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The effect of vertically varying permeability
on tracer dispersion
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We study the migration of tracer within an injection-driven flow in a horizontal aquifer
in which the permeability varies with depth. The permeability gradient produces a shear
and this leads to lateral dispersion of the tracer. In the high permeability regions, tracer
moves substantially faster than the mean flow and eventually enters the nose region of the
flow where the depth of the current is less than the depth of the aquifer. Depending on
the influence of (i) the viscosity contrast between the injected fluid and the original fluid,
and (ii) the vertical permeability gradient, the nose of the current may be of fixed shape
or may gradually lengthen with time. This leads to a variety of patterns of dispersal of
the tracer, which may either remain in the nose or cycle through the nose and be left
behind. Our results illustrate the complexity of the migration of tracer in a heterogeneous
aquifer which has important implications for interpreting the results of tracer tests as
may be proposed for monitoring CO2 or gas injected into subsurface reservoirs.
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1. Introduction

The migration of a fluid through a porous rock has received considerable interest over
many decades (Dagan 1984; Hess et al. 1992; Berkowitz et al. 2000; Paster et al. 2013).
Such flows are of concern in many industrial and environmental applications including
radioactive waste disposal, the flow of contaminants in freshwater aquifers, enhanced oil
recovery and the sequestration of CO2 within geological storage reservoirs (Lake 1989;
Phillips 2009; Woods 2014). In order to learn about the nature of such flows in the ground,
and obtain some constraints on the permeability of the host aquifer, it has been proposed
to add passive tracer to the flow and analyse samples at observation wells (Bickle 2009;
Mathieson et al. 2011; Kampman et al. 2014). For example, in the CO2 storage project at
the Otway Basin, Australia, tracers were added to the injected gas to measure and verify
the breakthrough of CO2 at a production well (Stalker et al. 2015). It is also possible to
use naturally occuring isotopes to monitor the sequestration of CO2 (Györe et al. 2015).

Much of the previous work on tracer migration has focused on the effect of hetero-
geneity on the dispersion in a pressure-driven flow (Dagan 1984; Eames & Bush 1999;
Phillips 2009). However, Farcas & Woods (2016) showed that longitudinal dispersion is
possible in flow in a layered porous medium, even if the layers have constant perme-
ability. Porous rocks often have low permeability baffles which act as a barrier to the
vertical migration of a buoyant fluid such as CO2. Hesse & Woods (2010) illustrated
how the lateral spreading beneath these baffles can lead to longitudinal dispersion. Such
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Figure 1: Schematic diagram showing the interaction between injected tracer (red pulse)
and the nose region of the current. For a uniform aquifer in which the nose is fixed, tracer
remains a constant distance behind the interface. When the nose is growing, tracer is
carried into the nose. In a heterogeneous aquifer, tracer undergoes a shear and tracer in
the fastest moving regions enters the nose.

advection-driven dispersion is controlled by the geometry and lengthscale of the forma-
tion, which can lead to much more rapid dispersive spreading of the flow compared to
the effects of pore scale dispersion or molecular diffusion. In this paper, we focus on the
regime in which shear-driven dispersion of tracer dominates, and so we neglect the effects
of smaller scale mixing processes, which may however become important at later times
as shown in the appendix.

We consider the migration of tracer within a permeable layer in which the permeability
varies linearly with height. It has previously been shown that contrasts in permeability
lead to shear in the flow profile (Bjorlykke 1993; Woods & Mingotti 2016). In the absence
of diffusion, the migration of tracer is controlled by the shear and the interaction with the
nose of the current. The shape of the nose of a current supplied by constant-flux migrating
through a finite depth aquifer in which the permeability varies linearly with depth was
studied by Hinton & Woods (2018). They found four regimes for the late time evolution
of the flow. These depend on the viscosity ratio and the variation of permeability with
depth. The regimes include a rarefaction wave which spreads at a rate proportional to
time, t, a shock-like front of fixed length, a mixture of shock-like regions and growing
rarefaction regions, and an interface which spreads laterally at a rate proportional to
t1/2. In each case, the flow is primarily driven by the pressure owing to injection and the
role of buoyancy is secondary. In this paper, we explore the migration of tracer in each
of these regimes.

However, before launching into this analysis, it is useful for reference to describe the
motion of tracer within the flow in a uniform aquifer distinguishing between the cases
in which the nose is of fixed shape and volume and in which the nose gradually spreads
with time. Since the flow is uniform across the depth of the aquifer, there is no dispersion
associated with the flow, but the location of the tracer relative to the front of the flow
does change depending on whether the volume of the fluid in the nose of the current
grows in time or remains fixed. In the case that the nose forms a fixed travelling-wave
structure, tracer remains a fixed distance behind the nose (see left-hand cartoon in figure
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Figure 2: Cartoon of fluid injection into a confined aquifer. Fluid is injected from a line
source at X = 0 which releases a pulse of tracer at some late time.

1). If instead the nose region grows, tracer is advected into continually shallower regions
of the nose (see middle cartoon in figure 1).

In section 3, we review the four flow regimes which arise in an aquifer with a vertical
gradient of permeability (Hinton & Woods 2018). The shear in these flows leads to
dispersion of the tracer upstream of the nose and we examine how the dispersing tracer
interacts with the nose region. In section 4, we investigate the first of the four flow regimes
in which the nose of the flow continually grows (see right-hand cartoon in figure 1). We
show that tracer may migrate towards the front of the nose as in the case of a uniform
aquifer, or that tracer may initially enter the nose, but then slow down relative to the
speed of the nose, and may in fact subsequently advance more slowly than the trailing
edge of the nose.

In section 5, we explore the interaction of the shearing of the tracer with a nose of
fixed shape. Now the nose is a travelling wave which moves at the mean flow speed
owing to mass conservation. The cross-channel shear associated with the variation of
the permeability leads to a range of heights at which the flow is faster than the mean
speed. The combination of these two effects means tracer can catch and enter the fixed
nose. However, mass conservation requires that tracer which enters the nose subsequently
leaves the nose and this occurs through the migration of the tracer into lower permeability
regions where it is then left behind as the nose continues to advance. In section 6, we
explore the dipsersion which arises in the more complex case in which the interface
consists of a growing rarefaction region and a vertical shock region. The fourth regime,
in which the interface grows in proportion to t1/2, occurs only in a uniform aquifer and
hence we cannot consider the influence of a shear flow in this case.

Finally, in section 7, we summarise our results and briefly discuss some implications
for CO2 sequestration.

