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Summary 

 

Atrial arrhythmogenesis in a murine model of mitochondrial insufficiency 

Haseeb Valli 

 

Age-related atrial arrhythmias are frequently encountered in clinical practice and represent a major 

public health issue owing to evolving population demographics and rising prevalence of their 

respective risk factors. Of these, atrial fibrillation (AF) is the most common sustained arrhythmia 

affecting in excess of 8 million in Europe, and this figure is projected to rise to 18 million by 2060. AF, 

independent from other known predictors of mortality, doubles death rates, confers a five-fold increase 

in the risk of stroke, is associated with impaired left ventricular function and contributes to cognitive 

decline. 

The trend in increasing incidence mirrors that of a number of the constituents of the metabolic 

syndrome, including obesity, insulin resistance and hypertension. There is increasing data implicating 

metabolic, and in particular mitochondrial, dysfunction as a central feature of the biochemical changes 

that characterise ageing as well as the conditions listed above, and may also underlie the susceptibility 

to AF that accompany these states. Abnormal mitochondrial structure has been noted in animal and 

human studies of AF. Whether the observed mitochondrial abnormalities are a cause or consequence 

of AF, or the mechanisms through which these changes occur remain largely unexplored. 

A putative role for chronic mitochondrial impairment in the pathogenesis of such atrial arrhythmias 

was investigated here using a murine model with homozygous deficiency of the transcriptional 

coactivator peroxisome proliferator-activated receptor γ coactivator-1 β (Pgc-1β). Pgc-1β regulates 

mitochondrial biogenesis and function, and unlike other murine models of mitochondrial dysfunction 

Pgc-1β-/- mice have a mild cardiac phenotype, devoid of confounding contractile dysfunction. 

As the sequelae of chronic mitochondrial dysfunction progress with age, all experiments were 

performed in young (12-16 weeks) and aged (>52 weeks) Pgc-1β-/- mice and compared to aged-matched 

wild type (WT) controls. The investigations were initially performed in the in vivo setting using 

electrocardiographic assessment of electrical properties at baseline and following β1-adrenergic 

(intraperitoneal dobutamine) challenge. Pgc-1β-/- animals displayed chronotropic incompetence 

suggesting sino-atrial node disease and a paradoxical negative dromotropic response to dobutamine 



 
  

suggesting atrioventricular node dysfunction. The deficiency was also associated with evidence of 

slowed conduction, together alluding to underlying remodelling phenomena. 

More detailed evaluation of the atrial phenotype associated with Pgc-1β deficiency was performed 

using sharp microelectrode recordings of cellular action potentials (AP) in a whole-heart Langendorff-

perfused system during programmed electrical stimulation. The Pgc-1β-/- genotype was associated with 

an atrial arrhythmic phenotype that progressed with age. Young and aged Pgc-1β-/- hearts showed 

evidence of slowed AP conduction at the cellular level, through deficits in maximum rates of AP 

depolarization (dV/dt)max, and at the tissue level through prolonged AP latencies. Action potential 

duration (APD) was also significantly shorter in Pgc-1β-/- hearts at high heart rates.  

APD restitution has previously been linked to the pathogenesis of ventricular fibrillation and more 

recently AF. However in the present work the incidence of alternans or steepness of the restitution 

curves did not correlate with arrhythmic tendency, but rather ageing was associated with flattening of 

the APD restitution curve and reduced episodes of alternans. Arrhythmogenecity better correlated with 

reductions in AP wavelength parameters in Pgc-1β-/- hearts. 

The mechanisms underlying the altered electrical properties were then investigated, firstly using a 

novel loose patch clamp technique permitting transmembrane current recordings in intact atrial 

preparations preserving the in vivo extracellular and intracellular conditions. Pgc-1β−/− atria had 

significantly lower inward Na+ currents than that of WT preparations, correlating to the differences in 

(dV/dt)max values obtained. No differences in delayed outward (K+) currents were evident. 

Morphometric analysis revealed that Pgc-1β deficiency was associated with accelerated fibrosis, with 

aged Pgc-1β-/- hearts displayed the greatest fibrotic change.   

The Pgc-1β-/- murine model of chronic mitochondrial impairment results in an atrial arrhythmic 

phenotype that progresses with age. The transgenic mice develop progressive electrical and structural 

remodelling producing an atrial substrate promoting AP reentry and arrhythmia persistence. A 

number of the adverse remodelling phenomenon observed mirror those seen in human AF and 

therefore implicate mitochondrial impairment as a potential upstream mediator of age-related 

arrhythmogenesis. 

  



 
  

  



 
  

 

 



 

i 
 

Contents 

 

Publications ........................................................................................................................... vi 

Acknowledgments .............................................................................................................. vii 

Abbreviations ..................................................................................................................... viii 

List of Figures ........................................................................................................................ xi 

List of Tables ...................................................................................................................... xiii 

 

 

1 Introduction ..................................................................................................................... 1 

1.1 Atrial Arrhythmias........................................................................................................ 1 

1.2 Cardiac Electrophysiology ........................................................................................... 2 

1.2.1 The cardiac conduction system ................................................................................... 2 

1.2.2 The resting membrane potential ................................................................................. 4 

1.2.3 The cardiac action potential ......................................................................................... 5 

1.2.4 Excitation-contraction coupling .................................................................................. 9 

1.3 Mechanisms of arrhythmogenesis ............................................................................ 10 

1.3.1 Abnormal action potential generation ..................................................................... 11 

1.3.2 Cardiac reentry ............................................................................................................ 13 

1.3.3 Spatial heterogeneity .................................................................................................. 17 

1.3.4 Temporal heterogeneity ............................................................................................. 18 

1.4 Atrial Fibrillation ......................................................................................................... 21 

1.4.1 Definition of atrial fibrillation ................................................................................... 21 

1.4.2 A historical perspective .............................................................................................. 21 

1.4.3 Epidemiology of atrial fibrillation ............................................................................ 24 

1.4.4 Mortality and morbidity ............................................................................................ 26 

1.5 Early concepts of atrial arrhythmogenesis .............................................................. 27 

1.5.1 The multiple heterotopous centres theory ............................................................... 27 

1.5.2 Circus movement theory ............................................................................................ 27 

1.5.3 Mother wave theory .................................................................................................... 28 



 

ii 
 

1.5.4 Multiple wavelet theory ............................................................................................. 28 

1.6 The electrophysiological basis of AF ........................................................................ 29 

1.6.1 Trigger versus substrate ............................................................................................. 29 

1.6.2 Triggers for AF ............................................................................................................ 32 

1.6.3 Atrial substrate in AF ................................................................................................. 34 

1.6.4 Electrical remodelling in AF ...................................................................................... 39 

1.6.5 Structural remodelling in AF ..................................................................................... 44 

1.6.6 Mitochondrial dysfunction and AF .......................................................................... 45 

1.7 Murine models for arrhythmia ................................................................................. 49 

1.8 Peroxisome proliferator-activated receptor γ coactivator-1 family ..................... 50 

1.9 Scope of this thesis ...................................................................................................... 53 

 

2 Materials and methods ................................................................................................ 56 

2.1 Experimental animals ................................................................................................. 56 

2.2 In vivo electrocardiography ...................................................................................... 57 

2.2.1 Electrocardiography recordings ................................................................................ 57 

2.2.2 Digital signal processing ............................................................................................ 58 

2.3 Whole heart studies .................................................................................................... 59 

2.3.1 Experimental solutions ............................................................................................... 59 

2.3.2 Langendorff perfused preparation ........................................................................... 60 

2.3.3 Volume conducted electrocardiograph recordings ................................................ 60 

2.3.4 Whole heart intracellular microelectrode recordings ............................................ 61 

2.3.5 Pacing protocols .......................................................................................................... 61 

2.3.6 Quantification of AP parameters and arrhythmic incidence ................................ 62 

2.4 Loose patch clamp studies ......................................................................................... 63 

2.4.1 Experimental preparation .......................................................................................... 63 

2.4.2 Loose patch clamp current recordings ..................................................................... 64 

2.5 Quantification of cardiac fibrosis .............................................................................. 65 

2.6 Statistical procedures .................................................................................................. 66 

 

 

 



 

iii 
 

3 Age-related electrocardiographic changes in Pgc-1β deficient murine hearts . 67 

3.1 Introduction ................................................................................................................. 67 

3.2 Specific methods .......................................................................................................... 68 

3.2.1 Experimental Animals ................................................................................................ 68 

3.2.2 Statistical analysis ....................................................................................................... 69 

3.3 Results ........................................................................................................................... 69 

3.3.1 Baseline characteristics ............................................................................................... 69 

3.3.2 Pgc-1β-/- hearts display impaired heart rate responses .......................................... 71 

3.3.3 Aged-related SA node disease in WT and Pgc-1β-/- murine hearts ...................... 74 

3.3.4 Pgc-1β-/- hearts display paradoxical atrioventricular node function .................... 77 

3.3.5 Aged Pgc-1β-/- hearts display slowed ventricular activation ................................ 78 

3.3.6 Pgc-1β-/- hearts show shortened ventricular recovery times after adrenergic 
challenge ....................................................................................................................... 80 

3.3.7 Emergence of a short-QT phenotype in Pgc-1β-/- animals ..................................... 81 

3.4 Discussion .................................................................................................................... 85 

 

4 Age-dependent atrial arrhythmic phenotype in Pgc-1β deficient hearts .......... 92 

4.1 Introduction ................................................................................................................. 92 

4.2 Specific methods .......................................................................................................... 93 

4.2.1 Experimental Animals ................................................................................................ 93 

4.2.2 Statistical analysis ....................................................................................................... 94 

4.3 Results ........................................................................................................................... 94 

4.3.1 Pgc-1β-/- hearts develop an age-related arrhythmic phenotype ........................... 94 

4.3.2 Action potential parameters during regular pacing ............................................ 101 

 Action potential parameters following ............................................................................ 102 

4.3.3 premature extrasystolic stimuli ............................................................................... 102 

4.3.4 Relative changes in action potential parameters following premature 
extrasystolic stimuli .................................................................................................. 105 

4.3.5 Contrasting impacts of (dV/dt)max upon AP latency in WT and Pgc-1β-/- hearts
 108 

4.3.6 Compromised conduction triggering arrhythmia in all hearts .......................... 110 

4.4 Discussion .................................................................................................................. 113 

 



 

iv 
 

5 Atrial restitution properties in incrementally paced murine Pgc1β-/- hearts .. 119 

5.1 Introduction ............................................................................................................... 119 

5.2 Specific methods ........................................................................................................ 120 

5.2.1 Experimental Animals .............................................................................................. 120 

5.2.2 Pacing protocols ........................................................................................................ 121 

5.2.3 Statistical analysis ..................................................................................................... 121 

5.3 Results ......................................................................................................................... 122 

5.3.1 Aged Pgc-1β-/- hearts develop a pro-arrhythmic phenotype .............................. 122 

5.3.2 Altered atrial AP characteristics in young and aged Pgc-1β-/- hearts ................ 127 

5.3.3 Reduced temporal heterogeneities in atrial AP characteristics in aged Pgc-1β-/- 
hearts ........................................................................................................................... 127 

5.3.4 Spatiotemporal representations of AP excitation in Pgc-1β-/- and WT hearts .. 132 

5.4 Discussion .................................................................................................................. 134 

 

6 Age-dependent remodelling in Pgc-1β-/- hearts ................................................... 138 

6.1 Introduction ............................................................................................................... 138 

6.2 Specific methods ........................................................................................................ 140 

6.2.1 Loose patch clamp procedure ................................................................................. 140 

6.2.2 Statistical analysis ..................................................................................................... 140 

6.3 Results ......................................................................................................................... 141 

6.3.1 Currents reflecting atrial inward Na+ current activation .................................... 141 

6.3.2 Currents reflecting atrial Na+ current inactivation .............................................. 144 

6.3.3 Voltage dependences of atrial Na+ current activation.......................................... 144 

6.3.4 Voltage dependences of atrial Na+ current inactivation ..................................... 147 

6.3.5 Time courses of atrial Na+ channel recovery from inactivation ......................... 147 

6.3.6 Voltage dependences of atrial outward K+ current activation ........................... 148 

6.3.7 Rectification properties of outward K+ currents in loose patched atrial 
preparations ............................................................................................................... 151 

6.3.8 Increased fibrotic change with Pgc-1β ablation .................................................... 153 

6.4 Discussion .................................................................................................................. 155 

 

 



 

v 
 

7 Summary & General Discussion ............................................................................. 160 

7.1 Background ................................................................................................................ 160 

7.2 Electrocardiographic features of adverse remodelling ........................................ 163 

7.3 Conduction slowing and arrhythmic tendency in Pgc-1β-/- hearts ..................... 165 

7.4 APD restitution and propensity to atrial arrhythmias......................................... 166 

7.5 Electrical and structural remodelling in Pgc-1β-/- hearts ...................................... 168 

7.6 Limitations ................................................................................................................. 170 

7.7 Future studies ............................................................................................................ 172 

7.8 Conclusion .................................................................................................................. 175 

 

8 References .................................................................................................................... 176 

 

  



 

vi 
 

Publications 

 

The following publications were achieved following peer review during the course of the 
PhD. Research publications 1 – 4 make up the main chapters (Chapters 3 – 6) of the thesis. 
Publication 1 was performed in collaboration with Dr Shiraz Ahmad. 

 

1. *Ahmad S, *Valli H, Salvage SC, Grace AA, Jeevaratnam K & Huang CL-H (2018). Age-
dependent electrocardiographic changes in Pgc-1β deficient murine hearts. Clin Exp 
Pharmacol Physiol 45, 174–186. 

2.  Valli H, Ahmad S, Chadda KR, Al-Hadithi ABAK, Grace AA, Jeevaratnam K & Huang 
CL-H (2017a). Age-dependent atrial arrhythmic phenotype secondary to mitochondrial 
dysfunction in Pgc-1β deficient murine hearts. Mech Ageing Dev 167, 30–45. 

3. Valli H, Ahmad S, Fraser JA, Jeevaratnam K & Huang CL-H (2017b). Pro-arrhythmic atrial 
phenotypes in incrementally paced murine Pgc1β −/− hearts: effects of age. Exp Physiol 102, 
1619–1634. 

4. Valli H, Ahmad S, Jiang AY, Smyth R, Jeevaratnam K, Matthews HR & Huang CL-H 
(2018a). Cardiomyocyte ionic currents in intact young and aged murine Pgc-1β−/− atrial 
preparations. Mech Ageing Dev 169, 1–9. 

5. Ning F, Luo L, Ahmad S, Valli H, Jeevaratnam K, Wang T, Guzadhur L, Yang D, Fraser J, 
Huang C-H, Ma A & Salvage S (2016). The RyR2-P2328S mutation downregulates 
Na(v)1.5 producing arrhythmic substrate in murine ventricles. Pflugers Arch 468, 655–665. 

6.  Chadda KR, Ahmad S, Valli H, den Uijl I, Al-Hadithi AB, Salvage SC, Grace AA, Huang 
CL-H & Jeevaratnam K (2017). The effects of ageing and adrenergic challenge on 
electrocardiographic phenotypes in a murine model of long QT syndrome type 3. Sci Rep 
7, 11070. 

7. Jeevaratnam K, Chadda KR, Salvage SC, Valli H, Ahmad S, Grace AA & Huang CL-H 
(2017). Ion channels, long QT syndrome and arrhythmogenesis in ageing. Clin Exp 
Pharmacol Physiol 44, 38–45. 

8. Valli H, Ahmad S, Sriharan S, Dean LD, Grace AA, Jeevaratnam K, Matthews HR & 
Huang CL-H (2018). Epac-induced ryanodine receptor type 2 activation inhibits sodium 
currents in atrial and ventricular murine cardiomyocytes. Clin Exp Pharmacol Physiol 45, 
278–292. 

 

*Joint first author  



 

vii 
 

Acknowledgments 

 
 
As a recipient of the Wellcome Trust Clinical Research Training Fellowship, I would like to 

thank the Wellcome Trust for the generous support of this PhD project. I would also like to 

extend my gratitude to the Sudden Arrhythmic Death UK society and the NIHR BRC for 

supporting my research. 

I am indebted to my supervisor Prof. Chris Huang for his tireless support and encouragement 

throughout my PhD. His immense patience, dedication, attention to detail, intellectual rigour 

and scientific direction has been inspirational during my research.  

I would like to express my gratitude to my co-supervisor Dr Andrew Grace for his generous 

support and advice. I would also like to thank Dr Hugh Matthews for assistance in developing 

the loose patch clamp technique and providing relevant advice throughout this period. I am 

very grateful to Dr James Fraser for use of his laboratory space for various experiments. 

I have been fortunate to have had the opportunity to work with some very talented 

individuals during this period. I am very thankful for being able to work and develop a 

friendship with Dr Shiraz Ahmad and Dr Kamalan Jeevaratnam, both of whom provided 

invaluable support through the duration of this fellowship and with whom I look forward to 

collaborating with in the years to come. I am grateful for the help given Ali Al-Hadithi, Anita 

Jiang, Robert Smyth, Karan Chadda, Sujan Sriharan, Lydia Dean, Vishal Vyas and James 

Cranley, and wish them all the best in their studies and future careers. Mr Alan Cattell, Mr 

Paul Frost and Ms Vicky Johnson’s technical assistance, helpful anecdotes and biographical 

tails made difficult days more bearable. 

Finally, words cannot describe the debt of gratitude I owe to various members of my family – 

my parents, siblings, and my wife for providing the foundation upon which all of these efforts 

are supported. 

There are many more whom I have not been able to mention by name, but I am grateful to 

nonetheless.   



 

viii 
 

Abbreviations 

 

ADP   Adenosine diphosphate 

AF   Atrial fibrillation 

AFL   Atrial flutter 

ANOVA  Analysis of variance 

AP   Action potential 

APD   Action potential duration 

APD90   AP durations at 90% repolarisation 

AT   Atrial tachycardia 

ATP   Adenosine triphosphate 

AUC   Area under the curve 

AV   Atrioventricular 

AVN   Atrioventricular node 

AVNRT  Atrioventricular nodal re-entrant tachycardia 

AVRT   Atrioventricular re-entrant tachycardia 

BCL   Basic cycle length 

BDM   2,3-butanedione monoxime 

BrS   Brugada syndrome 

[Ca2+]i   Intracellular calcium concentration 

CaMKII  Ca2+/calmodulin dependent protein kinase II 

CPVT   Catecholaminergic polymorphic ventricular tachycardia 

CV   Conduction velocity 

DAD   Delayed after-depolarisation 

DI   Diastolic Interval 

DIcrit   Critical diastolic Interval 

DNA   Deoxyribonucleic acid 



 

ix 
 

(dV/dt)max  Maximum rates of AP depolarization  

EAD   Early after-depolarisation 

ECG   Electrocardiogram 

Epac   Exchange protein directly activated by cAMP 

ERR   Estrogen-related receptors  

FOXO1  Forkhead box O1 

HNF-4   Hepatic nuclear factor-4  

ICaL   L-type calcium current 

ICl   Calcium-activated chloride current 

IKUR   Ultrarapid rectifier potassium current 

IK1   Inward rectifying K+ channels (IK1). 

IKr   Rapid delayed rectifier potassium current 

IKs   Slow delayed rectifier potassium current 

INa   Fast inward sodium current 

Ito   Transient outward potassium current 

Ito,f   Fast transient outward potassium current 

Ito,s   Slow transient outward potassium current 

IR   Ischaemia-reperfusion 

KH   Krebs-Henseleit 

LA   Left atrium 

LQTS   Long QT syndrome 

MANOVA  Multiple analysis of variance 

MEA   Multi-electrode array 

MEF-2   Myocyte enhancer factor-2 

mtDNA  Mitochondrial DNA 

Nav   Voltage-gated sodium channel  

NCX   Na+/Ca2+ exchanger 

NRF-1   Nuclear respiratory factor-1 



 

x 
 

NRF-2   Nuclear respiratory factor-2 

PES   Programmed electrical stimulation 

PGC-1   Peroxisome proliferator-activated receptor γ coactivator-1 

PKA   Protein kinase A 

PPAR   Peroxisome proliferator-activated receptors 

PS   Phase singularity 

PV   Pulmonary Vein 

RMP   Resting membrane potential 

RFA   Radiofrequency ablation 

ROS   Reactive oxygen species 

RyR2   Cardiac isoform of ryanodine receptor 

SAN   Sino-atrial node 

sarcKATP  Sarcolemmal K-ATP channel 

SEM   Standard error of the mean 

SERCA  Sarcoplasmic reticulum calcium ATPase 

SNP   Single nucleotide polymorphism 

SR   Sarcoplasmic reticulum 

SREBP1  Sterol regulatory element-binding protein-1 

Sox9   Sry-related HMG box-9 

Tfam   Mitochondrial transcription factor A 

TGF-β   Transforming growth factor-β 

VF   Ventricular fibrillation 

VT   Ventricular tachycardia 

WT   Wild type 

  



 

xi 
 

List of Figures 

 

Figure 1.1 Anatomy of the cardiac conduction tissue .............................................................................. 3 

Figure 1.2 Canine Purkinje fibre action potential .................................................................................... 6 

Figure 1.3 Cardiac action potential waveform and relevant currents ................................................... 7 

Figure 1.4 Excitation-contraction coupling............................................................................................... 10 

Figure 1.5 Representation of early- and delayed-afterdepolarisation phenoma ............................... 12 

Figure 1.6 Ring preparation from Cassiopea xamachana ...................................................................... 15 

Figure 1.7 Demonstration of reciprocating rhythms by G.R. Mines ................................................... 16 

Figure 1.8 Mechanism of reentry ............................................................................................................... 17 

Figure 1.9 Idealised restitution curve ........................................................................................................ 20 

Figure 1.10 Arterial and venous pulse recorded with the polygraph .................................................... 23 

Figure 1.11 Early electrocardiogram recordings of atrial fibrillation .................................................... 24 

Figure 1.12 Foci of ectopic activity ............................................................................................................... 31 

Figure 1.13 Circus reentry in rabbit atria during sustained tachycardia .............................................. 35 

Figure 1.14 Representation of leading-circle and spiral wave reentry .................................................. 37 

Figure 1.15 ‘AF begets AF’ ............................................................................................................................. 41 

Figure 2.1 Typical murine electrocardiogram complex and relevant intervals ................................. 59 

Figure 2.2 Typical atrial AP waveform relevant electrophysiological parameters ........................... 63 

Figure 2.3 Loose patch clamp of murine atrial tissue ............................................................................. 66 

Figure 3.1 ECG recordings from Pgc‐1β−/− hearts .................................................................................... 70 

Figure 3.2 Heart rate response to dobutamine challenge ...................................................................... 72 

Figure 3.3 Mean heart rates pre- and post- adrenergic challenge ........................................................ 73 

Figure 3.4 Chronotropic incompetence in Pgc-1β-/- hearts .................................................................... 74 

Figure 3.5 Heart rate variability in WT and Pgc‐1β‐/‐ mice .................................................................... 76 

Figure 3.6 PR interval change in response to dobutamine .................................................................... 77 

Figure 4.1 Simultaneous volume conducted ECG and left atrial cellular AP recordings ............... 96 

Figure 4.2 Abnormal atrial in response to premature extra-stimuli .................................................... 97 

Figure 4.3 Critical coupling interval at which episodes of arrhythmia were induced ................... 100 

Figure 4.4 AP parameters for S2 extras-stimuli ..................................................................................... 106 

Figure 4.5 Normalised S2 beat AP parameters ...................................................................................... 109 

Figure 4.6 Relationship between (dV/dt)max and AP latency ............................................................... 110 

Figure 5.1 Volume conducted ECG recordings ..................................................................................... 123 

file:///D:/HV%20Thesis/Thesis%20Build%20V1.docx%23_Toc526064279
file:///D:/HV%20Thesis/Thesis%20Build%20V1.docx%23_Toc526064281
file:///D:/HV%20Thesis/Thesis%20Build%20V1.docx%23_Toc526064282
file:///D:/HV%20Thesis/Thesis%20Build%20V1.docx%23_Toc526064284
file:///D:/HV%20Thesis/Thesis%20Build%20V1.docx%23_Toc526064290
file:///D:/HV%20Thesis/Thesis%20Build%20V1.docx%23_Toc526064296


 

xii 
 

Figure 5.2 ECG and AP recording during incremental pacing ........................................................... 125 

Figure 5.3 Kaplan Meier plot of stimulus capture during incremental pacing ............................... 126 

Figure 5.4 Action potential parameters during incremental pacing .................................................. 128 

Figure 5.5 Incidence of alternans in AP variables during incremental pacing ............................... 130 

Figure 5.6 Magnitude of alternans in AP variables during incremental pacing ............................. 132 

Figure 5.7 Restitution curves using APD and AP wavelength ........................................................... 134 

Figure 6.1 Activation properties shown by voltage-dependent inward Na+ currents ................... 143 

Figure 6.2 Investigation of inactivation properties shown by voltage-dependent inward Na+ 

currents....................................................................................................................................... 146 

Figure 6.3 Currents illustrating Na+ channel recovery from inactivation......................................... 149 

Figure 6.4 K+ current activation properties reflected in tail currents. ............................................... 150 

Figure 6.5 K+ current rectification properties reflected in tail currents ............................................ 152 

Figure 6.6 Structural remodelling in Pgc-1β-/- hearts ........................................................................... 154 

 

  



 

xiii 
 

List of Tables 

 
Table 3.1  Incidence of particular electrocardiographic features in the experimental groups ......... 71 

Table 3.2 Electrocardiographic features related to sino-atrial, atrio-ventricular and atrial 

conduction ...................................................................................................................................... 75 

Table 3.3 Electrocardiographic intervals representing ventricular activation .................................... 79 

Table 3.4 Electrocardiographic intervals representing ventricular recovery ....................................... 82 

Table 3.5 Electrocardiographic recovery intervals: WT and Pgc1β-/- compared .................................. 83 

Table 3.6 Mean electrocardiographic QTc durations ............................................................................... 84 

Table 4.1 Summary of arrhythmic events during programmed electrical stimulation ..................... 99 

Table 4.2 Action potential properties in WT and Pgc-1β-/- hearts during regular 8 Hz pacing ..... 103 

Table 4.3 Area under the curve analysis for S2 triggered APs during programmed electrical 

stimulation ................................................................................................................................... 107 

Table 4.4 Area under the curve analysis for S2 triggered APs during programmed electrical 

stimulation, normalised to corresponding values from regular pacing ........................... 111 

Table 4.5 AP parameters for S2 triggered APs that initiated the first episode of atrial tachycardia 

during programmed electrical stimulation ............................................................................ 112 

Table 5.1 Incidences of atrial arrhythmic events during programmed electrical stimulation and 

incremental pacing in young and aged, WT and Pgc-1β-/- hearts. ..................................... 126 

Table 5.2 Areas under the curves (AUC) of AP parameter with respect to BCL ............................... 129 

  



 

1 
 

1 Introduction 

 

1.1 Atrial Arrhythmias 

Heart rhythm abnormalities involving the atria, whether presenting as pathological slowing 

of the atrial rate or non-physiological acceleration, are common and often symptomatic. While 

some forms of such atrial arrhythmias are benign, others are associated with significant 

morbidity and mortality.  

Tachy-arrhythmias involving the atrioventricular junction include atrioventricular re-entrant 

tachycardia (AVRT) and atrioventricular nodal re-entrant tachycardia (AVNRT), both of 

which are characterised by the presence of anatomical pathways that provide a substrate for 

re-entry. As such these can be considered as being congenital in nature and accordingly are 

amongst the most prevalent forms of tachy-arrhythmias encountered in younger cohorts 

(Porter et al., 2004).  

Atrial tachy-arrhythmias include atrial flutter (AFL) and atrial fibrillation (AF), which in the 

majority of cases are acquired arrhythmias presenting later in life.  Of these, AF has the highest 

prevalence and represents a significant clinical challenge. Consequently AF has been and 

remains the subject of intense study, and is accordingly the primary focus of the present work. 

However both arrhythmias share similar risk factors (Vidaillet et al., 2002) and frequently co-

exist in the same individual though their episodes may be temporally segregated (Halligan et 

al., 2004). Amongst 110 individuals who underwent radiofrequency ablation (RFA) for typical 

AFL, 25% had documented AF during mean follow-up of 20.1 ± 9.2 months (Paydak et al., 

1998). In a separate study 31% of 333 patients undergoing RFA for AFL developed AF during 

mean follow-up of 29 ± 17 months (Hsieh et al., 2002) and of those undergoing similar 

treatment at the Cleveland Clinic this figure was as high as 82% during a follow-up period of 

39 ± 11 months (Ellis et al., 2007). Thus these arrhythmias, together with some forms of focal 

atrial tachycardias (AT), may therefore represent varying manifestations of a common 

electrophysiological ‘atriopathy’. 

AFL, particularly in its most common form, is very amenable to curative treatment with RFA. 

In contrast, despite its high prevalence and significant clinical consequences, the efficacy of 
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therapeutic strategies for the treatment of AF remain modest. To a large extent progress on 

this front has been hampered by the limited understanding of the cellular and molecular 

mechanisms that govern its initiation and perpetuation. Animal models provide valuable 

platforms to characterise and sequence such changes, and identify new targets for 

intervention. 

 

1.2 Cardiac Electrophysiology 

1.2.1 The cardiac conduction system 

Normal electrical excitation propagates through the heart as a wave of depolarisation, coupled 

to contraction, in a time ordered sequence to maintain cardiac output. Cardiac cells are 

anchored to an average of eight neighbouring cells via intercalated discs within which low 

resistance gap junctions electrically couple the cells, allowing rapid propagation of the 

depolarising wavefront. 

In normal sinus rhythm, this electrical activity initiates in the sino-atrial node (SAN) located 

at the junction of the superior vena cava and right atrium. The SAN consists of a collection of 

specialised pacemaker cells that have an unstable resting membrane potential that decays 

during diastole, eventually reaching the threshold to trigger an action potential (AP). The 

electrical impulse generated rapidly traverses the atria, propagating to the left atrium through 

the Bachmann’s Bundle, stimulating atrial contraction, and reaching the atrioventricular node 

(AVN) via internodal tracts. The AVN serves to retard the conduction of the electrical impulse 

to the ventricles, permitting atrial contraction to occur prior to the onset of ventricular systole 

thereby optimising ventricular filling. It also acts as a low pass filter, preventing rapid atrial 

rates being conducted to the ventricles. The nodal cells of the AVN are phenotypically similar 

to those of the SAN, with low expression of rapidly conducting voltage gated Na+ channels 

(Nav1.5), responsible for the fast inward Na+ current (INa), and instead their AP upstroke is 

driven by Ca2+ influx through the relatively slower L-type Ca2+ channels (ICaL). These as well 

as other differences in ion channel expression give rise to the slower AP upstroke and 

relatively long action potential duration (APD) of the nodal cells, underlying the conduction 

delay and decremental properties of the AVN (Figure 1.1). 
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From the AVN, the electrical impulse rapidly conducts down the bundle of His, originally 

defined by Sunao Tawara in 1906, as the point at which the AVN fibres penetrate the central 

fibrous body (Tawara S, 1906). The His bundle bifurcates into the right and left bundle 

branches, transmitting the electrical impulse along the interventricular septum to the right 

and left ventricles respectively, and then through the Purkinje fibres to the endocardium at 

the apex. The wavefront can then spread through the ventricular myocardium from apex to 

base and from endocardium to epicardium. Repolarisation of the ventricles occurs in the 

reverse sequence, that is from base to apex and epicardium to endocardium. Accordingly, the 

APD at the base and epicardium are shorter than those at the apex and endocardium. 

 

 

Figure 1.1 Anatomy of the cardiac conduction tissue 

Schematic outlining the specialised conduction tissues in the mammalian heart (A) and their respective 

characteristic AP and surface electrocardiogram waveforms (B) (Adapted from Bartos et al., 2015) 
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1.2.2 The resting membrane potential 

The resting membrane potential (RMP) is the potential difference across the cell membrane in 

the non-stimulated state and is determined by the ions present in each compartment 

(intracellular and extracellular), their valency and the membrane permeability to these. Where 

only a single ion is present and/or the membrane is exclusively permeable to a single ion, the 

potential difference measured across the membrane at equilibrium for given intracellular and 

extracellular concentrations can be determined through the Nernst equation: 

 

𝐸𝑋 =  𝑅𝑇
𝑧𝐹 ln ([𝑋]𝑜𝑢𝑡

[𝑋]𝑖𝑛
) 

 

where R is the ideal gas constant (8.31 J K-1 mol-1); T is absolute temperature; z is the valency; 

F is Faraday’s constant (9.65x104 C mol-1); and E is the equilibrium potential for ion X. 

The RMP of a cardiomyocyte is approximately -85mV, close to the Nernst potential of K+, 

which was the basis of the Bernstein Hypothesis that “the cell membrane is selectively permeable 

to K+ at rest and hence the cell resting potential is the result of the Nernst potential for K+” (Bernstein, 

1902). In reality the RMP is generally less negative than the equilibrium potential for K+ and 

reflects the permeability of the membrane to additional ions, primarily Na+ and Cl-, and can 

be calculated from a more generalised form of the Nernst equation, the Goldman-Hodgkin-

Katz equation: 

 

𝐸𝑚 =  R𝑇
𝑧F ln (𝑃𝐾 [K+]o +  𝑃𝑁𝑎 [Na+]o +  𝑃𝐶𝑙 [Cl−]i

𝑃𝐾 [K+]i +  𝑃𝑁𝑎 [Na+]i +  𝑃𝐶𝑙 [Cl−]o
) 

 

where Px represents the membrane permeability to ion X. As mentioned, pacemaker cells 

display a decaying RMP, termed the pacemaker potential, progressively rising from -60mV 

towards their threshold potential of between -50mV - -40mV. 
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1.2.3 The cardiac action potential 

The unit per cell of cardiac excitation is the AP, a time-dependent voltage waveform that 

propagates along excitable tissues. It is generated through changes in membrane 

permeability, permitting a coordinated sequence of ion fluxes through their respective ion 

channels down their electrochemical gradients. The movement of each ion in or out of the cells 

biases the membrane potential towards its equilibrium potential. 

Based in the Physiological Laboratory at the University of Cambridge, Draper and Weidmann 

published the first intracellular AP recordings from mammalian cardiac cells (Draper and 

Weidmann, 1951), adapting the microelectrode technique developed by Ling and Gerard to 

record skeletal muscle membrane potentials (Ling and Gerard, 1949). Interestingly Hodgkin, 

on visiting the University of Chicago from Cambridge, was introduced to the glass 

microelectrode technique by Gilbert Ling and adapted these methods to record fast events 

(Hodgkin and Nastuk, 1949). Hodgkin was focussed on skeletal muscle, training Weidmann 

in the protocol and remarking “Here is a powerful tool. Prod round in nature, but keep the skeletal 

muscle reserved for me” (Weidmann, 1993). Weidmann and Draper sampled isolated canine 

Purkinje fibre bundles owing to their weak contractions, thus obviating issues with electrode 

displacement or fracture, and provided the first details on the voltage-time course of the 

cardiac AP, the magnitude of the resting potential and the various phases of repolarisaton 

(Figure 1.2). 

Figure 1.3 shows the prototypical human atrial and ventricular AP waveforms, and the 

various ionic currents that contribute to their formation. The phase 0 upstroke is initiated by 

depolarisation of the membrane to its threshold value resulting in the activation of Nav1.5 

voltage-gated Na+ channels and influx of Na+ into the cell along its electrochemical gradient. 

The α subunit of the Nav1.5 channel is encoded by the SCN5A gene, and the channel activates 

in a regenerative fashion that accounts for the fast inward Na+ current, in the order of 400 µA 

µF-1. The channels also rapidly inactivate, the entire process being completed in 

approximately 1 ms or less, and require the period of one absolute refractory period to elapse 

before being capable of further activation. This is followed by a period of relative 

refractoriness where a sub-population of the channels remain inactive and a larger than 

normal voltage excursion is required to bring the membrane to threshold for a second 

depolarisation. 
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Figure 1.2 Canine Purkinje fibre action potential 

First published intracellular cardiac action potential recording using glass microelectrodes in a superfused canine 

Purkinje fibre bundle preparation. The cells demonstrated automaticity, spontaneously contracting after being 

immersed in warm Tyrode’s solution for 20-30mins. Note resting potential of -90mV and clearly demonstrating 

the now recognised phases of the cardiac action potential. (Adapted from Draper and Weidmann 1951)) 

 

A brief early repolarisation phase (phase 1) follows, mediated by opening of K+ channels 

carrying the fast and slow transient outward currents, Ito,f and Ito,s. Ito,f activates and inactivates 

rapidly, with time constants in the range of 60 -100 ms, in a conventional voltage dependent 

manner (Näbauer et al., 1996; Hoppe et al., 1999). Its pore-forming (α) subunits are from the 

Kv4 subfamily, Kv4.2 and Kv4.3 encoded by KCND2 and KCND3 respectively (Nerbonne & 

Kass, 2005). Ito,s is less well characterised and has greater variation between species. Its current 

is carried by the Kv1.4 channel encoded by KCNA4 and is thought to activate in response to 

changes in the intracellular free Ca2+ concentration and has slower rates of recovery from 

inactivation, with time constants on the order of seconds (Fermini et al., 1992; Papp et al., 1995; 

Köster et al., 1999). Though the function of this phase is not entirely clear, Ito currents shape 

the partial repolarisation in phase 1 and set the initial plateau (phase 2) potential. They therefore 

influence the activity of voltage-gated Ca2+ channels and the balance between inward and 

outward currents during the plateau phase, thus tempering the duration and amplitude of 
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phase 2. One assumes in part, they prevent the Ca2+ current in phase 2 from depolarising the 

membrane to ECa, which would reduce overall Ca2+ entry into the cell. In atrial cells the 

markedly higher densities of Ito, together with the expression of the ultrarapid delayed 

rectifier, accelerate the early phase of repolarization leading to lower plateau potentials and 

shorter APDs (Varró et al., 1993; Amos et al., 1996). In many species Ito,f and Ito,s are differentially 

expressed and contribute to regional heterogeneities in the AP waveform. Ito,f is more 

prominently expressed in the epicardium and mid-myocardium, and underlies the spike and 

dome morphology of epicardial APs (Liu et al., 1993). 

 

 

Figure 1.3 Cardiac action potential waveform and relevant currents 

Typical action potential profiles from human atrial (left) and ventricular (right) cardiomyocytes. The time course 

of various ionic currents contributing to the phases of the respective action potentials are shown below the traces 

where shading above the baseline denotes outward current and shading below the baseline represent inward 

currents. 

The phase 2 plateau is attributable to a balance between inward currents carried by the L-type 

Ca2+ channel and Na+/Ca2+ exchanger (NCX), and a collection of outward rectifying K+ 

currents. The L-type Ca2+ channel is a member of the high voltage activated Cav family 
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encoded by the CACNA1C gene, opening at membrane potentials of -25mV and remaining 

open for approximately 100msecs (Lee et al., 1985). During the plateau phase, the NCX also 

produces a depolarising current, moving 3 Na+ ions into the cell and extruding 1 Ca2+ ion. The 

influx of positive ions is counter-balanced by outward potassium currents carried principally 

by the rapid (IKr) and slow (IKs) delayed rectifier K+ channels. Unlike Ito, these slower potassium 

channel currents persist through the plateau phase. The IKr current is carried by the Kv11.1 

channel (also known as the hERG channel) encoded by the KCNH2 gene, while the IKs current 

is carried by the Kv7.1 channel encoded by the KCNQ12/3 genes. While both are activated by 

depolarising voltages during the plateau phase, IKr channels inactivate more rapidly, passing 

smaller currents as phase 2 progresses, whereas IKs channels activate gradually and show little 

inactivation (Sanguinetti & Jurkiewicz, 1990). Additional K+ efflux occurs through the KATP 

channel which adopts a closed state in the presence of ATP and so opens during cardiac 

contractions where intracellular ATP levels fall and ADP levels rise (Noma, 1983). 

Late repolarisation in phase 3 is mediated by the termination of inward movement of Ca2+ and 

continued K+ efflux from the cell via IKr and IKs. IKr channels cycle through activation and 

inactivation more swiftly than those responsible for IKs thus although they inactivate during 

the phase 2 plateau, they rapidly recover from inactivation producing a large resurgent 

outward current driving the membrane towards repolarisation in phase 3 (Jeevaratnam et al., 

2018). IKs activates in a more gradual manner, accommodating larger outward currents at latter 

stages of the plateau and into phase 3. The additional contribution of the ultrarapid delayed 

rectifier Kv1.5 channel (IKur), encoded by the KCN5A gene, leads to more rapid repolarisation 

and therefore shorter APs in atrial cells. Phase 4 reflects electrical diastole where the membrane 

is held stable at the resting potential, maintained by inward rectifying K+ channels (IK1). 

Ion channel density and composition show distinct regional variation between cardiac 

chambers and are reflected in specific differences in their respective AP waveforms. Subtle 

differences also exist within the same chamber from endocardium to epicardium and apex to 

base. The typical APD of a ventricular cell is 300 - 350 ms, significantly longer than that of 

skeletal muscle or the nervous system, reflecting its involvement in processes beyond signal 

propagation. In keeping with the longer APDs, the refractory period is also longer which 

provides some protection against deleteriously rapid heart rates and also reduce the 

probability of reentrant excitation under normal conditions. 
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Atrial APs are shorter than that of ventricular cells, lasting on average 200 ms. The resting 

membrane potential is slighter higher in atrial cells owing to reduced activity of background 

inward rectifier K+ currents. As a result the magnitude of INa and therefore rates of 

depolarisation are lower (150 - 300 VS-1 in atrial cells Vs. 300 - 400 VS-1 in ventricular cells). 

There is also a lesser role for the slow component of Ito in atrial cells, and instead IKUR has a 

significant role, influencing both the phase 2 plateau, phase 3 repolarisation and the APD 

overall. 

 

1.2.4 Excitation-contraction coupling 

Cardiac excitation-contraction coupling is the physiological process through which 

depolarisation of the cardiomyocyte membrane elicits a mechanical response (Figure 1.4). 

Sidney Ringer first reported the central role of Ca2+ in this process, following a serendipitous 

mix up in the laboratory water supply (Ringer, 1883). The influx of extracellular Ca2+ into the 

cell during the AP plateau produces a small but significant increase in the intracellular Ca2+ 

concentration, [Ca2+]i. The subsequent binding of free Ca2+ to the cardiac ryanodine receptor 

(RyR2) located on the membrane of the sarcoplasmic reticulum (SR), triggers Ca2+ induced 

Ca2+ release from the SR stores. The resultant more pronounced increase in [Ca2+]i promotes 

binding of Ca2+ to troponin C, causing a transformational change that facilitates actin-myosin 

cross bridge formation and ultimately muscle contraction. The systolic Ca2+ transient is 

followed by a return of [Ca2+]i to diastolic levels, and muscle relaxation in preparation for the 

process to repeat. This restoration of diastolic Ca2+ levels occurs through extrusion to the 

extracellular compartment via NCX activity and action of the Ca2+ ATPase, or transfer into 

intracellular organelles by the SR Ca2+ - ATPase (SERCA) and the mitochondrial Ca2+ uniporter 

(Bers, 2002). 

Unlike ventricular myocytes, atrial cells have a far less extensive T-tubule system. In its place, 

these cells have a highly convoluted arrangement of the SR with projections lying 

perpendicular to the sarcolemma, termed Z-tubules. They also have two separate populations 

of RyR2 channels, some located on the Z-tubules in close proximity to the sarcolemma 

mirroring the arrangement in the dyadic clefts of ventricular myocytes, and a further 

population is located more centrally within the cell. This arrangement results in a more 

heterogeneous calcium induced calcium release response in atrial cells than in ventricular 
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cells. Under basal conditions, the elevation evoked by depolarisation is largely limited to the 

periphery of the cell whereas the bulk of the protein filaments involved with contraction sit 

deeper within the cell. In certain conditions, for example with sympathetic stimulation, 

centripetal propagation of the Ca2+ transient is seen with activation of the inner population of 

RYR2 channels, greater recruitment of the contractile machinery and more pronounced atrial 

contraction (Bootman et al., 2006). 

 

 

Figure 1.4 Excitation-contraction coupling 

Pathways of Ca2+ entry into the myocyte (red arrows) and removal from intracellular compartment (green 

arrows). Inset displays time course of action potential, the Ca2+ transient and muscle contraction. (Adapted from 

Bers, 2002). 

