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ABSTRACT 

Metal-organic frameworks (MOFs) have emerged as interesting candidates for 

intracellular carrier-based delivery. These hybrid materials are constituted of metal 

clusters linked together by organic ligands. The possibility to tune their physical and 

chemical properties both in the bulk and at the surface allows for the design of 

biocompatible delivery systems with high loading capacities and targeting abilities, 

combining the benefits of both organic and inorganic materials. The following 

dissertation focuses on developing and evaluating MOFs as intracellular delivery 

systems.  

In the first instance, a zirconium-based MOF, UiO-66, was synthesised and utilised as 

an intracellular delivery vector for trehalose, a disaccharide with cryoprotective 

properties when present in the cytosol. This MOF demonstrated very high trehalose 

weight loadings compared to other trehalose delivery systems (up to ca. 50 wt %), 

release of the sugar from the framework over 5 h, and appropriate biocompatibility. To 

assess the delivery system’s impact on cryopreservation, the viability of cells 

cryoprotected with trehalose-loaded UiO-66 was tested at 0 h, 24 h, and 48 h post-thaw, 

and showed no improvement compared to cells frozen with free trehalose or growth 

media alone. The absence of cryoprotective effect was hypothesised to be due to 

endosomal entrapment of the delivery system after cellular uptake through endocytosis.  

The final fate of particles taken up by cells depends on the endocytosis pathways they 

go through. In order to confirm the hypothesis of MOF endosomal entrapment, the 

endocytosis of MOF particles was studied. In particular, the effects of surface chemistry 

of Zr-based MOFs on their endocytosis mechanisms were investigated. It was found 

that MOF surface chemistry had an important effect on cellular uptake behaviour, 

whereas particle size played a less important role. In particular, Zr-based MOFs 

synthesised using naphthalene-2,6-dicarboxylic acid and 4,4′-biphenyldicarboxylic acid 

as organic ligands, and UiO-66 particles surface-decorated with folic acid and PEG, 

promoted entry through the caveolin-pathway. This allowed the particles to potentially 

avoid endosomal entrapment and reach the cytosol, enhancing their therapeutic activity 

when loaded with drugs.  

Equipped with an understanding of the cellular uptake of MOF particles, a range of 

mitochondrially-targeted UiO-66 particles capable of bypassing endosomal entrapment 

was prepared and tested. The UiO-66 particles were loaded with dichloracetic acid 
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(DCA), a small chemotherapeutic drug molecule that acts on mitochondria, and surface-

functionalised with triphenylphosphonium, a known mitochondrial targeting agent. The 

system demonstrated a dramatic increase in efficacy, allowing a reduction in DCA 

effective dose of ca. 100-fold compared to the free drug, and ca. 10-fold compared to 

non-targeted, DCA-loaded UiO-66. Confocal microscopy revealed a distribution of the 

targeted nanoparticles around mitochondria. Super-resolution microscopy of cells 

treated with the system revealed important mitochondrial morphology changes 

associated with cell death as soon as 30 minutes after incubation. A whole 

transcriptome analysis of cells treated with the system indicated widespread changes in 

gene expression compared to both untreated cells and to cells treated with non-targeted, 

DCA-loaded UiO-66.  

In summary, these studies demonstrated the advantages of MOFs as targeted 

intracellular delivery vectors. The ease with which their physicochemical properties can 

be tuned allows for the design of delivery systems able to bypass the critical drug 

delivery bottlenecks of endosomal entrapment and non-specific delivery.  
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1 INTRODUCTION 

1.1 Motivation 

 Intracellular delivery of materials has become of critical importance to a 

variety of fields, including ex vivo cell-based therapies, genome-based approaches, and 

a range of fundamental research applications1. It also plays an important role in 

drastically enhancing the efficacy of treatment protocols in vivo by allowing the 

delivery of therapeutics to locations within the cell that are relevant to disease2. Despite 

its essential role in biological research and therapeutic applications, the intracellular 

delivery of therapeutic compounds and biomacromoleules remains a challenge. 

Intracellular delivery solutions are therefore required to overcome delivery hurdles and 

tap into the unfulfilled potential of these exciting applications.  

 Carrier-based approaches, involving the use of delivery vehicles to penetrate 

inside cells and deliver cargo, have proven attractive strategies for intracellular 

delivery3–5. These carrier-based systems can be broadly categorised into organic and 

inorganic materials6. Organic carriers have the advantage of biocompatibility, with their 

principle drawback being their low loading capacities7. Inorganic carriers on the other 

hand have well-defined porosity endowing them with high loading capacities. However, 

they display some issues with biocompatibility6,8.   

 Metal-organic frameworks (MOFs) have emerged as interesting candidates for 

carrier-based delivery. These hybrid organic-inorganic materials are constituted of metal 

clusters linked together by organic ligands. The possibility to tune their physical and 

chemical properties both in the bulk and at the surface allows for the design of delivery 
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systems with high loading capacities, good biocompatibility, and targeting abilities, 

combining the benefits of both organic and inorganic materials6,9,10. The aim of this 

thesis is to investigate the use of MOFs as intracellular delivery vectors in a range of 

different applications.  

1.2 Literature Review 

1.2.1 Relevance of Intracellular Delivery 

 Intracellular delivery is a key step in various applications, ranging from cell-

based therapy and gene editing to regenerative medicine and fundamental biology. A 

number of ex vivo cell-based therapies involving intracellular delivery have shown great 

promise in the treatment of human disease. Gene delivery to haematopoietic stem cells 

(HSCs) for example has allowed the correction of mutations involved in monogenic 

diseases, such as X-linked severe combined immunodeficiency, β-thalassaemia major, 

and metachromatic leukodystrophy11. In T-cell immunotherapy for cancer, T-cells with 

enhanced and/or novel function against tumour targets have been genetically 

engineered11,12. In regenerative medicine, efforts were made to generate induced 

pluripotent stem cells (iPSCs) without the need for potentially mutagenic viral vectors, 

by directly delivering reprogramming proteins fused with a cell penetrating peptide 

(CPP)13. Mout et al. were able to deliver CRISPR/Cas9-ribonucleoprotein 

intracellularly using gold nanoparticles (NPs) and demonstrated a 30 % gene editing 

efficiency14. In basic research applications, a large array of molecules are target 

materials for intracellular delivery. These include nucleic acids, peptides, metabolites, 

membrane impermeable drugs, cryoprotectants, exogenous organelles, and molecular 

probes1. For in vivo applications, the intracellular delivery of therapeutics can greatly 

enhance the therapeutic index of a drug, especially if delivery is targeted to specific 

molecular targets within sub-cellular locations/organelles15. 

 The common theme in all these different biological applications is the need to 

safely and efficiently deliver cargo inside cells. For that, a number of approaches are 

available. Membrane-disruption-based approaches involve the introduction of 

temporary gaps in the plasma membrane to allow for the direct entry of materials into 

the cytosol16. This technique is very versatile in terms of its ability to rapidly deliver a 

diversity of materials to almost any cell type17–19. However, its main limitation is that it 

is only amenable to in vitro and ex vivo applications. It is also limited in terms of its 
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ability to target specific organelles within the cell – it is non-specific, and delivers 

almost any sub-micrometer material dispersed in solution into the cytosol19. 

Carrier-based approaches on the other hand involve the use of vectors to deliver 

relevant materials inside cells. They have the advantage of being appropriate for all 

types of applications (in vitro, ex vivo, in vivo). They can also allow for sub-cellular 

targeting by attaching targeting functionalities to the vector2. Though they are restricted 

in terms of feasible cargo materials and cell types19, they are still very promising 

candidates to help develop intracellular delivery systems that can enable unprecedented 

flexibility in the capacity to manipulate cell function and probe the intracellular 

environment. 

1.2.2 Existing Carrier-Based Drug Delivery Systems (DDSs) 

 To allow for efficient intracellular delivery, carrier-based systems need to be 

able to perform multiple functions. First, they must efficiently hold the cargo and 

protect it from degradation. Second, they must transport the cargo to the intracellular 

space and deliver it within the target destination. Third, they must deliver the cargo 

within the cell with appropriate spatiotemporal dynamics19. A number of synthetic 

carrier-based systems have traditionally been used for intracellular delivery. They can 

broadly be categorised into organic and inorganic materials. Organic materials include 

polymers, lipids, micelles, and hydrogels. Inorganic materials include the likes of 

zeolites and mesoporous silica nanoparticles6. 

1.2.2.1 Organic Carriers 

 This section describes the main types of organic carrier-based systems and 

identifies their key advantages and drawbacks. These include liposomes20, 

polymers21,22, micelles23, and hydrogels24. 

 Liposomes were first described in 196525 and were soon proposed as drug 

delivery systems26. They are among the most popular and well-studied drug carriers. 

They consist of vesicular structures with an aqueous core surrounded by a hydrophobic 

lipid bilayer, about 100–400 nm in size, created by the extrusion of phospholipids27. 

They are biocompatible materials, displaying no toxicity or antigenicity. Cargo included 

in liposomes is protected from the external media28. However, these materials have a 

number of drawbacks. Similar to biological membranes, they display low permeability 

to hydrophilic molecules and high permeability to lipophilic ones, which can cause 
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issues related to the fast release of highly hydrophobic cargo molecules20. Regarding 

clearance from the body, liposomes are rapidly eliminated from the blood and cleared 

by the reticulo-endothelial system (RES), mainly in the liver and spleen. This can be 

remedied by attaching PEG to the surface of liposomes, extending their blood 

circulation half-life from 30 min to 5 h29,30. 

 Micelles represent another promising type of biomolecule carrier. They are 

amphiphilic macromolecule aggregates, self-assembled into a spherical shape, with a 

hydrophobic core and hydrophilic surface. Micelles are generally in the size range 10–

100 nm, and are therefore large enough to avoid renal excretion (> 50 kDa), yet small 

enough to bypass filtration by the spleen31. They can allow to solubilise hydrophobic 

drugs by their incorporation into the micellar core. Genexol, the commercial name of a 

paclitaxel-loaded micelle, is a representative example of a very low solubility drug 

(0.3 μg/mL) being solubilised using micelles32. However, the poor physical stability of 

micelles upon entry into the bloodstream is one of their main drawbacks, with blood 

proteins disrupting micellar cohesion and prematurely releasing the cargo31.  

 Polymer-drug conjugates are materials in which a low molecular weight (MW) 

therapeutic is attached to a polymeric carrier. Contrarily to free drugs which distribute 

randomly around the body causing unwanted side effects, polymer-drug conjugates can 

help to solubilise drugs, extend their circulation time to several hours, and facilitate 

passive targeting of tumours by the enhanced permeability and retention (EPR) effect33. 

Different polymer architectures can have different effects. For example, Paclitaxel 

conjugated with linear bis(PEG) and with dendritic polyamidoamine (PAMAM) G4 was 

shown to have 10-fold better solubility in both cases, but reduced activity (25-fold) for 

the linear PEG conjugate and increased activity (10-fold) for the dendritic conjugate 

compared to the free drug in A2780 human ovarian cancer cells34. 

 Polymeric NPs are structures 10–100 nm in size and can also be considered 

polymer-drug conjugates. They are obtained from synthetic polymers such as 

polyacrylamide35 and polyacrylate36, or from natural polymers such as albumin37, 

chitosan38, and DNA39. Polymeric NPs such as poly(L-lactide) and polyglycolide are 

biodegradable and can undergo hydrolysis in the body, producing biodegradable 

metabolite monomers (lactic acid and glycolic acid). This makes this type of material 

non-toxic, non-immunogenic, and non-proinflammatory40, whenever the monomers are 

non-toxic. A potential issue with biodegradable polymeric NPs is that they do not 
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always degrade into their monomeric components, but into a wide distribution of 

fragment sizes, making toxicity challenging to determine experimentally41. Although 

they are efficient carriers, with Park et al. demonstrating that 

poly(lactic-co-glycolic acid) NPs are able to greatly reduce the side effects of 

doxorubicin in vivo in mice, they do suffer from low drug weight loadings (5 % wt/wt in 

this case)42. 

1.2.2.2 Inorganic Carriers 

 Although less common and less well-developed, inorganic materials such as 

zeolites and mesoporous silica NPs (MSNs) have also been investigated as delivery 

systems. Their main advantage compared to organic carriers is that they are easier to 

synthesise reproducibly and at large scale owing to their crystallinity, which also 

endows them with high internal surface areas.  

 Zeolites are microporous crystalline materials based on a three-dimensional 

framework of SiO4 and potentially AlO4 tetrahedra that results in an extended uniform 

network of channels and pores43. The framework is negatively charged due to the AlO4 

tetrahedra. It is kept neutral overall by the extra-matrix alkaline ions. Water molecules 

are also loosely bound to the structure, but can be evacuated by heating, leaving a high 

available surface area and accessible pore volume. Various chemotherapeutic drugs, 

such as α-cyano-4-hydroxycinnamic acid (α-CHC)44, and 5-fluorouracil45 have been 

encapsulated in zeolites. Weight loadings were in the range of 10 wt %. Other drugs 

such as Ketoprofen, a non-steroidal anti-inflammatory drug, showed weight loadings of 

around 28.5 wt %43. The main drawback of zeolites is their limited physical (surface 

areas of at most ca. 1000 m2/g; pore volumes ca. 0.3 cm3/g; pore size ca. 2–10 Å) and 

chemical versatility, restricting the size and type of cargo molecules that can be loaded 

within the pores6.  

 MSNs are mesporous materials with pore sizes in the 2–20 nm range, enabling 

them to hold biomolecules of different sizes, and making them attractive candidates for 

drug delivery8,46–48. They are synthesised via a template-directed method that yields 

well-defined pore networks. MSNs possess a high density of surface silanol groups, 

which can be modified with a wide range of organic functional groups. This allows to 

easily control the surface charge of the particles, to chemically link with functional 

molecules (e.g. targeting) inside and outside the pores, and to control the size of the 

pore entrance49. MSNs have high surface areas of up to > 900 m2/g, and large pore 
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volumes of up to > 0.9 cm3/g, allowing them to hold large quantities of cargo (loadings 

up to 50 wt %)50. A number of studies have been reported in the literature, showing 

MSNs’ loading and release of a number of anti-inflammatory, antibiotic, osteogenic, 

and chemotherapeutic drugs49,51. A key drawback of MSNs is that the large surface 

density of silanol groups can cause the particles to interact with the phospholipid 

surface of red blood cell membranes, inducing hemolysis. They can also induce some 

metabolic changes8. 

1.2.3 Metal-Organic Frameworks as Hybrid Materials 

 MOFs are a class of three-dimensional, crystalline, porous solids consisting of 

metal clusters interconnected by organic linkers10 (Figure 1.1). Li et al. synthesised the 

first MOF with accessible porosity in 1999, and termed it Zn(BDC).(DMF)(H2O), 

where BDC = 1,4-benzenedicarboxylate and DMF = N,N-dimethylformamide52. 

 

Figure 1.1. Schematic representation of the self-assembly process of MOFs from metals and 

organic ligands.  

 One of the key advantages of MOFs compared to their organic and inorganic 

counterparts is the ease with which their composition can be tuned. By simply varying 

the metal clusters and organic linkers (e.g. carboxylates, imidazolates, or phosphonates), 

MOFs can display highly diverse pore sizes (up to 6 nm), topologies, and 

physicochemical properties9, which can be tailored to the properties of each individual 

drug and its medical application6. The flexibility offered by the different combinations 

of metal clusters and organic linkers has led to the discovery of tens of thousands of 

compounds53. Figure 1.2 shows that the number of MOF entries in the Cambridge 

Structural Database (CSD) has substantially increased in the past decade, to an 

estimated 70,000 materials in 2017 (the number is regularly updated and currently 

stands at 82,000).  
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Figure 1.2. Growth of the number of crystalline structures included in the CSD (blue bars) and 

MOF entries (red bars) since 1972. Image adapted from Moghadam et al53.  

 Among the most studied MOF models are MOF-554, HKUST-155 (Hong Kong 

University of Science and Technology), ZIF-856 (Zeolitic Imidazole Framework-8), the 

MIL family57 (Materials of Institut Lavoisier), and the UiO family58 (Universitetet i 

Oslo). They have been used as a platform to develop more complex derivative MOFs. 

Zirconium-based MOFs in particular have recently attracted interest as delivery systems 

due to their biocompatibility and high stability (thermal, chemical, and mechanical)58–60, 

and will be the main focus of the upcoming sections dealing with MOF synthesis and 

surface modification (Sections 1.2.3.2 and 1.2.3.3). An attractive feature of Zr-based 

MOFs is their low stability in the presence of phosphate salts, which ensures that they 

are degraded in vivo, preventing accumulation of the carrier in the body.  

 UiO-66 ([Zr6O4(OH)4(BDC)6]) was the first Zr-based MOF to be discovered 

and is the most well-known and studied. It consists of SBUs formed by six-centre 

octahedral zirconium clusters (Figure 1.3a), linked together by BDC linkers, resulting 

in two main cavities (ca. 8 and 11 Å) and large porosity (SBET = 1200 m2/g; 

Vp = 0.5 cm3/g)58,61. A range of organic ligands has been used to form an isoreticular 

series of Zr-based MOFs based on UiO-66, with porosity increasing with increasing 

linker length (Figure 1.3b). It is also possible to use linkers with pendant functionalities 

such as bromo, nitro, and amino, to tune the physicochemical properties of the MOF 

particles, and also to post-synthetically modify them62,63.  
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Figure 1.3. (a) UiO-66 SBU, adapted from Wang et al.64 and (b) UiO-based family of 

isoreticular MOFs showing how porosity increases with the length of the organic ligand, 

adapted from Shearer et al.65 

 Since their discovery, MOFs have been used extensively in a variety of 

applications, ranging from catalysis, energy storage, sensors, and gas separation6. More 

recently, they have been investigated for their potential applications in drug delivery. A 

brief review of MOFs in this context will be outlined in the following section. 

1.2.3.1 MOFs in Biomedical Applications 

 Ferey and co-workers first reported the use of iron-based MOFs in biomedical 

applications in 200666. Since then, their use in healthcare applications has been 

extensively investigated67. Highlighting the interest of the cancer field, most studies 

involving MOFs for drug delivery have dealt with antitumour drugs. In one study for 

example, doxorubicin was encapsulated in MIL-100 (Fe) NPs at a weight loading of 

9 %, and had a slow and progressive release profile of up to two weeks in phosphate 

buffered saline (PBS) at 37 °C7. In another, doxorubicin was loaded into ZIF-8 NPs 

(49 wt %), and 66 % of the drug was released in PBS over 30 days68. Lucena and co-

workers demonstrated very high loading of the antitumoural 5-fluoroacil (5-FU) in 

Cu-BTC NPs (ca. 80 wt %). The drug-loaded NPs had higher antitumoural efficacy than 

free 5-FU, which was explained by the progressive release of the drug (ca. 82 % after 2 

days)69. Nucleic acids have also been entrapped in MOFs to allow their protection from 

degradation until they reach the intracellular space. In one study by Lin et al., small 

interfering RNA (siRNA) was attached to the surface of the zirconium 

aminotriphenyldicarboxylate UiO-type NPs by coordination to the surface metal sites. 

This protected the siRNA from nuclease degradation and enhanced its cellular uptake. 

The anticancer prodrug cisplatin was also loaded into the MOFs (12 wt %), and the 
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co-delivery of both the drug and the siRNA greatly enhanced the chemotherapeutic 

efficacy against the SKOV-3 ovarian cancer cell line70. MOFs have also been used to 

deliver challenging antiviral drugs, which due to their high polarity cannot cross the cell 

membrane efficiently. Cidofovir and the anti-HIV azidothymidine triphosphate 

(AZT-TP) were encapsulated in different MOFs of the MIL family, reaching loadings of 

up to 42 wt % in MIL-101(Fe)_NH2 NPs. AZT-TP-loaded MOF NPs showed higher 

anti-HIV efficacy than the free drug71. Morris et al. have demonstrated the 

encapsulation in MOFs of nitric oxide (NO)72, a neurotransmitter involved in the 

cardiovascular, nervous, and immune systems73. 

 In terms of biocompatibility of MOFs, very limited literature is available 

regarding in vitro and in vivo toxicity. In vitro studies have been performed using a 

number of different cell lines, making comparison of results difficult. However, it 

generally seems that the toxicity is dependent on the choice of metal and organic ligand. 

This was demonstrated in a Horcajada and co-workers study in which they performed 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tests on a series 

of 14 MOFs with different metals (Fe, Zn, and Zr) and linkers (carboxylates and 

imidazolates), on two different cell lines (HeLa and murine macrophage cells J774). 

The materials demonstrated low toxicity comparable to other commercialised 

nanoparticulate systems, with the least toxic MOF being the Fe carboxylate, and the 

most toxic being the Zn imidazolate NPs. The hydrophobic-hydrophilic balance proved 

to be an important parameter, with the more hydrophilic ligands being the least toxic74.  

 Regarding in vivo toxicity, Maspoch and co-workers assessed the cytotoxicity 

of 16 different MOFs on HepG2 and MCF-7 cells in vitro, and on zebrafish embryos in 

vivo, and found a strong correlation between in vitro and in vivo toxicities. Toxicity was 

chiefly attributed to leached metal ions, with the most toxic ions being CuII, MnII, and 

FeIII, and the least toxic being CoII, NiII, and MgII 75. In another study, Horcajada and co-

workers assessed the in vivo toxicity of three different porous iron carboxylate MOFs 

(MIL-88A, MIL-88B_4CH3, and MIL-100) in rats for up to three months by studying 

their distribution, metabolism, and excretion. They found that the MOFs were degraded 

into their constituent components, allowing the excretion of the organic linker in the 

urine and faeces. They found no differences between treated and control groups, except 

for a transient increase in weight of the liver and spleen, attributed to the rapid 

sequestration of MOFs by the reticuloendothelial system (RES). Both organs however 
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kept their function intact. Altogether the results showed the suitability of the 

biodegradable non-toxic iron carboxylate MOFs for biological applications76.     

 Having shown the interesting potential of MOFs for biomedical applications, 

the following sections will discuss their synthesis and post-synthetic modification in 

order to better understand the characteristics that make them remarkable candidates for 

intracellular delivery. 

1.2.3.2 MOF Synthesis 

 The synthesis of Zr-based MOFs is usually done under solvothermal 

conditions, which involves the heating of a solution of metal and ligand over time. This 

leads to more controlled particle growth and nucleation than other synthesis methods 

such as microwave-assisted, electrochemical, mechanochemical, and sonochemical 

syntheses77. Coordination modulation - first introduced by Fischer and co-workers – 

involves the use of a monodentate ligand (modulator) with similar chemical 

functionality to the multidentate organic linker in the synthesis process78. The 

modulator competes with the organic linker for coordination to the metal clusters, which 

renders it a tool to control particle size and composition65,79,80. Behrens and co-workers 

first reported that modulators could be used for size control of UiO-66 in 201181.  

 The modulator can act in two different ways. On the one hand, it can form 

complexes with zirconium cations in solution, causing the framework construction to 

proceed through an exchange between the linker and the modulator at the coordination 

sites of the Zr ion. In this case, a higher concentration of monocarboxylic acid would 

reduce the possibility of the dicarboxylic acid linker coordinating to Zr ions in solution, 

thus disfavouring nucleation and allowing a smaller number of nuclei to grow into 

larger crystals. Although the exchange between the modulator and the linker still 

happens, the timescale for growth is much larger than the rate associated with 

nucleation81. On the other hand, the modulator can act as a capping agent, permanently 

coordinating to metal sites at the surface of growing crystals and thus inhibiting their 

growth80,82,83. The size of synthesised crystals is therefore dependent on the dynamic 

and kinetic balances between the two effects. A number of studies have found particle 

size to vary differently in different concentration ranges, indicating a more or less 

pronounced importance for each effect (capping and nucleation-preventing) depending 

on the modulator concentration range. For example, Guo et al. found that Dy(BTC)H2O 

particle size decreases as the modulator concentration (sodium acetate) is increased to 
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3.5 eq, after which it increases83. Schaate et al. also found particle size of UiO-66 to 

decrease with increasing benzoic acid concentration up to 3 eq, after which particle size 

increases81. Particle size can therefore be tuned by varying the concentration of 

monocarboxylic acid modulator. This is especially important for biomedical 

applications, where it is imperative that the size of the delivery system be less than 

500 nm for cellular uptake and less than 200 nm for in vivo applications to ensure 

circulation through small capillaries without blockage (> 10 nm to avoid filtration by 

the kidneys)84.  

