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Summary 
Cells dynamically adjust organelle organization in response to growth and environmental 

cues. This requires regulation of synthesis of phospholipids, the building blocks of organelle 

membranes, or remodelling of their fatty-acyl (FA) composition. FAs are also the main 

components of triacyglycerols (TGs), which enable energy storage in lipid droplets. How 

cells coordinate FA metabolism with organelle biogenesis during cell growth remains 

unclear. Here we show that Lro1, an acyltransferase that generates TGs from phospholipid-

derived FAs in yeast, relocates from the endoplasmic reticulum to a subdomain of the inner 

nuclear membrane. Lro1 nuclear targeting is regulated by cell-cycle and nutrient starvation 

signals and is inhibited when the nucleus expands. Lro1 is active at this nuclear subdomain 

and its compartmentalization is critical for nuclear integrity. These data suggest that Lro1 

nuclear targeting provides a site of TG synthesis, which is coupled with nuclear membrane 

remodelling. 
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Introduction 

The internal membrane systems of the eukaryotic cell are highly dynamic, and their 

regulated remodelling is essential for proper organelle function, during both normal cell 

growth and stress. For example, the nuclear membrane undergoes dynamic remodelling 

during the two modes of nuclear division operating in eukaryotes – “open” and “closed” 

mitosis (Zhang and Oliferenko, 2013; Ungricht and Kutay, 2017); and the accumulation of 

unfolded proteins in the endoplasmic reticulum (ER) drives significant ER membrane 

expansion in order to support increased protein folding capacity (Walter and Ron, 2011). 

Therefore, cells must possess mechanisms to selectively add, remove or remodel 

membrane phospholipids at different organelles in response to cell cycle and stress signals, 

but those remain poorly understood. 

 

Lipid precursors, which are normally directed towards membrane synthesis to promote cell 

growth, are diverted towards storage during nutrient limitation. The main metabolic energy 

storage molecules in eukaryotes are triacylglycerols (TGs) which, together with other neutral 

lipids (e.g. steryl esters) are deposited in lipid droplets (LDs) (Wang et al., 2017). LDs 

emerge from, and remain associated with, the ER membrane in many cell types, and 

interact with other organelles (Barbosa and Siniossoglou, 2017). Some of these interactions 

involve LDs with their “client” organelles, such as mitochondria and peroxisomes, which 

catabolize fatty acids stored in TGs and provide an essential source of energy during 

starvation (Herms et al., 2015; Rambold et al., 2015). Other interactions suggest a link of 

LDs to organelle membrane biogenesis. For example, LDs have been proposed to provide 

lipid precursors for autophagosome membrane biogenesis in yeast and mammals (Dupont 

et al., 2014; Shpilka et al., 2015). Similarly, a specific pool of LDs associate with the 

expanding prospore membrane that sequesters the meiotic nuclei during sporulation of 

yeast cells (Ren et al., 2014; Hsu et al., 2017); and LD-mobilized fatty acids are required for 

bud growth and cell cycle progression in yeast (Kurat et al., 2009).  

 

TG is synthesised by acyl-CoA:diacylglycerol acyltransferases (DGATs) or phospholipid-

diacylglycerol acyltransferases (PDATs) (Ruggles et al., 2013). Most eukaryotes express 

DGATs while PDATs have been described so far in fungi, microalgae and plants. Whereas 

DGATs use a fatty acid activated with coenzyme A (FA-CoA) to acylate diacylglycerol (DG), 

PDATs transfer a fatty acid from a phospholipid directly to DG (Figure 1A). Accordingly, 

PDATs couple TG synthesis to membrane phospholipid deacylation (Dahlqvist et al., 2000; 

Oelkers et al., 2000) (Figure 1B).  
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Here, we uncover a phospholipid remodelling pathway that targets a specific subdomain of 

the inner nuclear membrane (INM). We find that the PDAT Lro1 of Saccharomyces 

cerevisiae (from hereon called yeast) is imported from the ER to the INM abutting the 

nucleolus. Lro1 is active at this specific nuclear subdomain resulting in the utilization of 

phospholipid-derived fatty acids to generate TG and lyso-phospholipids. Interestingly, 

targeting of Lro1 is regulated by cell cycle and nutrient signals and is inhibited when the 

nucleus expands. Notably, we find that synthesis of TG at the INM sustains survival during 

starvation, suggesting the presence of a pathway that exports TG to the cytoplasmic side of 

the ER.  

 

Results 

Cell cycle and nutrient signals cause dynamic targeting of Lro1 to a nuclear membrane 

subdomain associated with the nucleolus.  

 

To determine if PDATs have a role in specific membrane remodelling events during nutrient 

depletion, we examined the subcellular localization of a C-terminally GFP-tagged Lro1 fusion 

protein when nutrients start to become scarce. All Lro1 fusions used for localization studies 

were catalytically active (Figure S1A). Lro1-GFP localizes to the ER during the exponential 

growth phase (EXP), when lipid intermediates are used to drive phospholipid synthesis to 

sustain rapid growth, but it relocates to a subdomain of the nuclear envelope as cells face 

nutrient depletion during diauxic shift [Post-Diauxic Shift (PDS) phase; Figure 1C; Wang and 

Lee, 2012]. This was observed when plasmid-borne Lro1-GFP was expressed from its own 

promoter or from the stronger NOP1 promoter (Figure 1C and S1B) as well as when Lro1-

GFP was integrated at its chromosomal locus (Figure S1C). The morphology of the Lro1-

GFP membrane domain is reminiscent of the nucleolus, which adopts a crescent-like shape 

and is tethered to the INM in yeast (Taddei and Gasser, 2012) (Figure 1D). Using the 

nucleolar reporter Nop1-RFP we demonstrated that Lro1-GFP indeed accumulates at the 

membrane bordering the nucleolus (Figure 1E). Interestingly, careful analysis of Lro1 

localization during exponential phase also revealed, in addition to its ER localization, an 

enrichment of Lro1 at the subdomain bordering the nucleolus in 34.0 ± 5.6% unbudded and 

34.5% ± 2.7% small budded cells, but only in 3.8 ± 5.0% of large budded cells (Figure 1F). 

This is consistent with Lro1-GFP accumulation at the nucleolus in PDS phase since yeast 

cells arrest at the G1 phase of the cell cycle at the diauxic shift (Miles et al., 2013). We also 

observed a similar accumulation of Lro1-GFP at this subdomain during acute glucose 

starvation, during growth in non-fermentable carbon sources, or when transferring the cells 

in water; but not upon nitrogen deprivation (Figure 1G) or inhibition of rDNA transcription 
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(Figure S1D). Immunoelectron microscopy revealed that an Lro1-6xHA fusion preferentially 

associated with the perinuclear ER during exponential phase (i.e. 62.6+/-0.36%) and only 

part of it was at the cortical/peripheral ER (37.3+/-0.21%), respectively. In the PDS phase, a 

significant decrease in Lro1 protein levels (see later) reduced the labelling efficiency, 

precluding statistical quantifications. Nevertheless, in the few cell sections where Lro1-6xHA 

was detected, this fusion protein was mostly found on one side of the nuclear envelope and 

always adjacent to LDs (Figure 1H). Taken together, these results show that glucose 

limitation and cell cycle signals target Lro1 to a subdomain of the nuclear membrane, which 

is in contact with the nucleolus. 

 

Lro1 is targeted to the inner nuclear membrane 

 

Lro1 is a type II integral membrane protein with a short basic cytosolic N-terminal domain 

and a larger luminal catalytic domain [Figure 2A; Figure S2A (Choudhary et al., 2011)]. 

Expression of its N-domain fused to GFP shows a clear intranuclear localisation with 

enrichment at the nucleolus (Figure 2B, panel 2; Figure S2B). Notably, the N-domain with 

the transmembrane segment also accumulates at the membrane in contact with the 

nucleolus (Figure 2B, panel 4 versus 6). Mutating the K/R residues within two basic clusters 

into alanines abrogates the nucleolar enrichment of both fusions in PDS phase (Figure 2B, 

panel 2 versus 3; panel 4 versus 5). Unexpectedly, the same mutations only partially 

compromise the targeting of Lro1 within the context of the full-length protein, indicating the 

presence of additional targeting determinants (Figure 2C; Figure S2C). To examine whether 

these also map in the N-domain, we replaced it with 4 IgG binding domains of Protein A 

(4xIgGb) and found that this prevented detection of the resulting GFP fusion at the PDS 

phase, both at the nucleolus and at the ER. Because the stability of Lro1 is controlled by the 

ubiquitin-protein ligase Hrd1 (Iwasa et al., 2016), we imaged 4xIgGb-Lro1-GFP in an hrd1Δ 

strain and found out it could be detected at the ER, but not at the nucleolar-associated 

membrane, at the PDS phase (Figure 2C; Figure S2C). Together, these results show that 

the N-domain of Lro1 is necessary and sufficient for its efficient targeting to the nuclear 

membrane subdomain in contact with the nucleolus; when this targeting fails in PDS, Lro1 is 

unstable in the ER. 