1.3 Mechanisms of arrhythmogenesis 

Cardiac arrhythmias represent at the organ level, disruptions in the orderly process of 

myocardial excitation. They may be classified on a mechanistic basis as those arising through 

i) abnormalities in AP generation, ii) abnormalities in AP propagation (reentry) or iii) a 

combination of the two (Hoffman & Rosen, 1981). 
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1.3.1 Abnormal action potential generation 

Inappropriate AP formation can be initiated through several mechanisms. These include the 

non-physiological acceleration of normal pacemaker cell automaticity, most commonly in 

response to significant hypokalaemia or drugs such as digitalis, and is termed enhanced 

normal automaticity. Furthermore, myocardial cells in the atrium and ventricle outside of the 

specialised conduction system do not display the spontaneous resting depolarisation 

observed in pacemaker cells and therefore lack this feature of automaticity. However 

‘abnormal automaticity’ or depolarisation-induced automaticity is observed in such cells, 

most commonly under conditions of reduced RMP such as in ischaemia or infarction and may 

underlie certain arrhythmias (Katzung et al., 1975; Ypey et al., 2013).  

The hierarchical organisation of the cardiac conduction tissue mean that the propagating 

wavefront of the dominant pacemaker, usually the SAN, resets other latent pacemaker sites 

and suppresses their activity. A region of conduction block near such subsidiary pacemaker 

tissue due to infarction or infection, can prevent the propagating wavefront from invading 

this focus, enabling the alternate pacemaker region to escape its usual censorship. This parallel 

activity of two (or more) pacemaker sites is termed parasystole.  

Dysregulation of automaticity and instances of parasystole have classically been regarded as 

rare causes of tachy-arrhythmias, though depolarisation-induced automaticity has not been 

extensively studied and its contribution possibly under-represented. In contrast extra-systoles 

originating in regions outside of the specialised conduction system, referred to as triggered 

activity, are thought to have a more prominent role in arrhythmogenesis. They are usually a 

result of after-depolarisation phenomena, which are oscillations of the membrane potential 

that are a function of the preceding AP and if of sufficient amplitude can trigger a premature 

AP, and hence a triggered beat (Figure 1.5).  
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Figure 1.5 Representation of early- and delayed-afterdepolarisation phenoma 

Arrhythmogenic triggers and conditions favouring their induction in the murine heart. (a) Early-after 

depolarisations (EADs) induce premature depolarizations in the otherwise monotonic repolarization phase. (b) 

delayed-after depolarisations (DADs) represent small, transient oscillations in resting membrane potential 

following full repolarization. (c) EADs are frequently observed in the setting of marked action potential 

prolongation, through compromised repolarization seen in LQTS and bradycardia. DADs typically occur in the 

presence of rapid pacing and conditions which favour diastolic leak of calcium through RyR2 channels, in 

catecholaminergic polymorphic ventricular tachycardia (CPVT) or cardiac glycoside toxicity. (Arrows in panels 

a and b represent pacing stimuli). (Adapted from Killeen et al., 2008) 

 

After-depolarisation events that interrupt the phase 2 plateau or prior to repolarisation in 

phase 3 are termed early after-depolarisations (EADs). EADs generally occur in circumstances 

associated with prolongation of the APD, where the balance of active current during phase 2 

or phase 3 of the AP is shifted in the inward direction. This may be a result of abnormalities 

in INa inactivation, a persistent late Na+ current (INaL), or reductions in outward K+ currents. 

Alternatively prolonged APD allows time for L-type Ca2+ channels to recover from 

inactivation with the resultant ICaL depolarising the membrane and triggering an after-
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depolarisation (January et al., 1988; Zeng & Rudy, 1995; Weiss et al., 2010). EADs have been 

demonstrated in models of arrhythmia associated with hypokalaemia and long QT syndrome 

(LQTS) (Fabritz et al., 2003b; Killeen et al., 2007). Delayed after-depolarisations (DADs) occur 

where repolarisation is complete (phase 4) or near complete and are observed under 

conditions that augment [Ca2+]i, which invoke diastolic Ca2+ discharge from the SR. The 

resultant inward current through activity of the NCX and/or calcium-activated chloride 

current, ICl, depolarises the cell triggering an AP (Venetucci et al., 2007). Such arrhythmias 

have been observed in response to digitalis toxicity (Rosen et al., 1973; Gold et al., 2000) and 

catecholaminergic polymorphic ventricular tachycardia (CPVT) (Jiang et al., 2005). 

 

1.3.2 Cardiac reentry 

Reentry refers to abnormal AP propagation where an AP wave fails to completely extinguish 

following normal activation and is able to re-excite regions that have recovered from 

refractoriness. John McWilliam was possibly the first to allude to reentry as a mechanism for 

arrhythmia, during experiments characterising the nature of abnormal ventricular rhythms. 

Commenting on a pacing induced atrial arrhythmia (which was most likely AFL), he 

remarked: “The application of the current sets the auricles into a rapid flutter, the rapidity of which 

largely depends upon the excitability of the auricular tissue and the strength of current employed. The 

movements are regular; they seem to consist of a series of contractions originating in the stimulated 

area and thence spreading over the rest of the tissue. The movement does not show any distinct sign of 

incoordination; it looks like a rapid series of contraction waves passing over the auricular walls. The 

difference between this appearance and that seen in the ventricles probably depends on the simpler 

structure and arrangements obtaining in the auricles. The persistence of the movement after the 

discontinuance of the stimulating current varies according to the excitability of the auricular tissue and 

strength of current employed” (McWilliam, 1887). 

Subsequently, in a series of elegant and insightful experiments, Alfred Mayer provided a 

clearer demonstration of reentry and also highlighted the importance of unidirectional block 

(Mayer, 1906).  In studying the rhythmic pulsation of the jellyfish, Cassiopea xamachana, the 

marginal sense organs were removed and incisions were made in the subumbrella to form 

circuits, the most simple being a ring (Figure 1.6(a - c)). Where two waves were stimulated 

either side of a permanent line of block created by an incision, they would travel in opposite 
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directions and extinguish at the point of collision, producing a single contraction. Similarly a 

single impulse could traverse circumferentially around the ring but not cross the line of block 

(Figure 1.6(d)). In contrast, where the ring was intact, if an impulse could be induced to 

propagate in one direction only (by applying mechanical pressure preventing bidirectional 

conduction i.e. unidirectional block), the wave would return to the original focus and continue 

to circulate indefinitely without the need for further stimulation. Beyond these crucial 

observations, he also highlighted the importance of the refractory period, enabling the tissue 

to “recover and regain its sensibility to the stimulus which calls forth the contraction”.  

It was Georges Mines however who extended the application of this concept of reentry as a 

clinically relevant phenomenon, coining the phrase circus movement, and suggesting that 

such reciprocating rhythms were responsible for “some cases of paroxysmal tachycardia as 

observed clinically” (Mines, 1913). Mines, through studies on two-chambered electric ray and 

frog hearts, noted the ability to initiate a perpetual cycle of excitation consistent with a reentry 

circuit between the atrium and the ventricle. He tested this further by creating a ring 

preparation in a tortoise heart by making a longitudinal incision extending from the atrium 

to the ventricle and observed more definitively circus movement of the impulse sequentially 

through the four component chambers (Figure 1.7(a)). Moreover not only did he propose the 

novel concept of anatomic reentry but also suggested reentry required differential 

electrophysiological properties in the two limbs of the circuit and was facilitated by slow 

conduction and/or a short refractory period (Figure 1.7(b)). These observations provided the 

foundations for the principal requirements for the initiation of re-entrant arrhythmia (Allessie 

et al., 1973, 1977): 

- An obstacle around which the AP wavefront is able to circulate. 

- A conduction velocity sufficiently slow such that each region recovers excitability 

prior to the wave returning. 

- The existence of unidirectional block, preventing the wave from self-extinguishing. 

In the clinical setting, the anatomical obstacles around which the reentrant circuit forms may 

be through the congenital presence of two or more connections between regions such as in 

AVNRT or AVRT. Alternatively myocardial scars formed following an infarct can form such 

an obstacle and therefore act as a substrate for reentry. The simplified circuit around such an 

obstacle is shown in Figure 1.8. In normal rhythm, the AP wavefront conducts through both 
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limbs (A and B) and collide at the bridge of tissue connecting the two limbs distally (C) causing 

the wavefront to extinguish within the circuit. If an impulse such as an extrasystole arrives at 

a time where branch B is refractory or has unidirectional block, the impulse can travel down 

branch A, across the common distal path and retrograde into the branch B crossing the area 

of unidirectional block. If on exiting the area of unidirectional block, the AP finds excitable 

tissue, it can reenter branch A and thus continue on a circular path at high frequency causing 

a tachy-arrhythmia.  

(a – c) 

 

(d) 

 

 

 

 

 

 

Circus movement of pulsations were demonstrated by Mayer in the subumbrella of the jellyfish, Cassiopea 

xamachana. (a) Aboral view of the Cassiopea. (b) Oral view with stomach and mouth-arms removed. (c) Ring 

preparation after removal of the marginal sense organs which normally trigger contractions of the subumbrella. 

(d) Schematic where A represents intact segment of the ring and B is a length of tissue which has been isolated by 

cutting from A. Stimulation at either points 1 or 2 triggers a wave of contraction passing through the length of 

segment A but unable to cross the interruption at B therefore producing a solitary contraction. Arrows show 

passage of pulsation from 1 clockwise to 2 before blocking at the mechanical obstacle at B. (Adapted from Mayer, 

1917) 

Figure 1.6 Ring preparation from Cassiopea xamachana 
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(a) 

 

 

(b) 

 

 

Figure 1.7 Demonstration of reciprocating rhythms by G.R. Mines 

Diagrams from Mines’ seminal paper identifying reentry as a mechanism of arrhythmogenesis. (a) Diagram of 

the tortoise heart preparation with a central longitudinal incision forming an anatomical obstacle for the wave of 

excitation to circulate. Following the application of an external stimulus, contractions were seen sequentially in 

chamber V1, V2, A1, and A2 then continuing in that order. (b) Mines’ proposal for the principle requirements of 

a reentry circuit. In the upper schematic, beginning from the left, a wave of depolarisation is initiated at the apex 

of the ring (shown in black) and moves in a clockwise direction. As the conduction velocity is fast and refractory 

period long, the leading edge of the wave meets the tail while it is still refractory and therefore the circuit is 

extinguished. In the lower series, the conduction velocity is slow and/or the refractory period is short such that 

when the wave of excitation returns to the site of initiation the area has recovered from refractoriness and can be 

re-excited setting up a reentrant circuit. (Adapted from Mines, 1913) 
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Diagram represents muscle fibres bifurcating into two tracts, A and B, connected distally by a common pathway 

C. In normal circumstances an AP wavefront (shown by arrows) conducts along A and B simultaneously and 

collide causing the wavefront to extinguish within the circuit in C (left panel). If an AP arrives when branch B 

has unidirectional block (may be refractory from previous impulse), the AP conducts along A and through C 

unobstructed (middle panel). It may conduct along branch B retrograde through the areas of block and down 

branch A setting up a reentrant circuit and manifesting as a tachycardia. (Adapted from Den Ruijter et al., 2007) 

 

Reentry can also occur in the absence of an anatomically defined circuit or scar. Regional 

differences in electrophysiological properties such as conduction and/or repolarisation can 

give rise to areas of unidirectional block and provide a substrate for reentry, termed functional 

reentry (Allessie et al., 1973).   

 

1.3.3 Spatial heterogeneity 

The effective uniform pumping function of the heart is contingent upon well-coordinated 

myocardial heterogeneity at the cellular level.  This complex spatial heterogeneity in cellular 

electro-mechanical properties has been most extensively characterised in left ventricular 

tissue.  For example, following rapid propagation of excitation through the endocardially 

sited Purkinje network, ventricular depolarisation proceeds from endocardium to epicardium 

whereas the reverse is true for repolarisation. In keeping with this, APs recorded from the left 

ventricular epicardial surface are significantly shorter than those measured in endocardial 

regions in murine (Milberg et al., 2005), rabbit (Wang et al., 2006) and canine (Yan & 

Antzelevitch, 1998) hearts. These spatial differences in APD are largely established by regional 

differences in repolarising K+ currents. Epicardial myocytes from both murine (Nerbonne & 

A B 

C 

Figure 1.8 Mechanism of reentry 
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Guo, 2002) and canine (Litovsky & Antzelevitch, 1988) hearts have higher densities of Ito, 

accounting for the differences observed. 

Disruption of these gradients may allow a depolarising region to re-excite areas that have 

repolarised and serve as a substrate for reentry. Transmural gradients are thought to be 

particularly important in this regard, as differences in repolarisation are exerted over a 

relatively short distance. Indeed alterations in transmural gradients have been correlated with 

arrhythmic tendencies in a number of animal models of Brugada Syndrome (BrS) and long 

QT syndrome (LQTS) (Antzelevitch & Oliva, 2006; Martin et al., 2011a), as well as a murine 

model of heart failure (Wang et al., 2006). Heterogeneities are also observed from apex to base 

accounting for the differential activation and repolarisation of these regions. In a cohort of 

patients with cardiomyopathy, greater dispersion in repolarisation gradients was associated 

with episodes of T wave alternans and ventricular tachycardia (VT) (Chauhan et al., 2006). 

The role of spatial heterogeneity in atrial tissue is less well studied, and given its thin-walled 

structure g76uy the significance of transmural gradients is less clear. Electrophysiological 

heterogeneity of atrial myocytes has predominantly been studied in pathological states, 

chiefly AF, and is reported to have an important role in the vulnerability to AF induction and 

maintenance (Fareh et al., 1998). 

 

1.3.4 Temporal heterogeneity 

Microvolt T wave alternans is a repolarisation phenomenon manifesting as beat-to-beat 

variation in the amplitude of the T wave and ST segment on the surface electrocardiogram 

(ECG), and has long been recognised as a harbinger for malignant arrhythmias in a wide range 

of experimental (Verrier & Nearing, 1994; Pastore et al., 1999; Euler, 1999) and clinical settings 

(Nearing et al., 1991; Rosenbaum et al., 1994; Armoundas et al., 1998). It is thought to reflect 

spatiotemporal heterogeneity in repolarisation due to beat-to-beat alternation in the duration 

and/or amplitude of the AP at the cellular level. Several hypotheses exist for the cellular and 

molecular mechanisms underlying alternans with the prevailing theories being founded upon 

the APD restitution hypothesis and abnormalities in calcium handling. Evidence for either is 

conflicting, and it is likely that they are not mutually exclusive. 
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APD restitution refers to the normal attenuation of the APD in response to increasing heart 

rates, which is thought to be a physiological mechanism to preserve diastole and therefore 

diastolic filling and coronary perfusion. At the cellular level, modest increases in heart rate 

are perceived by shortening of the diastolic interval (DI) and are briskly accommodated for 

by a like response in the APD. At greater increases in the heart rate, this adaptation may 

involve transient oscillations or ‘alternans’ in the DI and APD before a new steady state 

between the respective intervals is reached. At even faster heart rates, the time in alternans 

may be more protracted and above a threshold rate, become sustained. Classically, the rate-

dependent adaption of APD and the tendency to alternans has been analysed using the 

dynamic APD restitution curve, plotting APD as a function of the preceding DI (Nolasco & 

Dahlen, 1968) (Figure 1.9). According to the restitution hypothesis, APD alternans is governed 

by the gradient of the restitution curve, where alternans will occur when the slope exceeds 

unity. Where the gradient is steep, small changes in the DI are associated with larger 

magnitude changes in APD, amplifying heterogeneities in repolarisation and predisposing to 

wave break and arrhythmia. 

Concordant alternans, where neighbouring cells alternate in phase is intrinsically not 

arrhythmogenic, but is a prerequisite for discordant alternans where neighbouring regions 

alternate out of phase (Watanabe et al., 2001). The onset of discordant alternans significantly 

alters the spatial organization of repolarization across the tissue by markedly amplifying pre-

existing heterogeneities, producing a substrate prone to conduction block and reentrant 

excitation. The utility of APD restitution in elucidating the mechanisms underlying 

ventricular arrhythmias has attracted much interest. Restitution profiles have correlated with 

propensity to alternans and arrhythmia in animal models of LQTS and BrS (Moss & Kass, 

2005; Sabir et al., 2008c; Matthews et al., 2010). More recent reports have also highlighted 

steeper restitution curves in left atria of humans with AF (Kim et al., 2002; Narayan et al., 2008; 

Krummen et al., 2012).  
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Generic restitution function relating APD90 corresponding to the action potential duration at 90% recovery to 

the corresponding diastolic interval (DI90) for a paced heart. The graph highlights the critical diastolic interval 

(DIcrit) where gradient (m) is 1 and represents threshold for onset of alternans, maximum gradient (mmax) 

corresponding to steepest point of the curve, maximum APD (APDmax) at low heart rates, DI90 at the effective 

refractory period (DIERP), and the horizontal axis intercept of the restitution function (DIlimit) corresponding to 

absolute refractoriness. This permits definition of conditions for stability (unshaded), instability (gray), as well as 

relative (dark shading) and complete loss of capture (left shaded area). (Adapted from (Huang, 2017a) 

 

Interestingly cardiac ischaemia, recognised to provoke T wave alternans, was associated with 

paradoxical flattening of the restitution curve, albeit in a small cohort of human subjects 

(Taggart et al., 1996). Additionally APD restitution was reported to have a limited role in a 

canine model of AF, which was found to be associated with abnormalities in Ca2+ dynamics 

(Burashnikov and Antzelevitch 2006). Consistent with this, depletion of SR Ca2+ stores 

suppresses alternans (Saitoh et al., 1988) while delayed decay of the Ca2+ transient renders the 

tissue more susceptible to alternans phenomena (Wan et al., 2005). Finally, isolated 

cardiomyocytes under voltage clamp conditions to prevent repolarization alternans continue 

to exhibit Ca2+ alternans suggesting the latter can arise independent of APD alternans and 

support a possible primary role for altered Ca2+ dynamics in the alternans events (Chudin et 

 

Figure 1.9 Idealised restitution curve 
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al., 1999). Thus maladaptive changes in Ca2+ handling could give rise to such temporal 

susceptibility to arrhythmia in both ventricular and atrial tissue. 

 

1.4 Atrial Fibrillation 

1.4.1 Definition of atrial fibrillation 

AF is a supraventricular tachy-arrhythmia with uncoordinated atrial activation and 

consequently ineffective atrial contraction. Characteristics on an electrocardiogram (ECG) 

include 1) irregular R-R intervals (when atrioventricular [AV] conduction is present), 2) 

absence of distinct repeating P waves, and 3) irregular atrial activity.  

2014 ACC/AHA/HRS Guideline for the Management of Patients with Atrial Fibrillation 

1.4.2 A historical perspective 

“I have tremor cordis on me: My heart dances; But not for joy; not joy”. 

[The Winter’s Tale, William Shakespeare, 1610] 

References to irregularities in the pulse that we would now consider to be consistent with AF 

can be found in the works of numerous physicians throughout history, the earliest of which 

pre-dating classical antiquity. Emperor Huang Ti, the legendary Chinese sovereign reputed 

to have ruled from 2696 to 2598 BC, reported in The Yellow Emperor’s Classic of Internal 

Medicine: “When the pulse is irregular and tremulous and the beats occur at intervals, then the 

impulse of life fades; when the pulse is slender (smaller than feeble, but still perceptible, thin like a silk 

thread), then the impulse of life is small”. William Harvey penned the first written account 

describing the appearance of the fibrillating atrium in the heart of a horse approaching death, 

commenting on the chaotic “undulation/palpitation” of the right auricle (atrium) in his seminal 

work “Concerning the motion of the heart and blood” (more commonly known as De motu 

cordis, published 1628) (Lip & Beevers, 1995). Following on from Harvey’s assertions John 

Baptiste de Senac, the 18th century physician to Louis XV, while investigating the cause of 

palpitations, related obstructive lesions of the mitral valve with dilatation of the atria, making 

them agitated and prone to abnormal heart rhythms. His recognition of their origin being 

distinct from the normal heart beat, presaged the association of atrial arrhythmias with mitral 

stenosis (McMichael, 1982). Around the same time William Withering, a physician and avid 
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botanist, used digitalis to treat fluid overload in a series of patients, noting in some cases the 

weak and irregular pulse became “more full and more regular” (Silverman, 1989).  

In the nineteenth century, following Rene Leannec’s invention of the stethoscope, Adams 

(1827) and Bouilland (1835) linked mitral stenosis to an irregular pulse. The latter referred to 

it as “ataxia of the pulse”, suggesting this state of anarchy of the heart was akin to delirium of 

the brain. In 1876 Nothnagel, using the then recently-developed kymograph to record 

graphical representations of the pulse, published arterial traces of the irregular pulse he 

termed delirium cordis and highlighted complete irregularity as a defining feature of the 

arrhythmia. Believing meticulous examination of the arterial and venous pulse could help 

prognosticate cardiac disease Sir James Mackenzie, a general practitioner in the north of 

England, would follow his patients with serial venous and arterial recordings, initially with a 

modified sphygmograph and later the ink-writing polygraph which he had invented. He 

published the first of his polygraphic studies in 1894, advancing the notion that the initial 

wave of the venous pulse reflected atrial contraction and the second wave was due to 

ventricular contraction (Mackenzie, 1894). He later published similar traces from patients with 

mitral stenosis, demonstrating that in advanced stages when the irregular pulse supervenes, 

no signs of atrial activity are visible in the venous recordings, only to return when the pulse 

regains its regularity (Figure 1.10) (Mackenzie, 1904, 1905). MacKenzie initially postulated the 

loss of atrial activity was a result of atrial paralysis with the surviving ventricular contraction 

driven by the AV node, but later corrected this view as the origins of fibrillation were 

unearthed. 

In parallel to the clinical reports of arrhythmias, pioneering work from Carl Ludwig’s 

laboratory demonstrated canine hearts could be made to fibrillate and ultimately arrest with 

the application of an electrical stimulus (Flegel, 1995). In 1874, Vulpian reported similar 

behaviour in the atria with more localised faradization of the chambers referring to it as 

“fremissement fibrillaire” (from which the term fibrillation is derived). Arthur Cushny 

conducted similar studies on anaesthetised dogs at the end of the nineteenth century and 

commented on the remarkable similarity between the arterial traces of “clinical delirium cordis” 

and “physiological delirium auriculae” though he stopped short of suggesting they were the 

same entity (Cushny, 1899). Hering made similar suggestions in 1903, referring to the 

arrhythmia as pulsus irregularis perpetuus, and Cushny reinforced his view after publishing 
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the first correlative clinical report of the pulse in a female patient with the condition (Cushny 

and Edmund, 1907). 

 

 

Figure 1.10 Arterial and venous pulse recorded with the polygraph 

Simultaneous jugular venous (upper trace) and carotid artery (lower trace) pulse waveforms recorded by 

MacKenzie using the ink-writing polygraph from a patient with atrial fibrillation, along with his own figure 

legend, noting the absence of the ‘a’ wave and irregular rhythm. He also speculates the fluctuations in the baseline 

may be due to ‘ripples’ of the atria. (Adapted from Silverman, 1994) 

 

Stimulated by Cushny’s intimation, MacKenzie encouraged his colleague Sir Thomas Lewis 

to take advantage of Einthoven’s recently developed string galvanometer to record the ECG 

in an attempt to elucidate the underlying pathology. Interestingly Einthoven, in 1906, had 

already published the first ECG illustrating AF (he referred to it as pulsus inaequalis et 

irregularis) but had not recognised its significance (Figure 1.11a) (Silverman, 1994). Hering 

had also reported on ECGs of similar patients, concluding that one could see no sign on the 

ECG of the activity of the auricles, though on closer inspection F waves are evident (Figure 

1.11b). In October 1909, Lewis applied the string galvanometer to a patient with pulsus 

irregularis perpetuus, demonstrating the fine diastolic oscillations corresponded to the 

fibrillatory movements of the auricles seen in the experimental preparations. Lewis described 
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the classic absence of P waves and irregularity of the F waves that define AF. In the same year, 

Rothberger and Winterberg, based in Vienna, undertook similar recordings and 

independently came to the same conclusion thus connecting the irregular pulse that had for a 

long time intrigued many physicians and typical ECG finding, with disarray in atrial activity. 

(a)  

 

 

 

 

 

(b) 

 

 

 

 

 

 

(a) First electrocardiogram of atrial fibrillation recorded by Eintohoven after inventing the string galvanometer. 

He referred to the rhythm as “pulsus inaequalis et irregularis. (Adaped from Fye, 2006). (b) Hering’s 

simultaneous recording of “pulsus irregularis perpetuus” with the sphygmograph and electrocardiogram with 

the string galvanometer. Hering speculated the clinical arrhythmia correlated with auricular fibrillation but felt 

no evidence of atrial activity was evident on the ECG. (Adapted from Silverman, 1994) 

 

1.4.3 Epidemiology of atrial fibrillation 

AF affects 1-4% of the population in the developed world (Majeed et al., 2001; DeWilde et al., 

2006; Friberg & Bergfeldt, 2013) and accounts for 1 in 3 of all arrhythmia-related hospital 

attendances (Wu et al., 2005a). The overall number of individuals with AF, as estimated by the 

Figure 1.11 Early electrocardiogram recordings of atrial fibrillation 
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2010 Global Burden of Disease study, was 20.9 million males and 12.6 million females, with 

approximately 5 million new cases of AF annually (Chugh et al., 2014). These figures could 

conceivably be an underestimate, given a significant proportion of those affected are 

undiagnosed. Additionally the data largely reflect figures from Western Europe and the USA, 

as data from other regions, particularly the developing world, is sparse.  

Given the progressive improvements in AF surveillance, coupled with shifting population 

demographics and the growing burden of risk factors, the prevalence of AF is predicted to 

rise significantly in the coming decades. Approximately 3.5 million individuals in the USA 

have AF and this is expected to exceed 8 million by 2050 (Colilla et al., 2013). Similarly in excess 

of 8 million individuals were estimated to be living with AF in Europe in 2010, and this figure 

is projected to rise to 18 million by 2060 (Krijthe et al., 2013). UK specific data suggest the 

prevalence is a little under 2%, and according to The Office of Health Economics estimates for 

2008, the direct cost of AF to the NHS was £429 million; there were approximately 851,095 GP 

visits attributable to AF and patients with primary or secondary diagnoses of AF occupied an 

estimated 5.7 million bed-days (The Office of Health Economics, 2009). The prevalence of AF 

appears to a great extent to be a function of age, affecting 0.1 % under the age of 55 and 

approaching 15 - 20 % above the age of 80 (Go et al., 2001b; Krijthe et al., 2013; Zoni-Berisso et 

al., 2014). Based on the Framingham cohort, the lifetime risk of AF for men and women 

reaching the age of 40 is 1 in 4, and in the absence of cardiovascular or other comorbidities the 

lifetime risk is 1 in 6 (Lloyd-Jones et al., 2004).  

Traditionally rheumatic heart disease and associated mitral valve lesions were a major cause 

of AF. The advent of early antibiotic treatment for streptococcal infections in the western 

world has relegated its contribution, though its prevalence remains an impressive 30 – 60 % 

in AF populations in developing countries (Bhardwaj, 2012; Hersi et al., 2015). In contrast, 

hypertension is the most common medical condition associated with AF, affecting up 70 % of 

patients with AF (Kakkar et al., 2013). Diabetes mellitus is also increasingly recognised as a 

risk factor for AF (Aksnes et al., 2008; Chiang et al., 2012), though data from earlier studies is 

conflicting (Ruigómez et al., 2002; Schnabel et al., 2009). Interestingly the odds ratio for AF in 

patients with type 2 diabetes mellitus appears to increase with increasing hemoglobin A1c 

levels and each year with diabetes mellitus confers a 3 % increased risk of developing AF 

(Dublin et al., 2010). Several studies have also highlighted an association between obesity and 
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AF. The risk of AF in obese individuals is approximately 1.6 times that of counterparts with 

normal BMI (Wanahita et al., 2008; Watanabe et al., 2008; Zhang et al., 2009a) and an elevated 

BMI is a strong predictor of AF recurrence following treatment with catheter ablation (Guijian 

et al., 2013; Middeldorp et al., 2018). AF frequently complicates recovery from myocardial 

infarction with rates being highest in peri-infarct period and an elevated risk persisting for 

several years after the event (Jabre et al., 2011). Similarly, the risk of developing AF is increased 

multiple fold in the presence of heart failure (Schnabel et al., 2009). 

Early insights into the heritability of AF were gained from cases of early onset AF or families 

in which AF segregates as a Mendelian trait. These patient groups have a high a priori 

likelihood of a genetic aetiology of AF, with an expectation that this is primarily due to single 

rare variants of large effect size. Further analyses have highlighted variants in genes encoding 

ion channels, transcription factors and structural proteins (Bapat et al., 2018), though it is 

unclear whether all of the putative “AF genes” are truly causative of AF. The susceptibility to 

AF is evidently complex and multifactorial, reflecting probable epistatic effects from a 

combination of genetic variants and the imprint of environmental factors on this underlying 

inherited susceptibility. It is likely that the latter to some degree provide an explanation for 

the ethnic variation in prevalence. Rates of AF are significantly lower in individuals of non-

European ancestry despite higher rates of AF risk factors in what has been termed the race-

risk AF paradox (Lip et al., 1998; Jensen et al., 2013; Dewland et al., 2013). 

 

1.4.4 Mortality and morbidity 

Though often asymptomatic and frequently an incidental finding, AF is far from benign. AF, 

independent from other known predictors of mortality, is associated with a two-fold 

increased risk of death (Miyasaka et al., 2007). Additionally the arrhythmia confers a five-fold 

increase in the risk of stroke (Wolf et al., 1978), and cerebral events in this context are 

associated with greater mortality and morbidity than those in its absence (Jørgensen et al., 

1996). Heart failure and AF frequently coexist and each predisposes to the other. AF is also 

associated with a 2 - 3 fold increased risk of heart failure (Wang et al., 2003) and the presence 

of both conditions confers significantly elevated mortality risk than either in isolation 

(Chamberlain et al., 2011; McManus et al., 2013). There is increasing evidence linking AF with 
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cognitive decline (Kalantarian et al., 2013). In the ONTARGET and TRANSCEND studies, 

patients with AF showed more brisk worsening of Modified Mini-Mental State Examination 

and Digit Symbol Substitution Test scores over the subsequent 5 years than did patients 

without AF (Marzona et al., 2012). 

 

1.5 Early concepts of atrial arrhythmogenesis 

More than a century has passed since the nature of AF, as a clinical entity, was elucidated and 

debate regarding its electrophysiological basis has existed since that time. Our current 

understanding remains very much rooted in the rudiments of those original concepts. 

 

1.5.1 The multiple heterotopous centres theory 

The earliest theory regarding the mechanism of AF was proposed by Theodor Englemann 

(1894), who believed that each heart fibre became independently rhythmic, discharging 

simultaneously as a result of increased excitability (Wit & Cranefield, 1978). The theory, which 

became known as the multiple heterotopous centres theory, was later espoused by Winterberg 

(1906) who reasoned that activity from one or more heterogeneous centres would account for 

regular and irregular atrial arrhythmias. Lewis (1912) initially shared this view, following 

experiments evaluating electrical currents on strips of myocardium. Winterberg, along with 

Rothberger, subsequently presented a variation on the theory, suggesting that a single ectopic 

focus firing at a markedly accelerated rates (3000 per minute for AF and 500 per minute for 

AFL) accounted for such arrhythmias. 

 

1.5.2 Circus movement theory 

Building on the work of Mayer, Mines in Cambridge and Walter Garrey, an American 

physiologist at Tulane University, both performed similar studies and independently 

published reports demonstrating reentry as a mechanism for arrhythmia (Mines, 1913; 

Garrey, 1914). In investigating mechanisms of fibrillation, Garrey cut a fibrillating chamber 

into 4 four pieces and observed that each sample continued to fibrillate, undermining the 

theory that fibrillation could be driven by a single tachysystolic focus as suggested by 
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Rothberger. He then cut the fibrillating tissue into several small pieces and observed that the 

individual pieces ceased to fibrillate. He concluded that individual fibres could therefore not 

be independently rhythmic thus disproving the multiple heterotopous centres theory. 

Moreover he demonstrated that if the tissue was cut into a ring of appropriate size, the 

fibrillatory activity would organise into a rotating wave of contractions. He therefore reasoned 

that fibrillation was contingent upon a critical mass of tissue and involved a complex circuit 

of reentry with potentially multiple waves of activity moving in different directions and 

bound by transitory areas of conduction block, remarking: “The impulse is diverted into different 

paths weaving and interweaving through the tissue mass, crossing and recrossing old paths again to 

course over them or to stop short as it impinges on some barrier of refractory tissue”.  

 

1.5.3 Mother wave theory 

In 1921 Lewis published results postulating AFL was a reentrant arrhythmia, characterised by 

circus movement of an impulse limited by anatomical structures, and activating the rest of the 

atrial tissue through centrifugal conduction from this central ring (Lewis, 1921). The 

experimental protocol involved in vivo bipolar recordings from the surface of the right atrium 

in an anaesthetised canine model using a modified string galvanometer. Lewis also observed 

rhythms which he termed “impure flutter”, which in some cases had exceptionally variable 

cycle lengths and resembled AF on the surface ECG. He, having abandoned the concept of 

heterotropic centres of activity, surmised that AF originated from a central ‘mother’ wave 

rotating through a smaller circuit than that of AFL, emitting centrifugal or ‘daughter’ waves 

along its course, which passively activate the remaining atrial mass in a disorderly fashion 

owing to regional heterogeneities in the electrophysiological properties. 

 

1.5.4 Multiple wavelet theory 

Repetitive discharge from ectopic foci and circus reentry remained the prevailing theories 

explaining the pathogenesis of AF for several decades. Gordon Moe, a physiologist in New 

York, found both difficult to countenance, suggesting that neither could sufficiently explain 

the sustained nature of AF (Moe, 1956). In 1959, Moe and Abildskov published details of a 

novel canine model using atrial pacing and simultaneous vagal stimulation, that could sustain 
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AF for long periods (Moe and Abildskov, 1959). Moe contended that since vagal stimulation 

significantly increases the dispersion of refractoriness, a single wave of activation would 

unlikely remain intact. Rather he envisioned that AF was a result of multiple randomly 

wandering wavefronts, conducting through an inhomogeneous repolarisation milieu. He 

subsequently postulated the multiple wavelet hypothesis where the initial central wave 

fragments into an increasing number of independent daughter wavelets as it divides about 

strands of refractory tissue, and provided that a sufficient number of wavelets had formed the 

atria would continue to fibrillate. The hypothesis was further supported by an early computer 

model of AF developed by his group, highlighting key contributions of enlarged atrial size 

and electrophysiological heterogeneity, and demonstrated that it was probabilistically 

unlikely that a large number of wavefronts would all extinguish simultaneously (Moe et al., 

1964). According to this model the critical number of wavefronts for perpetuation of AF was 

between 15 and 30. 

 

1.6 The electrophysiological basis of AF 

Atrial fibrillation appears to be a progressive disorder, which at its inception is characterised 

by fleeting episodes which spontaneously terminate (termed paroxysmal AF). With time these 

episodes become increasingly frequent and more protracted, and eventually persistent. A 

multiplicity of electrophysiological abnormalities are known to contribute to the genesis of 

AF, and the relative contribution of each is likely to vary with time, reflected in the spectrum 

of manifestations. Understandably the efficacy of any single therapeutic intervention is not 

uniform across this continuum. 

 

1.6.1 Trigger versus substrate 

In early animal models, AF was induced through high rate atrial pacing however the bouts of 

AF would terminate fairly briskly. The issue restricted detailed analysis of the underlying 

mechanisms. Moreover, this tendency to spontaneously cardiovert reinforced the perception 

that continued focal discharge was essential in sustaining AF, underpinning the multiple 

heterotopous centres or tachysystolic theories of arrhythmogenesis. These schemes of AF 
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however were considered less relevant in light of Lewis’ demonstration of re-entry, which 

became the most widely accepted position for several decades. 

The role of reentry in maintaining AF was later challenged by Scherf and colleagues, deeming 

such activity to be epiphenomena not involved in its perpetuation (Scherf & Terranova, 1949). 

Sustained AF could be induced in canine hearts through injections of the alkaloid aconitine 

into the right atrial appendage. The arrhythmia could consistently be terminated by cooling 

the tissue, but would promptly reinitiate upon rewarming. They reasoned that termination 

would imply interruption in any reentrant circuit(s) present thus reentry could not precipitate 

the spontaneous recurrence when the preparation was warmed, and therefore supported a 

pivotal role of ectopic activity in driving AF (Scherf et al., 1953). Similar assertions were made 

by Prinzmetal who failed to demonstrate circus movement or daughter waves using high-

speed cinematography and multi-channel electrocardiography in the same canine model of 

sustained AF (Prinzmetak and Corday, 1950). Sustained AF in Moe’s canine model was 

achieved through high rate pacing from the right atrial appendage and simultaneous vagal 

stimulation (Moe and Abildskov, 1959). The latter posited that once established, AF could 

persist without the agency of the initiating mechanism. In their model, following the onset of 

AF, the appendage was clamped and electrically isolated from the atrial body.  On cessation 

of pacing, fibrillation was no longer evident in the atrial appendage but persisted in the 

remaining atrial mass, disaffiliating the mechanisms underlying the initiation of AF from 

those involved in its maintenance, and implying roles for both ectopic activity and reentry. 

Definitive evidence supporting a role for ectopic activity in the pathogenesis of AF was 

demonstrated in a landmark study by Haïssaguerre et al., who reported spontaneous activity 

from sites within the right or left atria triggered the arrhythmia in a cohort of patients with 

drug-refractory paroxysmal AF (Haïssaguerre et al., 1998). In all 45 patients enrolled in the 

study, AF was initiated by ectopic activity from a small number of foci, 94% of which were 

located at the ostia of the pulmonary veins (PV) (Figure 1.12). Elimination of this ectopic 

discharge through RFA was effective in preventing recurrence in two thirds of cases during 

the follow-up period. Techniques for PV isolation have evolved significantly since this report 

of its utility in managing AF, and has become the primary invasive intervention for the 

treatment of AF. However, despite significant technical advances in ablation methods, 

outcomes from AF ablation remain suboptimal. Success rates vary between 60% to 80% for 
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paroxysmal AF, depending on ablation strategies, and between 50% to 60% for persistent AF 

(Brooks et al., 2010; Ganesan et al., 2013; Verma et al., 2015). AF recurrence may be attributable, 

in part, to reconnection of the PVs or the presence of non-pulmonary vein triggers, however 

processes beyond triggered activity are likely to contribute.  

 

 

Figure 1.12 Foci of ectopic activity 

Schematic diagram identifying sites of ectopic activity seen to trigger atrial fibrillation in 45 patients with drug-

refractory paroxysmal atrial fibrillation. Of the 69 sites identified, 94% were at the ostia of the pulmonary veins. 

(adapted from Haïssaguerre et al., 1998) 

 

Several studies have identified the AF type (paroxysmal or persistent) and duration as 

sensitive predictors of long term outcome (Tutuianu et al., 2015; Sultan et al., 2017). The poorer 

outcomes in patients with persistent AF have served to highlight differing mechanisms 

underlying AF in its early stages to that when more established and has led to the trigger-

substrate model of AF. For the arrhythmia to be sustained, ectopic activity must encounter 

tissue with electrophysiological properties that promote reentry. In the early stages of AF, 

ectopic activity emanating from the PVs or alternative foci precipitate AF which sustains for 

variable amounts of time. As the disease progresses, progressive electrical, mechanical and 

structural alterations in the atria generate a substrate promoting the perpetuation of AF, hence 

a trigger-targeted therapy such as PV isolation is less likely to be effective (Iwasaki et al., 2011). 
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1.6.2 Triggers for AF 

There is general consensus that sites of high frequency ectopic activity play a prominent role 

in initiating episodes of paroxysmal AF, and such abnormal discharges have been recorded 

from a number of structures including the left atrial appendage (Di Biase et al., 2010), superior 

vena cava (Tsai et al., 2000), ligament of Marshall (Katritsis et al., 2001), coronary sinus 

(Johnson et al., 1986) and the crista terminalis (Nanthakumar et al., 2004). These however 

account for a fraction of all such cases with the PVs being implicated in the overwhelming 

majority. Reasons behind this predilection for the PVs or indeed the mechanisms driving the 

rapid discharge from any of these structures remain yet to be elucidated. Venous structures 

feeding into the atria such as the PVs and superior vena cava are known to be in electrical 

continuity with the heart through extensions of the myocardium from the embryological atrial 

antrum into these veins. Aberrant activity within these structures can therefore conduct along 

these muscular sleeves and invoke reentry. 

Genome-wide association studies have demonstrated a consistent and robust association 

between AF and single nucleotide polymorphisms (SNPs) in proximity to the PITX2 gene. A 

comprehensive understanding of the function of the PITX2 family of transcription factors is 

at present lacking, but they are recognised to have a diverse range of roles during both 

embryological development and in adulthood. PITX2 was initially described in the context of 

embryological development of left-right asymmetry of internal organs (Ryan et al., 1998). The 

development of cardiac left–right specific characteristics such as the restriction of the SAN to 

the right atrium is critically dependent on asymmetrical organ morphogenesis, and is subject 

to PITX2 expression in the left-sided cardiac chambers. Loss of PITX2, in some cases at least, 

could result in incomplete suppression of pacemaker activity in the left heart and give rise to 

foci of ectopic activity (Wang et al., 2010). Interestingly, there is progressive loss of left atrial 

PITX2 expression with advancing age in murine hearts, and may have some bearing on the 

age-related incidence of AF (Wang et al., 2010). Further, risk variants at the PITX2 locus have 

been reported to predict AF recurrence in patients undergoing PV isolation (Husser et al., 

2010). Both under- and overexpression of PITX2 have been linked to AF in humans suggesting 

a critical level of expression is required for normal atrial function (Chinchilla et al., 2011; Pérez-

Hernández et al., 2016). In animal models, PITX2 deficiency was associated with shortening of 
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the APD and higher susceptibility to inducible atrial arrhythmias including AF (Kirchhof et 

al., 2011). 

Several lines of evidence suggest PVs harbour cells with pacemaker-like activity, and that 

enhanced automaticity in these cells underpin PV based triggers for AF. Masani and 

colleagues identified sinus-node like cells (P cells) interspersed between normal atrial 

myocytes in the pre-terminal segment of the PVs using electron microscopy (Masani, 1986). 

Further histological studies from explanted human hearts have reported cells with 

morphological characteristics reminiscent of P cells, transition cells, Purkinje cells and Cajal 

cells (Perez-Lugones et al., 2003; Gherghiceanu et al., 2008). A number of these cell types 

express ion channels usually found in nodal tissue further raising the potential for a role in 

PV based triggers (Morel et al., 2008; Nguyen et al., 2009), however studies characterising their 

electrophysiological properties or exploring mechanisms by which they may contribute to 

atrial arrhythmias are lacking. 

The architectural arrangement of myocardial fibres within the muscles sleeves are rather 

complex and may influence their arrhythmic potential. Myocyte bundles appear to be 

arranged in a variety of orientations, with circumferentially orientated bundles 

interconnected to those running in longitudinal and more oblique trajectories (Ho et al., 2001). 

Such an arrangement of fibres may lead to anisotropic conduction properties between bundles 

and predispose to reentry. Additionally, the muscle sleeves are not uniform across their 

length, varying in depth and displaying fibrous gaps between neighbouring myocytes with 

inter-pulmonary interconnections/bridges between bundles within veins and between 

adjacent veins (Cabrera et al., 2009). Although such findings are not limited to patients with a 

history of AF, histological analysis does suggest myocardial extension is significantly 

increased in the context of AF (Hassink et al., 2003). Furthermore AF is associated with higher 

frequency of discontinuity and a greater degree of fibrosis when compared to muscle sleeves 

from control groups, potentially supporting micro-reentry (Saito et al., 2000).  

Evidence of reentry within the PVs has been reported in several animal models and human 

studies of AF. PVs in a canine left atrial preparation demonstrated slowed conduction and 

heterogeneous electrical properties along their length, predisposing to re-entry (Hocini et al., 

2002). Optical mapping studies of canine and sheep preparations have also shown conduction 
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slowing, with areas of conduction block and re-entry in the proximal segments of the PVs in 

response to pacing (Arora et al., 2003; Yamazaki et al., 2012). Canine PVs also appear to have 

anisotropic conduction with a propensity for reentry following rapid pacing. Here, reentry 

circuits localised to the venoatrial junction and corresponded to areas displaying abrupt 

changes in fibre orientation (Chou et al., 2005). Furthermore, using high density mapping of 

human PVs, anisotropic conduction and heterogeneity in repolarisation properties is evident 

within the PVs and at their insertion in the LA (Kumagai et al., 2004), and these features appear 

significantly more pronounced in PVs from patients with AF compared to those in sinus 

rhythm (Jaïs et al., 2002).  