 The role and effect of a given modulator and its concentration are however 

difficult to predict due to the presence of additional factors affecting crystal growth83,85. 

Guo et al. for example have demonstrated that the pH of the reaction mixture also has 

an effect on particle size83. They found that it is possible to control particle size even in 

the absence of a coordinating modulator by simply making the pH more basic. By 

adding triethylamine (TEA), an organic base that does not have a carboxylate group to 

act as a capping agent, particle size decreased to a couple of micrometres. This is 

because a higher pH facilitates deprotonation of the linker, increasing the nucleation 

rate and allowing crystals to grow. Using a coordinating modulator that affects the pH 

of the reaction mixture while also acting as a capping agent, such as sodium acetate for 

example, therefore adds an additional factor to take into consideration when considering 

its effect on crystal growth. Figure 1.4 shows a proposed crystal formation mechanism 

for Dy(BTC)H2O MOF83. At lower pH values, both deprotonation of the linker and 

nucleation are slow, leading to large crystals. At higher pH, deprotonation and 

nucleation are faster, leading to smaller microcrystals. In the presence of a capping 

agent at high pH, crystal growth is restricted even further, resulting in yet smaller 

nanocrystals.  
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Figure 1.4. Schematic representation of crystal formation dependence on pH and capping 

agents. Blue and orange colours represent protonated and deprotonated COO- groups of the 

organic linker. Adapted from Guo et al.83  

 A number of studies have shown the key role that modulator concentration 

plays on the number of defects in UiO-6658,61,65,86. Most of these defects exist due to 

terephtalic acid linkers being replaced by modulator molecules throughout the 

structure87,88. Coordination modulation can therefore also be used to modify the bulk 

chemistry of MOFs. At the nanoscale, these bulk chemistry changes can also affect the 

surface properties of the particles, which in turn can affect their colloidal stability. NPs 

that are stable in aqueous media are essential for healthcare applications. In a systematic 

study of the effect of monocarboxylic acid modulators on the size and colloidal stability 

of UiO-66, Mirkin and co-workers found that modulators with lower pKa values 

increase the colloidal stability of MOF particles80. This is because molecules with lower 

pKa values are more likely to be deprotonated during synthesis, and so compete better 

with the organic linker for attachment to the zirconium positions, which in turn creates 

defects. These defects increase the surface charge as measured by the zeta potential, 

thereby increasing the repulsion between NPs and enhancing their colloidal stability. 

Using formic acid (FA, pKa = 3.77), dichloroacetic acid (DCA, pKa = 1.36), and 

trifluoroacetic acid (TFA, pKa = 0.23), they were able to synthesise colloidally stable 

UiO-66 particles (the BDC linker has a first pKa = 3.51 and a second pKa = 4.82), as 

determined by DLS. On the other hand, particles synthesised using acetic acid (AA, pKa 

= 4.76) aggregated considerably for similar modulator concentrations (Figure 1.5). 
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Figure 1.5. Colloidal stability of UiO-66 particles synthesised as a function of modulator 

concentration and modulator acidity (pKa). Modulators used were acetic acid AA (green), 

formic acid FA (black), dichloroacetic acid DCA (red), and trifluoroacetic acid TFA (blue). (A) 

STEM size measurements. (B) DLS size measurements; purple bars indicate highly aggregated 

samples for which the size could not be determined using DLS. STEM image and digital 

photographs of UiO-66 dispersed in water, synthesised with (C) AA (1.2 M) and (D) DCA (0.58 

M). (E) Zeta potential measurements. Adapted from Mirkin et al.80 

 In summary, coordination modulation can be used to tune the size, surface 

chemistry, and colloidal stability of MOFs, among other properties. Monocarboxylic 

acids with lower pKa values are more effective modulators due to their ability to better 

compete with the organic linker for coordination to the metal node. They can control 

particle size by modulating the nucleation rate and by capping crystal growth, and yield 

more defective, and hence more colloidally stable particles. 

1.2.3.3 Post-Synthetic Modification of MOFs 

 As discussed earlier, the properties of MOFs in solution (e.g. chemical and 

colloidal stability) are largely dependent on their surface chemistry. Having the ability 

to modify the surface chemistry is therefore an attractive tool, especially as it also 

allows for the addition of targeting agents to NP surfaces. Control of surface chemistry 

can be done during the synthesis step by coordination modulation, as discussed in 
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Section 1.2.3.2. However, incorporation of a molecule into the MOF structure using 

coordination modulation and obtaining a functional delivery system can be challenging, 

as it also has an effect on crystal growth and consequently on the particle size. 

Additionally, molecules coordinating to metal positions are not restricted to the surface 

of MOF NPs, but are also present in the bulk81. Modifying the surface of particles after 

they are formed, using post-synthetic modification (PSM), is an alternative technique 

that can allow to maintain a constant particle size89. Additionally, by choosing a 

functionality that is too large to fit through the pore windows, modification can be 

limited to the surface of MOF NPs63. Tight control of particle size and surface 

chemistry is particularly relevant for intracellular delivery as a number of studies have 

revealed a strong correlation between the physical parameters of NPs and cellular 

processes90–94. PSM can be done using a number of different approaches, which can be 

broadly categorised into (i) approaches that rely on coordinating functionalities to the 

surface metal clusters, and (ii) ones that rely on covalently attaching functionalities to 

reactive groups on the linker.  

1.2.3.3.1 Post-Synthetic Modification of Zr-MOFs by Coordination to Metal SBUs 

 Zirconium SBUs are susceptible to nucleophilic attack, which allows the use of 

nucleophilic functional groups such as carboxylates95, phosphates96, and imidazolates97, 

to attach functionalities to the surface of Zr MOFs through coordination to the 

unsaturated Zr positions. The functionality can attach to unsaturated Zr SBUs or can 

displace linkers by solvent assisted ligand exchange (SALE). When the reagent is too 

large to fit through the pores, functionalisation is restricted to the outer surface of the 

MOFs. 

 Xie et al. incorporated carboxyl-functionalised diiodo-substituted BODIPYs 

into UiO-66 using SALE by heating in DMF at 65 °C for 24 h (Figure 1.6). The 

measured BET area of 1422 m2/g confirmed attachment to the external surface rather 

than filling of the pores. A high loading was obtained, with I2-BODIPY forming 35 % 

of the weight of the material.  The resulting material was assessed for photothermal and 

photodynamic therapy (PDT) and was shown to generate singlet oxygen very 

efficiently, which could kill cancer cells effectively98. Zhou et al. post-synthetically 

attached folic acid (FA) to the surface of PCN-224 particles 90 nm in size in order to 

actively target folate receptor (FAR) abundant tumour cells. FA was attached through 

its carboxylic acid functionality. They tested the material on the FAR abundant HeLa 
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cell line and showed an improvement in PDT efficacy compared to non-functionalised 

PCN-224, whereas tests on a control FAR-negative cell line (A549) showed no 

improvement95. Mirkin et al. took advantage of the ability of phosphates to coordinate 

to Zr SBUs to modify a number of UiO-66 series with the phospholipid 

1,2-dioleoyl-sn-glycero-3-phosphate (DOPA). The hydrophobic ligand allowed the 

usually hydrophilic MOF to be suspended in chloroform64.  

 

Figure 1.6. Schematic representation of the use of solvent-assisted ligand exchange to 

incorporate a functionality (BODIPY) into MOF crystals. Adapted from Wang et al.98 

1.2.3.3.2 Post-synthetic Modification of Zr-MOFs Based on Covalent Chemistry 

 MOF surfaces can also be modified post-synthesis by covalently attaching 

molecules to pendant functional moieties on the organic linker. Wuttke et al. 

demonstrated the attachment of NH2-PEG5000 to externally exposed carboxyl groups 

of the linker by a water-based carbodiimide mediated reaction (Figure 1.7). The 

functionalized MOF nanoparticles showed increased colloidal stability in aqueous 

media and displayed efficient uptake by cells, with no cytotoxic effects up to 24 h99. 

While this was done on Fe-based MIL-100 particles, the same principle can be applied 

to Zr-based MOFs. Mirkin et al. covalently functionalised UiO-66 with 

oligonucleotides. They did so by utilising click chemistry between DNA appended with 

dibenzylcyclooctyne and azide-functionalised UiO-66-N3. In aqueous NaCl, the NPs 

exhibited enhanced stability and cellular uptake when compared to non-functionalised 

UiO-66 of similar particle size100. Sada et al. attached poly(N-isopropylacrylamide) 

(PNIPAM) chains to the amino groups on UiO-66-NH2 through amide coupling. They 

obtained a thermoresponsive material that allows for controlled release through 

conformational changes of PNIPAM, which switches between ‘open’ and ‘closed’ states 

at lower and higher temperatures respectively101. 
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Figure 1.7. Schematic illustration of the reaction scheme of the amidation by EDC 

hydrochloride and sulfo-NHS mediation. Adapted from Zimpel et al.99 

 In summary, surface modification can be performed using a number of 

methods in order to tune and enhance a vast number of properties of the delivery 

system, such as colloidal dispersion, in vivo stability, and targeting ability, among 

others. Most surface modifications are done post-synthetically in order to be able to 

better control particle size. The use of large functionalities restricts attachment to the 

surface of the particles. Surface functionalisation allows for better design of delivery 

systems that are biologically relevant. 

1.3 Aims & Objectives 

 The overall aim of the work discussed in this dissertation is to utilise a class of 

porous materials, metal-organic frameworks (MOFs), for the intracellular delivery of 

biomaterials. In order to accomplish the described aim, the following objectives were 

pursued in three separate chapters: 

1. Synthesise and characterise Zr-based MOFs that are suitable for intracellular 

delivery applications. 

2. Load different biomolecules into crystalline MOFs both during synthesis and 

post-synthetically. 

3. Investigate the trafficking of MOFs by HeLa cells and their final intracellular 

fate by studying endocytosis pathways of uptake. 

4. Post-synthetically functionalise the surface of MOFs with a targeting agent in 

order to deliver biomolecules to specific intracellular locations. 

5. Determine the efficiency of MOFs as targeted intracellular delivery vectors 

compared to the free drug/biomolecule using in vitro studies on HeLa, MCF-7, 

and HEK-293 cells. 



Chapter 2: Materials, Synthesis, and Methods 

S. Haddad – September 2018   17 

2 MATERIALS, SYNTHESIS, 
AND METHODS 

2.1 Materials 

 Zirconium tetrachloride (ZrCl4, 99.5%), terephthalic acid (BDC, 98%), and 

dimethyl sulfoxide (DMSO) were purchased from Alfa Aesar (UK). Dichloroacetic acid 

(≥99 %), HCl (37 %), benzoic acid (99.5 %), α-cyano-4-hydroxycinnamic acid (α-CHC, 

98 %), calcein disodium salt, nystatin, chlorpromazine, rottlerin, sucrose (99.5 %), 

4-carboxybutyl triphenylphosphonium bromide (TPP, 98 %), 3-

(diphenylphosphino)propionic acid (97 %), 1-bromopyrene (96 %), triethylamine (TEA, 

99.5 %), acetic acid (≥99%), dimethylformamide (DMF, 99.8%), ethanol (99.8 %) 

methanol (99.9%), and acetone (99.9%) were purchased from Sigma-Aldrich (UK).  

 HeLa, MCF-7 and HEK-293 cells were obtained from the ATCC. Dulbecco’s 

modified Eagle’s medium (DMEM), foetal bovine serum (FBS), L-glutamine, 

penicillin, and streptomycin were purchased from Invitrogen (UK). Phosphate-buffered 

saline (PBS), trypsin–EDTA, Lysotracker®-Deep Red, CellLight™ Mitochondria-GFP 

BacMam 2.0, HCS Mitochondrial Health kit, 2-Mercaptoethanol, Hoechst 33342 

(H33342), and CellMask™ Orange were purchased from Life Technologies™ (UK). 

DRAQ5™ was purchased from Abcam. CellTiter 96® AQueous One Solution Cell 

Proliferation Assay (MTS) was obtained from Promega (UK). RNeasy Micro kit, 

QIAshredder, and RNAprotect Cell Reagent were obtained from QIAGEN. 

All chemicals and biochemicals used were of analytical grade. 
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2.2 Synthesis 

 The results presented in this dissertation were obtained using an isoreticular 

zirconium-based family of MOFs. Six different linkers were used to synthesise the 

family of Zr-based MOFs. The linkers were named L1 to L6: L1 = terephtalic acid 

(BDC); L2 = 2-bromoterephtalic acid (Br-BDC); L3 = 2-nitroterephtalic acid (NO2-

BDC); L4 = 2-aminoterephtalic acid (NH2-BDC); L5 = naphthalene-2,6-dicarboxylic 

acid (NDC); L6 = 4,4’-biphenyldicarboxylic acid (BPDC). The synthesised MOFs were 

named Zr-Lx, where x denotes the identifier of the linker. Zr-L1 corresponds to UiO-66.  

 Synthesis of Zr-L2 to Zr-L6 was done by Dr. Ross J. Marshall and Dr. Isabel 

Abanades Lazaro under the supervision of Dr. Ross Forgan (School of Chemistry, 

University of Glasgow, UK). Synthesis of the range of Zr-L1 with different particle 

sizes used in Chapter 4 was done by Mr. Gerard Boix and Dr. Inhar Imaz from Dr. 

Daniel Maspoch’s group (Catalan Institute of Nanoscience and Nanotechnology ICN2, 

CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Spain).  

2.2.1 Synthesis of Zr-L1 (UiO-66) 

 Different synthetic methods were used to obtain the various samples of Zr-L1 

used across this thesis. 

2.2.1.1 Synthesis of Zr-L1 for Delivery of Trehalose (Chapter 3) 

 UiO-66 was synthesised according to Zhu et al.96: ZrCl4 (2 mmol), terephtalic 

acid (2 mmol), benzoic acid (20 mmol), and 37 % HCl (0.33 mL, 4 mmol) were 

ultrasonically dissolved in 36 mL DMF. The mixture was put in a Teflon-lined steel 

autoclave and was heated in a reaction oven at 120 °C for 48 h. After cooling down to 

room temperature, the mixture was centrifuged in a bench-top centrifuge (Sigma 3-

16PK, DKB Labcare Ltd, Buckinghamshire, UK) at 5500 rpm for 10 minutes, then 

washed twice with DMF to remove unreacted reagents. It was finally washed twice with 

ethanol to remove all traces of DMF, and then activated in a vacuum oven at 80 °C 

overnight in order to remove all guest molecules from the framework. 

2.2.1.2 Synthesis of xZr-L1 with Different Particle Sizes (Chapter 4) 

(Work done by Gerard Boix and Inhar Imaz from Dr. Daniel Maspoch’s group at the 

Institut Catala de Nanociencia i Nanotecnologia in Barcelona).  



Chapter 2: Materials, Synthesis, and Methods 

S. Haddad – September 2018   19 

 In a typical xZr-L1 synthesis, 5 mL of a DMF solution of terephthalic acid 

(BDC; 20 mg, 0.12 mmol) was added to 10 mL of a DMF solution containing varying 

amounts of acetic acid (HAc) and ZrCl4 (28 mg, 0.12 mmol) in a 26 mL glass vial with 

strong magnetic stirring. Once the addition was completed, the stirring was stopped and 

the vials were sealed and introduced into an oven at 120 °C for 24 hours. The resulting 

powders were collected by centrifugation (6701 rcf in 50-mL Falcon tubes), re-

dispersed in 10 mL of DMF and precipitated by centrifugation. This two-step washing 

process was repeated two more times with DMF to remove the unreacted BDC. UiO-66 

particles were further washed three times with methanol and left under stirring at 50 ºC 

for 24 hours to remove the DMF. The collected UiO-66 particles were finally dried at 

room temperature under vacuum overnight. The concentrations of acetic acid used to 

synthesize the UiO-66 particles of each size were: for 50 ± 2 nm, [HAc] = 10 µl (11.6 

mM); for 75 ± 3 nm, [HAc] = 120 µL (139.8 mM); for 92 ± 2 nm, [HAc] = 230 µL 

(267.9 mM); for 260 ± 21 nm, [HAc] = 460 µL (535.7 mM); for 652 ± 23 nm, [HAc] = 

2.75 mL (3.2 M). 

2.2.1.3 Synthesis of Zr-L1 for Mitochondrial Targeting (Chapter 5) 

2.2.1.3.1 Triphenylphosphonium Attached Using Coordination Modulation 

(Work done in collaboration with Dr. Isabel Abanades-Lazaro in Dr. Ross Forgan’s 

group, School of Chemistry, University of Glasgow). 

 In a typical synthesis, 5 mL of a DMF solution of ZrCl4 (156.75 mg, 0.675 

mmol) was added to 5 mL of a DMF solution containing terephtalic acid (BDC; 112 

mg, 0.675 mmol) and varying amounts of dichloroacetic acid (DCA) and 4-

carboxybutyltriphenylphosphonium bromide (TPP) in a 26 mL glass vial. HCl (60 μL, 

0.675 mmol) was added to the mixture, which was then sealed and placed in an oven at 

120 °C for 24 hours. The resulting powders were collected by centrifugation at 5500 

rpm for 15 minutes, re-dispersed in 10 mL DMF and precipitated by centrifugation. 

This two-step washing process was repeated once more with DMF to remove the 

unreacted BDC. UiO-66 particles were further washed two times with methanol and 

were then left to dry at room temperature under vacuum overnight. The concentrations 

of DCA and TPP used are shown in Table 2.1.  
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Table 2.1. Different combinations of DCA and TPP amounts used in the synthesis of Zr-L1 for 

mitochondrial targeting. The subscript numbers in the sample names represent the number of 

equivalents of reagents used. 

Sample name DCA TPP 

DCA1-TPP1-UiO-66 55 μL (1 eq) 299.2 mg (1 eq) 

DCA10-TPP1-UiO-66 550 μL (10 eq) 299.2 mg (1 eq) 

DCA1-TPP5-UiO-66 55 μL (1 eq) 1496 mg (5 eq) 

DCA5-TPP1-UiO-66 275 μL (5 eq) 299.2 mg (1 eq) 

DCA5-TPP5-UiO-66 275 μL (5 eq) 1496 mg (5 eq) 

DCA1-TPP2.5-UiO-66 55 μL (1 eq) 748 mg (2.5 eq) 

DCA2.5-TPP1-UiO-66 137.5 μL (2.5 eq) 299.2 mg (1 eq) 

DCA1-UiO-66 55 μL (1 eq) 0 

DCA2.5-UiO-66 137.5 μL (2.5 eq) 0 

DCA5-UiO-66 275 μL (5 eq) 0 

DCA10-UiO-66 550 μL (10 eq) 0 

DCA20-UiO-66 1100 μL (20 eq) 0 

 

2.2.1.3.2 Triphenylphosphonium Attached Using Post-Synthetic Modification  

 For the post-synthetic attachment of TPP to DCA2.5-UiO-66, DCA5-UiO-66, 

and DCA10-UiO-66, 40 mg of MOF were dispersed in 20 mL methanol. Separately, 40 

mg or 10 mg TPP (0.090 mmol or 0.023 mmol respectively) were dissolved in 20 mL 

methanol containing triethylamine (TEA; 0.2 mL, 1.43 mmol). The two solutions were 

mixed together and then stirred at room temperature overnight. The particles were 

centrifuged and washed three times with methanol, and were then dried at room 

temperature in a vacuum desiccator. Obtained particles were named 

TPP(++)@(DCAx-UiO-66) or TPP(+)@(DCAx-UiO-66), depending on whether they were 

functionalised using 40 mg or 10 mg of TPP respectively (x is either 2.5, 5, or 10). 

DCA2.5-UiO-66 was also functionalised utilising 1 mg of TPP (0.009 mmol) using the 

same procedure. The resulting sample was named TPP@(DCA2.5-UiO-66). The post-
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synthetic attachment of fTPP to DCA5-UiO-66 was done using the same procedure as 

for TPP(++)@(DCA5-UiO-66).    

2.2.2 Synthesis of Zr-L2−Zr-L6 (Chapter 4) 

(Work done by Dr. Ross J. Marshall and Dr. Isabel Abanades-Lazaro in Dr. Ross 

Forgan’s group at the University of Glasgow).  

 Zr–L2 to Zr–L4 nanoparticles were obtained following the protocol from Zhu 

et al.96 with minor modifications. ZrCl4 (0.466g, 2.00 mmol), the required linker (1.93 

mmol), (L2-L4), benzoic acid (2.44 g, 20.00 mmol) and 0.33 mL of HCl 37 % were 

ultrasonically dissolved in 36 mL of DMF. The mixture was placed in a 50 mL 

autoclave and heated at 120 °C for 48 h. After cooling down to room temperature, the 

mixture corresponding to each MOF was harvested by centrifugation at 5500 rpm for 20 

min and washed twice with DMF at room temperature in order to remove the unreacted 

linker. The same procedure was repeated with acetone in order to remove the DMF 

solvent from the sample. Finally, the solids were dried at 37 °C in a vacuum oven 

overnight.  

 Zr–L5 and Zr–L6 nanoparticles were obtained via solvothermal reaction 

conditions modifying a reported protocol102. Zirconyl chloride octahydrate (213 mg, 

0.66 mmol) was dissolved in 25 mL DMF. Separately, the required linker (NDC and 

BPDC for Zr-L5 and Zr-L6 respectively) (352 mg, 1.63 mmol) was dissolved in 15 mL 

of DMF. Both reagent solutions were mixed together in a 100 mL jar, then acetic acid 

(2.6 mL) was added to the reaction mixture, which was stirred and placed in the oven at 

120 °C for 24 h. After cooling, the nanoparticles were harvested by centrifugation 

(4500  rpm, 20 min), and purified by successive dispersion–centrifugation cycles with 

DMF (x2) and methanol (x3). The solids were dried in a high vacuum desiccator for 

24 h. 

2.2.3 Synthesis of fTPP (Chapter 5) 

 Synthesis of fTPP was done according to a protocol from 

Tomas-Gamasa et al103. 1-(bromomethyl)pyrene (1744 mg, 5.92 mmol) and 

3-(diphenylphosphino)propionic acid (2296 mg, 8.88 mmol) were dissolved in 64 mL 

toluene, and were then left to reflux overnight. The resulting yellow precipitate was hot-

filtered, washed once with methanol, and then left to dry in a rotary evaporator, giving 

rise to a pale yellow solid (3.223 g, 98 %). 
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2.3 Methods 

2.3.1 General Material Characterisation 

2.3.1.1 Powder X-Ray Diffraction (PXRD) (Chapters 3, 4, and 5) 

 Room temperature powder XRD (PXRD) was performed on all loaded and 

unloaded samples using a Bruker-D8 theta/theta machine with CuKα1 (λ = 1.5405 Å) 

radiation and a LynxEye position sensitive detector in Bragg Brentano parafocusing 

geometry. Steps were performed for 2θ = 2° to 50° at a step rate of 0.07°/s. 

2.3.1.2 Scanning Electron Microscopy (SEM) (Chapters 3, 4, and 5) 

 Samples from Chapters 3 and 4 were scattered onto spectroscopically pure 

carbon tabs (TAAB Ltd UK) mounted on aluminium stubs. They were coated with 15 

nm of gold in a Quorum Emitech K575X sputter coater to make them electrically 

conductive. They were imaged in an FEI XL30 FEGSEM, operated at 5 keV, using an 

Everhart Thornley secondary electron detector (Work done by Dr. Jeremy Skepper at 

the Cambridge Advanced Imaging Centre).  