 

Next, we compared the dynamics of the two pools of Lro1 using Fluorescence Recovery 

After Photobleaching (FRAP). We found that these exhibit different properties: the nucleolar-

associated membrane pool of Lro1-GFP was more immobile and its fluorescence recovery 

was significantly slower compared to that of the cortical ER, suggesting the presence of a 

limiting step in its targeting (Figure 2D; Figure S2D and S2E). Given that its soluble N-
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domain associates to the nucleolus, we asked whether Lro1 accesses the inner side of the 

nuclear membrane. We applied two assays to address this question: the first approach was 

based on the fact that import of integral membrane proteins from the ER to the INM through 

the nuclear pore is limited by the size of their cytosolic domains, with the cutoff in yeast 

being 90 kDa (Popken et al., 2015). In support of Lro1 residing in the inner nuclear 

membrane, Lro1-GFP nucleolar targeting was significantly compromised when its 

extralumenal domain was made larger by appending 1, 2 or 3 copies of the maltose binding 

protein (MBP) (Figures 2E and S2F). Moreover, we found that increasing the size of the N-

terminal domain of Lro1, and/or preventing its nuclear import results in a significant decrease 

in its protein levels (Figure S2G), explaining why many cells have low 3xMBP-Lro1-GFP 

signal at the ER in the PDS phase. To independently determine whether Lro1 can associate 

with the INM, we used a second assay based on the anchor-away technique (Haruki et al., 

2008). This approach requires the co-expression of two chimeric proteins: firstly, the INM 

protein Heh1 was fused to the FK506 binding protein (FKBP12); secondly, Lro1-GFP, or 

GFP as control, was fused to the FKBP12-rapamycin-binding (FRB) domain (Figure S2H). 

FRB and FKBP12 form a high affinity ternary complex in the presence of rapamycin if they 

are in close proximity. Following the addition of rapamycin, FRB-GFP changed rapidly (30 

min) from a diffuse to a ring-like localization, confirming that the INM anchor is indeed 

accessible to FRB-GFP (Figure 2F). Addition of rapamycin in the strain expressing FRB-

Lro1-GFP resulted in loss of its cortical ER localisation and its accumulation at a perinuclear 

ring, which is typical of INM proteins. In contrast, FRB-3xMBP-Lro1-GFP retained its cortical 

ER localisation after rapamycin treatment (Figure 2F), consistent with an impairment in 

nucleolar targeting when the mass of the N-terminal domain increases. Taken together 

these data show that Lro1 targets the INM by virtue of its N-domain. 

 

Lro1 is catalytically active at the INM in contact with the nucleolus.  

 

The nuclear membrane associated with the nucleolus has the property of being particularly 

susceptible to expansion in response to excess phospholipid synthesis (Campbell et al., 

2006; Karanasios et al., 2010; Witkin et al., 2012). We therefore examined whether Lro1 is 

active by following TG synthesis at this membrane subdomain. To do this, we first sought to 

express Lro1 in a background where it would be the sole source of neutral lipid; hence we 

used a mutant with deletions in the two DG acyltransferases (LRO1 and DGA1) and the two 

steryl acyltransferases (ARE1 and ARE2), henceforth called 4Δ, and which lacks neutral 

lipids and LDs (Oelkers et al., 2002; Petschnigg et al., 2009). Given that synthesis of neutral 

lipids is essential for cell survival in stationary phase, 4Δ cells display accelerated cell death 

in PDS that can be rescued by the expression of Lro1 as the only source of TG. This rescue 
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requires the catalytic activity of Lro1 because mutation of Ser324 within its conserved 

GHSXG lipase motif abolishes the appearance of LDs (not shown) and survival in PDS 

(Figure 3A). Importantly, TG levels rise concomitantly with increases in the levels of Lro1-

GFP at the nucleolar-associated membrane in 4Δ cells in time course experiments during 

exit from exponential growth (Figures 3B and 3C). Three-dimensional reconstruction of the 

LD distribution relative to Lro1-mCherry in 4Δ cells shows that in 86% (+/-2.5%, n=3 

experiments) of the cells at least one LD is in close proximity with the Lro1-mCherry 

punctum in the PDS phase (Figure 3D and Video S1). LDs in the vicinity of the nucleolus 

were also observed during live imaging of 4Δ cells expressing Lro1 (Video S2). In both 

experiments, LDs that are not in proximity to the nucleolus can still be detected; these may 

be derived from Lro1 activity at the ER during the exponential phase or their mobility within 

the perinuclear ER. Taken together these results support the notion of Lro1 being active at 

the INM. 

 

Lro1 activity regulates phospholipid homeostasis. 

 

Next we investigated the effect of Lro1 activity on membrane phospholipid homeostasis. We 

hypothesized two scenarios: in the first, the lyso-phospholipid generated by Lro1 could be 

re-acylated with a different fatty acid, changing the physical properties of the membrane; in 

the second, the lyso-phospholipid could be further broken down by a phospholipase, 

effectively degrading the original phospholipid substrate of Lro1 (Figure 3E). To discriminate 

between these possibilities, we first determined the subcellular distribution of the known 

lyso-phospholipid acyltransferases (Ale1, Slc1) or phospholipases B (Nte1, Lpl1; Plb’s 1 to 3 

could not be visualized) when Lro1 localizes to the nucleolar-associated membrane. GFP-

fusions of Ale1 and Nte1, and to a lesser degree Slc1, localized to the ER with no apparent 

co-enrichment with Lro1-mCherry during the PDS phase (Figure 3F). Next, we determined 

the consequences of Lro1 activity in lipid homeostasis: consistent with its PDAT activity, we 

found that transient overexpression of Lro1 in wild-type cells caused an increase in TG 

levels (Figure 3G). Cells lacking Ale1, which has general lyso-phospholipid acyltransferase 

activity in yeast (Jain et al., 2007; Riekhof et al., 2007; Tamaki et al., 2007), showed an 

increase in both lyso-PC and lyso-PE levels compared with that seen in the wild-type strain 

under the same conditions; on the other hand a mutant strain lacking four known 

phospholipases B showed no change in lyso-PC and a more modest increase in lyso-PE 

compared to that of the ale1Δ mutant (Figure 3G). This result is consistent with the Lro1-

derived lysophospholipids being directed primarily to re-acylation. However, our data cannot 

exclude a role for additional enzymes in the processing of Lro1-derived lysophospholipids.  
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Lro1 localization correlates with changes in nuclear morphology. 

 

Next we sought to investigate the nuclear function of Lro1 by mutating proteins required for 

its INM targeting. To do this we performed an unbiased screen for factors involved in Lro1 

nucleolar targeting. We used high content automated microscopy, followed by manual 

inspection, to determine the localization of Lro1-GFP in 6,000 strains carrying loss of 

function mutations in all yeast genes. We focused on mutants with defects in Lro1 targeting 

during the PDS phase (and hence displaying increased ER localization compared to the 

wild-type) or decreased overall Lro1-GFP signal due to the degradation of its ER pool in the 

PDS phase. We identified 137 such mutants, which affect diverse cellular functions (Table 

S1). Nearly half of the genes of the ontology term “establishment of sister chromatid 

cohesion” affected Lro1-GFP targeting (Table S1). These included components of the Ctf19 

complex of the kinetochore, which display a G2/M delay, consistent with the finding that Lro1 

localization is regulated during the cell cycle. In those mutants, Lro1-GFP showed increased 

ER localization mostly in large budded cells (Figure 4A).  

 

During G2/M mitotic delay, phospholipid synthesis is not halted resulting in expansion of the 

nuclear membrane that contains the nucleolus (Witkin et al., 2012). We asked whether other 

conditions that result in the expansion of this membrane domain correlate with loss of Lro1 

targeting. During exposure to α-factor mating pheromone, a MAP kinase cascade induces 

the formation of an extended nuclear membrane “pocket” embracing the nucleolus (Stone et 

al., 2000) (Figure 4B). Lro1-GFP is excluded from this subdomain in α-factor treated cells, 

while it was still detected in contact with the nucleolus in unperturbed cycling G1/S cells. 

Thus, under multiple conditions where the nucleus expands – cycling anaphase (Figure 1F), 

G2/M delayed (Figure 4A) or α-factor treated-cells (Figure 4B) –, Lro1-GFP is displaced from 

the nucleolar-associated membrane.  

 

The exclusion of Lro1 from the expanding INM suggests that its presence could modulate 

nuclear morphology. To test this we transiently overexpressed Lro1 under two conditions 

that promote nucleolar membrane expansion (Witkin et al., 2012). Firstly, galactose-driven 

expression of Lro1 led to a 2.6-fold decrease in the percentage of wild-type cells with 

expanded nuclei following G2/M arrest with nocodazole (from 79 ± 4% to 30 ± 5%, p < 

0.001) (Figure 4C). Secondly, we measured nuclear circularity in large budded rad52∆, 

which display nucleolar expansion (Witkin et al., 2012), following galactose-induced Lro1 

expression. Circularity ranges from 0 to 1, the latter corresponding to a perfect circle. rad52∆ 

nuclear circularity increased following Lro1 overexpression (from 0.78 ± 0.14 to 0.86 ± 0.12, 

p < 0.001). Although Lro1-S324A overexpression also led to an increase in nuclear 
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circularity in both conditions, the catalytic active enzyme was more efficient in restoring 

nuclear shape (Figures 4C and 4D). We next examined the role of Lro1 at the INM using the 

anchor-away technique in cells expressing the INM anchor Heh1-FKBP12 in combination 

with Lro1, FRB-Lro1 or FRB-Lro1-S324A. We first confirmed that FRB-Lro1 is catalytically 

active when anchored at the INM (Figure S3A). Next, we incubated the cells with rapamycin 

to anchor the FRB-Lro1 fusions to the INM and then induced nuclear expansion with 

nocodazole. Since our data show that Lro1 is controlled through both targeting and DG 

availability (see later), we deleted DGK1 in this system to increase the DG levels at the INM. 