Interestingly, pulmonary myocardial cells do not develop from atrial cells, but rather de novo 

at the junction of the common PV and LA, and display distinct electrophysiological properties 

(Webb et al., 2001; Sherif 2013). Indeed, PV cardiomyocytes have distinct ionic currents to 

those of LA cells, with characteristically shorter APDs and particularly brief ERPs (Tada et al., 

2002; Melnyk et al., 2005). They also develop enhanced automaticity and frequent after-

depolarisations, both early and delayed, in response to rapid atrial pacing (Chen et al., 2001). 

There are therefore numerous mechanisms through which aberrant activity in the PVs may 

originate, and in the appropriate conditions, trigger AF. 

 

1.6.3 Atrial substrate in AF 

The canine model of AF described by Moe (Moe and Abildskov, 1959) suggested that once 

initiated, AF could sustain for long periods of time in the absence of on-going trigger activity. 

Their computer simulations suggested AF arose from a rapid succession of impulses, and 

would persist when such impulses encountered partially and irregularly excitable tissue that 

would promote reentry (Moe et al., 1964). Allessie et al., provided the first actual 

demonstration of such functional reentry, that is reentry in the absence of an anatomical 

obstacle, thus displaying many of the phenomena hypothesised by the likes of Garrey and 

Moe (Allessie et al., 1973, 1976, 1977). Using multi-electrode array recordings in an isolated 

rabbit atrial preparation, heterogeneous repolarisation properties gave rise to unidirectional 

block and clockwise spread of excitation, with the impulse returning to the initial site of block 

once excitability had recovered and then could continue to circulate for many revolutions 

(Figure 1.13). The pathway could have a circumference of as small as 6-8mm and was 
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described as the ‘leading-circle model’ of reentry. In this model, the dimensions of the circuit 

are determined by the electrophysiological properties of the tissue, where the circumference 

would be the minimum length at which the leading edge of the wave approaches but does 

not encroach upon its refractory tail. The circus movement results in constant centripetal 

activation of the centre of the circuit rendering it continuously refractory, thus forming a 

functional barrier that can sustain reentry in a way similar to a fixed anatomic barrier such as 

a scar. Centrifugal impulses emanating from the circuit would activate the remaining atrial 

tissue. Later mapping studies on cholinergically induced AF in isolated canine hearts 

provided more direct support for Moe’s multiple wavelet hypothesis (Allessie et al., 1996). 

Using similar MEA recordings, reentrant activity was seen in both atria and they estimated 

that a critical number of 3-6 wavelets were required for perpetuation of AF.  

 

 

 

Figure 1.13 Circus reentry in rabbit atria during sustained tachycardia 

Multi-electrode array recordings from isolated rabbit left atrial preparation during pacing induced tachycardia. 

Points are taken from fibres along a straight line as labelled in top right diagram. Fibres 3 and 4 are located at the 

centre of the circuit, being of lower amplitude and activate twice as frequently as peripheral points due to repetitive 

stimulation. Activation times of these fibres suggest centripetal activation. The tachycardia appeared to rotate 

clockwise as shown by activation times (top right) and shown in schematic (bottom right). (Adapted from Allessie 

et al., 1977) 
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Although functional reentry seems to be a critical feature in the mechanisms underlying AF, 

it appears to be significantly more complex than described by the leading circle model. The 

leading circle concept implies that the refractory central region prevents the excitation wave 

from invading it, thus representing a central core of functional block that fixes the circulating 

wavefront to a unique location. This model however appeared to be incongruent with studies 

investigating the dynamics of ventricular fibrillation (VF) and spiral waves have been 

suggested to better characterise the nature of reentry in VF as well as AF (Davidenko et al., 

1990; Jalife et al., 1998; Pandit et al., 2005). Spiral waves represent a specific form of functional 

reentry that exhibit a curved wavefront, which is most pronounced at its core (Figure 1.14). 

Importantly, the wavefront velocity is not uniform, instead varying along different points 

owing to the differing degrees of curvature and consequent current source-sink mismatch. 

The extreme curvature in the central region creates an area of exceptionally slow conduction, 

thus rendering the core excitable but extremely difficult to penetrate. The repolarisation tail 

follows the course of the activation front, meeting the latter at a focal point termed the phase 

singularity (PS). This PS point is able to precess and meander about the core, thus behaving 

differently to the defined course in the leading-circle model. Rotors may be initiated when a 

wavefront encounters some form of barrier, either due to a structural obstacle such as a scar, 

electrophysiological inhomogeneity or anisotropy. As a wavefront passes through the barrier 

it can, under certain conditions, fragment into daughter wavelets by a process called vortex 

shedding. As the rotating wavefronts spread away from the PS and core, they interact with 

other areas inhomogeneity fragmenting further, giving rise to multiple wavelets manifesting 

as fibrillation. Crucially the multiple waves arise from a small number of principle rotors, 

which may provide discrete targets for therapy (Narayan et al., 2012). 

Whether the leading-circle model or spiral wave concept best describes the nature of 

fibrillating myocardium remains an area of debate and ongoing investigation, however both 

are contingent upon reentry of a propagating wavefront. Functional reentry is generally 

thought to arise through maladaptive changes in electrophysiological properties resulting in 

slowed conduction and/or shortening of the ERP.  These alterations reduce the AP 

wavelength, defined as the distance travelled by the depolarising wave during one refractory 

period and calculated as the product of conduction velocity (CV) and ERP, permitting the 

formation of reentrant circuits (Allessie et al., 1977). The longer the wavelength, the less likely 

that areas of depolarisation and repolarisation will meet, passing over areas of intrinsic 
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heterogeneity without incident. Shortening of the wavelength to values smaller than the 

dimension of the available circuits or limits of heterogeneity increases the probability of 

reentry and wavebreak. 

 

 

 

 

Figure 1.14 Representation of leading-circle and spiral wave reentry 

A) The leading circle concept: Activity establishes itself in the smallest pathway that can support reentry, shown 

as a large black arrow. Inside the leading circle, centripetal wavelets (small arrows) emanating from it constantly 

maintain the central core in a refractory state. B) Spiral wave mode: Schematic diagram of a spiral wave with the 

activation front shown in black and the repolarization front in red. The point at which the red and black curves 

meet has an undefined voltage state and is usually referred to as the phase singularity point. The phase singularity 

point is not anatomically fixed and so can pivot around the core, thus precessing and meandering within the 

tissue. (Adapted from Comtois et al., 2005).  

 

Evaluation of the electrophysiological properties of atria in both animal models and patients 

with AF reveal features that would shorten the AP wavelength and predispose to re-entrant 

arrhythmia. Pacing-induced AF in a canine model was associated with reduction in the atrial 

ERP and correlated with the inducibility of AF (Morillo et al., 1995; Elvan et al., 1996; Goette et 

al., 1996). Nattel’s group performed various measurements in a similar pacing-induced canine 

AF model, reporting that AF was associated with increased heterogeneity of refractoriness in 

addition to overall shortening of the atrial ERP, and it was the former that appeared to be a 

better independent determinant of AF inducibility (Fareh et al., 1998). Reduction in atrial 
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refractory periods is similarly seen in human hearts with AF (Daoud et al., 1996). Additionally, 

loss of rate adaptation of the ERP has also been associated with vulnerability to AF in canine 

hearts (Lee et al., 1999) and these findings have been corroborated in human studies (Attuel et 

al., 1982). 

While attenuation of the APD and concomitant shortening of the atrial ERP significantly 

contribute to AF initiation and maintenance, the propensity for the atrium to fibrillate does 

not entirely parallel changes in repolarisation properties, and in fact some studies have noted 

prolongation of atrial ERPs in patients with chronic AF (Stiles et al., 2009). In this study, 

patients with chronic AF displayed marked conduction slowing. Kumugai et al., investigated 

electrophysiological properties in patients with chronic AF, immediately following 

cardioversion (Kumagai et al., 1991). P wave duration on the surface ECG was taken as a 

surrogate of atrial conduction time and was longer in AF patients during premature atrial 

beats but not during normal sinus beats indicating abnormal anisotropic conduction 

properties in the atria. These patients also showed shortening of refractory periods. In 

contrast, overall intra-atrial conduction times in young patients with a history of lone AF did 

not differ significantly from those of control patients however there was greater heterogeneity 

in conduction properties across the atria in those with AF (Holmqvist et al., 2011). The 

conduction velocity of a wavefront across the atria is determined not only by the ion channel 

properties of individual cardiomyocytes, but also the architectural composition of the atria 

that influence their ability to function as a syncytium. Transgenic mice carrying a mutation in 

the connexin 40 gene were no more susceptible to AF than wild-type control animals, however 

once induced, AF would persist for significantly longer durations, emphasising the 

importance of conduction properties in creating a substrate favouring reentry (Lübkemeier et 

al., 2013).  

Static properties such as intrinsic heterogeneities that exist across normal atria may promote 

wavebreak and degeneration to fibrillation, however these do not sufficiently account for 

development of AF since the majority of premature ectopic beats do not initiate AF. While the 

initiation of AF is underpinned by localised phenomenon chiefly originating from the PVs, 

adverse electrical, contractile and structural remodelling is fundamental in the formation of 

an arrhythmogenic atrial substrate that permits AF to persist. The relative contribution of each 

in the evolution of AF, and the upstream processes driving this remodelling are yet to be fully 



 

39 
 

elucidated. Fascinatingly, AF itself appears to induce atrial remodelling, thereby facilitating 

its own persistence. 

 

1.6.4 Electrical remodelling in AF  

The notion that AF itself results in remodeling of atrial properties such that AF becomes more 

likely was elegantly shown by the Allessie laboratory (Wijffels et al., 1995). In normal goat 

hearts, short-lived paroxysms of AF were observed following burst pacing from the atrium. 

Artificially maintaining AF for increasing periods of time resulted in enhanced inducibility of 

AF and prolongation of these episodes. Following 2-3 weeks of pacing, AF became sustained 

in the majority of animals (Figure 1.15). At the same time, Morillo and colleagues 

independently performed similar studies in a canine model and reported development of 

sustained AF following 6 weeks of rapid atrial pacing (Morillo et al., 1995). Marked reductions 

in the atrial refractory period and reverse adaptation of repolarisation to rate, in the form of 

greater shortening of the ERP at slower heart rates, were observed in both studies, matching 

the altered repolarisation properties seen in human hearts with AF (Attuel et al., 1982; Daoud 

et al., 1996; Pandozi et al., 1998). These studies provided valuable insights into the pathogenesis 

of AF and led to the concept of ‘AF begets AF’. 

The clinical course of AF is epitomised by initially brief bouts of the arrhythmia, progressing 

with time to more frequent and protracted episodes, and eventually becoming persistent. The 

reductions in atrial ERP certainly serve to increase the probability of AF being sustained, 

however in isolation are unlikely to fully account for the progressive nature of AF. The 

alterations in repolarisation characteristics occur early in AF implying acute changes in ion 

channel expression and function, however the time course of these changes in atrial 

refractoriness do not parallel the propensity of the atria to fibrillate. In the goat model 

described by Wjiffels et al., (1995) significant shortening of the atrial ERP was seen within 24 

hours of AF and appeared maximal at 2-3 days, however several further days of rapid pacing 

was required for AF to become persistent. Additionally these changes appeared to be 

eminently reversible, returning to baseline values within 1 week following restoration of sinus 

rhythm. Yu et al., (1999) demonstrated shorter ERPs with impaired rate adaptation in patients 

following cardioversion for long-standing persistent AF, with the ERP increasing after 4 days 

of maintenance of sinus rhythm (Yu et al., 1999). AF in its paroxysmal form is typified by long 
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periods of sinus rhythm variably punctuated with episodes of AF. Where the intervening 

period in sinus rhythm is sufficiently long enough to allow reversal of such electrical 

remodelling, it is challenging to explain how these transient changes have a bearing on the 

subsequent AF recurrence and protraction as observed in the clinical setting. In fact, following 

successful cardioversion from AF, atrial ERPs are surprisingly longer than in control subjects 

(Stiles et al., 2009). The long term effects of repeated episodes of AF were evaluated in the 

pacing induced goat model (Garratt et al., 1999). Here AF was induced for 3 consecutive 5-day 

periods, each interrupted by 2 days of sinus rhythm.  Each episode of AF was associated with 

marked alterations in refractory properties, which appeared to normalise within 2 days of AF 

termination. There were no additive changes to the spectrum of electrical remodelling 

following successive episodes of AF and no difference in the susceptibility to AF was seen. A 

similar protocol was employed by Hobbs and colleagues, who allowed episodes of AF to 

continue for a month before cardioversion was performed (Hobbs et al., 2000). Features of 

electrical remodelling were allowed to normalise before a further 1-month episode of AF was 

induced. The sequence and time course of remodelling events did not vary between episodes 

of AF, however a time-dependent increase in AF susceptibility was observed. Taken together, 

these findings support a role for altered refractory properties in sustaining AF, however the 

increased susceptibility following longer periods of AF hint towards additional and possibly 

more enduring remodelling phenomena being involved in this ‘domestication’ of AF.  

Slowed conduction is recognised to reduce the AP wavelength and has been demonstrated in 

AF as described previously. Conduction slowing was not highlighted as a prominent feature 

of remodelling in AF in several early models (Ausma et al., 1997a; Neuberger et al., 2005). 

However, conduction slowing was observed following progressively lengthening episodes of 

AF in a canine model (Gaspo et al., 1997b). The attenuation of conduction velocity was 

maximal at 6 weeks, lagging behind the reduction in atrial ERPs and rate adaptation, which 

peaked within 7 days suggesting these abnormalities are potentially mediated by different 

mechanisms. Indeed, conduction slowing can arise through fibrotic change disrupting the 

arrangement of myocyte bundles and such structural remodeling may be less likely to reverse. 

Atria from a canine model of congestive cardiac failure displayed marked interstitial fibrosis, 

heterogeneous conduction, and prolongation of atrial ERP, but were susceptible to sustained 

periods of AF (Li et al., 1999). Similarly canine hearts modeling mitral regurgitation showed 
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abnormalities in conduction, significant structural remodeling and an increased propensity to 

AF despite prolongation of the ERP from baseline values (Verheule et al., 2004). 

 

 

 

Figure 1.15 ‘AF begets AF’ 

Traces represent ECG recordings from a pacing-induced goat heart model of AF. Short burst of rapid atrial pacing 

would instigate brief episodes of AF on termination of pacing (top trace). If AF was maintained with continuous 

pacing for 24 hours, upon termination the AF would continue for 20 seconds before spontaneous cardioversion to 

sinus rhythm. If pacing was maintained for 2 weeks, sustained episodes of AF were observed in over 80% of the 

study animals, reflecting remodelling processes that supported persistence of AF. (Adapted from Wijffels et al., 

1995) 

Finally AF induced remodeling would not account for antecedent events that contribute to 

AF at its very inception. It is likely to alterations in cardiac physiology associated with ageing, 

underlying cardiac pathology and/or those conditions known to increase the risk of AF 

contribute to the initiation and maintenance of AF. Additionally AF is a progressive condition, 

underpinned by seemingly unrelenting remodeling, even when in sinus rhythm. Indeed, early 

and repeated cardioversion to minimise the time in AF in an effort to avert the AF induced 

remodeling failed to prevent AF progression suggesting that sinus rhythm does not beget 

sinus rhythm (Fynn et al., 2002). Importantly these finding may intimate that the processes 
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underlying its genesis and progression are, to some degree, distinct from the arrhythmia itself 

and identification of these upstream instigators may represent sensitive therapeutic targets. 

Studies investigating the molecular correlates of electrical remodelling in AF have suggested 

a panoply of potential mediators, however much of the data is conflicting and often difficult 

to reconcile. It remains unclear as to what extent such differences reflect species specific 

variations in ionic fluxes and indeed differences due to the method used to induce AF, and 

therefore how representative any abnormality is to human AF. A consistent finding in both 

animal models of AF (Wijffels et al., 1995) and human specimens is a reduction in the APD 

(Van Wagoner et al., 1999), a change attributed to a reduction in ICa, secondary to reduced 

expression of L-type Ca2+ channels (Lai et al., 1999; Brundel et al., 1999).  This reduction in gene 

expression however becomes apparent after approximately three months of being in AF, 

suggesting against this being an instigating insult in the genesis of AF.  The reduction itself 

has been postulated to be an adaptive phenomenon, in response to cellular calcium overload 

due to rapid atrial rates at the onset of AF (Van Wagoner et al., 1999).  The majority of 

intracellular calcium is derived from the sarcoplasmic reticulum (SR); it is released into the 

cytosol through RyR2 and levels are returned to their baseline during diastole through uptake 

into the SR by SERCA and extrusion out of the cell by NCX. Supra-normal intracellular Ca2+ 

concentrations augment activity of the NCX, the resultant net inward positive current if of 

sufficient magnitude depolarizes the cell causing delayed after-depolarisations.   

Analysis of specimens from a murine model of AF (Li et al., 2014) and atria of humans with 

AF demonstrate increased frequency of spontaneous diastolic SR Ca2+ leaks (Hove-Madsen et 

al., 2004). Atrial cells from patients with AF demonstrate comparable SR Ca2+ levels to that 

from patients in sinus rhythm suggesting against excessive Ca2+ release being due to SR Ca2+ 

overload, but rather altered activity of the proteins involved in its release and re-uptake (Liang 

et al., 2008; Neef et al., 2010). Hyperphosphorylation of the RyR2 has been noted in atrial cells 

from a canine model of AF and cells from right atria of humans with AF, and this was 

associated with increased diastolic open probability (Vest et al., 2005). In this study, the 

phosphorylation was protein kinase A (PKA) dependent. In a separate study, 

hyperphosphorylation of RyR2 in human atrial cells with noted at Ca2+/calmodulin dependent 

protein kinase II sites (CaMKII), and CaMKII expression levels was also increased in these 

cells (Neef et al., 2010). Furthermore, pharmacological or genetic inhibition of CaMKII 
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prevented AF in a murine gain-of-function RyR2 model of AF (Chelu et al., 2009), suggesting 

CaMKII activity is required for the development of AF in this setting. The relative importance 

of either of these kinases in human AF remains open for discussion. Impaired Ca2+ re-uptake 

into the SR may also contribute to the mishandling of Ca2+ seen in AF. In keeping with this, 

expression of SERCA was reduced in human atrial tissue from individuals with AF. Little data 

exist as to the functional changes in AF or indeed the time course of this, particularly in 

relation to the alterations in RyR2 function mentioned above. 

CaMKII may exert further arrhythmogenic effects through modulation of atrial K+ transients. 

Ito density is significantly diminished in chronic AF (Caballero et al., 2010) with corresponding 

downregulation in the expression of its α subunit Kv4.3 (Brundel et al., 2001b). Acute over-

activity of CaMKII actually increases Ito (Tessier et al., 1999), however transgenic mice over-

expressing CaMKII display downregulation of Ito (Wagner et al., 2009). Reductions in gene 

expression and currents have also been reported for IKUR (Van Wagoner et al., 1997; Christ et 

al., 2008) and the ATP sensitive K+ channel (KATP) (Brundel et al., 2001b; Balana et al., 2003), 

however conflicting evidence exist for both (Bosch et al., 1999; Wu et al., 2005b) and their 

respective contributions to the genesis of AF remains unclear. 

The evolution of AF is characterized by electrical and structural remodeling, producing an 

inhomogeneous atrial substrate permissive to AF maintenance. CPVT is characterized by 

episodic ventricular arrhythmias during periods of adrenergic stress. It is associated with 

genetic abnormalities in the cardiac RyR2, or proteins that interact with it.  Interestingly 

murine models of CPVT demonstrate increased susceptibility to AF (Shan et al., 2012). 

Similarly, an increased incidence of atrial tachy-arrhythmias has also been documented in 

human series of CPVT (Bhuiyan et al., 2007). Huang & colleagues reported evidence of 

reduced ventricular conduction velocities in the RyR-P2328S murine model of CPVT, 

providing a substrate for reentry (Zhang et al., 2013). Moreover similar reductions in maximal 

upstroke of depolarization and conduction velocity were seen in the atria (King et al., 2013c), 

providing some insights into alterations that underlie susceptibility to AF.  Such changes in 

depolarization rate and conduction velocity are predominantly a function of Nav. In keeping 

with this, they demonstrated reduced Na+ channel expression and function (King et al., 2013b), 

highlighting downstream electrical remodelling from an isolated genetic abnormality in 

RyR2. Furthermore reduced INa could be recapitulated to some degree in wild type atria 
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following acute increases in intracellular Ca2+ concentration.  The C-terminal of Na+ channel 

constructs have been shown to contain two Ca2+ sensitive regions that may explain their 

sensitivity to acute disturbances in Ca2+ homeostasis. Taken together, these observations 

provide some insight into acute and more chronic remodelling events that follow RyR2 

dysfunction, and are implicated in the perpetuation of AF. Interestingly, previous studies had 

failed to identify any changes in INa or its channel expression (Bosch et al., 1999; Brundel et al., 

2001b) however more recent patch clamp studies in atrial myocytes suggest such reductions 

in Nav function (Sossalla et al., 2010). 

 

1.6.5 Structural remodelling in AF  

Early evidence of AF-related adverse structural remodelling was presented by Davies & 

Pomerance (1972), who reported on post-mortem examination findings on 100 patients with 

AF (Davies & Pomerance, 1972). Chronic AF was associated with fibrotic replacement of 

normal atrial myocardium in the region of the SAN and inter-nodal tracts in addition to nodal 

artery stenosis, compared to patients with AF onset within the final two weeks of life. This 

absence of fibrosis in early AF suggests the initiation of AF is not dependent upon it and also 

raises the possibility that it too may be an AF-induced remodelling phenomenon. Importantly, 

characterisation of atrial tissue from patients with a history of long standing AF who were 

undergoing cardiac surgery revealed evidence of apoptosis, suggesting a degree of 

irreversibility in this remodelling process that may underpin the progressive and increasingly 

intractable nature of AF with time (Aimé-Sempé et al., 1999). 

The progressive ultra-structural changes in atrial tissue related to AF were assessed by 

electron microscopy in the pacing-induced goat (Wijffels et al., 1995) and canine (Morillo et al., 

1995) models of AF. Early changes included loss of the myocardial structural protein 

cardiotin, initially thought to have a role in linking the SR to sarcomeric proteins but more 

recent studies rather suggest a role in supporting cardiac mitochondrial function (Driesen et 

al., 2009). Accordingly abnormal enlargement of mitochondria and fragmentation of the SR 

closely succeed these changes in cardiotin. The early period of AF is further typified by overall 

increase in atrial cell size, perinuclear accumulation of glycogen, progressive myolysis and 

alterations in the connexin composition and distribution (Ausma et al., 1997b; Kostin et al., 

2002). Histological analysis form human atrial samples suggest progressive non-specific 
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patchy fibrosis with severe hypertrophy, vacuolar degeneration and necrosis of myocytes 

(Frustaci et al., 1997). 

The disruption of gap junction activity through fibrotic change within the atrium and altered 

connexin expression/distribution is likely to impact upon conduction properties within the 

atria and support reentry, even in the absence of cellular AP characteristics. Levels of both 

connexin 40 and connexin 43 are found to be reduced in AF and their location less limited to 

the intercalated discs as predominantly observed in sinus rhythm (Kostin et al., 2002). 

Moreover these structural changes do not resolve at the same rate, if at all, as those that reflect 

electrical remodelling. Following 4 months of maintained sinus rhythm, atrial cell size and 

connexin expression patterns appear to normalise, however evidence of a degree of myolysis 

persist, albeit less severe, as well as the alterations in the extracellular matrix fraction (Ausma 

et al., 2003). Thus structural abnormalities, which appear more gradually than electrical 

remodelling, may play a greater role in sustaining AF over longer periods, and determine the 

likelihood of AF progression with time. 

 

1.6.6 Mitochondrial dysfunction and AF  

The incidence of AF increases steeply with age, and there are now established associations 

between AF and a number of the constituents of the metabolic syndrome, including obesity, 

insulin resistance and hypertension (Asghar et al., 2012; Isik et al., 2012).  The aetiological 

significance of these observations remain yet to be resolved. There is increasing data 

implicating general metabolic dysfunction, and in particular mitochondrial dysfunction, as a 

central feature of the biochemical changes that characterise ageing as well as the conditions 

listed above, and may also underlie the susceptibility to AF that accompany these states. 

Abnormal mitochondrial structure has been noted in animal models of AF (Morillo et al., 1995; 

Ausma et al., 1997b). In these models, mitochondrial abnormalities became apparent early 

following the induction of AF. Analysis of mitochondria in cardiomyocytes from human 

subjects with atrial fibrillation demonstrate greater degrees of DNA damage (Tsuboi et al., 

2001; Lin et al., 2003), structural abnormalities (Bukowska et al., 2008) and evidence of 

impaired function (Lin et al., 2003; Ad et al., 2005). Atrial tissue from patients with 

longstanding AF demonstrate altered transcription of mitochondrial oxidative 

phosphorylation-related proteins and increased myofilament oxidation (Mihm et al., 2001; 
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Lamirault et al., 2006). Also mitochondrial Complex II/III activity is decreased in 

permeabilised atrial fibres obtained from patients who developed post-operative AF, 

corresponding to decreased expression of the gene cluster for mitochondrial oxidative 

phosphorylation (Montaigne et al., 2013). Additionally studies similarly analysing right atrial 

tissue from patients undergoing cardiac surgery also demonstrated downregulation of 

electron transport chain activity and proton leakage in patients with a history of AF (Seppet 

et al., 2005; Emelyanova et al., 2016). 

Normal cardiomyocyte function is dependent upon a number of energy-intensive processes, 

in human hearts this amounts to kilogram quantities of adenosine triphosphate (ATP) daily 

(Leone & Kelly, 2011). This energetic cost is defrayed by a rich network of mitochondria. 

Mitochondria occupy up to 30% of cardiomyocytes cell volume and produce over 90% of 

cellular ATP (Schaper et al., 1985; Barth et al., 1992). Approximately 60-70% of cellular ATP is 

utilised in cardiac muscle contraction; the remainder is required for efficient calcium cycling 

as well as maintaining plasma gradients of other ions. It stands to reason that inefficient or 

mismatched energy supply will impact upon these processes. Accordingly, the sarcolemmal 

K-ATP (sarcKATP) channel is tightly coupled with mitochondrial energy state, its open 

probability increases with ATP depletion or rising levels of adenosine diphosphate (ADP) 

(Akar & O’Rourke, 2011). Activity of this channel causes efflux of potassium from the cell, 

which in cardiac tissue is associated with shortening of the APD and consequently the ERP 

(Fosset et al., 1988; Faivre & Findlay, 1990), a state conducive to re-entrant arrhythmia.  

Inhibition of this channel in Langendorff-perfused rabbit hearts exposed to ischaemia-

reperfusion (IR) was associated with reduced incidence of VF (Fischbach et al., 2004).  

Similarly, inhibition of sarcKATP was associated with a reduction in VF and mortality in rats 

subjected to IR (Vajda et al., 2007).  Interestingly, Lin and colleagues recently demonstrated 

increased ectopic activity, burst firing and APD shortening in PVs and left atria of rabbit hearts 

subjected to IR, and this was attenuated with sarcKATP inhibition (Lin et al., 2012). Whether 

such observations would be replicated with more subtle impairments of mitochondrial 

function associated with chronic disease has hitherto not been established. 

In addition to receding provisions of ATP, uncoupling of mitochondria is also associated with 

increasing formation of reactive oxygen species (ROS) (Siasos et al., 2018). In normal 

physiology, low levels of ROS play an important role in a variety cellular process by 



 

47 
 

modulating the activity of signalling molecules or assuming the role of signal molecules 

themselves. These effects may be transient by altering the activity of cellular proteins, or more 

enduring through their effects on transcription factors and gene expression.   

The ability of ROS to influence the excitability of cardiomyocytes was first posited by Manning 

& colleagues, who demonstrated reduced incidence of malignant ventricular arrhythmias in 

rats following IR when pre-treated with the xanthine oxidase inhibitor, allopurinol (Manning 

et al., 1984).  Several studies have expanded on the role for oxidative stress in models of 

ventricular arrhythmia and more recent reports suggest a role in AF. Rapid-pacing induced 

AF in a canine model was associated with increased protein nitration in atrial tissue, reflecting 

formation of peroxynitrite (formed through the reaction of nitric oxide with superoxide 

anion), implicating a role for increased ROS production (Carnes et al., 2001).  Here rapid 

pacing resulted in shortening of the atrial ERP, a change that was attenuated by pre-treatment 

with the anti-oxidant ascorbate.  A later study in a porcine model of rapid atrial pacing 

demonstrated, through direct measurements, augmented superoxide production from the left 

atria of animals that developed AF (Dudley et al., 2005).  Moreover, markers of oxidative stress 

are increased in right atrial appendage of patients with AF (Mihm et al., 2001; Emelyanova et 

al., 2016).  Analysis of atrial specimens from patients with AF show reduced levels of 

glutathione, the most prominent endogenous anti-oxidant (Carnes et al., 2007). Additionally 

genetic studies of atrial tissue from patients with AF suggest a shift towards a pro-oxidant 

state (Kim et al., 2003). Amongst the several sources of ROS within cardiomyocytes, 

mitochondria are the most prominent (Siasos et al., 2018), and have been implicated as an 

important source of ROS in AF in human atrial specimens (Reilly et al., 2011). 

Where in the pathogenesis of AF ROS reside – either cause or consequence - or the precise 

mechanisms by which abstraction of ROS production from the usual stringent controls confers 

increased susceptibility to arrhythmia remains an area of much debate. Indeed, oxidative 

stress has been shown to influence INa, IK and ICa within cardiomyocyes, however the precise 

alteration in ion current function observed in studies demonstrate a significant degree of 

variability and indeed in some cases are contradictory.  This conflicting data may reflect 

species dependent differences in the effect of ROS, or variability through differences in 

concentrations of ROS used, or the duration of exposure to ROS, and understandably poses a 

challenge to gaining clear mechanistic insights.  
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Dysregulated Ca2+ handling has been strongly linked to various phases of AF progression and 

may be influenced by ROS. CaMKII appears to be redox sensitive, its oxidation resulting in 

kinase activity resembling that of well characterized auto-phosphorylated CaMKII (Erickson 

et al., 2008) and pharmacological inhibition of CaMKII can prevent H2O2 induced ventricular 

arrhythmias (Xie et al., 2009). ROS have also been shown to oxidize and activate PKA (Eager 

& Dulhunty, 1998). Moreover, Terentyey and colleagues recently demonstrated ROS 

mediated changes in RyR2 function associated with ageing in rabbit ventricular myocytes 

were primarily through thiol oxidation of the RyR2 molecule itself and treatment with a 

mitochondrial specific ROS scavenger dithiothreitol returned RyR2 function to control levels, 

implicating direct alterations in RyR2 function may underlie the abnormalities seen rather 

than through the intermediacy of serine kinases (Terentyev et al., 2008). Additionally, 

oxidative stress has been shown to reduce SERCA mediate calcium re-uptake, through thiol 

oxidation (Kukreja et al., 1988). Little data exist as to the functional changes in AF or indeed 

the time course of this, particularly in relation to the alterations in RyR2 function mentioned 

above. Interestingly, reductions in cardiac Na+ channel expression have also been reported 

following dysregulated ROS production (Liu et al., 2010) as well as tentative links to increased 

cardiac fibrosis through fibroblast activation and production of transforming growth factor-β 

(TGF-β) (Friedrichs et al., 2012). 

Mitochondrial dysfunction in animal models of AF is seen following the induction of AF and 

so it is clear that rapid atrial rates certainly have a negative impact on mitochondrial function. 

Similarly, human studies of AF have generally involved obtaining atrial tissue for analysis 

from patients with established AF. Thus it remains difficult to differentiate whether such 

mitochondrial abnormalities represent bystander anomalies in the maelstrom of 

abnormalities that arise as a result of the atrial arrhythmia, or have a more direct role in the 

pathogenesis. If the latter were true, the available evidence would suggest a role in sustained 

AF. However given the proposed involvement of mitochondrial dysfunction in ageing and 

other conditions known to predispose to AF, one cannot discount a putative role in the 

instigation of AF however to date this has not been investigated. 
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1.7 Murine models for arrhythmia 

Despite the clear difference in size, the basic cardiac structure between all mammals, including 

mice, is well conserved. Like human hearts, the murine cardiac system is organised within a 

dual circulation network where the right and left ventricles are structurally homologous 

between the species. The murine atria appear as two distinct chambers with prominent 

appendices, overlying the respective ventricles and contribute significantly to ventricular 

filling (Rentschler et al., 2001). Structurally the murine SA node, AV node and AV bundles are 

similar to those in the hearts of larger mammals including humans (Rentschler et al., 2001), 

while there are notable differences in basal heart rate (Vaidya et al., 1999). 

Species specific differences in the cardiac AP are also recognised. The murine AP has a less 

prominent contribution from the L-type Ca2+ current and therefore lacks a prolonged AP 

plateau, with corresponding reductions in APD from 150 – 400 ms in humans to 30 – 80 ms in 

mice (Danik et al., 2002). In rodents, high Ito densities dominate all phases of repolarization 

and account for the significantly abbreviated APs, and absence of a clear plateau phase 

(Gussak et al., 2000). However many of the processes remain conserved, especially those 

relating to depolarisation and the mouse heart therefore remains a useful model for the study 

of both AP generation and propagation in atrial and ventricular arrhythmogenesis (Papadatos 

et al., 2002). Furthermore, both mice and humans display a similar relationship between action 

potential duration and refractory periods (Koller et al., 1995; Fabritz et al., 2003a). Additionally, 

both species have near identical transmural conduction velocities (Higuchi & Nakaya, 1984; 

Liu et al., 2004) and there are similar differences in transmural heterogeneity in APD 

(Knollmann et al., 2001b). 

The mouse genome is amenable to genetic manipulation with relative ease and genetic mouse 

models of monogenic ion channel abnormalities have provided valuable insights into 

mechanisms of arrhythmogenesis. Murine models of BrS bearing mutations in the SCN5A 

gene recapitulate many of the features of the human form of the disease. Surface ECG 

recordings in these mice display the stereotypical ST elevation and QT dispersion (Martin et 

al., 2010a). The electrophysiological aberrations and arrhythmic tendency are similarly 

accentuated by flecainide (Stokoe et al., 2007) and ameliorated by quinidine (Stokoe et al., 2007; 

Martin et al., 2010b). Murine hearts carrying genetically altered RyR2 Ca2+ release channel and 

SR Ca2+ storage protein calsequestrin‐2 have successfully modeled arrhythmogenic triggering 
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events. They recapitulate features associated with the chronic pro‐arrhythmic condition of 

human catecholaminergic polymorphic ventricular tachycardia (CPVT) (Jiang et al., 2005; 

Goddard et al., 2008). Transgenic mice have also been used to successfully model forms of 

LQTS (Benhorin et al., 2000). 

Murine models of mitochondrial dysfunction, particularly those focused on the study of 

arrhythmias, have proven to be riddled with difficulties on several fronts. Firstly, efforts to 

introduce mutations into mitochondrial DNA (mtDNA) is fraught with logistical challenges. 

DNA transformation of mitochondria inside living cells appears unfeasible, as the introduced 

DNA must cross not one, but three membranes (the plasma membrane, plus two 

mitochondrial membranes), while preserving cell and organelle integrity and viability. 

Furthermore, mtDNA exists in high copy number in each cell, meaning that numerous 

transformation events are required to ensure introduced mtDNA reach meaningful levels. 

Secondly, the widespread and integral function of mitochondria mean that animals with 

deficient mitochondrial function are burdened with a multiplicity of pathologies. For 

example, Mito-mice carrying mutations in mtDNA develop progressive lactic acidosis and 

renal failure amongst a host of issues, and have an average lifespan of seven months (Inoue et 

al., 2000; Nakada et al., 2001). The nuclear encoded mitochondrial transcription factor A 

(TFAM) protein specifically binds mtDNA promoters and activates transcription (Larsson et 

al., 1996). Tissue-specific Tfam knockouts faithfully reproduce phenotypes seen in humans 

with mtDNA disorders. Selective cardiac knockouts develop AV block, dilated 

cardiomyopathy and die at 2 - 4 weeks (Larsson et al., 1998; Wang et al., 1999). Indeed 

cardiomyopathy is a common feature of murine models of mitochondrial dysfunction, with 

utility in the study of heart failure but poses obstacles in arrhythmic investigations (Russell et 

al., 2005). 

 

1.8 Peroxisome proliferator-activated receptor γ coactivator-1 family 

Overall mitochondrial mass and function within a given tissue are regulated by several 

transcriptional coactivators, however crucial amongst these are the peroxisome proliferator-

activated receptor γ coactivator-1 (PGC-1) family.  This family includes PGC-1α and PGC-1β, 

which are found with a reasonable degree of ubiquity but are most highly expressed in 

oxidative tissues including heart, brain, skeletal muscle and kidney (Sonoda et al., 2007).  
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Peroxisome proliferator-activated receptors (PPARs) themselves were initially identified as a 

regulator of adipocyte differentiation and glucose metabolism in adipocytes, but are now 

known to be more widely expressed and are involved in the immune response, inflammation, 

cell growth and differentiation.  PPARs therefore tactually target a broader range of 

transcription factors and demonstrate a role for the PGC-1 family of coactivators in a diverse 

range of processes. 

Preliminary studies assessing roles of PGC-1 proteins demonstrated that either of these 

coactivators, PGC-1α or PGC-1β, are sufficient to activate gene regulatory programs that drive 

increased capacity for cellular energy production in mammalian cells. They achieve this 

through interacting with a host of nuclear receptor targets including PPARα (Vega et al., 2000), 

PPARβ (Wang et al., 2003), thyroid hormone receptor (Puigserver et al., 1998), retinoid 

receptors (Puigserver et al., 1998), glucocorticoid receptor (Knutti et al., 2000), estrogen 

receptor (Puigserver et al., 1998; Knutti et al., 2000), farnesyl X receptor (Zhang et al., 2004), 

pregnane X receptor (Bhalla et al., 2004), hepatic nuclear factor-4 (HNF-4) (Rhee et al., 2003), 

liver X receptor (Lin et al., 2005), and the estrogen-related receptors (ERR) (Huss et al., 2002). 

PGC-1α coactivates nuclear respiratory factor-1 (NRF-1) and -2 (NRF-2) (Wu et al., 1999), 

which modulate expression of Tfam, a nuclear-encoded transcription factor essential for the 

replication, maintenance, and transcription of mitochondrial DNA (Larsson et al., 1998; 

Garesse & Vallejo, 2001). NRF-1 and NRF-2 further regulate the expression of a range of other 

proteins required for mitochondrial function including nuclear genes encoding respiratory 

chain subunits (Virbasius et al., 1993; Scarpulla, 2002). Additionally, several non-nuclear 

receptor PGC-1 partners have also been identified, including myocyte enhancer factor-2 

(MEF-2) (Michael et al., 2001), forkhead box O1 (FOXO1) (Puigserver et al., 2003), sterol 

regulatory element-binding protein-1 (SREBP1) (Lin et al., 2005), and Sry-related HMG box-9 

(Sox9) (Kawakami et al., 2005). PGC-1 proteins, through these interactions, exert multi-level 

regulation of cellular mitochondrial function and metabolism as a whole. For example PPARα 

is a key regulator of genes involved in mitochondrial fatty acid oxidation, while another PGC-

1 target ERRα is an important regulator of mitochondrial energy transduction pathways 

including fatty acid oxidation and oxidative phosphorylation (Vega et al., 2000). Furthermore 

several of the PGC-1 coactivation targets regulate pathways outside of the mitochondrion — 

such as HNF-4 and FOXO1 (gluconeogenesis), MEF-2 (glucose transport), SREBP1 

(lipogenesis), and Sox9 (chondrogenesis). 
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Overexpression of PGC-1 proteins in various cell types has been shown to increase 

mitochondrial density and augment their oxidative capacity (Lehman et al., 2000; Russell et 

al., 2004). In cardiac cells, PGC-1α has been shown to interact with NRF- 1, ERRα and PPARα, 

leading to increased mitochondrial biogenesis (Vega et al., 2000; Huss et al., 2004).  Ad-PGC-

1-infected cardiomyocytes exhibit a marked induction in the expression of genes encoding 

mitochondrial fatty acid oxidation enzymes (Lehman et al., 2000). Here, forced expression of 

PGC-1 in cardiomyocytes in culture also induced the expression of nuclear genes encoding 

mitochondrial proteins involved in other energy production pathways, including the 

tricarboxylic acid cycle, and nuclear and mitochondrial genes encoding components of the 

electron transport chain and oxidative phosphorylation complex. Transgenic mice with 

cardiac-specific overexpression of PGC-1 via the cardiac myosin heavy chain gene promoter 

develop a cardiomyopathy (Lehman et al., 2000). Electron microsopic analysis of these mice 

demonstrated that the cardiac myocytes exhibited loss of sarcomeric structure due to 

uncontrolled mitochondrial proliferation. Taken together, these studies suggest that PGC-1 

proteins promote FAO enzyme gene expression, and also activate the mitochondrial 

biogenesis programme in cardiomyocytes thus serving as a critical regulatory link between 

control of the mitochondrial FAO pathway and overall mitochondrial function. 

Expression of PGC-1 proteins is increased by a number of upstream signals thus serving as a 

link between cellular energy stores and external stimuli such as cold exposure, fasting and 

exercise, ultimately coordinating mitochondrial activity to match cellular energy demands. 

Interestingly, PGC-1 levels are found to be reduced in obesity, insulin resistance, type II 

diabetes mellitus and ageing, correlating with the mitochondrial dysfunction that is seen in 

these conditions and implicating it in the their pathogenesis (Leone & Kelly, 2011; Dillon et 

al., 2012).   

Mice deficient in both PGC-1α and PGC-1β develop a low cardiac output state and conduction 

system disease, which contribute to their death before weaning (Lai et al., 2008).  Ablation of 

either the α or β member of the PGC-1 family in isolation produces a milder phenotype, 

particularly in the non-stressed state, possibly indicating a redundancy in function between 

the two forms.  Several studies have examined the cardiac phenotype associated with genetic 

ablation of PGC-1α in animal models. Murine hearts lacking PGC-1α have normal contractile 

function at baseline but developed cardiac failure in response to increased afterload (Arany et 
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al., 2005).  Information regarding Pgc-1β deficiency is more limited.  PGC-1β deficient hearts 

demonstrate similarly preserved baseline features despite reduced mitochondrial content, but 

develop a blunted heart rate response compared to wild type (WT) hearts following 

adrenergic stimulation (Lelliott et al., 2006).  Furthermore the absence of Pgc-1β expression 

appears to increase the propensity to arrhythmia.  Langendorff-perfused Pgc-1β-/- hearts 

demonstrate action potential duration alternans, recognised as a harbinger of arrhythmia, and 

significantly more frequent episodes of ventricular tachycardia in response to programmed 

electrical stimulation (Gurung et al., 2011).   Single cell studies from these hearts revealed 

alteration in the expression of a number of ion channels as well as evidence of spontaneous 

diastolic Ca2+ transients, previously associated with after-depolarisations that can trigger 

arrhythmias.  Taken together, isolated absence of a single PGC-1 protein has little impact on 

the contractile function in the non-stressed state but produces an arrhythmic phenotype 

through alterations in the electrical landscape giving rise to a trigger and substrate for 

arrhythmia initiation and maintenance.  The absence of overt cardiac dysfunction does make 

this an attractive model to investigate the role of mitochondrial impairment in arrhythmia 

without the confounding issue of heart failure. 

 

1.9 Scope of this thesis 

There is now greater appreciation for the metabolic changes that accompany, and possibly 

define, ageing as well as a number of conditions which seem to become more prevalent with 

advancing age.  These conditions also exhibit an increased propensity to develop atrial 

arrhythmias, and there is speculation that this susceptibility to such rhythm disturbances are 

likely to be a consequence, in part at least, of these metabolic disturbances.   

Current understanding of the upstream aberrations that manifest as AF or other age-related 

atrial arrhythmias such as AFL are however fragmentary, with much evidence imputed from 

studies of ventricular arrhythmias. Moreover little is known regarding the role of metabolic 

dysfunction in atrial arrhythmogenesis. Several studies have described impaired 

mitochondrial function in atria of individuals with a history of chronic AF. Mitochondrial 

dysfunction is also observed following experimentally induced AF in animal studies. These 

findings would imply such mitochondrial abnormalities develop as a consequence of AF. 