2. Vertically uniform aquifer

In this section we consider the migration of tracer in a vertically uniform aquifer. There
are three late-time regimes and we begin by finding the shape of the nose in each. We
then introduce a tracer into the flow, and consider how it migrates in each regime. We
show that the migration of tracer is controlled by whether the nose is growing or has
fixed volume. A vertical line of tracer added to the injectate at X = 0 will remain vertical
because there is no shear in the flow.
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2.1. Review of the interface evolution in a uniform aquifer

If liquid of density ρ and visocity µi is injected from a line source at X = 0 with a flow
rate Q into a horizontal, laterally extensive aquifer initially filled with liquid of density
ρ+∆ρ and viscosity µa, and the aquifer has depth H0, porosity φ (figure 2), then the flow
is controlled by the combination of the applied pressure associated with the injection and
the buoyancy force. We can scale the depth, length and time using the following relations

h =
H

H0
, y =

Y

H0
, x =

Q

UH2
0

X, t =
Q2

φUH3
0

T, (2.1)

where

U =
∆ρgK

µi
, (2.2)

is the characteristic buoyancy velocity of the injectate, and K is the constant permeabil-
ity. In this paper, we use capital letters to denote dimensional quantities and lower case
for dimensionless quantities, with the exception of the density, the viscosity and gravity,
g.

Once the injectate has spread far from the well and provided that the horizontal extent
is much greater than the depth of the aquifer, the assumption that the cross-flow pressure
gradient is hydrostatic (see Bear 1971) leads to the dimensionless equation for the depth
of the injected flow, h(x, t),

∂h

∂t
+

∂

∂x

(
h

m+ (1−m)h

)
=

∂

∂x

(
mh(1− h)

m+ (1−m)h

∂h

∂x

)
, (2.3)

where we have assumed the two fluids are immiscible and there is a sharp interface
between them. The viscosity ratio of the two fluids is (see figure 2)

m =
µi

µa
. (2.4)

The second term on the left-hand side of equation (2.3) represents the advection asso-
ciated with the applied pressure whilst the term on the right-hand side represents the
diffusive slumping of the injected fluid owing to buoyancy. After an initial transient, the
flow has a fully-flooded region in which h = 1 and a nose region in which 0 < h < 1.
We use the term “trailing contact point” to describe the point at which the interface
touches the bottom boundary at the back of the nose region, denoted X1(T ) in figure 2.
The point at the front of the nose along the top boundary is the “leading contact point”
(X0(T ) in figure 2). Note that in the dimensionless variables,

h(x0(t), t) = 0, and, h(x1(t), t) = 1. (2.5)

Three different late-time asymptotic regimes for the evolution of the nose can emerge
depending on whether m is less than, equal to, or greater than 1 (see Huppert & Woods
1995; Pegler et al. 2014; Zheng et al. 2015). With a less viscous injectate (m < 1), the
extent of the nose region increases in proportion to t and the term associated with the
buoyancy on the right-hand side of equation (2.3) can be neglected. The late time shape
is then given by (Pegler et al. 2014)

h(x, t) =

√
mt
x −m

1−m
, (2.6)

and the positions of the trailing (h = 1) and leading (h = 0) contact points are, x1(t) =
mt and x0(t) = t/m, respectively (see figure 3a).
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In the case of fluids with the same viscosity (m = 1), the term in the governing equation
(2.3) associated with the buoyancy balances the term associated with the advection. The
extent of the nose grows in proportion to t1/2 and the depth is given by

h = 1
2 (1− ξ), where ξ = (x− t)/

√
t, for − 1 6 ξ 6 1, (2.7)

and the contact points are

x1(t) = t− t1/2, x0(t) = t+ t1/2 (2.8)

(see figure 3b). The depth in the nose region for the present case of m = 1 (equation
2.7) is a singular limit of the case m < 1. This is because the effects of buoyancy can no
longer be neglected when m = 1.

With a more viscous injectate (m > 1), a steadily travelling shock moving with the
speed of the mean flow develops across the entire depth of the aquifer. To model the
shock it is convenient to transform to coordinates moving with the shock. We then find
the constant shape of the nose is a straight line with gradient (1−m)/m (see figure 3c).
The equation for the depth in the nose region is

h(x, t) =
1

2
+

1−m
m

(x− t), for x1(t) < x < x0(t), (2.9)

where the contact points are

x0(t) = t+
m

2(m− 1)
, x1(t) = t− m

2(m− 1)
. (2.10)

The late time shape (equation 2.9) is accurate after times of order (cf. Zheng et al. 2015)

ts =
m

1−m
, (2.11)

which corresponds to the time taken to supply the volume of fluid in the fixed travelling
nose.

In each regime, the dimensionless Darcy velocity in the current is

u =
1−m(1− h)∂h

∂x

m+ (1−m)h
. (2.12)

The second term in the numerator arises from buoyancy forces, and the first is associated
with the injection pressure. The incompressibility condition for the flow, ∇∇∇ · uuu = 0, can
be used to calculate the vertical velocity from the horizontal velocity,

v = −
∫ y

0

∂u

∂x
dy, (2.13)

and v(y = 0) = 0 as there is no flux across the upper boundary. In dimensional terms,
the ratio of the vertical velocity to the horizontal velocity is

b =
Q

UH0
. (2.14)

For the hydrostatic assumption to apply, we require the vertical velocity to be much
smaller than the horizontal velocity. In an interface which grows, v decays in time and
this assumption is always valid at late times. However, for an interface of constant extent,
we require that b� 1.

2.2. Tracer injection

The injection of fluid begins at t = 0. We consider releasing a pulse of tracer across the
entire depth of the aquifer at a dimensionless time tR after the first injection of fluid. We
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Figure 3: Tracer injection into a uniform porous medium. The left-hand column shows
cartoons of the position of tracer (red) relative to the nose at three times. The area of
fluid ahead of the tracer (green region) is constant. The right-hand column shows the
position of the red tracer in coordinates moving with the nose region, and the particle
paths (dashed lines). (a) The case of a less viscous injected fluid. The extent of the nose
grows in proportion to t and the distance between the tracer and the leading contact
point in proportion to t1/2. (b) Equally viscous fluids. The nose grows in proportion to
t1/2 with the tracer a distance proportional to t1/4 from the leading contact point. (c)
More viscous injected fluid. The fixed shape nose and the tracer both travel at the mean
flow speed and hence the distance between them is constant.

assume tR is sufficiently large that the interface between the two fluids has evolved to
one of the late time regimes. We assume the tracer does not react with the injectate or
the rock, the interface is gravitationally stable, and we assume there is no mixing across
the interface. Tracer particles are advected by the flow field (diffusion is neglected, see
appendix A for details).