We find that FRB-Lro1 activity at the INM is required to increase nuclear circularity (Figure 

4E). Collectively, these data show that Lro1 localization correlates with, and impacts, the 

membrane expansion of this nuclear subdomain. 

 

Nuclear TG synthesis is sufficient to sustain growth during starvation. 

 

Our data are consistent with a role for Lro1 in TG synthesis at the INM. However, since Lro1 

partitions dynamically between cortical and perinuclear ER, it is possible that a pool of Lro1 

remains active at the cortical ER at the PDS phase. Therefore, we asked whether redirecting 

Lro1 constitutively to the INM would be sufficient to support TG synthesis. We found that the 

INM-targeting sequence of Heh1 (Meinema et al., 2011) is sufficient to relocalise an Lro1 

fusion (H1-Lro1-GFP) exclusively to a perinuclear ring both in wild-type or 4Δ cells, which is 

indicative of INM targeting (Figures 5A and 5B, panels 1 and 2). Consistently, disruption the 

Asi ubiquitin ligase complex, which mediates INM protein-specific degradation (Foresti et al., 

2014; Khmelinskii et al., 2014), led to an increase in both the protein and the nuclear 

membrane fluorescence levels of H1-Lro1-GFP (Figure S3B). Two lines of evidence indicate 

that H1-Lro1 is active at generating TG at the INM in PDS phase: firstly, expression of H1-

Lro1 in 4Δ led to a significant increase of TG levels (Figure 5C); and secondly, H1-Lro1 

rescued the lethality of 4Δ in the PDS phase (Figure 5D). Strikingly, TG synthesis at the INM 

did not compromise long-term survival in stationary phase (Figure 5D). 

 

We noticed, however, that 4Δ H1-Lro1 cells lack detectable LDs during exponential growth 

in standard glucose media (Figure 5E, panels 1 and 2). Cellular levels of DG, which is 

required for the formation of LDs, do not decrease significantly in the H1-Lro1 strain in the 

exponential phase (Figure S3C). We therefore hypothesize that the INM is less accessible to 

DG compared with the cytosolic ER during exponential phase. Two results support this 

hypothesis: (a) re-localization of H1-Lro1 to the ER, by removing a peptide from the Heh1 

sequence, which is required for INM targeting of Heh1 (Meinema et al., 2011) (Figure 5B 

panel 3); or (b) increasing DG levels at the nuclear membrane by overexpressing the active 
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form of the PA phosphatase Pah1, or deleting the DG kinase DGK1 increase TG levels and 

lead to the appearance of perinuclear LDs (Figure 5E, panel 3 and Figure S3D). Collectively 

these data are consistent with a model where the INM can support TG synthesis during the 

PDS phase, when DG concentrates at this subdomain of the ER. 

 

Nuclear Lro1-derived TG is packed into LDs associated mostly with the outer nuclear 

membrane. 

 

If TG, which is generated by Lro1 at the INM, can sustain cell viability during starvation, then 

this storage lipid has to become available to cytoplasmic organelles where its fatty acids are 

metabolized. To investigate this, we determined the spatial positioning of LDs with respect to 

the nuclear membrane in 4Δ H1-Lro1 cells during the PDS phase by using enhanced 

resolution Airyscan microscopy. As shown in Figure 5F, LDs were detected in the 

nucleoplasm in close proximity to the nuclear envelope in sequential z-slices that 

encompass the diameter of the LD. INM-associated LDs were also detected in 4Δ cells 

expressing wild-type Lro1 at the PDS phase (Figure S3E). In both strains, however, LDs 

associated with the INM were rare. We found that the majority of LDs in the H1-Lro1 strain 

associate with the outer nuclear membrane. Electron microscopy using a cryo-sectioning 

procedure of chemically fixed cells for the morphological examination of 4Δ H1-Lro1 cells 

showed that LDs were associated with the outer side of the nuclear envelope but failed to 

resolve the nature of the LD-nuclear membrane association (Figure 5G). High-pressure 

freezing electron microscopy confirmed that LDs in this strain associate with the outer 

nuclear membrane (Figure 5H). Taken together our data are consistent with a model where 

TG is exported from the INM and accumulates in the ONM, where it is packed into mature 

LDs.  

 

Compartmentalization of INM TG synthesis is important for maintenance of nuclear integrity. 

 

Our data show that Lro1 can support TG synthesis when it localizes throughout the entire 

INM (H1-Lro1). In wild-type cells, however, Lro1 activity is restricted to a specific subdomain 

of the INM. We therefore wondered why yeast cells maintained this localized targeting of 

Lro1. We hypothesized that, when not confined, LD formation at the nuclear envelope may 

disrupt nuclear morphology and other nuclear functions, in particular under conditions of 

enhanced TG synthesis. To test this hypothesis, we first confirmed that the different 

localization of the Lro1 mutants correlates with a distinct subcellular distribution of LDs in 4Δ 

cells. Indeed, consistent with its constitutive perinuclear localization, H1-Lro1-derived LDs 

appeared nearly exclusively associated with the nuclear envelope in the PDS phase or after 
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supplementation of oleate. In contrast, under the same conditions, cells expressing 3xMBP-

Lro1 displayed an increased number of cortical LDs (Figure 6A and 6B). Next, we evaluated 

nuclear morphology in these cells by measuring the size and shape of their nuclei. The 

average cross-sectional surface of nuclei from the 4Δ H1-Lro1 cells (1.93 ± 0.78 µm2) 

showed a modest but significant decrease when compared with cells expressing the wild-

type enzyme (2.08 ± 0.71 µm2), while the opposite result was observed for 4Δ 3xMBP-Lro1 

cells (2.19 ± 0.84 µm2) (Figure 6C). To evaluate nuclear shape, we measured nuclear 

circularity during the PDS phase. Circularity was significantly lower in 4Δ H1-Lro1 than in 4Δ 

Lro1 cells (Figure 6D). The nuclei of 4Δ 3xMBP-Lro1 cells displayed higher circularity than 

those of 4Δ H1-Lro1 cells although they displayed a modest decrease when compared to 4Δ 

Lro1 nuclei (Figure 6D). Thus, shifting Lro1 from the cortical ER to the INM decreases 

nuclear surface, consistent with a role of PDAT activity in organelle remodelling. 

 

Next, we asked whether constitutive LD formation at the INM compromises nuclear 

homeostasis. Maintenance of nuclear envelope integrity and repair is mediated by the 

ESCRT-III machinery (Webster et al., 2014; Olmos et al., 2015; Vietri et al., 2015). We 

therefore examined whether ESCRT-III would be required for cell viability when the only 

source of TG synthesis, during fatty acid overload, would be at the INM. To test this, we 

deleted VPS4, a key component of ESCRT-III, in 4Δ H1-Lro1 and challenged the cells with 

oleate. While the single mutants of either vps4Δ or 4Δ H1-Lro1 grew in the presence of 

oleate, the double mutant 4Δvps4Δ  H1-Lro1 displayed a strong growth inhibition (Figure 

6E). In contrast, 4Δvps4Δ 3xMBP-LRO1 showed no defect, consistent with the notion that 

loss of viability is specifically linked to LD production at the INM. Since ESCRT-III is involved 

in membrane remodelling events in multiple organelles, we deleted CHM7, which is involved 

in the specific nuclear envelope recruitment of ESCRT-III (Webster et al., 2016; Gu et al., 

2017). Consistently, the double mutant 4Δchm7Δ H1-Lro1 displayed a growth defect in the 

presence of oleate when compared to 4Δ H1-Lro1 (Figure 6F). 4Δ H1-Lro1 displayed also a 

growth defect when lacking NUP188, a component of the inner ring of the nuclear pore 

complex, further supporting the requirement of a functional nuclear envelope during INM-

derived LD formation. Collectively, these data suggest that biosynthetic production of TG is 

likely to cause stress to the INM; by restricting PDAT activity to the nucleolar membrane 

cells maintain nuclear integrity. 

 

Discussion 
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Eukaryotic cells possess efficient mechanisms for TG synthesis and packing at the 

cytoplasmic ER. Depending on the cellular metabolic requirements, fatty acids stored in TGs 

can be used for energy production and/or membrane biogenesis. In budding yeast, the tight 

association of the nucleolus with the nuclear periphery defines a membrane subdomain, 

which has been implicated in nuclear shape, nucleophagy and rDNA anchoring to the 

nuclear envelope. We find that the yeast acyltransferase Lro1 is active at this subdomain, 

generating TGs from phospholipid-derived fatty acids, in response to cell cycle and nutrient 

signals.  

 

Several reports have documented the presence of intranuclear LDs, but the origin of the TG 

composing them, as well as their roles, remain elusive (Layerenza et al., 2013; Uzbekov and 

Roingeard, 2013; Cartwright et al., 2015; Grippa et al., 2015; Wolinski et al., 2015; Ohsaki et 

al., 2016; Romanauska and Kohler, 2018). The DGAT Dga1 makes the majority of TG in 

yeast cells at the stationary phase (Oelkers et al., 2002; Sandager et al., 2002). Under these 

conditions, we showed that Lro1 associates with, and concentrates at, the INM subdomain. 