However, abnormal mitochondrial activity is seen in ageing and conditions such as obesity, 
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hypertension and type II diabetes mellitus in the absence of atrial arrhythmias, and therefore 

is likely to pre-exist in patients with these conditions who later develop AF. Such metabolic 

compromise may therefore actually contribute to the vulnerability to these arrhythmias. This 

is particularly relevant in AF where the underlying pathology seems to progress even while 

in sinus rhythm interspersed between paroxysms of AF. Indeed abnormal mitochondrial 

function is known to be arrhythmogenic in itself through a multitude of mechanisms. Much 

of the data however, has been gathered through in vitro studies or models of profound 

metabolic stress mimicking acute ischaemia.  Information regarding the electrophysiological 

consequences of chronic mitochondrial dysfunction and the pathways involved is on the other 

hand limited.  Murine models of mitochondrial dysfunction generally develop 

cardiomyopathy, and therefore further confounding the electrophysiological phenotypes 

observed. The murine Pgc-1β knockout model displays a mild cardiac phenotype with no 

overt contractile dysfunction. Importantly the Pgc-1β-/- hearts have abnormal Ca2+ handling, 

slowed conduction and a susceptibility to ventricular arrhythmias. Its atrial phenotype has as 

yet not been investigated. 

The Pgc-1β-/- model will provide valuable mechanistic insights into the interplay between a 

metabolic lesion and cardiomyocyte excitation in murine atria. The thesis is intended to 

address the hypothesis that the metabolically defective Pgc-1β-/- murine cardiac system 

develops an atrial arrhythmic phenotype with age that arises from energetic deficiency and 

the abstraction of ROS production from the usual stringent controls, disrupting Ca2+ 

homeostasis through alterations in RyR2 function and thus instigating triggered activity. This 

in turn alters conduction of cardiac excitation through downstream reduction in INa, together 

providing a trigger and substrate for AF induction and maintenance. 

Chapter 2 provides an overview of the methods that were employed to examine the 

arrhythmogenic tendency and the underlying electrophysiological mechanisms 

underpinning these at the whole animal, isolated heart and tissue levels. Each of the 

subsequent chapters describes a set of experiments, followed by a discussion of the results. 

The last chapter (Chapter 7) summarises all the results and discusses their limitations, and 

relevance to future work. 

Assessment was first performed in the in vivo setting utilising surface ECG recordings under 

baseline conditions and then in response to adrenergic stress, given the known tendency for 
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AF to arise in circumstances of autonomic imbalance (Chapter 3). The intact animal studies 

preserve the extra-cardiac factors that influence cardiac activity and tendency to arrhythmia. 

As the sequelae of mitochondrial dysfunction progress with age, experiments were performed 

in young and aged Pgc-1β-/- animals and compared to age-matched wild type counterparts. 

In chapters 4 and 5, a Langendorff perfusion system was utilised to analyse tissue and cellular 

electrophysiological parameters with sharp microelectrode measurements taken from the LA. 

The sharp electrode technique enables exquisite assessment of AP characteristics including 

precise indices of conduction and APD. Hearts were analysed for total arrhythmic episodes 

and associated electrophysiological properties in intrinsic rhythm, regular pacing and in 

response to programmed stimulation.  

In chapter 6, the electrophysiological properties observed in the preceding experiments are 

correlated with a novel loose patch clamp technique that enabled assessment of ionic currents 

in the intact tissue, which is not possible with conventional whole-cell tight patch clamp 

technique. Additionally structural remodelling was assessed with histological sampling of 

atrial tissue. 
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2 Materials and methods 

 

2.1 Experimental animals 

All experiments were approved by the University of Cambridge Animal Welfare and Ethical 

Review Body (AWERB). The procedures performed complied with the UK Home Office 

regulations (Animals (Scientific Procedures) Act 1986) under a UK project licence (PPL 

number: 80/1974) for studies of cardiac arrhythmia and also conformed to the Guide for the 

Care and Use of Laboratory Animals, U.S. National Institutes of Health (NIH Publication No. 

85-23, revised 1996) and NC3R guidelines. 

All mice were inbred from a C57BL/6 strain to avoid possible strain-related confounds, and 

maintained by inter-crossing. Pgc-1β-/- mice were generated by genetic manipulation using a 

triple LoxP targeting vector (Lelliott et al., 2006). The Pgc-1β locus was targeted with a ~8 

kilobase 129/SvJ mouse genomic subclone targeting vector containing a floxed neomycin 

phosphotransferase selectable marker cassette inserted into intron 3 and a single LoxP site 

inserted into intron 5. Deletion of exons 4 and 5 was confirmed by southern blotting analysis, 

and germ line transmission of the modified Pgc-1β allele was confirmed by PCR. 

Heterozygous triple-LoxP–containing mice were then bred with ROSA26Cre mice to generate 

mice heterozygous for the Pgc-1β deletion. The latter were then intercrossed to generate mice 

homozygous for Pgc-1β deletion.  

Breeding pairs of homozygote Pgc-1β-/- and wild type (WT) mice were set up and offspring 

were weaned and used when of the correct age. As the consequences of chronic mitochondrial 

dysfunction likely accumulate with age, mice were divided into four groups. Young WT and 

Pgc-1β-/- groups consisted of mice between the ages of 12-16 weeks. Previous studies in 

transgenic mice reported increased fibrotic and electrophysiological alterations at ages above 

12 months (Jeevaratnam et al., 2011). The latter two groups accordingly consisted of animals 

above this age to investigate the effects of age on electrophysiological parameters. Thus the 

aged WT and Pgc-1β-/- groups consisted of mice greater than 52 weeks.  
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Mice were housed in plastic cages maintained at 21 ± 1oC, and were subjected to 12 hour 

dark/light cycles with access to bedding and environmental stimuli. Sterile rodent chow (RM3 

Maintenance Diet, SDS, Witham, Essex, UK) and water were available ad libitum. 

 

2.2 In vivo electrocardiography 

ECG recordings were obtained in intact mice, preserving all extra-cardiac influences upon 

cardiac excitation (Chapter 3). Recordings were taken under general anaesthesia to 

circumvent issues with movement artefact. 

 

2.2.1 Electrocardiography recordings 

Mice were anaesthetised with tribromoethanol (avertin: 2,2,2 trimethylethanol, Sigma-

Aldrich, Poole UK) administered into the intra-peritoneal space with a 27G hypodermic 

needle. Avertin was selected as the anaesthetic of choice as it modifies the haemodynamic and 

electrophysiological properties to a lesser extent than other available compounds such as 

ketamine (Mitchell et al., 1998). Mice were then weighed, placed supine on a warmed (37°C) 

platform, and their limbs secured with adhesive tape to minimise movement artefact and 

enable correct lead positioning. Three 2-mm diameter electrodes (MLA1204; ADInstruments, 

Colorado Springs, CO, USA) placed in the right forelimb, left forelimb and left hindlimb 

respectively enabled lead I and lead II ECG recordings. The electrodes were connected to a 4-

channel NL844 pre-amplifier whose outputs were then led through 4-channel NL820 isolator 

and NL135 low-pass filter units (set at a 1.0-kHz cut-off and with a 50-Hz notch) within a 

NL900D chassis and power supply (Neurolog-Digitimer, Hertfordshire, UK). To reduce 

electrical noise, all recordings were carried out within a grounded Faraday cage. Signals were 

sampled at 5 kHz and analogue-to-digital conversion employed a CED 1401c interface 

(Cambridge Electronic Design, Cambridge, UK). This then conveyed the signal to a computer 

for display and recording using Spike II software (Cambridge Electronic Design).  

 

ECG recordings commenced immediately following electrode attachment in anaesthetised 

animals. These were continued for 5 minutes to permit preparations to reach a steady state, 
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and for a further 5 minutes to obtain traces for quantitative analysis. Dobutamine 

hydrochloride (3 mg/kg; Sigma Aldrich, Poole UK) was then administered into the 

intraperitoneal space. ECG recording was then continued until a new steady state was 

reached. A further 5 min recording period provided traces for quantitative ECG analysis 

following pharmacological challenge. 

 

2.2.2 Digital signal processing 

All analysis employed custom-written software in the open-source R programming 

language (R Core Team, 2015). Data was imported into the R program. An infinite 

impulse response high pass Butterworth filter of order 2 was designed and the signal 

passed through to eliminate baseline drift. The signal was filtered in both forward and 

reverse directions to negate effects of any phase shift. A low-pass Savitzky-Golay 

algorithm was then applied. R peak fiducial points were identified with a peak-

finding algorithm used to detect QRS complexes. An iterative process determined the 

signal envelope and an adaptive threshold was used to identify time points in the 

signal that were greater than threshold in the continuous ECG signal. QRS complex 

timing positions were determined; peaks on a more substantive upward or downward 

trend were disregarded in favour of the peak with the larger absolute value. If 

multiple peaks were detected within 2 ms, the peaks were analysed again and the 

larger maximum value taken as the correct peak, and the smaller peak discarded. In 

addition, all detections were visually verified. P waves were analyzed independently 

of QRS complexes by deleting the QRS complexes and subsequent isolation of the P 

wave parameters. This analysis thus made no assumption of QRS complexes being 

preceded by P waves. Analysis was performed on 300 sec periods of ECG data 

immediately prior to and following administration of dobutamine hydrochloride. The 

effect of dobutamine was judged from observed ECG parameter changes. Figure 2.1 

depicts a typical murine ECG recording with parameters calculated based upon this 

archetypal signal. Intervals were corrected using the formula previously described 

(Mitchell et al., 1998). 



 

59 
 

 

 

 

Figure 2.1 Typical murine electrocardiogram complex and relevant intervals 

Typical ECG and definition of deflections used in quantitative analysis (a) start of P wave start; (b) P wave 

trough/end of P wave; (c) start of QRS complex; (d) R wave peak; (e) trough of S wave; (f) peak of R' deflection; 

(g) C wave peak; (h) trough or end of C wave.  The corrected QT interval, QTc is taken as the interval from c to h 

and corrected for RR intervals (Mitchell et al., 1998). 

 

2.3 Whole heart studies 

2.3.1 Experimental solutions 

All buffering media utilised in the study were based on Krebs-Henseleit (KH) solution, 

containing NaCl (119 mM), NaHCO3 (25 mM), KCl (4 mM), MgCl2 (1 mM), KH2PO4 (1.2 mM), 

CaCl2 (1.8 mM), glucose (10 mM) and sodium pyruvate (1.8 mM), pH adjusted to 7.4 and 

bubbled with 95% O2/5% CO2 (British Oxygen Company, Manchester, UK). All chemical 

reagents were purchased from Sigma-Aldrich (Dorset, Poole, UK) except where otherwise 

indicated. Hearts were electromechanically uncoupled using blebbistatin (20 µM, 

Selleckchem, Houston, USA) to minimize motion artefact during the microelectrode studies, 
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permitting stable impalement of the cardiomyocyte.  

 

2.3.2 Langendorff perfused preparation 

In chapters 4 and 5, electrocardiograph and microelectrode studies were performed using a 

horizontal Langendorff perfusion system adapted for the murine heart incorporated into a 

Faraday cage, together with a light microscope (objective ×5, eyepiece ×5, W. Watson and Sons 

Limited, London, UK), custom built head stage and a warmed bath superfused with the 

buffering media. All equipment was electrically insulated. The stimulating and recording 

electrodes were positioned at appropriate positions on the right and left atrium respectively 

using two precision micromanipulators (Prior Scientific Instruments, Cambridge, UK). 

Mice were anticoagulated with heparin sodium 200 IU (Sigma-Aldrich, Poole, UK) prior to 

sacrifice, administered into the intra-peritoneal space with a 27G hypodermic needle. 

Following an interval of 10 minutes, mice were killed by cervical dislocation (Schedule 1: UK 

Animals (Scientific Procedures) Act (1986)), a sternotomy and cardiectomy rapidly performed, 

and the excised heart placed in ice-cold bicarbonate-buffered KH solution. The proximal 

segment of the aorta was identified and cannulated with a modified 21G hypodermic needle, 

and secured in place with an aneurysm clip (Harvard Apparatus, Kent, UK) and a 5-0 braided 

silk suture. The cannulated heart was mounted on to the Langendorff apparatus and 

retrogradely perfused with KH solution at a constant flow rate of 2.05 ml min−1 by a peristaltic 

pump (MINIPULS3, Gilson, Luton, UK) passing first through 200 μm and 5 μm Millipore 

filters (Millipore, Watford, UK) and maintained at 37oC by a water jacket and circulator (model 

C-85A, Techne, Cambridge, UK). Upon perfusion, hearts were selected for experimentation if 

they demonstrated sustained intrinsic activity with a basic cycle length (BCL) <200 ms and 1:1 

atrioventricular conduction for 10 minutes. Preparations meeting these criteria were 

subsequently perfused with 150 ml KH solution containing 20 µM blebbistatin and then 

normal KH solution throughout the remainder of the study. 

 

2.3.3 Volume conducted electrocardiograph recordings 

Whole heart volume conducted ECG recordings were taken concurrently with intracellular 

recordings to distinguish between isolated cellular and generalised atrial phenomena. Two 
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unipolar ECG leads were immersed into the warmed bath flanking the right and left atria 

respectively. Signals were amplified using a model NL104A amplifier (NeuroLog; Digitimer, 

Hertfordshire, UK), filtered at low and high cut-off frequencies of 5 and 500 Hz (model 

NL125/126 filter) and digitized using a model 1401 interface (Cambridge Electronic Design) 

for analysis with Spike II software (Cambridge Electronic Design). 

 

2.3.4 Whole heart intracellular microelectrode recordings 

Glass micropipettes were drawn from 1.2 mm outer diameter and 0.69 mm internal diameter 

borosilicate glass (Harvard Apparatus, Cambridge, UK) using a homebuilt microelectrode 

puller, and cut above the shoulders to an appropriate length. The microelectrodes were 

backfilled with 3 M KCl immediately before use, with tip resistances ranging between 15 – 25 

MΩ. The filled microelectrode was mounted on to a right-angled microelectrode holder 

connected to a high-input impedance direct-current microelectrode amplifier system 

(University of Cambridge, Cambridge, UK). Intracellular voltage was measured relative to 

that of the Ag/AgCl reference electrode. AP recordings were used for analysis if obtained from 

an impalement associated with the abrupt appearance of a resting membrane potential (RMP) 

between -65 mV and -90 mV, stable and normal AP morphology and an amplitude >75 mV. 

Hearts were placed in the anatomical position within the bath with the LA reflected back and 

fixed in position using three A1 insect pins. A bipolar platinum-coated stimulating electrode 

(NuMed, New York, USA) was positioned against the epicardial surface of the right atrium, 

pacing the heart using square-wave stimuli of 2 ms duration using a constant voltage 

stimulator (model DS2A-Mk.II, Digitimer, Welwyn Garden City, Herts., UK) controlled by 

Spike II software (Cambridge Electrical Design, Cambridge, UK) and delivering a voltage that 

was twice the diastolic excitation threshold plus 0.5 mV.  

 

2.3.5 Pacing protocols 

The experiments described in chapter 4 examined the hearts under conditions of regular 

pacing at a basic cycle length (BCL) of 125 ms (8 Hz). Hearts were then studied using a 

programmed electrical stimulation (PES) protocol comprising drive trains of eight regularly 

paced (S1) beats at a BCL of 125 ms, followed by an isolated premature extra stimulus (S2) 
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every ninth beat. The S2 stimulus was imposed at progressive shortening S1-S2 coupling 

intervals, initially being 89 ms and reducing by 1 ms every subsequent cycle to a final coupling 

interval of 5 ms. The protocol was terminated upon establishment of the atrial effective 

refractory period (ERP), defined as the first S1-S2 coupling interval at which the S2 stimulus 

failed to successfully elicit an AP, or sustained arrhythmia was observed. 

The restitution analyses described in chapter 5 were performed utilising incremental pacing 

protocols that was initiated after achieving stable microelectrode impalement. These consisted 

of cycles of regular pacing each of 100 stimulations. They began with a basic cycle length (BCL) 

of 130 ms, that was then decremented by 5 ms for each subsequent cycle. These were repeated 

until the heart entered into 2:1 block or arrhythmia. 

 

2.3.6 Quantification of AP parameters and arrhythmic incidence 

The electrophysiological parameters were calculated from each AP individually and averaged 

across the protocol to give an overall mean for each heart. The AP amplitude was measured 

from the baseline to the peak voltage excursion and the AP duration was measured as 90% 

recovery to baseline (APD90) (Figure 2.2). AP latencies were measured as the time elapsed 

between the pacing stimulus and peak of the AP. Maximum rates of depolarization (dV/dt)max 

were calculated from the differentiated intracellular AP waveform. The incidence of abnormal 

atrial rhythms were determined from the regular pacing and PES protocols, corroborating 

cellular phenomena to tissue-level activity. Isolated non-triggered APs were classified as 

ectopic beats, two successive non-triggered beats termed a couplet and atrial tachycardia (AT) 

was defined as an episode consisting of ≥3 consecutive non-triggered beats. 
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Basic measures of atrial action potential (AP) propagation, activation and recovery. AP amplitude was measured 

from the baseline to the peak voltage excursion. AP duration was measured as 90% recovery to baseline (APD90), 

and AP latencies were measured as the time elapsed between the pacing stimulus and peak of the AP. Maximum 

rates of depolarization (dV/dt)max were calculated from the first differential of the intracellular AP waveform. 

 

2.4 Loose patch clamp studies 

2.4.1 Experimental preparation 

In chapter 6, the various determinates of AP propagation were evaluated to investigate for 

remodeling phenomena downstream of mitochondrial impairment. This included a novel 

loose patch clamp protocol to assess for transmembrane currents in an intact atrial 

preparation. Immediately following sacrifice, the heart was excised and transferred into ice-

cold Krebs–Henseleit (KH) solution: (mM) NaCl, 108; NaHCO3, 25; KCl, 4.0; KH2PO4, 1.2; 

MgCl2, 1.0; CaCl2, 1.8; glucose, 10; and Na-pyruvate, 2.0; pH adjusted to 7.4 and bubbled with 

95% O2/5% CO2 (British Oxygen Company, Manchester, UK). The aorta was cannulated with 

a trimmed and filed 21G hypodermic needle, and secured onto the cannula with an aneurysm 
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Figure 2.2 Typical atrial AP waveform relevant electrophysiological parameters 
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clip and 5-0 braided silk suture. The heart was perfused retrogradely in a Langendorff system 

under constant flow (2.1 ml/min) by a Watson-Marlow (Falmouth, UK) peristaltic pump with 

75 ml of a modified KH solution containing 10 mM 2,3-butanedione monoxime (BDM) and 

10 μM blebbistatin (Cayman Chemical Company, Ann Arbor, Michigan, USA) (to give a KH-

BDM/blebbistatin solution) to electromechanically uncouple the heart. The heart was then 

immediately transferred into ice-cold KH-BDM/blebbistatin solution. The atria were dissected 

from the rest of the heart, mounted onto Sylgard (Dow Chemical Company, Staines, UK) and 

placed in a bath containing filtered KH buffer solution. The latter was thermostatically 

maintained at 27 °C through all the experimental procedures performed. 

 

2.4.2 Loose patch clamp current recordings 

Pipettes were pulled from borosilicate glass capillaries (GC150-10 Harvard Apparatus, 

Cambourne, Cambridge, UK) using a Flaming/Brown micropipette puller (model P-97, Sutter 

Instrument Co. Novato, CA, USA). Pipettes were mounted and fractured with a diamond 

knife at 250× magnification under a microscope with a calibrated eyepiece graticule. Applying 

a transverse force to the distal tip of the pipette gave a fracture perpendicular to the main 

micropipette axis. Selected pipettes were fire polished using an electrically heated nichrome 

filament under visual guidance at 400× magnification. The pipette tips were then bent to make 

a ~45o angle with the pipette shaft. This permitted them to approach the membrane vertically 

when mounted on the recording amplifier headstage. Maximum internal pipette tip diameters 

were measured at 1000× magnification.  

All pipettes had diameters 28-32 µm following polishing.  Their distal ends were filled with 

KH buffer and mounted onto the pipette holder connected to the headstage. Ag/AgCl 

electrodes maintained electrical connections to the organ bath and pipette. The pipette was 

lowered onto the membrane surface. Gentle suction was applied through an air-filled line 

connected to the pipette holder using a syringe to induce seal formation around the membrane 

patch. Voltage-clamp steps were delivered under computer control relative to resting 

membrane potential. The loose patch clamp configuration results in larger leakage currents 

than conventional patch clamp owing to relatively low seal resistances. A custom-built 

amplifier compensated for most of the leakage current, series resistance errors and 
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displacement currents through the pipette capacitance (Stühmer et al., 1983). Residual leakage 

and capacitative currents were then corrected for using reference records from subsequent P/4 

control protocols applying steps of the opposite sign relative to the test steps, with amplitudes 

scaled down by a factor of 4 as fully described previously (Almers et al., 1983a, 1983b). Once 

established all patches were subject to the complete set of pulse procedures bearing on either 

inward or outward current activation (Figure 2.3). 

 

2.5 Quantification of cardiac fibrosis 

The quantification of cardiac fibrosis was performed (Chapter 6) as previously described 

(Jeevaratnam et al., 2011). Briefly, the excised heart was first flushed with KH solution and 

then perfused for five minutes with 4% buffered paraformaldehyde before being immersed in 

the paraformaldehyde overnight. Following the fixation process, longitudinal cardiac sections 

were cut and subjected to routine tissue processing and paraffin embedding. Serial sections 

of 7 µm thickness were then taken and stained with picrosirius red for fibrotic change. All 

sections were subsequently viewed, magnified and digitally acquired using the Nano Zoomer 

2.0 Digital Pathology system (Hamamatsu, Hertfordshire, UK). A custom made 17 cm × 30 cm 

morphometric grid was superimposed on each magnified photomicrograph and each 

successive 1 cm × 1 cm, corresponding to 0.2 mm × 0.2 mm area of tissue, was scored first for 

the presence or absence of cardiac tissue, and in turn for presence of fibrosis. The degree of 

fibrosis was quantified as the proportion of squares occupied by cardiac tissue showing 

evidence of fibrotic change. The analysis was performed independently by two investigators 

blinded to the animal genotype and age, and an inter-class correlation coefficient analysis 

(ICC) was performed to assess the consistency of their results, which can be interpreted as 

follows: 0 – 0.2 indicates poor agreement; 0.3 – 0.4 indicates fair agreement; 0.5 – 0.6 indicates 

moderate agreement; 0.7 – 0.8 indicates strong agreement; and >0.8 indicates almost perfect 

agreement. 
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Figure 2.3 Loose patch clamp of murine atrial tissue 

(a) Experimental loose patch configuration: (a) mounted muscle preparation under Krebs–Henseleit solution 

within (b) experimental chamber. (c) Loose patch pipette mounted at 45° to the preparation but bent to permit 

right‐angled contact of pipette tip with the myocyte surface. Pipette held within (d) half‐cell chamber in turn 

connected to (e) air line and suction syringe, and mounted on (f) headstage moved under micromanipulator and 

upright microscope guidance. (b) Equivalent circuit of loose patch clamp electrode on membrane. Pipette clamped 

at voltage Vpip. Compensation for the voltage error arising from currents flowing through the series combination 

of the pipette resistance (Rpip) and the seal resistance (Rseal) achieved using a bridge circuit in the custom‐

designed loose patch clamp amplifier. As the loose patch technique alters the extracellular potential within the 

patch relative to RMP, negative and positive voltage excursions in Vpip, respectively, produce hyperpolarising 

and depolarising voltage steps relative to RMP.RMP: resting membrane potential; Rpatch: patch membrane 

resistance; Rcell: overall cell membrane resistance 

 

2.6 Statistical procedures 

Data from the experiments were analysed using a custom written programme in the python 

programming language and all statistical analysis performed in the R programming language 

(R Core Team, 2015). Data are expressed as mean ± standard error of the mean (SEM), and in 

all cases a p < 0.05 was taken to be significant, with application of Bonferroni correction where 

appropriate. The statistical procedures pertaining to data analysis for each experiment are 

outlined in detail at the beginning of each respective chapter. 
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3 Age-related electrocardiographic changes 

in Pgc-1β deficient murine hearts 

 

3.1 Introduction 

As discussed in chapter 1, there is growing evidence linking increased arrhythmic risk to the 

energetic dysfunction that is seen in ageing as well as a range of common ageing-related 

chronic conditions.  Indeed, the incidence of both atrial and ventricular arrhythmias rises with 

age (Deo & Albert, 2012; Zoni-Berisso et al., 2014). Additionally, chronic conditions such as 

obesity, diabetes mellitus and heart failure constitute independent risk factors for such 

arrhythmias, independent of any co-existent coronary artery disease (Vianna et al., 2006; Sato 

et al., 2009; Kucharska-Newton et al., 2010; Yeung et al., 2012; Menezes et al., 2013b).  

However few studies have investigated the role of chronic mitochondrial dysfunction on atrial 

electrophysiological properties and arrhythmic tendency. The PGC-1 family of transcriptional 

coactivators include PGC-1α and PGC-1β, are highly expressed in oxidative tissues such as 

the heart, and form key regulators of mitochondrial mass, function, and cellular metabolism 

(Lin et al., 2005; Finck & Kelly, 2006). Studies on Pgc-1β deficient hearts are limited. They 

nevertheless report preserved baseline cardiac function despite reduced mitochondrial 

content, but blunted heart rate responses following adrenergic stimulation (Lelliott et al., 

2006). Furthermore, Langendorff-perfused Pgc-1β-/- hearts demonstrated increased 

arrhythmic propensity reflected in increased frequencies of VT following programmed 

electrical stimulation (Gurung et al., 2011). Detailed examination of the atrial 

electrophysiological profile in these hearts has not been conducted. 

Murine models are now extensively utilised in the study of arrhythmogenesis and the surface 

ECG represents the only non-invasive tool for interrogating the electrophysiological 

properties in the intact system. Murine ECG with the subsequently developed analysis of its 

waveform (Goldbarg et al., 1968) has an established usefulness for exploring 

electrophysiological changes in induced cardiac disease, particularly in laboratory settings 

(Belevych et al., 2012). Murine and human ECGs show some differences reflecting higher sinus 
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rates, shorter action potential waveforms lacking plateau phases and distinct repolarisation 

characteristics (London, 2001; Danik et al., 2002; Boukens et al., 2014; Zhang et al., 2014a). 

Nevertheless, murine results can translate to human ECG determinations of heart rate, its 

variability, and changes in timings of, the cardiac excitation sequence (Wehrens et al., 2000). 

Thus, P waves, PR, QRS and QT intervals, reflect atrial and ventricular, depolarisation and 

repolarisation phases with their shortening or prolongation reflecting particular physiological 

changes potentially portending arrhythmic risk. Previous experimental studies reported 

altered murine ECG waveforms replicating those seen with human SCN5A mutations 

associated with the BrS (Jeevaratnam et al., 2010; Martin et al., 2010a), long QT syndrome type 

3 (Wu et al., 2012) and CPVT (Zhang et al., 2011). 

The experiments described in this chapter investigate changes in individual components of 

ECG waveforms reflecting particular electrophysiological components of excitation, and their 

association with Pgc-1β ablation, known to result in energetic dysfunction. The likely 

cumulative phenotypic effects of chronic mitochondrial lesions with advancing age, were 

studied in young and aged, WT and genetically modified animals both at baseline and 

following adrenergic stress, thus providing additional insights into possible interactions 

between genotype and ageing. 

 

3.2 Specific methods 

3.2.1 Experimental Animals 

Mice were divided into four groups: groups 1 and 2 composed of mice aged between 12-16 

weeks, and consisted respectively of littermate WT controls (n = 5) and Pgc-1β-/- mice (n = 9). 

Group 3 was composed of aged (greater than 52 weeks) littermate WT controls (n = 8). Group 

4 consisted of Pgc-1β-/- mice of age similarly greater than 52 weeks (n = 6). Both male and female 

mice were used and groups were balanced for gender. 
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3.2.2 Statistical analysis 

Statistical analysis used the R programming language. Data sets were first tested for normality 

with the Shapiro-Wilk test before statistical analysis using two way factorial multivariate 

analysis of variance, i.e. MANOVA with Pillai trace. The data sets analysed were the steady 

state heart rates, P wave durations, PR intervals, activation parameters of QR, QS and QR’ 

durations, recovery parameters of RTc, R'Tc and STc durations, as well as the QTc interval. Each 

of these were measured from ECG records of young and aged, WT and Pgc-1β-/- mice 

respectively, both before and following dobutamine challenge. The initial MANOVA tests 

examined each parameter for significant effects of age, genotype or interactive effects of age 

and genotype either prior to or following dobutamine challenge.  Where MANOVA testing 

indicated existence of significant differences prior to dobutamine administration, further 

ANOVA analyses were conducted on pre-drug parameters testing for effects of genotype, age 

of interacting effects of the two. The presence of significant effects then prompted pairwise 

Tukey honest significant difference testing of differences between pairs of individual 

parameters.  Similarly, where significant differences were indicated post-dobutamine, a 

similar procedure of significance testing was performed examining for significant effects post 

drug challenge. Peak heart rates were obtained following dobutamine challenge, and were 

analysed by a two way factorial ANOVA: there was no meaningful peak heart rate pre-

dobutamine. These were then also followed by post hoc Tukey tests for differences between 

individual parameters if prompted by the significance levels. A p < 0.05 following Bonferroni 

correction where appropriate was considered to indicate a significant difference. Murine 

ECGs which demonstrated P wave dissociation in the analysis period were discarded for P 

wave dependent parameter analysis. All diagrams were produced with the R-grammar of 

graphics package. 

 

3.3 Results 

3.3.1 Baseline characteristics 

There were no significant differences in weights between different groups, whether stratified 

by age or genotype. Aged Pgc-1β-/- mice had a mean weight of 35.49 ± 1.44 g compared to 35.57 

± 1.13 g for aged WT mice. Young Pgc-1β-/- and WT mice had mean weights of 31.30 ± 1.56 g 

and 35.31 ± 2.26 g respectively. Inspection of complete ECG records confirmed sinus rhythm 
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as the predominant rhythm (Figure 3.1 A). This initial analysis also assessed for the presence 

or absence of ST segment changes that might signal acute ischaemic change. These were never 

observed prior to dobutamine challenge. Two mice, both aged Pgc-1β-/-, showed multiple 

ectopic beats (Figure 3.1 B) (Table 3.1). Following challenge, ST segment depression occurred 

in a small number of both WT and Pgc-1β-/- aged mice (Figure 3.1 D and 3.1 E).  

 

 

 

 

Figure 3.1 ECG recordings from Pgc‐1β−/− hearts 

Typical ECG records from Pgc‐1β−/− hearts illustrating (A) normal sinus rhythm; (B) ectopic beat; (C) 

atrioventricular (AV) dissociation; records obtained from the same mouse. Arrows indicate timings of P‐waves 

(D) pre‐dobutamine and (E) following dobutamine challenge with ECG showing ST depression 
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Table 3.1  Incidence of particular electrocardiographic features in the experimental groups 
 

  
 

WT 
 

Pgc-1β-/- 
  Young Aged Young Aged 

A) Ischaemic change     

 Ischaemic changes present 0 2 0 2 
 Ischaemic changes absent 5 6 9 4 
      
B) Arrhythmic ECG patterns     

 Sinus Rhythm only 5 4 8 3 
 Isorhythmic AV dissociation 0 4 1 3 
 Ventricular ectopic beats 0 0 0 1 

 

 

Electrocardiographic records obtained at baseline prior to pharmacological intervention in young 

WT (n = 5), aged WT (n = 8), young Pgc-1β-/-  (n = 9) and aged Pgc-1β-/- (n = 6) 
 

 

3.3.2 Pgc-1β-/- hearts display impaired heart rate responses 

Chronotropic incompetence is an established clinical feature of cardiac failure (Brubaker & 

Kitzman, 2007, 2011) as well as constituting an indicator of other cardiac pathology (Girotra 

et al., 2012). It has been variably defined, commonly identified as a failure to reach an arbitrary 

percentage of the predicted maximum heart rate following sympathetic challenge, ranging 

from 70 – 85 % (Lauer et al. 1999, Dresing et al. 2000, Elhendy et al. 1999) (Brubaker & Kitzman, 

2011). A previous study had reported an impaired chronotropic response in isolated ex-vivo 

Pgc-1β-/- hearts challenged with dobutamine. These findings had not been statistically 

significant at a 10 ng/kg/min infusion rate and depended on single heart rate recordings at 

each predefined, time point (Lelliott et al., 2006). The present experiments systematically 

analysed steady-state parameters over 5-min recording periods before and following 

dobutamine challenge in intact animals. 

Figure 3.2 shows typical heart rate profiles at baseline and in response to dobutamine for each 

experimental group. As there is no algorithm predicting normal murine heart rates at different 

ages as there is with humans, the chronotropic response to dobutamine challenge was 

assessed using two different parameters: (1) peak heart rate attained after dobutamine 

administration and (2) mean heart rate observed post dobutamine administration. Figure 3.3 

plots mean heart rates observed before dobutamine challenge against results obtained 
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following dobutamine challenge for each individual animal. Pgc-1β-/- animals displayed a 

tendency to slower basal heart rates under both conditions. A Pearson product-moment 

correlation coefficient assessing the co-variance between mean heart rates before and 

following dobutamine challenge demonstrated a positive association between variables, 

(r=0.692, p < 0.0001). Lower resting heart rates thus correlated with lower heart rates after 

dobutamine challenge. 

 

 

 

Figure 3.2 Heart rate response to dobutamine challenge 

Traces plotting heart rate response curves before and following dobutamine challenge in (A) young WT, (B) aged 

WT; (C) young Pgc‐1β−/− and (D) aged Pgc‐1β−/− mouse 

 

MANOVA analysis demonstrated significant effects of genotype (p = 0.022) and age (p = 0.048) 

on steady state heart rates (Table 3.2 A). Post hoc analysis demonstrated that neither these 

factors by themselves nor their interaction together influenced baseline steady state heart 

rates. In contrast, the Pgc-1β-/- mutation significantly reduced heart rates obtained following 

dobutamine challenge (Pgc-1β-/- 8.30 ± 0.28 Hz, n=15; WT: 9.11 ± 0.11 Hz, n = 13; p = 0.021) 
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(Figure 3.4). However, there were no demonstrable effects either of age or interactions 

between age and genotype. Maximum heart rates after dobutamine challenge were next 

analysed. ANOVA demonstrated significant effects of genotype (p = 0.011) but not of either 

age or interactive effects between genotype and age. Post-hoc Tukey tests demonstrated that 

Pgc-1β-/- mice had significantly lower peak heart rates than WT mice (mean peak heart rate 

8.47 ± 0.28 vs 9.53 ± 0.21 Hz, p = 0.0084, n = 13 vs 15 respectively). 

 

 

 

Figure 3.3 Mean heart rates pre- and post- adrenergic challenge 

Correlations between heart rates observed pre‐ vs post‐dobutamine challenge in Pgc‐1β−/− and WT hearts 

 

Reduced heart rate variability in humans is known to portend to adverse mortality risk. Heart 

rate variability was therefore analysed to assess cardiac autonomic influence on the systems 

in the present study. A Poincare plot was constructed for each experimental group (Figure 3.5 

A and B) and the dispersion of points quantified by the standard deviation of the ΔRR interval. 

ANOVA demonstrated no significant differences in dispersion of the Poincare plots before or 

after dobutamine addition between the different experimental groups (Figure 3.5 C and D). 

These results attribute the present findings to an existence of sino-atrial node (SAN) as 

opposed to autonomic dysfunction in the Pgc-1β-/- mice. 
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Figure 3.4 Chronotropic incompetence in Pgc-1β-/- hearts 

Mean heart rates in the 5 minute analysis window before and after dobutamine administration in WT 

and Pgc‐1β−/− mice 

 

3.3.3 Aged-related SA node disease in WT and Pgc-1β-/- murine hearts 

Although sinus rhythm was the prevailing rhythm in all groups, both WT and Pgc-1β-/- mice 

demonstrated intermittent episodes of isorhythmic AV dissociation (Massumi & Ali, 1970) 

during the recording period.  These episodes were predominantly recorded in aged animals, 

affecting 3/6 aged WT mice and 4/8 aged Pgc-1β-/-  mice, although it was observed in one mouse 

in the young Pgc-1β-/-  cohort (Table 3.1).  No episodes of such AV dissociation were seen in 

young WT animals. This rhythm was most commonly seen immediately following 

dobutamine challenge, where RR intervals were decreasing from their baseline, pre-treatment 

values.  During these episodes, the RR intervals were shorter than their corresponding PP 

intervals, however the ventricular complexes remained identical to those during sinus 

rhythm, compatible with a supraventricular (most likely junctional) pacemaker focus driving 

the ventricular activity (Figure 3.1 C)
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Table 3.2 Electrocardiographic features related to sino-atrial, atrio-ventricular and atrial conduction 
 

  
 

WT 
 

Pgc-1β-/- 

  Young Aged Young Aged 

A) Heart rate response     

 Mean HR prior to dobutamine challenge (Hz) 6.29 ± 0.15 7.08 ± 0.16 6.32  ± 0.38 6.81 ± 0.59 

 Mean HR post dobutamine challenge (Hz) 9.10 ± 0.19 9.12 ± 0.15 8.33 ± 0.40 8.25 ± 0.39 

 Peak HR post dobutamine challenge (Hz) 9.32 ± 0.21 9.66 ± 0.32 8.51 ± 0.40 8.41 ± 0.39 

      

B) Atrial conduction     

 P wave duration prior to dobutamine challenge (ms) 26.08 ± 0.50 25.57 ± 1.06 26.06 ± 0.47 27.64 ± 0.67 

 P wave duration post dobutamine challenge (ms) 
 

25.43 ± 0.58 26.08 ± 0.79 26.21 ± 0.48 26.90 ± 0.86 

      

(C) AV conduction     

 Mean PR interval prior to dobutamine challenge (ms) 54.20 ± 2.57 63.26 ± 4.89 56.35 ± 5.56 66.62 ± 4.25 

 Mean PR interval post dobutamine challenge (ms) 52.53 ± 2.22 53.61 ± 2.76 58.38 ± 5.41 76.95 ± 9.54 

 Hearts showing decreased PR interval post dobutamine challenge 5 of 5 6 of 6 5 of 9 1 of 6 

 Hearts showing increased PR interval post dobutamine challenge 0 of 5 0 of 6 4 of 9 5 of 6 

      
 

Electrocardiographic features gave (A) heart rates responses in studies of young WT (n = 5), aged WT (n = 8), young Pgc-1β-/- (n = 9) and aged Pgc-1β-/- mice (n = 6), 
in which two of the aged WT showed AV dissociation within the ECG analysis window. Studies of atrial (B) and AV (C) conduction were therefore based on young 
WT (n = 5), aged WT (n = 6), young Pgc-1β-/- (n = 9) and aged Pgc-1β-/- mice (n = 6) respectively. 
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Poincare plots pre‐ (A) and post‐dobutamine (B) in young (a,b) and aged (c,d), WT (a,c) and Pgc‐1β‐/‐ hearts (b,d) and (C, D) the standard deviations (SDs) of their ΔRR 

intervals before (C) and following dobutamine challenge (D) 

Figure 3.5 Heart rate variability in WT and Pgc‐1β‐/‐ mice 
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3.3.4 Pgc-1β-/- hearts display paradoxical atrioventricular node function 

MANOVA analysis excluded effects of age, genotype or interactions between them on P wave 

duration whether before or following dobutamine challenge (Table 3.2 B). PR intervals were 

next analysed to assess atrioventricular node (AVN) function. Two typical patterns of PR 

interval change were observed with dobutamine administration: either the expected positive 

dromotropic effects of dobutamine (a decrease in PR interval) or a negative dromotropic effect 

(i.e. an increase in PR interval) (Figure 3.6). These changes took place despite normal atrial 

conduction as reflected in similar P wave durations between groups (Table 3.2 B). 

 

 

Figure 3.6 PR interval change in response to dobutamine 

Adaptation of the PR interval pre- and post-dobutamine in WT (A) and Pgc‐1β‐/‐ (B) mice. The Pgc‐1β‐/‐ mice 

displayed a paradoxical negative dromotropic response suggesting altered AVN function. 
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MANOVA indicated that neither age nor genotype affected PR interval whether before or 

following dobutamine challenge (Table 3.2 C). Nevertheless, the alteration in PR interval 

following dobutamine challenge demonstrated differing responses from WT and Pgc-1β-/- 

mice. All young (5 of 5) and aged (6 of 6) WT mice showed decreased PR intervals following 

dobutamine challenge. In contrast, the PR interval decreased in 5 of 9 and increased in the 

remaining four young Pgc-1β-/- mice. In aged Pgc-1β-/- mice the result was even more marked 

with only one mouse showing the expected positive dromotropic effect with dobutamine 

administration and the 5 of 6 mice showing a paradoxical negative dromotropic effect in 

response to dobutamine. In addition to the SAN dysfunction seen with the Pgc-1β knockout 

there was compromised AVN conduction in a subset of mutant hearts, an effect exacerbated 

by increasing age.  

The presence of AVN dysfunction in mutant mice which also demonstrated impaired heart 

rate responses prompted further examination as to whether paradoxical AV node dysfunction 

underlies or is associated with the blunted chronotropic response. Such a comparison 

demonstrated that Pgc-1β-/- animals with a normal AVN response showed a mean heart rate 

of 9.10 ± 0.22 Hz (n = 6) following dobutamine challenge. In contrast, Pgc-1β-/- animals with a 

paradoxical AVN response to dobutamine showed a heart rate of 7.77 ± 0.34 Hz (n = 9). A two-

tailed student t test confirmed that the difference was significant (p = 0.0061). Thus these 

findings suggest that the Pgc-1β-/- mutation is associated only with significantly altered AV 

nodal function in a subset of mutant mice, and that the presence of AV nodal dysfunction 

itself may be a marker for impaired heart rate responses. 

 

3.3.5 Aged Pgc-1β-/- hearts display slowed ventricular activation 

Ventricular activation is a synchronised, sequential process that occurs in a defined time 

window. The onset of ventricular activation is easily detected as the beginning of the Q wave 

deflection (Figure 2.1). Ventricular recovery has been reported to begin at a time point between 

the S wave trough, and the beginning of the R’ peak. We examined three independent ECG 

indicators, of QR, QS and QR’ durations, to examine ventricular activation. All three ECG 

indices indicated interacting effects of age and genotype upon the timing of ventricular 

activation (Table 3.3). 
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Table 3.3 Electrocardiographic intervals representing ventricular activation 

 
 

WT 

 

Pgc-1β-/- 

 Young Aged Young Aged 

     

QR duration before dobutamine challenge (ms) 6.85 ± 0.67 5.89 ± 0.63 6.20  ± 0.48 8.35 ± 0.52 

QR duration following dobutamine challenge (ms) 7.14 ± 0.75 6.12 ± 0.60 6.12 ± 0.48 8.56 ± 0.56 

QS duration before dobutamine challenge (ms) 10.19  ± 0.47 9.43 ± 0.45 9.67 ± 0.45 11.78 ± 0.7 

QS duration following dobutamine challenge (ms) 10.60 ± 0.62 9.76 ± 0.40 9.91 ± 0.43 12.07 ± 0.77 

QR' Duration before dobutamine challenge (ms) 14.24 ± 0.60 14.22 ± 0.40 13.82 ± 0.34 16.20 ± 0.92 

QR' Duration following dobutamine challenge (ms) 14.95 ± 0.41 14.39 ± 0.55 14.15 ± 0.38 16.72 ± 0.89 

     

Electrocardiographic features gave (A) heart rates responses in studies of young WT (n = 5), aged WT (n = 8), young Pgc-1β-/- (n = 9) and aged Pgc-1β-/- mice (n = 

6), in which two of the aged WT showed AV dissociation within the ECG analysis window. Studies of atrial (B) and AV (C) conduction were therefore based on 

young WT (n = 5), aged WT (n = 6), young Pgc-1β-/- (n = 9) and aged Pgc-1β-/- mice (n = 6) respectively. 
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MANOVA demonstrated that although neither genotype nor age exerted independent effects, 

they interacted to produce significant effects on QR duration (p = 0.032). Post hoc Tukey tests 

confirmed interacting effects of genotype and age both prior to (p = 0.029) and following 

dobutamine administration (p = 0.016). Prior to dobutamine administration, QR durations 

were significantly longer in aged Pgc-1β-/- than aged WT (p = 0.030). There was a trend towards 

longer QR durations in aged compared to young Pgc-1β-/- mice (p = 0.059). Following 

dobutamine administration, aged Pgc-1β-/- showed significantly longer QR durations than 

aged WT (p = 0.035) as well as young Pgc-1β-/- (p = 0.030). Similarly, neither genotype nor age 

exerted independent effects, but showed interacting effects on QS durations (p = 0.040). They 

did so both before (p = 0.029) and following dobutamine challenge (p = 0.022). Before 

dobutamine administration, post hoc Tukey tests demonstrated that aged Pgc-1β-/- mice 

showed significantly longer QS intervals than young Pgc-1β-/- mice (p = 0.040) and aged WT 

mice (p = 0.024). Following dobutamine administration, aged Pgc-1β-/- mice showed longer QS 

durations than both young Pgc-1β-/- mice (p = 0.035) and aged WT mice (p = 0.026). Finally, 

neither genotype nor age exerted independent effects, but exerted interacting effects on QR’ 

durations (p = 0.039). These interactions were not significant prior to (p = 0.086), but were 

significant following (p = 0.026) dobutamine administration. Post hoc Tukey tests then 

demonstrated that aged Pgc-1β-/- mice showed significantly longer QR’ durations than both 

aged WT (p = 0.039) and young Pgc-1β-/- mice (p = 0.017) after dobutamine administration.  

