation, from an absolute number 

of 373 events with treatment associations (figure 9.50). 
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Figure 9.50: Treatment distribution from one centre (with highest coverage: Uppsala, Sweden) for 
an ICP threshold of > 20 mmHg with a hold-down value of 5 minutes and a time-window of 

association of 30 minutes 

9.5. Discussion 

Overall, the physiological data of the Brain-IT dataset is comprehensive and the 

EUSIG event pattern can be readily extracted. However, the annotation frequency 

and density in the dataset overall is low, leading to low association numbers with 

EUSIG events (and all other assertions made must also be qualified with this 

consideration). This is mainly due to the time of data collection (mid 2000’s) 

where the available technology was manual inputs to PDA Palm Pilots. Modern ICU 

technologies, such as Philips ICCA show a much higher density of treatment 

annotations, so a higher association number, and therefore more accurate 

representation of clinical management can be assessed. This potentially relates to 

the overall issues confronting the TBI medical community, as the increase in 

treatment annotations can be used to increase the power of studies and trials. 

However, despite this low resolution, clear indications of the adherence output 

can be found within the dataset, highlighted by the patient examples in this 

chapter (e.g. treatment presence, dosage, type differences). This suggests that, 

though requiring refinement, the framework does provide viable output for 

measuring guideline adherence. 
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10. Application of framework to non-specialist ICU dataset: 

MIMIC III 

Chapter summary 

The MIMIC III dataset was analysed using the adherence framework. The purpose 

of this was to explore whether a non-specialist ICU dataset could show guideline 

adherence output to a similar degree as datasets that have a specialist focus, such 

as Brain-IT. 

The dataset had different extraction challenges than Brain-IT. To extract TBI-

specific injuries, a survey of the ICD9 codes relating to brain injury had to be 

performed. The semantic and heterogeneous nature of the repository made the 

output of this process unpredictable (e.g. using wildcard matching for drug 

names). However, data was extracted using four physiological codes (two each for 

ICP and CPP), and three ICD9 codes describing brain injury. From this, 100 

subjects were identified, and their physiological output traced. Of this 100, seven 

had viable treatment annotations (other than blank or null inputs) and event 

identification and treatment association were performed for these seven patients. 

Due to the low-resolution of the dataset (end-hour averaged physiological values), 

a different approach for event identification and treatment association was also 

required. In this case, an event was considered to be active if the end-hour data-

point was above the appropriate EUSIG threshold, and a treatment that occurred 

within an hour of this was considered to be associated (c.f. the EUSIG definitions 

and association windows described in chapter 6). 

Some guideline adherence information was captured but the association figures 

were very low. Combined with the low-resolution of the physiological data, the 

confidence in results and representation was not high. 
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The MIMIC III dataset is a collection of non-specialist ICU data collected from 2001 

to 2012 across different intensive care units in the United States (Saeed, 2007). 

The purpose of the collection is a comprehensive repository of de-identified ICU 

data specifically for secondary studies. 

The application to this research was the use of a non-specialist dataset to obtain 

guideline adherence output in an environment where ICP/CPP management, and 

specialist management of brain injury, is not (necessarily) the primary focus. The 

generalisation of this process to other datasets will give feedback to the general 

viability of the framework. 

10.1. Dataset description 

The data is provided in a set of zipped ASCII text files, exported from a central 

database, with most data being timestamped key-value pairs, which are 

interpreted using a dictionary lookup of ICD9 codes. The data itself is protected 

against identification, using standard measures such as the use of an anonymous 

identifier (individual patient records can be distinguished, but the record itself 

cannot be traced back to a real identity). A further protection implemented by 

MIMIC is the application of anonymised timestamps – again the individual data 

points can be associated together for the purposes of analysis but are set at a time 

in the future (e.g. “01-04-2157” is a standard timestamp in the physiological 

readings). 

A major feature of this dataset is that it is very low resolution – each physiological 

data-point is an end-hour averaged value. This has an impact on the certainty of 

association of treatment with event and makes a standard EUSIG event more 

difficult to extract. 

The labels used have a wide range of free-text variations on the full ICD9 

dictionary and apply to all the labels of everything occurring in an ICU. Standard 

physiological terms, such as “ICP” and “CPP” are relatively well defined, but other 

terms such as “craniospinal fluid” have many different abbreviations and reference 

terms (e.g. “CSF”, “CS fluid”, etc). This makes categorisation – particularly of 

relevant treatment annotations – challenging. 
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10.2. Method 

The method to extract guideline adherence information from this dataset was 

similar to the Brain-IT method, but the low-resolution nature of the MIMIC dataset, 

required two different features: 

 The definition of an active EUSIG pressure event required a single point to 

be above the threshold (as this implies that the average value over an hour 

has already been above said threshold). Therefore, in terms of processing, 

this became hold-down and clear hold-down values of one minute. Clearly, 

this does not reflect reality but merely marked a non-zero point in the 

timeline. 

 A treatment was considered associated with that event if it occured at any 

point in the hour following that event time-point. And in this case 

therefore, the time-window was set to 1 hour. 

All the rest of the processing after using these definitions continued in the same 

way as when processing the Brain-IT dataset. However, of course some information 

was lost due to the low-resolution temporal data, and this would have an impact 

on the certainty of the adherence output. 

10.3. ICD9 codes and patient numbers 

The diagnosis definition file (D_ICD_DIAGNOSES) was queried to extract the 

relevant ICD9 code. This was done by returning the code associated with any 

diagnosis description that contains the word “brain”. Three codes were extracted 

that showed significant results in terms of patient numbers (i.e. greater than two): 

 “Traumatic brain hem NEC” = 85300 

 “Screen-traumtc brain inj” = V8001 

 “Hx traumatc brain injury” = V1552 

 

There were many physiological codes to choose from in the MIMIC III dataset but 

the relevant ones used here were two each for both ICP and CPP, as extracted 

from the item definition file (D_ITEMS): 
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 “CPP” = 92, 227066 

 “ICP” = 226, 2205765 

 

Table 10.1 shows the number of subject IDs that were extracted using the three 

ICD9 codes identified in section 10.3.1. This was done by searching the subject 

diagnoses files (DIAGNOSES_ICD) for those three codes. 

ICD9 code Patient number 

85300 45 

V8001 55 

V1552 0 

Table 10.1: Number of subject IDs (individual patients) with brain injury ICD codes 

The biggest file in the MIMIC III dataset (CHARTEVENTS) was then queried using 

these 100 subject IDs, in order to establish a physiological trace reading for each 

patient. This file had to be pre-processed in order to be usable, which was done by 

“chunking” the extracted CSV output into 264 files (an approximate working file 

size, which could be viewed in Notepad or MS Excel) containing 1 million lines each 

(a line corresponds to a single physiological data-point for a patient). 

Once this processing was complete, each of the 264 files was in turn analysed for 

the presence of the 100 subject IDs sourced from above. Overall this resulted in 

physiological output of 1835 entries, filtered down using the four ICP/CPP codes 

listed above. 

10.4. EUSIG-event detection 

As before, the first stage of evaluation of this dataset is to detect physiological 

EUSIG (Edinburgh University Secondary Insult Grade) events. In contrast to the 

Brain-IT database, coverage cannot be assessed in this dataset as the physiological 

data is extracted from a set of append-only text files, so no enclosing schema gives 

information about the available space. 

10.4.1. EUSIG-event definitions 

Following from the description of EUSIG definitions of ICP and CPP events (table 

10.2), 8 threshold definitions are used to cover the range of clinically relevant 

definitions. 
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Parameter Threshold values 

(mmHg) 

Direction Event Hold-Down (hrs) 

ICP 10, 15, 20, 25, 30 Up 1 

CPP 50, 60, 70 Down 1 

Table 10.2: Definitions of raised ICP and lowered CPP events in terms of threshold values 

As mentioned previously, in contrast to the Brain-IT dataset, there is only one 

(artificial) definition for the hold-down value in this dataset. Therefore, there are 

8 ways (one per threshold definition) that a physiological monitoring event can be 

detected in a dataset. 

10.4.2. EUSIG-event counts 

The event detection algorithm was applied to the 8 definitions of EUSIG events. 

Tables 10.3 and 10.4 shows the count of individual events for each EUSIG definition 

across the 7 patients with viable annotations (with all profiles now stored in the 

treatment profile database after processing). 

 

Threshold value 

(mmHg) 

Hold-down value 

(hrs) 

Count 

10 1 373 

15 1 179 

20 1 96 

25 1 64 

30 1 43 

Table 10.3: Event count for each ICP EUSIG definition 

 

Threshold value 

(mmHg) 

Hold-down value Count 

50 1 3 

60 1 5 

70 1 6 

Table 10.4: Event count for each CPP EUSIG definition 

The number of CPP events recorded was evidently low compared to the count of 

ICP events. It is uncertain if this is of significance other than the capture process 

of ICP had been markedly better in this particular patient sample. Also, the 
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decreasing number of ICP events as the thresholds increase was in contrast to the 

Brain-IT dataset, which had a peak at the 15 mmHg definition. 