Thus, our data support the notion of a restricted activity of Lro1 at the nuclear envelope, 

which may explain its limited contribution in bulk TG synthesis in wild-type cells during 

starvation (Oelkers et al., 2002). Given its topology, however, we cannot exclude that Dga1 

is also contributing to nuclear TG synthesis. In fact, DGAT2 association with intranuclear 

LDs was proposed to mediate their expansion in hepatocyte-derived cell lines	(Ohsaki et al., 

2016).  

 

Although it is generally accepted that TG storage in LDs takes place at the ER, our data 

reveal that cells can survive during starvation when engineered to depend exclusively on TG 

generated at the INM. Given that the final destination of the TG-stored fatty acids during 

starvation are peroxisomes, mitochondria and the vacuole, this result is consistent with the 

presence of a pathway that delivers nuclear TG to its cytoplasmic destinations. How such a 

process could operate will be the subject of future studies, but some scenarios can be 

hypothesized. Low levels of TG can be accommodated between the leaflets of a 

phospholipid bilayer and could diffuse through the nuclear pore membrane to the outer 

membrane, where they would be packed into mature LDs. Alternatively, budding of LDs 

towards the luminal side could channel them towards the outer nuclear membrane (Figure 

6H). Our data on the requirement of nuclear membrane and pore integrity under conditions 

of enhanced TG synthesis at the INM is consistent with both scenarios. However, LDs can 

bud towards the nucleoplasm in mutants that affect the phospholipid composition of the ER 

and that of the LD monolayer, (Cartwright et al., 2015; Grippa et al., 2015; Romanauska and 
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Kohler, 2018). Therefore membrane phospholipid composition may be critical in determining 

the directionality of LD budding. 

 

In yeast cells, the nuclear membrane expands to allow anaphase to take place within an 

intact nucleus. The membrane associated with the nucleolus can also expand in response to 

excess phospholipid synthesis, resulting in alterations of nuclear shape (Campbell et al., 

2006; Witkin et al., 2012). Although the precise mechanisms of this process remain to be 

determined, one possibility could be that Lro1-mediated generation of either lyso-

phospholipids or re-esterified phospholipids with a distinct fatty-acyl composition modify the 

biophysical properties of this membrane subdomain and its dynamics. Because Lro1 

targeting to this subdomain is prevented under conditions that require nuclear expansion, it 

is tempting to speculate that Lro1 plays a role in the regulation of this process. The pool of 

DG that is required for TG synthesis by Lro1 (Fig. 1B; Fig. S3D) could be provided by Pah1, 

which is known to target the nuclear envelope at the diauxic shift (Barbosa et al., 2015), but 

other enzymes could act in concert with Lro1 as well. We cannot also exclude the possibility 

that Lro1 controls nuclear organization through additional mechanisms that are independent 

of its catalytic activity. The highly basic N-domain of Lro1 faces the nucleoplasm and its 

interaction with nucleic acid or protein components of the nucleolus could restrict the 

expansion of its membrane subdomain.  

 

It is conceivable that Lro1-mediated membrane remodelling could also play additional roles 

at the INM. Changes in nuclear membrane dynamics may be required for the removal of 

nuclear material during starvation conditions via piecemeal microautophagy (Roberts et al., 

2003) and receptor-mediated nucleophagy (Mochida et al., 2015; Mostofa et al., 2018). Both 

processes take place in proximity to the nucleolus. However, we found that at least one of 

these two processes, receptor-mediated nucleophagy, proceeds during glucose starvation in 

the absence of Lro1 (data not shown). Lro1-mediated membrane remodelling could be also 

linked to nucleolar functions. For example, rDNA transcription and ribosome biogenesis are 

energy-consuming processes acutely inhibited during starvation and they lead to a decrease 

in nucleolar size (Neumuller et al., 2013). Since the rDNA is physically tethered to the INM in 

yeast (Mekhail et al., 2008) Lro1 could remodel this membrane subdomain to facilitate 

nucleolar reorganization during starvation. Future studies will be needed to fully elucidate 

the role of INM lipid composition in nucleolar functions.  

 

Previous studies reported that PDATs are present in fungi, green algae and plants, and they 

have a topology similar to that of Lro1 (Stahl et al., 2004; Pan et al., 2015). Our analysis 

identified PDATs from two additional taxonomic groups, the flagellates Euglenozoa and the 
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fungal-like Oomycetes (Table S2). However, the nucleolar-associated membrane has been 

described so far only in fungi, raising the question of PDAT function in other taxonomic 

groups. Notably, the green algal C. reinhardtii PDAT was proposed to use chloroplast 

membrane lipids to synthesize TG during starvation (Yoon et al., 2012). Similarly, the 

Arabidopsis thaliana Lro1 orthologue PDAT1, which also generates TG using phospholipids 

as acyl donors (Stahl et al., 2004), re-localizes from the ER to chloroplasts following 

starvation induced by light deprivation (our unpublished data). Therefore, we speculate that 

PDATs respond to the need of remodelling or turnover of membranes. Given that the 

requirements of different cell types during stress are often distinct, PDATs may have evolved 

to target diverse organelles. It will be interesting to define the signals that govern PDAT 

dynamics in different cell types and examine whether animal cells, which lack apparent 

PDAT orthologues, maintain the ability to remodel membranes by a combination of 

phospholipase and acyltransferase activities. 
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Figure 1. Lro1 targets a nuclear membrane subdomain that associates with the 

nucleolus. (A) Schematic of the major lipid metabolic pathways in yeast; PA, phosphatidate; 

DG, diacylglycerol; TG, triacylglycerol; FA, fatty acid: LPL, lysophospholipid. (B) Schematic 

of the PDAT activity; PL, phospholipid. (C) Localization of Lro1-GFP expressed under the 

control of its own promoter in cells co-expressing an ER (Sec63-mCherry) reporter at the 

indicated growth phases. (D) Schematic of the organization of the yeast nucleus. (E) Co-

localization of Lro1-GFP as in C but with a nucleolar reporter. (F) Left panels: examples of 

nucleolar enrichment of Lro1-GFP during the exponential phase; right panel, quantification 

from three experiments, n= 343 cells. (G) Quantification of Lro1 targeting to the nucleolar-

associated membrane in response to various stresses. Exponentially growing cells 

expressing a chromosomally integrated nucleolar reporter (NOP10-mCherry) were subjected 

to the indicated stresses and the percentage of Lro1-GFP targeting to the nucleolar-

associated membrane was quantified (n=3 experiments, at least 600 cells counted per 

stress condition); comparisons are between 1 or 2 hours and PDS. (H) Immunolabeling of 

chemically fixed yeast cells expressing Lro1-6xHA under the control of the NOP1 promoter. 

Arrowheads point to gold particles clustering on one side of the nuclear envelope. Stars 

indicate LDs. MVB, multivesicular bodies; M, mitochondria. Scale bars in C, E and F: 5 

microns; in H, 500 nm. *, p<0.05; **, p<0.01; *** p< 0.001; ns, not significant. See also 

Figure S1. 
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Figure 2. Translocation of Lro1 to the INM that associates with the nucleolus. (A) 

Schematic of the topology of Lro1. The K/R-rich nucleolar targeting sequences are shown in 

red. The Ser324 within the GHSXG lipase motif is shown. (B) lro1Δ cells expressing a 

nucleolar reporter and the Lro1-GFP mutants shown were imaged at the indicated growth 

phases. Red stars denote the K/R to A mutations. Arrowheads denote the nucleolus and/or 

the nucleolar associated membrane. (C) Quantification of the subcellular localization of the 

indicated Lro1-GFP mutants in the specified strains. Red stars denote the K/R to A 

mutations within the extralumenal domain. Three colonies of each strain were analysed; at 

least 200 cells were counted for each strain. (D) Lro1-GFP expressed under the control of 

the NOP1 promoter in lro1Δ cells was photobleached, either at the nucleolar-associated 

membrane or the cortical ER (cER), and fluorescence recovery was measured. Data are 

means ± SD from three independent experiments (seven cells each); arrow indicates the 

bleaching event. (E) Nucleolar-associated membrane targeting of 1x-, 2x-, or 3x-MBP-Lro1-

GFP fusions during the PDS phase. Right panel: Quantification of the data shown from three 

experiments, counting only cells with signal in ER or nucleolus; at least 250 cells were 

quantified for each strain. (F) Localization of the FRB-GFP control (the outlines of cells are 

shown; vac, vacuole), and the FRB-Lro1-GFP (middle) or FRB-3XMBP-Lro1-GFP (bottom) 

fusions, before or after the addition of rapamycin. Arrowheads point to the cortical ER 

membrane. Scale bars in all micrographs are 5 microns. See also Figure S2. 
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Figure 3. Lro1 is catalytically active at the nucleolar-associated INM. (A) Wild-type or 

dga1Δ lro1Δ are1Δ are2Δ (4Δ) cells expressing the indicated plasmids were grown to 

exponential (EXP) or PDS phases in minimal synthetic medium and spotted on YEPD 

plates. (B) 4Δ cells expressing Lro1-GFP and Sec63-mCherry were grown from exponential 

phase to the indicated densities and imaged. (C) 4Δ cells expressing Lro1, or an empty 

vector, were grown to the indicated densities, labelled with BODIPY 493/503 and their 

fluorescence was quantified by FACS. Data are representative of two independent 

experiments. (D) 4Δ cells expressing Lro1-mCherry were grown to the PDS phase and 

labelled with BODIPY 493/503. Deconvolved through-focus image series were processed to 

generate 3D image. The full reconstructed field is shown in Video S1. (E) Model for the Lro1-

mediated regulation of phospholipid homeostasis; see text for details. (F) Co-localization of 

the indicated GFP fusions with Lro1-mCherry at the PDS phase. (G) Lipidomic 

quantifications of TG, LPE, LPC, PE and PC in wild-type (BY4741), ale1Δ and plb1Δ plb2Δ 

plb3Δ nte1Δ lro1Δ (5Δ) cells expressing the denoted plasmids. Cells were grown in 

galactose for five hours. Lipid levels were normalized to the corresponding levels of the wild-

type strain expressing the empty vector. Data shown are means of at least 5 experiments +/- 