 

3.3.6 Pgc-1β-/- hearts show shortened ventricular recovery times after adrenergic 
challenge 

Age and genotype exerted contrasting effects on ventricular recovery times. Genotype 

affected all three measures of such recovery (RTc, R'Tc and STc durations; p = 0.0098, p = 0.0014 

and p = 0.0029 respectively) (Table 3.4). In contrast, age did not significantly affect any of these 

recovery parameters, nor were there any interactive effects of age and genotype. Post hoc 

testing showed that (for all parameters) the difference lay in findings obtained post 

dobutamine challenge; there were no differences due to age, genotype or their interaction 

prior to dobutamine administration. Following dobutamine administration all three 

parameters showed a marked effect of genotype (p = 0.015, p = 0.021 and p = 0.0067 

respectively) but no other effects. Post hoc Tukey tests showed that Pgc-1β-/- showed 
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significantly shorter RTc, R’Tc and STc intervals than WT mice (p = 0.0053, p = 0.018 and p = 

0.0080 respectively). Thus, all three recovery parameters were highly concordant confirming 

that the Pgc-1β ablation significantly shortened ventricular recovery parameters (Table 3.5). 

 

3.3.7 Emergence of a short-QT phenotype in Pgc-1β-/- animals 

The QTc interval has traditionally been used as a marker for repolarisation abnormalities in 

that the electrocardiographic phenotype is usually caused by a defect in ventricular recovery. 

However, it is more accurate to describe the QTc interval as a parameter that describes the 

combined durations of both activation and recovery i.e. the duration of ventricular excitation. 

The onset of ventricular activation is represented by the Q wave deflection; the C wave trough 

was taken to represent the end of ventricular recovery and hence used for calculation of the 

QT interval in the present study (Figure 2.1). Genotype, but neither age (p= 0.083) nor 

interactions between age and genotype (p = 0.075), significantly affected QTc interval (p = 

0.0071) (Table 3.6). Post hoc ANOVA indicated no differences between groups at baseline. 

Following dobutamine challenge, genotype (p = 0.032), but not age affected QTc interval. Post 

hoc Tukey HSD tests revealed that, following dobutamine administration, young Pgc-1β-/- had 

shorter QTc intervals than both young WT (p = 0.026) and aged WT mice (p = 0.041). There 

was also a trend towards young Pgc-1β-/- mice having shorter QTc intervals than aged Pgc-1β-/- 

mice (p = 0.094). Thus, Pgc-1β-/- mice had shorter QTc intervals than their WT counterparts with 

most of the effect arising from shortening of the QTc intervals in young Pgc-1β -/- mice. 
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Table 3.4 Electrocardiographic intervals representing ventricular recovery 

 
 

WT 

 

Pgc-1β-/- 

 Young Aged Young Aged 

     

RTc duration before dobutamine challenge (ms) 29.00 ± 0.54 30.60 ± 0.87 28.51 ± 1.05 28.89 ± 0.87 

RTc duration following dobutamine challenge (ms) 33.43 ± 0.77 33.75 ± 0.44 31.41 ± 0.86 31.79 ± 0.41 

R’Tc duration before dobutamine challenge (ms) 23.15 ± 0.45 23.64 ± 0.71 22.55 ± 0.91 22.55 ± 0.56 

R’Tc duration following dobutamine challenge (ms) 25.97 ± 0.43 25.88 ± 0.55 24.16 ±0.66 24.40 ± 0.29 

STc duration before dobutamine challenge (ms) 26.35 ± 0.38 27.65 ± 0.77 25.79 ± 0.92 26.06 ± 0.55 

STc duration following dobutamine challenge (ms) 30.13 ± 0.68 30.31 ± 0.50 28.00 ±  0.71 28.40 ± 0.30 

     

Electrocardiographic measurements made in RTc, R’Tc and STc durations before and following dobutamine challenge in young WT (n = 5), aged WT (n = 8), 

young Pgc-1β-/- (n = 9) and aged Pgc-1β-/- (n = 6) mice. One young  and one aged Pgc-1β-/- mouse were excluded as these showed paradoxical dromotropic effects 

that lead to prolonged PR intervals and P waves that interfered with determinations of the end of the C wave to give the following n values: young WT (n = 5), 

aged WT (n = 8), young Pgc-1β-/- (n = 8) and aged Pgc-1β-/- (n = 5), 
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Table 3.5 Electrocardiographic recovery intervals: WT and Pgc1β-/- compared 

 
 

WT 

 

Pgc-1β-/- 

     

RTc duration before dobutamine challenge (ms) 29.99 ± 0.60 28.65 ± 0.70 

RTc duration following dobutamine challenge (ms) 33.63 ± 0.38 31.53 ± 0.57 

R’Tc duration before dobutamine challenge (ms) 23.45 ± 0.46 22.55 ± 0.58 

R’Tc duration following dobutamine challenge (ms) 25.91 ± 0.37 24.24 ± 0.44 

STc duration before dobutamine challenge (ms) 27.15 ± 0.51 25.89 ±  0.59 

STc duration following dobutamine challenge (ms) 30.24 ±  0.39 28.13 ±  0.48 

     

Electrographic measurements made in RTc, R’Tc and STc durations before and following dobutamine challenge in young WT (n = 5), aged WT (n = 8), young 

Pgc-1β-/- (n = 9) and aged Pgc-1β-/- mouse (n = 6). One young  and one aged Pgc-1β-/- mouse were excluded as these showed paradoxical dromotropic effects that 

lead to prolonged PR intervals and P waves that interfered with determinations of the end of the C wave to give the following n values: young WT (n = 5), aged 

WT (n = 8), young Pgc-1β-/- (n = 8) and aged Pgc-1β-/- (n = 5).  This gave total n values of WT and Pgc-1β-/- of 13 in both cases. 
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Table 3.6 Mean electrocardiographic QTc durations 

 
 

WT 

 

Pgc-1β-/- 

 Young Aged Young Aged 

     

Mean QTc  before dobutamine challenge (ms) 34.43 ± 0.20 35.60 ± 0.79 33.37 ± 1.12 35.78 ± 1.18 

Mean QTc following dobutamine challenge (ms) 40.23± 0.45 39.64 ± 0.52 37.01 ±0.87 39.77 ± 0.81 

     

Electrographic measurements made in QTc durations before and following dobutamine challenge in young WT (n = 5), aged WT (n = 8), young Pgc-1β-/- (n = 9) 

and aged Pgc-1β-/- (n = 6) mice. One young  and one aged Pgc-1β-/- mouse were excluded as these showed paradoxical dromotropic effects that lead to prolonged 

PR intervals and P waves that interfered with determinations of the end of the C wave to give the following n values: young WT (n = 5), aged WT (n = 8), young 

Pgc-1β-/- (n = 8) and aged Pgc-1β-/- (n = 5).  This gave total n values of WT and Pgc-1β-/- of 13 in both cases. 
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3.4 Discussion 

The ECG is a primary clinical investigational tool yielding much prescient and strategic 

electrophysiological information. Its recent experimental application has similarly 

demonstrated valuable insights into electrophysiological abnormalities in murine hearts 

modeling clinical arrhythmic conditions. Mitochondrial dysfunction is increasingly 

recognised as an important factor in the aetiology of atrial and ventricular arrhythmias. The 

ECG alterations associated with mitochondrial dysfunctions were therefore investigated in 

murine hearts lacking the transcriptional coactivator Pgc-1β, which has been associated with 

altered ion channel function and ventricular arrhythmias in a Langendorff-perfused heart 

preparation (Gurung et al., 2011).  

ECG analysis demonstrated a range of age-dependent abnormalities associated with the Pgc-

1β-/- genotype, hitherto associated with abnormal mitochondrial and therefore energetic 

function. The latter has been implicated in ventricular arrhythmia through the consequent 

alterations in ion channel function, action potential heterogeneity, and cell excitability (Brown 

& O’Rourke, 2010; Asghar et al., 2012; Isik et al., 2012). Metabolic disturbances are known to 

have wide ranging consequences on the electrical properties of the cardiac system, including 

destabilisation of the inner mitochondrial membrane potentials, causing up to a 10-fold 

increases in reactive oxygen species production (Grivennikova et al., 2010). This is known to 

affect maximum sodium current (INa) (Liu et al., 2010), potassium current (IK) (Wang et al., 

2004), sarcolemmal KATP channels, Na+ and L-type Ca2+ channel inactivation kinetics, late Na+ 

current (INaL) and ryanodine receptor (RyR2) function. These alterations in turn affect surface 

membrane excitability and intracellular Ca2+ homeostasis (Terentyev et al., 2008; Brown & 

O’Rourke, 2010; Bovo et al., 2012). Mitochondria are also the main cardiac cellular source of 

ATP (O’Rourke, 2007). ATP/ADP depletion increases sarcolemmal ATP-sensitive K+ channel 

(sarcKATP) open probabilities (Akar & O’Rourke, 2011) with consequences for action potential 

duration (APD), effective refractory period (ERP) (Fosset et al., 1988; Faivre & Findlay, 1990) 

and forming heterogenous current sinks driving cell membrane potential towards the K+ 

Nernst potential potentially causing current-load mismatch. The wide range of resulting, 

potentially pro-arrhythmic, effects might then include alterations in cell-cell coupling (Smyth 

et al., 2010), AP conduction (Liu et al., 2010) and repolarisation (Wang et al., 2004). There may 
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also be an appearance of alternans and Ca2+ mediated triggering phenomena (Terentyev et al., 

2008). 

A number of the observed ECG alterations paralleled findings in a variety of arrhythmic 

cardiac exemplars, providing some insights to possible underlying mechanisms. ECG analysis 

of anaesthetised Nav1.5 haplo-insufficient Scn5a+/- mice modeling BrS, recapitulated 

conduction deficits associated with the corresponding human condition (Jeevaratnam et al., 

2010), and presaged changes observed with more detailed electrophysiological analysis 

(Tessier et al., 1999; Lei et al., 2005; Martin et al., 2010b). The Scn5a+/- hearts developed age-

related dysfunction in SA node function and features of altered repolarisation. Altered Nav1.5 

profiles and conduction slowing are also seen secondary to Ca2+ handling abnormalities in 

RyR2-P2328S hearts (Zhang et al., 2011; King et al., 2013b; Ning et al., 2016b). Scn5a+/ΔKPQ mice 

modeling long QT3 syndrome showed evidence for depressed intra-atrial, AV, and intra-

ventricular conduction, in addition to prolonged QT and QTc intervals (Wu et al., 2012). Thus 

the spectrum of ECG abnormalities reported in the present study potentially implicate several 

alterations at the cellular level, consistent with the central role of mitochondria in 

cardiomyocyte function and the range of ion channel changes previous reported in Pgc-1β-/- 

hearts (Gurung et al., 2011). 

The present experiments in intact anaesthetised Pgc-1β-/- mice characterised the intervals 

separating specific ECG waveform components more closely than did previous studies. 

Quantitative statistical analysis of these steady-state parameters then employed two-way 

factorial MANOVA testing for interacting and non-interacting effects of age and genotype 

before and after dobutamine challenge. The presence of significant differences then prompted 

further, two way factorial ANOVA to ascertain whether the difference occurred before or 

following dobutamine application. Finally, appropriate Tukey HSD tests assessed for 

particular differences between individual parameters. Peak heart rates following dobutamine 

challenge were analysed by themselves by a two way factorial ANOVA followed by post hoc 

Tukey tests. The present study therefore yielded electrophysiological features associated with 

Pgc-1β  ablation in the in vivo system with intact autonomic innervation and normal cardiac 

mechanical function, building upon earlier reports from cellular studies (Gurung et al., 2011) 

and ex-vivo hearts (Lelliott et al., 2006). In the latter studies, the pharmacological manoeuvres 

involving dobutamine challenge would largely be expected to arise through β1-adrenergic 
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receptors activity.  The in vivo evaluation of the effects of dobutamine, as utilised in this study, 

would include β2-adrenergic receptor mediated changes including peripheral vasodilatation. 

Thus differences between genotypes reported here may reflect to some degree extra-cardiac 

differences, which in the clinical setting are also known to influence arrhythmic risk. 

The predominant ECG pattern in both young and aged, WT and Pgc-1β-/- mice was one of 

sinus rhythm. Any ischaemic ECG changes observed were associated with age but were not 

specific to Pgc-1β-/- or WT genotypes, suggesting that there was no underlying difference in 

vascular function between the two groups. The electrophysiological phenotype of the Pgc-1β-

/- mice was therefore due to primary cardiomyocyte abnormalities. This impression was 

reinforced by the range and nature of the electrocardiographic abnormalities.  

Blunted chronotropic responses were demonstrated in an intact Pgc-1β-/- mammalian system. 

Previous reports had demonstrated compromised heart rate responses in ex-vivo Langendorff 

perfused Pgc-1β-/- hearts following dobutamine challenge (Lelliott et al., 2006). The current 

results similarly suggest that Pgc-1β-/- hearts in intact animals attain significantly lower mean 

and peak heart rates than their WT counterparts after dobutamine administration. Ageing did 

not affect this chronotropic response, implicating the mutation and not any background 

deterioration of maximal heart rate with age. Modulation of heart rate ultimately depends 

upon interactions between the autonomic system, and its myocyte response. It is apparent 

that autonomic modulation cannot compensate for this phenomenon in intact systems. These 

results together suggest that the impaired heart rate response of Pgc-1β-/- hearts does not reflect 

generalised autonomic dysfunction but rather alterations in the intrinsic myocardial response 

to dobutamine.  

Aged mice, independent of genotype, also displayed runs of isorhythmic AV dissociation 

when challenged with dobutamine. During these episodes regular ventricular responses were 

seen, with complexes retaining their normal, narrow waveform despite the absence of a fixed 

PR interval, and even when P wave complexes were buried within the ventricular signal. 

These findings suggest that the murine SAN is vulnerable to degenerative changes with age, 

with appearances of supraventricular, most likely junctional, pacemaker foci intermittently 

dictating the ventricular rate.  
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Pgc-1β-/- ablation also appeared to cause a more generalised nodal defect affecting the AVN in 

addition to the SAN defect described above. A significant proportion (9/15) of mutant mice 

demonstrated abnormal negatively dromotropic responses to dobutamine challenge, and all 

but one of the aged mutants displayed this paradoxical effect. This suggests progressive 

deterioration in AVN function in Pgc-1β-/- hearts with age. Furthermore, mice in which this 

abnormal AVN function was observed appeared to have more pronounced blunting of the 

chronotropic response to dobutamine, implicating dysfunction at the level of the AVN to the 

chronotropic deficit noted in the present study as well as in previous reports. 

Pathological bradycardic rhythms secondary to cardiac conduction system disease are known 

to occur with ageing, and often necessitate permanent pacemaker implantation (Bradshaw et 

al., 2014).  Progressive fibrotic change is a recognised feature of cardiac ageing in both animal 

(Eghbali et al., 1989; Orlandi et al., 2004; Lin et al., 2008; Jeevaratnam et al., 2012, 2016) and 

human studies (Gazoti Debessa et al., 2001), and the age-related deterioration in function of 

the cardiac conduction system has classically been attributed to this, compromising both SAN 

(Thery et al., 1977; Evans & Shaw, 1977) and AVN (Fujino et al., 1983) activity. Interestingly, 

TGF-β activity, which has been implicated in age-related myocardial fibrosis (Brooks & 

Conrad, 2000; Davies et al., 2014) is increased with oxidative stress (Barcellos-Hoff & Dix, 1996; 

Sullivan et al., 2008), possibly linking mitochondrial impairment to such node dysfunction. 

Furthermore, augmented mitochondrial anti-oxidant capacity has previously been shown to 

protect against features of cardiac ageing including fibrotic change (Dai et al., 2009). More 

recent studies also suggest a role for abnormal gap junction function in both SAN and AVN 

disease (Jones et al., 2004; Nisbet et al., 2016). Indeed fibrotic change could potentially disrupt 

gap junction function directly and therefore increase tissue resistance (Xie et al., 2009), or 

increase fibroblast-cardiomyocyte coupling and consequently increase effective membrane 

capacitance (Camelliti et al., 2004; Chilton et al., 2007). Moreover, the mitochondrial 

dysfunction in Pgc-1β-/- hearts could also potentially directly impair gap junctions through 

elevating intracellular [Ca2+] (De Mello, 1983) or altered connexin phosphorylation states 

secondary to oxidative stress (Sovari et al., 2013). Finally, a range of ionic currents are involved 

in SAN and AVN activity (Marionneau et al., 2005), and therefore potentially modulated by 

mitochondrial dysfunction.  Of these, altered RyR2 channel function appears particularly 

important (Bhuiyan et al., 2007).  Isolated cardiomyocytes from Pgc-1β-/- hearts have previously 
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been reported to display altered diastolic Ca2+ transients in keeping with abnormal Ryr2 

function (Gurung et al., 2011). 

The ECG deflections relating to ventricular activation and recovery confirmed previous 

reports that murine ECGs lack well-defined ST segments (Danik et al., 2002; Zhang et al., 2014). 

The murine ECG shows a deflection, the R’ wave, immediately following the S wave not seen 

in the human ECG. This is followed by a further but variably reported deflection which has 

not been systematically identified or formally correlated with particular action potential 

components. This variability may be attributed to the greater rostro-caudal anatomical 

alignment of the mouse heart in the thoracic cavity and variations in limb positioning during 

experimental recording between reports, with consequent variations in the effective 

positioning of the centre of the Einthoven triangle relative to the heart. Thus, although we also 

identified C waves, small changes in lead positioning could lead to its apparent disappearance 

in one or both ECG leads. This may account for the controversy concerning its inconsistent 

appearance (Danik et al., 2002). 

The onset of ventricular recovery in the murine ECG has been considered to occur from time 

points ranging from the S wave nadir to the R’ peak. A number of authors have suggested 

that the late component of the R’ wave or the R’ wave in totality is in fact part of ventricular 

repolarisation (Goldbarg et al., 1968; Boukens et al., 2014; Zhang et al., 2014b). Others suggested 

that inclusion of the R’ wave may lead to systematic overestimation of ventricular activation, 

while its exclusion in genetically modified mouse models, such as that of the Brugada 

syndrome, which displays slowed conduction, may lead to underestimation of ventricular 

activation times (Boukens et al., 2014). 

These reports prompted exploration of a set of related recovery parameters that utilised both 

the S wave nadir and peak of the R’ wave as cut-off separating ventricular activation and 

recovery phases. Each parameter is likely to capture activation and recovery in different areas 

of myocardium, reflecting the non-simultaneous nature of electrical activity in the 

myocardium. This increased the robustness of our analysis and permitted us to assess the 

possibility of early repolarisation in our genetic model. The statistical analysis of the different 

parameters of recovery and activation were highly concordant.  
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Pgc-1β-/- hearts showed prolongation of all the measures of the ventricular activation phase 

with age whether before or following adrenergic stress. Age alone or mutation alone did not 

account for the changes observed. These findings parallel previous reports of reduced 

conduction velocity in other arrhythmic genetic models. These had accompanied fibrotic 

change resulting in altered tissue impedance, or Na+ current density following Nav1.5 

haploinsufficiency in Scn5a+/- (Jeevaratnam et al., 2011, 2012, 2016), and Nav1.5 

downregulation in RyR2-P2328S hearts (King et al., 2013b; Zhang et al., 2014b; Ning et al., 2016).  

These findings are also compatible with reports that mitochondrial abnormalities could alter 

IK and therefore result in current-load mismatch (O’Rourke, 2007; Akar & O’Rourke, 2011; 

Bates et al., 2012; Kabunga et al., 2015). 

Pgc-1β-/- hearts also showed shorter recovery parameters than WT after dobutamine 

administration. There was no effect of age or compounding interaction with genotype. 

Previous studies in murine models variously attributed ventricular arrhythmic syndromes to 

abnormalities in depolarisation or in repolarisation characteristics as in the Brugada and long 

QT syndromes respectively (Martin et al., 2012a). Such shortened repolarisation intervals have 

been implicated in arrhythmic risk. In human short QT, the J point to T peak interval is used 

as a diagnostic criterion (Gollob et al., 2011), and is thought to represent the interval between 

the end of the ventricular complex to the peak of the repolarisation wave. Short QT syndrome 

has been traced to HERG and other K+ channel mutations and more recently, Ca2+ channel 

function (Brugada et al., 2004; Priori et al., 2005; Antzelevitch et al., 2007). The present findings 

are consistent with reported alterations in K+ conductance properties in the Pgc-1β-/- system 

that would also modify current-load matching (Gurung et al., 2011). These changes appeared 

to result in shortened QTc intervals for mutant mice with adrenergic stress. Although the 

mechanisms underlying these changes remain unclear, increased expression of Kcna5 was 

reported in the latter study and may contribute to the increased K+ conductance observed.  

Additionally, the opening and K+ conductance of the sarcKATP is linked to rising cellular ADP 

levels, therefore correlating its activity to cellular metabolic status. Its activity is known to 

reduce the action potential duration and is thought to contribute to increased arrhythmic risk 

(Billman, 2008). Oxidative stress is also known to enhance sarcKATP activity, however the 

cellular mechanism are yet to be established but may occur through depletion of cellular ATP.  

Nevertheless, the effects of ROS upon sarcKATP activity could be attenuated through inhibition 
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of protein kinase C, protein kinase G and calcium-calmodulin kinase II but not protein kinase 

A, providing some insights into the pathways involved (Yan et al., 2009). 

Finally, these findings prompted the measurement of QTc intervals reflecting the total 

activation times of the ventricular myocardium. Pgc-1β-/- mice showed shorter QTc intervals 

than their WT counterparts. The majority of this effect seemed to be due to young mutant 

mice, though this was not significant. This is in contrast to the shortened repolarisation 

parameters in both young and aged Pgc-1β-/-. This likely reflects the additional, prolonged, 

depolarisation parameters in aged Pgc-1β-/- mice, offsetting to some degree the shortening in the 

repolarisation parameters.  

In summary, ECG analysis demonstrates a range of electrocardiographic abnormalities 

associated with the Pgc-1β-/- genotype and those features particularly vulnerable to advanced 

age. Thus, Pgc-1β-/- mice show reduced sino-atrial response to dobutamine, paradoxical 

atrioventricular nodal function increasing in prevalence with age, slowed ventricular 

activation with ageing and shortened recovery parameters after dobutamine challenge.  
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4 Age-dependent atrial arrhythmic 

phenotype in Pgc-1β deficient hearts 

 

4.1 Introduction 

Arrhythmogenesis is a complex physiological phenomenon of dysregulated cardiac electrical 

activity with both short and long term consequences. The complex embryological origins and 

anatomical structure of the atria make it particularly vulnerable to arrhythmic syndromes. 

Atrial fibrillation (AF) is of particular clinical importance, affecting 1 – 3% of individuals in 

Western countries (Friberg & Bergfeldt, 2013). The processes underpinning its induction and 

maintenance remain incompletely explained, but involve complex interactions between 

altered cardiac electrical properties and functional changes in the atria which occur over the 

short and long term. It has been suggested that AF is a self-perpetuating process, triggered 

initially by focal ectopic activity arising in the pulmonary veins that drive cumulative, 

electrical and structural remodeling processes, themselves generating an arrhythmic substrate 

(Haïssaguerre et al., 1998). 

These changes are exacerbated by several interacting upstream factors, with ageing and 

metabolic disease central to a number of these. There is a pronounced increase in the 

prevalence of AF with age, from ~4% of individuals aged 60‐70 years to nearly 20% of 

individuals ≥80 years (Zoni‐Berisso et al., 2014). Similarly, metabolic factors may explain ~60% 

of current upward trends in incidences of AF (Miyasaka et al., 2006). Metabolic disease and 

obesity have been implicated as risk factors, themselves age‐dependent, for ventricular 

arrhythmias (Adabag et al., 2015). Similarly, the risk of AF increases with physical inactivity 

(Mozaffarian et al., 2008), obesity (Tedrow et al., 2010), diabetes mellitus (Nichols et al., 2009) 

and metabolic syndrome (Watanabe et al., 2008). Amelioration of metabolic disease improves 

both risk profiles and responses to therapy (Tedrow et al., 2010). Further, it has been shown 

that manipulation of key components of cellular energy production pathways suppress 

arrhythmia in known arrhythmogenic models (Liu et al., 2009).  

Mitochondrial function may be integral to relationships between ageing, metabolism and 
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arrhythmia. Mitochondria provide >95% of the ATP required for Ca2+ homeostasis and 

maintenance of trans‐membrane ionic gradients in addition to cardiac muscle contraction 

(Barth & Tomaselli, 2009). A number of targeted mitochondrial DNA mutations accumulate 

both with age and show increased incidences in AF (Lai et al., 2003). Furthermore, abnormal 

mitochondrial structure and function have been reported in animal models for AF (Ausma et 

al., 1997b) and in human studies (Tsuboi et al., 2001; Lin et al., 2003; Bukowska et al., 2008). 

Mitochondrial dysfunction also results in generation of reactive oxygen species (ROS) which 

has been implicated in the pathogenesis of human atrial fibrillation (Korantzopoulos et al., 

2007).  

However, few experiments have explored the effects of chronic age‐dependent energetic 

deficiency arising from ageing and mitochondrial dysfunction on generation of atrial 

arrhythmias or determined their underlying electrophysiological abnormalities. The 

experiments described in this chapter evaluated the influence of ageing and mitochondrial 

dysfunction, through homozygous deficiency in Pgc-1β, upon atrial arrhythmic tendency and 

the associated electrophysiological alterations. Simultaneous ECG and intracellular 

microelectrode readings were recorded from Langendorff perfused WT and Pgc-1β‐/‐ hearts. 

The presence of altered electrophysiological properties were evaluated through the 

imposition of extrasystolic S2 stimuli at differing S1S2 intervals following trains of regular S1 

pacing as well as steady‐state pacing at progressively decreased basic cycle lengths. Young 

and aged WT and genetically modified hearts were therefore studied at both the whole heart 

and cellular level, assessing arrhythmic tendency and correlating this with 

electrophysiological parameters and structural changes. 

 

4.2 Specific methods 

4.2.1 Experimental Animals 

As in chapter 3, mice were divided into four groups consisting of young WT (n = 26) and 

young Pgc-1β-/- mice (n = 34) aged between 12-16 weeks. The other groups included aged 

(greater than 52 weeks) littermate WT controls (n = 27) and aged Pgc-1β-/- mice of age similarly 

greater than 52 weeks (n = 25). 
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4.2.2 Statistical analysis 

Data from AP recordings were analysed using a custom written programme in the python 

programming language and all statistical analysis performed in the R programming language 

(R Core Team, 2015). Discrete incidences of abnormal rhythms were separated according to 

their type and the pacing protocol, either regular pacing or PES, in which they were observed. 

As often multiple episodes of AT were seen during a single protocol, the propensity to 

arrhythmia was expressed as protocols with one or more episode of AT expressed relative to 

the total number studied, and compared using the Fisher Exact Test. Parameters describing 

electrophysiological properties measured during regular pacing were compared using a two-

way analysis of variance (ANOVA) testing for significant effects of genotype, ageing, and an 

interaction between the two. Where the F-ratio yielded a significant result, post-hoc Tukey 

honesty significant testing was performed. Similar electrophysiological measurements from 

PES protocols were compared in two separate ways. Firstly, differences spanning the duration 

of the protocol were compared using ANOVA analysis of area under the curve (AUC) values 

for each group. To further evaluate the temporal nature of any differences between groups, 

mean protocol start and protocol end values for each experimental group were compared in 

the same manner as data from the regular pacing protocol. Where the data from PES protocols 

was normalised, the corresponding data from regular pacing was used as reference values. 

Data are expressed as mean ± standard error of the mean (SEM), and in all cases a p < 0.05 was 

taken to be significant, with application of Bonferroni correction where appropriate. 

 

4.3 Results 

4.3.1 Pgc-1β-/- hearts develop an age-related arrhythmic phenotype 

Volume conducted ECGs and intracellular AP recordings were first obtained from 

Langendorff perfused hearts during regular pacing at a BCL of 125 ms (8 Hz) mimicking 

murine resting heart rates, thus enabling quantification of occurrence of spontaneous 

arrhythmia and electrophysiological characterisation under conditions of baseline activity. 

Figure 4.1(a(i)) demonstrates a typical ECG recording from a young WT heart during regular 

8 Hz pacing and Figure 4.1(a(ii)) is the simultaneous intracellular AP from a left atrial (LA) 

cardiomyocyte. The intracellular recordings confirmed normally polarised resting membrane 

potentials (RMPs) statistically indistinguishable between groups (young WT: -76.62 ± 1.37 mV, 
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n = 26; aged WT: -76.72 ± 1.47 mV, n = 27, young Pgc-1β-/-: 75.82 ± 0.68 mV, n = 34; aged Pgc-1β-

/-: -77.43 ± 1.49 mV, n = 25). Similarly, AP amplitudes confirmed positive AP overshoots 

through all experimental groups, consistent with intracellular recordings from viable atrial 

cardiomyocytes in situ, though amplitudes were marginally lower in aged Pgc-1β-/- hearts 

(young WT: 96.76 ± 1.14 mV, n = 26; aged WT: 96.92 ± 1.55 mV, n = 27, young Pgc-1β-/-: 93.19 ± 

1.12 mV, n = 34; aged Pgc-1β-/-: 91.21 ± 1.63 mV, n = 25, p < 0.05). No spontaneous arrhythmias 

were observed from hearts in any experimental group during the regular pacing protocols. 

Hearts were then subjected to a programmed electrical stimulation (PES) protocol consisting 

of repeated cycles of nine beats, of which the first eight (S1) beats were separated by a regular 

interval of 125 ms and the ninth was a premature extra stimulus (S2) at an initial S1-S2 

coupling interval of 89 ms that was decremented by 1 ms with each successive cycle. This 

permitted evaluation of the arrhythmic tendency of hearts in response to provocation with an 

imposed premature S2 beat, the alterations in electrophysiological parameters with varying 

coupling intervals, and differences in atrial effective refractory periods (ERPs) between 

groups. Figure 4.1(b) show typical (i) ECG and (ii) AP recordings during PES pacing from a 

young WT heart with a refractory as opposed to an arrhythmic outcome. Several abnormal 

rhythms were observed during PES pacing as exemplified in Figure 4.2. These were triggered 

by the S2 premature stimulus and included isolated ectopic beats (Figure 4.2(a)), paired beats 

termed a couplet (Figure 4.2(b)) and episodes of atrial tachycardia (AT) defined as three or 

more consecutive non-stimulated beats (Figure 4.2(c)). 

Table 4.1 summarises the number of episodes of the different abnormal rhythms observed 

during PES, stratified by experimental group. Incidences of atrial tachycardia (AT) were 

significantly greater in aged Pgc-1β-/- hearts compared to any other group with respect to the 

overall proportion affected (p < 0.05, Fisher Exact Test) and the number of arrhythmic events 
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Figure 4.1 Simultaneous volume conducted ECG and left atrial cellular AP recordings  

Typical recordings from Langendorff-perfused WT hearts during regular pacing and programmed electrical 

stimulation. Electrocardiograph (ECG) (i) and left atrial intracellular action potential (AP) recordings (ii) during 

(a) regular 8 Hz pacing and (b) a protocol imposing programmed electrical stimulation with a refractory outcome. 

The timings of stimulus delivery are given dashed bar above the AP recordings, and corresponding stimulation 

artefacts can be seen on the ECG and AP traces, preceding the respective complexes. In panel (B), arrows indicate 

the imposition of S2 extrastimuli.  The first two S2 stimuli trigger APs, whereas the third S2 stimulus fails to 

elicit a response, thus representing a refractory outcome. 
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Figure 4.2 Abnormal atrial in response to premature extra-stimuli 

Examples of abnormal rhythms elicited by S2 premature stimuli during PES pacing, including (a) isolated ectopic 

beats, (b) paired beats forming couplets and (c) episodes of atrial tachycardia (AT) defined as three or more 

consecutive non-stimulated beats. The timings of stimulus delivery are given dashed bar above the AP recordings 

and arrows indicate the onset of the abnormal rhythm. 
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per individual heart, suggesting an arrhythmic phenotype associated with mitochondrial 

dysfunction that progresses with age. AT was more frequently observed in the young Pgc-1β-

/- group compared to either of the WT groups, with no difference in incidence observed 

between the young and aged WT groups. Although a similar proportion of young and aged 

WT hearts were arrhythmic, arrhythmic event rates were higher in the latter further 

reinforcing an effect of age upon arrhythmic risk. Thus ANOVA analysis of mean AT events 

per heart demonstrated a significant effect of genotype (F = 7.13, p < 0.01) with Pgc-1β-/- hearts 

having higher event rates and age (F = 7.26, p < 0.01), but no interactive effect (F = 2.37, p > 

0.05). Post hoc Tukey tests demonstrated significant differences in rates of AT between aged 

Pgc-1β-/- hearts and young WT hearts (p < 0.01), aged WT hearts (p < 0.05) and young Pgc-1β-/- 

hearts (p < 0.05). 

This increased propensity to AT is further highlighted on analysis of the critical coupling 

intervals, given by the S1-S2 coupling interval at which arrhythmia was triggered as shown 

in Figure 4.3. Episodes of AT in WT hearts (Figure 4.3(a) and (b)) were triggered 

predominantly at latter parts of the PES protocol corresponding to shorter S1-S2 coupling 

intervals. In contrast Pgc-1β-/- hearts developed arrhythmias at earlier stages of the protocol 

and over a wider range of coupling intervals (Figure 4.3(c) and (d)), with aged Pgc-1β-/- hearts 

particularly appearing vulnerable throughout the duration of the protocol. The mean critical 

coupling interval was longer in Pgc-1β-/- hearts (F = 8.35, p < 0.01) and aged hearts (F = 3.93, p 

< 0.05), though no interactive effect was observed (F = 0.004, p = 0.95). Post hoc analysis 

demonstrated significant differences between aged Pgc-1β-/- and young WT hearts (p < 0.05) 

and a trend to significance between aged Pgc-1β-/- and  aged WT hearts (p < 0.10). 
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Table 4.1 Summary of arrhythmic events during programmed electrical stimulation 
 

Experimental 
Group 

No. that developed AT 
 
 

(n / total) 

Ectopic Beats  
 
 

Mean (± SEM) 

Couplets 
 
 

Mean (± SEM) 

AT  
 
 

Mean (± SEM) 

Critical Coupling 
Interval 

 
Mean (± SEM) 

 
      

Young Wild Type#  5 / 27# 1.48# 

± 0.50 

0.41# 

± 0.26 

0.26 ** 

± 0.11 
28.71 # 

± 3.46 
 

Aged Wild Type#  4 / 27# 0.79# 

± 0.53# 

1.17# 

± 0.62 

0.48 † 

± 0.36 
32.71 # 

± 4.21 
 

Young Pgc-1β-/- # 11 / 34# 1.22# 

± 0.47 

0.42# 

± 0.21 

0.86 ‡ 

± 0.35 
35.70# 

± 1.35 
 

Aged Pgc-1β-/- # 12 / 25*# 1.64# 

± 0.66 

1.28# 

± 0.55 

2.64 **, †, ‡ 

± 0.70 

39.39 # 

± 1.12 
      
 
Each action potential parameter detailed on the top row was compared between young and aged, WT and hearts as detailed in the left column. 
Symbols denote significant difference based on post hoc analysis, performed if the F value from two-way ANOVA was significant. Single, double and 
triple symbols denote p < 0.05, p < 0.01 and p < 0.001 respectively 
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Figure 4.3 Critical coupling interval at which episodes of arrhythmia were induced 

Stratification of the occurrence of AT episodes by critical coupling intervals in young ((a), (c)) and old ((b), (d)), WT ((a), (b)) and Pgc-1β−/− hearts ((c), (d)). Pgc-1β−/− hearts 

display vulnerability to arrhythmia earlier, and through wider range of S1-S2 coupling intervals. 



 

101 
 

4.3.2 Action potential parameters during regular pacing 

These differing arrhythmic profiles were next compared with electrophysiological parameters 

corresponding to AP initiation, propagation and recovery during regular pacing at 8 Hz. AP 

initiation was measured first through maximum rates of AP depolarisation (dV/dt)max, derived 

from left atrial intracellular microelectrode recordings. (dV/dt)max measurements serve to 

quantify the depolarisation of the cardiomyocyte membrane capacitance by regenerative 

inward Na+ current. Reductions in (dV/dt)max are known to correlate with compromised 

conduction velocity of an AP wavefront, potentially providing a substrate permissive to AP 

re-entry and arrhythmia. Pgc-1β-/- hearts showed significantly lower values of (dV/dt)max 

compared to WT (F = 18.41, p < 0.001) but there was no effect of age (F = 0.17, p > 0.05) or 

interaction between age and genotype (F = 0.001, p > 0.05). On post hoc Tukey testing, each 

Pgc-1β-/- group, whether young or aged, showed significantly lower (dV/dt)max values than 

either of the WT groups (Table 4.2). 

AP conduction through respective cardiac chambers is determined by properties of the 

inward Na+ current, reflected by the cellular (dV/dt)max values, but also the total membrane 

capacitance and resistance (King et al., 2013a). AP propagation was therefore further assessed 

through comparisons of AP latency times, measured as the time intervening between stimulus 

delivery at the right atrial pacing site and the peak AP voltage measured at the left atrial 

recording site. In all experiments, the stimulating electrode was consistently positioned at the 

posterior aspect of the RA and recordings were made from the central region of the LA, 

minimising variability in distances between the respective electrodes. ANOVA of AP latency 

times demonstrated significant effects of genotype (F = 9.91, p < 0.01), age (F = 5.32, p < 0.05) 

and an interaction of the two (F = 12.47, p < 0.001). As detailed in Table 4.2, these differences 

were driven by young WT hearts, which had significantly shorter AP latency times than aged 

WT hearts (p < 0.001), young Pgc-1β-/- hearts (p < 0.001), and aged Pgc-1β-/- hearts (p < 0.01), 

There was no significant difference between the aged WT hearts and either of the Pgc-1 -/- 

groups.  

Pro-arrhythmic tissue substrate has also been associated with altered repolarisation associated 

with action potential shortening or prolongation (Sabir et al., 2007c, 2007b; Killeen et al., 2007). 

Electrophysiological parameters describing repolarisation are given in Table 4.2. No 

differences in APD at 90% repolarisation (APD90) were found during regular 8 Hz pacing 
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either through effects of genotype (F = 1.07, p > 0.05), age (F = 0.001, p > 0.05) or an interaction 

of the two (F = 0.20, p > 0.05). Repolarisation properties were further assessed through 

measurement of the ERP obtained from the PES protocol, defined as the longest S1-S2 

coupling interval at which the S2 stimulus failed to trigger an AP. The ERP generally correlates 

with the APD, and in keeping with this no differences between groups were observed when 

compared according to genotype (F = 3.36, p > 0.05) or age (F = 0.04, p > 0.05). 

 

4.3.3 Action potential parameters following premature extrasystolic stimuli 

The trigger-substrate model of arrhythmogenesis comprises initiation of the abnormal rhythm 

through an arrhythmogenic trigger, such as an extrasystole, occurring within a pro-

arrhythmic substrate capable of sustaining the arrhythmia (Antzelevich et al 1999, Kalin et al 

2010). The PES protocol consisted of pulse trains of S1 beats 125 ms apart, punctuated every 

ninth beat by a premature S2 stimulus, mimicking such triggering extrasystoles. The external 

application of these premature beats thus controlled for incidence of ectopic stimuli between 

groups and so assessed for the presence of such an arrhythmogenic substrate. 

Figure 4.4 a(i) plots mean (dV/dt)max values for APs triggered by S2 stimuli across the range of 

coupling intervals explored during the PES protocol. All experimental groups displayed the 

expected progressively reduced (dV/dt)max values with shortening of the S1-S2 coupling 

interval. In common with findings obtained during regular pacing, an analysis of the areas 

beneath the data curve (AUC) demonstrated that the overall rates of depolarisation were 

significantly higher in WT than Pgc-1β-/- hearts (F = 6.41, p < 0.05) (Table 4.3); there were no 

effects of age (F = 0.84, p > 0.05) or interacting effects of genotype and age (F = 0.27, p > 0.05). 

The difference between WT and Pgc-1β-/- hearts was most pronounced at the beginning of the 

protocol (Figure 4.4 a(ii)) (ANOVA - genotype: F = 13.19, p < 0.001; age: F = 0.15, p > 0.05; 

interaction: F = 0.002, p > 0.05) and was of a similar magnitude as had been observed during 8 

Hz pacing. On post hoc analysis, each WT group showed significantly higher (dV/dt)max values 

compared against either of the Pgc-1β-/- groups. In contrast, no difference in (dV/dt)max values 

was observed at the shortest coupling intervals at the end of the protocol, whether tested for 

effects of genotype (F = 0.09, p > 0.05), age (F = 0.18, p > 0.05) or interaction (F = 0.31, p > 0.05). 
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Table 4.2 Action potential properties in WT and Pgc-1β-/- hearts during regular 8 Hz pacing  

Experimental Group 

 

(dV/dt)max (V s-1) 

 

AP Latency (ms) 

 

APD90 Duration (ms) 

 

Effective Refractory 
Period (ms) 

Wavelength 

Young Wild Type ††† 171.06 *, † 

± 6.60 

17.69 ***, †††, ‡‡ 

± 0.23 

† 24.87 † 

± 1.18 

† 26.62† 

± 1.27 

4.21 *, † 

± 0.25 

Aged Wild Type ††† 

 

171.73 ‡‡, # 

± 5.15 

23.93 *** 

± 1.24 

† 25.51† 

± 1.59 

† 27.33† 

± 1.77 

4.34 ‡‡, ## 

± 0.29 

Young Pgc-1β-/- ††† 141.28 *, ‡‡ 

± 7.19 

24.61††† 

± 0.65 

† 23.97† 

± 0.93 

† 29.82† 

± 0.54 

3.28 *, ‡‡ 

± 0.16 

Aged Pgc-1β-/- ††† 142.39 †, # 

± 8.08 

23.48 ‡‡ 

± 1.66 

† 23.28† 

± 2.16 

† 28.33† 

± 1.33 

3.15 †, ## 

± 0.25 

All values are given as mean (± SEM) 

Each action potential parameter detailed on the top row was compared between young and aged, WT and Pgc-1β-/- hearts as detailed in the left 
column.  

Symbols denote significant difference based on post hoc analysis, performed if the F value from two-way ANOVA was significant. Single, double and 
triple symbols denote p < 0.05, p < 0.01 and p < 0.001 respectively.  
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Similar plots for AP latencies are given in Figure 4.4 (b(i)) and 4.4 (b(ii)). In keeping with 

findings during regular 8 Hz pacing and the observed differences in (dV/dt)max values, AP 

latency times were significantly prolonged in Pgc-1β-/- hearts when surveyed through the 

entirety of the protocol on AUC analyses (F = 12.98, p < 0.001), but there were no independent 

effects of age (F = 1.11, p > 0.05) or compound effect of age and genotype (F = 1.36, p > 0.05). 

Young WT hearts had significantly shorter AP latency times compared to young Pgc-1β-/- 

hearts (p < 0.01) and aged Pgc-1β-/- hearts (p < 0.05) on post hoc testing. ANOVA analysis of 

AP latencies at the longest S1-S2 intervals demonstrated significant effects of genotype (F = 

19.23, p < 0.001), age (F = 4.79, p < 0.05) and interacting effects of genotype and age (F = 6.12, p 

< 0.05). Here the AP latency times for young WT hearts were significantly shorter than all 

other groups including aged WT (p < 0.01), young Pgc-1β-/- (p < 0.001) and aged Pgc-1β-/- hearts 

(p < 0.001). AP latencies progressively lengthened in all groups as the S1-S2 interval shortened 

but to varying degrees. Thus, at the shortest S1-S2 intervals, a significant difference between 

WT and Pgc-1β-/- hearts persisted (F = 10.15, p < 0.001), however significant effects of age (F = 

1.19, p > 0.05) or interaction (F = 2.79, p > 0.05) were no longer evident. AP latency times 

remained significantly shorter in young WT hearts when compared with young Pgc-1β-/- (p < 

0.01) and Pgc-1β-/- aged hearts (p < 0.05), however the lengthening of AP latency in aged WT 

was less pronounced than that of the Pgc-1β-/- hearts and thus the difference with the young 

WT hearts was no longer significant. 