10.5. Generation of an event log 

As before with Brain-IT, to generate the full event log that can then be turned into 

a process model, required the association of treatment annotations with 

physiological events. Referring back to section 5.1 and the relative definitions of 

the word "event": the convention in this thesis is to use "EUSIG-event" to refer to 

the pattern in the physiological output described by a threshold, a hold-down and 

a clear hold-down; whilst "event" (singular) refers to a EUSIG-event and an 

associated treatment. Multiple instances of this latter definition are chained 

together to form the full patient event log described in this sub-section. 

10.5.1. Treatment categories 

The list of treatment annotations was extracted using wildcard string-matching (or 

“regular expression matching”) with the Brain-IT category names as input patterns. 

This list was found in the item definition file (D_ITEMS) and was then applied to 

the non-physiological (or “episodic”) event files: INPUTEVENTS, OUTPUTEVENTS 

and MICROBIOLOGYEVENTS. 

Table 10.5 shows the treatment categories available for association in the MIMIC 

dataset. It also shows the overall count of individual annotations in each category 

in the dataset. 

Treatment category Count 

Tidal Volume (Set) 120 

Anti-Embolism [Device] 1058 

Tidal Volume (Obser) 122 

Minute Volume(Obser) 185 

Anti-Embolism [Status] 1054 

Minute Volume (Set) 29 

Stroke Volume 24 

Tidal Volume (Spont) 91 

Dilantin 22 

Table 10.5: Overall treatment category count (total = 2705) 
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10.5.2. Treatment association and event log 

To show the representation of instances of treatment/event associations, table 

10.6 shows an example of the count of events with associated treatments 

expressed as an absolute number count and a percentage of overall events for the 

single 1-hour definition possible (see table 10.3 for the absolute ICP event 

number). The definition selected is the ICP threshold value of 10 mmHg, for a 

hold-down time of 1 hour (as defined for the MIMIC dataset). 

Time-window 

(hours) 

Count 

(absolute) 

Count (%) 

1 55 7.3 

Table 10.6: Number of events with associated treatments for a 1-hour time-window (only option 

available in MIMIC dataset) 

10.6. Process model comparison - individual output 

The following two patients were selected to indicate information relating to 

different classes of non-adherence that had appeared during the dataset 

assessment. They were selected from the patients that had treatment associations 

(and hence varied adherence information) and displayed different characteristics 

that exemplified the possible outcomes from this framework. Within those 

parameters and that patient subset, they were structurally representative of the 

variation shown by the framework over the whole dataset. 

The timeline captions indicate the reasons for the pattern of non-adherence for 

that event (e.g. “treatment missing”, “dosage too high”, etc). As before, each 

patient has an accompanying table showing the aggregate (total) non-adherence 

duration and level, as well as an interquartile range table showing the statistical 

spread of the various instances of non-adherence (one feature repeated visually as 

an example box-plot diagram). Table 10.7 shows the EUSIG-event definitions used 

for these examples. 

Feature Value 

EUSIG definition ICPm with threshold of 10 mmHg 

Hold-down 1 min 

Time-window 60 mins 

Table 10.7: EUSIG definition details that the following two examples are sourced from 
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10.6.1. Patient 16265 

 

Figure 10.1: Timeline of adherence for patient 16265 
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Figure 10.2: Instances of non-adherence for patient 16265 

 

Figure 10.3: Interquartile range of adherence for patient 16265 

 

 

Figure 10.4: Boxplot visualisation of adherence spread for patient 16265 
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Figure 10.5: Reasons contributing to non-adherence for patient 16265 

 

Figure 10.6: Severity chart for patient 16265 
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10.6.2. Patient 18849 

 

Figure 10.7: Timeline of adherence for patient 18849 
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Figure 10.8: Instances of non-adherence for patient 18849 

 

Figure 10.9: Interquartile range of adherence for patient 18849 

 

Figure 10.10: Boxplot visualisation of adherence spread for patient 18849 



237 
 

 

Figure 10.11: Reasons contributing to non-adherence for patient 18849 

 

Figure 10.12: Severity chart for patient 18849 
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10.7. Discussion 

The MIMIC dataset poses difficult challenges in terms of data extraction and 

processing. The low-resolution nature of the physiological data and the difficulty in 

categorising treatment annotations, make the accuracy of any adherence output 

very difficult to establish. Of particular note are the low association percentages 

in table 10.6 (7.3%) and the difficulties in rendering the end-hour summary 

information on a windowed timeline (as the treatments and physiological data 

stack one upon the other). 

However, as with Brain-IT some adherence information was able to be extracted. 

With further work it may give more accurate output, but advances in 

understanding adherence would be much more readily achieved by using richer 

datasets such as Philips ICCA. 

The original reason for using the MIMIC dataset was to find out if the framework 

could be used on a general ICU dataset. The answer to this is that it can, but with 

many qualifications and low accuracy. These issues are likely due to the nature of 

the MIMIC dataset, rather than its representation of a general ICU dataset. 
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11. Discussion 

11.1. Aims of the thesis 

In this research work, a novel technological method was developed to 

quantitatively feedback information about adherence to the Brain Trauma 

Foundation (BTF) guidelines in a given cohort of ICU patients. The following three 

hypotheses were formulated: 

1. In high-resolution time-series clinical data, one can extract clinically-valid 

treatment processes for ICP/CPP management in TBI patients 

2. Having extracted treatment processes, one is able to develop an algorithm to 

compare those against other treatment processes to establish the degree of 

similarity between them 

3. One can develop a computerised tool that readily quantifies and displays to 

clinical staff a metric of actual ICP/CPP management protocol adherence 

In summary, the findings of this research were: 

1. A process for the management of ICP and CPP can be derived from the analysis 

of physiological and treatment data in many ICU datasets. This can be seen 

from the output of the unit tests (section 8.1), Philips ICCA (section 8.3), Brain-

IT (chapter 9) and MIMIC III (chapter 10) datasets. However, a common issue, 

especially in the large-scale datasets was the low number of event/treatment 

associations, which directly affected the confidence in the adherence output. 

This led to the identification of the need for rich and accurate treatment 

annotations, an estimate of which was attempted through the timing evaluation 

(section 8.2) 

 

2. The process model derived from physiological and treatment data, can be 

compared against other processes of a similar nature, which in this case are the 

BTF guidelines represented in Business Process Model Notation (BPMN). Both 

sets of models can be compared using the method proposed in (Dijkman, Dumas 

and Garcia-Banuelos, 2009) – a calculation of distance between process models. 
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3. The output of this comparison can be constructed into a clinically accessible 

tool – in this case a web-enabled application. The application allows adherence 

information to be obtained from clinical management processes. However, a 

statistical relationship with patient outcome was unable to be detected. 

11.2. Interpretation of results 

11.2.1. Evaluation 

11.2.1.1. Unit testing 

The goal of the unit testing was to make sure that the system performed as 

expected, when given predictable inputs. The use-cases covered general cases 

contributing to guideline adherence including: whether a treatment was 

present/not-present, or if a dosage too high/within bounds. And individual cases 

relating to the BTF guidelines included: different patient ages (BPs), mass 

lesion/diffuse injury present (ICP), and type conflict between pressors and fluids 

(CPP). Test patient physiological data was used, with treatment annotations 

artificially applied to create these use-cases. The results showed that all use-cases 

covered by the BTF guidelines did indeed produce adherence output and captured 

clinical management processes. 

The main issue in this section was the first appearance of the “default” adherence 

level which occurs when a EUSIG-event occurs and has no associated treatment. 

This issue re-occurs in all stages of evaluation, has a strong influence on the 

overall measurement of adherence, and is largely only solved by the rich and 

accurate input of annotations to the dataset. 

11.2.1.2. Treatment annotation timings 

Using the unique feature of the CSO dataset – a physiological and treatment 

dataset, annotated by a “live observer” that was able to watch and confirm 

physical actions taken in the ICU – an estimation of the difference between “live” 

and “non-live” timings of annotations was attempted. 

The results showed that when observed in real-time (the “live observer”), the 

accuracy of timing does correspond well to the physical output of the physiological 

data at the bedside. Unfortunately, the comparison against the non-live dataset 
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was inconclusive, with no matching annotations at all in the non-live dataset, it is 

possible that the discrepancy between manual recording of annotations in a 

regular ward shift, and the physiological output is so dense, that (correctly) none 

appeared in this small analysis. However, other reasons such as the type of event 

observed or the approach to noting those types of event in the ward may be 

contributing factors. 

If repeated, a different set of events would be tracked and attempted to be 

matched, and a consultation with the ward staff would allow an understanding of 

which events are priorities in order to more accurately gauge the timing. However, 

the “no matching events” result from this study could be a key finding in itself in 

this regard. The events were never annotated, therefore timing overall is 

inaccurate, which has large repercussions for the performance of the framework in 

a real ICU setting. 

11.2.1.3. Domain expert information 

The system was evaluated against the input of three ICU patients that had 

accompanying patient notes, compiled and distributed by domain experts. The 

data was processed and adherence output retrieved and compared against the 

patient notes. 