2.3. Tracer migration for a less viscous injected fluid (m < 1)

At late times the interface is long and thin; the role of buoyancy is negligible. Behind
the nose region, the along-channel velocity is 1 which is greater than m, the velocity of
the trailing contact point (see figure 3a). Using these two velocities and the release time



The effect of vertically varying permeability on tracer dispersion 7

of tracer, t = tR, we calculate that the line of tracer enters the nose region at a time,

tE =
tR

1−m
. (2.15)

The along-channel velocity in the nose region can be calculated from equation (2.12),

u =
1

m+ (1−m)h
, (2.16)

where we have neglected the component of velocity owing to buoyancy, consistent with
the assumption used in deriving the interface shape. Combining this with our expression
for the depth, h(x, t) (equation 2.6), and mass continuity (equation 2.13), we derive the
equations for the particle paths in the nose region,

dx

dt
=

(
x

mt

)1/2

,
dy

dt
= − y

2(mxt)1/2
. (2.17)

We can solve equation (2.17a) for the horizontal position of a vertical line of tracer as it
is advected in the nose,

x(t; a0) =

[(
t

m

)1/2

− a0

]2

(2.18)

where a0 is a constant which can be found using the time, t = tE (equation 2.15), at
which the line of tracer passes the trailing contact point, x1(t) = mt, and enters the nose,

a0 =

(
tE
m

)1/2

− (MtE)1/2. (2.19)

Relative to the leading contact point, x0(t) = t/m, the position is

xL = x0(t)− x(t; a0) = 2a0

(
t

m

)1/2

− a2
0 (2.20)

At late times, at leading order, equation (2.20) implies that the distance between the line
of tracer and the leading contact point grows in proportion to b0t

1/2 where

b0 =
2a0

m1/2
= 2

(1−m)1/2

m
t
1/2
R . (2.21)

The volume of fluid ahead of the tracer is constant (green region in figure 3a) and hence
the line of tracer travels into continually shallower regions of the growing nose. This can
also be seen by comparing the distance to the leading contact point, t1/2, with the extent
of the interface which grows in proportional to t (see figure 3a).

2.4. Tracer migration for equally viscous fluids (m = 1)

It was shown in section 2.1 that the structure of the nose in the case of isoviscous fluids
is singular owing to the balance between the term associated with buoyancy and the
term associated with advection. The horizontal velocity upstream of the nose is 1 and
hence a line of tracer released from x = 0 at t = tR reaches the trailing contact point,
x1(t) = t− t1/2 (equation 2.8), and enters the nose at a time,

tE = t2R. (2.22)
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The along-channel velocity in the nose is given by equation (2.12),

u = 1− (1− h)
∂h

∂x
. (2.23)

Combining this with our expression for the depth of the current, h(x, t), (equation 2.7),
and mass continuity (equation 2.13), we derive the equations for the velocity and hence
the particle paths in the nose region,

dx

dt
= 1 +

x− (t− t1/2)

4t
,

dy

dt
=
−y
4t
. (2.24)

Solving equation (2.24a) for the horizontal position of the vertical line of tracer gives

x = t+ t1/2 − a1t
1/4, (2.25)

where a1 is a constant which can be found using the time at which the line of tracer
enters the nose,

a1 = 2t
1/4
E = 2t

1/2
R . (2.26)

The distance between the line of tracer and the leading contact point, x0(t) = t +
t1/2, grows in proportion to t1/4. The distance from the trailing contact point grows in
proportion to t1/2 because the interface grows in proportion to t1/2 (see figure 3b). Using
the vertical velocity (2.24b), we calculate that the height of the line of tracer decays in
proportion to t−1/4.

We found in section 2.1 that the shape of the nose region in the case m = 1 is a singular
limit of the shape for m < 1. Similarly, the migration of tracer described in the present
section for m = 1 is a singular limit of the migration described in section 2.3 for m < 1.
The results in the case m = 1 are analogous to those of section 2.3, with the exponents
halved. For m < 1, the distance between the leading contact point and the tracer grows
as b0t

1/2 (equation 2.20). The coefficient b0 tends to 0 as m → 1, and the analogous
result for m = 1 gives the distance growing in proportion to t1/4, a singular limit.

2.5. Tracer migration for a more viscous injected fluid (m > 1)

When the injected fluid is more viscous than the ambient fluid, the nose takes the form
of a fixed travelling-wave, shown as a black line in figure 3c. A line of tracer is released at
t = tR from x = 0; it is initially behind the interface in the fully-flooded region. The nose
and the line of tracer both travel at the injection velocity, which in dimensionless terms
is 1. The tracer remains a constant distance behind the nose (see figure 3c). The nose of
the current never influences the dynamics. In the limit as m→ 1, the interface gradient
(equation 2.9) tends to 0 and the nose becomes infinitely long and would influence the
tracer; the case m = 1 is a singular limit of the fixed nose regime.

2.6. Summary of tracer migration in a uniform aquifer

We have found that when fluid is injected into a uniform aquifer of finite depth and
the viscosity of the injected fluid is less than or equal to the viscosity of the ambient
fluid (m 6 1), the nose region grows in time, supplied by fluid from behind. There is no
dispersion of the tracer but it is carried into continually shallower regions of the nose.
When m > 1, the nose has fixed shape, and all the fluid moves at the same velocity,
remaining a fixed distance behind the nose.
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√
t interface Rarefaction Full shock Compound

Parameter values m = 1, ∆k = 0 m 6 (2−∆k)2

4−2∆k+∆k2 m > 1

1+
∆k
2

Remaining space

Leading contact point t+ t1/2 f ′(0)t t vst

Interface shape

Table 1: Late time shapes for injection into an aquifer with a permeability that varies
linearly with depth, from Hinton & Woods (2018). The regimes are distinguished in
parameter space in figure 4.