 Samples from Chapter 5 were coated with Pd for 50 seconds using Polaron 

SC7640 sputter coater and imaged using a Carl Zeiss Sigma Variable Pressure 

Analytical SEM with Oxford Microanalysis. Particle size distribution was analysed 

manually using ImageJ software (Work done in collaboration with Dr. Isabel Abanades-

Lazaro in Dr. Ross Forgan’s group at the University of Glasgow).  

2.3.1.3 Thermal Gravimetric Analysis (TGA) (Chapters 3, 4, and 5) 

 TGA was performed using a TA instruments Q500 series thermal gravimetric 

analyser. The sample (1–3 mg) was held on a platinum pan under continuous flow of 

air, using a heating rate of 5 ˚C/min, from room temperature up to 800 °C, with a 10 

min hold at 100 °C.   

2.3.1.4 Dynamic Light Scattering (DLS) (Chapters 3, 4, and 5) 

 Colloidal analysis was performed using a Zetasizer Nano ZS potential analyser 

equipped with non-invasive backscatter optics and a 50 mW laser at 633 nm. 

Measurements were performed at high resolution. 
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2.3.1.5 Zeta Potential Measurements (Chapters 4 and 5) 

 Zeta potential measurement cuvettes (Malvern DTS1070) were flushed once 

with ethanol, four times with distilled water, and then once with the media in which the 

measurement was to be made (either growth media or water). 1 mL of MOF suspension 

at a concentration of ca. 0.1 mg/mL was added to the cuvette, and the measurement was 

performed. Obtained data was analysed using the Malvern Zetasizer software.  

2.3.2 MOF Stability Assessment (Chapter 3) 

 The stability of UiO-66 was studied by soaking 5 mg of MOF in 10 mL of 

various solvents and studying the resulting PXRD patterns 10 days later. Further 

information on the kinetics of degradation of UiO-66 was obtained by performing a 

degradation study in PBS. This was done by soaking 10 mg of activated UiO-66 in 

500 mL of PBS at 37 °C and measuring the linker (i.e. BDC) release. All experiments 

were done in triplicate. A calibration curve for BDC was built using several 

concentrations of BDC in PBS in the range of 0–15 μg/mL. At each time point in the 

degradation study up to 24 h, the suspension was centrifuged; 1 mL of supernatant was 

taken out of the tube and replaced with 1 mL of fresh PBS. The absorbance of the 

collected sample was read on an absorbance microplate reader (SPECTROstar Nano, 

BMG Labtech, Aylesbury, Bucks, UK) at a wavelength of 240 nm, and the amount of 

BDC released was determined.  

2.3.3 Drug/Biomolecule loading into MOFs (Chapters 3, 4, and 5) 

2.3.3.1 Trehalose Loading into UiO-66 (Chapter 3) 

 40 mg UiO-66 were suspended in 40 mL of aqueous solutions of trehalose 

(Concentrations: 30, 50, 70, 100, and 500 mg/mL). The solutions were left to stir at 

room temperature for 4 days. After this loading period, the solutions were centrifuged at 

5500 × g in a SIGMA 3-16PK Centrifuge for 20 min and the supernatant was discarded. 

The crystalline samples were then dried at 37 °C for 24 h.  

2.3.3.2 Calcein Loading into MOFs (Chapters 4 and 5)  

 For xZr-L1 samples with different particle sizes (Chapter 4), 25 mg MOF were 

dispersed in 10 mL of a methanolic calcein solution (1 mg/mL). The mixture was 

dispersed by sonication, and was then left under orbital shaking in an incubator at 37 °C 

for 4 days. After this loading period, the solutions were centrifuged at 5500 × g in a 
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SIGMA 3-16PK Centrifuge for 20 min and the supernatant was discarded. The MOF 

particles were washed 3–4 times with methanol until no further calcein was observed to 

be released. The crystalline samples were then dried at 37 °C for 24 h. 

 For Zr-L2−Zr-L6 particles (Chapter 4), 50 mg MOF were dispersed in 25 mL 

of a 1 mg/mL methanolic solution of calcein and left to shake at 37 °C for 1 day. The 

MOFs were harvested and washed as described for xZr-L1 particles.  

 The amounts of loaded calcein were determined by taking 5 mg of calcein-

loaded MOFs and soaking them in 1.5 mL PBS for 2 days until all the calcein was 

released. The total amount of released calcein was measured using UV-vis at a 

wavelength of 498 nm. 

 For DCA5-UiO-66 and TPP(++)@(DCA5-UiO-66) (Chapter 5), 10 mg of MOF 

were dispersed in 5 mL of a methanolic solution of calcein (1 mg/mL), and left to stir at 

room temperature for 1 day. The MOFs were harvested and dried as described 

previously. 

2.3.4 Drug/Biomolecule release from MOF (Chapter 3) 

 Release experiments were conducted over 1 day at 37 °C in an incubator. 

Samples of trehalose-loaded MOF were loaded into 1.5 mL Eppendorf tubes with 1 mL 

PBS. At each time point, samples were removed from the 37 °C shaking incubator, 

centrifuged at 16000 × g for 50 s, and the supernatant was collected for trehalose 

concentration measurement. The removed supernatant in the Eppendorf tubes was 

replaced with 1 mL fresh PBS, and the samples were placed back into the incubator at 

37 °C until the following time point. Trehalose is a disaccharide that does not absorb 

light in the UV or visible range. In order to measure its concentration in solution, the 

anthrone assay was used. Concentrated sulphuric acid was used to dehydrate trehalose 

to form furfural. Furfural condensed with anthrone (10- keto-9,10 dihydroanthracene) to 

form a bluish-green complex which absorbs light at a wavelength of 620 nm. The colour 

formed when trehalose was treated with anthrone depended on the temperature and the 

time of heating, as well as the concentrations of sulphuric acid and anthrone used. 

Different acid concentrations, heating times, and volumetric ratios of anthrone to 

sample were tested. The following procedure was eventually used:  

 1 g of anthrone was dissolved in 100 mL of concentrated sulphuric acid. A 

stock solution of 1000 μg/mL trehalose in distilled water was prepared, and a range of 
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concentrations of 0–1000 μg/mL was set up. The anthrone solution and the standards 

were chilled in a fridge at 4 °C prior to use. 200 μL of chilled standard solution were 

mixed with 800 μL of anthrone solution (ratio 1:4) in an Eppendorf tube (Eppendorf UK 

Ltd., Cambridge, UK). All work was done on a rack of ice. The mixture was vortexed 

and then placed in a heating block at 100 °C for 20 minutes, after which the absorbance 

was read on a spectrophotometer at 620 nm. A standard curve was built and used to 

determine unknown trehalose concentrations.  

2.3.5 Cell Culture (Chapters 3, 4, and 5) 

2.3.5.1 Cell Line Maintenance 

 Cells were maintained at 37 °C and 5% CO2 in high rich glucose (4500 mg/L) 

DMEM supplemented with 10% (v/v) FBS, 2 mM ʟ-glutamine, 100 units/mL penicillin, 

and 100 μg/mL streptomycin, in a 75 cm2 cell culture plate. This growth medium is 

termed complete growth medium in the remainder of the dissertation. The cells were 

passaged three times a week (at about 80 % confluence) by removing cell culture media, 

washing once with PBS, incubating with 1 mL of trypsin-EDTA for 5 min at 37 °C and 

5 % CO2, neutralising trypsin-EDTA activity by adding 5 mL of complete cell culture 

media, and then seeding the cells in a new 75 cm2 plate at a density of 2.1 × 106 

cells/cm2. 

2.3.5.2 Preparation of Frozen Cell Stocks 

 Cells were cultured and harvested by trypsinisation as described in Section 

2.3.5.1. They were then counted using a haemocytometer. The cell suspension was then 

transferred to a 15 mL centrifuge tube and centrifuged at 1200 rpm for 5 min. The 

supernatant was discarded and the cell pellet resuspended in freezing medium (90 % 

FBS and 10 % DMSO) at a final concentration of 106 cells/mL. Aliquots of 1 mL of 

cells in freezing media were added to 2 mL cryogenic vials. Vials were then placed in a 

Nalgene freezing container (Rochester, NY, USA) at -80 °C overnight to provide a 

cooling rate of 1 °C/min, after which the vials were transferred to a liquid nitrogen tank 

at -196 °C.  

2.3.5.3 Cell Thawing 

 Frozen cell stocks were removed from the liquid nitrogen bath and 

immediately placed in a water bath at 37 °C for rapid thawing. As soon as all the ice 

crystals had thawed, the cell suspensions were transferred a 15 mL centrifuge tube. 
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5 mL of complete growth medium were slowly added to the cell suspensions. The total 

solution was then transferred to tissue culture flasks (25 cm2), and the cells were 

allowed to grow at 37 °C and 5 % CO2 for 24 h, after which the media was replaced 

with fresh complete growth media. Cells were then maintained as described in Section 

2.3.5.1. 

2.3.6 MTS Cytotoxicity Assay (Chapters 3, 4, and 5) 

 The cytotoxicity of trehalose, DCA, and empty and loaded MOFs was 

investigated using the CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay 

(Promega, UK). The day before the experiment, cells were seeded in a 96-well plate at a 

density of 104 cells/well. The following day, the different MOFs and drugs were 

dispersed in complete medium and a range of concentrations was prepared (0–1 

mg/mL), of which 100 µL were added to each well and incubated for 4–72 h at 37 ºC 

with 5% CO2. At the end of the incubation period, the treatment solutions were 

removed. The cells were washed once with PBS, and then 100 µL of fresh growth 

media was added to each well. To measure the toxicity, 20 µL of MTS solution were 

added to each well. The plate was then covered with aluminium foil, and placed at 37 ºC 

and 5% CO2 for 75 min. Then, 100 µL of solution from each well were transferred to a 

new 96-well plate. The plate was read by UV/Vis spectroscopy (Spectro StarNano, 

BMG Labtech) at 490 nm. 

2.3.7 Confocal Microscopy (Chapters 4 and 5) 

2.3.7.1 Protocol for Lysosome Co-Localisation Experiments (Chapter 4) 

 HeLa cells were seeded in a NUNCTM imaging four-well plate at a density of 

105 cells/mL (0.9 mL of a 1.1 x 105 cells/mL complete growth media solution) and 

incubated overnight at 37 ºC and 5% CO2. The following day, cells were washed once 

with PBS, and incubated with 0.25 mg/mL of calcein-loaded MOFs in complete growth 

media for 2 h. Subsequently, cells were washed with PBS twice to remove the MOFs, 

and incubated with LysoTracker Deep-Red (50 nM) for another 30 min. Cells were then 

washed with trypan blue (0.4 %) to quench any external fluorescence, followed by three 

times with PBS. Then, fresh medium without phenol red was added to the cells (0.5 

mL), and the four-well plate was imaged using a Leica TCS SP5 confocal microscope. 

The microscope was equipped with 405 diode, argon, and HeNe lasers. Laser excitation 

wavelengths used were 488 nm and 640 nm to excite the fluorescence emissions of 
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MOF and lysosomes respectively. Leica LAS AF software was used to process the 

images. The images were then analysed using a co-localization plug-in on ImageJ 

software (JaCOP) in order to determine the Manders’ overlapping coefficient. This 

coefficient varies from 0 to 1, for non-overlapping signal to completely overlapping, 

respectively, and expresses the fraction of intensity in a channel that is located in pixels 

where there is above zero (or threshold) intensity in the other colour channel. 

2.3.7.2 Protocol for Mitochondria Co-Localisation Experiments (Chapter 5) 

 MCF-7 and HEK-293 cells were seeded in a NUNCTM imaging four-well plate 

at a density of 5 x 104 cells/mL (0.9 mL of a 5.5 x 104 cells/mL complete growth media 

solution) and incubated overnight at 37 ºC and 5% CO2. The following day, cells were 

transfected with 12 µL of CellLight® Mitochondria-RFP BacMam 2.0 and were 

allowed to continue growing for 16 h. After this, media was removed from the wells, 

and the cells were incubated for 2 h with 0.1 mg/mL of MOFs functionalised with a 

fluorescent variant of triphenylphosphonium (TPP). Subsequently, cells were washed 

with PBS twice to remove the MOFs, and 0.3 mL of 5 µM DRAQ5TM in PBS were 

added to each well. After 15 min incubation at room temperature in the dark, cells were 

imaged using a Leica TCS SP5 confocal microscope. The microscope was equipped 

with 405 diode, argon, and HeNe lasers. Laser excitation wavelengths used were 405 

nm, 561 nm, and 640 nm to excite the fluorescence emissions of MOF, mitochondria, 

and DNA, respectively. Leica LAS AF software was used to analyse and process the 

images. 

2.3.8 Super-Resolution Microscopy (Chapter 5) 

(Work done in collaboration with Marcus Fantham from Professor Clemens Kaminski’s 

group at the University of Cambridge) 

 MCF-7 cells were seeded in a NUNCTM imaging four-well plate at a density of 

5 x 104 cells/mL (0.9 mL of a 5.5 x 104 cells/mL complete growth media solution) and 

incubated overnight at 37 ºC and 5% CO2. The following day, cells were transfected 

with 12 µL of CellLight® Mitochondria-RFP BacMam 2.0 and were allowed to 

continue growing for 16 h. After this, media was removed from the wells, and the cells 

were incubated with 0.1 mg/mL of calcein-loaded MOFs in complete growth media for 

0.5 h or 8 h. Subsequently, cells were washed with PBS twice to remove the MOFs, and 

0.3 mL of 5 µM DRAQ5TM in PBS were added to each well. After 15 min incubation at 
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room temperature in the dark, cells were imaged using a custom built 3-color Structured 

Illumination Microscopy (SIM) setup that has previously been described104. The 

structured illumination patterns were generated by a spatial light modulator (SLM: 

SXGA-3DM, Forth Dimension Displays). A 60×/1.2NA water immersion lens 

(UPLSAPO 60XW, Olympus) focused the structured illumination pattern onto the 

sample. This lens also captured the samples’ fluorescence emission light, which was 

imaged onto a sCMOS camera (C11440, Hamamatsu). Laser excitation wavelengths 

used were 488 nm (iBEAM-SMART-488, Toptica), 561 nm (OBIS 561, Coherent), and 

640 nm (MLD 640, Cobolt), to excite the fluorescence emission of MOF, mitochondria, 

and DNA, respectively. Images were acquired using custom SIM software previously 

published104. Nine raw images were collected at each plane and recombined using a 

custom implementation of fairSIM105. 

2.3.8.1 Image Analysis (Chapter 5) 

(Work done by Marcus Fantham from Professor Clemens Kaminski’s group at the 

University of Cambridge) 

 Visualisation of cells reconstructed in 3D was performed with FPBioimage 

(Fantham & Kaminsky – 2017), and can be accessed online at 

http://aam.ceb.cam.ac.uk/mitoMOF. 

 Mitochondria eccentricity was assessed using a custom designed pipeline for 

Cell Profiler106. Briefly, the tool performed the following actions: Extract the 

mitochondria channel from the central slice of the reconstructed SIM image; apply a 

median filter window size 7 to remove elements of noise; run the 

‘IdentifyPrimaryObjects’ plugin to extract mitochondria as objects from the image; run 

the ‘MeasureObjectSizeShape’ plugin to gather statistics on detected objects; filter 

objects with an area less than 20 pixels (34 µm2); export filtered mitochondria objects to 

a spreadsheet. The eccentricity column was exported from the spreadsheet for further 

statistical analysis. The one-way ANOVA test was performed using GraphPad Prism 

version 7.04 for Windows to assess the statistical difference of mitochondria 

eccentricity between different experimental conditions.  

2.3.9 Flow Cytometry (Chapters 4 and 5) 

 In all flow cytometry experiments, cells were seeded in a 24-well plate at a 

density of 5 x 104 cells/well and allowed to grow for 24 h at 37 ºC and 5 % CO2. After 

http://aam.ceb.cam.ac.uk/mitoMOF
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that, cells were incubated with 0.5 mL of solution containing the appropriate treatment 

for the appropriate amount of time, depending on the experiment. After incubation with 

the treatment solutions, media was aspirated from the wells and the cells were washed 

twice with PBS. The cells were then harvested by adding 0.1 mL of trypsin-EDTA and 

incubated for 5 min at 37 ºC and 5 % CO2. The trypsin was neutralised by the addition 

of 0.4 mL of complete growth media, and the solutions were transferred to Eppendorf 

tubes. Cells were recovered by centrifugation at 1200 rpm for 5 min, and re-suspended 

in 100 µL of growth media without phenol red. Finally, the samples were analysed in a 

Cytek DxP8 analyser cytometer within 30 min. Analysis of the data was done using 

FlowJo software. 

2.3.9.1 Energy Dependence of Uptake Protocol (Chapters 4 and 5) 

 After seeding the cells and allowing them to grow for 24 h as described in 

Section 2.3.9, cells were pre-treated with 0.5 mL of growth media at either 37 ºC or 4 ºC 

for 30 min. After this period, 0.7 mL of a 0.5 mg/mL solution of calcein-loaded MOF in 

growth media was added to the wells, and the cells were incubated for a further 1.5 h. 

Following treatment, the cells were collected and analysed as described in Section 2.3.9.  

2.3.9.2 Endocytosis Inhibition Protocol (Chapters 4 and 5) 

 After allowing cells to grow for 24 h as described in Section 2.3.9, cells were 

pre-treated with 0.5 mL of sucrose (102.7 mg/mL, 0.3M), chlorpromazine (31.9 µg/mL, 

100 µM), nystatin (0.250 mg/mL, 0.27 mM), and rottlerin (2.6 µg/mL, 5 µM), for 30 

min at 37 ºC. After this period, 0.7 mL of a 0.5 mg/mL solution of calcein-loaded MOF 

in growth media was added to the wells, and the cells were incubated for a further 1.5 h. 

Following treatment, the cells were collected and analysed as described in Section 2.3.9. 

2.3.9.3 Cellular Uptake Efficiency Protocol (Chapter 4) 

 After seeding the cells and allowing them to grow for 24 h as described in 

Section 2.3.9, cells were incubated with 0.7 mL of a 0.5 mg/mL solution of calcein-

loaded MOF for 2 h. Free calcein in an amount equivalent to the one loaded in the 

MOFs was used as a control. Following treatment, the cells were collected and analysed 

as described in Section 2.3.9.  
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2.3.10 Microarray (Chapter 5) 

2.3.10.1 RNA extraction 

 MCF-7 cells were seeded in 12-well plates at a density of 105 cells/well, and 

were allowed to grow overnight at 37 ºC and 5 % CO2. The media was then aspirated, 

and replaced with 1 mL of a 0.25 mg/mL solution of MOF or free DCA. Cells were 

incubated for 72 h, after which the wells were washed twice with PBS, and the RNA 

was extracted using QIAGEN’s RNeasy RNA Extraction Mini Kit following the 

manufacturer’s instructions. The RNA concentration was adjusted to 50 ng/mL, and the 

solutions were used for microarray analysis. 

2.3.10.2 Array Processing 

(Work done by Cambridge Genomic Services, University of Cambridge) 

 RNA was assessed for concentration and quality using a SpectroStar (BMG 

Labtech, Aylesbury, UK) and a Bioanalyser (Agilent Technologies, Cheadle, UK). 

Microarray experiments were performed at Cambridge Genomic Services, University of 

Cambridge, using a species specific Gene 2.1 ST Array Plate (Affymetrix, Wooburn 

Green, UK) in combination with WT PLUS amplification kit (Affymetrix) according to 

the manufacturer’s instructions. Briefly, 100 ng Total RNA was amplified along with 

inline PolyA spike in control RNA, using the WT PLUS amplification kit (Affymetrix). 

Successfully amplified samples were labelled using the GeneChip WT terminal 

labelling kit (Affymetrix) using the in line hybridization controls. Plate arrays were 

processed on the GeneTitan instrument (Affymetrix) using the GeneTitan 

Hybridization, Wash and Stain kit (Affymetrix). Samples were hybridized to the array, 

washed, stained and scanned using the array specific parameters provided by 

Affymetrix. Finally basic visual quality control was performed using Command 

Console Viewer (Affrymetrix) prior to bioinformatic quality control.  

2.3.10.3 Bioinformatics 

(Work done by Cambridge Genomic Services, University of Cambridge) 

 GCCN-STT correction was applied to the raw data using the Affymetrix 

powertools in order to correct probes for GC content bias and adjust the dynamic range 

of the array to give better spread of intensity in order to identify differentially expressed 

genes. After scanning the files generated by the scanner (CEL files), GCCN-STT 

corrected files were loaded in R using the oligo package from bioconductor107. No 
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background correction or normalisation was applied at this stage. In order to assess the 

quality of the data, plots of the control probes were generated along with boxplot, 

MAplot and intensity distribution plot. Variation within biological replicates was also 

investigated using clustering methods. The raw data was then processed using the 

Robust Multichip Analysis (RMA) method108. The data was background corrected, 

normalised using quantile, and summarized. Once the data was processed, the 

comparisons were performed using the limma package109 and the results corrected for 

multiple testing using False Discovery Rate (FDR)110. 
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3 INTRACELLULAR DELIVERY 

OF TREHALOSE FOR 

CRYOPRESERVATION 

APPLICATIONS 

3.1 Introduction 

 Cryopreservation is the process of preserving biological material by freezing at 

extreme temperatures, most commonly -196 °C. Unprotected freezing is normally 

lethal, and a cryoprotective agent (CPA) is required to protect cells from freezing 

stresses. This chapter seeks to investigate the use of UiO-66 as a vehicle to encapsulate 

and intracellularly deliver trehalose, a naturally-occurring disaccharide able to protect 

cells from freezing stresses during cryopreservation. Section 3.1.1 describes the 

challenges and stresses that cells face during cryopreservation. Section 3.1.2 describes 

how CPAs can protect cells from these freezing stresses, and specifies how toxicity is 

their main drawback. Section 3.1.3 details how trehalose acts as a safe CPA when 

present inside cells.  

3.1.1 Cryopreservation Process and Challenges 

 Cryopreservation consists of freezing cells, proteins, or other biological 

material to sub-zero temperatures. This process allows the preservation of cells for 
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prolonged periods of time by halting all biological activity, including the biochemical 

reactions that lead to cell death and DNA degeneration. Preserving cells in a stable state 

is a fundamental requirement in biological and medical science, agriculture, and 

biotechnology, as it enables standardisation of experimental work over time, and 

secures lifesaving banks of cells and tissue ready for transplantation at the time of 

need111. 

 However, experimental findings show that the preservation process itself can 

damage cells, as they are put under significant stress at sub-zero temperatures. The 

challenge to cells during freezing is not their ability to withstand storage at extremely 

low temperatures; rather, it is the lethality of an intermediate zone of temperature (-5 °C 

to -60 °C) through which they have to pass twice: once during freezing, and once during 

thawing112. During freezing, the series of physical events that takes place in and around 

the cells is as follows: as the cells are cooled to -5 °C, both the extra- and intracellular 

media remain unfrozen. Between -5 °C and -15 °C, ice only forms in the external 

medium because the plasma membrane blocks the growth of ice crystals into the 

cytoplasm. As a result, cells tend to become supercooled, even in the presence of 

external ice113. As the temperature is decreased further, the supercooled water inside the 

cells has a higher chemical potential than the water in the partially frozen and hence 

more concentrated external medium. This drives the water to diffuse out of the cell, and 

to freeze externally. The subsequent physical events occurring in the cells 

between -15 °C and -60 °C depend on the cooling rate and directly affect their survival. 

Mazur et al. put forward the “Two-factor hypothesis” to describe the interrelationship 

between the cooling rate and cryosurvival, and to propose mechanisms for the injury 

that occurs to cells during cryopreservation113.  