The adherence output generated from the three patients highlighted several issues 

with the system: 

 The drug categorisation issue (mentioned above) affected the quantitative 

output, as this would be registered as type conflict when compared against 

the guideline model. 

 The adherence output responds poorly to refractory pressure events 

(constant increase with no positive resolution). This is mainly due to the 

time-window application issue (mentioned in 11.3.1.1). 

 Though the outputs derived from this initial error in processing of refractory 

events, it also highlighted the issues encountered when variation is low (i.e. 

only one adherence instance is present). The spread of instances is highly 

skewed – which is a correct, if unusual, representation - and the severity 

chart indicates “most severe”, though it has reached this conclusion through 
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an incorrect pathway (believing that there have been no annotations, rather 

than the refractory nature of the patient context). This issue relates to the 

use of a single time-window when assessing treatment annotations (see 

section 11.3.2). 

 When a clinical context of intentional non-treatment is encountered 

(patient #3 had regular transient ICP pressure events which appeared to 

synchronise with the rise and fall of ETCO2 levels), the system also fails to 

incorporate this into its adherence evaluation. In this case a notion of 

baseline context should be incorporated, though it is uncertain how this 

would be manifest in the technology. 

11.2.1.4. Patient outcome 

The logistic regression against patient outcome showed no statistically significant 

effect against 6-month patient outcome (as measured by the extended Glasgow 

Outcome Score). This was not unexpected as the numerical values associated with 

the guideline adherence information require calibration and clinical consensus, as 

well as the Brain-IT dataset only providing around 17% of EUSIG events with 

associated treatments (though see Appendix F for the reasoning that this number 

should be roughly double at 34%). 

Whilst a relationship of adherence output with patient outcome would have been 

ideal, the wider context is that this framework captures a clinical management 

process that is useful for audit purposes, regardless of patient outcome. It is also 

just one example of a protocol, and though obviously patient outcome is the most 

important, there may be other end-points that the adherence information does 

have a significant correlation with. 

Finally, in the case of TBI, one of the major reasons for the lack of high-power and 

clinically significant findings is the lack of correlation with patient outcome. As 

mentioned in chapter 3, studies such as BEST-TRIP (Chesnut et al., 2012) have 

indicated that ICP monitoring has no treatment effect on the overall patient 

outcome. Though this is disputed in the expert community, in this context, the 

lack of correlation between adherence output and outcome is not necessarily an 

indicator of failure. 
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11.2.2. Large-scale datasets 

The framework was applied to two large-scale datasets – Brain-IT and MIMIC III – 

which gave a variety of results that exemplified the individual adherence output 

that could be derived, and aggregate information about adherence over both 

cohorts. 

11.2.2.1. Brain-IT 

Overall, the individual guideline adherence output derived from the Brain-IT 

dataset is useful but must be considered in the context of low association 

numbers. The physiological data is comprehensive and the EUSIG event pattern can 

be readily extracted. However, the annotation frequency and density in the 

dataset overall is low, leading to low association numbers with EUSIG events (and 

all other assertions made must also be qualified with this consideration)18. 

This is mainly due to the time of data collection (mid 2000’s) where the available 

technology was manual inputs to PDA Palm Pilots. Modern ICU technologies, such 

as Philips ICCA show a much higher density of treatment annotations, so a higher 

association number, and therefore a more accurate representation of clinical 

management can be assessed. This potentially relates to the overall issues 

confronting the TBI medical community, as the increase in treatment annotations 

can be used to increase the power of studies and trials. 

However, despite this low resolution, clear indications of the adherence output 

can be found within the dataset, highlighted by the patient examples in this 

chapter (e.g. treatment presence, dosage, type differences). This suggests that, 

though requiring refinement, the framework does provide viable output for 

measuring guideline adherence over this dataset. 

11.2.2.2. MIMIC III 

The MIMIC III results were an exercise in applying the same strictures of EUSIG 

definitions and treatment associations over a very low-resolution dataset. With 

some liberties taken in the definition of a EUSIG event (hold-down of one minute 

representing a whole hour of an assumed event) it was possible to chart 

                                                      
18 There is a known issue with the processing of these associations – detailed in appendix F.1 – which suggests 
that actually this reported association number (17%) is roughly half of what it actually should be (34%). 
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physiological output (at a resolution of one reading per hour) and to associate 

some treatment events, with several TBI patients that had been found in the 

general ICU population. 

The adherence information that this provided again did capture some management 

processes but was unlikely to provide powerful insight into the nature and duration 

of non-adherence to the guidelines, as the resolution of the information was just 

too low. In an age of increasing awareness of digital-privacy it is commendable 

that the MIMIC team implemented the averaging of physiological data and the 

transposition of timestamps, but these also conspired to reduce the effectiveness 

of clinical insight that could be drawn from the data. 

However, it was possible to obtain some results. Instances of non-adherence were 

able to be compiled and a final severity chart was produced, as shown in the 

example patients in chapter 10. The achievement of the framework to work with 

almost any dataset is demonstrated here, though the best results are obtained 

with highly sampled physiological data and high density of treatment annotations. 

In this work so far, the Philips ICCA system provides that benchmark. 

11.3. Evaluation 

The following strengths and weaknesses have been identified in this thesis. 

11.3.1. Strengths 

As identified in the literature review (chapter 3), the system has been developed 

to provide immediate, detailed and independent feedback on adherence at a level 

of clinical management. The vision for this application would be to fit into audit 

procedures, such as weekly meeting to assess compliance (e.g. a technological TBI 

version of the Surviving Sepsis campaign) or to assist with the review and further 

development of the guidelines themselves. This level of clinical management is 

more detailed than the typical inputs to a clinical study and allow a quick 

assessment of adherence in the live ICU context. 

The presentation styles chosen – individual view-charts, interquartile range 

representation, aggregate information, and clinical severity risk analysis charts – 

were all carefully chosen as to maximise the utility of the information, in a way 

that informs a clinician as rapidly as possible about a patient status relative to the 
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guideline considered. The trace of non-adherence reasons provides a qualitative 

detail to the overall quantitative non-adherence, so information – whilst hidden for 

easier viewing – can still be “unpacked” and reviewed if required. These 

considerations were taken from the combination of concepts brought from the 

business process management domain and from observing what already worked in a 

clinical context for the sepsis guideline adherence meetings. The use of the 

severity chart also allows the quantitative results to be expressed as summary 

measures for an overall assessment of impact of the guideline adherence. 

A key philosophy in the development of this system was that minimal knowledge 

should be used to identify the patterns of clinical management. Additional 

contextual requirements could be added “piece-wise” to the knowledge base as 

necessary, which would be an obvious first step in future work. A major benefit of 

this approach is that individual insights on adherence can be made in isolation, 

which can then be combined and built upon, rather than attempting to identify 

signal from competing sources of noise of other components. This goes some way – 

though is not a complete solution – to the issue of comorbidities, which guidelines 

are notorious for not capturing well. 

This approach also has the advantage of occupying a clinical work-flow “silently” 

by using all the data that is already available (rather than either technical 

developers or domain experts contributing more information to imbue semantic 

meaning). The knowledge used is the already-agreed standards of repositories that 

are already in use (i.e. the database schemas supporting Philips ICCA, Brain-IT, 

MIMIC III, etc). 

11.3.2. Limitations 

The largest clinical issues raised as motivation for this thesis was the lack of high-

powered TBI studies available. It is hoped that a vision of how to build a real-time 

feedback tool to help with this problem would be useful. However, an underlying 

factor would be the accuracy of the component parts. This is a major and common 

issue in the development of many clinical technologies, and often manifests in the 

issue of clinical interpretation being lost in the opacity of the supporting 

technology and calculations (e.g. the process model distance calculations outlined 

in chapter 6). Further validation and refinement of the calculation method and the 
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quantitative weightings would be required to increase faith in the accuracy of the 

framework developed in this research work. Until this was achieved and rigorously 

demonstrated, the technology will experience large barriers to adoption. 

A central feature of the framework is the presence or absence of a treatment 

annotation proximate to the EUSIG events detected. The main Brain-IT dataset 

provided enough richness of annotations to infer various non-adherence instances. 

However, the overall percentage of associated events (approximately 17%) could 

be vastly improved. The ICCA dataset provided a much higher density of 

associations between treatment annotations and EUSIG-events (approximately 80% 

in the three-patient sample). A reasonable inference is that the ability to capture 

treatment annotations has improved since the dates of collection between these 

two datasets (2006 to 2018). 

However, the evaluation of timing accuracy shows that in a typical ICU dataset, 

even though the density of these treatments is high, they may still be inaccurate, 

and much work still needs to be done to guarantee the accuracy of these 

annotation timings. Unfortunately, this variable is also a key component to the 

accuracy of the guideline adherence output and must be evaluated or qualified 

whenever the system is used. 

Another central feature of this framework is the application of business process 

techniques and models to the clinical domain, in a manner that is not traditional 

(e.g. rather than administrative processes, the techniques are applied to the 

actual clinical management). These tend to be approaches familiar to the 

informational world of IT, logistics administration, project management, etc, and 

the primary goal is always the search for efficiencies of process. 