3. Model for flow in an aquifer with a vertical gradient of
permeability

We now extend the analysis from section 2, for tracer migration in a uniform aquifer,
to incorporate the influence of vertical heterogeneities. We first review the model of
Hinton & Woods (2018) which describes injection into a confined aquifer in which the
dimensional permeability, K(Y ), varies with the dimensional depth, Y . We scale the
permeability with its mean across the depth of the aquifer, K̄,

k(y) =
K(H0y)

K̄
. (3.1)

We define the dimensionless depth-integrated permeability by the relation,

ψ(h) =

∫ h

0

k(y)dy. (3.2)

Note that ψ(0) = 0, ψ(1) = 1, and in a uniform aquifer ψ(h) = h. The governing equation
(2.3) can now be generalised for a heterogeneous aquifer (for details, see Hinton & Woods
2018),

∂h

∂t
+

∂

∂x

(
ψ(h)

m+ (1−m)ψ(h)

)
=

∂

∂x

(
mψ(h)(1− ψ(h))

m+ (1−m)ψ(h)

∂h

∂x

)
. (3.3)

The dimensionless Darcy velocity in the current is

u = k(y)
1−m(1− ψ(h))∂h

∂x

m+ (1−m)ψ(h)
. (3.4)

To gain insight into the evolution of the interface, we approximate the governing equa-
tion (3.3) at late times. Late times correspond to those times after which a volume much
greater than V = φH2

0/b has been injected, independent of any permeability variation,
which is equivalent to t� 1 in dimensionless terms (Zheng et al. 2015). In this limit, the
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system is governed by the approximate equation,

∂h

∂t
+

∂

∂x

(
f(h)

)
= 0, (3.5)

where we have set the right-hand side of equation (3.3) to zero, and f is the flux function,

f(h) =
ψ(h)

m+ (1−m)ψ(h)
. (3.6)

In equation (3.5), the diffusive term associated with buoyancy has been neglected and
the solution depends only on the form of f(h). The local speed of propagation of the
interface at y = h is given by f ′(h). In the case that

f ′′(h) < 0 (3.7)

across the depth of the aquifer, the speed decreases from the top of the aquifer to the
bottom and the extent of the nose increases in time. The ratio of the term associated
with buoyancy to the advection term in the governing equation (3.3) scales with L−1 for
an interface of length L and hence in the case that f ′′(h) < 0, in which the nose grows,
equation (3.5) provides a good approximation of the full equation (3.3) at late times.

If instead f(h) does not satisfy condition (3.7) then the local propagation speed is not
monotonically decreasing with depth in the aquifer. The nose region consists of regions
of fixed extent which travel at constant velocity and regions which grow in time.

As considered in Hinton & Woods (2018), we choose a linear permeability gradient,

k(y) = 1 + ∆k
(
y − 1

2

)
. (3.8)

Here ∆k = k(1)− k(0), is the dimensionless permeability difference between the top and
the base of the aquifer, and has values in the range −2 < ∆k < 2, it is the ratio of the
permeability difference across the aquifer to the mean permeability. One could use a more
complicated permeability profile than equation (3.8); we have chosen a linear gradient
as it simplifies the analysis whilst still capturing the generic effects of heterogeneous
permeability.

With this choice of permeability profile, the interface can evolve into one of four late
time regimes found by Hinton & Woods (2018), depending on the values of the parame-
ters ∆k and m. The four regimes include generalisations of the three found for a uniform
aquifer; a growing interface across the depth of the aquifer, a travelling wave of fixed
extent and the singular case in which the interface grows in proportion to t1/2. The ad-
ditional fourth regime, which does not occur in a uniform aquifer, consists of a shock
region near the upper boundary, which travels with constant velocity vs, and a growing
region below that which arises when the effect of the viscosity contrast and the perme-
ability gradient act in opposition. The regimes are summarized in table 1, and shown in
parameter space in figure 4.

The vertical shear produced when there is a vertical gradient of permeability can lead
to fundamentally different regimes for the migration of tracer to those found for a uniform
aquifer which we presented in section 2. The singular regime in which the interface grows
in proportion to t1/2 occurs only in a uniform aquifer. We now study the other three
regimes in turn, beginning in section 4 with the migration of tracer when the nose has
the form of a growing rarefaction wave for which we identify three different sub-regimes
depending on the viscosity ratio and the vertical permeability contrast. We then study
the migration of tracer in the full shock regime in section 5 and finally consider the
compound regime in section 6.
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Figure 4: Parameter space delineating the different regimes for the evolution of the in-
terface in an aquifer with a permeability gradient (from Hinton & Woods (2018)). The
vertical axis is the viscosity ratio, m = µi/µa, of the injected and ambient fluid. The
left-hand side (∆k < 0) corresponds to the permeability increasing towards the top of
the aquifer whilst the right-hand side corresponds to permeability decreasing towards the
top of the aquifer. Four regimes can occur; a travelling wave of fixed extent (‘Full shock’),
a nose which grows in proportion to t (a ‘Rarefaction’ wave), a mixture of shock and
rarefaction regions (‘Compound’) and the singular case of isoviscous fluids in a uniform
aquifer in which the nose grows in proportion to t1/2. The dashed blue line indicates
∆k = 0, the case of uniform permeability. To understand the migration of tracer in
the rarefaction regime, we consider the parameter values marked with red letters, the
migration for A-D is shown in figure 5, and the migration of A, E-G is shown in figure 6.

4. Tracer migration in a growing nose in a heterogeneous aquifer

In this section, we study the migration of tracer in the case that the nose of the current
grows in proportion to t and the permeability in the aquifer varies linearly with depth
(see the second column in table 1). We generalise the results of section 2.3 which analysed
the migration in a growing nose in a uniform aquifer. We first analyse the structure of
the nose and flow therein, and then show that this leads to three subregimes for the
evolution of the tracer.

4.1. Interface shape and flow structure in a growing nose

In the case of a linear permeability profile (3.8), Hinton & Woods (2018) found that the
condition for a growing nose, f ′′(h) < 0 for all h in (0, 1), is equivalent to

m 6
(2−∆k)2

4− 2∆k + ∆k2
. (4.1)

When this condition is satisfied, the shape of the nose can be found implicitly from
equation (3.5) by using the similarity variable x/t,

x(h, t) = f ′(h)t, (4.2)

where

f ′(h) =
mk(h)

[m+ (1−m)ψ(h)]2
. (4.3)

The position of the trailing contact point, h(x1(t), t) = 1, can be calculated from the
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equation for the shape of the nose (4.2),

x1(t) = f ′(1)t = mk(1)t. (4.4)

Similarly, the leading contact point, h(x0(t), t) = 0, has position given by

x0(t) = f ′(0)t = k(0)t/m. (4.5)

The shape of the nose is controlled by two parameters, the viscosity ratio, m, and the
permeability gradient, ∆k. In the case of a uniform aquifer (∆k = 0) the position of the
leading contact point was found to be t/m. As the viscosity of the injectate decreases
relative to the ambient fluid, the nose becomes elongated owing to the instability which
occurs when a less viscous fluid is injected into a more viscous fluid (Saffman & Taylor
1958). A permeability gradient across the aquifer may complement or oppose the effect of
the viscosity ratio. If the permeability increases towards the top of the aquifer (∆k < 0),
the injected fluid prefers to flow near the upper boundary and this enhances the effect of
the viscous fingering (case B, figure 4). As the magnitude of the change in permeability
increases, the role of the viscosity contrast becomes smaller in driving the instability (e.g.
cases B and C, figure 4). Eventually, it is possible for the variations in permeability to
dominate the spreading of the nose of the flow and in fact even if the viscosity gradient
becomes weakly stabilising (m > 1), a sufficient gradient in the permeability can still lead
to the spreading of the nose of the flow (case D, figure 4). In section 4.2, we analyse how
the dispersal of tracer is influenced by this balance between the permeability gradient
and the viscosity gradient, for flow regimes B-D.