The adaptation of AP duration, given by APD90 times, through progressively shortening S1-

S2 coupling intervals is shown in Figure 4.4 (c(i)). Overall APD90 times did not differ between 

experimental groups (ANOVA - genotype: F = 2.95, p > 0.05; age: F = 1.71, p > 0.05; interaction: 

F = 0.002, p > 0.05), reflecting the findings during regular 8 Hz pacing. Accordingly, APD90 

times at the beginning of the protocol, corresponding to the longest S1-S2 intervals, also did 

not differ between groups (ANOVA - genotype: F = 1.63, p > 0.05; age: F = 0.02, p > 0.05; 

interaction: F = 1.30, p > 0.05). APD90 times in all groups displayed the expected shortening as 

the S1-S2 interval decreased, however a small but significant difference in APD90 between WT 

and Pgc-1β-/- hearts was seen at the shortest coupling intervals (F = 6.60, p < 0.05), where Pgc-

1β-/- hearts had shorter APD90. No differences were noted based upon age (F = 0.02, p > 0.05), 

or interacting effects of genotype and age (F = 1.52, p > 0.05). There were no significant 

differences between groups on post hoc Tukey testing. 
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Reductions in the AP wavelength have been suggested to correlate with increased arrhythmic 

risk, indicating the presence of substrate favourable to AP re-entry.  It has previously been 

calculated from terms relating to AP conduction and AP duration, and similar analyses were 

conducted in the present study.  Pgc-1β-/- hearts had significantly shorter wavelength values 

at resting hearts as measured during 8 Hz pacing (F = 20.62, p < 0.001), however there were 

no effects of ageing (F = 0.01, p > 0.05) or interacting effects of the two variables (F = 0.32, p > 

0.05) (Table 4.2). AP wavelengths profiles for beats triggered by S2 extrastimuli during PES 

pacing are shown in Figure 4.4(d).  Wavelengths were shorter throughout the protocol in Pgc-

1β-/- hearts (F = 9.19, p < 0.01), with effect of either age (F = 0.03, p > 0.05) or interaction of 

genotype and age (F = 0.01, p > 0.05) having no significant effect.  The differences between WT 

and Pgc-1β-/- hearts noted during regular 8 Hz pacing was similarly evident at the longest S1-

S2 intervals (F = 18.93, p < 0.01) with no other significances noted (ageing: F = 0.01, p > 0.05; 

genotype - age interaction: F = 1.20, p > 0.05) (Fig. 5(d(ii))).  Post hoc Tukey revealed significant 

differences between young WT and aged Pgc-1β-/- hearts (p < 0.05), aged WT and young Pgc-

1β-/- hearts (p < 0.01), and aged WT and aged Pgc-1β-/- hearts (p < 0.01).  Wavelength values 

reduced in all groups as the S1-S2 coupling interval shortened, correlating with the increased 

vulnerability to arrhythmias seen in all hearts.  However, AP wavelengths for young Pgc-1β-/- 

hearts more closely converged to those of both WT groups, whereas wavelengths remained 

shorter in aged Pgc-1β-/- hearts.  Thus though Pgc-1β-/- hearts continued to display significantly 

shorter wavelengths at the shortest S1-S2 intervals (ANOVA – genotype: F = 5.00, p < 0.05; 

age: F = 0.51, p > 0.05, interaction: F = 2.40, p > 0.05) no significant differences were noted 

between any groups on post hoc testing. 

 

4.3.4 Relative changes in action potential parameters following premature 
extrasystolic stimuli 

The energetic dysfunction associated with mitochondrial impairment would be expected to 

particularly compromise cardiac activity in the stressed state. Indeed Pgc-1α deficient hearts 

show normal contractile function at baseline but develop pronounced cardiac failure in 

response to aortic banding. Pgc-1β-/- hearts are known to develop chronotropic incompetence  



 

106 
 

 

 

 

Figure 4.4 AP parameters for S2 extras-stimuli 

Plots of mean ± SEM (a) (dV/dt)max, (b) AP latency and (c) time to 90% AP recovery (APD90) for APs obtained 

in response to S2 stimuli (i) through the range of coupling intervals explored, reducing from 89 ms to 30 ms. 

Panel (ii) for each provides a comparison of these values at the beginning and termination of the pacing protocol, 

corresponding to a refractory outcome or the onset of sustained arrhythmia.  The symbols denote significant 

differences between each pair, obtained from post hoc Tukey testing, which was conducted if the ANOVA indicated 

a significant outcome. Single, double and triple symbols denote p < 0.05, p < 0.01 and p < 0.001 respectively.
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Table 4.3 Area under the curve analysis for S2 triggered APs during programmed electrical stimulation 
 

Experimental Group 
 
 

(dV/dt)max (V × 10-3) 
 

AP Latency (ms2) 
 

APD90 (ms2) 
 

Wavelength (ms) 

Young Wild Type  6.68 
± 0.32 

 

1.06 ††, ‡ 

± 0.04 
 

1.06 
± 0.05 

 

0.085 
± 0.005 

 
Aged Wild Type  
 

6.11 
± 0.35 

 

1.21 
± 0.05 

 

0.93 
± 0.06 

 

0.082 
± 0.007 

 
Young Pgc-1β-/-  5.44 

± 0.37 
 

1.39 †† 
± 0.08 

 

0.95 
± 0.05 

 

0.066 
± 0.005 

 
Aged Pgc-1β-/-  5.30 

± 0.64 
 

1.38 ‡ 
± 0.01 

 

0.82 
± 0.06 

 

0.065 
± 0.005 

 

 
All values are given as mean (± SEM) 
 
Symbols denote significant difference based on post hoc analysis, performed if the F value from two-way ANOVA was significant. 
Single, double and triple symbols denote p < 0.05, p < 0.01 and p < 0.001 respectively 
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in response to adrenergic challenge despite normal resting heart rates. To further characterise 

the cardiac phenotype in response to increasing metabolic demand in the form of shortening 

pacing intervals, electrophysiological parameters during PES pacing were normalised 

internally to their corresponding values measured during regular 8 Hz pacing. The 

normalised profiles for the relevant parameters are show in Figure 4.5(a – c). Normalised 

(dV/dt)max (Fig. 7a) and normalised APD90 (Fig. 7c) displayed similar reductions with 

shortening S1-S2 intervals, and there were no significant differences in AUC values for either 

parameter (Table 4.4). Despite differing absolute AP latency times, normalised AP latency 

profiles for young and aged WT hearts were similar (Figure 4.5(b)). In contrast Pgc-1β-/- hearts 

displayed greater increments in normalised latency, with aged Pgc-1β-/- hearts appearing most 

compromised. ANOVA analysis of AUC values for normalised AP latency showed no 

independent effect of genotype (F = 0.49, p > 0.05) or age (F = 0.05, p > 0.05), but a significant 

interacting effect of the two (F = 4.31, p < 0.05) with aged Pgc-1β-/- hearts having the highest 

AUC values. No significant differences were seen on individual comparisons with post hoc 

Tukey testing. 

 

4.3.5 Contrasting impacts of (dV/dt)max upon AP latency in WT and Pgc-1β-/- hearts 

Findings from the regular 8 Hz and PES pacing protocols suggested an arrhythmic substrate 

in Pgc-1β-/- hearts through compromised conduction parameters, with few alterations in 

repolarisation characteristics. Here, Pgc-1β-/- hearts displayed deficits in (dV/dt)max that were 

independent of age, and a corresponding altered conduction through the myocardium, 

reflected by prolonged AP latency times. However, the latter differed from (dV/dt)max, in 

appearing to be influenced by age to some degree. This prompted further exploration of the 

relationship between these conduction parameters. Mean AP latency times from extrasystolic 

S2 beats recorded during the PES protocols are plotted against their corresponding mean 

(dV/dt)max values for each experimental group in Figure 4.6. Reductions in (dV/dt)max with 

shortening S1-S2 coupling intervals is associated with increasing AP latency times for all 

groups, suggesting that much of the increase in AP latency observed with progressively 

shortening coupling intervals is attributable to concurrent reductions in (dV/dt)max. However 

distinct associations between these parameters were seen in WT and Pgc-1β-/- hearts. As shown 

in Figure 4.6 (a), prolongation of AP latency independent of (dV/dt)max occurs in WT hearts 
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with age, such that for any given (dV/dt)max value, the AP latency time is longer in aged WT 

hearts compared to young WT hearts. In contrast, young and aged Pgc-1β-/- hearts display a 

more homogeneous association between (dV/dt)max and AP latency, with values in line with 

those of aged WT hearts. Thus young Pgc-1β-/- hearts develop electrophysiological features 

resembling those of normal ageing, which may explain their increased propensity to 

arrhythmia. 

 

 

 

Figure 4.5 Normalised S2 beat AP parameters 

Plots of mean ± SEM (a) (dV/dt)max , (b) AP latency and (c) time to 90% AP recovery (APD90) in APs obtained 

in response to S2 stimuli, normalized to their corresponding values obtained during regular 8 Hz pacing through 

progressively shortening S1-S2 coupling intervals. 
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Figure 4.6 Relationship between (dV/dt)max and AP latency 

Dependences of AP latency times upon (dV/dt)max through the programmed electrical stimulation protocol 

compared in (a) young and old WT and (b) young and aged Pgc-1β-/- hearts.  

 

4.3.6 Compromised conduction triggering arrhythmia in all hearts 

The bearing of the observed electrophysiological parameters upon the initiation of arrhythmic 

events was next explored. The mean values of the relevant electrophysiological parameters 

from the first S2 AP that triggered an episode of AT in a given heart are given in Table 4.5. 

Pgc-1β-/- hearts showed significantly higher values of (dV/dt)max for triggering S2 APs 

compared to WT (F = 4.55, p < 0.05), but there were no effects of age (F = 0.00, p > 0.05) or 

interacting effects of age and genotype (F = 0.28, p > 0.05). No significant differences were 

found upon individual comparisons during post hoc analysis. Interestingly, ANOVA analysis 

of AP latencies for the same S2 trigger APs revealed no differences with respect to genotype 

(F = 0.001, p > 0.05), age (F = 0.15, p > 0.05) or interaction of the two (F = 3.46, p > 0.05). No 

significant differences were seen in APD90 between trigger S2 APs of the different 

experimental groups (ANOVA - genotype: F = 1.02, p > 0.05; age: F = 0.37, p > 0.05; interaction: 

F = 0.39, p > 0.05). Similarly AP wavelengths for trigger S2 AP were also indistinguishable 

between groups (ANOVA - genotype: F = 1.96, p > 0.05; age: F = 0.07, p > 0.05; interaction: F = 

1.04, p > 0.05). Thus AT was initiated in WT and Pgc-1β-/- hearts through premature beats that 

were indistinguishable in terms of measures of conduction across the tissue. The differing 

profiles of conduction between the groups, and the earlier development of compromise in 

Pgc-1β-/- hearts may explain their increase vulnerability to arrhythmia.  
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Table 4.4 Area under the curve analysis for S2 triggered APs during programmed electrical stimulation, normalised to corresponding 
values from regular pacing 

 

Experimental Group 
 
 

(dV/dt)max (ms) 
 

AP Latency (ms) 
 

APD90 (ms) 
 

Young Wild Type  0.045 
± 0.001 

 

0.039 

± 0.02 
 

0.025 
± 0.001 

 
Aged Wild Type  
 

0.041 
± 0.002 

 

0.035 
± 0.002 

 

0.023 
± 0.002 

 
Young Pgc-1β-/-  0.042 

± 0.002 
 

0.037 
± 0.002 

 

0.023 
± 0.001 

 
Aged Pgc-1β-/-  0.041 

± 0.003 
 

0.043 
± 0.003 

 

0.023 
± 0.002 

 

 
All values are given as mean (± SEM) 
 
Symbols denote significant difference based on post hoc analysis, performed if the F value from two-way ANOVA was significant. Single, double 
and triple symbols denote p < 0.05, p < 0.01 and p < 0.001 respectively 
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Table 4.5 AP parameters for S2 triggered APs that initiated the first episode of atrial tachycardia during programmed electrical stimulation 
 
Experimental Group 
 
 

(dV/dt)max (V s-1) 
 

AP Latency (ms) 
 

APD90 (ms) 
 

Young Wild Type  100.10 
± 5.68 

 

27.42 

± 1.52 
 

15.96 
± 0.50 

 
Aged Wild Type  
 

112.53 
± 10.63 

 

33.90 
± 3.39 

 

17.60 
± 3.59 

 
Young Pgc-1β-/-  142.03 

± 11.77 
 

32.86 
± 1.77 

 

15.17 
± 0.61 

 
Aged Pgc-1β-/-  137.46 

± 14.65 
 

28.57 
± 2.56 

 

15.43 
± 0.85 

 
 
All values are given as mean (± SEM) 
 
Symbols denote significant difference based on post hoc analysis, performed if the F value from two-way ANOVA was significant. Single, double and 
triple symbols denote p < 0.05, p < 0.01 and p < 0.001 respectively 
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4.4 Discussion 

Atrial fibrillation is characterised by an irregular, often rapid atrial rhythm that may be 

asymptomatic in the short term, but nevertheless carry substantial risks of long term 

morbidity and mortality. Ageing represents the major risk factor for AF itself: AF affects <0.1 

% in those under the age of 50, 4% in individuals aged 60-69 and up to 20% in those aged 

above 85 (Go et al., 2001b; Krijthe et al., 2013; Zoni-Berisso et al., 2014). A decline in 

mitochondrial function is correspondingly observed in ageing, and has been postulated to 

account for age-related decrements in organ function with associated susceptibility to disease 

(Biala et al., 2015; Lane et al., 2015), including predisposition to AF (Tsuboi et al., 2001; Ad et 

al., 2005; Montaigne et al., 2013). The present experiments therefore investigated the 

electrophysiological alterations associated with ageing and mitochondrial dysfunction in 

murine atria with homozygous deficiency of the transcriptional co-activator Pgc-1β. The 

results suggest an age-related increase in arrhythmic incidence that was exacerbated by 

mitochondrial dysfunction. This propensity to arrhythmia developed predominantly through 

deficits in parameters pertaining to AP conduction at the cellular and tissue level. 

The heart is a highly oxidative organ and served by a rich network of mitochondria, which 

account for up to 30% of myocardial volume and produce approximately 95% of its cellular 

ATP (Schaper et al., 1985). Understandably mitochondrial dysfunction is associated with 

altered cardiac electrical properties, giving rise to AP heterogeneities that provide a substrate 

for arrhythmia, and has been the subject of much attention in the context of ventricular 

arrhythmogenesis (Brown & O’Rourke, 2010b; Yang et al., 2014). Mitochondrial abnormalities 

have also been reported in studies of AF but their role in its pathogenesis have been relatively 

unexplored. Evidence of altered mitochondrial structure was found in dog (Morillo et al., 

1995) and goat (Ausma et al., 1997b) models of AF. Here, AF was induced by rapid atrial 

pacing with the noted mitochondrial defects appearing as a possible consequence of the 

pacing protocol and/or AF itself. Similarly, evidence of mitochondrial abnormalities have 

been reported in tissue samples obtained during cardiac surgery from AF patients (Tsuboi et 

al., 2001; Lin et al., 2003; Slagsvold et al., 2014; Emelyanova et al., 2016). In these studies the 

selected cohorts had established AF and it remains difficult to distinguish whether the 

observed mitochondrial lesions were caused by or resulted from AF, or indeed were a 

confound of ageing or other age-related conditions associated with metabolic compromise. 
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However baseline mitochondrial deficits were found to predict development of post-

operative AF following cardiac surgery in patients with no prior history of AF (Ad et al., 2005; 

Montaigne et al., 2013), suggesting a more direct role in its pathogenesis. Furthermore, Marks 

and colleagues recently reported diastolic Ca2+ leak, through progressive oxidisation of 

ryanodine receptors, was associated with age-dependent development of AF in a murine 

model (Xie et al., 2015). Reductions in mitochondrial ROS production attenuated these 

diastolic Ca2+ transients and prevented AF. 

Electrophysiological alterations secondary to chronic mitochondrial impairment have not 

been well characterised to date. The PGC-1 family of transcriptional coactivators, which 

includes PGC-1α and PGC-1β, serve as key modulators of cellular metabolic activity, 

particularly in oxidative tissues such as the heart and brain (Riehle & Abel, 2012). 

Overexpression of specific individual members of the PGC-1 family in various cell types 

results in increased mitochondrial density and augments their overall oxidative capacity 

(Lehman et al., 2000; Russell et al., 2004). Conversely, cardiomyocytes deficient in Pgc-1α 

demonstrate impaired maximal capacity for mitochondrial ATP synthesis (Vega et al., 2000; 

Huss et al., 2004) . Mice deficient in both Pgc-1α and Pgc-1β develop a low cardiac output state 

and conduction system disease, contributing to their death before weaning (Lai et al., 2008). 

The cardiac phenotype of mice lacking individual members of the Pgc-1 family is less severe. 

Pgc-1β deficiency is not associated with cardiac dysfunction at baseline (Lelliott et al., 2006), 

but increased susceptibility to ventricular arrhythmias (Gurung et al., 2011). This model was 

therefore utilised to investigate electrophysiological alterations secondary to mitochondrial 

dysfunction in murine atria. The modified Langendorff preparation utilised here, permitted 

simultaneous volume conducted ECG and intracellular microelectrode recordings during 

regular pacing and programmed electrical stimulation applying premature extra stimuli, 

enabling assessment of AP activation and recovery properties. 

Hearts were first paced at a frequency of 8 Hz, reflecting murine resting heart rates and 

therefore providing steady state electrophysiological characterisation. No arrhythmias were 

observed in any group during regular pacing. This is consistent with previous reports that 

Pgc-1β ablation is not associated with a pronounced cardiac phenotype under conditions of 

baseline activity. In contrast arrhythmias were seen in all experimental groups during 

programmed electrical stimulation. Incidences of arrhythmia increased with age in both WT 



 

115 
 

and Pgc-1β-/- hearts, in keeping with the cumulative risk of both atrial and ventricular 

arrhythmias with age seen in the clinical setting (Deo & Albert, 2012; Zoni-Berisso et al., 2014). 

Young WT hearts displayed the fewest episodes of AT of all groups, and the incidence was 

higher in aged WT hearts. The mitochondrial theory of ageing posits progressive deterioration 

in mitochondrial function, through accumulation of mutations in mitochondrial DNA and 

impaired autophagy, underpinning the ageing process and may contribute to this increased 

vulnerability to arrhythmia. Accordingly young and aged Pgc-1β-/- hearts, possessing a 

pronounced mitochondrial defect, had even higher incidences of AT. Here aged Pgc-1β-/- 

hearts displayed the greatest propensity to arrhythmia of all groups, in terms of proportion 

of hearts that were arrhythmic and the overall number of episodes of arrhythmia. 

The electrophysiological alterations underlying the greater propensity to arrhythmia in Pgc-

1β-/-- hearts were examined with intracellular AP recordings from the left atrium, which 

suggested these occurred primarily through abnormalities in AP conduction. At the cellular 

level, young and aged Pgc-1β-/- hearts had significantly reduced (dV/dt)max values compared 

to WT hearts during regular pacing. There was no difference in (dV/dt)max based upon age in 

either group. A similar pattern was also observed in AP triggered by S2 stimuli during the 

PES protocol. As would be expected, (dV/dt)max values progressively reduced with shortening 

of the coupling interval in all groups. At the longest coupling intervals (dV/dt)max values 

differed between WT and Pgc-1β-/- hearts to similar extents as during 8 Hz pacing, whereas 

they converged to become indistinguishable at the shortest coupling intervals. Thus Pgc-1β-/- 

hearts demonstrated compromise at modest levels of stress represented by the longer 

coupling intervals, and correlated with their increased susceptibility to arrhythmia through 

greater parts of the protocol. 

Reduced atrial conduction velocities have been reported as an early feature in patients with 

AF (Zheng et al., 2016) and potentially play a significant role in providing a substrate for its 

maintenance in the long term (Park et al., 2009; Miyamoto et al., 2009). Values of (dV/dt)max are 

known to correlate with peak Na+ currents (INa) (Hondeghem & Katzung, 1977) and 

conduction velocity in skeletal and cardiac cells (Usher-Smith et al., 2006; Fraser et al., 2011). 

Time-dependent reductions in INa and consequent reductions in atrial conduction velocity 

have previously been implicated in the pathogenesis in a canine model of AF (Gaspo et al., 

1997a). Furthermore SCN5A gene variants, which encodes the cardiac sodium channel 
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responsible for the inward Na+ current, are associated with increased risk of developing AF 

(Olson et al., 2005; Darbar et al., 2008). Interestingly, mitochondrial dysfunction can alter INa 

through a number of potential mechanisms. Firstly reductions in INa in cardiomyocytes were 

observed in response to metabolic stress (Liu et al., 2009) and could be recovered with 

application of the mitochondrial ROS scavenger mitoTEMPO (Liu et al., 2010). Secondly, 

fluctuations in cytosolic [Ca2+] could also potential modify sodium channel properties through 

binding in its C-terminal region, either directly at an EF hand motif (Wingo et al., 2004) and 

indirectly through an IQ domain sensitive to calmodulin/calmodulin kinase II (Mori et al., 

2000)(Mori et al 2000). Elevated intracellular [Ca2+] caused reductions in INa density and 

(dV/dt)max in cardiomyocytes in vitro (Casini et al., 2009), and in whole hearts following 

diastolic Ca2+ leaks, through application of caffeine (Zhang et al., 2009b), known to increase 

diastolic Ca2+ release, or mutations associated with diastolic Ca2+ release (King et al., 2013c; Li 

et al., 2014; Glukhov et al., 2015). Abnormal diastolic Ca2+ transients have been recorded in 

cardiomyocytes in Pgc-1β-/- hearts (Gurung et al., 2011).  

The conduction of an AP wavefront through tissue is influenced by the membrane capacitance 

and its resistance, in addition to (dV/dt)max (Jeevaratnam et al., 2011; King et al., 2013a). 

Conduction was therefore further assessed through evaluation of AP latency times. These 

were significantly prolonged in Pgc-1β-/- hearts compared to WT during regular pacing, with 

young WT hearts having significantly shorter AP latency durations than any other 

experimental group including aged WT hearts. During PES pacing, AP latency times 

increased with shortening of the S1-S2 coupling interval in all groups, but with differing 

magnitudes. Conduction slowing was most pronounced in Pgc-1β-/- hearts, particularly aged 

Pgc-1β-/- hearts, at the shorter coupling intervals correlating with their greater vulnerability to 

arrhythmia during the PES protocols. The differing comparisons of (dV/dt)max and AP latency 

between groups were further explored by evaluating the dependency of AP latency upon 

(dV/dt)max within groups. In all cases AP latency lengthened with reductions in (dV/dt)max, in 

keeping with the known relationship between (dV/dt)max, INa and conduction velocity (Hunter 

et al., 1975). However young and aged WT hearts displayed distinct relationships between AP 

latency and (dV/dt)max, with age-related delays in latency observed at any given (dV/dt)max 

value. In contrast this correlation was indistinguishable between young and aged Pgc-1β-/- 

hearts, where both resembled the conduction slowing seen with ageing in WT hearts. 
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Myocardial fibrosis is associated with increased tissue capacitance and resistance, 

contributing to conduction slowing independent of the influence of (dV/dt)max and may 

explain the conduction properties described in the present study. Fibrotic change is thought 

to be a key element of the remodelling seen in AF (Frustaci et al., 1997; Kostin et al., 2002). 

Progressive fibrosis is a common feature of cardiac ageing in animal (Eghbali et al., 1989; 

Orlandi et al., 2004; Lin et al., 2008; Jeevaratnam et al., 2012) and human (Gazoti Debessa et al., 

2001) studies.  

A pro-arrhythmic substrate can also develop through altered repolarisation properties 

including reductions in the APD or shortening of the atrial ERP. Reductions in APD have been 

documented in AF and were also seen in the present study, consistent with the previously 

reported effect of mitochondrial dysfunction upon AP repolarisation properties (Brown & 

O’Rourke, 2010). However these were witnessed in aged Pgc-1β-/- hearts and most pronounced 

at shorter S1-S2 coupling intervals in the PES protocol and would favour re-entry and 

arrhythmogenesis. These parameters pertaining to AP recovery can be combined with those 

of AP activation to give the AP wavelength, defined as the distance travelled by the 

depolarising wave over one refractory period (Allessie et al., 1977). Shortening of the AP 

wavelength favours re-entry whereas its lengthening is thought to be protective (Davidenko 

et al., 1995; Zaitsev et al., 2000; Weiss et al., 2005; Pandit & Jalife, 2013; Spector, 2013). AP 

wavelength was shorter in Pgc-1β-/- hearts than WT heart, both at circumstances mimicking 

resting heart rates and PES pacing. With reductions in the S1-S2 coupling interval, the shorter 

AP wavelengths in aged Pgc-1β-/-hearts persisted, whereas those for young Pgc-1β-/- hearts and 

WT hearts overlapped, correlating with the differing arrhythmic susceptibilities observed in 

the present study. 

Finally, the influence of these electrophysiological parameters upon arrhythmia induction 

was examined in the first S2 AP that provoked an episode of AT in each heart. Interestingly 

(dV/dt)max values were higher for S2 beats triggering AT in Pgc-1β-/- hearts than WT hearts, 

however no difference was seen in AP latency times. Similarly, no difference in APD90 or AP 

wavelength were seen in S2 beats triggering arrhythmias in WT and Pgc-1β-/- hearts. This 

suggested critical electrophysiological thresholds common to all groups, below which the 

susceptibility to arrhythmias is increased. The differing parameters measured in the current 

experiments indicate these circumstances arise earlier through ageing and mitochondrial 
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dysfunction, thus widening the range of S1-S2 intervals at which the Pgc-1β-/- hearts were at 

risk of arrhythmia compared to WT hearts.  Accordingly, the critical coupling intervals were 

longer in Pgc-1β-/- hearts compared to WT hearts, and in particular in aged Pgc-1β-/- hearts. 

Together, the present experiments further previous work reporting enhanced susceptibility to 

ventricular arrhythmias secondary to a chronic mitochondrial deficit, demonstrating an atrial 

arrhythmic phenotype secondary to Pgc-1β-/- ablation. The arrhythmic substrate develops 

through maladaptive alterations in AP conduction and propagation through electrical 

changes at the cellular level and allude to possible structural changes at the tissue level. 
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5 Atrial restitution properties in 

incrementally paced murine Pgc1β-/- hearts 

 

5.1 Introduction 

Electrophysiological research has increasingly been concerned with unpicking the 

mechanisms that lead to atrial arrhythmogeneisis, with a number of key themes emerging as 

important factors in this regard. The impact of ageing on arrhythmogenesis is recognised to 

be profound. The prevalence of AF increases with age, from around 4% of individuals aged 

60-70 years being affected, to nearly 20% of people aged 80 years and above (Zoni-Berisso et 

al., 2014). The epidemiology of AF points to important cumulative effects of ageing on tissue, 

cellular and biochemical changes. Age related increase in fibrosis of cardiac tissue is a known 

cause of human cardiac conduction disease (Lenegre 1964; Lev, 1964). Atrial fibrosis and 

remodeling has been implicated as one of the driving forces behind the increased propensity 

for AF in human studies (Frustaci et al., 1997; Kostin et al., 2002).  This parallels insights gained 

from murine studies which similarly showed increased fibrosis with increasing age (Hayashi 

et al., 2002; Jeevaratnam et al., 2012). In addition, changes in intracellular calcium handling 

occur with age leading to potentially pro arrhythmic changes (Froehlich et al., 1978; Lakatta & 

Sollott, 2002). The abnormal calcium handling in a number of arrhythmic models has been 

linked to age-dependent process (Hatch et al., 2011; Yang et al., 2015). 

An array of competing theories have taken hold to explain such arrhythmias. The 

fractionation of the propagating action potential wavefront into multiple smaller wavefronts 

which are more likely to follow local tissue heterogeneities (both structural and functional) 

and thus lead to self-perpetuating chaotic excitation pathways has been the dominant 

paradigm. Closely related to this is the APD restitution theory, which predicts the occurrence 

of a particular oscillatory electrophysiological phenomenon known as alternans. This 

theorises a critical pacing frequency (given by DIcrit) at which alternans becomes unstable 

through a feedback loop. Alternans in APD is thought to contribute to arrhythmic substrate 

by allowing regional heterogeneities in adjacent areas of myocardium.  
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Restitution analysis has been a mainstay of arrhythmic theory for ventricular tachycardia and 

fibrillation. Mathematical modelling has shown that in models displaying APD restitution 

slopes greater than unity, spiral waves are unstable and spontaneously degenerate into 

multiple wavelets (Garfinkel et al., 2000; Qu et al., 2000). Experimental studies have 

demonstrated that steep restitution slopes contribute to oscillations in APD and the 

maintenance of ventricular arrhythmias (Riccio et al., 1999). However the role of APD 

restitution in atrial arrhythmias has been subject to relatively little investigation. Previous 

work has suggested steeper APD restitution slopes in patients with atrial fibrillation than 

controls however the role of alternans was not examined (Kim et al., 2002). Further in a vagally 

mediated canine model of AF, the arrhythmia was associated with a suppression of APD 

alternans (Lu et al., 2011). 

The experiments in this chapter complement previous reports in murine hearts carrying 

genetic abnormalities in specific ion channels modelling ventricular arrhythmic conditions 

(Huang, 2017). The arrhythmic substrate in these different exemplars was variously identified 

with altered AP initiation and conduction (Martin et al., 2011b; Ning et al., 2016), AP recovery 

(Sabir et al., 2007b) and arrhythmic triggers (Thomas et al., 2007; Goddard et al., 2008). The 

present experiments similarly investigated for the presence of arrhythmic phenotypes 

provoked by the imposition of extrasystolic S2 stimuli at differing S1S2 intervals following 

trains of regular S1 pacing as well as steady-state pacing at progressively decreased basic cycle 

lengths. The findings were then matched to results from simultaneous determinations of AP 

activation and recovery, as well as temporal instabilities in the form of AP alternans 

(Matthews et al., 2010), APD-diastolic interval (DI) restitution relationships (Kim et al., 2002; 

Matthews et al., 2012), and spatiotemporal indicators of AP wavelength. The results presented 

represent the first report of such measurements in murine atria.  

 

5.2 Specific methods 

5.2.1 Experimental Animals 

Four experimental groups were studied: young WT (n=20), young Pgc-1β-/- (n=23), aged WT (n 

= 22) and aged Pgc-1β-/- (n = 22). All young mice were aged between 12-16 weeks and aged 

mice greater than 52 weeks. 
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5.2.2 Pacing protocols 

Hearts were stimulated at an amplitude of twice diastolic threshold voltage plus 0.5 mV. 

Hearts underwent two separate pacing protocols during each experiment. First, a 

standardised S1S2 protocol was used to determine the atrial effective refractory period 

(AERP) from the ECG recordings. This delivered successive trains of eight, S1, stimuli 

separated by an interval of 125 ms, followed by a solitary extra-systolic stimulus (S2) initially 

delivered 89 ms after the preceding S1 stimulus. This pattern of stimulation was repeated with 

the S1S2 interval decremented by 1 ms for each successive cycle until failure of stimulus 

capture. Incremental pacing protocols then began after achieving stable microelectrode 

impalement. These consisted of cycles of regular pacing each of 100 stimulations. They began 

with a basic cycle length (BCL) of 130 ms that was then decremented by 5 ms for each 

subsequent cycle. These were repeated until the heart entered into 2:1 block or sustained 

arrhythmia.  

 

5.2.3 Statistical analysis 

Data captured by the Spike2 software package (Cambridge Electronic Design) was analysed 

using a custom written program using the python programming language. Alternans was 

defined as an occurrence of alternating beat to beat changes in the value of a parameter such 

that the direction of the change oscillates for at least twelve successive action potentials. 

Statistical analysis was carried out using the R programming language (R Core Team, 2015) 

and plots with the grammar of graphics package. All data is expressed as mean ± standard 

error of mean (SEM) and a p value of less than 0.05 taken to be significant. Different 

experimental groups were compared with a two-factor analysis of variance (ANOVA). F 

values that were significant for interactive effects prompted post-hoc testing with Tukey 

honest significant difference testing. If single comparisons were made, a two-tailed student’s 

t-test was used to compare significance. Categorical variables were compared using Fisher's 

exact test. Kaplan Meier estimates were compared with the log rank test. 

 



 

122 
 

5.3 Results 

5.3.1 Aged Pgc-1β-/- hearts develop a pro-arrhythmic phenotype 

Electrocardiographic (ECG) recordings were first made through the S1S2 protocol. 

Extrasystolic (S2) stimuli were interposed at successively shorter intervals following trains of 

8 regular (S1) stimuli applied at a 125 ms basic cycle length (BCL). This explored for the 

presence, and the frequency, of arrhythmic phenotypes in the intact ex-vivo Langendorff-

perfused hearts. Figure 1 shows typical ECG recordings from aged Pgc1β-/- hearts at a slow 

time base during a S1S2 stimulation protocol. These include episodes of premature atrial 

complexes following successive S2 stimuli and a short run of atrial tachycardia captured 

during a typical stimulus train at the end of an S1S2 protocol (Figure 5.1A). On an expanded 

time base, these could be characterized by spontaneous atrial P waves (dotted arrow) in 

contrast to the paced P waves (continuous downward pointing arrows) following imposed 

pacing spikes (Figure 5.1B, arrowed) between successive ventricular complexes (upward 

pointing arrows). Some protocols also elicited runs of atrial tachycardia (Figure 5.1C). The 

S1S2 interval at the onset of failure of stimulus capture made it possible to determine the atrial 

effective refractory periods (ERP) corresponding to the specific (8 Hz) pacing rate. A 

comparison of atrial ERPs obtained from the S1S2 protocol in young WT (24.8 ± 1.3 ms), aged 

WT (28.8 ± 1.3 ms), young Pgc-1β-/- (29.3 ± 0.8 ms) and aged Pgc-1β-/- hearts (30.1 ± 1.9 ms), 

demonstrated no significant differences between groups, and provided indications of the 

extent to which BCLs could be decreased in the succeeding incremental pacing experiments. 

Simultaneous whole heart ECG recordings and intracellular action potential (AP) 

measurements from single cardiomyocytes were then performed after achieving stable 

microelectrode impalements, with consistent stimulating and recording electrode positions. 

The intracellular AP recordings provided accurate measurements of AP characteristics related 

to AP initiation, activation, and recovery. These included maximum AP upstroke rates 

(dV/dt)max, AP latencies corresponding to the interval separating the pacing spike and the AP 

peak, AP durations at 90% recovery (APD90), and resting membrane potentials (RMP). The 

measurements of (dV/dt)max and RMPs would not have been available with the monophasic-

action potential electrode methods used on previous occasions (Sabir et al., 2007a, 2008b). The 

incremental pacing protocols applied cycles of 100 regular pacing stimuli at successively 
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Figure 5.1 Volume conducted ECG recordings 

Typical ECG recordings from S1-S2 protocols demonstrating premature atrial complexes (A), dashed section 

visualized in (B) with an expanded timebase. Solid downward pointing arrows denote atrial complexes as a result 

of stimulation, the dashed arrow indicates a premature atria complex with no preceding stimulation spike. Solid 

upward pointing arrows denote ventricular complexes.  Panel (C) illustrates atrial tachycardia in response to an 

S2 stimulus. 
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decremented BCLs. Figure 5.2 illustrates results of the subsequent incremental pacing 

procedure comparing ECG (i) and intracellular traces (ii) under conditions of regular activity 

(A), and occurrences of premature atrial complexes (Figure 5.2B), atrial fibrillation (Figure 

5.2C) and APD90 alternans (Figure 5.2D) in an aged Pgc1β-/- heart. Individual hearts subjected 

to incremental pacing could therefore display phenotypes that differed from the results of 

extrasystolic (S2) stimuli.  

The cycles of incremental pacing continued with decreasing BCLs until the onset of either 2:1 

capture or arrhythmia was reached.  Kaplan Meier curves plotting the probability of 1:1 

capture of the groups as a function of BCL (Figure 5.3) demonstrated a progressive reduction 

in the number of hearts continuing to show 1:1 capture at BCLs shorter than ~70 ms. This 

would reflect their refractory properties at the steady state pacing frequencies close to this 

cutoff. The statistical analysis to follow will therefore analyse data for parameters at BCLs no 

shorter than around 50 ms. A log rank test confirmed that the survival curves were in fact 

significantly different (p = 0.0028). Young WT hearts showed fall-offs at shorter BCLs than in 

the remaining groups and thus could be paced at higher frequencies than the other hearts, 

including aged WT hearts. 

Table 5.1 summarizes the incidences of arrhythmic phenomena, whether in the form of atrial 

tachycardia or ectopic atrial deflections, through both pulse protocols. These together 

suggested a more marked pro-arrhythmic phenotype in aged Pgc-1β-/- hearts than in the 

remaining groups. With the S1S2 pulse protocol, the incidence of ectopic deflections were 

similar between groups, but those of atrial tachycardia were greater in aged Pgc-1β-/- hearts 

than in young WT, aged WT or young Pgc-1β-/- hearts, which all showed similar incidences of 

atrial tachycardia (p = 0.043). Hearts displaying arrhythmias with extra systolic (S2) 

provocation often failed to show arrhythmias on incremental pacing, and a relatively small 

number (3) of hearts showed arrhythmia amongst the experimental groups. The incremental 

pacing protocol thus resulted in few incidences of atrial tachycardia. Nevertheless, incidences 

of ectopic deflections were then greater in aged Pgc-1β-/- hearts than in young WT, aged WT 

and young Pgc-1β-/- hearts (p = 0.041).  
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Figure 5.2 ECG and AP recording during incremental pacing 

Typical recordings from incremental pacing protocols illustrating steady state (A) ECG recordings (i) from a WT 

heart as well as the corresponding intracellular AP recordings (ii). Ectopic activity (arrow) from an aged Pgc-1β-

/- heart is shown in panel (B), with the corresponding ECG (i) and intracellular AP recordings (ii). Evidence of 

AF (C) in the ECG (i) recording of an aged Pgc-1β-/- heart with concurrent intracellular AP recording (ii). Panel 

(D) illustrates APD alternans in an AP recording from a young WT heart. 
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Figure 5.3 Kaplan Meier plot of stimulus capture during incremental pacing 

Kaplan Meier plot of probability of 1:1 capture as BCL is varied for each experimental group. 

 

 

 

Table 5.1 Incidences of atrial arrhythmic events during programmed electrical stimulation and 

incremental pacing in young and aged, WT and Pgc-1β-/- hearts. 

Experimental 
Group 

S1S2 protocol Incremental pacing 

 Atrial tachycardia Ectopic events Atrial tachycardia Ectopic 
events 

Young WT 3/20 8/20 0/20 2/20 

Aged WT 4/23 8/23 1/23 4/23 

Young Pgc-1β-/- 5/23 13/23 1/23 4/23 

Aged Pgc-1β-/- 11/22 * 8/22 1/22 10/22 * 

Data represented as arrhythmic over total number studied.* denotes p < 0.05 on Fisher exact testing. 
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5.3.2 Altered atrial AP characteristics in young and aged Pgc-1β-/- hearts 

Figure 5.4 summarises the activation and recovery characteristics of APs obtained through the 

incremental pacing procedures. It illustrates the corresponding alterations in maximum rates 

of AP depolarization, (dV/dt)max (Figure 5.4A), AP latencies (Figure 5.4B), APD90 (Figure 5.4C), 

resting membrane potentials RMP (Figure 5.4D) and diastolic intervals, DI90, (Figure 5.4E) 

with alterations in BCL in young and aged, Pgc-1β-/- and WT, hearts. These parameters varied 

approximately linearly with BCL, and their overall magnitudes could be compared by the 

areas beneath their curves (see Table 5.2 for values). The Pgc-1β-/- hearts displayed decreased 

(dV/dt)max (p = 0.000020) and lower APD90 values (p = 0.00018) compared to WT hearts; there 

were no variations in RMP between groups. Genotype and age exerted significant interacting 

effects on DI90 and AP latency values (p = 0.0081, p = 0.043 respectively). Post hoc tests did not 

reveal further statistically significant differences.  

 

5.3.3 Reduced temporal heterogeneities in atrial AP characteristics in aged Pgc-1β-/- 
hearts 

Instabilities in characteristics of successive APs, often taking the form of episodes of alternans, 

presage major ventricular arrhythmias in clinical situations. They have been described under 

experimental conditions as alternating variations in temporal properties of AP excitation 

and/or recovery that occur with varying heart rates in analyses of pro-arrhythmic tendencies 

associated with ventricular arrhythmogenesis (Sabir et al., 2007a, 2008b). We sought to analyse 

whether such phenomena are important in atrial arrhythmogenesis. Figure 5.5 summarises 

the incidences of such alternans in the activation parameters (dV/dt)max (Figure 5.5A) and AP 

latency (Figure 5.5B) and the recovery parameters APD90 (Figure 5.5C) and RMP (Figure 5.5D) 

in young and aged WT and Pgc-1β-/- hearts through the incremental pacing protocol. Overall 

incidences of alternans were assessed by summing the individual incidence of alternans at 

each BCL. The different groups showed similar distributions in the occurrence of alternans at 

different BCLs. However, statistical comparisons of the overall incidences of alternans 

throughout the entire range of BCLs indicated that Pgc-1β-/- hearts have reduced incidences and 

durations of alternans episodes.  
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Figure 5.4 Action potential parameters during incremental pacing 

Dependence of maximum rate of AP depolarization, (dV/dt)max (A), AP latency (B), APD90 (C), RMP (D) and DI 

(E) on BCL in young  and aged, WT and Pgc-1β-/- hearts.  
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Table 5.2 Areas under the curves (AUC) of AP parameter with respect to BCL 

Parameter WT Young WT Aged WT Pgc-1β-/- Young Pgc-1β-/- Aged Pgc-1β-/- Young Aged 

(dV/dt)max 

(mV) 
11765.1 ± 
397.27**** 

12049.22 ± 
631.58 

11518.04 ± 
507.71 

8979.36 ± 
449.38**** 

8945.29 ±  
602.9 

9027.37 ± 
687.57 

10162.52 ± 
487.79 

10300.38 ± 
459.79 

APD90 (ms2) 1702.79 ± 
76.83††† 

1703.66 ± 
120.15 

1702.03 ± 
101.14 

1364.53 ± 
46.13††† 

1396.49 ±  
65.47 

1319.49 ±  
62.44 

1516.95 ±  
64.53 

1515.01 ±  
65.99 

DI90 (ms2) 5292.48 ± 
93.69ǁǁ 

5486.3 ±  
133.32 

5123.95 ± 
123.32 

5300.77 ± 
91.07ǁǁ 

5160.93 ± 
133.86 

5497.81 ± 
101.23 

5288.52 ± 
98.43ǁǁ 

5306.73 ± 
84.09ǁǁ 

AP Latency 1721.39 ± 
57.76‡ 

1638.49 ±  
71.15 

1793.47 ±  
87.15 

1831.90 ± 
51.02‡ 

1890.34 ±  
78.40 

1753.00 ±  
53.72 

1779.43 ± 
55.85‡ 

1774.65 ± 
52.39‡ 

RMP (mV) -5374.7 ±   
96.19 

-5492.91 ± 
159.87 

-5271.93 ± 
113.12 

5226.35 ± 
111.51 

-5075.36 ± 
166.85 

-5439.1 ± 
120.22 

-5239.11 ± 
121.62 

-5353.66 ± 
82.47 

 

Each symbol represents statistical results from ANOVA; **** and ††† denote p < 0.0001 and < 0.001 respectively for independent effects of genotype; ǁǁ and ‡ denote 
P<0.01 and <0.05 for interacting effects of genotype and age respectively.  
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Figure 5.5 Incidence of alternans in AP variables during incremental pacing 

Incidence of alternans out of 100 beats at each BCL in the activation variables of maximal rate of AP 

depolarization, dV/dt max (A) and AP latency (B), and the recovery variables of APD90 (C) and RMP (D) in young 

WT (open circles), young Pgc1β −/− (filled circles), old WT (open triangles) and Pgc1β −/− hearts (filled triangles).   

Number of replicates: young WT, n = 20; young Pgc1β −/−, n = 23; aged WT, n = 22; and aged Pgc1β −/−, n = 22. 