 The first factor in Mazur’s hypothesis relates to the formation of intracellular 

ice. If the cooling rate is sufficiently low or the permeability of the cell to water 

sufficiently high, water can move down the chemical potential gradient from the more 

dilute intracellular solution to the concentrated extracellular medium114, as illustrated in 

Figure 3.1. If, however, the cooling rate is too high or the permeability of the cells too 

low, intracellular water is not lost fast enough to maintain equilibrium and accumulates 

inside the cells. The cells subsequently attain osmotic equilibrium by freezing 

intracellularly. This formation of ice crystals within the cells causes lethal mechanical 

injury to the cell membrane and intracellular components. The second factor in Mazur’s 

hypothesis relates to the concentration of solutes in and around the cells. This is also 
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highly dependent on the cooling rate. When the cooling rate is too low, cells are lethally 

damaged even though intracellular ice formation is avoided. This is because the cells are 

exposed to major alterations in the intra- and extracellular solutions over long periods of 

time, before they eventually reach the glassy state in which they will be stored. As ice 

crystals grow in the extracellular environment, the solutes surrounding the cells become 

increasingly concentrated in an ever-decreasing solvent volume. This freeze-

dehydration causes a number of deleterious events known as solution effects, and 

include dehydration, extreme volume shrinkage, changes in pH, and the precipitation of 

solutes. These solution effects cause changes in the structure of cell membranes, loss or 

fusion of membrane bilayers, and organelle disruption114. Karow and Webb explain 

solution effects injury as a consequence of the extraction of bound water from 

intracellular components for incorporation into ice crystals, ridding proteins of lattice-

arranged bound water essential to the integrity of their structures115. CPAs can help to 

overcome the discussed challenges arising from the formation of intracellular ice and 

solution effects. 

 

Figure 3.1. Schematic drawing of physical events and mechanisms of cryoinjury during 

freezing. Adapted from Gao & Critser112. 

3.1.2 Necessity of Cryoprotective Agents (CPAs) 

 The cooling rate is one key factor that determines the extent of injury cells will 

undergo during freezing. The optimal cooling rate for cells should be low enough to 

avoid lethal intracellular ice formation but high enough to minimise exposure time to 

solution effects. However, cooling at the optimal rate is not enough to provide 

protection to cells. Most cells also require the presence of a CPA116. A number of 
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hypotheses have been put forward as to how CPAs protect cells during freezing. Their 

mode of action is likely to be multi-factorial, with their main protective action being 

their ability to prevent the excessive concentration of electrolytes that otherwise occurs 

during the freezing process. At sub-zero temperatures, ice crystals form and the solutes 

become confined to a decreasing volume of solution. The total solute concentration in 

the unfrozen portion is solely determined by the sub-zero temperature117. Consequently, 

if the only constituent of the freezing medium is electrolytes, salt concentrations will 

reach very high levels as the temperature decreases and ice crystals form. In contrast, in 

a medium that contains electrolytes in addition to a large proportion of non-electrolytes, 

the salt concentration will be much lower. This could prevent the attainment of the 

critical salt concentration at which damage occurs whilst the whole system is 

sufficiently cooled to reach a ‘glassy matrix’114. This is the main way that CPAs offer 

protection to cells. 

 There are two types of CPAs: permeating and non-permeating. When CPAs are 

non-permeating, they only affect the extracellular salt concentration. This can impose 

osmotic stresses on the cells even before freezing. Trehalose is an example of a non-

permeating CPA. On the other hand, when CPAs are permeating, they affect both the 

extra- and intracellular salt concentrations118. When cells are put in a hypertonic 

permeating CPA solution, water exits the cells and its volume shrinks. However, the 

CPA also enters the cells, and after a brief period of equilibration, the normal cell 

volume is restored. The osmotic stress imposed by the permeating CPA is therefore 

much less than that imposed by the non-permeating one. In addition, when a high 

concentration of permeating CPA is used, part of the extracellular and intracellular 

water is replaced by the CPA. Hence, the amount of ice formed is lower119, the non-

frozen fraction remains larger, the cells suffer less volume shrinkage, and the electrolyte 

concentration in the freezing medium and in the cells remains lower than what it would 

be in the absence of the CPA114. This is the primary mechanism by which permeating 

CPAs offer cryoprotection. Permeating CPAs operate on a colligative basis, meaning 

that it is not the nature of the CPA but its concentration relative to the solutes inside and 

outside the cells that matters120. Any molecule can act as an effective permeating CPA 

provided that it is inherently non-toxic at high concentrations, has a low molecular 

weight, is highly soluble in aqueous electrolyte solutions, and has the ability to 

permeate cells121. Molecules with such properties are rare, with some common 

examples being glycerol, dimethylsulfoxide (DMSO), and ethylene glycol. 
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 As mentioned above, CPAs at high enough concentrations should be able to 

suppress all types of freezing injury. In practice however, the toxicity of these CPAs 

acts as a key limiting factor, preventing the use of fully protective levels of additive122. 

Currently, dimethyl sulfoxide (DMSO) is the most widely used CPA. However, there 

have been a number of toxicity issues reported with its use. DMSO has been found to 

significantly decrease the viability of adult and embryonic stem cells123,124, as well as 

alter the genome-wide methylation profile of cells125. Several studies have found that 

transplants with DMSO-cryopreserved stem cells cause side-effects in patients126. The 

overall incidence of DMSO toxicity is approximately 1 in 70 transplants and most cases 

are cardiovascular or respiratory in nature127. Some of these toxic side-effects include 

severe neurotoxicity128, respiratory depression129, and epileptic seizures130. Less severe 

side effects such as nausea, vomiting, and abdominal cramps are seen in up to 50 % of 

patients127. DMSO toxicity can be overcome by washing cells prior to implantation, but 

the additional wash steps cause cells to be lost and significantly increase the complexity 

of the cell delivery method131. In addition, washing the cells does not completely 

eliminate the risk of toxicity due to residual DMSO. A crucial need therefore exists for 

biocompatible and non-toxic CPAs that would eliminate the wash step altogether, 

saving time and resources. 

3.1.3 Trehalose as a CPA 

 Trehalose is a non-reducing disaccharide in which the two glucose units are 

linked in an α-α-1,1,-glycosidic linkage. It is classified as a kosmotrope, meaning that 

the interaction between trehalose and water is much stronger than the interaction 

between two water molecules. This gives trehalose very useful cryoprotective 

properties. This naturally encountered sugar is found in extremely high concentrations 

in organisms capable of surviving dehydration. In cysts of brine shrimp, trehalose 

represents approximately 15 % of the dry weight of the embryos132. Aphelenchus 

avenae, a species of nematode, converts as much as 20 % of its dry weight into 

trehalose when dehydrated133. Other species that produce trehalose include bacteria, 

yeast, and tardigrades134. Mammals however are unable to produce trehalose 

endogenously and are therefore unable to survive the stresses of freezing and 

dehydration135. 

 The exact mechanism by which trehalose provides protection during freezing 

and dessication is not completely understood, but a number of hypotheses have been put 
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forward to explain its remarkable properties. Vitrification theory (Figure 3.2A) states 

that trehalose forms a glassy matrix and physically shields proteins and cells from 

injury. Preferential exclusion theory (Figure 3.2B) states that trehalose restructures 

water around itself and away from the protein, decreasing its hydrated radius, and also 

decreases the availability of freezable water. Water replacement theory (Figure 3.2C) 

states that trehalose replaces water and directly interacts with the protein by forming 

hydrogen bonds, maintaining the three-dimensional structure and stabilising 

biomolecules135. These theories provide explanations for trehalose’s remarkable role in 

the stabilisation of the bilipid membrane and intracellular proteins136, as well as in the 

prevention of the formation of ice135.  

 

 

Figure 3.2. Various theories to explain the mechanism of action of trehalose: (A) vitrification 

theory, (B) preferential exclusion theory, and (C) water replacement theory. Adapted from Jain 

& Roy135. 

 Several studies have demonstrated that trehalose effectively protects nucleated 

mammalian cells when used at intracellular concentrations between 100 mM and 

200 mM137–139. However, its main drawback is that it does not readily permeate cells, 

with only low concentrations (< 0.5 %) being absorbed by passive diffusion or active 

endocytic mechanisms140. Efforts have therefore focused on finding ways to deliver 

trehalose inside the cell. Eroglu et al. used a genetically engineered mutant of 

Staphylococcus aureus α-hemolysin to create pores in the cellular membrane. These 

engineered pores are capable of being toggled between an open and closed state by the 

addition of micromolar concentrations of Zn2+ ions137. Using an extracellular 
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concentration of 200 mM trehalose in the freezing medium, they were able to 

successfully recover more than 70 % of cells post-thaw. Beattie et al. successfully 

introduced small concentrations of trehalose into pancreatic islet cells by taking 

advantage of a membrane phase transition at low temperatures. By cryopreserving with 

a combination of trehalose and DMSO, the recovery of cells was much higher than with 

DMSO alone (92 % vs 58 % respectively)141. Lynch et al. used an amphipathic polymer 

to permeabilise the cell membrane of erythrocytes and introduce trehalose into the 

cells22. Other studies have demonstrated the loading of trehalose by fluid-phase 

endocytosis142, microinjection138, and internal trehalose synthesis via genetic 

engineering143. Holovati et al. introduced trehalose inside erythrocytes using trehalose-

loaded liposomes144. Other attempts were made using osmotic and thermal shock145. 

However, intracellular concentrations in erythrocytes in all the studies did not exceed 

50 mM, which is below the threshold necessary for cryosurvival. 

 This chapter aims to investigate the use of UiO-66 as a potential intracellular 

delivery system for trehalose, which is unable to permeate cells on its own. Synthesis of 

the trehalose delivery system and its characterisation were performed, and subsequent 

biocompatibility studies were performed using the MTS viability assay. After the 

completion of these initial assessments, the system was tested as a CPA on HeLa cells. 

3.2 Collaborative Work 

SEM was performed at the Department of Physiology, University of Cambridge by 

Dr. Jeremy Skepper. 
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3.3 Results & Discussion 

3.3.1 Synthesis and Characterisation of Trehalose Delivery System 

 UiO-66 was synthesised and activated following the protocol outlined in 

Section 2.2.1.1. PXRD studies were then performed on the resulting material in order to 

confirm successful synthesis. Figure 3.3 shows the PXRD pattern for the synthesised 

UiO-66 compared with the pattern predicted from single crystal structures using 

Mercury software146. The positions of the main peaks in the synthesised structure at 

2θ = 7.4°, 8.6°, and 12.1° perfectly matched those in the simulated structure. 

Additionally, other observable peaks above 2θ = 12.1° were also in agreement with the 

simulated structure, indicating successful synthesis of UiO-66. The results also 

demonstrated that the crystal structure of UiO-66 was maintained after being exposed to 

the activation temperature of 80 °C for 48 hours, consistent with its reported thermal 

stability59,96,147. 

 

Figure 3.3. PXRD patterns of synthesised UiO-66 (blue) compared with the calculated patterns 

(black).  

 The particle size distribution of UiO-66 was investigated using SEM images of 

the synthesised materials, shown in Figure 3.4. The mean particle size and standard 

deviation were determined averaging across 100 particles. The average diameter of the 

particles was 136 ± 27 nm, which is within the size that cells can take up148, indicating 

the suitability of the NPs as an intracellular delivery system. The colloidal stability of 

UiO-66 particles suspended in PBS and cell culture media was also assessed using DLS. 
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The measured hydrodynamic diameter reflects the dimension of the NP together with 

the layer of surface-bound solvent. The average particle size in PBS was 

19432 ± 132 nm, which is significantly larger than the sizes determined from SEM 

images. This indicates that the synthesised UiO-66 particles tend to aggregate in PBS. 

For UiO-66 particles in cell culture media however, the average particle size was 

206 ± 15 nm. The likely reason for their lower susceptibility to aggregation compared to 

PBS is the formation of a “protein corona” on the external surface of the MOF particles, 

resulting from the adsorption of different kinds of proteins from the growth media149. 

 

 

Figure 3.4. SEM image of synthesised UiO-66 particles. Scale bar shown on image. 

 In order to assess the chemical stability of UiO-66 in PBS and water, the 

particles were soaked in both solvents for 9 days, after which their crystallinity was 

measured using PXRD. Stability in aqueous media for extended periods of time is 

important as the loading process is done by soaking the MOFs in a solution of trehalose 

over a period of 4 days. Figure 3.5 shows the measured PXRD patterns of the solvent-

soaked UiO-66 as well as the as-synthesised particles for comparison. The main 

diffraction peaks of UiO-66 at 2θ of 7.4°, 8.6°, and 12.1° were present in the water-

soaked material, confirming the material maintained its crystallinity after 9 days in 

water. For the PBS-soaked UiO-66 however, all the main peaks were absent. This 

indicates that the material was therefore amorphous after soaking in PBS for 9 days, 

likely due to the degradation and collapse of the MOF framework. 
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Figure 3.5. PXRD patterns of synthesised UiO-66 (blue), UiO-66 soaked in water for 9 days 

(red), and UiO-66 soaked in PBS for 9 days (purple). 

 The degradation of UiO-66 in PBS was further studied by investigating the 

release of organic linker, terephtalic acid (BDC), from the structure over time. For that, 

a calibration curve for BDC in PBS was prepared, and is shown in Figure 3.6a. Ideally, 

release studies should be done under sink conditions using a sheer volume of solvent, 

usually about 5 to 10 times greater than the volume present in the saturated solution. 

Otherwise, when the concentration gets close to saturation, the dissolution rate 

decreases significantly, which could falsely lead to conclude that the release is slower 

than what it actually is. The release study was done such that the total amount of BDC 

that could potentially be released (5.9 mg) would not saturate the solution (500 mL). 

The maximum concentration that could potentially be reached was 11.8 µg/mL, whereas 

the saturation concentration of BDC is 15 µg/mL. It was expected that at every time 

point, the concentration of BDC would be less than 5 times the saturation concentration, 

and that sink conditions would be satisfied. The percentage by weight of linker released 

from UiO-66 over time is shown in Figure 3.6b. After the first time point at 30 minutes, 

ca. 85 % of the BDC was already released from the structure, after which no further 

release was detected. These results show that degradation of the structure occurred at a 

time point less than 30 minutes. The high concentration of BDC at the first time point 

meant that the experiment was not done under sink conditions, and that the effective 

release rate was probably even faster, further pointing towards a very rapid degradation 

of the UiO-66 structure. Other studies have found similar results, showing that PBS 

leads to a rapid framework collapse of the MOFs due to the replacement of the 
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carboxylate linkers by phosphate groups present in the PBS solution6,70,150–153. UiO-66 

in particular might be very prone to fast degradation in PBS due to the strong affinity of 

Zr atoms for phosphate groups. Interestingly, the total amount of linker released 

corresponds to ca. 90 % of the expected weight of linker present in the sample of 

UiO-66. Additional experiments were performed to determine whether partial release 

occurred due to some linker molecules still being attached to the framework, or whether 

there were ligands missing in the starting structure.   

 

Figure 3.6. (a) Calibration curve for BDC in PBS and (b) linker release from UiO-66 in PBS 

with time. Error bars represent the standard error of three replicates. 

 In order to determine whether the synthesised UiO-66 had missing linkers in 

the framework, thermal gravimetric analysis (TGA) of UiO-66 was performed. Figure 

3.7 shows the TGA plot of UiO-66 between 450 °C and 550 °C. There was a significant 

weight loss due to the loss of benzene rings between 450 °C and 530 °C, and the sample 

was left with 46 % of the original weight. It is known that loss of benzene fragments 

occurs at 500 °C and is completed by 550 °C61, which means that the residual material 

at the end of the TGA experiment was ZrO2. If there were 12 BDC ligands attached to 

the Zr6O4(OH)4 cluster, a weight loss of 59.5 % would have been observed. The actual 

weight loss between the dehydrated and desolvated UiO-66 and the residual ZrO2 was 

approximately 54 %. This suggests that the as-synthesised material is slightly defective, 

having about 11 ligands per inorganic Zr6O4(OH)4 cluster. This is consistent with the 

results of the linker degradation in PBS in which 90 % of the expected linker was 

released into solution. 
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Figure 3.7. TGA plot of desolvated UiO-66 between 450 ◦C and 550 ◦C. 

3.3.2 Loading and Release of Trehalose from UiO-66  

 In order to load trehalose into UiO-66, the synthesised NPs were soaked in 

aqueous trehalose solutions of varying concentrations (0–500 mg/mL) for 4 days, after 

which they were collected by centrifugation and dried. The crystallinity of the loaded 

UiO-66 was checked by PXRD. Figure 3.8a shows the patterns for the trehalose-loaded 

UiO-66, the UiO-66 pattern predicted from single crystal structures, and the pattern for 

free trehalose. All the main peaks associated with UiO-66 were present in the PXRD 

patterns, confirming that UiO-66 crystallinity was not affected during the loading 

procedure at all loading concentrations. At the highest trehalose concentration of 

500 mg/mL, some small additional peaks were visible at 2θ of 12.5°, 13.8°, and 15.1° 

among others (Figure 3.8b). These peaks occurred at the same positions as some of the 

peaks of the crystalline trehalose material. They indicate that some trehalose is 

crystallising on the outer surface of the material. Trehalose is hypothesised to be mostly 

confined to the external surface of the UiO-66 NPs due to it being too large (6–10 Å) to 

fit through the UiO-66 windows (5–7 Å). It is also noteworthy that the characteristic 

peaks of UiO-66 shifted slightly to the left as it was soaked in increasingly concentrated 

trehalose solutions (Figure 3.8b). This suggests a slight flexibility of the UiO-66 

framework. Based on the positions of the peaks, the dimensions of the UiO-66 cubic 

crystal structure can be calculated. The empty UiO-66 material had a unit cell length of 

20.5 Å, and increased with increasing loading concentrations up to 2 % of the original 

length (i.e. 20.9 Å) for the material loaded in 500 mg/mL of trehalose. 
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Figure 3.8. (a) PXRD patterns of trehalose, calculated UiO-66, and UiO-66 loaded in solutions 

with different trehalose concentrations, and (b) magnified portion of the curves between the 

angles of 10° and 25°. 

 The amount of trehalose loaded in the different samples was estimated using 

TGA. Plots for trehalose, empty UiO-66, and loaded UiO-66 are shown in Figure 3.9. 

All MOF weights were normalised to their dehydrated and desolvated forms, meaning 

that the weights after loss of solvent were set at 100 %. The weight of trehalose was 

normalised to that of its dehydrated form. The temperature range shown in the graph is 

between 170 °C and 600 °C. Empty UiO-66 displayed a significant weight loss due to 

the loss of benzene rings between 450 °C and 530 °C, and the sample was left with 

41 % of the original weight. Pure trehalose dihydrate exhibited two distinct weight 

losses. The first one, of approximately 9.7 % between 60 °C and 100 °C (not shown on 

graph), corresponds to the dehydration of the trehalose. This weight loss compares well 

to the expected 9.5 %, which equates to two molecules of water per molecule of 

trehalose. The second weight loss occurred between 220 °C and 600 °C and can be 

attributed to the degradation of trehalose154. The trehalose-loaded MOFs displayed three 

different weight losses that can be attributed to three different events. Between 30 °C 

and 150 °C, the different solvents evaporated (not shown on graph). Between 220 °C 

and 450 °C, the trehalose degraded. Between 450 °C and 550 °C, the remaining 

trehalose degraded and the organic linker was lost. The degree of weight loss increased 

with increasing trehalose loading concentration, indicating higher amounts of adsorbed 

trehalose. This amount can be estimated by comparing the weight losses of loaded 

UiO-66 to that of dry and empty MOF ─ specifically, by comparing the relative 

amounts of ZrO2 left after degradation of the structure. The trehalose weight loadings 
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were calculated and ranged from 4 wt % for UiO-66 loaded in 30 mg/mL trehalose to 

56 wt % for UiO-66 loaded in 500 mg/mL trehalose.  

 

 

Figure 3.9. TGA plots of trehalose, empty UiO-66, and trehalose-loaded UiO-66 prepared by 

soaking UiO-66 in different concentrations of aqueous trehalose solutions ranging from 30 to 

500 mg/mL. Dashed red and grey lines represent empty UiO-66 and free trehalose respectively. 

Solid lines represent trehalose-loaded UiO-66.   

 To corroborate the results of the TGA measurements, the weight loading of 

trehalose was also determined by soaking trehalose-loaded MOFs in water under 

stirring for 48 h and measuring the concentration of trehalose in the supernatant after its 

complete release using the anthrone method, as laid out in Section 2.3.4. To ensure that 

all the trehalose was released, the MOFs were harvested by centrifugation and re-

suspended in fresh water at the end of the experiment. No additional trehalose was 

released. Figure 3.10a shows the calibration curve used to determine trehalose 

concentrations by the anthrone method. The values were calculated and ranged from 4 

to 50 % for loadings done in 30 mg/mL and 500 mg/mL trehalose respectively. An 

adsorption isotherm was then built to show trehalose weight loading as a function of 

equilibrium concentration and is shown in Figure 3.10b. Both the loadings determined 

from TGA and from the release experiment were used for comparison. The values 

determined using both methods were generally in good agreement. Data points between 

120 mg/mL and 500 mg/mL would give a better understanding of the shape of the liquid 

adsorption isotherm, but have not been performed in this study. UiO-66 loaded in 

500 mg/mL trehalose was used for the remainder of the studies. Its high loading 
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(ca. 50 wt %) can be useful to deliver large amounts of trehalose inside cells while 

using a minimal amount of MOF, to allow to reach the required intracellular 

concentration of 100-200 mM for efficient cryoprotection. 

 

Figure 3.10. (a) Calibration curve used to determine trehalose concentrations using the 

anthrone method, and (b) liquid-phase adsorption isotherms of trehalose onto UiO-66 

determined using data from TGA (blue) and from measuring the concentration of trehalose into 

the supernatant after complete release in water (red). Error bars represent the standard error of 

three replicates. When not visible, error bars are too small to be seen. 

 In order to be suitable for cryopreservation applications, a rapid release of 

trehalose from the delivery system is required after cellular uptake. In order to study the 

release of trehalose over time, loaded UiO-66 particles were soaked in PBS, and the 

trehalose concentration in the supernatant measured at every time point using the 

anthrone method. PBS is a simple and suitable model for the study, given that similar 

drug release kinetics were obtained in PBS and in other more complex phosphate media 

such as cell culture medium supplemented with foetal bovine serum71. Figure 3.11 

shows the weight percentage of trehalose released as a function of time. Trehalose 

release was very fast, with 50 % being released within the first 45 minutes. At 2 h, 80 % 

of the trehalose was already released, and complete release occurred within 5 hours. The 

100 % value in Figure 3.11 is the experimental value at which no more trehalose 

release was observed. Slower release would have been expected had trehalose had to 

diffuse out from within the pores of UiO-66. This fast release further supports the 

hypothesis that trehalose is mostly adsorbed to the external surface of UiO-66. The 

hydroxyl and ether groups of trehalose are capable of forming strong hydrogen bonds 

with the polar functions of UiO-66, such as Zr-OH, and it is hypothesised that this is 
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how trehalose molecules attach to the external surface of UiO-66, and how they attach 

to one another. Interestingly, trehalose release was slower than the release of BDC from 

the UiO-66 structure (Figure 3.6b). This could be due to trehalose protecting the MOF 

surface from attack by the phosphate groups present in PBS. Another explanation could 

be that the phosphate groups attack the Zr nodes and create an amorphous solid to 

which trehalose can get adsorbed. In summary, the release study showed that UiO-66 is 

a suitable candidate for intracellular trehalose delivery.  

 Normally, one of the desired characteristics of a drug delivery system is its 

ability to offer controlled release of the entrapped drug. The general tendency has been 

to increase the release time as much as possible to improve the pharmacokinetics of a 

drug and reduce the frequency of dosing. Release times in literature have ranged from a 

couple of hours to a couple of days, with some releases even reaching 30 days147,155. 

However, such long release times are not required in cryopreservation applications, as 

the goal is to get the delivery system inside the cell and then unload the CPA rapidly. 

Cells should however be able to take up the loaded MOFs before all the trehalose is 

released. The exact mechanism of cellular uptake is currently still not known and will 

further be explored in Chapter 4. However, HeLa cells are known to take up particles 

with sizes less than 200 nm by endocytosis46, which in some cases has been shown to 

occur within a couple of minutes156. Trehalose is not completely released from UiO-66 

until after 3 h. It is thus very likely that HeLa cells take up the loaded UiO-66 while 

there is still a significant amount of trehalose loaded.  