In the opposite case that the permeability decreases towards the top of the aquifer
(∆k > 0), we expect the extent of the finger to be reduced (case E, figure 4). If the
permeability decreases sufficiently rapidly towards the top of the aquifer, then even with
an unstable viscosity ratio the viscous fingering instability at the top of the domain may
be suppressed.

To determine how tracer migrates within the nose, we calculate the horizontal and
vertical velocities in the nose region from equation (3.4) and mass continuity,

u(x, y, t) =
k(y)

m+ (1−m)ψ(h)
, v(x, y, t) =

(1−m)ψ(y)f ′(h)

mf ′′(h)t
, (4.6)

where h = h(x, t). As before, in the long time limit, buoyancy is neglected. The velocities
upstream of the nose are u = k(y) and v = 0.

In the case that the fluids have equal viscosities (m = 1), the vertical velocity in the
nose is zero and the flow is purely horizontal. Since f ′′(h) < 0 and f ′(h) > 0, the vertical
velocity is negative when m < 1 and fluid migrates towards the upper boundary, whilst
when m > 1, fluid migrates down towards the bottom boundary. This change in the flow
structure is independent of the permeability gradient. Indeed, m = 1 is a limiting case for
any general nonlinear permeability profile. The limit of purely horizontal flow is critical
to understanding the migration of tracer and will be used in our discussion below.

4.2. Permeability increasing towards the top of the aquifer (∆k < 0)

We examine the migration of tracer in the case that the permeability increases towards
the top of the aquifer (∆k < 0) corresponding to cases B-D in figure 4.

In a uniform aquifer, the speed is constant with depth, and fluid enters the nose at
all depths with the same flux. As the nose grows in time this fluid is then distributed
through the nose, and as a result, the streamlines are all tilted upwards (see figure 5aii). A
line of tracer therefore moves into the nose and gradually enters shallower and shallower
regions as the nose stretches out. If the permeability increases towards the top a small
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Figure 5: Tracer migration in a growing nose in the case that the permeability decreases
from top to bottom (∆k < 0). The first column shows how the tracer (red line) is carried
into the nose in real coordinates at four times. The volume of the green fluid ahead of
the tracer is constant. The middle column shows the direction of the shear, the particle
paths (dashed lines) relative to the growing nose and the position of tracer at four times
(red lines) corresponding to the times in the four cartoons. In the right-hand column,
the shaded area shows the along-channel positions occupied by a pulse of tracer released
at tR = 50, and the position of the contact points (dashed lines). The rows correspond
to A-D in parameter space in figure 4. The case of a uniform aquifer is included in the
top row for comparison. The dashed blue line in (dii) distinguishes the region in which
fluid travels more slowly than the nose.

amount, this same process dominates, and the streamlines are all tilted upwards as in
the uniform case. However, the speed on the higher streamlines is faster and so a line
of tracer becomes stretched out laterally within the nose, with the leading part of the
tracer being at the top of the aquifer (case B, figure 4, 5b).

As the viscosity ratio, m, is increased, the nose grows more slowly, reducing the tilting
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of the streamlines. A specific value is reached at which exactly the correct flux of fluid is
supplied above each height to supply the growing nose region above that height, and so the
streamlines are everywhere horizontal (case C, figure 4, 5c). In this special case, tracer is
sheared out, but the tracer now remains on an inclined straight line. As discussed earlier,
this corresponds to m = 1, and occurs for any permeability gradient which increases
towards the top of the aquifer.

Finally, if the permeability increases sufficiently rapidly towards the top of the aquifer,
but the effect of the viscosity is stabilising (m > 1) then the speed of the flow upstream
of the nose can exceed the speed of the head of the nose near the upper boundary of the
aquifer. As a result, fluid near the top of the aquifer travels faster than the front of the
nose, and hence moves into the nose. However, the upstream speed in the aquifer at lower
points is now smaller than the speed of the nose, and so here, the fluid at that depth
cannot supply the nose region. Instead the fluid entering the nose at higher points in
the aquifer moves down into the lower part of the nose region. Here, the speed is smaller
than the speed of the nose, and so the fluid begins to lag behind the nose of the flow. The
region in which particles travels more slowly than the nose is bounded by the interface
and the dashed blue line in figure 5dii. The dashed blue line is the nullcline on which
the flow velocity equals the nose velocity. All the tracer eventually converges to a line
of points behind the nose on which x = k(y)t, shown as a solid blue line in figure 5dii.
To find the equation of the nullcline, we consider points in similarity space, i.e. (x/t, y)
coordinates, at which the along-channel velocity is equal to the velocity of the nose,

u(x, y, t) = f ′(h(x, t)). (4.7)

Using our expressions for u and f ′(h) (equations 4.6 and 4.3), this can be rewritten as

k(y)

m+ (1−m)ψ(h)
=

mk(h)

[m+ (1−m)ψ(h)]2
. (4.8)

Noting that the depth is a function only of x/t so h(x, t) = h(x/t), the shape of the
nullcline is given implicitly by

y =
m∆kh− (1−m)ψ(h)k(0)

m∆k + (1−m)ψ(h)∆k
, (4.9)

where h = h(x/t). Note that this line coincides with the interface in the limiting case of
m = 1.

We have found two regimes for the migration of tracer. We call the case in which tracer
migrates into continually shallower regions of the nose “regime (i)” (A and B in figure 5),
and the case in which tracer enters the nose in the high permeability region at the top of
the aquifer and subsequently lags behind the nose in the low permeability region “regime
(ii)” (D in figure 5). The migration towards the leading contact point in regime (i) and
migration behind the trailing contact point in regime (ii) is illustrated in the right-hand
column of figure 5, the shaded area shows the along-channel positions of the tracer and
the dashed lines are the positions of the contact points.

4.3. Permeability increasing towards the bottom of the aquifer (∆k > 0)

We examine the migration of tracer in the case that the permeability is highest towards
the bottom of the aquifer (∆k > 0) corresponding to cases E-G in figure 4. Note that the
viscosity ratio is less than 1 in this case because the permeability gradient suppresses the
viscous fingering. Hence, v < 0 (see equation 4.6b) and fluid in the nose always migrates
upwards.