 

There were no significant effects of genotype on incidence of alternans in (dV/dt)max, APD90, 

AP latency or RMP. Ageing independently reduced the incidence of alternans in aged 

compared to young hearts ((dV/dt)max: 24 ± 3 beats vs 39 ± 3 beats ; p = 0.0013; APD90: 37 ± 3 

beats vs. 50 ± 3 beats; p = 0.0051; AP latency: 53 ± 3 beats vs. 68 ± 3 beats; p = 0.00045; RMP:  

30± 2 beats vs. 40 ± 2 beats; p = 0.0011). Age and genotype exerted interacting effects on the 

incidence of AP latency alternans (p = 0.032). Post hoc testing demonstrated less AP latency 

alternans in aged than young Pgc-1β-/- hearts (47 ± 5 beats vs. 71 ± 3 beats, p = 0.00041) and in 

aged Pgc-1β /- than young WT hearts (47 ± 5 beats 64 ± 5 beats, p = 0.036). 

Similarly, the magnitude of (dV/dt)max, APD90 and RMP (though not AP latency) alternans, 

reflected in the areas under the respective curves, was smaller in aged than young hearts (p = 
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0.037, p = 0.038, p = 0.052 and p = 0.066 respectively) (Figure 5.6). There were no effects of 

genotype or interacting effects of genotype and age together on the overall magnitudes of 

oscillation. The total number of episodes of APD90, AP latency or RMP alternans were 

indistinguishable between groups, whilst Pgc-1β-/- hearts showed fewer episodes of (dV/dt)max 

alternans than WT hearts (8.54 ± 0.75 vs 13.37 ±1.47 episodes of alternans; p = 0.0021) and aged 

hearts fewer episodes of (dV/dt)max alternans than young hearts (9.24 ± 1.13 vs 12 ± 1.14 episodes 

of alternans; p = 0.030).  

Maximum durations of individual episodes of (dV/dt)max, AP latency, APD90 or RMP alternans 

were all shorter in aged than young hearts ((dV/dt)max: 44 ± 10 beats vs 139 ± 27 beats, p = 0.0015; 

AP latency: 140 ± 19 beats vs 352 ± 28, p = 2.7×10-8; APD90: 247 ± 49 beats vs 390 ± 60 beats, p = 

0.049; RMP: 64 ± 10 beats vs. 136 ± 20 beats, p = 0.0011). Although they were affected by 

interacting effects of age and genotype (p = 0.036), post hoc testing demonstrated that these 

maximum durations were shorter in both aged Pgc-1β-/- and aged WT hearts than young Pgc-

1β-/- hearts (98 ± 17 beats vs 379 ± 35 beats, p < 0.00001 and 180 ±32 beats vs. 379 ± 35 beats, p = 

0.00029 respectively). Furthermore, aged Pgc-1β-/- hearts also showed shorter maximum 

durations of AP latency alternans than young WT hearts (98 ± 17 beats vs. 311 ± 47 beats, p = 

0.00061). 

Finally, alternans simultaneously involving different AP characteristics could involve 

alternating high/low AP latencies or reduced/increased (dV/dt)max coinciding with or, in the 

more pro-arrhythmic pattern, occurring out of phase with higher/lower APD90 values. 

However, reduced frequencies of simultaneous (dV/dt)max and APD90 alternans occurred in 

aged compared to young hearts (14.91 ± 2.42% vs. 27.74 ± 3.03%; p = 0.00043) and Pgc-1β-/ 

compared to WT hearts (17.77 ± 2.57% vs. 26.59 ± 3.23%, p = 0.024). Reduced and similar 

proportions of out of phase alternans occurred in Pgc-1β-/- hearts compared to WT hearts (7.83 

± 1.39% vx 19.30 ± 4.63%; p = 0.010), and aged compared to young hearts respectively (p = 

0.070).  Similarly, reduced frequencies of simultaneous APD90 and AP latency alternans 

occurred in aged compared to young hearts (25.67 ± 2.48% vs. 45.53 ± 2.43%; p = 0.082 × 10-5) 

which showed fewer beats of the more pro-arrhythmic alternans pattern (132 ± 23 beats vs. 

334 ± 40 beats; p = 0.00017).  
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Figure 5.6 Magnitude of alternans in AP variables during incremental pacing 

Magnitude of alternans as a percentage of the previous beat at each BCL for (dV/dt)max (A), AP latency (B), APD90 

(C) and RMP (D) 

 

5.3.4 Spatiotemporal representations of AP excitation in Pgc-1β-/- and WT hearts 

Previous reports in murine hearts have correlated AP recovery properties at different BCLs 

with the presence of instabilities in the form of alternans. Restitution curves displaying 

dependences of APD90 upon BCL or upon diastolic intervals (DI90) from 90% action potential 

recovery (Sabir et al., 2008c, 2008b) were analysed. They had shown that the onsets of pro-

arrhythmic instabilities were associated with increasing limiting slopes in plots of APD90 

against DI90 with shortening DI90 (Matthews et al., 2012). It was further demonstrated that a 

unity gradient in such plots was associated with waxing patterns of alternans in AP properties 

presaging the onset of arrhythmia. Figure 5.7 demonstrates consistently shorter APD90 in 

Pgc1β-/- hearts, particularly aged Pgc1β-/- hearts, compared to either young or aged WT hearts 

across the full range of DI90. It is also apparent that the limiting slopes in Figure 5.7A are 

similar for all groups, or slightly reduced in Pgc1β-/- hearts compared to WT hearts. Statistical 
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analysis of the respective restitution curves implicated neither genotype (two‐way ANOVA: 

p = 0.12) nor age (p = 0.15) in independently influencing these limiting slopes. These factors 

did interact (p = 0.0001), but this gave reduced slopes in aged Pgc1β−/− atria (Tukey's tests: aged 

Pgc1β −/− versus aged WT, p = 0.001; aged WT versus young WT, p = 0.001), consistent with the 

observed paradoxically decreased incidences and durations of alternans in aged and Pgc1β −/− 

hearts and contrasting with their increased arrhythmogenic properties. 

The electrophysiological abnormalities underlying the arrhythmic phenotypes observed in 

aged Pgc1β-/- hearts could be demonstrated using previously described spatial representations 

of action potential activation. The wavelength (λ) of the action potential travelling wave, 

derived from the product of conduction velocity (given by the inverse of AP latency) and APD 

(given by APD90) was used in these analyses (Matthews et al., 2013). We derived restitution 

plots from the dependence of wavelength upon either BCL (Figure 5.7B) or upon the resting 

wavelength (λ0), which itself is derived from the DI90 and AP latency values (Figure 5.7C) 

(Matthews et al., 2013b; Ning et al., 2016). These were then compared in young and aged WT 

and Pgc1β −/− atria through the different BCLs examined. Areas under plots of λ against BCL 

(Figure 5.7B) then demonstrated that the Pgc1β −/− as opposed to the WT genotype, but not age, 

independently (two‐way ANOVA: p = 0.6 × 10−4 and 0.14, respectively) reduced λ. Additional, 

interacting effects (p = 0.048) through the range of explored BCLs, were reflected in the shorter 

λ values in both young (Tukey's test: p = 0.0001) and aged Pgc1β −/− (Tukey's test: p = 0.0008) 

compared with young WT atria. Likewise, λ values from the experimental groups all declined 

and converged with declining λ0 and with shortening BCL, as previously reported (Matthews 

et al., 2013; Ning et al., 2016) (Figure 5.7C). Nevertheless, λ values in aged Pgc1β −/− hearts 

consistently fell below those in remaining groups (n = 14 points, sign test, p < 0.01). 

Accordingly, areas beneath the curves reflected significantly greater λ at the longer (85-

130 ms; two‐way ANOVA: p = 0.042) but not the shorter (<85 ms) BCLs, resulting from 

interacting effects of age and Pgc1β −/− genotype (Matthews et al., 2013; Ning et al., 2016). 
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Figure 5.7 Restitution curves using APD and AP wavelength 

Restitution plots of APD90 against DI90 (A) and of active AP wavelength (B) and passive wavelengths (C) observed 

at different BCLs  through the incremental pacing procedure in young and old WT  and Pgc-1β -/- hearts. 

5.4 Discussion 

Both age and energetic dysfunction are known risk factors for atrial fibrillation (Go et al., 

2001a; Menezes et al., 2013a). The experimental basis for this effect was studied in young and 

aged peroxisome proliferator activated receptor-γ coactivator-1 (Pgc-1) deficient hearts used 
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in previous biochemical studies of mitochondrial dysfunction. Pgc-1 upregulates mitochondrial 

function and cellular energy homeostasis (Lin et al., 2005; Finck & Kelly, 2006), acting on genes 

participating in fatty acid oxidation and the electron transport chain (Arany et al., 2005). 

Previous studies reported that in common with changes in ageing WT hearts (Froehlich et al., 

1978; Lakatta & Sollott, 2002; Hatch et al., 2011; Yang et al., 2015), isolated Pgc-1β-/- 

cardiomyocytes show compromised energetics, altered ionic current balances and abnormal 

Ca2+ homeostasis (Gurung et al., 2011). The latter are associated with delayed after-

depolarisation events potentially initiating pro-arrhythmic triggering activity. Intact perfused 

murine Pgc-1β-/- hearts show both compromised heart rate responses to adrenergic stimulation 

(Lelliott et al., 2006), and pro-arrhythmic ventricular phenotypes (Gurung et al., 2011).  

Age and metabolic disorders may therefore exert interacting effects upon arrhythmic risk. The 

experiments in this chapter investigated the electrophysiological consequences of the cellular 

changes that accompany ageing and energetic disruption. This is the first study to use cellular 

electrophysiological recordings in intact hearts to determine steady state restitution properties 

of atrial tissue. These measurements were made in cardiomyocytes in situ in normally 

functioning intact Langendorff-perfused hearts as opposed to individual cells following cell 

isolation which are exposed to remarkably unphysiological conditions.  

The experimental approach permitted simultaneous study of atrial arrhythmic properties of 

the whole heart and electrophysiological properties of single atrial cells. Aged Pgc-1β-/- hearts 

demonstrated a significantly greater incidence of arrhythmogenic phenotypes compared to 

all the remaining groups. The stimulation procedures that applied extrasystolic S2 stimuli 

resulted in a higher incidence of atrial tachycardias, while those applying incremental 

increases in steady heart rates resulted in a higher incidence of ectopic atrial events. The latter 

suggests atrial cardiomyocytes have a greater capacity for rapid pacing without producing 

pro-arrhythmic phenomena.  

The association of the arrhythmic phenotype with alterations in the corresponding AP 

characteristics was then examined. Of the measured AP parameters, resting membrane 

potentials remained uniform throughout all experimental groups, consistent with clinical 

findings in atrial fibrillation (Bosch et al., 1999). The statistically most noticeable alterations 

involved compromised AP activation which has been implicated in arrhythmic substrate on 

previous occasions (Huang et al., 2012; King et al., 2013a; Huang, 2017). Thus, Pgc-1β-/- atria 



 

136 
 

displayed decreased (dV/dt)max compared to WT atria, in an absence of statistical effects of age 

or interactions between age and genotype. (dV/dt)max correlates with peak Na+ current, which 

in turn markedly influences AP conduction velocity to extents dependent upon conductivity 

between cells (Hunter et al., 1975; Hondeghem & Katzung, 1977; Usher-Smith et al., 2006; 

Fraser et al., 2011). Although young and aged Pgc-1β-/- atria did not demonstrate significant 

differences in (dV/dt)max, AP latency measurements reflecting conduction velocity were 

influenced by interactions between age and genotype. They therefore account for the more 

marked pro-arrhythmic phenotype in the aged than the young Pgc-1β-/- atria.  

A hypothesis relating reduced (dV/dt)max and increased AP latency to decreased peak Na+ 

current (Hondeghem & Katzung, 1977; Usher-Smith et al., 2006; Fraser et al., 2011) in the 

presence of age-dependent mitochondrial dysfunction in Pgc-1β-/- hearts is compatible with 

altered Na+ channel function in related situations. Disruptions in normal mitochondrial 

activity are thought to be pro-arrhythmic through reduced provision of ATP and/or aberrant 

production of reactive oxygen species (ROS) (Manning et al., 1984; Fosset et al., 1988; Faivre & 

Findlay, 1990). Mitochondrial dysfunction resulting in excess ROS generation or perturbed 

cytosolic NAD+/NADH, has been reported to alter Na+ channel function in metabolically 

stressed cardiomyocytes (Liu et al., 2009), which were rescued by the mitochondrial ROS 

scavenger mitoTEMPO (Liu et al., 2010). In addition, abnormal diastolic Ca2+ transients have 

been reported in Pgc-1β-/- cardiomyocytes (Gurung et al., 2011). The elevated cytosolic [Ca2+] 

could potentially modify sodium channel properties through Ca2+ binding to its C-terminal 

region, either directly at an EF hand motif (Wingo et al., 2004) and indirectly through an IQ 

domain sensitive to calmodulin/calmodulin kinase II (Mori et al., 2000). Acute elevations of 

intracellular [Ca2+] are known to reduce Na+ current density and (dV/dt)max in cardiomyocytes 

in vitro (Casini et al., 2009). The effect is also seen in whole hearts exposed to caffeine which 

is known to increase diastolic Ca2+ release (Zhang et al., 2009b), or hearts carrying the RyR2-

P2328S/P2328S mutations associated with diastolic Ca2+ release (King et al., 2013c; Zhang et al., 

2013; Li et al., 2014; Ning et al., 2016). These situations lead to pro-arrhythmic effects not 

dissimilar to those reported with primary sodium channel Nav1.5 channel deficiencies 

reported on earlier occasions (Martin et al., 2012a). 

The electrophysiological alterations of atrial cardiomyocytes presented in this study led to 

investigations for arrhythmic substrate at the tissue level. However, alternans in AP 
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characteristics, a temporal manifestation of such substrate, did not appear to contribute to 

arrhythmic instability in the atria of aged Pgc-1β-/- hearts. Alternans did occur in atrial AP 

trains in the course of incremental steady state pacing. However, genotype did not influence 

the incidence of atrial alternans, and aged hearts showed decreased incidences of atrial 

alternans compared to young hearts. Pgc-1β-/- and aged hearts showed fewer alternans episodes 

than WT and young atria respectively. Restitution curves of APD90 against diastolic interval 

(DI90) (Nolasco & Dahlen, 1968; Sabir et al., 2008b; Matthews et al., 2010, 2012) demonstrated 

similar or even slightly reduced limiting slopes, hitherto corresponding to an onset of unstable 

alternans in both young, and particularly aged Pgc1β-/- compared to either young or aged WT 

hearts. These findings parallel previous reports in the vagally induced model of canine AF 

that showed paradoxically less alternans than in the non-arrhythmic control state (Lu et al., 

2011) and a flatter restitution slope. This greater capacity for atrial cardiomyocytes for rapid 

pacing without producing pro-arrhythmic alternans phenomena was compatible with the 

observed shorter APDs in Pgc1β-/- atrial cardiomyocytes reflecting more rapid AP recoveries, 

despite the more prolonged activation processes.   

Nevertheless, spatiotemporal properties derived from AP conduction, as opposed to 

restitution, were compatible with the greater pro-arrhythmic phenotype in aged Pgc-1β-/- 

hearts. AP wavelengths (λ) were derived from conduction velocity (reflected by 1/(AP 

latency)) and APD terms (given by APD90) (Matthews et al., 2013). These could be plotted 

against either BCL or resting wavelength, λ0, made up of DI90 and AP latency terms (Matthews 

et al., 2013 a; Ning et al., 2016). Pgc-1β-/-, particularly aged,  Pgc-1β-/- atria gave consistently 

shorter λ at all BCLs and λ0 in direct parallel with pro-arrhythmic phenotype, in agreement 

with the association between short AP wavelengths and AF inducibility and maintenance 

(Hwang et al., 2015) particularly in AF patients (Padeletti et al., 1995). They thus constitute a 

potential mechanism for the atrial arrhythmic changes associated with age and energetic 

compromise reported here. 
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6 Age-dependent remodelling in Pgc-1β-/- 

hearts 

 

6.1 Introduction 

The electrocardiographic studies in chapter 3 demonstrated age-dependent slowing of 

myocardial action potential conduction in Pgc-1β-/- hearts. The  intracellular recording studies 

thereafter in chapters 4 and 5 corroborated these findings and highlighted age-dependent 

atrial arrhythmic phenotypes associated with the AP conduction abnormalities in intact 

Langendorff perfused Pgc-1β-/- hearts, agreeing with previous reports on their pro-arrhythmic 

ventricular phenotypes (Gurung et al., 2011). The slowed conduction in Pgc-1β-/- atria was 

attributable to reduced maximum action potential upstroke rates, (dV/dt)max, relative to those 

in WT. (dV/dt)max has been correlated with both peak Na+ currents (INa), responsible for the 

rising, activation phase of the propagating AP and its conduction velocity in both skeletal and 

cardiac muscle cells (Usher-Smith et al., 2006; Fraser et al., 2011). Such young and aged, WT 

and Pgc-1β-/- atria contrastingly showed indistinguishable resting potentials, as maintained by 

outward K+ currents. 

These associations suggest hypotheses attributing pro-arrhythmic changes in Pgc-1β-/- atria to 

compromised Na+ channel (NaV1.5) function reducing voltage-dependent Na+ currents. 

Previous evidence at the cellular as opposed to tissue levels had suggested that in addition to 

compromised ATP provision, disrupted cardiomyocyte mitochondrial activity increases 

reactive oxygen species (ROS) production (Fosset et al., 1988; Faivre & Findlay, 1990) and 

perturbs cytosolic NAD+/NADH, both implicated in INa reductions (Liu et al., 2009), which can 

be rescued by the mitochondrial ROS scavenger mitoTEMPO (Liu et al., 2010). In addition, 

recent studies reported altered Ca2+ homeostasis manifest as abnormal diastolic Ca2+ transients 

in Pgc-1β-/- cardiomyocytes (Gurung et al., 2011). In addition to driving pro-arrhythmic 

triggering delayed after-depolarisations, such cytosolic [Ca2+] elevations could potentially 

modify NaV1.5 properties through either direct or indirect Ca2+ actions at its C-terminal region 

(Mori et al., 2000; Wingo et al., 2004) or calmodulin kinase II-phosphorylatable sites in its DI-
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II linker (Mori et al., 2000; Wagner et al., 2011; Grandi & Herren, 2014).  Slowed AP conduction 

with reduced (dV/dt)max similarly associated with reduced INa have been reported in other pro-

arrhythmic murine, RyR2-P2328S/P2328S, cardiomyocyte models similarly showing 

abnormal Ca2+ handling (Zhang et al., 2013). This was attributed to both reduced expression 

(Ning et al., 2016b) and acute effects of altered [Ca2+]i upon. NaV1.5 function (King et al., 2013c, 

2013b).  

The following experiments explored whether the observed pro-arrhythmic atrial phenotype 

in Pgc-1β-/- hearts is similarly accompanied by altered INa. The loose patch technique employed 

for voltage-clamping in intact, young and aged, WT and Pgc-1β-/-, atrial cardiomyocytes 

apposes an electrode containing extracellular solution against intact cardiomyocyte surface 

membrane without accessing intracellular space. It therefore measures ion currents under 

conditions of unperturbed extracellular [Na+] and intracellular Ca2+ homeostasis (Almers et al., 

1983b; Stühmer et al., 1983; King et al., 2013b). This contrasts with the cardiomyocyte isolation 

and intracellular Ca2+ chelation required with conventional whole-cell patch clamp techniques 

(Lei et al., 2005; Gurung et al., 2011; Martin et al., 2012b). Recent studies involving reversible 

manipulations of extracellular [Na+] had identified early inward currents in response to step 

depolarisations measured under loose patch with Na+ currents responsible for AP conduction 

and the maximum upstroke rate, (dV/dt)max, of the cardiac action potential (King et al., 2013b). 

The present experiments assessed activation, inactivation, and recovery from inactivation of 

depolarising inward currents attributable to Nav1.5, comparing these with corresponding 

activation and rectification properties of repolarising outward K+ currents.  

Whereas (dV/dt)max primarily reflects discharge of the cardiomyocyte membrane capacitance 

by sodium current, AP conduction velocity is further influenced by increases or decreases in 

tissue resistance and capacitance (Jeevaratnam et al., 2011; King et al., 2013a). Previous reports 

had associated such conduction changes with progressive myocardial fibrosis with age in 

various animal (Eghbali et al., 1989; Orlandi et al., 2004; Lin et al., 2008; Jeevaratnam et al., 2012, 

2016) and human studies (Gazoti Debessa et al., 2001). Histological assessment from animal 

atrial tissue and from human samples indicate progressive fibrosis associated with AF 

(Wijffels et al., 1995; Morillo et al., 1995; Frustaci et al., 1997). WT and Pgc-1β-/- atria were 

therefore also evaluated for evidence of additional influence of fibrosis on the differences in 

AP propagation noted in the earlier experiments. 
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6.2 Specific methods 

6.2.1 Loose patch clamp procedure 

Loose patch clamping was performed as described in chapter 2. A total of 25 patches from 

male and 21 patches from female WT mice were studied, and likewise 24 patches from male 

and 17 patches from female Pgc-1β-/- hearts, but found no significant differences (P>0.05) 

between maximum Na+ currents in preparations from male and female hearts. We accordingly 

grouped such data together when examining effects of the remaining factors of age and 

genotype. 

Once established all patches were subject to the complete set of pulse procedures bearing on 

either inward or outward current activation, which could be accomplished within 30 s making 

effects arising from prolonged changes in the patch such as bleb formation unlikely (Milton 

& Caldwell, 1990). Patch consistency was monitored through repeat calibrations of leakage 

current, series resistance and pipette capacitance (Stühmer et al., 1983). The loose patch clamp 

controls the voltage at the extracellular surface of the membrane within the seal in an intact 

cardiomyocyte. Accordingly, positive and negative voltage steps applied through the pipette 

respectively hyperpolarise and depolarise the membrane potential relative to the 

cardiomyocyte resting membrane potential (RMP). Voltage steps are therefore described in 

terms of the alterations they produce relative to the RMP, following the convention in earlier 

studies that introduced this technique (Almers et al., 1983a, 1983b).  

 

6.2.2 Statistical analysis 

Construction of current–voltage curves used values of current densities (pA/μm2) obtained by 

normalizing the observed currents (nA) to the cross sectional area (πa2) of the pipette tip 

radius a. Values in inactivation curves plotted observed maximum currents normalized to the 

maximum currents obtained at the most polarised holding potentials. Curve‐fitting 

procedures of both plots against membrane potential used the curve fitting algorithm in the 

open source R programming language. Statistical analysis of results applied two‐way analysis 

of variance (ANOVA) to the experimental groups of young and aged, WT and Pgc‐1β−/− 

preparations to test for significant differences arising from independent or interacting effects 
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of age and/or genotype on fitted parameters. The presence of such differences was then 

explored by pairwise tests for differences using Tukey’s honestly significant difference 

testing. 

 

6.3 Results 

Patches obtained following seal formation were subject to pulse protocols that could 

completely characterise the properties of either voltage dependent inward or outward 

currents, each within 30 s. This made the likelihood of effects due to rundown minimal. In any 

case, measured currents remained consistent, when protocols were repeated over longer time 

intervals (~15-20 min) in a number of control experiments. Finally, any given pulse protocol 

was always completed without altering the patch seal. This made differences between results 

attributable to changes in the patch over prolonged intervals such as bleb formation unlikely 

(Milton & Caldwell, 1990). As adopted in previous reports utilizing this technique, membrane 

potentials are expressed as voltage excursions relative to the RMP in the protocols illustrated 

in Figures 6.1-5 (Almers et al., 1983a, 1983b). Thus the loose patch configuration differs from 

that involved in intracellular microelectrode or conventional cell-attached tight patch 

recording in leaving the intracellular space unperturbed. Instead, it applies a patch electrode 

on, forming a seal with, the external face of an intact surface membrane of the cell, initially at 

its resting membrane potential (RMP). It then applies voltage steps on the extracellular surface 

of the resulting membrane patch within the seal. Accordingly positive and negative voltage 

steps applied through the pipette respectively hyperpolarise and depolarise the membrane 

potential from its RMP.  

 

6.3.1 Currents reflecting atrial inward Na+ current activation  

Figure 6.1 illustrates results obtained from the isolated atrial preparations. These explored 

activation properties of inward Na+ currents in young (panels A, C; E, G) and aged (B, D, F, 

H) wild-type (WT; A, B, E, F) and Pgc-1β-/- atria (C, D, G, H). Results are shown both at slow 

(A-D) and rapid (E-H) timebases demonstrating full decays in and regions of the trace 

displaying the detailed kinetics of the currents respectively. The pulse protocols that 

investigated the voltage dependence of Na+ current activation (panel I) first held the cells at 
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their RMP for 5 ms from the beginning of the recording period to establish an initial steady 

resting baseline. This was followed by a 5-ms duration prepulse to a hyperpolarised voltage, 

V0 = (RMP – 40 mV), that was expected to fall within a voltage range in which both Na+ channel 

activation and inactivation would be minimal. This thus both removed any residual Na+ 

current inactivation and standardised the initial activation state of the Na+ channels within 

the patch. This was followed by imposition of the depolarising test steps which became 

successively larger through the 13 successive recorded sweeps. They were made to voltages 

successively incremented between V1 = RMP to (RMP + 120) mV in +10 mV increments. The 

voltage steps extended to the end of the record length which was of total duration 80 ms.  The 

currents were corrected for residual leakage by a P/4 protocol to give the family of records 

reflecting the voltage dependence of Na+ channel activation in which inward currents are 

represented as downward, negative deflections.  

Traces typically began with a consistent small upward deflection in response to the -40 mV 

prepulse (A-D). The subsequent voltage steps to level V1 yielded a family of inward currents 

characteristic of Na+ currents, initially increasing with time to a peak value that increased with 

more positive V1. This was followed by a decay reflecting channel inactivation whose extent 

and kinetics was similarly determined by the voltage V1 (E-H). However, although young and 

aged atria showed similar current magnitudes, Pgc-1β-/- atria showed consistently reduced Na+ 

current amplitudes compared to WT.  
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Figure 6.1 Activation properties shown by voltage-dependent inward Na+ currents 

Typical records in young (A, C, E, G) and aged (B, D, F, H) wild-type (WT; A, B, E, F) and Pgc-1β-/- atria (C, D, G, H), at slow (A-D) and fast (E-G) time bases in response to 

(I) activation pulse protocols beginning from the resting membrane potential (RMP). A prepulse (duration 5 ms) was made 5 ms into the recording period to (RMP - 40 mV). This 

was followed by successively larger depolarising test voltage steps increased in +10 mV increments up to (RMP + 120 mV). (J) Peak currents, INaMax, plotted against voltage 

excursion for young (circles) and aged (triangles), wild-type (clear symbols) and Pgc-1β-/- atria (filled symbols).  
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6.3.2 Currents reflecting atrial Na+ current inactivation  

In contrast, Figure 6.2 shows records from protocols exploring atrial Na+ current inactivation 

properties in young (panels A, C; E, G) and aged (B, D, F, H), wild-type (WT; A, B, E, F) and 

Pgc-1β-/- atria (C, D, G, H). As previously, cells were first held at the RMP for 5 ms to establish 

an initial steady resting baseline. This was followed by application of a 5-ms duration prepulse 

to V0 = (RMP - 40) mV. This thus removed any residual Na+ current inactivation and 

standardised the initial activation state of Na+ channels within the patch, prior to the voltage 

steps that followed. This was followed by depolarising steps to conditioning voltages that 

were varied with the 13 successive sweeps between V1 = RMP to (RMP + 120 mV) in +10 mV 

increments. This conditioning step would elicit a voltage-dependent Na+ current activation as 

similarly achieved in the previous protocols that had been used to study Na+ channel 

activation properties. However, maintaining the imposed depolarisation then produced a Na+ 

current decline reflecting a Na+ channel inactivation whose extent would be dependent upon 

the prepulse voltage excursion V1. Following a 5 ms interval following imposition of the 

conditioning step, a test step was applied to a fixed voltage V2 = (RMP + 100 mV) and this 

extended to the end of the record length (panel I). This yielded a second set of current 

responses (Figure 6.2A-H) that gave peak Na+ currents corresponding to a constant level of 

channel activation, that were however modified by the prior channel inactivation brought 

about by the conditioning voltage excursion to V1. This accordingly gave families of Na+ 

currents that decreased in amplitude with the previous inactivation brought about by the 

increasing V1. Thus, only channels spared inactivation by the prepulse to V1 would contribute 

currents in response to the step to the fixed voltage V2. Again, young and aged atria showed 

similar current magnitudes, but Pgc-1β-/- atria showed consistently reduced Na+ current 

amplitudes compared to WT. 

 

6.3.3 Voltage dependences of atrial Na+ current activation  

Figures 6.1J and 6.2J respectively illustrate voltage-dependences of atrial Na+ current 

activation and inactivation for young (circles) and aged (triangles), WT (open symbols) and 

Pgc-1β-/- atria, plotting peak Na+ current (means ± standard error of the mean (SEM)) against 

voltage excursion to V1. The quantifications of current-voltage and inactivation curves 

expressed the observed currents (nA) as current densities (pA/μm2) using the formula:  
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𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 1000 𝑥 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
(𝜋 𝑥 𝑝𝑖𝑝𝑒𝑡𝑡𝑒 𝑟𝑎𝑑𝑖𝑢𝑠2) 

 

In activation plots, peak inward Na+ current increased with the amplitudes of the depolarising 

steps exceeding +10 mV in size to a maximum value at a voltage excursion around +80 mV. 

They then decreased with further depolarisation as expected with approach of V1 towards the 

Na+ current reversal potential. Peak Na+ currents, I = INaMax, reflecting activation properties 

were empirically related to the activating voltage V = V1 by a Boltzmann function: I = Imax/{1 + 

exp(V - V*/k)} where Imax is maximum current, V* is voltage at half-maximal current, and k is 

the steepness factor (Chadda et al., 2017).  

Young and aged Pgc-1β-/- then showed similar maximum values of peak atrial inward currents 

(-16.97 ± 0.88 (n = 20) and -18.07 ± 0.89 (n = 21) pA/μm2 respectively) (Figure 6.1J). These were 

reduced compared to values in both young (-23.93 ± 1.52 (n = 24) pA/μm2) and aged WT (-

21.53 ± 0.84 (n = 22) pA/μm2). Two-way ANOVA demonstrated differences attributable to 

independent effects of genotype (F = 22.28; p = 0.95 × 10-5), but not age  (F= 0.46; p = 0.50), or 

interacting effects of age and genotype (F = 2.48; p = 0.12). Post hoc Tukey tests demonstrated 

significant differences between young WT and young Pgc-1β-/- (p = 0.00016), young WT and 

aged Pgc-1β-/- (p = 0.0016) and aged WT and young Pgc-1β-/- atria (p = 0.027).  

In contrast, V* values were similar amongst young (49.22 ± 1.92 (n = 24) mV) and aged WT 

(46.04 ± 1.65 (n = 22) mV), and young (48.94 ± 2.92 (n = 20) mV) and aged Pgc-1β-/- atria (46.31 

± 1.95 (n = 21) mV). Thus two-way ANOVA demonstrated no independent effects of either 

genotype (F = 0.003; p = 0.959) or age (F = 1.90; p = 0.172), nor interacting effects of age and 

genotype (F = 0.016; p = 0.898).  Values of k were also similar amongst young (6.21 ± 0.41 (n = 

24) mV) and aged WT (7.18 ± 0.45 (n = 22) mV), and young (7.49 ± 0.42 (n = 20) mV) and aged 

Pgc-1β-/- (6.85 ± 0.44 (n = 21) mV). The two-way ANOVA demonstrated no independent effects 

of either genotype (F = 1.33; p = 0.25) or age (F = 0.24; p = 0.63), nor interacting effects of age 

and genotype (F = 3.51; p = 0.065). 
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Figure 6.2 Investigation of inactivation properties shown by voltage-dependent inward Na+ currents. 

Typical records in young (A, C, E, G) and aged (B, D, F, H) wild-type (WT; A, B, E, F) and Pgc-1β-/- atria (C, D, G, H), at slow (A-D) and fast (E-G) time bases in response to 

inactivation pulse protocols applied from the resting membrane potential (RMP). (I) In the pulse protocol, a prepulse (duration 5 ms) was made 5 ms into the recording period to 

(RMP - 40 mV). This was followed by successively larger depolarising conditioning voltage steps increased in +10 mV increments up to (RMP + 120 mV) of 5 ms duration. Finally 

the voltage was stepped to a constant test level of (RMP + 100 mV), and the resulting Na+ currents quantified to investigate the inactivation brought about by the preceding 

conditioning step.  (J) Peak currents INaMax plotted against voltage excursion for the conditioning voltage step in young (circles) and aged (triangles), wild-type (clear symbols) and 

Pgc-1β-/- atria (filled symbols).  
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6.3.4 Voltage dependences of atrial Na+ current inactivation  

In the inactivation plots, peak inward currents observed in response to depolarising steps to 

a constant voltage decreased with more positive prepulse voltages V1, reflecting inactivation 

increasing with increasing degrees of prior depolarization (Figure 6.2J). The peak currents 

reflecting inactivation properties, normalised to their maximum value observed with fully 

polarised prepulse voltages, were similarly empirically related to the inactivating voltage V = 

V1 by a Boltzmann function: I = Imax {1 - [1/{1 + exp(V - V*/k)]}. These gave similar values for V* 

amongst young (54.75 ± 0.98 (n = 24) mV) and aged WT (51.44 ± 1.14 (n = 22) mV), and young 

(52.98 ± 1.24 (n = 20) mV) and aged Pgc-1β-/- atria (51.94 ± 1.71 (n = 21) mV). Two way ANOVA 

demonstrated no independent effects of either genotype (F= 0.32; p = 0.57) or age (F=3.09; p = 

0.082), nor interacting effects of age and genotype (F = 0.79; p = 0.38). Similar k values occurred 

amongst young (10.62 ± 0.35 (n = 24) mV) and aged WT (11.15 ± 0.35 (n = 22) mV), and young 

(11.61 ± 0.25 (n = 20) mV) and aged Pgc-1β-/- atria (10.65 ± 0.60 (n = 21) mV). Two-way ANOVA 

demonstrated no independent effects of either genotype (F= 0.35; p = 0.55) or age (F=0.18; p = 

0.67), nor interacting effects of age and genotype (F = 3.33; p = 0.072). 

Together these findings demonstrated effects of genotype but not age upon maximum peak 

Na+ currents Imax, but not voltages at half maximal current V* or steepness factors, k, of 

Boltzmann functions describing either their activation or inactivation properties.  

 

6.3.5 Time courses of atrial Na+ channel recovery from inactivation 

Figure 6.3(A-D) show typical currents obtained from young (A, C) and aged (B, C), WT (A, B) 

and Pgc-1β-/- atria (C, D) reflecting time courses of Na+ current recovery from inactivation 

following restoration of the baseline voltage after an initial conditioning depolarising step to 

a fixed voltage. The pulse protocols (Figure 6.3F)  held the membrane voltages at the RMP for 

1 ms from the beginning of the recording period, then imposed a hyperpolarising prepulse to 

voltage V0 = (RMP - 40 mV) for 4 ms to establish consistent baseline levels of Na+ current 

inactivation as in the previous protocols. A 5 ms-duration P1 conditioning step between V0 

and V1 = (RMP + 80 mV) then elicited a Na+ current activation followed by its inactivation 

decay. Subsequent depolarising 5 ms-duration  P2 steps to voltage V3 = (RMP  +  80 mV) were 

imposed after different time intervals, ∆T that were successively increased between 2 and 75 

ms, in 2 ms increments for the first 5 sweeps and in 5 ms increments for the remainder of the 



 

148 
 

16 successive sweeps making up the protocol. The P2 steps elicited a Na+ current activation 

whose peak amplitude reflected the Na+ current recovery from inactivation with time, when 

normalized to corresponding values in the P1 step. Fits of time constants, τ, to the exponential 

function I = Imax(1 - exp(-∆T/τ)) describing this recovery (Figure 6.3G) gave similar values of τ 

in young (3.44 ± 0.39 (n = 24) ms) and aged WT (3.70 ± 0.30 (n = 22) ms), and young (3.88 ± 0.31 

(n = 20) ms) and aged Pgc-1β-/- (3.64 ± 0.30 (n = 21) ms) that did not reflect any independent 

effects of either genotype (F = 0.334; p = 0.565) or age (F = 0.007; p = 0.932), or of interacting 

effects of age and genotype (F = 0.561; p = 0.456) with two-way ANOVA. 

 

6.3.6 Voltage dependences of atrial outward K+ current activation 

These findings contrast with the similar voltage dependences and rectification properties of 

voltage-dependent total outward, K+, current amongst the experimental groups studied. The 

present experiments thus investigated such outward currents in murine atrial preparations 

using the loose-patch technique for the first time. Figure 6.4 displays typical currents obtained 

from pulse procedures comparing voltage dependences of overall K+ current activation in 

young (Figure 6.4A, C, E, G) and aged (Figure 6.4B, D, F, H), WT (Figure 6.4A, B, E, F) and 

Pgc-1β-/- (Figure 6.4B, D, F, H) atria at slow (A-D) sweep speeds encompassing the entire record 

as well as rapid timebases encompassing the current tail reflecting K+ channel activation at the 

end of the preceding depolarising step (E-H).  

The pulse procedure (Panel I) involved an initial imposition of a voltage step from the RMP 

to (RMP – 20 mV) between 1-10 ms from the beginning of the recording period to establish an 

initial steady resting state of channels within the patch. This was followed by a 10 ms duration 

test step made to a series of test voltages between (RMP – 60 mV) to (RMP + 170 mV) to explore 

the voltage dependence of K+ channel activation. The latter was incremented in 10 mV steps 

through the 24 sweeps that were investigated. These activation steps resulted in an initial 

inward Na+ channel activation, followed by its inactivation. However, this was succeeded in 

some traces by the gradual development of a small outward current reflecting activation of a 

rectified voltage dependent K+ current whose extent was dependent upon the voltage of the 

test step. This was then followed by a hyperpolarising step of duration 10 ms to a fixed post 
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Figure 6.3 Currents illustrating Na+ channel recovery from inactivation 

Records in young (A, C) and aged (B, D) wild-type (WT; A, B) and Pgc-1β-/- atria (C, D). The pulse protocols (F) first held membrane voltages at RMP for 1 ms from the beginning 

of the recording period, then imposed a hyperpolarising prepulse to (RMP - 40) mV prior to the 5 ms duration P1 conditioning step to (RMP + 80 mV). The subsequent 5 ms 

duration test steps to (RMP + 80 mV) were imposed after different time intervals, ∆T, The latter were successively increased between 2 and 75 ms, in 2 ms increments for the first 

5 sweeps and in 5 ms increments for the remainder of the 16 successive sweeps making up the protocol. (G) Plots of the recovery of peak INa against time intervening between 

termination of the conditioning and imposition of the test pulse. 
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Figure 6.4 K+ current activation properties reflected in tail currents. 

Records from young (A, C, E, G) and aged (B, D, F, H) wild-type (WT; A, B, E, F) and Pgc-1β-/- atria (C, D, G, H), at slow (A-D) and fast  (E-G) time bases. Pulse procedures 

(I) first applied a voltage step between 1-10 ms following the beginning of the recording period from RMP to (RMP – 20 mV). The following 10 ms duration test steps were made 

to voltages between (RMP – 60 mV) to (RMP + 170 mV) incremented in 10 mV steps through the 24 sweeps investigated. The final 10 ms duration hyperpolarising step to (RMP 

– 120 mV) that preceded final restoration of the membrane potential to (RMP - 20 mV) gave tail currents reflecting (J) the preceding K+ current activation, plotted against voltage 

excursion in the young (circles) and aged (triangles) WT (open symbols) and Pgc-1β-/- atria (filled symbols).  
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pulse voltage of (RMP – 120 mV) that would thereby apply a fixed driving voltage upon any 

K+ current flow through channels opened by the preceding test step. In the resulting family of 

K+ tail currents, their maximum magnitudes would therefore be determined by the 

instantaneous conductance reflecting the preceding K+ current activation. The pulse protocol 

ended with final restoration of the membrane potential to (RMP - 20 mV). 

Figure 6.4J plots typical activation current-voltage curves for the young (circles) and aged 

(triangles) WT (open symbols) and Pgc-1β-/- (filled symbols) atrial preparations investigated. 

They demonstrated close to superimposable plots enclosing areas with the abscissa in which 

there were neither independent (F = 0.39; P =0.54 and F = 0.079; P =0.79 respectively) nor 

interacting (F = 1.75; P =0.20) effects of either genotype or age.    

 

6.3.7 Rectification properties of outward K+ currents in loose patched atrial 
preparations 

The corresponding K+ current rectification properties were investigated by a pulse procedure 

similarly imposing an initial voltage step between 1-10 ms into the recording period from 

RMP to (RMP – 20 mV).  However, the succeeding 10 ms duration test step was then made to 

a fixed voltage of (RMP + 140 mV) to achieve a specific level of K+ current activation. This was 

followed by a further voltage step to a range of voltages between (RMP-120 mV) to (RMP + 50 

mV) in order to derive the instantaneous current-voltage relationship reflecting the 

rectification properties of the activated channel (Figure 6.5I). Figure 6.5(A-H) shows typical 

tail currents suggesting little or no difference in instantaneous current amplitudes between 

experimental groups. 

Figure 6.5J plots typical instantaneous current-voltage curves for young (circles) and aged 

(triangles) WT (open symbols) and Pgc-1β-/- atria (filled symbols) demonstrating close to 

superimposable plots enclosing areas with the abscissa in which there were neither 

independent (F = 0.043; P = 0.84 and F = 0.97; P = 0.33 respectively) nor interacting (F = 0.005; 

P = 0.95) effects of either genotype or age. 
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Figure 6.5 K+ current rectification properties reflected in tail currents 

Typical records from young (A, C, E, G) and aged (B, D, F, H) wild-type (WT; A, B, E, F) and Pgc-1β-/- atria (C, D, G, H), at slow (A-D) and fast (E-G) time bases. The pulse 

procedure (I) first applied a voltage step between 1-10 ms after commencement of the recording period from RMP to (RMP – 20 mV). A following 10 ms duration test step was 

then made to a fixed voltage of (RMP + 140 mV). The following step to a varying voltages between (RMP - 120 mV) to (RMP + 50 mV) provided tail currents which could be 

plotted to obtain (J) instantaneous current-voltage relationships reflecting rectification properties of the activated channel in the young (circles) and aged (triangles) WT (open 

symbols) and Pgc-1β-/- atria (filled symbols). The protocol ended by restoration of the membrane potential to (RMP – 20 mV). 
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6.3.8 Increased fibrotic change with Pgc-1β ablation 

The influence of ageing and genotype upon the relationship between rates of depolarisation 

and latency prompted histological assessment for fibrotic change. Fibrosis is known to impede 

AP conduction through the myocardium through decoupling of myocytes, resulting in 

disrupted gap junction functioning and consequent increases in resistivity. In addition, 

fibroblast fusion with myocytes increases  membrane capacitance. Histological assessment 

was conducted blindly by two investigators independently and in the ICC, a measure if 

consistency between their findings, was 0.88 suggesting a high degree of consistency in the 

results. 

Figure 6.6(a) represent typical histological sections from young and aged WT and Pgc-1β-/- 

hearts, the quantification of fibrotic change is shown in figure 6.6(b). Genotype (F = 33.02, p < 

0.001) and age (F = 4.75, p < 0.05) independently increases levels of fibrosis in the atria, but 

there was no evidence of interaction between the two. These findings complement the changes 

in latency noted in the earlier electrophysiological studies. The fibrotic change witnessed in 

WT aged hearts compared to WT young hearts explains the increased latency seen in this 

group. Young Pgc-1β-/- hearts show similar levels of fibrosis to aged WT hearts further 

supporting the suggestion of premature ageing in this group. 
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Figure 6.6 Structural remodelling in Pgc-1β-/- hearts 

(a) Representative images of histological samples used for morphological assessment of fibrotic change. 