 

 

Figure 3.11. Trehalose release from UiO-66 as a function of time. Error bars represent the 

standard error of three replicates.  
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3.3.3 In Vitro Testing of Biocompatibility and Cryoprotective Effect 

 For a biomolecule delivery vehicle to be used in live cells, biocompatibility is a 

crucial factor to examine. To evaluate the potential use of UiO-66 as a delivery vector 

for trehalose to the intracellular medium, in vitro viability assays were conducted on 

HeLa cells. The cytotoxicity of UiO-66 and trehalose were evaluated using a 

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) assay. The assay is based on the reduction of MTS tetrazolium 

compound by viable cells to generate a coloured formazan product. This conversion is 

thought to be carried out by NAD(P)H-dependent dehydrogenase enzymes in 

metabolically active cells. HeLa cells were incubated with the MOF and trehalose for 

24 h. The results of the MTS assay are shown in Figure 3.12. Treatment of the cells 

with trehalose did not lead to cell death after 24 h incubation with concentrations up to 

7.5 mg/mL (Figure 3.12a). At 37.5 mg/mL, a moderate decrease in viability was visible 

(ca. 67 %). Concentrations higher than 37.5 mg/mL, or 100 mM, put the cells under 

great osmotic stress and caused their viability to decrease to near zero levels compared 

to the untreated control. With UiO-66 (Figure 3.12b), cells remained viable up to 

concentrations of 1.33 mg/mL, after which they started losing viability. From the 

viability results it is clear that it is the cytotoxicity of UiO-66 that limits how much 

loaded material can be used to deliver trehalose intracellularly.  

 

Figure 3.12. MTS viability assay measuring enzymatic metabolic activity of HeLa cells after 

24 h incubation with (a) trehalose, and (b) UiO-66. Samples were run in minimum of four 

replicates. Standard deviations are shown for each given data point.  

 Having synthesised and characterised the delivery vector after loading it with 

trehalose, its use as a CPA was investigated. For that, cells were pre-incubated with 

different conditions for 3 h to allow for enough time for trehalose to be delivered before 
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freezing. Pre-incubating with 100 mM free trehalose, 0.5 mg/mL trehalose-loaded MOF 

(TREH@MOF), and a combination of both in growth media was tested, in addition to 

pre-treating with growth media alone. Pre-treatment with the combination of trehalose 

and TREH@MOF was done to test whether both intracellular and extracellular 

trehalose are required for a cryoprotective effect. Additionally, it was thought that the 

presence of both intracellular and extracellular trehalose would allow to avoid potential 

osmotic effects. Sample names for the treatments indicate the pre-incubation media 

used. The pre-incubation solution was then removed and replaced with freezing media 

(100 mM trehalose in FBS) to avoid freezing the cells in the presence of MOF, after 

which the cells were slowly cooled to -80 °C (1 °C/min) and then transferred to liquid 

nitrogen (-196 °C). Both the incubation and freezing media used for the different 

samples are shown in Table 3.1. Typically, cryopreservation relies on protocols that 

include the addition of 1.0-2.0 M of penetrating CPAs, such as DMSO, glycerol, and 

ethylene glycol157. For this reason, the efficiency of trehalose-loaded UiO-66 was 

benchmarked against a positive control (+) of cells frozen in a solution made up of 

90 % v/v foetal bovine serum (FBS) and 10 % v/v DMSO. Cells incubated and frozen in 

growth media without any additives acted as the negative control (-).  

Table 3.1. Conditions used to treat cells before freezing.  

Sample Pre-incubation media Freezing media 

MEDIA Growth media 100 mM trehalose in FBS 

TREH 100 mM trehalose 100 mM trehalose in FBS 

TREH@MOF 0.5 mg/mL treh@MOF 100 mM trehalose in FBS 

TREH + TREH@MOF 100mM Trehalose + 0.5 mg/mL treh@MOF 100 mM trehalose in FBS 

Positive control (+) Growth media 90 % FBS + 10 % DMSO 

Negative control (-) Growth media Growth media 

  

 After freezing, cells were removed from the liquid nitrogen tank and rapidly 

thawed (within 5 minutes) in a water bath at 37 °C. Rapid thawing is essential for 

cellular survival as cells may be damaged by the extracellular restructuring of ice 

masses if thawing is too slow. The thawed cells were then seeded in 96-well plates and 

allowed to grow for 0 h, 24 h, and 48 h, after which their metabolic activity was 

measured using the MTS viability assay. Figure 3.13 shows the enzymatic metabolic 

activity of HeLa cells 0 h (red), 24 h (blue), and 48 h (yellow) after thawing. The values 

at every time point were normalised to the positive control of cells pre-incubated in 
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growth media and frozen in 90 v/v % FBS and 10 v/v % DMSO. A table of values for 

the data is shown in Table 3.2.  

 As expected, negative control cells pre-incubated and frozen in the absence of 

a CPA (in growth media alone) had the lowest survival rate post-thaw, with viability at 

6 ± 2 %, 12 ± 2 %, and 7 ± 3 %, at 0 h, 24 h, and 48 h respectively. Cells pre-incubated 

in growth media and frozen in 100 mM trehalose in FBS (sample ‘MEDIA’) had a 

higher survival rate, with 12 ± 2 %, 23 ± 2 %, and 31 ± 5 % still viable after 0 h, 24 h, 

and 48 h respectively, suggesting that freezing in a 100 mM trehalose in FBS solution 

provides some protection to cells. Pre-incubating cells with a growth media solution 

containing 100 mM trehalose (sample ‘TREH’) did not improve viability compared to 

pre-incubating in growth media alone (sample ‘MEDIA’), indicating that pre-incubation 

with trehalose did not protect cells during subsequent freezing. When cells were pre-

treated with trehalose-containing MOF (sample ‘TREH@MOF’), the cell viability was 

lower than cells pre-incubated with growth media alone (sample ‘MEDIA’), with 

viabilities of 13 ± 4 %, 13 ± 2 %, and 12 ± 3 % at 0 h, 24 h, and 48 h, and were not 

significantly different than the negative control, indicating a negative effect of the MOF. 

This is despite Figure 3.12 showing that UiO-66 is non-toxic at 0.5 mg/mL. This can be 

explained by the fact that cells might not be able to withstand the combined stresses of 

freezing and being incubated in the presence of MOFs. However, pre-incubating cells 

with a combination of trehalose and trehalose-loaded UiO-66 (sample ‘TREH + 

TREH@MOF’) led to viabilities that were not significantly different than cells pre-

incubated with media (sample ‘MEDIA’) or a 100 mM trehalose media solution 

(sample ‘TREH’), with values of 11 ± 2 %, 16 ± 2 %, and 28 ± 3 % at 0 h, 24 h, and 

48 h respectively. This suggests a protective effect of trehalose that renders cells better 

able to withstand the stress caused by the presence of MOF.  
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Figure 3.13. Viability of HeLa cells measured using the MTS enzymatic metabolic activity 

assay at 0 h (red), 24 h (blue), and 48 h (yellow) post-thaw. (+) = positive control; (-) = negative 

control. Experiments were run three times, with three replicates each time. Standard errors are 

shown for each given data point.   

Table 3.2. Values for the viability of HeLa cells 0 h, 24 h, and 48 h after thawing. 

Sample  Viability (%)  

 0 h 24 h  48 h 

MEDIA 12 ± 2 23 ± 2 31 ± 5 

TREH 12 ± 2 16 ± 2 35 ± 7 

TREH@MOF 13 ± 4 13 ± 2 12 ± 3 

TREH + TREH@MOF 11 ± 2 16 ± 2 28 ± 3 

Positive control (+) 100 ± 4 100 ± 3 100 ± 8 

Negative control (-) 6 ± 2 12 ± 2 7 ± 3 

 

 In order to verify this protective effect, the viability of HeLa cells after 

incubation with trehalose-loaded UiO-66 for 24 h was tested using the MTS viability 

assay. The results are shown in Figure 3.14 and demonstrate that the system was non-

toxic up to concentrations of 4 mg/mL (equivalent MOF concentration of ca. 2 mg/mL, 

considering 50 wt % loading), whereas UiO-66 on its own was toxic starting at 

1.5 mg/mL. This protective effect may be due to trehalose’s ability to stabilise cellular 

membrane components158. In summary, the results showed that trehalose-loaded UiO-66 

had no cryoprotective effect on HeLa cells. A possible explanation is that UiO-66 is 

unable to deliver trehalose into the cytosol, even though the cells take it up. As laid out 

extensively in Chapter 4, particles taken up by cells can end up trapped in endosomes, 

which then mature into acidic lysosomes that degrade the MOF along with its cargo, 
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thus voiding its therapeutic effect. In the case of trehalose, the acidity of lysosomes 

should not be an issue given that the sugar has been shown to possess extraordinary 

stability even at pH 3.5 and 100 °C for 24 h159. However, the MOF and its cargo could 

be trapped in the endolysosomal system and recycled out of the cell. In order to test this 

hypothesis and better understand the cellular uptake of MOFs, the next chapter focuses 

on elucidating the mechanism of MOF uptake and their final intracellular fate. 

 

Figure 3.14. Viability of HeLa cells measured using the MTS enzymatic metabolic activity 

assay after incubation for 24 h with trehalose-loaded UiO-66. Error bars represent the standard 

deviation of four replicates. 

3.4 Conclusions 

 UiO-66 particles 136 ± 27 nm in size were successfully synthesised and 

characterised, and PXRD was performed to confirm their crystalline structure. They 

were found to be stable in water up to the 9 days tested and maintained their 

crystallinity after this treatment. However, they degraded in PBS within 30 minutes, 

suggesting that the phosphate groups present in solution competed with the BDC linker 

for the metal sites.  

 Trehalose was successfully loaded into UiO-66 by soaking in aqueous 

trehalose solutions of varying concentrations. The adsorption isotherm of trehalose in 

UiO-66 showed an increase in the amount of loaded trehalose with increasing loading 

concentrations. The amount of trehalose loaded reached approximately 50 % of the total 

weight of the loaded particles. This was confirmed both by TGA and by measuring the 

total amount of trehalose released when the particles were soaked in water. The 

obtained high loadings are useful for cryopreservation applications because they allow 
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for the delivery of large quantities of trehalose inside cells with minimal MOF use. The 

release of trehalose from UiO-66 in PBS, which is a model for more complex phosphate 

media, was complete within 3 h, with 50 % being released within the first 30 minutes.  

 The cytotoxicity of UiO-66 and trehalose was investigated, and it was found 

that the cytotoxicity of UiO-66 limits the amount of loaded particles that can be used. 

The concentration of UiO-66 at which the viability of HeLa cells starts to decline 

(ca. 1.5 mg/mL) is nonetheless expected to be high enough for the MOF to be able to 

deliver large amounts of trehalose intracellularly (100–200 mM).  

 HeLa cells were frozen using trehalose-loaded UiO-66 as a CPA. However, no 

protective effect was found when compared to cells frozen using free trehalose or 

growth media as a CPA. This was hypothesised to be caused by MOFs being entrapped 

in endosomes, rendering them unable to deliver the trehalose into the cytosol. The next 

chapter studies the cellular uptake of MOF particles in order to better understand how to 

design a delivery system that is able to reach its desired intracellular location.  
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4 UPTAKE AND 

INTRACELLULAR FATE OF 

MOF NANOPARTICLES 

4.1 Introduction 

 This chapter investigates factors affecting the uptake mechanism of zirconium-

based NPs and their subsequent intracellular fate to understand what impedes the release 

of cargo molecules at the correct intracellular location. This will allow to elucidate the 

reasons behind the absence of a significant cryoprotective effect when using UiO-66 as 

a vector to deliver trehalose to the cytosol (Chapter 3). Additionally, the study will 

provide information on suitable approaches to prepare an optimal drug delivery system 

(DDS) with enhanced endocytosis efficiency and improved ability to avoid lysosomal 

entrapment. Section 4.1.1 describes the importance of studying the main cellular uptake 

mechanisms of MOF particles. Section 4.1.2 then discusses the main cellular 

internalisation pathways and relates them to the final intracellular fate of NPs. 

4.1.1 Importance of Understanding Endocytosis  

 Optimal MOFs for drug delivery need to be versatile to be able to carry and 

release different compounds. However, one of the main limitations to their translation to 

clinical drug delivery applications is the limited number of studies describing their entry 

into cells97,151–153. To be efficient as a DDS, a MOF needs to be able to penetrate into 
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cells and, more crucially, release its cargo molecules in the correct intracellular location. 

While small molecules are able to enter cells by passive diffusion, NPs usually require 

an energy-dependent process known as endocytosis, a mechanism present in all 

eukaryotic cells160–163. Importantly, the fate of the NPs and hence their therapeutic effect 

after entering the cell is dependent on the endocytic pathways they enter through. 

However, no general guidelines for MOF particle internalisation have been established 

due to the inherent complexity of endocytosis as a mechanism, with a number of factors 

affecting cellular uptake. For instance, the rate of uptake and pathway selection is 

extremely cell line dependent. Additionally, characteristics specific to the particles 

being taken up, such as size, shape, and surface chemistry all play a significant role in 

the cellular uptake mechanism164,165. For instance, the cellular uptake of polystyrene 

NPs by human colon adenocarcinoma cells was shown to be optimally efficient for 

100 nm particles166. Conversely, Chithrani et al. showed that gold NPs 50 nm in size 

were internalised more efficiently in HeLa cells167. A number of studies have shown 

that positive surface charges increase particle uptake due to electrostatic attractions to 

the slightly negatively charged cell membrane168,169. Understanding MOF particle 

interactions with cells is therefore critical to optimise these materials as DDSs. 

4.1.2 Endocytosis Pathways and Final Intracellular Fate of Particles 

 Active cell uptake can be divided into two main types: phagocytosis, which 

relates to the ingestion and degradation of large particles (≥ 0.5 µm) by specific cell 

types such as neutrophils, monocytes, and macrophages170–172; and pinocytosis, used by 

cells to internalise surrounding fluid along with soluble molecules and particles164. 

Pinocytosis, or what is more commonly known as endocytosis, can further be classified 

into three main endocytic pathways: (i) macropinocytosis; (ii) clathrin-dependent 

endocytosis; and (iii) caveolae-dependent endocytosis172,173. Several clathrin- and 

caveolae-independent endocytosis pathways also exist174,175, but will not be discussed in 

greater detail as they are less significant and their mechanisms less extensively 

described in the scientific literature163,176. Macropinocytosis is a nonspecific process 

present in almost all cell types and refers to the uptake of large amounts of extracellular 

fluid along with any particles that are present in it. Fluid contents are taken up in 0.5–

1.0 µm vesicles in the same concentration as in the surrounding medium162. Receptor-

mediated endocytosis, and in contrast to macropinocytosis, allows for the uptake of 

specific macromolecules in a concentrated form177. Clathrin-dependent endocytosis is 
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the most well described receptor-mediated endocytosis pathway. In clathrin-mediated 

endocytosis, receptors are responsible for cargo recognition, followed by the formation 

of clathrin-coated vesicles, which are usually up to 200 nm in size. These vesicles then 

fuse with early endosomes, mature into late endosomes, and then merge with 

lyososomes, leading to the hydrolysis of the DDS and its cargo, thus nullifying its 

therapeutic effect178. Caveolae-dependent endocytosis is associated with the formation 

of lipid raft-enriched flask-shaped invaginations coated with caveolin, approximately 

60–80 nm in diameter. Particles taken up through this pathway can then be delivered to 

different intracellular locations. For example, and similarly to clathrin-dependent 

endocytosis, the vesicles can fuse with endosomes and mature into lysosomes for 

further degradation. Notably, particles taken up through this pathway can also be 

delivered into pH neutral caveolin-containing endosomes, termed caveosomes, which 

can then release their contents into the cytosol or in other intracellular locations. This 

means that particles taken up by caveolae-mediated endocytosis can potentially avoid 

lysosomal degradation along with their cargo179–181. 

 Because particles penetrating cells through different endocytosis routes have 

different final intracellular fates, it is important to consider the factors that affect 

cellular uptake pathways when designing a MOF DDS, namely surface chemistry and 

particle size. In this chapter, the trafficking and final intracellular fate of MOFs was 

investigated. A range of Zr-based MOFs with different surface chemistries was studied. 

Surface chemistry was controlled either by linker functionalisation or by post-synthetic 

attachment of surface moieties. In order to avoid the presence of modulators that could 

affect the surface chemistry, particle size of the MOFs with functionalised organic 

linkers was not controlled/tuned. To allow for comparison, a range of UiO-66 MOFs 

with different particle sizes was included in the study. This range of materials also 

allowed to understand the effect of MOF particle size on cellular uptake. In order to 

investigate the endocytosis pathways used by these particles, different endocytosis 

pharmacological inhibitors were used. Cells were imaged using confocal microscopy to 

determine the final intracellular location of some of these MOFs. The therapeutic effect 

of drug-loaded MOFs was assessed using the MTS viability assay in order to correlate 

the results to the cellular uptake findings.     
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4.2 Collaborative Work 

MOFs with functionalised linkers (Zr-L2 to Zr-L6) as well as MOFs surface-modified 

by post-synthetic attachment of biomolecules (Zr-L1-FA, Zr-L1-Hep, Zr-L1-Biot, 

Zr-L1-Lact, Zr-L1-PNIPAM, Zr-L1-PEG550, and Zr-L1-PEG2000) were synthesised at 

the School of Chemistry, University of Glasgow, by Dr. Isabel Abanades-Lazaro and 

Dr. Ross Marshall under the supervision of Dr. Ross Forgan’s group. Synthesis of the 

range of Zr-L1 with different particle sizes was done by Mr. Gerard Boix and Dr. Inhar 

Imaz from Dr. Daniel Maspoch’s group (Catalan Institute of Nanoscience and 

Nanotechnology ICN2, CSIC and The Barcelona Institute of Science and Technology, 

Campus UAB, Spain). Endocytosis efficiencies and pathway inhibition studies on Zr-L2 

to Zr-L6 were performed by Dr. Claudia Orellana-Tavra under the supervision of 

Dr. David Fairen-Jimenez (Department of Chemical Engineering and Biotechnology, 

University of Cambridge). Confocal images of Zr-L2 and Zr-L3 were done by 

Dr. Claudia Orellana-Tavra. SEM was performed at the Department of Physiology, 

University of Cambridge by Dr. Jeremy Skepper.   
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4.3 Results & Discussion 

4.3.1 Effect of Size on Cellular Uptake by HeLa Cells 

 As discussed in Section 4.1, the MOFs with different linker functionalities 

included in the study also presented different particle sizes. Controlling their size would 

have meant the addition of modulators, which would have further altered the surface 

chemistry, making it difficult to isolate the effect of the functionalised linkers on the 

cellular uptake behaviour. To be able to discriminate between the role of surface 

chemistry and particle size on the endocytosis pathways and uptake efficiencies, the 

present analysis was split to study both effects separately. As a reference for the surface 

chemistry analysis, the effect of particle size on cellular uptake using a broad range of 

sizes was first investigated. A series of UiO-66 samples with different particle sizes was 

used: 50, 75, 92, 260, and 652 nm; these structures were named xZr-L1, where x is the 

particle size (Table 4.1).  

Table 4.1. Colloidal analysis of Zr-L1 samples of different particle sizes (i.e. xZr-L1) as well 

as their calcein uptakes. 

MOF 

Particle 
size             

(nm)a 
Effective diameter 

(nm)b 
Polydispersity 

Index Z-Potential (mV) 
Calcein 
(wt.%) 

  PBS 
Growth 
media 

PBS 
Growth 
media 

Water 
Growth 
media 

 

50Zr-L1 50 ± 2 517 ± 40 238 ± 11 0.507 0.429 0.5 ± 0.1 -9.5 ± 0.2 2.7 

75Zr-L1 75 ± 3 575 ± 16 480 ± 21 0.581 0.479 12.3 ± 0.4 -10.2 ± 0.2 2.2 

92Zr-L1 92 ± 2 210 ± 2 161 ± 1 0.411 0.207 14.2 ± 0.4 -11.2 ± 0.3 2.2 

260Zr-L1 260 ± 21 328 ± 13 272 ± 12 0.295 0.167 18.9 ± 0.6 -10.3 ± 0.2 1.3 

652Zr-L1 652 ± 23 1637 ± 77 874 ± 105 0.373 0.262 8.5 ± 0.2 -8.7 ± 0.1 0.4 

  

Figure 4.1 presents the PXRD patterns for the MOFs compared with the patterns 

predicted from single crystal structures. The positions of the main peaks in all the 

synthesised structures at 2θ = 7.4°, 8.6°, and 12.1° matched those in the simulated 

structure. Additionally, other observable peaks above 2θ = 12.1° were also in agreement 

with the simulated structure, indicating successful synthesis of UiO-66 for all materials.  
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Figure 4.1. PXRD patterns of xZr-L1 MOFs compared with their calculated pattern. Colour 

code of patterns: black, calculated; and blue, synthesised. Sample names are shown on top of 

patterns. 

 SEM images were acquired in order to determine particle sizes. Figure 4.2a 

displays images of the xZr-L1 MOFs. Mean particle sizes were determined, averaging 

across 100 particles per sample. The sizes are shown in Table 4.1, and ranged from 

50-652 nm. Figure 4.2b shows the particle size distribution for all five xZr-L1 particles, 

and indicates a narrow distribution of particle sizes. This is further reflected in the low 

relative standard deviations, ranging between 2.1–8.0 %, as can be determined from 

Table 4.1. Such a narrow distribution was necessary in order to properly study the 

effect of particle size on cellular uptake.   
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Figure 4.2. (a) SEM images of UiO-66 with different particle sizes (xZr-L1), and (b) particle 

size distribution of xZr-L1 particles as determined from SEM images. A minimum of 100 

particles were counted.  Scale bar sizes provided on images. 

 Since the physicochemical properties of MOFs, and of NPs in general, are 

affected by the media in which they are present, their colloidal properties were 

determined: hydrodynamic size in PBS and growth media, zeta potential in water and 

growth media, all at pH 7.4. The hydrodynamic diameter is the effective size that cells 

“observe” in solution. The zeta potential is the effective surface potential at the 

hydrodynamic “shear surface” close to the solid-liquid interface. Table 4.1 shows the 
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hydrodynamic diameter of all the xZr-L1 particles in PBS and growth media. The degree 

of aggregation was more pronounced in PBS than in growth media. For example, the 

hydrodynamic diameter of 50Zr-L1 was more than double the size in PBS compared to 

growth media. The hydrodynamic diameters in growth media indicate aggregation was 

only significant for the smaller particle size Zr-L1 samples. A decrease in polydispersity 

index (PdI) was also observed, and ranged from 16 % for 50Zr-L1 to 50 % for 92Zr-L1. 

MOFs are susceptible to aggregation in aqueous solvents due to their varying 

hydrophobicities150. However, the formation of a “protein corona”149 on the external 

surface of the MOF particles, resulting from the adsorption of different kinds of proteins 

from the serum present in growth media, might be the reason for their lower 

susceptibility to aggregation compared to PBS and also the negative zeta potentials 

measured in media compared to water. 

 To allow their intracellular detection using flow cytometry and confocal 

microscopy, the MOF particles were loaded with the fluorescent molecule calcein. 

Calcein was selected because of its hydrophilic character, which makes it unable to 

cross the cell membrane and thus requires a DDS to be transported through it147,151. The 

amounts of calcein loaded in the xZr-L1 MOFs are presented in Table 4.1. They ranged 

between 0.4 and 2.7 wt % for 652Zr-L1 and 50Zr-L1 respectively. Calcein loading 

decreased with increasing particle size. Since smaller particles have higher external 

surface areas compared with larger particles, this suggests that calcein mostly adsorbs to 

the external surface or to potential defects or roughness. This is supported by the fact 

that calcein (13 Å) is too large to fit through the Zr-L1 windows (5–7 Å). 

 Having confirmed the successful synthesis and loading of calcein into the 

range of xZr-L1 particles, their uptake efficiency by HeLa cells was then investigated. 

Figure 4.3 shows the normalised intracellular fluorescence, measured by flow 

cytometry, of HeLa cells incubated for 1.5 h with varying amounts of xZr-L1 particles. 