If there is a small increase in permeability from the top of the aquifer to the bottom
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Figure 6: Tracer migration in a growing nose in the case that the permeability increases
towards the bottom of the aquifer (∆k > 0). The first column shows how the tracer
(red line) is carried into the nose in real coordinates at four times. The volume of the
green fluid ahead of the tracer is constant. The middle column shows the direction of
the shear, the particle paths (dashed lines) relative to the growing nose and the position
of tracer at four times (red lines) corresponding to the times in the four cartoons. In
the right-hand column, the shaded area shows the along-channel positions occupied by a
pulse of tracer released at tR = 50, and the position of the contact points (dashed lines).
The rows correspond to A, E, F and G in parameter space in figure 4. The case of a
uniform aquifer is included in the top row for comparison. The dashed blue line in (dii)
distinguishes the region in which fluid travels more slowly than the nose, and ξ0 is the
position along the upper boundary which tracer converges to in similarity coordinates.

then the streamlines are all tilted upwards as in the uniform case. However, the speed
on the lower streamlines is faster and so a line of tracer becomes stretched out laterally
within the nose, with the leading part of the tracer being nearest to the interface (case E,
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figure 4, 6b). Tracer migrates into shallower and shallower regions as the nose stretches
out and hence case E lies in regime (i) (see figure 6biii).

In an aquifer with a larger increase in permeability from the top to the bottom, the
fluid near the bottom of the aquifer travels much faster than the nose. There is a specific
value, which shall be specified later in (4.11), at which the lower region provides sufficient
flux that the leading portion of the nose is supplied only by fluid from the bottom of the
aquifer. In this case, fluid near the top of the aquifer does not migrate into continually
shallower regions of the nose; instead, particles travel towards the top boundary and
subsequently slowly converge towards the leading contact point (case F, figure 4, 6c).

If the permeability increase is even larger, the flux entering the nose near the bottom
boundary is greater than the flux needed to supply the growing nose. Owing to mass
conservation, fluid reverses relative to the nose in a thin region near the upper bound-
ary (case G, figure 4, 6d). The equation of the nullcline is given by (4.9). We call this
“regime (iii)”. It is fundamentally different from regime (ii) because fluid is supplied
to the nose from the bottom of the aquifer, and fluid never lags behind the nose. The
nullcine intersects the upper boundary at a point ξ0 given implicitly by

h(ξ0) =
2m

(1−m)k(0)
+ 1− 2

∆k
. (4.10)

Tracer converges towards a region around this point which lies within the nose, and
between the two contact points (see figure 6dii and 6diii).

To find the value of the viscosity ratio at which the transition between regimes (i) and
(iii) occurs, we analyse the limiting case (F in figure 4, 6c). Fluid migrates towards the
upper boundary and the nullcline just touches the upper boundary. This corresponds to
the stationary point given by equation (4.10) coalescing with the leading contact point.
Setting h(ξ0) = 0 yields

m =
(2−∆k)2

∆k2 + 4
, (4.11)

which is the boundary between regime (i) and regime (iii).
It is interesting to note that the regimes correspond to the convexity of the interface

at the leading contact point. The interface is concave for parameter values in regime (i),
and convex at the leading contact point for regimes (ii) and (iii). The limiting interface
between regimes (i) and (ii) is linear and the limiting interface between regimes (i) and
(iii) has an inflection point at the leading contact point (see figure 5cii and figure 6cii).
This characterization arises from the linear shear; the limiting regimes occur when the
interface is linear because the volume of fluid supplied at each height upstream of the
nose matches the flux at that height in the nose. If the permeability gradient was not
linear, the limit between regimes would not correspond to a locally linear interface at the
leading contact point.

4.4. Dispersion coefficients

The lateral extent of the tracer could be used to constrain aquifer properties. In a grow-
ing nose our results imply that the rate of longitudinal dispersion at late times depends
critically on the regime. In regime (i), in which tracer migrates into progressively shal-
lower regions of the nose, the lateral extent of the tracer increases at a rate slower than
t because the influence of the permeability gradient diminishes as tracer migrates into
shallower regions (see figure 6bii). In regime (ii), tracer converges to a line of points
upstream of the nose near the lower boundary (see figure 5dii). The equation of this line
is x = k(y)t for ŷ 6 y 6 1 where ŷ = (mk(1)− k(0))/∆k is the depth of the line at the
trailing contact point. The extent of this line grows in proportion to t and the horizontal
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Figure 7: The interaction between the shearing of tracer and a fixed nose. The perme-
ability increases from the top of the aquifer to the bottom of the aquifer (∆k > 0). (a) is
a cartoon illustrating how a red line of tracer undergoes a shear, tracer in the fast regions
enters the nose and subsequently encloses the green fluid which was initially ahead of
the line of tracer. (b) shows particle paths relative to the travelling nose, particles below
1
2 are deflected into the upper region. (c) shows the position of a line of tracer at four
times (dashed lines) relative to the position of the interface (solid line). The line of tracer
is folded over itself and becomes two asymptotically parallel lines joining the top of the
aquifer to the trailing edge of the nose. (d) is the position of a pulse of tracer relative
to the leading contact point (dashed line) illustrating that the tracer disperses at a rate
proportional to t.

standard deviation of the tracer is

〈(x− x̄)2〉1/2 =
(m− 1)k(1)t

2
√

3
. (4.12)

In regime (iii), tracer migrates towards a region near the upper boundary and hence sam-
ples a progressively smaller portion of the permeability contrast. Therefore, at long times
the extent of the tracer in the nose increases more slowly than t (see figure 6diii). Note
that the rate of dispersion at early times, before tracer enters the nose, is proportional
to |∆k|t in each regime owing to the linear permeability contrast across the aquifer.

5. Heterogeneous aquifer; tracer migration in a nose of fixed extent

We now consider the case in which the nose is a travelling wave of fixed extent (see
third column of table 1), then in section 6, we will combine the results from the present
and preceeding sections to investigate the flow in the case that the nose has regions which
grow and regions of fixed extent.

We first investigate the shape of the nose region and the flow structure. Hinton &
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Figure 8: Tracer migration for permeability increasing towards the top of the aquifer
(∆k < 0), in the case of a fixed nose. (a) is a cartoon illustrating how a red line of tracer
undergoes a shear, tracer in the fast regions enters the nose and subsequently encloses
the green fluid which was initially ahead of the line of tracer. (b) shows particle paths
relative to the travelling nose, particles above 1

2 are deflected into the lower region. The
late time evolution of a line of tracer is similar to the case ∆k > 0 up to a reflection
across y = 1

2 .