SD. Scale bars in all micrographs are 5 microns. See also Video S1 and Video S2. 
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Figure 4. Effects of Lro1 on nuclear morphology. (A) Lro1-GFP localization in BY4742 

(wild-type), ctf19Δ and mcm21Δ strains grown to the PDS phase. (B) The BY4741 strain 

expressing the indicated protein fusions was treated with α-factor; arrowheads point to the 

nuclear envelope “pocket” that encompasses the nucleolus. (C) BY4741cells expressing 

PUS1-GFP, NOP1-RFP and an empty vector or a high-copy GAL-LRO1 plasmid were 

transferred to galactose-containing medium to induce LRO1 expression, incubated with 

nocodazole and extended focal images were collected live. The percentage of arrested cells 

displaying the elongated nuclear membrane expansion containing the nucleolus (panel 2) 

was determined; panels 1 shows a typical nucleus without membrane expansion; data 

shown are means of 5 experiments (at least 360 cells per strain) +/- SD. (D) rad52Δ cells 

expressing the indicated fluorescent fusion proteins and the denoted LRO1 plasmids, were 

grown at the exponential phase and imaged as above; nuclear circularity of large budded 

cells was obtained from extended focal images cells as described in STAR Methods; right 

panels depict circularity measurements from round or expanded rad52Δ nuclei; arrowheads 

point to the nucleolar-associated membrane expansion; data shown are means of 6 

experiments (at least 360 cells per strain) +/- SD. (E) A strain carrying an INM anchor (see 

Figure 2) and expressing PUS1-mCherry and the indicated Lro1 fusions were incubated first 

with rapamycin, followed by nocodazole. Nuclear circularity was calculated as in D; data 

shown are means of 3 experiments (at least 260 cells per strain) +/- SD. Scale bar for all 

micrographs: 5 microns. * p<0.05; ***, p<0.001. See also Figure S3. 
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Figure 5. INM activity of Lro1 supports TG synthesis and is induced by availability of 

diacylglycerol. (A) Schematic of the H1-Lro1 fusion. The Heh1 residues fused to Lro1 are 

shown; UP, unfolded peptide sequence. (B) Localization of the denoted Lro1-GFP fusions in 

4Δ cells. Arrowheads point to the cortical ER membrane. (C) The 4Δ strain expressing either 

Lro1 or H1-Lro1, or an empty plasmid, was grown to the exponential or PDS phases. Lipids 

were extracted and TG quantified by mass spectrometry. TG levels shown are relative to 

internal TG standards of known concentration. Values shown are means from three 

independent cultures per strain. (D) Upper panel: growth of 4Δ cells in minimal synthetic 

medium expressing wild-type Lro1, or the indicated Lro1 mutants, in exponential phase or 

following recovery from the PDS phase. Five-fold dilutions were spotted in YEPD plates. 

Lower panel: Survival of 4Δ cells expressing Lro1, or H1-Lro1, in minimal medium. Data are 

means +/- SDs from three different cultures per strain. (E) Exponentially growing 4Δ cells 

expressing the indicated Lro1 constructs were stained with BODIPY 493/503 to label LDs. 

(F) 4Δ cells expressing H1-Lro1 and Nup84-mCherry were grown to the PDS phase, stained 

with BODIPY 493/503, and imaged live using Zeiss LSM880 confocal microscope equipped 

with an Airyscan unit, as described in STAR Methods, at 0.18 µm axial resolution, and 0.2 

µm step slices with 50% overlap. The arrowhead points to a representative intranuclear LD. 

Arrows point to LDs that associate with the outer nuclear membrane. (G) 4Δ cells expressing 

H1-Lro1 were grown to the PDS phase and processed for electron microscopy as described 

in STAR methods. CW, cell wall;	M, mitochondria; N, nucleus; LD is marked with an asterisk. 

(H) 4Δ cells expressing H1-Lro1 were grown to the PDS phase and processed for high 

pressure freezing and freeze substitution as described in STAR methods. Scale bars in B 

and E: 5 microns; in F and G: 1 micron; in H: 500 nm. *, p<0.05; **, p<0.01; ns, not 

significant. See also Figure S3. 
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Figure 6 Compartmentalization of INM TG synthesis is required to maintain nuclear 

homeostasis. (A) Distribution of LDs, labelled by BODIPY 493/503, in 4Δ cells expressing 

Nup84-mCherry and the indicated Lro1 proteins during the PDS phase; the cell outlines are 

shown. Scale bar: 5 µm (B) Quantification of the association of LDs with the nuclear 

envelope in the strains shown in A (PDS phase; four experiments, n= at least 350 cells per 

strain) or in the same strains grown in exponential phase and incubated with glucose-

containing media with 0.1% oleate for 2 hours (three experiments, n= at least 400 cells per 

strain); data are means +/-SDs. (C) Quantification of nuclear envelope surface area in 4Δ 

cells expressing the indicated Lro1 proteins at the PDS phase; data are means from five 

experiments (n= at least 400 per strain counted) +/-SDs. (D) Quantification of nuclear 

envelope circularity in the samples from A; data are means from six experiments and at least 

400 cells per strain. (E) Loss of VPS4 inhibits growth of 4Δ H1-Lro1 cells in the presence of 

oleate. The indicated strains expressing the Lro1 constructs shown, were grown to the 

exponential phase in glucose-containing medium, spotted on YEPD plates in the absence or 

presence of 1mM oleate and grown for two days. (F) Loss of CHM7 inhibits growth of 4Δ H1-

Lro1 cells in the presence of oleate. The specified strains were grown as described above. 

(G) Loss of NUP188, but not POM152, inhibits growth of 4Δ H1-Lro1 cells in the presence of 

oleate. The specified strains were grown as described above. (H) Model for the export of 

Lro1-derived TG to the outer nuclear membrane; see discussion for details. * p<0.05, *** 

p<0.001. 
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STAR METHODS 

 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the Lead Contact, Symeon Siniossoglou (ss560@cam.ac.uk). 

 

EXPERIMENTAL MODELS AND SUBJECT DETAILS 

Yeast strains, plasmids, media and growth conditions 

Unless otherwise specified, reagents were obtained from Sigma (St. Louis, MO). Yeast 

strains and plasmids are described in the Key Resources table. Yeast plasmids were 

generated using standard PCR and cloning techniques. Cells were transformed using the 

lithium acetate method. Gene deletions and epitope tagging by chromosomal integration 

were generated by one-step polymerase chain reaction (PCR)-based method (Longtine et 

al., 1998; Janke et al., 2004; Haruki et al., 2008) and confirmed by PCR. In most 

experiments, cells were grown overnight at 30°C in synthetic complete (SC) medium 

containing 2% glucose, 0.2% yeast nitrogen base (YNB, Difco, BD, Franklin Lakes, NJ), 

0.6% ammonium sulfate and amino acids drop-out (60 mg/L leucine, 55 mg/L adenine, 55 

mg/L uracil, 55 mg/L tyrosine, 20 mg/L of arginine, 10 mg/L histidine, 60 mg/L isoleucine, 40 

mg/L lysine, 60 mg/L phenylalanine, 50 mg/L threronine, 10 mg/L methionine, 40 mg/L 

tryptophan) to exponential phase (to OD600nm 0.4-0.6), PDS phase (inoculated at OD600nm 

0.05 and grown for approximately 15h to OD600nm 4-6), or the indicated OD600nm, from fresh 

pre-cultures, according to the previously determined growth rate in this medium (Barbosa et 

al., 2015). For stationary phase survival assays, cells were grown in minimal medium (MM) 

with 0.17% yeast nitrogen base (Difco, BD, Franklin Lakes, NJ), 0.5% ammonium sulfate 

and amino acids drop-out (20 mg/L uracil, 20 mg/L histidine, 20 mg/L methionine, 30 mg/L 

leucine, and 30 mg/L lysine) to PDS phase (OD600nm ~ 4), and viability was measured every 

24 hours by standard dilutions on YEP plates [2% glucose, 2% bactopeptone (BD, Franklin 

Lakes, NJ), 1% yeast extract (BD, Franklin Lakes, NJ)] with 2% glucose (YEPD medium) 

and 2% agar (Biogene, Kimbolton, UK). When required, SC and MM media lacked the 

appropriate amino acids for plasmid selection. 

For GAL1/10 promoter-mediated overexpression, cells were first pre-grown in selective SC 

medium with 2% glucose, grown overnight in selective SC medium with 2% raffinose, and 

transferred to selective SC medium with 2% galactose for the indicated times.  