The mass ratios of the different MOFs were chosen in such a way to keep the amount of 

calcein constant. An equal amount of free calcein was used as a control. 50Zr-L1 

presented the highest intracellular fluorescence, and therefore, all the values were 

normalised against it. Although calcein is considered a cell impermeable dye, a low 

calcein uptake was observed, 17 % in comparison with 50Zr-L1 uptake. This effect has 

been seen with calcein previously, and has also been observed for other impermeable 

dyes, which are internalised by endocytosis142,147,182. For xZr-L1 particles, uptake 

efficiency decreased with increasing particle size, with 50Zr-L1 having the highest 
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efficiency (100 ± 6 %) and 260Zr-L1 having the lowest (58 ± 3 %). The uptake 

efficiencies of 75Zr-L1 (75 ± 5 %) and 92Zr-L1 (82 ± 5 %) were not significantly 

different. In the case of 652Zr-L1, the amount of calcein entering the cell was not 

significantly different from free calcein (18 ± 1 % vs 17 ± 1 %), showing that a 

negligible amount of MOF entered the cells, likely due to particle size being too large 

for cellular uptake. 

 

Figure 4.3. Normalised intracellular fluorescence of HeLa cells incubated with Zr-L1 of 

different particle sizes. Different concentrations of MOF were used to keep the amount of 

calcein constant across all samples. Error bars represent the standard error of at least 3 

replicates.   

 In flow cytometry, cells or particles passing through the laser beam scatter 

light, which is detected as forward scatter (FS) and side scatter (SS). FS correlates with 

cell size and SS is proportional to the granularity of the cells. In this manner, cell 

populations can often be identified based on size and granularity alone. The fact that 

652Zr-L1 was too large to enter cells was confirmed by the change in the SS versus FS 

plot when cells were incubated with 652Zr-L1 (Figure 4.4). HeLa cells with normal size 

and granularity mostly fell within the gate seen in Figure 4.4a (93.3 %). When cells 

were incubated with 652Zr-L1, there was a significant increase in side scatter (Figure 

4.4b), indicating an increase in granularity due to MOFs adhered to the outside of the 

cells. Only 22.7 % of cells remained in the gate where healthy HeLa cells should be, 

and within this population there was negligible fluorescence, indicating that an 

insignificant amount of MOF was taken up by cells. In contrast, cells incubated with 

260Zr L1 had normal side scatter (Figure 4.4c), with 91.1 % of cells falling within the 
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gate, indicating that the granularity of the cells was normal and hence that there was no 

MOF adhered to the outer cellular membrane. 

 

Figure 4.4. Side scatter versus forward scatter plots obtained from fluorescence-activated cell 

sorting (FACS) of (a) HeLa cells, (b) HeLa cells incubated with 652Zr-L1, and (c) HeLa cells 

incubated with 260Zr-L1. Solid red line shows the gate around morphologically normal HeLa 

cells. The numbers indicate the percentage of cells within that gate.  

 The endocytic pathways for the internalisation of xZr-L1 by HeLa cells were 

then studied using different pharmacological inhibitors. First, sucrose and 

chlorpromazine were used to independently inhibit clathrin-mediated endocytosis. 

Sucrose scatters clathrin matrices on the cell membrane, whereas chlorpromazine 

inhibits clathrin-coated pit formation by reversibly translocating clathrin and its adaptor 

proteins from the plasma membrane to intracellular vesicles171,183. Second, nystatin, a 

polyene antibiotic that sequestrates cholesterol molecules from the cell membrane, was 

used to inhibit caveolae-mediated endocytosis183. Finally, rottlerin was used to hinder 

macropinocytosis by inhibiting kinase proteins184. Since the inhibition of one particular 

endocytic pathway may trigger compensatory uptake mechanisms with time183, the 

internalisation of the particles was assessed after a short exposure time to the 

endocytosis inhibitors (2 h). Figure 4.5 shows HeLa cells’ internal fluorescence after 

incubation with xZr-L1 particles in the presence of the different endocytic inhibitors. 

652Zr-L1 was excluded from the analysis because it is too large to be taken up by cells. 

Table A2.1 (Appendix) shows the values for each sample. To determine if the 

differences were statistically significant, every value was compared to the control at 

37 °C using one-way analysis of variance (ANOVA) followed by Dunnett’s test to 

adjust for multiple comparisons. At 4 °C, cellular uptake of the MOFs was significantly 

reduced by ca. 85 %. At this temperature, the metabolic activity of a cell is significantly 

260
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reduced183, confirming that the particles were taken up by energy-dependent 

endocytosis and not by passive diffusion.  

 

Figure 4.5. Effects of pharmacological endocytosis inhibitors on the uptake of Zr-L1 with 

different particle sizes, measured by flow cytometry. Error bars represent the standard error of at 

least 3 replicates. Asterisks indicate statistical significance, determined by one-way ANOVA, of 

normalised intracellular fluorescence of HeLa cells treated with each MOF and different 

pharmacological inhibitors compared with control value (ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, 

*** P ≤ 0.001, **** P ≤ 0.0001).  

 

 For 50Zr-L1, particle uptake decreased significantly to 29 % when cells were 

treated with hypertonic sucrose. Despite the fact that sucrose is considered an inhibitor 

of clathrin-mediated endocytosis185,186, there is evidence suggesting that it has some 

effect on non-clathrin-mediated endocytosis pathways187,188. Given that there is no 

evidence that chlorpromazine affects caveolae-mediated endocytosis or other endocytic 

pathways183, it was used to confirm the results obtained with sucrose. For 

chlorpromazine, the uptake decreased only moderately to 86 %, although this was not 

statistically different from the control at 37 °C. The fact that sucrose affected uptake 

while chlorpromazine did not suggests that the main uptake routes of 50Zr-L1 did not 

involve clathrin-mediated pathways, and that, in this case, sucrose was inhibiting non-

clathrin-mediated endocytosis pathways. Similarly, 50Zr-L1 particle uptake moderately 

decreased to 94 and 83 % when cells were treated with nystatin and rottlerin, 
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respectively. Again, this was not statistically different from the control at 37 °C. This 

indicates that the main routes of entry of 50Zr-L1 did not involve clathrin-or caveolae-

mediated endocytosis, or macropinocytosis, but clathrin- and caveolae- independent 

endocytosis. For 75Zr-L1 and 92Zr-L1, similar levels of inhibition by chlorpromazine, 

nystatin, and rottlerin were observed, decreasing to ca. 45, 84, and 78 %, respectively, 

for both MOFs. However, the signals for these MOFs when treated with nystatin and 

rottlerin were not statistically significantly different from the control, indicating that 

they mainly entered the cell through clathrin-mediated endocytosis. In the case of 

75Zr-L1, the decrease when treated with nystatin and rottlerin was slightly greater than 

that observed for 92Zr-L1 and showed some statistical significance, suggesting some 

uptake by caveolae-mediated endocytosis and macropinocytosis. For 260Zr-L1, the 

decrease in fluorescence intensity when treated with nystatin and rottlerin was the same 

as 75Zr-L1 (down to 78 % and 75 % respectively) and was statistically significant. 

However, an even larger decrease in intensity was observed for chlorpromazine, 

suggesting that, for 260Zr-L1, clathrin-mediated endocytosis was again the main entry 

pathway. Given that the hydrodynamic diameter is the effective size of the particles that 

cells observe in solution, the DLS results were also correlated to the data. As can be 

seen in Figure 4.5, 50Zr-L1 and 260Zr-L1, which have similar hydrodynamic diameters of 

238 ± 11 nm and 272 ± 12 nm respectively (Table 4.1), are taken up differently in cells. 

While the hydrodynamic diameter might have an effect, it is not the only one. The 

endocytosis routes of entry are likely dependent on a combination of factors including 

physical size, hydrodynamic diameter, and surface chemistry that are difficult to isolate 

within the constraints of this study. 

 Table A2.2 (Appendix) summarises the statistical significance for comparison 

between the intracellular fluorescence of the different MOFs treated with a given 

inhibitor. The results show that there was no statistically significant difference between 

the normalised intracellular fluorescence of the Zr-L1 MOFs of different sizes when 

treated with nystatin (i.e., for caveolae) and rottlerin (i.e., macropinocytosis). This was 

despite the fact that decreases in fluorescence for 75Zr-L1 and 260Zr-L1 with these 

inhibitors were statistically significant when compared to the control at 37 °C. In 

summary, while the results in Figure 4.5 suggested minor uptake by the caveolin-

mediated pathway for 75Zr-L1 and 260Zr-L1 particles, indicating a potential ability to 

escape lysosomal degradation, Table A2.2 (Appendix) showed that cells treated with 

the different MOFs and nystatin (caveolin pathway inhibited) do not have statistically 
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significant differences in uptake when compared to each other. Taken together the 

results suggest that particle size plays a minor role in determining the endocytic 

pathways Zr-L1 particles go through. The following sections will investigate whether 

surface chemistry plays a more important role. 

4.3.2 Effect of Surface Chemistry on Cellular Uptake by HeLa Cells 

 Following the analysis of the role of particle size on the internalisation of the 

MOF particles, the role of surface chemistry was investigated. A range of Zr-based 

MOFs with different surface chemistries was studied. Surface chemistry was controlled 

either by linker functionalisation or by post-synthetic attachment of surface moieties. As 

mentioned in Section 4.1.2, particles synthesised using functionalised linkers had 

different sizes. The findings from Section 4.3.1 showing the role of particle size on the 

internalisation pathways can be used to rationalise the results obtained with the MOFs 

with functionalised linkers. For the post-synthetically modified MOFs, the particle size 

remains the same given that the same mother batch is used to attach different 

functionalities. 

 To prepare the MOFs with functionalised linkers, a range of UiO-66-like 

materials was prepared by substituting the original BDC linker with functionalised 

linkers as well as extended linkers. Figure 4.6a shows the six different linkers (L1-L6) 

utilised to build the Zr-based MOFs, herein termed Zr-L1 to Zr-L6. L1 is BDC, used for 

UiO-66; L2-L4 are BDC functionalised with ─Br, ─NO2, and ─NH2, respectively; and 

L5 and L6 (naphthalene-2,6-dicarboxylic acid and 4,4’-biphenyldicarboxylic acid, 

respectively) are extended linkers. ─Br and ─NO2 in L2 and L3 respectively are 

electron-withdrawing groups, whereas ─NH2 in L4 is an electron-donating group. This 

allowed to study the effect of electron density at the surface of the MOFs while keeping 

the linker length fixed. L5 and L6 have similar chemical properties as L1, and therefore 

allowed to study the effect of linker size on cellular uptake. To prepare the post-

synthetically modified MOFs, different surface reagents were used: folic acid (FA), 

vitamin B7 biotin (Biot), and a negatively charged anticoagulant, heparin (Hep). These 

three molecules were chosen because they are known to have biological properties in 

binding and targeting, and possess carboxylic acid functionalities that allowed them to 

be coordinated to UiO-66 surfaces. Additionally, three protecting polymers, poly-L-

lactide (Lact; Mn ≈ 2,000), poly-N-isopropylacrylamide (PNIPAM; Mn ≈ 15000), and 

poly(ethylene glycol) (PEG) were clicked to UiO-66 surfaces. PEG550 (average 
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Mn = 550) and PEG2000 (average Mn = 2000) were both tested. The six surface 

moieties were named Zr-L1-func, where func is the functionality attached, and are 

shown in Figure 4.6b.  

 

Figure 4.6. Chemical structures of (a) the organic linkers used to synthesise Zr-based MOFs 

with functionalised linkers, and (b) the surface functionalities attached to Zr-L1.  

Table 4.2. Colloidal analysis of Zr-based MOF samples with different surface chemistry as 

well as their calcein uptakes. 

MOF 
Particle size             

(nm)a 
Effective diameter        

(nm)b PdI Z-Pot (mV) 
Calcein 

wt.% 

  PBS GMe PBS GMe Water GMe  

Zr-L2 211±11/371±38c 709±13 237±26 0.242 0.361 36.5±0.2 -8.7±0.3 0.4 

Zr-L3 >400d 961±16 596±18 0.412 0.411 23.4±0.9 -10.4±0.4 0.3 

Zr-L4 129±19/266±34c 828±84 165±1 0.282 0.151 42.7±0.5 -11.5±0.4 0.7 

Zr-L5 78±3 1319±247 86±13 0.392 0.397 8.0±0.3 -10.8±0.7 1.0 

Zr-L6 115±12/255±14c 12742±331 137±25 0.488 0.445 -5.8±0.3 -8.8±0.6 6.3 

Zr-L1 143±31 1494±122 1196±6 0.575 0.723 N/A -11.0±0.2 17.9 

Zr-L1-FA 168±26 1151±42 539±58 0.564 0.749 N/A -10.4±0.2 9.8 

Zr-L1-Biot 175±17 772±7 275±31 0.380 0.962 N/A -10.3±0.9 12.8 

Zr-L1-Hep 157±34 904±91 905±23 0.373 0.606 N/A -11.1±0.1 13.0 

Zr-L1-Lact 177±25 538±5 402±13 0.335 0.41 N/A -10. 7±0.4 6.9 

Zr-L1-PNIPAM 177±24 837±37 538±44 0.287 0.587 N/A -11.4±0.3 8.0 

Zr-L1-PEG550 160±23 1023±96 890±93 0.874 0.952 N/A -10.9±0.6 13.3 

Zr-L1-PEG2000 173±37 420±98 366±6 0.466 0.523 N/A -10.3±0.6 10.3 
aMeasured by SEM. bMeasured by DLS. cTwo different populations of particle sizes were present. 
dPopulation too heterogeneous to determine particle size. eGM=growth media 

a.

b.

(PEG)

(Lact)
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 Figure 4.7 shows the SEM images of the functionalised Zr-L1 derivatives 

(Zr-L2─Zr-L6) and of the post-synthetically modified Zr-L1 particles. Table 4.2 shows 

the particle sizes, ranging from 78 to > 400 nm for Zr-L2─Zr-L6, and from 160 to 

177 nm for the post-synthetically modified Zr-L1 particles. The Zr-L2 through Zr-L6 

complexes varied drastically in size, and some even had two populations of particle size 

(Zr-L2, Zr-L4, and Zr-L6). To avoid changing the surface chemistry beyond the effects 

of the functionalised linkers by adding modulators to the synthesis reaction, particle size 

could not be controlled. However, the inclusion of a range of Zr-L1 MOFs with 

different particle sizes allowed for comparison. As for the post-synthetically modified 

Zr-L1 particles, they all had approximately the same particle size, given that they were 

the result of the attachment of different surface moieties to the same mother structure. 

This is reflected in the values shown in Table 4.2, which were not significantly 

different when the standard deviations were taken into consideration. 
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Figure 4.7. SEM images for a. Zr-based family, Zr-L2─Zr-L6 and b. post-synthetically 

modified Zr-L1-func particles.  

 The hydrodynamic diameter of the particles was then determined in PBS and 

growth media, at pH 7.4. For all the particles, the hydrodynamic diameters in PBS were 

higher than in growth media, suggesting a higher degree of aggregation in the former, 

although the polydispersity index (PdI) for some of the particles was higher in growth 

media (Zr-L2 and Zr-L1-func). In some cases, the particles displayed significant 

aggregation in growth media, with Zr-L1-Biot for example having a PdI of 0.962. The 
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post-synthetically modified Zr-L1-func particles aggregated more than the family of 

Zr-based MOFs (Zr-L2─Zr-L6), as indicated by their higher PdIs. This is likely due to 

the different modulators used for both families of MOFs. The colloidal stability and 

properties of MOFs are highly dependent on the modulator conditions utilised in the 

synthesis, with modulators at different concentrations and pKa leading to the formation 

of more or less defects in the crystals, which in turn alter the surface chemistry of MOFs 

and enhance or degrade their colloidal stability80. Interestingly, the colloidal stability of 

post-synthetically modified particles Zr-L1-func was enhanced after functionalisation 

compared to the mother sample Zr-L1. For Zr-L1-PEG2000 specifically, the colloidal 

stability of the particles was drastically improved, with the PdI in PBS and growth 

media decreasing to 0.466 and 0.523 from 0.575 and 0.723 respectively. The effective 

diameter of the particles also decreased from 1494 ± 122 nm and 1196 ± 6 nm to 

420 ± 98 nm and 366 ± 6 nm in PBS and growth media respectively. This could be due 

to the effect of steric stabilisation by the long PEG chains. The zeta potential values for 

the different particles are also given in Table 4.2. The surface potential of MOF 

particles depends on the chemistry of the linker used and the surface density of metal 

clusters. The modulator used can also play a role. The MOFs with functionalised linkers 

(Zr-L2─Zr-L4) have similar linker lengths and hence comparable metal cluster surface 

densities. The difference in surface chemistry arises from the functional groups attached 

to the terephthalate. Zr-L3, containing the functional group with the most electron-

withdrawing group (─NO2) has the lowest zeta potential of the MOFs with 

functionalised linkers. The ─Br group in L2 is slightly less electron-withdrawing than 

─NO2 and gives Zr-L2 particles with a higher zeta potential of 36.5 mV. The electron-

donating ─NH2 group in L4 gives Zr-L4 particles with the highest zeta potential of 42.7 

mV. For the MOFs with extended linkers (Zr-L5─Zr-L6), the surface density of metal 

clusters is lower than with the functionalised linkers. This could be why much lower 

zeta potentials are observed compared with the functionalised linkers, and why Zr-L6, 

with the longest linker, has a lower zeta potential than Zr-L5 (-5.8 mV vs 8.0 mV).     

 The amounts of calcein loaded in all the MOFs are presented in Table 4.2. For 

Zr-L2 through Zr-L6, values ranged between 0.3 and 6.3 wt %. These particles were 

loaded using the same protocol as with xZr-L1 particles, which means the loadings 

between the two families of MOFs can be compared. Loadings for xZr-L1 can be found 

in Table 4.1. As mentioned in Section 4.3.1, for xZr-L1 particles, the amount of loaded 

calcein decreased with increasing particle size due to the decreasing available external 
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surface area to adsorb to. In the case of the functionalised MOFs (i.e. Zr-L2─Zr-L4), the 

loading values were generally lower compared to the non-functionalised xZr-L1 

particles, even for particles similar in size such as 260Zr-L1 (260 nm; 1.3 wt %) and 

Zr-L4 (266 nm; 0.7 wt %). In the case of Zr-L6, i.e. the MOF with the longest linker 

and therefore the largest cavities, the amount increased to ca. 6 wt %, suggesting some 

additional adsorption in the internal porosity as well as the outer surface. Calcein 

loadings for the post-synthetically modified Zr-L1-func particles were considerably 

higher due to using a higher calcein concentration during the loading process. For all the 

daughter samples, the calcein loading was lower than for the mother sample (Zr-L1; 

17.9 %). This was expected, given that the addition of surface moieties increases the 

total weight of the particles, diluting the weight of calcein. In all cases, loading values 

were sufficiently high to detect the MOFs through flow cytometry and confocal 

microscopy. Additionally, both the calcein and the surface agents were shown to coexist 

at the MOF surface in a published study investigating these materials153.  

4.3.2.1 Cellular Uptake of Zr-Based Family of MOFs with Functionalised Linkers 

 The internalisation efficiency of the Zr-based family of MOFs (Zr-L2─Zr-L6) 

was assessed using flow cytometry. Figure 4.8 presents the normalised internal 

fluorescence of HeLa cells after treatment with the functionalised MOFs for 1.5 h in the 

presence of endocytic inhibitors. Different calcein concentrations were used as controls 

for each MOF so that they were equivalent to the loaded amount in the respective MOF. 

Unlike for the xZr-L1 particles with different sizes, using a different calcein 

concentration for each MOF was necessary because the different MOFs had very 

different loadings, up to an order of magnitude higher for Zr-L6 (6.3 wt %) for example. 

Particle sizes are shown beneath the MOF names, and zeta potential values are shown 

on top of each bar. The highest percentage change compared to free calcein was set as 

100 % (Zr-L3), and the rest of the values normalised accordingly. Zr-L3 was 

internalised the most efficiently, followed by Zr-L2 and Zr-L4. Zr-L5 and Zr-L6 were 

the least efficiently internalised MOFs. Interestingly, the trend of decreasing efficiencies 

with increasing particle sizes that was observed with xZr-L1 did not apply to 

Zr-L2─Zr-L6, confirming the importance of surface chemistry. Further confirming this 

is the fact that, with the exception of 652Zr-L1 which was too large to be taken up by 

cells, the variability in uptake efficiency for xZr-L1 particles was low, whereas for 

Zr-L2─Zr-L6 the variability was much larger. 
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Figure 4.8. Normalised intracellular fluorescence of HeLa cells incubated with Zr-L2 to Zr-

L6. Zeta potential values shown at the top of bars, particle size at the bottom. Error bars 

represent the standard error of at least 3 replicates. 

 For the MOFs with functionalised BDC linkers (i.e., ─Br, ─NO2, and ─NH2, 

for Zr-L2, Zr-L3, and Zr-L4, respectively), cellular uptake was inversely related to zeta 

potential. Zr-L2, which had the highest uptake, had a zeta potential of 23.4 mV, 

followed by Zr-L2 (36.5 mV) and Zr-L3 (42.7 mV). The MOFs with extended linkers 

(i.e., Zr-L5 and Zr-L6) had low zeta potentials of 8.0 and -5.8 mV, respectively, which 

might explain why they were not significantly taken up by the cells. As discussed in 

Section 4.1.1, studies have shown that positive surface charges increase particle uptake 

in both phagocytic and non-phagocytic cells due to electrostatic attractions to the 

slightly negatively charged cell membrane168,169. Interestingly, Table 4.2 shows that the 

zeta potential values for all the MOFs in media converged to around -10 mV, which is 

the zeta potential measured for growth media, confirming again the “protein corona” 

formation around the external surface of the particles. 

 The influence of endocytosis inhibitors on the cellular uptake of Zr-L2─Zr-L6 

was then analysed. Figure 4.9 shows the intracellular fluorescence of HeLa cells after 

incubation with each MOF in the presence of the pharmacological inhibitors (the 

specific value for each column is shown in the Appendix, Table A2.1). To determine if 

the differences were statistically significant, every value was compared to the control at 

37 °C using one-way analysis of variance (ANOVA) followed by Dunnett’s test to 

adjust for multiple comparisons. For all the MOFs, cellular uptake at 4 °C decreased 

between 74 and 88 % when compared to the control at 37 °C, indicating that the 
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particles were taken up by energy-dependent endocytosis. For cells incubated with 

pharmacological inhibitors, and similarly to the endocytosis efficiency discussed above, 

it was possible to separate the MOFs into two subgroups with regards to the endocytosis 

pathways used for their internalisation: (i) MOFs with functionalised BDC linkers 

(Zr-L2─Zr-L4), and (ii) MOFs with extended linkers (Zr-L5 and Zr-L6). The uptake of 

Zr-L2, Zr-L3, and Zr-L4 decreased to ca. 20 % after incubation with the clathrin-

mediated inhibitors sucrose and chlorpromazine, whereas incubation with nystatin 

(caveolae-mediated endocytosis inhibitor) caused a moderate decrease to ca. 70 %.  

Rottlerin (macropinocytosis inhibitor) decreased the uptake to ca. 48 %. Conversely, the 

uptake of Zr-L5 and Zr-L6 was significantly inhibited, down to ca. 42 % compared to 

the control at 37 °C, when caveolae-mediated endocytosis was blocked using nystatin. 

Inhibition of clathrin-mediated endocytosis only had a moderate effect: sucrose 

decreased uptake to around 65 % whereas chlorpromazine only reduced uptake to 

around 90 % (no significant difference with the control at 37 °C). Inhibition of 

macropinocytosis with rottlerin reduced the uptake to around 67 % for the two MOFs. 