The two most obvious presentations of this cross-domain application are the main 

method of the research (expression of clinical processes as BPMN), but also the use 

of a risk analysis chart to express clinical severity and impact on outcome when 

two values are interpreted in combination. Though this feature is potentially 

useful for expressing clinical outcome of multi-factors in broad strokes, it also runs 

the risk of over-simplifying complex medical situations. A balance on how to 

present this should be found through feedback with clinical users. 
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Two important technical limitations were discovered during the course of 

evaluating the framework in chapter 8: the failure of the system to effectively 

deal with refractory EUSIG events – presenting as one catastrophic event in patient 

#2 in the Philips ICCA sample set – and periods of high physiological volatility, 

which relates to the issues raised in chapter 6 about how to associate multiple 

treatments with multiple EUSIG events. 

The first could be addressed by the use of multiple time-windows. Currently, a 

single time-window is overlaid on the output since the start of a single event. 

However, a more effective solution may be a combination of one time-window at 

the beginning of the event, then a second moving time-window, which would be 

evaluated each minute, would likely give enough contextual temporal information 

to capture single large events, and the more regular patterns (with clear 

resolution) which make up the bulk of the events assessed in this work. Careful 

consideration on how to communicate this concept to the end user would be 

required, as in the practical experience of this work, the concept of a single time-

window is possibly still not widely understood amongst the clinical community (as 

it is also a construct brought from the information theory community). 

The second issue has been avoided in this work through the assumption of a one-

to-one relationship between event and treatment, and the datasets used so far 

have been of low enough density for this assumption to hold true. However, as has 

been noted several times the key to better performance of this framework is the 

high density of treatment annotations, therefore it is likely this issue will be 

encountered. Possible solutions include the attempt to capture the explicit target 

of the treatment (not always available but sometimes – such as in Brain-IT – or can 

be inferred from patient notes, such as with the Philips ICCA system). 

A final limitation of the system is inherent in the nature of guidelines themselves. 

As detailed in (Greenhalgh et al., 2014) and repeated in many conference 

presentations on the nature of technology and guidelines, they are inefficient at 

coping with comorbidities. In this thesis, this has been represented most clearly in 

the evaluation of the domain expert information with the Philips ICCA dataset (e.g. 

the transient episodes of ICP events, which the system failed to account for as it 

was not aware of the ETCO2 outputs and correlation between the two). This 
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comorbidity problem was considered from the beginning of this research work and 

a mitigation was provided in the form of only focusing on three guidelines which 

had features well suited to the technical problem space (quantitative elements 

with well-defined flow processes). However, future work would include – likely in 

the form of enhanced domain context – knowledge of general guideline 

repositories. 

11.4. Other considerations 

There were several findings and discussion points raised through the course of this 

research, relating to the adherence framework. These have been grouped into 

themes that are discussed individually in this sub-section. 

11.4.1. Contextual domain knowledge 

As mentioned previously, a central part of this thesis is the ability to make these 

inferences about non-adherence given the minimum knowledge possible. The 

intention was to add contextual information in a piece-wise fashion, rather than 

describe everything and attempt to strip away unnecessary “noise”. This allows 

the ability to clearly address each separate use-case of the BTF guidelines in turn 

and overlay the resulting output. But when context is important (e.g. such as 

understanding the patient load of pressors when attempting to follow the CPP 

guideline) this approach requires addition of knowledge. 

In this case, an approach using an ICU ontology was attempted (mentioned briefly 

in chapter 5, and described in full in appendix B, which constituted a short 

conference paper in its own right19). The difficulties involved were largely 

influenced by the steep learning requirements of ontology implementation, but the 

main structural issue was one that has been covered in section 3.4.3, namely the 

desire to “describe everything” that exists in an ICU. 

When presented with the BTF guideline as a BPMN diagram (the solution later 

chosen), a neurosurgical specialist noted that there was a wider context that the 

diagram was missing. The use of an ontology would go some way to approaching 

this – encoding the contextual parameters required. But again, careful introduction 

of only the minimum necessary would be required. 

                                                      
19 Computer-Based Medical Systems (CBMS), 2012 in Rome, Italy 
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11.4.2. Technical utility 

One re-usable technical outcome of this work is the establishment of what has 

been called the “treatment profiles” database. The full schema as presented in 

section 5.2, provides a host of information such as guideline numbering and 

treatment annotations for a particular dataset. However, one of the main uses, is 

the extraction of EUSIG pattern information from a particular dataset.  

This synthesised information is useful in its own regard (i.e. the same physiological 

dataset can be viewed using different parameters of the EUSIG definition – 

threshold, hold-down length, etc), but when combined with the “EventDetection” 

code, with minor edits to the code interface (depending on whether the physio 

stream is represented as wave-form, minute-by-minute, etc) any time-varying 

physiological dataset can be analysed and stored to add to this repository. There is 

great potential for use of this code and repository for future studies, as 

information about ideal thresholds change or require investigation (e.g. for the 

establishment of CPPopt levels). 

A project that could conceivably help in this regard is the CENTER-TBI initiative, 

which is believed to collect a lot of high-resolution physiological data and rich 

treatment annotations. 

11.4.3. Weightings and input values 

The main source of quantitative information in this framework comes from the 

application of quantitative values to reasons for non-adherence. These were 

estimated based on minor feedback from clinicians and an assessment of the 

relative importance of the component reasons. As these constitute the main 

components of the quantitative non-adherence output, they will require re-

evaluation and refinement for better accuracy. 

One approach to understand and refine these values would be to chart them 

against the different patterns of guideline adherence output and attempt to find 

optimal minima representing a favoured value. 

11.4.4. Detection of clinical behaviour pattern 

An unexpected outcome of the initial audit of the Brain-IT dataset was the ability 

to observe a preferred clinical reaction when assessing counts of events reacted to 
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as part of a clinical management process. The original chart of counts across 

several EUSIG definitions was modified when different time-windows were overlaid 

and the remaining events with associations were counted. The most numerous 

definition in the original count was 15 mmHg, which shifted to 20 mmHg when the 

time-window was applied (with a constant hold-down of 5 minutes). This suggested 

that events on a crossing threshold of 20 mmHg elicited the most frequent clinical 

management responses. As the time-window was extended from 15 minutes to 1 

hour, the pattern gradually returned to the original un-associated version. 

It can be concluded from this that even before considering adherence to guidelines 

the act of associating treatments to EUSIG-events can provide valuable information 

about clinical management processes. 

11.5. Context 

11.5.1. Technical 

From a technical standpoint, the work is unique in its combined approach to 

measuring distance between process models, combining this with information from 

two sources of a different nature (ICU and text guidelines), and implementing this 

to provide clinical utility. Further review of literature additional to that reviewed 

in chapter 3, suggest that the state-of-the-art remains as it was in the fields 

reviewed that are closest to this work. 

In the field of knowledge representation, the latest work by Montani is at (Montani 

et al., 2015) and whilst having an extra module, is virtually the same work as 

presented a year earlier to the AIME conference. Since the work conducted in 

(Dijkman, Dumas and García-Bañuelos, 2009), which is referenced throughout this 

thesis, he has conducted several further iterations on the work of measuring 

distances between process models. One of these (Dijkman et al., 2012) specifically 

attempts to improve on the work conducted in the 2009 paper, and the other 

provides a short overview of the various methods available in addition to the one 

he outlined previously (Dijkman et al., 2013). 

In terms of other work involving clinical guideline formalisms, and their 

combination with apps, the MobiGuide project – the leading project in this space - 

concluded in 2016. As also mentioned in chapter 3, this was patient-centred and 
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focused on the aspect of patient-centred adherence – using “wearable technology” 

to improve adherence, making use of the features of smart-phones and apps, as 

covered in section 3.4.2. The latest publication from this group is at (Peleg, 

Shahar, Quaglini, Fux, et al., 2017b) and whilst novel in the combination of 

formalisms and physical technology, does not concern the same area of clinical 

management as this thesis. 

11.5.2. Clinical 

The project most closely aligned to this work in the clinical sphere is the EU-

funded CENTER-TBI project. Many publications have been made by this group over 

the lifetime to date of the project, with a particular focus on Living Systematic 

Reviews (LSRs). They cover several areas, such as the need for combining human 

and machine effort (suggestions for approach) (Thomas et al., 2017), and 

recommendations for the curation and development of Living Guidelines (Akl et 

al., 2017).  

These publications largely detail the issues and challenges experienced so far 

rather than outlining a full implementation of procedure. Adherence to guidelines 

in the TBI space are well covered in particular, as the focus of the PhD thesis of 

Maryse Cnossen (Cnossen, 2016c). However, these are also manual in approach and 

do not provide the technological solution as presented in this thesis. 

Most instructive in the clinical space has been the recent review of the sixth InTBIr 

conference in October 2017 (InTBIr, 2017) (a worldwide collaboration of major TBI 

projects) This reflected upon the progress of many of the leading TBI initiatives 

world-wide, with particular interest from the point of view of this thesis, on the 

progress of data development by CENTER-TBI and TRACK-TBI (McMahon et al., 

2014). 