LD biogenesis in the presence of glucose was induced by growing the cells in YEPD with 1 

mM oleic acid and 1% tergitol (solid media), or 0.1% oleic acid (3.2 mM oleate) and 0.2% 

Tween-80 pH 6.0 (in liquid media). Oleic acid uptake was confirmed by growth inhibition of 

the 4Δ strain (Petschnigg et al., 2009). 
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Growth assays on plates were performed using cells at the growth phase and media 

indicated in the figure legends. Serial dilutions were spotted onto the appropriate plates and 

incubated at 30°C for 2–4 days. 

 

METHOD DETAILS 

Fluorescence microscopy 

Lro1-GFP localization under stress conditions was tested transferring exponential cells for 1 

h or 2 h into SC medium lacking a carbon source (carbon starvation), nitrogen starvation 

medium (2% glucose, 0.17% YNB), SC medium with 2% glycerol as carbon source 

(respiratory growth), or H2O. An overnight culture grown to PDS phase was used as control, 

and targeting to the nucleolus was expressed as percentage of targeting in PDS. Enrichment 

of Lro1-GFP at the nucleolus in exponential phase was determined in asynchronous 

cultures. Rapamycin-induced heterodimerization of FKBP12 with the FRB domain of human 

mTOR was performed as previously described in the anchor-away technique (Haruki et al., 

2008). Briefly, cells were grown in selective SC medium to exponential phase and treated 

with 1 µg/ml rapamycin for 30 min. In nocodazole-mediated cell cycle arrest experiments, 

GAL1/10 promoter-mediated overexpression was induced as described above but growing 

the cells in YEP media with 2% galactose for 3 h before adding 15 µg/mL nocodazole for 2 

h; in the anchor-away strains, cells were first transferred to YEPD media and treated with 1 

µg/ml rapamycin for 30 min before adding 15 µg/mL nocodazole for 2 h. For alpha-factor cell 

cycle arrest, cells were treated with 10 µM alpha-factor for 2 h in YEPD. Lipid droplets were 

stained with 1.25 µg/ml BODIPY 493/503 for 10 min at room temperature.  

Cells grown to the indicated growth phases were pelleted and immediately imaged live at 

room temperature in a Zeiss AxioImager.Z2 epifluorescence upright microscope with a 100× 

Plan-Apochromatic 1.4 numerical aperture (NA) objective lens (Carl Zeiss Ltd, Jena, 

Germany). Images were recorded using a large chip sCMOS mono camera for sensitive 

fluorescence imaging (ORCA Flash 4.0v2, Hamamatsu, Hamamatsu, Japan), saved by 

Zeiss ZEN2.3 software (Blue edition, Carl Zeiss Ltd, Jena, Germany) and exported to Adobe 

Photoshop (Adobe, San Jose, CA). Where indicated, cells were mounted on a 1% agarose 

pad and imaged using a Zeiss LSM880 confocal microscope with Airyscan and the ZEN2 

software (Carl Zeiss Ltd, Jena, Germany). Cells were visualized from the periphery by taking 

0.2 µm step slices and 50% overlap, and 0.187 µm axial resolution. All microscopy images 

were captured blindly and quantifications were performed on fields obtained from 

independent experiments. 

For three-dimensional (3D) analysis, through-focus image series were deconvolved with 

Volocity 6.3 (PerkinElmer, Waltham, MA) using calculated point-spread functions and 3D 

iterative restoration processing to form 3D image stacks. Stacks were then visualized using 
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Volocity 6.3 (PerkinElmer, Waltham, MA) to generate the 3D images or movies showing the 

organelles at different positions. For circularity and surface of the nucleus measurements, 

through-focus image series were deconvolved with Volocity 6.3 (PerkinElmer, Waltham, MA) 

and merged in 2D images showing the brightest intensity through z, which were exported 

and analysed in ImageJ 1.47v (NIH, Bethesda, MD). 

Time-lapse imaging was performed in a Leica TCS SP8 confocal microscope. Yeast cells 

(4Δ) expressing Faa4-GFP, Nop1-RFP, and Lro1 under its endogenous promoter in a CEN 

vector, were grown in selective media to PDS phase and imaged on 2% agar pads. Images 

were acquired using a 63x oil immersion objective lens with an 8x zoom factor at 30 seconds 

intervals using white light laser at 488nm and 578nm for the excitation of GFP and RFP, 

respectively. Videos were generated using Imaris at a rate of three frames/second. 

 

Fluorescence recovery after photobleaching 

Photobleaching experiments were performed on a Leica TCS SP8 confocal microscope with 

the optional FRAP Booster enabled. Yeast lro1Δ cells expressing LRO1-GFP from NOP1 

promoter were pelleted and imaged at room temperature at early PDS phase. Images were 

acquired using a 63x oil immersion objective lens. After acquiring two images at 5-sec 

intervals, selected regions of interest were photobleached with 3 iterations of 100% laser 

power (white light laser) at 488 nm. The fluorescence intensity of GFP at the regions of 

interest was recorded for another 13 frames at 20 sec intervals. For data analyses, the 

fluorescence intensity of GFP was corrected by the percentage loss of GFP fluorescence 

intensity obtained from cells under identical conditions but without a photobleaching event. 

To calculate halftime of recovery (T1/2), exponential FRAP curve fitting (non-linear 

regression, one way association) was obtained using GraphPad Prism after excluding the 

two pre-bleaching measurement points. Mobile fraction of LRO1-GFP was calculated by 

subtracting the % of fluorescence intensity at T0 (I0) from the plateau level (Ie); while, 

immobile fraction was calculated by subtracting the mobile fraction from 100%. 

 

Automated yeast library manipulations and high-throughput microscopy screen 

Lro1-GFP, expressed from the NOP1 promoter in a CEN/ARS URA3 vector, was introduced 

in the KanMX deletion and DAmP collections (Giaever et al., 2002; Breslow et al., 2008) by 

Synthetic Genetic Array, by standard procedures previously described (Cohen and 

Schuldiner, 2011), using the RoToR bench-top colony arrayer (Singer Instruments, 

Roadwater, Watchet, UK). Cells were imaged, at room temperature at PDS phase in SC 

medium lacking uracil, using the automated inverted fluorescent microscopic ScanR system 

(Olympus, Waltham, Massachusetts, USA), with a 60× air lens, for GFP (excitation, 

490/20 nm; emission, 535/50 nm) and brightfield channels. After acquisition, images were 
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manually reviewed using the ImageJ software (NIH, Bethesda, MD). Cells showing 

increased Lro1-GFP signal in the ER, or overall decreased targeting to the nucleolus without 

enrichment at other subcellular localizations were selected for further analysis. The data 

obtained were analysed with GO (gene ontology) term finder of Saccharomyces Genome 

Database to determine GO term enrichment (https://www.yeastgenome.org/goTermFinder), 

and selecting the “Process” ontology aspect. Based on this analysis, Lro1-GFP localization 

was then manually inspected in mutants of interest (see Table S1). 

 

Electron microscopy 

Cells were grown to the indicated growth phases, chemically fixed, embedded in 12% gelatin 

and cryo-sectioned as described previously (Griffith et al., 2008). Ultrathin cryo-sections 

were collected with a 1:1 mixture of 2% methylcellulose and 2.3 M, sucrose 120 mM PIPES, 

50 mM HEPES, pH 6.9, 4 mM MgCl2, 20 mM EGTA, and layered on Formvar/carbon coated 

100 mesh copper grids. Immunological reactions were performed using a polyclonal anti-HA 

and a protein A-gold 10 nm conjugate (Cell Microscopy Center, Utrecht, The Netherlands). 

To determine protein localization, the distribution of gold particles was counted in 100 cells. 

The relative distribution of Lro1-6xHA to the cortical and the nuclear ER, was performed by 

counting the number of gold particles associated to these two cellular sub-compartments, on 

cell profiles randomly screened from immuno-labeled cell sections derived from at least 

three different grids. Gold particles were assigned to a compartment when no further than 10 

nm away from its limiting membrane. 

For high-pressure freezing electron microscopy, 4Δ H1-Lro1 cells were grown to PDS 

phase, pelleted and resuspended in a minimum volume of 20% BSA + 5% FBS/PBS to form 

a paste, and this paste was pipetted into flat specimen carriers and high-pressure frozen 

with a Leica EM PACT2. Freeze-substitution was performed with a Leica EM AFS2, and 

pellets were immersed in 0.1% tannic acid/acetone at -90oC for 24 hours, before being 

replaced by 2% osmium/ 0.1% UA (methanolic)/acetone for 48 hours at -90oC. Samples 

were then gradually warmed as follows; warmed to -56oC at a r ate of 5oC/hour, held at -

56oC for 12 hours, warmed to -20oC at a rate of 5oC/hour, held at -20oC for 12 hours, 

warmed to +4oC at a rate of 5oC/hour, held at +4oC for 4 hours. Pellets were washed three 

times with acetone before being gradually infiltrated with Spurr’s resin over a period of 4 

days. Ultrathin sections were cut using a diamond knife mounted to a Reichert Ultracut S 

ultramicrotome, and floating sections were collected onto copper grids. Grids were 

poststained first with both 2% uranyl acetate/70% methanol for 4 minutes and then with lead 

citrate for 4 minutes. Sections were viewed on an FEI Tecnai transmission electron 

microscope at a working voltage of 80 kV. 
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Yeast lipid profiling  

Yeast cells were prepared for mass spectrometry analysis as previously described (Folch et 

al., 1957) with minor modifications. Briefly, 50 mg of yeast cells were re-suspended in 1 mL 

of 2:1 chloroform-methanol mixture (v/v), with the addition of 150 µL of the following internal 

standard solution (approximately 10 to 50 µM in methanol):	CE_(18:0d6), Ceramide_C16d31, 

FA_C15:0d29, FA_C17:0d33, FA_C20:0d39, LPC_(C14:0d42), PA_(C16:0d31 / C18:1), 

PC_(C16:0d31 / C18:1), PE_(C16:0d31 / C18:1), PG_(C16:0d31 / C18:1), PI_(C16:0d31 / C18:1), 

PS_(C16:0d62), SM_(C16:0d31), TG_(45:0d29), TG_(48:0d31), and TG_(54:0d35). The cells were 

homogenized with 100 mg 0.5 mm diameter glass beads (BioSpec Products, Bartlesville 

Oklahoma, USA) in a FastPrep-24 instrument (MP Biomedicals, Santa Ana California, USA), 

using five short pulses at 5 m/s for 1 min; with one minute on ice between each pulse to 

prevent over-heating. Then 400 µL of sterile water was added to the homogenates, vortexed 

for 1 min, and then centrifuged at 13,200 rpm for 10 minutes. The organic layer was 

collected in a 2 mL amber glass vial (Agilent Technologies, Santa Clara California, USA) and 

the remaining mixture was then treated with a second lipid extraction following the same 

procedure. The two organic layers were combined and air-dried overnight in a fume hood. 