These results suggest that Zr-L2─Zr-L4 underwent preferably clathrin-mediated 

endocytosis whereas Zr-L5 and Zr-L6 were mostly taken up by caveolae-mediated 

endocytosis. The literature offers conflicting data about the selection of endocytic 

pathways for charged particles, probably because the process is cell-type specific. With 

HeLa cells, studies have shown that positively charged NPs go through the clathrin-

mediated pathway whereas negatively charged NPs go through clathrin-independent 

pathways189,190. This could explain why the negatively charged Zr-L6 was mostly taken 

up by caveolae-mediated endocytosis. 
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Figure 4.9. Effects of pharmacological endocytosis inhibitors on the uptake of Zr-based family 

of MOFs compared to a control at 37 °C, measured by flow cytometry. Error bars represent the 

standard error of at least 3 replicates. Asterisks indicate statistical significance, determined by 

one-way ANOVA, of normalised internal fluorescence of HeLa cells treated with the Zr-based 

family of MOFs and different pharmacological inhibitors, compared with the control at 37 °C 

(ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001). 

 

 Table A2.3 (Appendix) summarises the statistical significance for comparison 

between the intracellular fluorescence of the different MOFs treated with a given 

inhibitor, allowing the statistically significant differences within these two subgroups 

(Zr-L2─Zr-L4 vs. Zr-L5─Zr-L6) and between them to be determined. Within the group 

of MOFs with functionalised BDC linkers, the only significant difference (P ≤ 0.01) 

was between Zr-L4 on the one hand, and Zr-L2 and Zr-L3 on the other, when treated 

with chlorpromazine. When treated with nystatin or rottlerin, no statistically significant 

difference was observed. Within the sub-group of MOFs with extended linkers, no 

significant difference was observed between Zr-L5 and Zr-L6 for any inhibitor used. 

Conversely, there were significant differences when comparing the values for Zr-L2, 

Zr-L3, and Zr-L4, with the values for Zr-L5 and Zr-L6, for sucrose, chlorpromazine, 

and nystatin. This result further suggests that the cellular uptake behaviour was different 

between the two sub-groups. The size of the particles could play a minor role in inter- 
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and intragroup differences. More importantly, the surface chemistry of these particles 

was affecting the uptake processes. Cell uptake behaviour was less affected by a change 

in the size of xZr-L1 in comparison with the change in surface chemistry of the Zr-based 

family of MOFs. The two sub-groups of MOFs can also be segregated with respect to 

zeta potential. The MOFs with functionalities (Zr-L2 to Zr-L4) had zeta potentials in the 

range of 23.4 to 42.7 mV, while the MOFs with extended linkers (Zr-L5 and Zr-L6) had 

low zeta potentials of 8.0 and -5.8 mV respectively. MOFs with functional groups and 

thus higher zeta potentials underwent preferably clathrin-mediated endocytosis and the 

MOFs with extended linkers and thus low surface charge were internalized mostly 

through caveolae-mediated endocytosis. xZr-L1 particles do not have functional groups 

but their surface charge was slightly greater than Zr-L5 and Zr-L6, which might be due 

to the higher surface density of clusters on their surface compared to the MOFs with 

extended linkers. This may explain why xZr-L1 particles, with a surface charge between 

that of the functionalized MOFs and that of the extended linker MOFs, went through 

clathrin-mediated endocytosis in addition to caveolae-mediated endocytosis, whereas 

Zr-L5 and Zr-L6 mainly went through caveolae-mediated endocytosis. It is noteworthy 

that all MOFs were internalized by macropinocytosis as it is a non-selective process 

carried out by cells. 

 Depending on the type of endocytosis, the internalised carrier and its 

corresponding cargo are processed and transported to different final intracellular 

locations191. As explained in Section 4.1.2, particles that undergo caveolae-mediated 

endocytosis are able to potentially bypass lysosomal degradation. Studies on viruses and 

bacteria provide strong evidence that they are internalised through this non-acidic, non-

digestive pathway192 and are able to avoid digestion in the lysosomes193. Accordingly, 

one would expect MOFs going through caveolae-mediated endocytosis to have a higher 

chance of avoiding lysosomes and consequently delivering their cargo in other 

intracellular locations. The intracellular fate of the Zr-based family of MOFs after 

cellular uptake was investigated. This was done by examining whether the MOFs were 

found in lysosomes for further acidic degradation. For this purpose, confocal 

microscopy was used to determine if the particles were in the same intracellular location 

as a lysosomal marker, LysoTracker-Deep Red. Figure 4.10a shows the images of 

HeLa cells incubated with each MOF for 2 h. For Zr-L2, Zr-L3, and Zr-L4, a high 

degree of co-localisation was observed between signal from the MOF (green) and 

LysoTracker-Deep Red, illustrated by the yellow colour in the merged images. For 
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Zr-L5 and Zr-L6, a moderate degree of overlap between the MOFs and lysosomes can 

be seen. While some co-localisation is observed (yellow), most signal from the MOF 

did not overlap with the signal from LysoTracker-Deep Red. In order to quantify the 

degree of overlap, the Manders’ overlap coefficient (MOC) was measured (Figure 

4.10b). The MOC varies from 0 to 1 for non-overlapping and complete co-localisation, 

respectively194,195. Figure 4.10b shows that the results are also divided into two 

subgroups: (i) Zr-L2─Zr-L4; and (ii) Zr-L5 and Zr-L6. Within the first subgroup, all the 

MOFs had the same MOC of ca. 0.8, with no statistically significant difference between 

them. Similarly, within the second subgroup, the average MOC was ca. 0.4, with no 

statistically significant difference between Zr-L5 and Zr-L6. Comparing the two 

subgroups shows that the degree of co-localisation of Zr-L5 and Zr-L6 was on average 

ca. 50 % lower than that of Zr-L2─Zr-L4. This result suggests that a significant quantity 

of Zr-L5 and Zr-L6 may be able to successfully avoid lysosomes and potentially release 

their cargo in the cytosol or other organelles. 

 Based on these results, there seems to be a correlation between the surface 

chemistry of MOF particles and their cellular uptake behaviour. Particle size seems to 

play a less prominent role. The results also show that while it is important to consider 

the uptake efficiency of a particle, it is also crucial to consider the endocytosis pathways 

it goes through. MOFs entrapped in endosomes or lysosomes do not contribute to the 

final aim of delivering drugs in the cytosol, even if they are taken up in large quantities. 

Zr-L3 for instance was the most successful MOF in terms of uptake efficiency; 

however, it was found mostly localised in lysosomes for further degradation. In 

contrast, Zr-L5 and Zr-L6, which had the lowest uptake efficiencies, could avoid 

lysosomes and potentially release their cargo in the cytosol. Orellana-Tavra et al. have 

tested the cytotoxicity of Zr-L1─Zr-L6 loaded with α-cyano-4-hydroxycinnamic acid 

(α-CHC) and found that there was no significant difference in viability for cells treated 

with empty and α-CHC-loaded Zr-L1 to Zr-L5, with viability remaining above 80 % for 

both conditions at any given concentration of MOF. For Zr-L6 however, α-CHC-loaded 

MOF decreased the viability down to 59 ± 5 % at a MOF concentration of 1 mg/mL, 

whereas the empty MOF was non-cytotoxic. This once again shows that uptake 

efficiency is not sufficient on its own to determine therapeutic efficacy. Even though 

Zr-L3 was more efficient than Zr-L6 at delivering cargo into the cell, it was less 

therapeutically active than the latter since most of the cargo ended up being degraded in 

the lysosomes. The results also show that it is not necessarily the amount of drug loaded 
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in the MOF that determines its efficacy, given that Zr-L1, which had a higher α-CHC 

loading than Zr-L6, was still less effective at killing cells151 

 

 

Figure 4.10. Confocal microscopy images of HeLa cells incubated with Zr-based MOFs 

(Zr-L2─Zr-L6) loaded with calcein (green fluorescence), and Lyso-Tracker Deep Red (red), for 

2 h. (b) Manders’ overlapping coefficient for all the MOF samples and the lysosomal marker. 

Error bars represent the standard error of at least 10 independent images. 
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4.3.2.2   Cellular Uptake of Post-Synthetically Modified Zr-L1 MOFs 

 Next, the cellular uptake behaviour of the post-synthetically modified 

Zr-L1-func particles was assessed. All the samples were derived from the same batch of 

Zr-L1, measured to be around 150 nm in size by SEM, thus allowing to isolate the 

effect of particle size. Through the choice of surface reagents (FA, Biot, Hep, Lact, 

PNIPAM, PEG500, and PEG2000), the goal was to rationalise the effects of 

hydrophilicity/hydrophobicity, targeting agents, and surface charge on HeLa cell 

internalisation pathways and therapeutic efficacy. The uptake efficiency of the surface-

modified MOFs was assessed using flow cytometry. Figure 4.11 shows the normalised 

intracellular fluorescence of HeLa cells after incubation with 0.5 mg/mL of the different 

MOFs for 2 h. The data was normalised to Zr-L1 cell internalisation, taking into 

account the different calcein loadings in every sample. Zr-L1-Biot was poorly 

internalised (37 ± 1 %), suggesting that biotin coating might not be desirable to enhance 

particle internalisation. Zr-L1-FA was the most efficiently internalised 

MOF (184 ± 2 %), followed by Zr-L1-Hep (171 ± 3 %), Zr-L1-PNIPAM (150 ± 1 %), 

Zr-L1-Lact (141 ± 2 %), Zr-L1-PEG2000 (98 ± 3 %), and Zr-L1-PEG550 (78 ± 3 %). 

HeLa cells overexpress the folate receptor on their surface196, which might explain why 

coating the MOF with FA enhanced cellular uptake efficiency. 

 

Figure 4.11. Normalised intracellular fluorescence of HeLa cells incubated with post-

synthetically surface-modified Zr-L1-func. Error bars represent the standard error of at least 3 

replicates.  

 The influence of endocytosis inhibitors on the cellular uptake of the post-
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fluorescence of HeLa cells after incubation with each MOF in the presence of the 

pharmacological inhibitors (the specific value for each column is shown in the 

Appendix, Table A2.1). To determine if the differences were statistically significant, 

every value was compared to the control at 37 °C using one-way analysis of variance 

(ANOVA) followed by Dunnett’s test to adjust for multiple comparisons. For all the 

MOFs, cellular uptake at 4 °C decreased between 40 and 86 % when compared to the 

control at 37 °C, indicating that the particles were taken up by energy-dependent 

endocytosis. The uptake of Zr-L1-Biot only decreased by 28 %, confirming the 

observations from the previous uptake experiments that it was not efficiently 

internalised by HeLa cells. For this reason, no further experiments were carried out with 

this sample. The uptake of uncoated Zr-L1 decreased to 37 ± 4 % and 27 ± 1 % when 

incubated with chlorpromazine (clathrin-mediated endocytosis inhibitor) and sucrose 

respectively. No effect was observed when cells were inhibited with nystatin (caveolae-

mediated endocytosis), and only a minor effect was observed when incubated with 

rottlerin to inhibit macropinocytosis, indicating that Zr-L1 particles were internalised 

mostly by clathrin-mediated endocytosis. When cells were incubated with Zr-L1-FA 

and nystatin (caveolae-mediated endocytosis inhibitor), uptake decreased to 62 ± 2 %, 

whereas no inhibition was found when clathrin-mediated endocytosis was inhibited 

using chlorpromazine (96 ± 3 %), and only a minor effect (81 ± 5 %) was observed 

when rottlerin was used to inhibit macropinocytosis. Sucrose decreased the uptake to 

36 ± 4 %. As mentioned previously, sucrose is non-specific inhibitor of clathrin-

mediated endocytosis and can inhibit other pathways. These results indicate that the 

addition of FA to the surface of Zr-L1 alters cancer cell endocytosis selection pathways 

from clathrin-mediated endocytosis to caveolae-mediated endocytosis, and suggest that 

Zr-L1-FA samples have the potential to be efficient therapeutic DDS. Preferential 

uptake through caveolae-mediated endocytosis could be due to the fact that folate 

receptors have been reported to often be located within caveolae invaginations196. For 

Zr-L1-Hep particles, inhibition with nystatin decreased cellular uptake to 60 ± 1 %, 

indicating that they were partially internalised by caveolae-mediated endocytosis. 

However, and in contrast to Zr-L1-FA particles, particles were also taken up by 

clathrin-mediated endocytosis, with uptake decreasing to values of 70 ± 2 %. Inhibiting 

macropinocytosis decreased uptake to 83 ± 3 %; sucrose reduced internalisation to 

values of 41 ± 4 %. 
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 In the case of the polymer-coated samples, inhibition of clathrin-mediated 

endocytosis using chlorpromazine had no significant effect on Zr-L1-Lact (84 ± 11 %) 

and Zr-L1-PNIPAM (105 ± 5 %), whereas it greatly reduced uptake down to 27 ± 2 % 

for both Zr-L1-PEG550 and Zr-L1-PEG2000. Sucrose reduced the uptake of all four 

particles by 46─72 %. With the exception of Zr-L1-PEG2000, rottlerin moderately 

decreased the uptake of the particles down to 80─85 %. Inhibition of macropinocytosis 

decreased the uptake of Zr-L1-PEG2000 to 45 ± 4 %. Using an inhibitor of caveolae-

mediated endocytosis (nystatin) had no effect on Zr-L1-Lact (106 ± 13 %), 

Zr-L1-PNIPAM (103 ± 4 %), and Zr-L1-PEG550 (106 ± 3 %). However, it reduced the 

uptake of Zr-L1-PEG2000 down to 51 ± 2 %, showing that the PEGylated MOF was 

partially internalised through caveolae-mediated endocytosis. This again shows that the 

Zr-L1 internalisation pathway was significantly affected by the functionality attached to 

its surface, and the longer PEG chains (Mn ≈ 2,000) allowed the MOFs to partially 

avoid lysosomal degradation. The amphiphilic nature of Zr-L1-PEG2000, in contrast to 

the hydrophilic surface of the uncoated sample, is thought to be more compatible with 

the caveolae-mediated route.    

 

Figure 4.12. Effects of pharmacological endocytosis inhibitors on the uptake of post-

synthetically surface-modified Zr-L1-func MOFs, measured by flow cytometry. Error bars 

represent the standard error of at least 3 replicates. Statistical significance was determined by 

one-way ANOVA and is indicated on top of each column. * P ≤ 0.05, ** P ≤ 0.01, 

*** P ≤ 0.001, and **** P ≤ 0.0001.  
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 To investigate the consequences of surface coating on the therapeutic efficacy 

of the MOF particles, and relate the results to the endocytosis efficiency and uptake 

pathway studies, a small drug molecule with high metabolic anticancer activity197,198, 

dichloroacetate (DCA), was introduced into the MOFs by using it as a modulator that 

attaches to UiO-66 metal nodes during synthesis152. DCA is thought to inhibit pyruvate 

dehydrogenase kinase (PDK), reversing cancer cell metabolism from aerobic glycolysis 

to oxidative phosphorylation197. The materials were named Zr-L1-DCA-func, where 

func is the functionality attached to the surface. The cytotoxicity of the materials was 

then tested on HeLa cells using the MTS enzymatic activity assay. Abanades-Lazaro et 

al. have shown that incubation with the empty surface-functionalised MOFs for 72 h did 

not lead to a decrease in HeLa cell viability. The exception was Zr-L1-PNIPAM, which 

was cytotoxic for concentrations above 0.25 mg/mL153. Any decrease in viability with 

the DCA-loaded materials can therefore be attributed to DCA. The viability of the cells 

after treatment with the DCA-loaded materials for 72 h is shown in Figure 4.13 as a 

function of both MOF and DCA concentrations. Zr-L1-PEG550 was not tested due to 

an insufficient amount of material. The viability of HeLa cells incubated with non-

functionalised Zr-L1-DCA did not decrease at concentrations up to 1 mg/mL MOF, 

even though this MOF had the highest DCA loading (16.9 wt %). Zr-L1-DCA-FA was 

toxic to HeLa cells starting at the MOF concentration of 0.75 mg/mL, decreasing the 

viability down to 74 ± 4 % at a MOF concentration of 1 mg/mL. This is consistent with 

the finding that Zr-L1-FA particles are taken up mostly by caveolae-mediated 

endocytosis (Figure 4.12). Zr-L1-DCA-Lact was more toxic than its folate-covered 

counterpart, inhibiting cell growth when incubated with 0.75 mg/mL MOF (85 ± 3 %), 

and killing almost all the cells at 1 mg/mL. This is despite the fact that it had lower 

uptake efficiency (Figure 4.11), was not taken up by caveolae-mediated endocytosis 

(Figure 4.12), and had a lower DCA loading as can be seen in Figure 4.13b. This could 

be indicative of its significant internalisation by energy-independent endocytosis, as 

supported by its high uptake even when cells are incubated at 4 °C. Although empty 

Zr-L1-PNIPAM was already found to be toxic at concentrations of 0.5 mg/mL and 

above153, DCA loading enhanced its toxicity, with Zr-L1-DCA-PNIPAM killing almost 

all the cells at a MOF concentration of 0.25 mg/mL. Zr-L1-DCA-Biot and 

Zr-L1-DCA-Hep did not cause any decrease in viability even at MOF concentrations of 

1 mg/mL. This is despite the fact that Zr-L1-Hep was shown to partially go through 

caveolae-mediated endocytosis (Figure 4.12). Looking at the viability results plotted 
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against DCA concentration however (Figure 4.13b), one can see that it is not possible 

to compare the toxicity of Zr-L1-DCA-Hep to that of Zr-L1-DCA-FA. This is because 

the DCA loading in Zr-L1-DCA-Hep was much lower, meaning that the DCA 

concentration was still within the range in which Zr-L1-DCA-FA was non-toxic. 

Zr-L1-DCA-PEG2000, which was shown to partially be taken up by caveolae-mediated 

endocytosis, was more toxic than uncoated Zr-L1-DCA, inducing significant cell death 

at MOF concentrations of 0.75 mg/mL and above (Figure 4.13a). It was also more toxic 

than Zr-L1-DCA-FA, despite having a ca. 50 % lower internalisation efficiency (Figure 

4.11). Once again, the results show that a number of factors need to be considered when 

designing an efficient DDS, such as drug loading, internalisation efficiency, and 

endocytosis routes of entry.       

 

 

Figure 4.13. MTS viability assay measuring enzymatic metabolic activity of HeLa cells after 

72 h incubation with post-synthetically functionalised Zr-L1-DCA-func particles. The results 

were plotted as a function of both DDS and equivalent DCA concentrations. The colour code is 

the same in both plots. Samples were run in minimum of six replicates. Standard errors are 

shown for each given data point. For some data points error bars are too small to be seen. 
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4.4 Conclusions 

A range of Zr-based MOFs of different sizes and different surface chemistries were 

shown to enter cells through different endocytic pathways. It was demonstrated that 

control of surface chemistry, whether through linker functionalisation or post-synthetic 

attachment of functionalities, is critical to tune the pathways in which cells take up 

particles, whereas particle size does not exert a great influence here. It was shown that 

Zr-L1─Zr-L4 (functionalised BDC linkers), for example, were taken up mostly by 

clathrin-mediated endocytosis and ended up being degraded in the lysosomes, voiding 

their therapeutic effect. However, Zr-L5 and Zr-L6 (MOFs with extended linkers), 

although much less efficient at entering cells, were taken up through the caveolae-

mediated route, enabling them to avoid lysosomal degradation, and to release their 

cargo in the desired intracellular location. This chapter also demonstrated that post-

synthetic surface functionalisation can enhance cellular uptake and tune internalisation 

pathways to more desirable uptake routes. It was shown for example that FA-coated and 

PEG2000-coated Zr-L1 particles were more cytotoxic than uncoated ones, as a result of 

their uptake through the caveolae-mediated route. However, it was also found that 

particles that do not go through that route, such as Zr-L1-Lact, can also be toxic to cells. 

Additionally, particles that are taken up through the caveolae-mediated pathway are 

sometimes non-toxic to cells due to low drug loadings (Zr-L1-Hep). In summary, it is 

important to consider multiple factors, such as drug loading, internalisation efficiency, 

and routes of entry, when identifying suitable candidates for DDSs. Furthermore, while 

these studies have provided indications as to how to design efficient DDSs a priori, 

selection of suitable DDS candidates still needs to be made on a case by case basis by 

testing the final therapeutic efficacy of the materials. Guided by the findings of the 

present study, the next chapter explores the design and synthesis of a UiO-66-based 

mitochondria-targeted intracellular delivery system.     
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5 TARGETED INTRACELLULAR 

DELIVERY TO 

MITOCHONDRIA 

5.1 Introduction 

 This chapter will assess the mitochondrial targeting ability and in vitro 

therapeutic efficacy of UiO-66 carrying a small drug molecule, dichloroacetate (DCA), 

and functionalised with a triphenylphosphonium (TPP) targeting moiety. In order to 

understand the motivation behind targeting mitochondria, Section 5.1.1 describes these 

organelles, both at a structural and functional level, with a specific focus on their role in 

cancer. Section 5.1.2 describes specific therapeutic targets in mitochondria. Section 

5.1.3 then gives the rationale behind using TPP as a mitochondrial-targeting agent. 

5.1.1 Mitochondria in Cancer 

 Mitochondria play a key role in oncogenesis, and thus constitute promising 

targets for novel cancer treatments199. These maternally-inherited organelles are 

elongated membrane structures that are 0.5–1 µm in diameter and 1–10 µm in length, 

and consist of a mitochondrial matrix surrounded by an outer and inner membrane200. 

The outer membrane is highly negative (ΔΨ = -150–200 mV), with a proton gradient 

across the inner membrane. Mitochondria are the energy powerhouse of cells. Non-

cancerous mammalian cells normally produce their energy by oxidative phosphorylation 
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using the electron transport chain in the mitochondrial matrix. Cancerous cells, 

however, utilise glycolysis, even in the presence of oxygen201. This is due in part to a 

reprogramming of mitochondrial function that increases pyruvate dehydrogenase kinase 

(PDK) activity, which limits pyruvate uptake necessary for oxidative 

phosphorylation202. Targeting and reverting mitochondrial metabolism to oxidative 

phosphorylation is therefore an attractive strategy in cancer treatment.  

 In addition to regulating cellular metabolism, mitochondria are heavily 

involved in regulation of cell death, which can also be used as a therapeutic target in 

cancer therapy. Indeed, evasion of cell death is a trademark feature of cancer203, and is a 

determining factor in tumour cell populations’ ability to expand in numbers204. This is 

why activating the cell death machinery, and more specifically apoptosis, is an attractive 

target in cancer treatment. Apoptosis mostly involves proteases known as caspases, 

which are only activated when cell death is triggered. Once activated, caspases trigger a 

cascade of events that lead to the controlled demolition of cellular components205. Until 

then, they are held in check by inhibitors that act on them directly, or by inhibition 

and/or sequestration of their activators206. Permeabilisation of the mitochondrial outer 

membrane (MOM) causes the release of activators, namely cytochrome C, into the 

cytosol, where they trigger the caspase cascade, making treatment strategies that cause 

mitochondrial permeabilisation attractive207–209. This is especially true given that cancer 

cell mitochondria are structurally and functionally different than their normal 

counterparts, and are more susceptible to mitochondrial perturbations210, making 

mitochondrial targeting a means to also selectively target cancer cells. 

5.1.2 Therapeutic Targets in Mitochondria 

 As described in the previous section, mitochondrial defects are heavily 

involved in cancer. The correction of cancer-associated mitochondrial 

defects/dysfunctions and the reactivation of cell death programmes by pharmacological 

agents that induce mitochondrial membrane permeabilisation is therefore an attractive 

strategy for cancer treatments207,208. A number of drugs that are thought to act on the 

mitochondria have been discovered, developed, and investigated. They act on different 

targets, which will be discussed next. 
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5.1.2.1 Modulators of the B-cell Lymphoma Protein 2 (BCL-2) Protein Family 

 The BCL-2 family of proteins regulates the permeabilisation of the MOM and 

therefore acts as a gatekeeper in the apoptotic process. The family can be divided into 

three functional groups: anti-apoptotic proteins such as BCL-2, pro-apoptotic effectors 

such as BAX, BAK, and BOK, and pro-apoptotic activators such as BID, BAD and 

BIM. Effectors are proteins closely associated with the mitochondrial membrane, and 

when stimulated by activators promote the formation of pores in the mitochondrial 

membrane211,212. Anti-apoptotic proteins interact directly with pro-apoptotic effectors 

and activators to inhibit their effect213. This dynamic balance helps determine whether 

the cell initiates apoptosis211. A number of treatments targeting the BCL-2 family have 

shown great promise - most notably, ABT-737, which predominantly binds to and 

antagonises BCL-2, thus shifting the balance in favour of pro-apoptotic proteins214–218. 