In particular, challenges expressed by the CENTER-TBI team on the difficulties in 

curating wide-ranging data from the many patients (approximately 5400 as of the 

conference date), indicate that the repository has been designed with a desire to 

“capture everything”, and from the large number of partners involved, across 

many countries, leads to unmanageable heterogeneity in the datasets. Control was 

attempted on this from the beginning of the project using the Common Data 
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Elements (CDEs) inherited from the IMPACT studies (Marmarou et al., 2007), but it 

is likely these were not specified at a low enough level, and the same data issues 

now occur. 

As such, data curation meetings and recommendations have now been formulated 

in response to the challenge of controlling this heterogeneity (InTBIr, 2017). An 

ideal synergy of the work of this thesis – attempted to no avail during the course of 

the research – would be to apply the framework to the appropriate subset of the 

heterogeneous data (physiological output and treatment annotations, which can be 

standardised relatively easily) and attempt to extract adherence output from a 

well-annotated dataset. 

Finally, in the same meeting, a representative of the Brain Trauma Foundation 

noted that on the development of TBI guidelines there is a lot of progress on 

literature identification/synthesis and evidence-based recommendations, but not 

on the development of protocols and algorithms which would assist technologically 

in the revision and development of guidelines. The framework developed in this 

thesis would be almost a perfect fit for this vision, and an immediate future step 

for the continuation of this research will be to contact the BTF and demonstrate 

the application and how it works with their developed guidelines. 

11.6. Future work 

There are a variety of avenues of research and refinement that can be pursued as 

a result of this research work.  

Tasks that should be immediately addressed include the technical limitations 

discovered during the evaluation phases of the work, including: 

 Feedback on usability, interface and clinical efficacy of the application from 

clinical users 

 Improved sensitivity to refractory EUSIG events 

 Improved processing of multiple treatments and events 

 Refinement on the weighting values chosen to calibrate the adherence 

output 

 Refinement of the threshold values of the severity charts 
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In terms of contextual application, it would be ideal to apply the framework to a 

subset of the CENTER-TBI dataset and to approach the Brain Trauma Foundation to 

demonstrate as a possible application of technological algorithms to the feedback 

and development of TBI guidelines. 
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12. Conclusions 

This thesis presents research into the use of process models to represent clinical 

guidelines and to calculate a distance between these and real ICU data, as a 

measure of guideline adherence. The methods are applied to the Traumatic Brain 

Injury domain, specifically the threshold monitoring guidelines for SBP, ICP and 

CPP as formulated by the Brain Trauma Foundation (BTF). The work presents the 

following original contributions to research: 

Technical 

 The application of process models to neuro-intensive data 

 The expression of the Brain Trauma Foundation guidelines as process models 

 The application of process model distance calculations to neuro-intensive 

data (and their use as a guideline adherence measure) 

 A novel method of presentation of guideline adherence results 

 A novel technological framework: the conversion of text guidelines and 

clinical data into comparable objects, the implementation of distance 

calculations to run the comparisons, the implementation of novel 

presentation techniques 

Clinical 

 A technological solution to provide direct and detailed information on 

guideline adherence and clinical management processes of ICP and CPP in 

neurological ICU data 

12.1. The research 

Business Process Model Notation (BPMN) was used to represent the process models 

of both the text guidelines and the physiological and treatment ICU data. A 

method of calculating distances between process models was then used to 

compare the two. This framework was then implemented into a web-enabled 

application to present adherence information on any ICU dataset. 

The three hypotheses formulated for this work were: 

1. In high-resolution time-series clinical data, one can extract clinically-valid 

treatment processes for ICP/CPP management in TBI patients 
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2. Having extracted treatment processes, one is able to develop a method to 

compare these against other treatment processes to establish the degree of 

similarity between them 

 

3. One can develop a computerised tool that readily quantifies and displays to 

clinical staff a metric of actual ICP/CPP management protocol adherence 

12.2. Methodology 

The main technological concept in this thesis was that of process models – a 

construct used in corporate and business domains to model time-varying processes 

and identify efficiencies. The process models were used to measure the adherence 

of clinicians to specific TBI guidelines (ICP/CPP/BP monitoring thresholds) using 

physiological and treatment data from bedside machines in neurological ICUs 

(EUSIG pressure events and corresponding treatment annotations).  

Similarly, the relevant guideline texts from the Brain Trauma Foundation (BTF) 

were represented using Business Process Model Notation (BPMN) so that a 

comparable process model could be constructed. Then building on previous 

comparison work between process models, a “distance” between the two models 

was evaluated and presented as a quantitative metric of adherence, along with the 

qualitative components making up this metric.  

Finally, this model construction and comparison was developed into a web-enabled 

application that can readily feed-back the non-adherence measurements in a 

clinical environment for any given cohort of patients that have standard 

physiological and treatment output. 

Four evaluations were completed:  

1) Evaluation of the application’s functions 

2) Evaluation of the typical timing accuracy of treatment annotations 

3) Evaluation against domain expert patient notes 

4) Evaluation of adherence output against patient outcome 
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The framework was then applied to two large-scale patient cohorts, one 

neurological specialist dataset (Brain-IT) and the other a general collection of non-

specialist ICU data (MIMIC III). 

Adherence “distance” and duration was presented in a variety of ways to 

communicate as effectively and efficiently as possible how clinical management is 

affected by guideline adherence. These included minute-by-minute windowing 

output (single number each minute, with component reasons viewable if desired), 

list per-patient of all non-adherence instances (also with component reasons) and 

a summary view using inter-quartile range tables and box-plots (to understand the 

spread of non-adherence durations). 

A key philosophy of the thesis was to minimise the use of subjective judgement 

information about adherence wherever possible. This was largely achieved but was 

unavoidable in components such as a clinical “weighting” multiplier added to the 

reasons for non-adherence. 

12.3. Key results 

The evaluation of the system showed that adherence output was reliably captured 

when tested in isolation with data that provided expected outcomes. However, a 

key point that became apparent was the sensitivity to the accuracy of treatment 

annotations, in particular their timing, shown by the large “default” adherence 

instances. 

Therefore, a follow-up evaluation was conducted to investigate the typical timing 

accuracy of an ICU dataset with a “live observer”. This study showed that timing 

could indeed be variable and depended on factors such as the typical ward 

approach (or culture) towards annotations in general. 

To ascertain further insight to the system performance in a real clinical setting, 

the third evaluation assessed the adherence output against contextual patient 

notes provided by domain experts. This highlighted adherence output of interest 

(e.g. repeat dosages administered), and also provided feedback on issues that 

required addressing (e.g. the system was insensitive to refractory EUSIG events). It 

also showed more varied adherence output as a result of the higher density of 

annotations of the Philips ICCA system.  
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The final evaluation used a logistic regression to investigate if there was a 

relationship between the adherence output and 6-month patient outcome 

(captured in the Brain-IT dataset). However, there was no statistically significant 

relationship observed, once the known indicators for TBI had been accounted for.  

All of these evaluations provided insight to the strengths and limitations of the 

system when deployed into a real clinical setting. Though issues were highlighted, 

the system was capturing clinical management processes satisfactorily enough to 

proceed to be applied to the two large-scale datasets (Brain-IT and MIMIC III). 

A range of observations on guideline adherence were made in both datasets. A 

variety of non-adherence patterns could be ascertained and presented in the five 

methods outlined in the implementation (timeline, instance table, interquartile 

range of instances, box-plots and severity charts). The coverage of EUSIG events 

with adherence information in Brain-IT was around 17% (with the caveat that a 

processing bug suggests the actual figure should have been around 34%), which is 

low relative to the overall number of events. The MIMIC III dataset had low-

resolution physiological data (end-hour averaged) and even lower association 

values (7%). Therefore, both datasets had issues in terms of coverage and quality. 

However, even with these limitations examples of many guideline adherence 

patterns were indicated. With modern data capture methods, such as Philips ICCA, 

these figures indicating representation would likely be much higher. 

In conclusion, the answers to the three original hypotheses were:  

1) A treatment process for the management of ICP and CPP can indeed be 

derived from the analysis of physiological and treatment data 

2) This process can be compared against other process of similar nature (in 

this, the BTF guideline represented in BPMN) 

3) The output of this comparison can be constructed into a clinically accessible 

tool – in this case a web-enabled application 

12.4. Future research 

Immediate future work on this research would include: 
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 Feedback on usability, interface and clinical efficacy of the application from 

clinical users 

 Improved sensitivity to refractory EUSIG events 

 Improved processing of multiple treatments and events 

 Refinement on the weighting values chosen to calibrate the adherence 

output 

 Refinement of the threshold values of the severity charts 

In terms of contextual applications, it would be ideal to apply the framework to a 

subset of the CENTER-TBI dataset and to approach the Brain Trauma Foundation to 

demonstrate the work as a possible application of technological 

algorithms/protocols to aid with the development of TBI guidelines. 