(b) The degree of fibrotic change was assessed as the proportion of morphometric squares covering tissue 

that demonstrated evidence of fibrosis as detected by picrosirius red staining.  The numbers of hearts 

examined: young WT (n = 6), aged WT (n = 6), young Pgc-1β-/- (n = 6), aged Pgc-1β-/- (n = 6).  Symbols 

denoted pairs of points showing significant differences from post hoc Tukey testing, where Single, 

double and triple symbols denote p < 0.05, p < 0.01 and p < 0.001 respectively. 
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6.4 Discussion 

Increasing evidence implicates metabolic, particularly mitochondrial, dysfunction, a 

recognised feature of both ageing (Sun et al., 2016) and age-related metabolic disorders (Patti 

& Corvera, 2010; Bournat & Brown, 2010; Dikalov & Ungvari, 2013), in the pathogenesis of 

atrial fibrillation (Menezes et al., 2013b), in both animal models (Morillo et al., 1995; Ausma et 

al., 1997b) and clinical situations (Lin et al., 2003; Ad et al., 2005; Bukowska et al., 2008). The 

present studies examined accompanying alterations in electrophysiological function at the 

cellular and tissue level were prompted by results in chapters 3 - 5 describing 

electrophysiological pro-arrhythmic atrial phenotypes at the tissue level in murine Pgc-1β-/- 

hearts consequently deficient in this key mitochondrial regulator involved in the tricarboxylic 

acid cycle, fatty acid β–oxidation and oxidative phosphorylation (Arany et al., 2005; Lin et al., 

2005; Finck & Kelly, 2006). The pro-arrhythmic phenotypes progressed with age to extents 

accentuated by the Pgc-1β-/- as opposed to the WT genotype. These were accompanied by 

slowed AP conduction and compromised maximum action potential (AP) depolarization 

rates, (dV/dt)max despite normal effective refractory periods and baseline action potential 

durations. These features together could potentially furnish arrhythmic substrate. Reduced 

atrial conduction velocities have previously been reported in early clinical AF (Zheng et al., 

2016) and to contribute to substrate for its long term maintenance (Park et al., 2009; Miyamoto 

et al., 2009).  

At the tissue level, AP conduction depends upon local circuit currents generated by the rate 

of action potential depolarization (dV/dt)max whose spread are in turn modified by membrane 

capacitance and cytosolic resistance, but for which previous studies correlated (dV/dt)max with 

peak Na+ currents (INa) (Jeevaratnam et al., 2011; King et al., 2013a). The recent studies 

accordingly suggested a hypothesis implicating the Pgc-1β-/- as opposed to WT genotype, 

independently of age, in Na+ current reductions, but implicating both genotype and age in 

fibrotic changes that would additionally compromise local circuit currents propagating the 

resulting action potential activity. The consequent reductions in conduction velocity would 

then result in atrial pro-arrhythmic effects, as previously suggested for some canine AF 

models (Gaspo et al., 1997a). SCN5A gene variants leading to reduced cardiac Na+ channel 
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function have similarly been implicated in increased AF risks both in clinical situations (Olson 

et al., 2005; Darbar et al., 2008) and experimental studies in genetically modified Scn5a+/- 

murine hearts (Sabir et al., 2008a; Kalin et al., 2010; Martin et al., 2011a, 2011b; Huang, 2017b).  

The present experiments applied a loose patch clamp method, which detects transmembrane 

current flowing into an extracellular electrode apposed to the membrane surface of 

cardiomyocytes within intact atrial tissue preparations (King et al., 2013b; Salvage et al., 2015; 

Ning et al., 2016). It thus avoids cytosolic disruptions that would follow the cell isolation and 

intracellular Ca2+ chelation required by conventional whole-cell patch-clamp recordings (Lei 

et al., 2005; Martin et al., 2012b). It also allowed employment of in vivo rather than reduced 

extracellular [Na+] levels thereby sparing Na+-Ca2+ exchange processes. Ion currents were thus 

studied in atrial preparations under conditions similar to those employed in the earlier 

chapters, and their associated changes in conduction velocity and (dV/dt)max. Finally, previous 

reports had identified early inward currents obtained with this technique with Na+ currents 

mediating action potential (AP) conduction and upstroke (King et al., 2013b). The loose patch 

clamp technique has thus not been employed to study other inward, such as Ca2+, currents in 

detail. However, this may reflect the nature of the skeletal muscle and murine atrial 

preparations studied to date. These are associated with small Ca2+ relative to Na+ inward 

current contributions following activation by depolarising steps (Huang, 2017b). 

The loose patch clamp experiments demonstrated a voltage dependent activation of inward 

currents consisting of increases to a peak current followed by an inactivation decay giving a 

time course and a dependence upon the amplitude of progressively larger depolarising steps 

characteristic of Na+ currents in all the, young and aged, WT and Pgc-1β-/- atria studied. 

However, the presence of a Pgc-1β-/- genotype specifically resulted in a reduction in the peak 

Na+ current, without either independent or interacting influences of age. The remaining Na+ 

current characteristics in the form of either voltage at half maximum current, V*, or the 

steepness, k, of the Na+ current activation characteristics derived from the current-voltage 

curves were unaffected by either age or genotype. Imposition of steps to a fixed depolarised 

voltage level from a range of prepulse voltages similarly elicited currents rising to a peak 

followed by decay. The peaks now declined in amplitude with depolarising prepulse levels, 
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reflecting the resulting voltage-dependent inactivation they would produce. However, 

inactivation curves constructed from plotting such peak currents against prepulse level 

yielded similar inactivation functions, as reflected in the similar V* or k values derived from 

voltage dependences of inactivation obtained in all four experimental groups. Finally, the 

specific differences in maximum Na+ current took place against indistinguishable outward 

repolarising, K+, current characteristics between groups. These first investigated voltage 

dependences of K+ current activation in response to pulse procedures employing a range of 

test steps, followed by hyperpolarising steps to a fixed voltage in order to assess the current 

tails reflecting the preceding activation. Conversely K+ current rectification properties were 

investigated imposing fixed voltage step to produce a constant level of activation. 

Accordingly, the succeeding steps to varying voltages then permitted open channel 

rectification properties to be explored. Both experiments yielded similar atrial currents from 

all four experimental groups, which accordingly yielded closely concordant activation and 

instantaneous current-voltage curves.  

Together these findings thus demonstrate a possible mechanism for the genotypically-related 

variations in arrhythmic phenotype, with their accompanying reductions in AP conduction 

velocity and peak AP upstroke rates (dV/dt)max in Pgc-1β-/- atria. They attribute these to 

reductions in maximum Na+ currents against a constant background of outward K+ current 

characteristics. They fulfil predictions at the level of intact atria, from previous studies at the 

cellular level reporting that metabolic stress potentially alters Na+ currents. This could take 

place through effects on Na+ channel activity of increased production of reactive oxygen 

species (ROS) or compromised NAD+/NADH ratios, effects potentially rescued by the 

mitochondrial ROS scavenger mitoTEMPO and NAD+ restoration respectively (Liu et al., 2010; 

Gomes et al., 2013). Pgc-1β-/- cardiomyocytes also showed evidence for abnormal Ca2+ 

homeostasis (Gurung et al., 2011), in common with murine RyR2-P2328S atrial myocytes 

(Goddard et al., 2008), which similarly showed parallel AP conduction velocity and Na+ 

current reductions (King et al., 2013b). These were attributed to both chronically downregulated 

Nav1.5 expression (King et al., 2013b; Ning et al., 2016) as well as acute (King et al., 2013c, 2013b; 

Zhang et al., 2013) and potentially reversible loss of Nav1.5 function (Knollmann et al., 2001a; 

Salvage et al., 2015, 2017). The recent findings associating Pgc-1β-/- with increased rather than 
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decreased SCN5A expression would be consistent with the latter mechanism involving direct 

effects of altered cytosolic [Ca2+] upon Nav1.5 function (Tan et al., 2002; Aiba et al., 2010; 

Ashpole et al., 2012). Such interactions could involve Ca2+-binding at the Na+ channel C-

terminal region, either directly at an EF hand motif (Wingo et al., 2004) or indirectly through 

an IQ domain sensitive to calmodulin/calmodulin kinase II (Mori et al., 2000). There are also 

multiple phosphorylatable sites in the Na+ channel DI-II linker region including serines 516 

and 571, and threonine 594 targeted by calmodulin kinase II (CaMKII) (Mori et al., 2000; 

Wagner et al., 2011; Grandi & Herren, 2014). Certainly previous studies have reported that 

elevations or sequestration of intracellular [Ca2+] respectively reduced or restored Na+ currents 

and (dV/dt)max in WT cardiomyocytes in vitro (Casini et al., 2009). 

Myocardial fibrosis is associated with increased tissue capacitance and resistance, 

contributing to conduction slowing independent of the influence of (dV/dt)max and may 

explain the conduction properties described in the present study. Fibrotic change is thought 

to be a key element of the remodelling seen in AF (Frustaci et al., 1997; Kostin et al., 2002). 

Progressive fibrosis is a common feature of cardiac ageing in animal (Eghbali et al., 1989; 

Orlandi et al., 2004; Lin et al., 2008; Jeevaratnam et al., 2012) and human (Gazoti Debessa et al., 

2001) studies. Age-dependent fibrosis was similarly recorded in these experiments, in both 

WT and Pgc-1β-/- hearts, and mitochondrial dysfunction through Pgc-1β ablation was 

associated with a further additive effect on the degree of fibrosis. Aged Pgc-1β-/- hearts 

therefore displayed the greatest degree of fibrosis whereas young WT hearts had the least and 

AP latency times reported in chapter 4 correlated with the observed degrees of fibrosis in the 

respective groups. 

The fibrosis mediated reductions in cardiac conduction reported here could potentially occur 

through increased coupling of fibroblasts to cardiomyocytes through Cx43 and/or Cx45, 

thereby increasing membrane capacitance (Camelliti et al., 2004; van Veen et al., 2005; Chilton 

et al., 2007). More direct disruption of gap junctions has also been reported consequently 

increasing tissue resistance, further slowing conduction (Xie et al., 2009). Interestingly, mice 

lacking the mitochondrial sirtuin SIRT3 display augmented mitochondrial ROS production 

and enhanced cardiac fibrosis (Hafner et al., 2010). Upregulated antioxidant capacity through 
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a mitochondrial specific overexpression of catalase protected against features of cardiac 

ageing including myocardial fibrosis, highlighting mechanisms of fibrosis secondary to 

abnormal mitochondrial activity and putative rescue strategies (Dai et al., 2009). Furthermore, 

transforming growth factor-β1 (TGF-β1) is thought to have a significant role in age-related 

myocardial fibrosis (Brooks & Conrad, 2000; Rosenkranz et al., 2002). Mice over expressing 

TGF-β1 develop pronounced atrial fibrosis, have reduced atrial conduction velocities and 

greater inducibility to atrial tachyarrhythmias including AF (Verheule et al., 2014). Serum 

levels of TGF-β1 are increased in individuals with AF compared to control (Lin et al., 2015). 

TGF-β1 activity is also enhanced by oxidative stress (Barcellos-Hoff & Dix, 1996; Sullivan et al., 

2008). 

Together, suggest that the arrhythmic substrate in Pgc-1β-/- hearts develops through 

maladaptive alterations in AP conduction with ionic changes at the cellular level and 

structural changes at the tissue level. While these results do not conclusively attribute the 

similar changes seen associated with human age-related atrial arrhythmias, however support 

a causative role for mitochondrial dysfunction in the adverse remodeling events that define 

their pathogenesis.  
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7 Summary & General Discussion 

 

7.1 Background 

Atrial fibrillation (AF) affects 1 – 3% of the population in the developed world (Majeed et al., 

2001; DeWilde et al., 2006; Friberg & Bergfeldt, 2013) and is associated with significant 

morbidity and mortality, including a five-fold increase in the risk of stroke (Wolf et al., 1978) 

and a significant increase in the risk of all-cause mortality (Benjamin et al., 1998; Friberg et al., 

2007; Chamberlain et al., 2015).  Its prevalence appears to great extent to be a function of age, 

affecting 0.1 % under the age of 55 and in excess of 10 % above the age of 85 (Go et al., 2001b).  

Recent studies forecast a substantial increase in the incidence and prevalence of AF in the 

coming decades, with potentially 9 million cases in the US (Miyasaka et al., 2006) and 18 

million in Europe by 2060 (Krijthe et al., 2013), underpinning its recognition as a global 

epidemic. 

Despite much progress in our understanding of its pathophysiology, mechanisms underlying 

the initiation and perpetuation of AF remain incompletely explained.  It is however clear that 

AF is a dynamic process, which at its inception is characterised by fleeting episodes of the 

abnormal rhythm triggered by focal ectopic activity in the pulmonary vein sleeves 

(Haïssaguerre et al., 1998).  With time, these episodes become more protracted and eventually 

permanent through progressive electrical and structural remodelling, ultimately producing a 

tissue substrate conducive to arrhythmia maintenance.  Treatment in these latter stages is far 

less efficacious, highlighting the need to develop therapies targeted to the upstream processes. 

There is also growing appreciation for a role of metabolic, and in particular mitochondrial, 

dysfunction in the pathogenesis of AF.  Mitochondrial dysfunction is a recognised feature of 

a number of the constituents of metabolic syndrome including obesity (Bournat & Brown, 

2010), insulin resistance (Patti & Corvera, 2010) and hypertension (Dikalov & Ungvari, 2013), 

as well as ageing (Sun et al., 2016), all of which are recognised risk factors for AF (Menezes et 

al., 2013).  Abnormal mitochondrial structure and function have been reported in animal 
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models of AF (Morillo et al., 1995; Ausma et al., 1997b).  Moreover, analysis of cardiomyocytes 

from human patients with AF demonstrate greater degrees of DNA damage (Tsuboi et al., 

2001; Lin et al., 2003), structural abnormalities (Bukowska et al., 2008) and evidence of 

impaired function (Lin et al., 2003; Ad et al., 2005).  Whether the observed mitochondrial 

abnormalities are a cause or consequence of AF, or the mechanisms through which these 

changes occur remains unclear. 

Disruptions in normal mitochondrial activity are known to be pro-arrhythmic, through 

restricted provisions of ATP and/or aberrant production of ROS, and therefore a potential 

upstream mediator of arrhythmogenesis (Manning et al., 1984; Fosset et al., 1988; Faivre & 

Findlay, 1990).  Much of this work has however been in the context of acute, profound 

mitochondrial impairment during ischaemia-reperfusion and focussed on mechanisms of 

ventricular arrhythmias.  Interestingly, Chen & colleagues recently demonstrated increased 

ectopic activity, burst firing and shortening of the APD in pulmonary veins and left atria of 

rabbit hearts subjected to ischaemia-reperfusion (Lin et al., 2012).  Sustained arrhythmias are 

generally thought to occur through maladaptive changes in the electrophysiological 

properties of a tissue, promoting the formation of re-entrant circuits.  Such would arise 

through slowed conduction of the depolarising wavefront and/or shortening of the effective 

refractory period (ERP).  Indeed, time-dependent alterations in both atrial conduction (Gaspo 

et al., 1997b; Zheng et al., 2016) and repolarisation (Daoud et al., 1996; Gaspo et al., 1997a; Bosch 

et al., 1999) properties have been noted in human AF.  Reductions in the inward sodium 

currents (INa), a major determinant of conduction velocity (King et al., 2013a), have been 

reported secondary to excess mitochondrial ROS production (Liu et al., 2010).  Gap junction 

activity is also known to be similarly sensitive to mitochondrial function (Sovari et al., 2013; Li 

et al., 2016) and may also contribute to conduction slowing in this context.  Mitochondrial 

impairment and cardiac oxidative stress in general are also recognised to reduce the action 

potential duration and ERP (Lesnefsky et al., 1991; Chen et al., 2007; Kurokawa et al., 2011), 

both of which favour re-entry and arrhythmia. 

The electrophysiological sequelae of chronic mitochondrial dysfunction have however been 

challenging to study, confounded by the early and often terminal development of contractile 
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dysfunction but now appears feasible in murine models lacking members of the peroxisome 

proliferator activated receptor-γ coactivator-1 (PGC-1) family of transcriptional coactivators.  

The PGC-1 family include PGC-1α and PGC-1β, which though found with a reasonable 

degree of ubiquity, are preferentially expressed in tissues with high oxidative capacity such 

as the heart, brain and skeletal muscle (Riehle & Abel, 2012) and act as key regulators of 

mitochondrial mass and function (Lin et al., 2005; Finck & Kelly, 2006).  In cardiac cells, the 

PGC-1 coactivators interact with NRF-1, ERR-α and PPAR-α, leading to increased 

mitochondrial biogenesis (Vega et al., 2000; Huss et al., 2004).  They also act to upregulate 

expression of nuclear and/or mitochondrial encoded mitochondrial proteins involved in the 

tricarboxylic acid cycle, fatty acid β–oxidation and components of oxidative phosphorylation 

complex (Arany et al., 2005). PGC-1 protein expression itself is increased by upstream signals 

such as those arising from cold exposure and aerobic exercise, thereby serving as a link 

between cellular energy stores and external stimuli ultimately coordinating mitochondrial 

activity with cellular energy demands (Sonoda et al., 2007).  Interestingly, their expression 

levels are found to be reduced in obesity, insulin resistance, type II diabetes mellitus and 

ageing, correlating with the mitochondrial dysfunction that is seen in these conditions and 

implicating it in the their pathogenesis (Mootha et al., 2003; Leone & Kelly, 2011; Dillon et al., 

2012). 

Murine hearts lacking either Pgc-1α or Pgc-1β do not develop cardiac failure in the non-

stressed state.  Homozygous deficiency of Pgc-1α is associated with a mild cardiac phenotype 

at baseline with no overt contractile dysfunction, but does result in cardiac failure following 

transverse aortic banding (Arany et al., 2005).  Similarly, genetic ablation of Pgc-1β does not 

appear to be detrimental to cardiac function at baseline, but these hearts do display a blunted 

rate response following adrenergic challenge alluding to possible electrophysiological 

alterations in this setting (Lelliott et al., 2006).  Indeed, Langendorff-perfused murine hearts 

lacking Pgc-1β displayed features consistent with increased vulnerability to ventricular 

arrhythmia.  These hearts demonstrate greater episodes of action potential alternans, known 

to presage arrhythmia, and more frequent episodes of ventricular tachycardia during 

programmed electrical stimulation (Gurung et al., 2011).  Isolated cardiomyocytes from these 

hearts showed altered patterns of ion channel expression, spontaneous diastolic Ca2+ 
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transients, and pro-arrhythmic after-depolarisation events.  The electrophysiological 

alterations and any associated change in arrhythmic propensity in the atria of these hearts 

have hitherto not been investigated. 

A potential role for mitochondrial dysfunction in atrial arrhythmogenesis was investigated in 

the present work, utilising a murine model with homozygous deficiency of Pgc-1β.  As the 

downstream effects of chronic mitochondrial deficits appear to accumulate with age, atrial 

electrophysiological parameters were evaluated in young and old Pgc-1β-/- animals and 

compared with age-matched WT mice. The experimental strategy employed a systematic 

approach beginning with baseline assessments in the in vivo setting, preserving all extra-

cardiac and neurological inputs that may influence electrical activity of the heart, succeeded 

by ex vivo isolated heart preparations and finally tissue level studies. 

 

7.2 Electrocardiographic features of adverse remodelling 

The initial experiments sought to assess surface ECG markers of altered electrophysiological 

properties and arrhythmic tendency (chapter 3). Young (12-16 weeks) and aged (>52 weeks), 

WT and Pgc-1β-/- mice were anaesthetised and used for ECG recordings. Time intervals 

separating successive ECG deflections were analysed for differences between groups before 

and after β1-adrenergic (intraperitoneal dobutamine 3 mg/kg) challenge. Heart rates before 

dobutamine challenge were indistinguishable between groups. P wave duration, taken as a 

surrogate for overall atrial conduction, also did not significantly differ between WT and Pgc-

1β-/- mice of any age. Slowed conduction increases the probability of re-entry and is thought 

to play a role in providing a substrate for re-entry and thus sustaining AF. In patients with a 

history of chronic AF, prolongation of the P wave duration was evident following successful 

DC cardioversion from AF to sinus rhythm (Kumagai et al., 1991). However this prolongation 

was only observed during premature atrial beats but not during normal sinus beats. 

Additionally, in a separate study similarly assessing surface ECG parameters of atrial 

conduction, P wave duration did not differ significantly from those of control patients 

however there was greater heterogeneity in conduction properties across the atria in those 
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with AF (Holmqvist et al., 2011). Thus the absence of a difference in P wave parameters 

between WT and Pgc-1β-/- mice during sinus rhythm is consistent with findings from human 

AF studies and does not discount an underlying atrial arrhythmic substrate.  

Small or regional differences in atrial electrophysiological properties may be difficult to 

discern from surface ECGs and more readily observed in ventricular tissues owing to the large 

muscle mass and longer period of excitation. Analysis of indices of ventricular excitation and 

recovery revealed electrocardiographic features consistent with the existence of a pro-

arrhythmic substrate in Pgc-1β-/- mice. Firstly, ventricular activation was prolonged in these 

mice consistent with slowed conduction. Additionally, Pgc-1β-/- mice had shorter ventricular 

repolarisation intervals, likely attributable to altered K+ conductance properties, ultimately 

resulting in a shortened QTc interval, which is known to be associated with increased 

arrhythmic risk. 

The Pgc-1β-/- genotype was also associated with compromised nodal function in response to 

adrenergic challenge, manifest as an impaired heart rate response suggesting a defect at the 

level of the sino-atrial node, and a negative dromotropic response suggesting an 

atrioventricular conduction defect.  Incidence of the latter was most pronounced in aged Pgc-

1β-/- mice, suggesting progressive deterioration in AVN function in Pgc-1β-/- hearts with age. 

SAN dysfunction is largely a disease of ageing, the incidence of which increases exponentially 

with advancing age (Kusumoto et al., 2002) and has classically been attributed to fibrosis and 

structural remodelling of the atria (LEV, 1964; Davies & Pomerance, 1972). Recent evidence 

has challenged this perception with mounting evidence suggesting age-related alterations in 

ionic currents may be responsible (Alings & Bouman, 1993; Jones et al., 2007; Yanni et al., 2010; 

Tellez et al., 2011). Interestingly, fibrosis and ion channel remodelling may not be mutually 

exclusive mechanisms. Mice heterozygous for SCN5A display age-related fibrosis in the 

region of the SAN (Hao et al., 2011) as well as more globally within the myocardium both in 

the atria and the ventricles  (van Veen et al., 2005). Electrical and structural remodelling may 

therefore synergistically contribute to the conduction system disease observed and portend 

towards remodelling processes that also influence susceptibility to atrial tachy-arrhythmias. 
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7.3 Conduction slowing and arrhythmic tendency in Pgc-1β-/- hearts 

In chapter 4 the impact of ageing and mitochondrial insufficiency upon atrial 

arrhythmogenesis was investigated in a Langendorff-perfused preparation during regular 

pacing and in response to PES. Hearts were paced from the right atrium and the rhythm 

recorded using volume conductor ECGs giving information of the electrical activity at the 

organ level and sharp microelectrode recordings in the LA providing high fidelity 

representation of AP parameters at the cellular level. The Pgc-1β-/- genotype was associated 

with an arrhythmic atrial phenotype that progressed with age.  

The simultaneous whole heart and cellular recordings enabled discrimination of local 

triggered activity from that of generalised atrial excitation. No triggered activity was observed 

in any experimental group and nor was there any evidence of spontaneous arrhythmias 

during intrinsic rhythms. Ectopic activity, predominantly arising from the PVs is thought to 

define the early stages of AF (Haïssaguerre et al., 1998) and the absence of such phenomena in 

the Pgc-1β-/- model may reflect alternate mechanisms for genesis. Differences in the PV 

anatomy, especially pertaining to the architecture of the muscular sleeves, between murine 

and human hearts must be borne in mind. Additionally, the ex vivo preparation may have 

disrupted the integrity of the PV connections into the LA. Moreover, the lack of observed 

triggered activity in those left atrial cells impaled with sharp electrodes does not exclude 

triggered activity in other cells. 

Whereas, imposition of premature extrasystoles during PES resulted in similar numbers of 

isolated ectopic beats and salvos (couplets) in WT and Pgc-1β-/- hearts, both young and aged, 

significantly greater number of arrhythmic episodes were observed in Pgc-1β-/- hearts, and this 

was most marked in aged Pgc-1β-/- hearts. These findings were compatible with mitochondrial 

impairment contributing to the generation of an atrial substrate supporting sustained 

arrhythmia, which progressed with age. Young and aged Pgc-1β-/- hearts showed evidence of 

slowed AP conduction at the cellular level, through deficits in maximum rates of AP 

depolarization (dV/dt)max, and at the tissue level through prolonged AP latencies. APD90 and 
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atrial ERPs were indistinguishable between groups at baseline; however APD90 was 

significantly shorter in Pgc-1β-/- hearts at shorter stimulation intervals during PES. Electrical 

properties of individual APs triggering arrhythmia were nevertheless similar between WT 

and Pgc-1β-/- hearts. 

These findings associate ageing and its accompanying mitochondrial deficits with the 

generation of a pro-arrhythmic atrial substrate, through slowed AP conduction and altered 

repolarisation characteristics. The absence of significant attenuation in APD and atrial ERPs 

at baseline in Pgc-1β-/- hearts, is at odds with the alterations seen in human atria following 

chronic AF. Shortening of the APD and ERP have been noted in various animal models of AF 

and human studies (Morillo et al., 1995; Daoud et al., 1996; Elvan et al., 1996; Goette et al., 1996). 

The divergence between the findings in this work and that of previous AF studies may 

represent mechanisms distinct from mitochondrial dysfunction generating the altered 

repolarisation properties in AF. It would seem from those earlier studies that the changes in 

repolarisation play a greater role in the initiation of AF whereas conduction slowing may be 

more relevant to the maintenance of AF in its chronic form and, in concert with the findings 

of the current work, mitochondrial impairment is linked to the latter (Morillo et al., 1995; 

Wijffels et al., 1995; Stiles et al., 2009). The absence of differences in APD may also be a 

reflection of species-dependent differences in AP properties. In rodents, high Ito densities 

dominate all phases of repolarization and account for the significantly abbreviated APs, and 

absence of a clear plateau phase (Gussak et al., 2000). These differences in ionic currents 

responsible for repolarisation and overall AP characteristics may underlie some of the 

variation in findings from those reported in alternate animal models. 

 

7.4 APD restitution and propensity to atrial arrhythmias 

To further explore the electrophysiological mechanisms responsible for the arrhythmic 

propensity associated with mitochondrial impairment, atrial restitution properties were 

assessed in Pgc-1β-/- hearts (chapter 5). APD restitution describes the phenomenon that APD 

shortens physiologically to preserve a sufficient DI in order to maintain blood flow during 
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rapid heart rates. The APD restitution hypothesis purports that when the slope of the APD 

restitution curve, in which APD is plotted against the preceding DI, exceeds unity AP 

alternans and wavebreak may ensue, leading to initiation and maintenance of fibrillation. It 

is thought that such temporal or dynamic heterogeneity is important pathophysiology of 

ventricular fibrillation, with previous studies reporting this to be an important feature of 

malignant ventricular arrhythmias resulting from LQTS and BrS (Moss & Kass, 2005; Sabir et 

al., 2008b; Matthews et al., 2010). However its relevance to AF has been far less well studied 

though a similar role in human AF has been postulated (Kim et al., 2002; Narayan et al., 2008; 

Krummen et al., 2012). 

In the current experiments the incidence of alternans or steepness of the restitution curves did 

not correlate with arrhythmic tendency. On the contrary, episodes of alternans in a variety of 

electrophysiological parameters was generally reduced in aged hearts, either WT or Pgc-1β-/-, 

compared to young hearts. Ageing was also associated with flattening of the APD restitution 

curve, with this being most pronounced in the aged Pgc-1β-/- hearts – the most arrhythmic. In 

contrast, arrhythmogenecity correlated best with AP wavelength parameters as reported in 

the previous chapter where hearts were evaluated during regular pacing and S1S2 protocols.  

Ro and colleagues constructed restitution curves for patients with chronic and paroxysmal 

AF, and compared these to controls individuals (Kim et al., 2002). They reported paroxysmal 

AF was related to steeply sloped APD restitution kinetics, where chronic AF was associated 

with the greatest degree of spatiotemporal heterogeneity in electrophysiological parameters. 

APD alternans has also been shown to herald the degeneration of typical AFL to AF (Narayan 

et al., 2002). However not all previous studies have reported such a positive correlation 

between the restitution profile and atrial arrhythmia. In a canine model, AF was difficult to 

induce despite the presence of steep APD restitution gradients in the majority of hearts 

(Burashnikov & Antzelevitch, 2005). Upon application of acetylcholine AF was far more easily 

induced, despite flattening of the restitution curves. Here the inducibility and persistence of 

AF appeared to reflect altered intracellular Ca2+ dynamics. In a more recent human study of 

atrial restitution in AF, steep APD restitution curves were reported in the LA adjacent to the 

PVs and correlated with inducibility of AF in response to rapid pacing in patients with 
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paroxysmal AF (Narayan et al., 2008). However, restitution gradients were less steep in 

patients with a history of persistent AF and had no bearing on AF inducibility. In the latter 

group, the mechanism for AF induction appeared more related to marked conduction 

slowing. APD restitution may therefore promote wavebreak and reentry in the early stages of 

AF but have less of a role in established AF where significant electrical and structural 

remodelling has occurred, forming a heterogeneous atrial substrate with slowed conduction 

and altered anisotropy, favouring reentry. The authors suggested that in circumstances of 

marked increase in the latency of atrial activation, the electrical properties do not follow the 

classical features of restitution. Such would be consistent with the findings of the current work 

where significant alteration in in the underlying atrial substrate was evident. Indeed dynamic 

slowing of ventricular conduction promotes fibrillation in ventricles in the presence of rather 

flat restitution curves (Banville & Gray, 2002). In canine atria, conduction slowing from 

cellular uncoupling increased AF vulnerability independent APD dynamics or changes in 

restitution properties (Ohara et al., 2002). 

 

7.5 Electrical and structural remodelling in Pgc-1β-/- hearts 

The experiments in chapters 3 – 5 demonstrated increased propensity to atrial arrhythmias in 

Pgc-1β-/- hearts that was principally a consequence of slowed conduction, evidenced by 

significant reductions in (dV/dt)max, and corresponding increases in AP latency. The 

experiments in chapter 6 therefore sought to explore the mechanisms underlying conduction 

slowing associated with mitochondrial dysfunction. Previous experimental studies have 

suggested a range of mechanisms through which changes in AP propagation leading to 

increased arrhythmic tendency can take place. They have been attributed to alterations in Na+ 

channel, gap junction function, and/or the consequences of fibrotic change (Mendez et al., 

1970; Spach et al., 1982; Firouzi et al., 2004; Remme et al., 2006). These could potentially alter 

the major determinants of conduction velocity: transmembrane current, cell-to-cell coupling 

and cell capacitance. 

A novel loose patch clamp techniques was utilised to measure transmembrane currents in 



 
 

 
169 

 
 

intact young and aged, WT and Pgc-1β−/−, atrial cardiomyocyte preparations preserving their 

in vivo extracellular and intracellular conditions. Depolarising steps activated typical voltage-

dependent activating and inactivating inward (Na+) currents whose amplitude increased or 

decreased with the amplitudes of the activating, or preceding inactivating, steps. Maximum 

values of peak Na+ current were independently influenced by genotype but not age or 

interacting effects of genotype and age. Both young and aged Pgc-1β−/− atria had significantly 

lower INa than that of WT preparations, correlating to the differences in (dV/dt)max values 

obtained from sharp electrode measurements. Neither genotype, nor age, whether 

independently or interactively, influenced voltages at half-maximal current, or steepness 

factors, for current activation and inactivation, or time constants for recovery from 

inactivation following repolarisation. In contrast, delayed outward (K+) currents showed 

similar activation and rectification properties through all experimental groups, mirroring the 

observed absence of differences in repolarization properties between experimental groups. 

These findings directly demonstrate and implicate reduced Na+ as a mechanism for slowed 

conduction causing atrial arrhythmogenicity in Pgc-1β−/− hearts. Previous studies had failed to 

identify any changes in INa or its channel expression in AF (Bosch et al., 1999; Brundel et al., 

2001b) however more recent patch clamp studies in atrial myocytes suggest such reductions 

in Nav function (Sossalla et al., 2010). Mitochondrial dysfunction therefore represents means 

of adverse electrical remodelling predisposing to reentry and arrhythmogenesis. 

Chronic AF is also associated with structural remodelling with progressive fibrosis. 

Mitochondrial impairment has been suggested to promote such fibrotic through fibroblast 

activation and production of transforming growth factor-β (TGF-β) (Friedrichs et al., 2012). 

This was assessed in Pgc-1β−/− atria through morphometric analysis using picrosirius red 

staining. While WT and Pgc-1β-/- hearts demonstrated age-dependent fibrotic change, Pgc-1β 

deficiency was associated with accelerated fibrosis: young Pgc-1β-/- hearts displayed similar 

levels of fibrosis as aged WT, and aged Pgc-1β-/- hearts displayed the greatest fibrotic change.  

Disruption of normal myocardium with insulating connective tissue gives rise to conduction 

delay through non-uniform dispersion of current. The resulting current to load mismatches 

are seen in fibrotic myocardium (Spach et al., 1988; de Bakker et al., 1993) and have been shown 
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to impede AP propagation (Mendez et al., 1970; Spach et al., 1982). In canine models of fibrosis 

deposition of insulating extra-cellular matrix results in  decoupling of myocytes leading to the 

interruption of both longitudinal and transverse cardiomyocyte-bundle continuity, producing 

zigzag conduction patterns (Spach & Boineau, 1997; Burstein et al., 2009). Thus in addition to 

electrical remodelling, mitochondrial impairment promotes structural remodelling akin to 

that witnessed in human AF and recognised to participate in the production of a substrate 

favouring AF persistence. 

 

7.6 Limitations 

Animal models of clinical conditions have proven invaluable in investigations of pathogenic 

mechanisms of human disease and the development of putative therapies. Findings 

nonetheless cannot be directly translated to clinical conditions owing to species specific 

differences in physiology, and in turn pathophysiology, and inevitable limitations in 

experimental techniques. 

As outlined in chapter 1, murine models have been instrumental in informing our 

understanding of arrhythmogenesis. However the murine cardiac AP varies from its human 

counterpart in number of way. The murine basal heart rate far exceeds that of humans 

reflecting difference in body size, and can accommodate a manifold increase in this upon 

exertion. This is reflected at the cellular level in a far more brisk action potential, lacking the 

pronounced plateau phase seen in larger mammals. In rodents, high Ito densities dominate all 

phases of repolarization and account for the significantly abbreviated APs, and absence of a 

clear plateau phase (Gussak et al., 2000). However many of the processes remain conserved,, 

especially those relating to depolarisation and the mouse heart therefore remains a useful 

model for the study of both AP generation and propagation in atrial and ventricular 

arrhythmogenesis (Papadatos et al., 2002). The absence of significant repolarisation differences 

between the WT and Pgc-1β-/- hearts is at variance to that seen in human studies of AF. The 

mechanisms underpinning this may be distinct from a metabolic imbalance, explaining the 

observations in this thesis. Alternatively, it may reflect specific difference in AP 

characteristics. 
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The murine model is particularly amenable to the study of genetic abnormalities however 

such an approach has caveats. It is possible that the targeted introduction of a mutation may 

lead to inadvertent alterations in the expression of other genes. The Pgc-1β knockout is known 

to alter the expression of a host of nuclear and mitochondrial-encoded genes involved in 

metabolism (Lelliott et al., 2006). A more extensive study of the overall genetic profile has to 

date not been performed and it is possible that such unintended effects, if present, may alter 

the arrhythmic tendency of the animal. Species specific differences in the phenotypic impact 

of certain genetic abnormalities is also recognised. For example mutations in the RyR2 are 

associated in humans with sudden cardiac death at a young age. The same mutation in a 

murine model a far less malignant and requires far more provocation to induce arrhythmia. 

As mentioned in the relevant discussion sections, the long term cardiac electrophysiological 

evaluation of murine Pgc-1β knockout mice has not been performed and based upon the 

current findings, would be of use. Thus knowledge of its tendency to spontaneous arrhythmia 

is lacking. In reality, this does not detract from the current findings but may better inform us 

the long term consequences of chronic mitochondrial impairment. The murine surface ECG 

complex is clearly different to that of humans and the relative contributions of activation and 

repolarisation to the various waveform deflections remains unclear. The electrocardiographic 

evaluation of activation and repolarisation in this thesis was however extensively exhaustive 

to mitigate for the various possible permutations. 

Arrhythmogenesis is understandably complex and influenced by factors outside of the heart. 

The isolated heart studies performed remove the heart from such extra-cardiac factors and is 

therefore a limitation. However, the preparations were identical for WT and Pgc-1β-/- hearts 

thus controlling for this. Moreover, in controlling for these factors, the cardiac consequences 

of mitochondrial dysfunction was obtained, clear of the confounds of such non-cardiac 

factors. The recently available means of organ or even chamber specific genetic alterations 

raises the possibility for more focussed studies in the future. The AP latency measurements 

utilised in the current work was taken as the time from stimulus delivery to the AP peak 

deflection. There may have been a degree of inter-heart variability in positioning of the 

stimulating and recording electrodes. However, electrode position was controlled by two 

precision micromanipulators and electrode position was consistent between hearts. 
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Additionally, a large number of recordings were taken to provide a more accurate overall 

representation of conduction and latency. 

With these caveats borne in mind, the work presented in this thesis provides important 

insights into the role of mitochondrial impairment in atrial arrhythmias. 

 

7.7 Future studies 

The findings of this thesis form the foundation for several lines of further study. 

Mitochondrial impairment through homozygous deficiency of the transcriptional co-activator 

Pgc-1β-/- is associated with the development of an atrial substrate conducive to arrhythmia, 

predominantly through progressive electrical and structural remodelling causing slowed 

conduction. While no evidence of triggered activity that would initiate arrhythmia was 

observed, experimental limitations mean these cannot be conclusively discounted. Firstly, the 

experimental groups included aged animals to account for progressive abnormalities that are 

thought to develop with normal ageing and account for the age-related incidence of atrial 

arrhythmias (Go et al., 2001). Mice >52 weeks were used for ageing studies and demonstrated 

such age-related changes in arrhythmic parameters. However the average life expectancy of 

mice is over twice this and it is possible that further pro-arrhythmic phenomena including 

triggering events would develop over longer-term evaluation, as seen in humans. Secondly, 

the in vivo recordings were over a relatively brief period and conceivably insufficient to 

capture such events. Additionally, the ex vivo preparations may have disrupted the vascular 

connections required for such events to be conducted into the atrial body. More 

comprehensive evaluation would require long term in vivo evaluation of cardiac excitation 

through implantable telemeters. This would provide means to potentially capture 

isolated/regional triggered events and also spontaneous arrhythmic activity. The findings of 

this thesis provide the necessary justification for such a protracted and resource intensive 

undertaking. 

The conduction slowing observed in Pgc-1β-/- hearts was, in part, secondary to reductions in 

INa. Multiple pathways can potentially modulate Na+ channel function and therefore INa, 
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including PKA mediated phosphorylation of NaV1.5 at serine 525 and 528 (Murphy et al., 

1996), G protein dependent pathways (Matsuda et al., 1992), or phosphorylation at serine 1505 

by protein kinase C (Qu et al., 1996). Interestingly intracellular Ca2+ may itself exert direct 

regulatory effects on Na+ channel function. Indeed the C-terminal of Na+ channel constructs 

have been shown to contain two Ca2+ sensitive regions - a calmodulin binding, IQ, domain 

and a Ca2+ binding, EF-hand, motif (Wingo et al., 2004; Chagot et al., 2009). Elevated [Ca2+]i 

both in cardiomyocytes in vitro (Casini et al., 2009) and at the whole heart level following 

diastolic Ca2+ leaks result in reductions in INa density and (dV/dt)max (Zhang et al., 2009).  

Additionally mutations in RyR2 or proteins that interact with it give rise to diastolic Ca2+ 

release and are associated with reductions in INa (King et al., 2013b; Li et al., 2014; Glukhov et 

al., 2015).  

The Pgc-1β-/- dependent reductions in INa observed here may therefore potentially represent 

downstream effects of dysregulated Ca2+ handling. Beyond their role in ATP generation for 

ion homeostasis, cardiomyocyte mitochondria are spatially located in close proximity to the 

SR and are intimately involved in Ca2+ handling (García-Pérez et al., 2008). Additionally 

isolated ventricular myocytes from Pgc-1β-/- hearts show spontaneous diastolic Ca2+ transients. 

Thus confocal microscopy of atrial cardiomyocytes and optical mapping studies of whole 

isolated atrial preparations would provide insights into possible Ca2+ handling abnormalities 

contributing to the arrhythmic substrate in Pgc-1β-/- atria.  

Evidence of diastolic Ca2+ leak in these studies would also raise possibility of rescue 

manoeuvres. Recent studies have suggested that flecainide exerts anti-arrhythmic effects in 

human CPVT (Watanabe et al., 2009; van der Werf et al., 2011). Flecainide reduced ventricular 

bigeminy and VT, ECG features associated with human CPVT, in murine CSQ2-/- hearts. This 

anti-arrhythmic mechanism of flecainide in CPVT is thought to be distinct from its known 

inhibition of Na+ channel activity, and  arises through reduced RyR2-mediated diastolic Ca2+ 

release and consequent triggering events (Watanabe et al., 2009; Hilliard et al., 2010; Hwang et 

al., 2011). Interestingly Ning et al (2016) reported paradoxical increases in INa in response to 

flecainide treatment in a murine model of CPVT (Ning et al., 2016). Here the reductions in 

diastolic Ca2+ transients prevent Ca2+ induced alterations in NaV activity thereby restoring INa, 
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thus favourably maintaining AP wavelength and reducing the likelihood of reentry. 

Consistent with this, activation of cardiomyocyte RyR2 channels by exchange protein directly 

activated by cAMP (Epac) was recently shown to result in reductions in INa in murine atrial 

and ventricular tissue (Valli et al., 2018). In this study, RyR2 inhibition with dantrolene 

restored the Epac mediated reductions in INa to baseline levels . Thus inhibition of abnormal 

diastolic Ca2+ transients of Pgc-1β-/- hearts may restore some of the features of electrical 

remodeling observed and potentially reduce incidence of arrhythmia in this group. This could 

be attempted with dantrolene as reported in the Epac study, and further with flecainide, 

which if successful, would represent a novel anti-AF mode of action for flecainide. 

Several lines of study implicate oxidative stress in the pathogenesis of AF and mitochondria 

are a significant source of ROS in cardiac cells. It is likely that dysregulated production of ROS 

secondary to mitochondrial insufficiency play a role in the cardiac sequelae of Pgc-1β 

insufficiency. High-resolution respirometry would therefore be useful in comparisons of 

mitochondrial oxygen consumption. A number of studies have investigated the utility of anti-

oxidant therapy in the prevention of AF, particularly in the post-operative setting (Baker et 

al., 2009; Rodrigo et al., 2013; Shi et al., 2018). Pre-treating patients undergoing cardiac surgery 

with ascorbate attenuated features of adverse atrial electrical remodelling and reduced the 

incidence of AF post-operatively (Carnes et al., 2001). However not all studies have replicated 

such promising results with similar interventions (Hemilä & Suonsyrjä, 2017). ROS are 

generally highly reactive molecules, and their intracellular location highly specialised. Anti-

oxidants may therefore not be adequate in neutralizing ROS molecules before they exert their 

effect, or sufficiently reach the relevant sub-cellular compartment. The mitochondrial-targeted 

anti-oxidant MitoTempo was effective in reducing adverse remodeling, arrhythmic episodes 

and sudden death in a murine model of ventricular arrhythmias (Sovari et al., 2013). Use of 

anti-oxidants, particularly the novel mitochondrial-targeted agents, initially in the ex-vivo 

and subsequently the in vivo system, may aid in evaluating the relative contribution of 

oxidative stress in the features observed and potential for mitigating the deleterious 

consequences. 

 It is clear from the experimental results reported in this thesis, Pgc-1β deficiency is associated 
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with wide ranging alterations in atrial electrophysiological properties. The cardiac AP is 

determined by the properties of a host of ionic channels and transporters, all of which are 

possible downstream effectors. Genetic analysis would represent an efficient means of 

characterising the electrophysiological alterations responsible and identifying potential 

targets for intervention. These experiments would therefore provide more comprehensive 

assessment of the atrial electrophysiological phenotype and the underlying mechanisms 

responsible for this. 

 

7.8 Conclusion 

Mitochondrial dysfunction is evident in age-related atrial arrhythmias such as atrial 

fibrillation, atrial flutter and atrial tachycardias. It is also a feature of conditions that are 

known to predispose to these arrhythmias. The work in this thesis implicates mitochondrial 

dysfunction in the pathogenesis of these atrial rhythm disturbances rather than being a 

bystander phenomenon. The Pgc-1β-/- murine model of chronic mitochondrial impairment 

results in an atrial arrhythmic phenotype that progresses with age. The principle determinates 

of this phenotype was slowed AP conduction through progressive electrical and structural 

remodelling. Pgc-1β-/- hearts have reduced INa with corresponding decrements in (dV/dt)max. 

They also display accelerated fibrotic change, together manifesting as increased AP latency, 

thus producing an atrial substrate promoting reentry. As such, mitochondrial impairment 

may represent an upstream effector of arrhythmogenecity and further clarification of 

pathways involved may highlight novel targets for therapeutic interventions. 
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