Woods (2018) found the condition for a travelling wave across the aquifer to be

m >
1

1 + ∆k
2

. (5.1)

In this case, the governing equation (3.3) has a travelling wave solution which travels
with constant shape and the velocity of the mean flow. By transforming to coordinates
moving with the front, η = x − t, Hinton and Woods (2018) found the shape of the
interface satisfies

dh

dη
=
ψ(h)−mh+ (m− 1)hψ(h)

mψ(h)(1− ψ(h))
. (5.2)

Using the Darcy velocity (equation 3.4), and mass continuity, we can calculate the hori-
zontal and vertical particle velocities in the nose region,

u =
h

ψ(h)
k(y), v = −ψ(y)

ψ(h)− hk(h)

ψ(h)2

dh

dη
. (5.3)

Upstream of the nose, in the fully-flooded region, u = k(y) and v = 0. There is a
discontinuity in v at the trailing contact point. This is unphysical but the hydrostatic
assumption requires that b � 1 (see equation 2.14) meaning the horizontal length scale
is much larger than H0 and hence in dimensional terms the vertical velocity is much less
than the horizontal velocity and the discontinuity in the vertical velocity is small.

In section 2.5, we showed that in a uniform aquifer in which there is a travelling wave
solution, all the fluid travels at the mean flow speed and a line of tracer remains a fixed
distance behind the nose. Now, when the aquifer is not uniform, the variation of the
permeability with height partitions the line of tracer into heights where tracer travels
faster than the mean speed (k(y) > 1) and heights where tracer is slower (k(y) < 1). The
vertical line of tracer is linearly sheared until the fastest particle, either y = 1 if ∆k > 0
or y = 0 if ∆k < 0 reaches the nose region which travels at the mean speed. This fastest
particle enters the nose, and travels across the aquifer towards the lower permeability
region near the opposite boundary of the aquifer where it is left behind by the advancing
nose region (see figure 7). After the first entry time, tracer at progressively lower (or
greater if ∆k < 0) heights reaches the nose region where it travels to successively higher
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Figure 9: Evolution of tracer in a compound nose. Particle paths (dashed) and the in-
terface (solid) are shown in x/t coordinates. The nulllcline along which the flow velocity
equals the local velocity of the interface is a thin blue line whilst the thick blue line
behind the nose region is the line of points which particles converge to. The shock region
has constant shape. (a) The case where the permeability is higher towards the top of the
aquifer (∆k < 0). (b) ∆k > 0.

(or lower) points in the slower half. This eventually leads to the migration of all particles
which originate in the region in which k(y) > 1 to the region in which k(y) < 1, the slow
half. In contrast, particles which began in the slow region never reach the nose. These
particles undergo a linear shear. The particle at y = 1

2 travels at the speed of the nose.
At long times, there are then two regions of tracer: that which has travelled through the
nose and that which has not. Both are linearly sheared and form lines joining the slow
boundary of the aquifer to the point at y = 1

2 behind the nose. The initial vertical line
of tracer has been folded in half and linearly sheared as shown in figure 7 for the case
of permeability decreasing towards the top of the aquifer (∆k > 0). Figure 8 shows the
case ∆k < 0. The particle paths and interface shape are calculated numerically using
equations (5.2) and (5.3). Owing to mass conservation, particles that enter the nose at
y = y0 leave at y = 1− y0.

At times long after all the tracer is in the slow half of the aquifer, the two lines of
tracer continue to be linearly sheared and become asymptotically identical straight lines
with gradient (∆kt)−1. The distance behind the front of the centre of mass of the tracer
tends to

∆kt

4
(5.4)

as t→∞. Similarly, the horizontal standard deviation of the tracer is

∆kt

4
√

3
. (5.5)

The extent of tracer grows in proportion to t and ∆k owing to the shear, in contrast
to a uniform aquifer in which there is no dispersion. Molecular diffusion or pore-scale
dispersion would lead to growth in the extent of the tracer zone at a rate proportional
to t1/2 in a uniform flow (cf. Phillips 2009).
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6. Heterogeneous aquifer; tracer migration in a nose with a growing
and a fixed region

In this section, we investigate how tracer migrates in a compound nose involving a
region which grows in proportion to t and a region in which there is a travelling wave of
fixed extent with height hs and constant velocity vs. We show that the evolution of a pulse
of tracer is similar to that in regime (ii) (see section 4.2). In regions of higher permeability
tracer travels faster than the nose. Upon entering the nose this tracer migrates across
the aquifer into lower permeability regions and subsequently lags behind the advancing
nose (see figure 9). The details of the migration within the nose are altered from the case
of regime (ii) by the fixed region at the front of the nose.

Figure 9a shows the case ∆k < 0, where the permeability increases towards the top of
the aquifer. A line of tracer upstream of the nose is partitioned into three regions by height
according to the flow velocity. In the top region, the velocity is highest and fluid enters
the growing nose and migrates into the fixed region. In the fixed region, particles travel
across the nose into lower permeability regions and subsequently lag behind the fixed
region. The flow within the fixed region is as described in section 5, with the velocities
increased by a factor vs, the velocity of the fixed region. After migrating through the
fixed region the tracer continues to travel more slowly than the nose and lags behind
the nose and towards the line of constant velocity on which x = k(y)t (shown as a
thick blue line in figure 9). Tracer in the second region, in the middle of the aquifer,
travels fast enough to enter the nose but not fast enough to enter the fixed region. This
tracer migrates across the aquifer within the growing region, it crosses the nullcline (thin
blue line in figure 9) and subsequently lags behind the nose towards the line of constant
velocity. Finally, tracer initially near the bottom of the aquifer lies in the region of lowest
permeability and never enters the nose. Instead this tracer converges towards the line of
constant velocity from upstream. Figure 9b shows the case ∆k > 0 which is similar. Note
that a smaller viscosity ratio, m leads to a shallower fixed region.

In the case that the permeability is highest towards the top of the aquifer (∆k < 0),
the rate of dispersion of tracer at late times is the same as in regime (ii),

(m− 1)k(1)t

2
√

3
, (6.1)

because tracer converges to the same line of constant velocity as in regime (ii) (see thick
blue line in figure 9a). In the case that the permeability is lowest towards the top of the
aquifer (∆k > 0), the line to which tracer converges at late times is x = k(y)t at the top
of the aquifer (see thick blue line in figure 9b). The standard deviation is adjusted to

(mk(1)− k(0))t

2
√

3
. (6.2)

7. Conclusion

We have analysed the migration of tracer within a flow in a confined aquifer in which
the permeability varies linearly with height. In the context of CO2 sequestration, our work
focuses on the regime in which the dispersion of the tracer by the shear dominates the
effects of pore-scale dispersion or molecular diffusion. In this regime, the tracer evolution
is controlled by the structure of the leading interface of the CO2 plume as well as the
shear.