12.5. Summary 

The clinical goals of this research were to investigate possible technological 

solutions to aid with the challenge of low-power TBI studies, in particular trying to 

leverage the proximity of data to the ICU source. From a broader perspective, a 

long-term goal would be the generalisation of the framework to include other 

clinical domains and management goals beyond the specific management of 

ICP/CPP in TBI. 

To recap, it is believed that this technology is unique and provides an original 

contribution of providing detailed and information on guideline adherence in the 

clinical management of ICP and CPP in a neurological ICU. It applies process 

models to neuro-intensive data, expresses the BTF guidelines as process models, 

applies a distance calculation between process models in the neuro-intensive 

domain, presents guideline adherence information in a novel way, and combines 

all the above technology into one unique framework. 

It is hoped that this research and resulting technology represents a new, novel and 

effective way to capture clinical guideline adherence information in an ICU. 
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Appendices 

A. Literature Review Methods 

The strategy for reviewing literature for this thesis is outlined in this section. 

A.1. Research Questions 

The main review of literature covered the following research areas: 

 Review novel and established tools which encourage and/or monitor 

adherence to clinical guidelines (technological and non-tech) 

 Review common issues encountered when trying to improve adherence to 

clinical guidelines (general and TBI-specific) 

A.2. Eligibility Criteria 

 Studies published in English between 1994 and 201820 

 Studies which had a clinical implementation and/or evaluation 

A.3. Exclusion Criteria 

 Studies which were not peer-reviewed (except theses) 

 Poster abstracts 

 Studies which did not include clinical guidelines 

A.4. Search terms with dates 

Whilst a general and less systematic search continued throughout the course of the 

research, the following were periods particularly devoted to organised literature 

searching, so provide the most relevant reference points. 

 

February 2012 (then re-run in June 2016) 

 “Computerised/Computerized clinical guidelines” 

 “Computer-Interpretable Clinical/Medical Guidelines” 

 “Clinical workflows” 

 “Workflow Patterns” 

 “Evidence-Based Medical/Clinical Guidelines” 

                                                      
20 Though some older papers were referenced, such as (Shortliffe, 1987) published in 1987. 
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 “Decision Support Systems/DSS/Clinical Decision Support Systems/CDSS” 

 “Clinical Guideline Adherence” 

 

February 2013 

 "Clinical management variation studies" [+neuro, +icu, +tbi] 

 "TBI RCT reliability studies" [+ expanded acronyms] 

 "TBI physiological data" [+ expanded acronyms] 

 "TBI clinical management" 

 “adherence to BTF guidelines” 

 “deviation from BTF guidelines” 

 “why do clinicians not follow the BTF guidelines” 

 "physiological data analysis icu" 

 "interpreting ICU data" 

 "capturing ICU data" 

 "capturing and interpreting ICU data TBI" 

 "statistical analysis of icu data tbi" 

 "time series variation icu data tbi" 

 “TBI data of low/high quality resolution” 

 "Therapy intensity level tbi" 

 "clinical management variability studies icu" 

 "clinical management variability studies icu tbi" 

 "quantifying icu clinical management" 

 "minimising tbi management variability" 

 "variation in TBI management" 

 

February 2014 

 "adherence to medical guidelines" 

 "clinician adherence to medical guidelines" 

 "physician adherence to medical guidelines" 

 "medical guideline adherence improvement" 

 "clinical decision support tools" 

 "icu clinical decision support tools" 
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 "icu clinical decision support tools traumatic brain injury" 

A.5. Search strategy 

Search fields for keywords in the title and abstract of papers were returned. 

Metadata was recorded using the Mendeley Reference Manager software 

(www.mendeley.com). Lists and digests of papers based on pre-entered keywords 

and search behaviour on Google Scholar were also directly received by email 

weekly. Of the included papers, reference searches for further related papers was 

then conducted. 

 

Total paper number in Mendeley = 317 

Total paper number referenced in thesis (including books and websites) = 137 

A.6. Sources 

A.6.1. Search Engines & Digital Libraries 

 Google Scholar 

 ACM Digital Library 

 IEEE Xplore Digital Library 

 Springer Link 

 Science Direct 

 Pubmed 

A.6.2. Journals 

 Artificial Intelligence in Medicine 

 Journal of Clinical Monitoring & Computing 

 BMC Medical Informatics and Decision Making 

 Journal of the American Medical Informatics Association 

 Journal of Biomedical Informatics 

 Health Informatics Journal 

 Methods of Information in Medicine 

 Journal of Medical Systems 

 The New England Journal of Medicine 

 The Medical Journal of Australia 

http://www.mendeley.com/
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 The Lancet 

 Journal of Neurotrauma 

 Journal of Neurosurgery 

 The Journal of Trauma: Injury, Infection and Critical Care 

 Journal of the American Medical Association 

 Critical Care Medicine 

 Acta Neurochirurgica 

A.7. Most current literature 

A final appraisal of literature was conducted in September 2018 to check on the 

most up-to-date developments in projects relevant to the research work. This was 

primarily focused on the CENTER-TBI project, in particular the PhD of Marie 

Cnossen (which specifically concerned TBI guidelines), and the latest InTBIr 

meeting (Oct 2017). 
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B. Knowledge representation through domain ontologies 

One of the initial avenues of research work in this thesis was to explore the use of 

ontologies to achieve the aims of the thesis. This culminated in a short paper that 

was accepted for publication to the CBMS (Computer-Based Medical Systems) 

conference proceedings, presented in Rome in 2012, an excerpt of which is 

presented in this section. 

B.1. System architecture 

The AMITIE system (Automated Medical Intervention and Treatment Inference 

Engine) has been developed to identify abnormal physiological events and 

automatically infer subsequent medical interventions from time series 

physiological and treatment data. Figure B.1 provides a high-level overview of the 

system. 

 

Figure B.1: High-level overview of the AMITIE system 

The patient data is explored for instances of abnormal physiological readings. Once 

identified, the data is further examined to find related interventions given to the 

patient. In some cases, the interventions are easy to identify as they have been 

specifically recorded in the patient data-set, with an explicit target noted. 

However, as described above interventions often have to be inferred. To enable an 

intervention to be inferred, detailed information can be obtained from domain 

ontologies. Information such as the known physiological effects of the intervention 

and other contextual information (e.g. contraindications of a drug) can help to 

determine whether it is likely that the patient has received the intervention for 

the abnormal reading. For example, consider a series of abnormally raised 
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intracranial pressure readings which then return to normal. If the data-set is 

examined and no intervention is recorded, it may be reasonable to infer from the 

observation of the patient’s temperature decreasing, that the procedure 

‘therapeutic cooling’ has been administered. 

In the AMITIE system, a set of ontologies are used to model the domain. An 

ontology “defines a set of representational primitives with which to model a 

domain of knowledge or discourse.” (Gruber, 2008) AMITIE’s knowledge base 

consists of three OWL (W3 – OWL, 2011) domain ontologies which model the 

medical domain, patient data and human physiology. This knowledge base has 

been reused from previous work on the EIRA system (Moss, 2010). The following 

high-level algorithm summarises the functionality of the AMITIE system: 

1. Identify an abnormal physiological event (E) 

a. Characterize E into whether it has returned to a baseline (“normal”) value or 

not.  

b. If it has, it is assumed that the patient has been treated and the time period 

(TP) of E is determined. 

c. Examine TP for instances of annotated interventions 

i. If intervention (I) is noted in data-set: suggest that I has been given in 

response to E. 

ii. Else, infer non-annotated intervention: 

iii. Identify known physiological effects of possible interventions for E. 

iv. Examine TP for evidence of any of these effects. 

v. If possible intervention (Ip) is found:  

vi. suggest Ip has been given in response to E 

vii. Else, suggest that patient returned to baseline value without intervention. 

 

Issues of negation and ranking have not yet been handled. This algorithm also 

assumes a one-to-one relationship between event and physiological output. 

However, it is likely that combinations and emergent factors make this relationship 

more complex. 
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B.2. Implementation 

The AMITIE system software is written using the JENA API (Apache – JENA, 2011) 

[incubator.apache.org/jena/]. To obtain the information from the ontology, a set 

of SPARQL queries have been implemented. These allow for a separation of the 

inference process from the application code (for later re-use in other medical 

contexts). They have the following functions and features: 

1) The first query obtains all the physiological data above a certain threshold: 

SELECT ?timepoint ?physiovalue   

WHERE {?x <http://www.owl-ontologies.com/amitie.owl#hasTime>?timepoint .  

[...] 

?reading <http://www.owl-ontologies.com/amitie.owl#readingParameter>  

<http://www.owl-ontologies.com/amitie.owl#"[physiolabel]"> .  

FILTER (?physiovalue > "[physioThreshold]"}.}  

Of the variables in the query, “physiolabel” refers to the physiological parameter 

that is being queried (e.g. heart rate) and “physioThreshold” refers to the value 

above which an abnormal event is deemed to have occurred (e.g. ICP readings 

above 20 mmHg are generally considered to require treatment). 

2) The second query obtains all the treatments that are annotated in the data-set 

within the time period of a single event. 