For lipid analysis, we used a method previously described with minor modification (Koulman 

et al., 2009; Lu et al., 2016). Full chromatographic separation of intact lipids was achieved 

using Shimadzu HPLC System (Shimadzu UK Limited, Milton Keynes, United Kingdom) with 

the injection of 10 µL onto an Acquity UPLC® CSH C18 column; 1.7 µm, I.D. 2.1 mm X 50 

mm, maintained at 55°C. Mobile phase A was 6:4, acetonitrile and water with 10 mM 

ammonium formate. Mobile phase B was 9:1, 2-propanol and acetonitrile with 10 mM 

ammonium formate.  The flow was maintained at 500 µL per minute through the following 

gradient: 0.00 minutes_40% mobile phase B; 0.40 minutes_43% mobile phase B; 0.45 

minutes_50% mobile phase B; 2.40 minutes_54% mobile phase B; 2.45 minutes_70% 

mobile phase B; 7.00 minutes_99% mobile phase B; 8.00 minutes_99% mobile phase B; 8.3 

minutes_40% mobile phase B; 10 minutes_40% mobile phase B. The sample injection 

needle was washed using 9:1, 2-propanol and acetonitrile with 0.1 % formic acid. 

The mass spectrometer used was the Thermo Scientific Exactive Orbitrap with a heated 

electrospray ionisation source (Thermo Fisher Scientific, Hemel Hempstead, UK). The mass 

spectrometer was calibrated immediately before sample analysis using positive and negative 

ionisation calibration solution (recommended by Thermo Scientific). Additionally, the heated 

electrospray ionisation source was optimised at 50:50 mobile phase A to mobile phase B for 

spray stability (capillary temperature; 380°C, source heater temperature; 420°C, sheath gas 

flow; 60 (arbitrary), auxiliary gas flow; 20 (arbitrary), sweep gas; 5 (arbitrary), source voltage; 

3.5 kV. The mass spectrometer resolution was set to 25,000 with a full-scan range of m/z 

150 to 1200 Da, with continuous switching between positive and negative mode. 
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Lipid quantification was achieved using the area under the curve (AUC) of the corresponding 

high resolution extracted ion chromatogram (with a window of ± 8 ppm) at the indicative 

retention time. The lipid analyte AUC relative to the internal standard AUC for that lipid class 

was used to semi-quantify and correct for any extraction/instrument variation. The 

normalized analyte intensities (analyte to internal standard ratios) were then expressed as a 

percentage of the total lipids extracted from that sample (mol %).   

 

Immunoblotting 

Yeast cells (approximately 12 OD600) were pelleted, washed with sterile water, and lysed in 

100 µl SDS-sample buffer with 0.5 mm diameter glass beads (BioSpec Products, 

Bartlesville, OK) by two rounds of boiling for 2 min and vortexing for 30 sec. Protein extracts 

were centrifuged at 13,000 rpm for 15 min, and the supernatants analysed by Western blot. 

Western blot signals were developed using ECL (GE Healthcare, Little Chalfont UK). 

 

Flow Cytometry 

Quantification of BODIPY by flow cytometry was performed as previously described 

(Barbosa et al., 2015). Briefly, cells were fixed for 30 min at room temperature with 3.7% 

formaldehyde, washed once with phosphate-buffered saline, and incubated with 10 µM 

BODIPY 493/503 for 10 min at room temperature. Labelling was immediately measured 

using the FL-1 detector of a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA), 

and the results analysed with FlowJo software, version 9 (Tree Star, Ashland, OR). 

 

Bioinformatics  

For the identification of PDATs, the UniProt Knowledgebase (UniProtKB) was searched with 

the search term phospholipid:diacylglycerol acyltransferase at http://www.uniprot.org/. Partial 

sequences, sequences with zero or multiple transmembrane domains were removed. In 

order to extend the number of PDATs, we performed a phmmer search on the HMMER web 

server at https://www.ebi.ac.uk/Tools/hmmer/ (Finn et al., 2015) using the S. cerevisiae Lro1 

(UniProtKB accession P40345) sequence to query UniProtKB. Additional plant PDATs, 

identified in Pan et al. 2015 were obtained from the Phytozome resource (Goodstein et al., 

2012). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Unless otherwise stated, data was obtained from at least three independent repeats. The 

micrographs presented are representative of the results obtained. Signal intensity, surface 

and circularity were measured using ImageJ 1.47v (NIH, Bethesda, MD). Results were 

expressed as mean ± standard deviation. Data were analysed with unpaired, two-tailed t 
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tests or one-way ANOVA with Tukey's multiple comparison test when more than two groups 

were compared using GraphPad Prism 5 software (GraphPad, La Jolla, CA). Statistical 

significance was defined as: *, p < 0.05; **, p < 0.01; and ***, p < 0.001. 

 

DATA AND CODE AVAILABILITY 

Datasets associated with this study are provided in Tables S1 and S2. 
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Supplemental Videos 

 

Video S1: Three-dimensional reconstruction of the LD distribution relative to Lro1 in 

PDS phase. dga1Δ lro1Δ are1Δ are2Δ (4Δ) cells expressing Lro1-mCherry were grown to 

the PDS phase and stained with BODIPY 493/503. Through-focus image series were 

processed as described in STAR Methods. Related to Figure 3. 

 

Video S2: Live imaging of the spatial distribution of Lro1-derived LDs relative to the 

nucleolus in PDS phase. dga1Δ lro1Δ are1Δ are2Δ (4Δ) cells expressing Faa4-GFP (a LD 

reporter), Nop1-RFP (a reporter of the nucleolus), and Lro1 (from its own promoter) were 

grown to PDS phase and imaged live as described in STAR Methods. Related to Figure 3. 
 
 
 

Supplemental Tables and legends 

 

Table S1 – List of genes with changes in Lro1-GFP intensity and/or localization detected by 

high-throughput microscopy in PDS. Genes are grouped by the apparent phenotype 

(ER+puncta or Low Signal), reflecting a change from the Lro1 nucleolar-associated 

membrane localization seen in the wild-type strain. The phenotypes of the mutants that were 

tested in independent post-screen validation experiments are indicated (Nc means 

Nucleolus). Analysis by gene ontology (GO) term enrichment, using the GO term finder of 

Saccharomyces Genome Database, identified the "establishment of sister chromatid 

cohesion" as the most significantly enriched term (8 genes out the 17 belonging to this GO 

term, corrected p value 1,34e-07). These genes are highlighted. Related to Figure 4. 

 

Table S2 – Organisms with known or predicted PDATs and their biochemical properties. 

Related to STAR methods. 
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KEY RESOURCES TABLE 

 

REAGENT or RESOURCE  SOURCE IDENTIFIER 
Antibodies   
Rabbit Polyclonal anti-GFP A. Peden N/A 
Mouse monoclonal anti-HA Abcam Cat#Ab16918 
Goat polyclonal horseradish Peroxidase 
(HRP)-conjugated Goat anti-rabbit 
Immunoglobulin-specific  

BD Biosciences Cat#554021 

Chemicals   
Rapamycin LC Laboratories Cat#R-5000 
BODIPY 493/503 Thermo Fisher 

Scientific 
Cat#D-3922 

Nocodazole Sigma Cat#M1404 
Oleic acid Sigma Cat#05508-5ML-F 
α1-Mating Factor acetate salt Sigma Cat#T6901 
CE_(18:0d6) QMX Cat#D-5823 
Ceramide_C16d31  AVANTI Cat#868516P 
FA_C15:0d29 QMX Cat#D-4020 
FA_C17:0d33 QMX Cat#D-5261 
FA_C20:0d39 QMX Cat#D-1617 
LPC_(C14:0d42) QMX Cat#D-5885 
PA_(C16:0d31 / C18:1) AVANTI Cat#860453P 
PC_(C16:0d31 / C18:1) AVANTI Cat#860399P 
PE_(C16:0d31 / C18:1) AVANTI Cat#860374P 
PG_(C16:0d31 / C18:1) AVANTI Cat#860384P 
PI_(C16:0d31 / C18:1) AVANTI Cat#860042P 
PS_(C16:0d62) AVANTI Cat#860401P 
SM_(C16:0d31) AVANTI Cat#868584P 
TG_(45:0d29) QMX Cat#D-5265 
TG_(48:0d31) QMX Cat#D-5213 
TG_(54:0d35) QMX Cat#D-5217 
Experimental Models: Organisms/Strains   
S. cerevisiae: BY4741 MATa his3Δ0 leu2Δ0 
met15Δ0 ura3Δ0 Open Biosystems BY4741 