For reference, we have shown that in a uniform medium the nose region may either
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Figure 10: Parameter space and corresponding plots of the interface and flow structure
in x/t coordinates. The red lines show the position of tracer at a late time. The dashed
lines in parameter space separate the three regimes for a growing nose, the boundary is
given by m = 1 in ∆k < 0 and equation (4.11) in ∆k > 0. The curly arrows indicate the
recirculation within the fixed extent regions.

grow in time if the viscosity of the input fluid is less than the original, and it has a fixed
shape if the viscosity of the input fluid is greater. If the nose region is growing, the tracer
travels into increasingly shallow regions of the nose. If the nose region has fixed shape,
tracer remains a constant distance behind the interface.

When the formation has a vertical gradient of permeability, we have found three
regimes for the evolution of tracer in a growing interface; tracer can continue to mi-
grate into progressively shallower regions of the nose indefinitely, tracer can enter the
nose, and then circulate through the nose, so that it then reverses relative to the inter-
face and drops out of the nose; finally, tracer may converge to a region within the nose.
We have found parameter values which delineate these different regimes and explored
the transitions between them.

The combination of a shear flow and a fixed-shape, shock-like interface also leads to
novel results. Fluid in the high permeability regions travels faster than the interface, this
fluid enters the nose and subsequently migrates out of the nose via the low permeability
region. The longitudinal extent of the tracer then grows in proportion to t, rather than
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√
t which would be expected if small-scale dispersion or diffusion dominated. In the

cases where the lateral extent of tracer grows in proportion to t we have found the long-
time dispersion coefficients. It may be possible to use these coefficients to constrain the
structure of the permeability of an aquifer if the time interval over which tracer arrives
at a production well is known.

In all regimes, the rate of longitudinal dispersion of the tracer is proportional to |∆k|t
at early times before tracer enters the nose. This picture has some similarities with the
review of field data by Gelhar et al. (1992) who investigated an extensive range of tracer
dispersal data in water saturated aquifers, for which the viscosity ratio is unity, and
found that the dispersion coefficient increased linearly with the distance between the
wells. However, we note that in the real rock systems studied by Gelhar et al. (1992) the
detailed permeability structure would be more complex than the present modelling, the
flows are three dimensional and the effects of multiple layers may also play a role.

In figure 10, we summarize the results of this paper and relate them to parameter
space. The interface shapes in figure 10 are shown in x/t coordinates and hence the fixed
regions have zero width and the recirculation within them is not shown.

In future work, we plan to study how our model could be applied to invert the results
of tracer tests to constrain aquifer parameters in the context of CO2 sequestration. To
briefly illustrate the complex relation between the permeability gradient and the results
of tracer tests, we consider a simple tracer test. In our example, there is a producer well
at x = 10, we take the typical value m = 0.1 and consider releasing tracer at tR = 1
from an injection well at x = 0, into which CO2 was injected for time t > 0. We then
calculate the time at which CO2 and tracer first arrive at the well as a function of the
permeability gradient, shown in figure 11 by the continuous black and dashed red lines
respectively.

As the permeability gradient is reduced, the permeability at the top of the aquifer
increases and hence the CO2 travels more quickly. For the arrival of tracer, there is a
change in behaviour at ∆k = 0. The region in which tracer travels the fastest changes
from being the tracer at the top of the aquifer (∆k < 0) to the tracer travelling fastest
at the bottom (∆k > 0). If the permeablity gradient is sufficiently large, then a mixed
shock-dispersive interface develops, and the delay between the arrival of CO2 and tracer
is reduced dramatically because tracer catches the nose much more quickly (cf. section
6). If the distance to the producer well were greater, the tracer would have time to fall
behind the nose and the delay would increase at a larger permeability gradient.

The richness in the relative times of arrival of tracer and the leading edge of the plume
as a function of the permeability gradient in the cross-flow direction, as predicted by the
model presented in this work, provides a framework to interpret tracer tests. Since it is
difficult to access the detailed spatial distribution of subsurface reservoirs, intepretation
of such tracer tests may be key in constraining models of the structure of the system.
The inversion of real field data using simplified models as presented herein, involves a
number of further challenges, including accounting for the presence of noise in the data,
and for the non-ideal structure of real rocks. However, such models can provide very
useful constraints on the flow properties, and we plan to explore this further in future
work.
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Figure 11: Arrival times of CO2 (black continuous line) and tracer (red dashed line) at
a producer well at x = 10.

Appendix A. The significance of diffusion

The significance of small scale dispersion or molecular diffusion on the motion of the
tracer can be assessed by consideration of the ratio of the diffusive timescale and the
advective timescale,

λ =
TD
TA

=
L2/D

L/V0
(A 1)

where D is the coefficient of molecular diffusion for the tracer, V0 = Q/(φH0) is the
velocity at injection and L is the length scale, which we take to be the depth of the
aquifer, H0. In terms of the aquifer parameters, the ratio (A 1) is

λ =
Q

φD
. (A 2)

Buoyancy does not influence this ratio because at late times the flow is controlled by the
injection pressure rather than buoyancy forces. If λ� 1, advection dominates until late
times, and if λ� 1, diffusion is important even at earlier times.

In the context of CO2 sequestration, using typical values of the injection flux, Q =
10−5− 10−4m2 s−1, and the porosity of the aquifer, φ = 0.15, and assuming the diffusion
coefficient, D, is of order 10−9m2 s−1, the ratio is

λ = 104 − 105. (A 3)

The pore-scale dispersion of tracer is therefore small compared to the influence of the
shear on the dispersal and growth of the tracer zone.

In the present work, we have neglected the possible dissolution of CO2 into the ambient
brine (Riaz et al. 2006; Neufeld et al. 2010). Such dissolution would reduce the velocity
of the nose of the current. The mechanisms of tracer dispersion discussed in this work
would still occur if dissolution were incorporated in the motion of the CO2, but in this
case, a fraction of the tracer-laden CO2 may dissolve into the brine, and this will then be
lost from the CO2 plume. It would be of interest to develop the model further to account
for such dissolution, although we note that since CO2 is only soluble in water up to a few
percent by mass. The dissolution would lead to a relatively slow evolution of the tracer
mass, and only that part of the tracer which enters the head region of the flow and comes
into contact with the leading edge of the flow would migrate into the brine.
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