3) The information required to infer interventions, for when a treatment is not 

annotated in the data-set, is extracted from the ontology using five queries that 

interrogate the following features to see if they are present (as they are significant 

in the event signature):  

 High_Feature  

 Low_Feature  

 Increase_Parameter_Change 

 Decrease_Parameter_Change  

 Constant_Parameter 
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4) The final query obtains other physiological data that may relate to the abnormal 

event in question but has not been retrieved in the original query. The layout is 

similar to the first query but is constrained by time series rather than threshold 

physiological values. 

B.3. Results 

Using this combination of domain knowledge and patient data, the resulting 

management of a patient’s abnormal event is determined to either be an 

annotated treatment, a non-annotated treatment, or the patient’s vital sign has 

returned to normal without any clinical intervention. Table B.1 shows the results 

of the AMITIE system run against three patients selected from the Brain-IT 

database. 

Patient ID No. of ICP 

events 

Annotated 

Treatments 

for each ICP 

event 

Inferred 

Treatments for 

each ICP event 

15026161 25 0 Ventilation and 

cerebral 

vasoconstriction 

15127262 209 0 Ventilation and 

cerebral 

vasoconstriction 

15137626 77 0 Ventilation, 

induced 

hypothermia and 

cerebral 

vasoconstriction 

Table B.1: AMITIE results 

B.4. Discussion 

Ultimately, this research avenue was abandoned due to similar issues as those 

quoted in section 3.4.3. (outlining the use of clinical guideline formalisms and 

ontologies). These included: the over-specification of surrounding context 

information, only a small sub-section of which was directly relevant to the 

guideline evaluation (the EUSIG parameter definitions); the difficulty in re-
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purposing an ontology for secondary usage; and over-engineering of the solution, 

which required a large overhead in new technologies that were ultimately 

unnecessary – for instance, the SPARQL query language over regular Standard 

Query Language (SQL) to query data repositories, and the use of the Protégé 

ontology editor over a regular text editor. 

Another issue was that the inference engine presented in this paper (AMITIE) 

claimed to do the detection and association of physiological events and 

treatments. At a very basic level this was correct, but the implementation of this 

inference was weak and ultimately required the more robust method 

implementation that can be found in chapters 4-6 of the thesis. 

Though the primary use of ontologies was abandoned, this initial work was 

instructive in highlighting the features required for the eventual solution. Though 

the BPMN notation was ultimately chosen to represent the BTF guidelines (see 

chapter 4), an ontology with more contextual domain knowledge of an ICU would 

be a possible alternative.  
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C. Brain Trauma Foundation Guidelines 

The guidelines followed for this thesis are outlined in full here. They are 

comprised of Table 3 (“Thresholds”) in (Carney et al., 2016), which is the 4th 

edition update of the guidelines. 

C.1. Brain Trauma Foundation guidelines - 4th Edition 

C.1.1. Blood pressure thresholds 

Level III 

 “Maintaining SBP at >=100 mm Hg for patients 50 to 69 years old or at 

>=110 mm Hg or above for patients 15 to 49 or >70 years old may be 

considered to decrease mortality and improve outcomes.” 

C.1.2. Intracranial pressure thresholds 

Level IIB 

 “Treating ICP >22 mm Hg is recommended because values above this level 

are associated with increased mortality.” 

Level III 

 “A combination of ICP values and clinical and brain CT findings may be used 

to make management decisions.” 

C.1.3. Cerebral perfusion pressure thresholds 

Level IIB 

 “The recommended target CPP value for survival and favorable outcomes is 

between 60 and 70 mm Hg. Whether 60 or 70 mm Hg is the minimum 

optimal CPP threshold is unclear and may depend upon the auto-regulatory 

status of the patient.” 

Level III 

 “Avoiding aggressive attempts to maintain CPP >70 mmHg with fluids and 

pressors may be considered because of the risk of adult respiratory failure” 
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C.2. Brain Trauma Foundation guidelines - 3rd Edition 

A revision of these guidelines occurred in August 2016 (Carney et al., 2016), during 

the course of this research work.  

Examples of the transition between the 3rd and 4th editions (the 3rd being published 

in 2007) are shown below. 

C.2.1. Blood pressure thresholds 

Level II 

 “Blood pressure should be monitored and hypotension (systolic blood 

pressure < 90 mmHg) avoided.” 

Level III 

 “Oxygenation should be monitored and hypoxia (PaO2 < 60 mmHg or O2 

saturation < 90%) avoided.” 

The differences between these recommendations and those which appear in the 4th 

edition are quite large: references to hypotension and oxygenation have been 

removed and replaced with a single consideration of patient age. 

C.2.2. Intracranial pressure thresholds 

Level II 

 “Treatment should be initiated with intracranial pressure (ICP) thresholds 

above 20 mmHg.” 

Level III 

 “A combination of ICP values, and clinical and brain CT findings, should be 

used to determine the need for treatment” 

The only difference between these recommendations and those which appear in 

the 4th edition is with the monitoring threshold: 20 mmHg in the 3rd edition; 22 

mmHg in the latest. 

C.2.3. Cerebral perfusion pressure thresholds 

Level II 
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 “Aggressive attempts to maintain cerebral perfusion pressure (CPP) above 

70 mm Hg with fluids and pressors should be avoided because of the risk of 

adult respiratory distress syndrome (ARDS)” 

Level III 

 “CPP of <50 mm Hg should be avoided” 

 “The CPP value to target lies within the range of 50-70 mm Hg. Patients 

with intact pressure autoregulation tolerate higher CPP values” 

 “Ancillary monitoring of cerebral parameters that include blood flow, 

oxygenation, or metabolism facilitates CPP management” 

For CPP, the differences are structural as well as in the content: the lower limit of 

the target value of CPP has changed (50 mmHg in the 3rd, 60 mmHg in the 4th). The 

certainty of the recommendations have changed places (the considerations of ARDS 

is level 3 in the 4th edition, where it was level 2 in the 3rd, and vice versa with the 

CPP target information), along with a new sub-category of “IIb” introduced in the 

4th edition. 
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D. Automated process mining 

This section details the work invested in attempting to automatically – as opposed 

to manually – derive process models from the neurological ICU data in this research 

work. The following excerpt is from a paper that was submitted (unsuccessfully) to 

the CBMS (Computer-Based Medical Systems) conference in Sao Paolo, 2015. It 

details the main methods used which were the conversion of the physiological and 

treatment data to XES format (XES-Standard, 2015), and the use of the PrOM 

framework (Dongen, 2005) to generate a process model using simple heuristic 

filtering and the “alpha-algorithm” process miner. 

D.1. Conversion of XES standard 

The XES standard (eXtensible Event Stream) is an XML representation of event logs 

that provides a generalized format from which process models can be extracted. 

Represented by the authors as being simple, flexible, extensible and expressive, 

the basic structure includes a log, made up of traces, which are in turn made up of 

events. All entities can have attributes of primitive types familiar to programmers 

(e.g. string, int, boolean, etc), which can be nested within each other and can 

have varying scope (e.g. within a trace, within a log, global, etc).  

To convert the raw EUSIG information taken from the ICU data stream into XES, 

the event information is translated to the appropriate extension definitions, with 

the mapping as shown in table D.1. This is done programmatically, using the event 

and treatment information from (STELL, MOSS and Piper, 2014) as the input, and 

an XML file using the XES templates provided by the ProM authors as the output. 

 

 

 

 

 

 



290 
 

EUSIG Feature Example XES Attribute 

Event start Timestamp lifecycle: 

transition 

Event end Timestamp lifecycle: 

transition 

Event type ‘ICP’ concept: name 

Event threshold ‘Raised over 

threshold’ 

concept: instance 

Treatment start Timestamp lifecycle: 

transition 

Treatment end Timestamp lifecycle: 

transition 

Treatment target ‘ICP’ concept: name 

Treatment type ‘Analgesics’ concept: instance 

Table D.1: Mapping of data-set features from the Brain-IT data-set to the features as specified in 

the XES standard 

Additional to these, two event classifiers are defined in the header of the XES file. 

Labelled as ‘MXML Legacy Classifier’ (using templates from the ProM authors) this 

classifier counts all objects that match on the ‘concept: name’ and ‘lifecycle: 

transition’ attributes. Another classifier – ‘Event name’ – matches on ‘concept: 

name’ only. Using these classifiers and the mappings from table D.1, a full log-file 

is built up of events, which are part of traces drawn from the 262 individual Brain-

IT patient information streams. This creates the full “Brain-IT XES log-file”. 

D.2. Generation of process model 

The ProM framework allows an event log file to be imported, filtered and 

analyzed. The framework has three major components: workspace, actions and 

views. The workspace acts as the home file directory allowing import and browsing 

of event log files. The actions section allows selection of a list of “miner” plugins 

that can be run to filter and analyze the event log. The views section shows the 

output of all analysis in tabular and visualized format. 