S. cerevisiae: BY4742 MATα his3Δ1 leu2Δ0 
lys2Δ0 ura3Δ0 Open Biosystems BY4742 

S. cerevisiae: BY4741 lro1::KanMX This paper SS2543 
S. cerevisiae: BY4741 lro1::KanMX NOP10-
mCherry::HisMX6 This paper SS2754 

S. cerevisiae: BY4741 lro1::KanMX 
hrd1::hphNT1 This paper SS2825 

S. cerevisiae: BY4741 HIS3::pRS403-NOP1-
RFP This paper SS2907 

S. cerevisiae: BY4741 ale1::KanMX Open Biosystems ale1Δ 
S. cerevisiae: BY4741 plb1::hphNT1 
plb2::KanMX plb3::NatMX6 nte1::URA3 
lro1::HIS3 

This paper SS2410 

S. cerevisiae: BY4742 asi3::KanMX Open Biosystems asi3Δ  
S. cerevisiae: BY4742 ctf19::KanMX Open Biosystems ctf19Δ 
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S. cerevisiae: BY4742 mcm21::KanMX Open Biosystems mcm21Δ 
S. cerevisiae: BY4742 rad52::KanMX Open Biosystems rad52Δ 
S. cerevisiae: BY4742 vps4::KanMX Open Biosystems vps4Δ 
S. cerevisiae: BY4741 ALE1-GFP::hphNT1 This paper SS2874 
S. cerevisiae: BY4741 LPL1-GFP::HIS3MX (Huh et al., 2003) LPL1-GFP 
S. cerevisiae: BY4741 SLC1-GFP::HIS3MX (Huh et al., 2003) SLC1-GFP 
S. cerevisiae: MATα his3∆1 leu2∆0 met15∆0 
ura3∆0 lys2+/lys+ can1∆::STE2pr-sp HIS5 
lyp1∆::STE3pr-LEU2  LRO1-GFP-NatMX6 

This paper SS2654 

S. cerevisiae: MATα his3Δ1 leu2Δ0 lys2Δ0 
ura3Δ0 met15Δ0 are1::KanMX are2:KanMX 
trp1::URA lro1::TRP dga1::Lox-HIS-Lox  

(Jacquier et al., 
2011) RSY3077 (a.k.a. 4Δ) 

S. cerevisiae: 4Δ dgk1::HIS3MX6 (Barbosa et al., 
2015) SS2468 

S. cerevisiae: 4Δ chm7::NatMX6 This paper SS2951 
S. cerevisiae: 4Δ vps4::NatMX6 This paper SS2953 
S. cerevisiae: 4Δ nup188::NatMX6 This paper SS2966 
S. cerevisiae: 4Δ pom152::NatMX6 This paper SS2964 
S. cerevisiae: 4Δ FAA4-GFP-HISMX6 This paper SS2922 
S. cerevisiae: W303 MATα tor1-1 fpr1::NAT EUROSCARF K14708 
S. cerevisiae: W303 MATα tor1-1 fpr1::NAT 
HEH1-2xFKBP12::TRP1 lro1::KanMX This paper SS2745 

S. cerevisiae: W303 MATα tor1-1 fpr1::NAT 
HEH1-2xFKBP12::TRP1 lro1::KanMX 
dga1::hphNT1 

This paper SS2991 

S. cerevisiae: W303 MATα tor1-1 fpr1::NAT 
HEH1-2xFKBP12::TRP1 lro1::KanMX 
dgk1::HIS3 

This paper SS3037 

S. cerevisiae: W303 MATα tor1-1 fpr1::NAT 
RPL13A-2×FKBP12::TRP1 EUROSCARF HHY168 

S. cerevisiae: W303 MATα tor1-1 fpr1::NAT 
RPL13A-2×FKBP12::TRP1 RPA135-
FRB::KanMX 

This paper SS2837 

Recombinant DNA   
LRO1 under control of LRO1 promoter in 
CEN/URA3 vector This paper YCplac33-LRO1 

LRO1-GFP under control of LRO1 promoter 
in CEN/URA3 vector This paper YCplac33-LRO1-GFP 

LRO1-mCherry under control of LRO1 
promoter in CEN/URA3 vector This paper YCplac33-LRO1-

mCherry 
LRO1-6xHA under control of NOP1 promoter 
in CEN/URA3 vector This paper YCplac33-NOP1pr-

LRO1-6xHA 
LRO1-GFP under control of NOP1 promoter 
in CEN/URA3 vector This paper YCplac33-NOP1pr-

LRO1-GFP 
4xIgGb-LRO1Δ[2-77]-GFP under control of 
NOP1 promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

4xIgGb-LRO1-GFP 
1xMBP-LRO1-GFP under control of NOP1 
promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

1xMBP-LRO1-GFP 
2xMBP-LRO1-GFP under control of NOP1 
promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

2xMBP-LRO1-GFP 
3xMBP-LRO1-GFP under control of NOP1 
promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

3xMBP-LRO1-GFP 
LRO1[1-79]-GFP under control of LRO1 This paper YCplac33-LRO1[1-
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promoter in CEN/URA3 vector 79]-GFP 
LRO1[1-103]-GFP under control of LRO1 
promoter in CEN/URA3 vector This paper YCplac33-LRO1[1-

103]-GFP 
LRO1[44-AAAA-47; 71-AAAWA-75]-GFP 
under control of LRO1 promoter in 
CEN/URA3 vector 

This paper YCplac33-LRO1-NLS-
GFP 

LRO1[1-79; 44-AAAA-47; 71-AAAWA-75]-
GFP under control of LRO1 promoter in 
CEN/URA3 vector 

This paper YCplac33-LRO1[1-
79]-NLS-GFP 

LRO1[1-103; 44-AAAA-47; 71-AAAWA-75]-
GFP under control of LRO1 promoter in 
CEN/URA3 vector 

This paper YCplac33-LRO1[1-
103]-NLS-GFP 

FRB-LRO1-GFP under control of NOP1 
promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

FRB-LRO1-GFP 

FRB-LRO1[S324A]-GFP under control of 
NOP1 promoter in CEN/URA3 vector This paper 

YCplac33-NOP1pr-
FRB-LRO1-S324A-
GFP 

FRB-GFP under control of NOP1 promoter in 
CEN/LEU2 vector This paper YCplac111-NOP1pr-

FRB-GFP 

FRB-3xMBP-LRO1-GFP under control of 
NOP1 promoter in CEN/URA3 vector This paper 

YCplac33-NOP1pr- 
FRB-3xMBP-LRO1-
GFP 

LRO1[S324A]-GFP under control of NOP1 
promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

LRO1-S324A-GFP 
LRO1 under control of NOP1 promoter in 
CEN/URA3 vector This paper YCplac33-NOP1pr-

LRO1 
HEH1[163-454]-LRO1Δ[2-77] under control 
of NOP1 promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

H1-LRO1 
HEH1[163-454]-LRO1Δ[2-77]-GFP under 
control of NOP1 promoter in CEN/URA3 
vector 

This paper YCplac33-NOP1pr-
H1-LRO1-GFP 

HEH1[163-225]-LRO1Δ[2-77] under control 
of NOP1 promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

H1Δ[UP]-LRO1 
HEH1[163-225]-LRO1Δ[2-77]-GFP under 
control of NOP1 promoter in CEN/URA3 
vector 

This paper YCplac33-NOP1pr-
H1Δ[UP]-LRO1-GFP 

3xMBP-LRO1 under control of NOP1 
promoter in CEN/URA3 vector This paper YCplac33-NOP1pr-

3xMBP-LRO1 
LRO1 under control of GAL1/10 promoter 
in 2µ/LEU2 vector This paper YEplac181 GAL1/10-

LRO1 
LRO1[S324A] under control of GAL1/10 
promoter in 2µ/LEU2 vector This paper YEplac181 GAL1/10-

LRO1-S324A 
PAH1-7A under control of GAL1/10 promoter 
in 2µ/LEU2 vector 

(O'Hara et al., 
2006) 

YEplac181-GAL1/10-
PAH1-7A 

NTE1-GFP under control of NTE1 promoter 
in CEN/LEU2 vector This paper YCplac111-NTE1-

GFP 
SEC63-mCherry under control of SEC63 
promoter in CEN/LEU2 vector This paper YCplac111-SEC63-

mCherry 
PUS1-GFP under control of PUS1 promoter 
in CEN/LEU2 vector This paper YCplac111-PUS1-

GFP 
NOP1-RFP under control of NOP1 promoter 
in CEN/TRP1 vector This paper pRS314-NOP1-RFP 

NOP1-RFP under control of NOP1 promoter 
in CEN/HIS3 vector This paper pRS313-NOP1-RFP 
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NUP84-mCherry under control of NUP84 
promoter in CEN/LEU2 vector 

(Barbosa et al., 
2015) 

YCplac111-NUP84-
mCherry 
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