In this work, the event log generated by the XES event log file is filtered using the 

“Simple Heuristics” plugin. This filters out events that are irrelevant to the 

process that is being analyzed or those that have been picked up from the previous 

conversion incorrectly (for instance any treatment label that has been assigned to 
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the target due to a transposition in the original database columns). Types of start, 

end, and all other event and treatment classes are explicitly selected. After this 

filter has been run the number of processes, cases, events (with classes and 

types), and originators will be tabulated. 

Once this data-set is filtered, the log is mined for a process model using the alpha-

algorithm. The alpha-algorithm creates a work-flow net from a work-flow log by 

examining the causal relationships between tasks within that work-flow (full 

details of this process can be found in (van der Aalst, Weijters and Maruster, 

2004)). 

D.3. Results 

In general, the process model outputs show a standard relationship between start 

and end tags for ICP and CPP events throughout all traces (as expected). The 

interactions of interest are the treatment responses to physiological events. 

Covering the 13 main treatment categories (listed in the output graphs of (STELL, 

MOSS and Piper, 2014)), the listing of occurrences allows the strength of the 

relationships between treatment and physiological events to be evaluated for 

particular centre traces, individual patient traces, or for the overall trace of the 

262 Brain-IT patients. 

Table 2 shows an example centre event log which has had the simple heuristic 

filter applied. When filtered on all of the treatment information, the list showed 

that the two most frequently occurring treatments were volume expansion and 

paralysis (accounting for 80% of all instances within the log, the rest being made 

up of the other 13 treatment categories). 

 

Table D.2: Distribution of events and treatments throughout Brain-IT trace log after filtering with 

simple heuristics 
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Using these four classes in the filtered event log, a petri-net diagram was then 

generated using the alpha algorithm plugin (figure 1). The nodes and arrows 

indicate the direction of dependency in time of each entity. For instance, ICP start 

and CPP start always lead to ICP complete and CPP complete, respectively (which 

is intuitive as only well-defined physiological events with start and end tags are 

included).  

 

 

 

 

Figure D.1: Petri-net of processes derived from the Brain-IT data-set using the alpha-algorithm on 

an example center (Vilnius) 

In terms of the dependencies of the treatments on the ICP/CPP events, volume 

expansion occurs in response to ICP start/complete (which indicates that the 

treatments are given in response to both the start and completion of an event, 

depending on the clinical circumstances). Volume expansion also occurs in 

response to CPP event triggers. But according to the event log paralysis only occurs 

in response to CPP events, not ICP. 

A possible medical explanation for this is that paralysis would be applied to ICP 

events in isolation rather than CPP (paralysis is applied when a patient “fights” a 

ventilator, their CO2 processing increases, which causes their ICP to rise 

simultaneously). However, this process model suggests that the treatment is being 

applied by measuring the CPP instead. Further study to validate this finding would 

indicate whether this process model does actually show whether they have 

deviated from the consensus treatment practice for such events. 

D.4. Discussion 

Ultimately, this work did not produce viable process models, most likely due to the 

use of heuristics and simple process miner algorithms, both of which are not 

generally tolerant of “noisy” real-world data. The avenue of research was 

abandoned as the amount of manual constraints applied to the inputs and outputs 
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of the processing – in order to produce process models that represented 

recognisable processes in an ICU – suggested that a manual method (chapter 4) 

would be just as effective and was also more transparent (rather than depending 

upon “black box” tools). The trade-offs between both methods in terms of errors 

and uncertainties (see end of section 5.2) also suggested that either option was a 

viable path. 
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E. Mathematical representation of graph-edit algorithms 

In this thesis the algorithm used for comparison of process models is an exhaustive 

one, checking all available possibilities between all states, which is possible due to 

the constrained nature of the problem space (the categories available for all nodes 

and edges are low in number by design). This is in contrast to the open problem 

formulated for all process model solutions in (Dijkman, Dumas and García-

Bañuelos, 2009), leading to the designation of that issue as an “NP-complete 

problem” – one which is of sufficient complexity that finding solutions with proofs 

that can be verified in polynomial time (i.e. a reasonable time-scale) is not 

considered likely. The four algorithms they used are reproduced here for future 

reference, as they may yet be applicable to the research space. 

E.1. Greedy 

“The algorithm starts by marking all possible pairs of nodes from the two graphs 

as open pairs. In each iteration, the algorithm selects an open pair that most 

increases the similarity induced by the mapping and adds this pair to the 

mapping. The selected pair consists of two nodes. Since each node can only be 

mapped once, the algorithm removes from the set of open pairs, all pairs in which 

one of the selected nodes appears. The algorithm iterates until there is no open 

pair left that can increase the similarity induced by the mapping”. 

E.2. Exhaustive with pruning 

“The algorithm recursively explores all possible mappings, but when the recursion 

tree reaches a certain size, the algorithm prunes it to keep only the mappings 

with the highest similarity. In the extreme case, the algorithm is thus 

exponential, but the pruning parameters will control its complexity. The 

algorithm starts by initializing the set of unfinished mappings to an empty 

mapping, with all nodes from the two graphs mapped as ‘free’ to be mapped. It 

repeatedly prunes the set of unfinished mappings and performs a step in which 

finished mappings are added to the set of finished mappings and unfinished 

mappings are extended with an additional pair of nodes. It repeats this until 

there are no more unfinished mappings. It then returns the finished mapping with 

the highest similarity score.” 
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E.3. Process heuristic 

“This algorithm is a variation of the exhaustive algorithm. It also builds a 

recursion tree of possible mappings, but it starts by mapping the source nodes of 

the business process graphs, then mapping nodes that immediately follow the 

source nodes, etc. Since it is plausible that nodes closer to the start of a process 

should be mapped to nodes closer to the start of the other process (and 

conversely), this should yield a higher-quality pruning. Indeed, the algorithm is 

more likely to prune mappings with node pairs that are further apart in terms of 

their distance to the starts of their processes.” 

E.4. A-star search 

“This algorithm is based on the well-known A-star heuristic search, which has 

been applied to the problem of graph matching in (Messmer, 1996). In each step, 

the algorithm selects the existing partial mapping map with the maximal graph 

edit similarity. The algorithm then takes a node n1 from graph G1 that has not 

yet been mapped and creates a mapping between this node and every node n2 of 

G2 such that n2 does not already appear in map. Let us say that m such nodes n2 

exist. The algorithm then creates m new mappings, by adding (n1, n2) to map. In 

addition, one mapping is created where (n1, ?) is added to map (? is a “dummy” 

node). This latter pair represents the case where node n1 has been deleted. This 

step is repeated until all nodes from G1 are mapped. It can be proven that the 

result is an optimal mapping.” 
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F. Known issues 

The following issues were discovered during the course of writing this thesis. The 

first was unable to be fixed before the date of submission, the second and third 

were considered after feedback from examiners at the viva. 

F.1. Time formatting issue 

Dataset: Brain-IT (chapter 9 – dataset analysis) 

Nature: the issue involves the incorrect parsing of date/timestamps. The 

formatter used was converting 24-hour readings to a 12-hour clock. 

Impact: Low/Moderate 

50% of EUSIG pressure events in the dataset have their timing offset by 12 hours. 

The event counts remain accurate, but the number of treatment associations will 

likely be reported as approximately 50% lower than is actually the case. This 

affects the consideration of how valid the adherence measurements from the 

Brain-IT dataset are (i.e. how many useful instances of adherence reporting, which 

depend on those treatment associations, are present). Currently around 17% in the 

Brain-IT dataset have associations. This error suggests that, once fixed, the 

number should be closer to 34%. 

Resolution: re-run the event detection program for the Brain-IT dataset with the 

formatter fixed, re-compile the indexing for the treatment profiles database, then 

re-run the counts of event/treatment associations. 

F.2 Severity chart issue 

Dataset: all 

Nature: It has been considered that the transformation of the guideline output to 

metric A (duration / non-adherence) is unnecessary, and the severity of duration 

combined with non-adherence would be best expressed only with metric B 

(duration * non-adherence). Requiring modification to the two-dimensional 

severity charts. 

Impact: Moderate 

The rationale for this change is as follows: 
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 If both duration and non-adherence are high, then the output has high 

severity 

 If both duration and non-adherence are low, then the output has low 

severity 

 If either factor has a disproportionate influence on metric B then this will 

affect the severity accordingly. 

This would be a reasonable clinical analogue for assessing severity as expressed by 

non-adherence to guidelines, and it is considered that entity A does not influence 

this output at all. 

A separate but related consideration is that the severity charts themselves would 

have most utility in a bedside ICU setting, and not in a retrospective audit 

situation, as in this latter case, time would be available to go into the more subtle 

and nuanced depth for the reasons for non-adherence (i.e. clinicians can make 

their own mind up about the case’s severity). 

Resolution: express the severity as a linear scale rather than a two-dimensional 

chart. 

F.3 Description of “default” instance value 

Dataset: all 

Nature: a recalculation of the factors that make up the structural difference 

between two process models, resulted in distance score reporting as 37.8% instead 

of 36.2%. 

Impact: Low 

Wherever the value of 36.2% is encountered in the thesis, this should be 37.8%. 

The clinical/informational effect is negligible. 

Resolution: apply the amended weighting factors to the code and re-process. 
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