Other treatments with a similar mechanism of action, such as Gossypol (AT-101), or 

Obatoclax (GX15-070), have shown significant potential219,220. 

5.1.2.2 Agents Targeting the Permeability Transition Pore Complex (PTPC) 

 The PTPC is a highly dynamic supramolecular system for which the exact 

structural identity is poorly understood206. It is formed of a number of constituents that 

can exist in multiple isoforms. These constituents are embedded across the 

mitochondrial membrane and into the mitochondrial matrix. Under physiological 

conditions, the PTPC exists in a low-conductance state, thereby allowing the controlled 

exchange of small solutes between the cytosol and the mitochondrial matrix. This low-

conductance state is favoured by its interaction with anti-apoptotic BCL-2 proteins221. 

Drugs that can interact with the PTPC and cause it to assume a high-conductance state 

can cause the deregulated entry of small solutes into the mitochondrial matrix, driven by 

electrochemical forces. This in turn causes the immediate dissipation of ΔΨ and osmotic 

swelling of the mitochondrial matrix, which ultimately leads to MOM permeabilisation 

and subsequent apoptosis222,223.  

5.1.2.3 Targeting Mitochondrial Metabolism 

 As mentioned in Section 5.1.1, approaches that reverse the hyperglycolytic 

state of cancer cells and prime them for cell death are attractive strategies for cancer 

treatment. DCA is a small molecule reported to have anti-cancer effects through its 

inhibition of pyruvate dehydrogenase kinase (PDK). This reverses cancer cell 

metabolism from aerobic glycolysis to oxidative phosphorylation197. This shift is 
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accompanied by a downregulation of the abnormally high mitochondrial membrane 

potential, reduced proliferation, and increased apoptosis of cancerous cells224. 

5.1.3 Triphenylphosphonium (TPP) as a Mitochondrial Targeting Agent 

 As discussed in Section 5.1.2, there are a number of therapeutic agents which 

can act on various components of the mitochondria. Finding a way to deliver these 

agents specifically to mitochondria could lead to more precise and effective cancer 

treatments. Emerging research in cancer therapy is focused on using the capacity of 

mitochondria-targeted cations (MTCs) to accumulate in mitochondria as a targeting 

approach225–227. Triphenylphosphonium (TPP) is one such MTC that has a number of 

advantages over other mitochondria-targeting agents: it has both lipophilic and 

hydrophilic properties, making it stable in aqueous media and able to cross biological 

membranes, has low reactivity with cellular components, and is relatively safe in 

humans, meaning it has high clinical potential and translational significance228. It is 

known to accumulate readily in the mitochondrial matrix of living cells − up to 

100−1000 fold compared to the extracellular matrix − driven by the mitochondrial 

membrane potential197. 

 The use of TPP-conjugated bioactive molecules in mitochondrial biology was 

pioneered and refined by Murphy and colleagues229–231. TPP was used to deliver probes, 

antioxidants, and pharmacological agents to mitochondria, with most approaches 

consisting of linking the active ingredient to TPP with a covalent bond in 1:1 

stoichiometry. Representative examples are Mito-Doxorubicin (doxorubicin linked to 

TPP)232, MitoQ (ubiquinone attached to TPP)233, and Mito-Dicholoracetate (DCA 

conjugated to TPP)234. Another approach is to use mitochondria-targeting vesicles to 

deliver therapeutic cargo. This is typically done by functionalising the surface of 

particles carrying drug molecules with TPP. The advantage of such an approach 

compared to covalently linking TPP to drug molecules is the possibility of overcoming 

obstacles related to the use of free drugs, such as poor solubility, short half-lives in vivo, 

and non-selective biodistribution. A number of such nanocarriers have been developed 

and tested. TPP-modified liposomes for example have been used to deliver a wide range 

of bioactive molecules to mitochondria, and were shown to accumulate there235,236. 

TPP-functionalised polymeric dendrimers have also been shown to improve 

mitochondrial drug delivery237. These carriers have pitfalls that can be overcome using 

MOFs, as outlined in Section 1.2.3.  
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 This chapter explores the design of DCA-loaded, TPP-functionalised UiO-66 

particles, and investigates their therapeutic effect. The rationale behind using DCA as 

the therapeutic drug molecule was that it is also an excellent modulator of MOF crystal 

growth, and can be incorporated into the DDS by coordinating to the Zr-oxo clusters of 

UiO-66. Indeed, its lower pKa value (1.96) compared to the pKa of BDC (3.54 and 

4.46) means that it can be attached to Zr positions in substantial amounts, even in the 

presence of other functionalised modulators. Its use as a modulator gives particles with 

good colloidal stability and reproducible control of particle size, as demonstrated in 

Chapter 4. Its cytotoxic effect will only be observed if MOFs are able to deliver cargo 

into the cytosol and subsequently reach the mitochondria. This allows experimental 

confirmation that therapeutically active DCA-loaded MOFs have been successfully 

internalised in a way that results in the DDS being localised in the cytosol, potentially 

reaching mitochondria, rather than in the lysosomes. As such, DCA is an excellent 

mechanistic probe for the therapeutic efficiency and cellular internalisation of MOFs. 

TPP was used as a targeting agent and is shown below to greatly increase the efficacy of 

the DDS.    

5.2 Collaborative Work 

 Materials in this chapter were synthesised and characterised in collaboration 

with Dr Isabel Abanades-Lazaro from Dr. Ross Forgan’s group at the School of 

Chemistry, University of Glasgow. Super-resolution microscopy was done in 

collaboration with Marcus Fantham from Professor Clemence Kaminski’s group at the 

Department of Chemical Engineering and Biotechnology, University of Cambridge.  
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5.3 Results & Discussion 

5.3.1 Synthesis and Characterisation of Mitochondria-Targeting DDS 

 To find candidate UiO-66 derivative MOFs that are suitable for drug delivery 

and that have optimal mitochondrial targeting properties, synthesis and characterisation 

of a range of UiO-66 materials containing DCA and TPP was performed. This section 

describes their assessment for suitability based on a number of factors, such as DCA 

and TPP incorporation, size, colloidal stability, and in vitro efficacy. 

5.3.1.1 Functionalisation with TPP by Coordination Modulation 

 This present section investigates the suitability of targeted UiO-66 derivative 

MOFs prepared in a one-pot synthesis, through incorporation of 

(4-carboxybutyl)triphenylphosphonium and/or DCA (structures shown in Figure 5.1) 

by coordination modulation, i.e. by using them as modulators during synthesis, as 

described in Section 2.2.1.3. A version of TPP containing a carboxylic acid 

functionality was chosen to allow it to coordinate to the metal nodes. The resulting 

particles were termed DCAx-TPPy-UiO-66, where x and y are the molar equivalents 

relative to the linker in the initial reaction conditions of DCA and TPP, respectively. 

Where only DCA was used as a modulator, the materials were named DCAx-UiO-66. 

Similarly, materials synthesised with only TPP as a modulator were termed 

TPPy-UiO-66. 

 

Figure 5.1. Chemical structure of DCA (drug) and TPP (targeting agent), used as modulators 

in the synthesis of UiO-66. 

 PXRD was used to confirm the successful synthesis of the UiO-66 based 

MOFs by comparing their patterns with those obtained from single crystal X-ray 

structures. Figure 5.2 shows the patterns for all the synthesised MOFs along with the 

calculated pattern. The positions of the main peaks in all the synthesised structures at 

2θ = 7.4°, 8.6°, and 12.1° perfectly match those in the simulated structure. Additionally, 

DCA TPP
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other observable peaks above 2θ = 12.1° are also in agreement with the simulated 

structure, indicating successful synthesis of UiO-66 for all materials.  

 

Figure 5.2. PXRD patterns of synthesised MOFs compared with their calculated pattern. 

Colour code of patterns: blue, calculated; and black, synthesised. Sample names are shown on 

top of patterns.  

 TGA of the synthesised samples was performed to estimate the attachment of 

both DCA and TPP. Figure 5.3 shows the thermal degradation profiles of 

DCAx-TPPy-UiO-66 samples (black), TPP in its free form (purple) and UiO-66 

synthesised with benzoic acid as a modulator – UiO-66 not containing any DCA or 

TPP, named UiO-66 (blue). The first derivative of the DCAx-TPPy-UiO-66 profile is 

shown in red. TGA of DCA in its free form was not possible due to practical 

limitations, DCA being a highly acidic substance in liquid form that cannot be placed in 

a pan for measurement. However, its decomposition temperature has been reported as 

194 °C238. The results show that the decomposition of TPP in its free form occurred 

between 280 °C and 330 °C. The noticeable decomposition step in the same temperature 

range for all the DCAx-TPPy-UiO-66 samples can therefore be attributed to the loss of 

TPP from the structure. Based on the magnitudes of weight loss, the relative amounts of 

TPP in the different samples can be estimated. TPP1-UiO-66 and DCA1-TPP1-UiO-66 

for example showed smaller weight losses than DCA10-TPP1-UiO-66, suggesting lower 

TPP weight loadings. However, and based on the concentrations of the modulators 
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during synthesis, the opposite results were expected, i.e. TPP1-UiO-66 and 

DCA1-TPP1-UiO-66 were expected to have more TPP in the MOF structure than 

DCA10-TPP1-UiO-66. The rationale behind this was that DCA and TPP compete for 

coordination to the metal nodes during crystal formation, meaning that with less 

competition from DCA, the same concentration of TPP (1 eq) would yield particles with 

higher TPP loadings. This discrepancy suggests that DCA might also be decomposing 

in the 280–330 °C range, and that TGA is not an adequate tool to quantify the weight 

loadings of both molecules due to the overlap. 

 

Figure 5.3. TGA of DCAx-TPPy-UiO-66 (black), UiO-66 (blue), and free TPP (purple), under 

air. The red dotted line represents the first derivative of the TGA plot of DCAx-TPPy-UiO-66.     
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 To confirm that DCA also decomposes in the 280–330 °C range, TGA was 

performed on DCA10-UiO-66, which does not contain any TPP. As can be seen in 

Figure 5.4, a decomposition step also occurs at temperatures around 280–330 °C even 

though the decomposition temperature of DCA in its free form is 194 °C. This shows 

that the decomposition of DCA when in the UiO-66 structure is different than when it is 

in its free form, suggesting that DCA is attached to the structure through coordination to 

the metal nodes rather than simply being adsorbed in the pores. This also suggests that 

the weight loss observed at 280-330 °C with the DCAx-TPPy-UiO-66 samples is due to 

the decomposition of both TPP and DCA at those temperatures, making it challenging 

to estimate the individual weight loadings from TGA. 

 

Figure 5.4. TGA of DCA10-UiO-66 (black) and UiO-66 (blue) under air. 

 To better determine loading, another method was assessed. The chlorine atoms 

in DCA and the phosphorous atom in TPP allowed the quantification of these two 

molecules by ICP-OES. Table 5.1 presents the values of DCA and TPP loadings in 

DCAx-TPPy-UiO-66 samples after deduction of the chlorine and phosphorus content of 

a blank sample of UiO-66, as well as their colloidal properties. DCA loadings ranged 

between 7.7 and 15.1 % for DCA1-TPP5-UiO-66 and DCA5-TPP5-UiO-66 respectively. 

TPP loadings ranged between 0 and 2.3 % for DCA10-TPP1-UiO-66 and 

DCA5-TPP5-UiO-66 respectively. DCA weight loadings were an order of magnitude 

higher than those of TPP, even though TPP is heavier than DCA (363 g/mol vs. 

128 g/mol). This is explained by the difference in acidity between the two modulators. 

The lower pKa of DCA (1.96) means that it will be deprotonated more easily in the 

reaction mixture and hence compete much better than TPP (pKa = 4) for coordination to 

the metal nodes. For the DCAx-UiO-66 samples, the incorporation of DCA into the 

MOF structure generally increased with increasing DCA concentration during synthesis, 
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from 6.7 wt % for DCA1-UiO-66 to 46.8 wt % for DCA20-UiO-66. For 

DCAx-TPPy-UiO-66 samples, it was expected that increasing the concentration of DCA 

for example while maintaining the concentration of TPP fixed would increase the level 

of DCA incorporation and reduce that of TPP, and vice versa. This is what was 

observed. For example, at a fixed TPP concentration of 1 eq, DCA incorporation 

increased with increasing modulator concentration, from 8.0 wt % for 

DCA1-TPP1-UiO-66 to 15.1 wt % for DCA10-TPP1-UiO-66, while TPP incorporation 

decreased from 0.8 wt % to 0 wt %. Similarly, fixing the DCA concentration and 

increasing the TPP concentration increased the amount of TPP incorporated in the MOF 

structure as well. However, and surprisingly, when going from using only DCA as a 

modulator to using both DCA and TPP, the attachment of DCA was improved. For 

example, DCA1-TPP1-UiO-66, DCA1-TPP2.5-UiO-66, and DCA1-TPP5-UiO-66 all have 

higher DCA loadings than DCA1-UiO-66. This is counter-intuitive, as there should be 

fewer opportunities for DCA to coordinate to the zirconium nodes if TPP is present in 

the reaction mixture, as discussed before. 

Table 5.1. Colloidal analysis of DCAx-TPPy-UiO-66 samples as well as their DCA and TPP 

loadings.  

MOF 

Particle 
size             

(nm)a 

Effective 
diameter        

(nm)b PdI 
Z-Pot 
(mV)c 

DCA  
(wt.%) 

TPP 
(wt.%) 

TPP1-UiO-66 333 ± 175 2232 ± 438 0.67 -1.3 ± 0.2 0 1.2 

DCA1-UiO-66 236 ± 51 1524 ± 113 0.58 28.8 ± 0.9 6.7 0 

DCA2.5-UiO-66 139 ± 51 348 ± 4 0.21 35.5 ± 0.4 6.1 0 

DCA5-UiO-66 115 ± 48 308 ± 1 0.17 35.3 ± 0.4 10.0 0 

DCA10-UiO-66 81 ± 27 257 ± 1 0.17 35.4 ± 0.6  15.5 0 

DCA20-UiO-66 683 ± 27 4169 ± 706 1.00 31.5 ± 0.8 46.8 0 

DCA1-TPP1-UiO-66 255 ± 108 5289 ± 367 0.73 48.2 ± 1.1 8.0 0.8 

DCA1-TPP2.5-UiO-66 171 ± 52 4131 ± 78 0.70 43.0 ± 0.7 8.5 0.7 

DCA1-TPP5-UiO-66 167 ± 46 2301 ± 130 0.64 44.2 ± 0.9 7.7 1.4 

DCA2.5-TPP1-UiO-66 178 ± 64 4760 ± 205 0.47 33.4 ± 0.6 12.1 0.9 

DCA5-TPP1-UiO-66 171 ± 36 913 ± 29 0.50 40.2 ± 0.3 14.5 0.5 

DCA5-TPP5-UiO-66 131 ± 51 660 ± 26 0.51 42.2 ± 0.4 13.0 2.3 

DCA10-TPP1-UiO-66 81 ± 18 323 ± 1 0.19 36.8 ± 0.7 15.1 0 
aMeasured by SEM – errors represent standard deviation of 100 particle sizes. bMeasured by DLS in 

water. cMeasured in water  

  

 Having confirmed the synthesis of the DDSs and the successful incorporation 

of DCA and TPP into them, SEM images were acquired in order to determine particle 
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size distributions. Figure 5.5 displays these images. Mean particle sizes were 

determined, averaging across 100 particles per sample. The results are shown in Table 

5.1, along with the standard deviations. Sizes ranged from 81–683 nm for 

DCA10-UiO-66 and DCA20-UiO-66 respectively. Generally, increasing the 

concentration of DCA gave smaller particle sizes. For example, for particles synthesised 

without TPP (DCAx-UiO-66), increasing the concentration of DCA from 1 to 10 eq in 

the synthesis decreased particle size from 236 nm to 81 nm. When the DCA 

concentration was further increased to 20 eq however, the particle size jumped to 

683 nm. Modulators of MOF crystal growth act by competing with the organic linker 

for coordination to the zirconium nodes. They have two antagonistic and co-occurring 

effects, promoting crystal growth by preventing nucleation through coordination to 

zirconium in solution, and limiting crystal growth by capping zirconium nodes on the 

surface of already formed particles. Within the range 1–10 eq, it seems that the capping 

effect of DCA is more dominant than the nucleation-preventing one for DCAx-UiO-66 

particles. Looking at the particles synthesised with both DCA and TPP as modulators, 

the same trend can be observed – fixing the TPP concentration and increasing DCA 

concentration led to smaller particle sizes. With the exception of DCA20-UiO-66, all the 

samples were within the correct size range for cellular uptake, indicating their suitability 

for delivery applications.  
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Figure 5.5. SEM of synthesised DCAx-TPPy-UiO-66 particles. Scale bar sizes provided on 

figure. 

 To better visualise the effect of modulator concentration on particle size, the 

latter was plotted as a function of DCA and TPP concentration (Figure 5.6). For all 

materials the concentration of DCA ranged from 0 to 10 eq, and the concentration of 

TPP ranged from 1 to 5 eq. For a fixed amount of TPP, increasing the concentration of 

DCA reduced particle size. For example, with 1 eq of TPP, the particle size decreased 

from 333 nm to 81 nm as the DCA concentration was increased from 0 to 10 eq. 

Additionally, a narrower particle size distribution was observed with increasing DCA 
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concentration, with the relative standard deviation of particle size decreasing from 53 % 

for TPP1-UiO-66 (333 ± 175 nm), to 22 % for DCA10-TPP1-UiO-66 (81 ± 18 nm). The 

same trend was observed when fixing the TPP concentration at 5 eq and increasing the 

DCA concentration, e.g. particle size decreased from 167 nm for DCA1-TPP5-UiO-66 to 

131 nm for DCA5-TPP5-UiO-66. When the DCA concentration was fixed and the TPP 

concentration increased, particle size increased when going from 0 to 1 eq TPP, but then 

decreased as the TPP concentration further increased. For example, fixing the DCA 

concentration at 1 eq and increasing TPP concentration from 0 to 1 eq increased particle 

size from 236 nm to 255 nm. When the TPP concentration was further increased, to 2.5 

eq and 5 eq, particle size then decreased to 171 nm and 167 nm respectively. The jump 

in size when adding TPP to the reaction was observed for all the materials, except for 

particles synthesised with 10 eq DCA, i.e. DCA10-UiO-66 and DCA10-TPP1-UiO-66, 

which had the same size of 81 nm. This suggests that for DCA10-TPP1-UiO-66, TPP had 

no role in the modulation of crystal growth, likely due to its inability to compete with 

high concentrations of DCA for attachment to the Zr nodes. The fact that no TPP was 

detected by ICP-OES in DCA10-TPP1-UiO-66 further confirms this.  

 

Figure 5.6. DCAx-TPPy-UiO-66 particle sizes determined from SEM as a function of DCA and 

TPP concentrations used in synthesis. Error bars represent the standard error of at least 100 size 

measurements. Where not visible, error bars are too small to be seen. 

 In addition to the particle size, colloidal stability is an important parameter to 

consider for intracellular delivery applications, as particles that aggregate cannot be 

taken up by cells. The zeta potential is an indicator of colloidal stability, as it determines 

inter-particle interactions, promoting or preventing attraction and aggregation. It also 

determines particle interaction with cells, determining uptake efficiency and endocytosis 

routes of entry as discussed in Chapter 4. The zeta potential was measured for all the 
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samples, and the results are shown in Table 5.1. Zeta potentials of DCAx-UiO-66 

particles synthesised without TPP ranged from 28.8 mV to 35.5 mV. DCA2.5-UiO-66, 

DCA5-UiO-66, and DCA10-UiO-66 all had the same zeta potential at around 35.5 mV. 

DCA1-UiO-66 and DCA20-UiO-66 had lower zeta potentials at 28.8 mV and 31.5 mV 

respectively. Synthesis of DCAx-TPPy-UiO-66 with DCA and TPP as co-modulators 

gave particles with a wide range of zeta potentials, spanning 33.4 mV to 48.2 mV. It is 

noteworthy that all the particles had zeta potentials higher than +25 mV, suggesting that 

they are all colloidally stable in water239. Additionally, particles synthesised using TPP 

as a co-modulator had higher zeta potentials than particles synthesised using only DCA. 

This could be due to the increased number of defects in the crystal structure when using 

TPP as a co-modulator. The higher potentials suggest better colloidal stability for 

particles synthesised with TPP as a co-modulator.  

 To confirm the colloidal stability of the synthesised MOF particles, their 

hydrodynamic diameter was measured in water. The hydrodynamic diameter represents 

the effective particle size that cells ‘observe’ in solution. The results are shown in 

Table 5.1, and plotted in Figure 5.7 as a function of DCA and TPP concentrations. 

Generally, the hydrodynamic diameter followed the same trend as particle size for all 

the samples. The exception was when going from 0 to 1 eq DCA at a fixed 

concentration of 1 eq TPP, where the hydrodynamic diameter greatly increased from 

2,232 nm to 5,289 nm (Figure 5.7), whereas particle size was shown to decrease 

(Figure 5.6). This indicates that the addition of low concentrations of DCA makes 

particles less colloidally stable than ones synthesised with 1 eq of TPP alone. Synthesis 

with high concentrations of DCA however created particles that showed little 

aggregation, with DCA10-TPP1-UiO-66 for example having a hydrodynamic diameter of 

323 nm, compared to 5,289 nm for DCA1-TPP1-UiO-66. For samples synthesised with 

only DCA as a modulator in the concentration range 1–10 eq, increasing the DCA 

concentration yielded particles that had smaller hydrodynamic diameters. The 

hydrodynamic diameter decreased from 1,524 nm to 257 nm as the concentration of 

DCA increased from 1 to 10 eq. With further increase of DCA concentration to 20 eq, 

the hydrodynamic diameter increased greatly to 4,169 nm (result not shown in graph for 

ease of visualisation), indicating that the particles become highly unstable in water 

when using high concentrations of DCA. Interestingly, the results show that synthesis 

with TPP as a co-modulator generally creates particles that are less colloidally stable 

than particles synthesised with DCA alone, i.e. DCAx-TPPy-UiO-66 particles had very 
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high hydrodynamic diameters and PdIs when compared to DCAx-UiO-66 particles. This 

is in contrast to the trends predicted from the zeta potential results. Materials such as 

DCA5-TPP5-UiO-66 that had very high zeta potentials (48.2 mV) were also some of the 

most colloidally unstable. There generally does not seem to be a relationship between 

zeta potential and colloidal stability. All the particles had zeta potentials higher than 

+25 mV, but most of them were unstable. The only sample containing TPP that holds 

some potential for biological applications in terms of colloidal stability is 

DCA5-TPP5-UiO-66, even though it displayed some minor aggregation, with a 

hydrodynamic diameter of 660 nm and a PdI of 0.51. Materials synthesised without TPP 

such as DCA2.5-UiO-66 (348 nm, PdI = 0.21), DCA5-UiO-66 (308 nm, PdI = 0.17), and 

DCA10-UiO-66 (257 nm, PdI = 0.17), are in the correct size range for biological 

applications and have suitable colloidal stability in water, thus presenting themselves as 

promising candidates for this application. In summary, the results suggest that 

incorporation of TPP by coordination modulation is not a suitable approach to create 

particles that do not aggregate, and that its post-synthetic attachment to colloidally 

stable DCAx-UiO-66 might be a better alternative.  

 

Figure 5.7. DCAx-TPPy-UiO-66 hydrodynamic diameters determined from DLS as a function 

of DCA and TPP concentrations used in synthesis. 

 The cytotoxicity of all the materials was tested in order to identify efficacious 

mitochondrial delivery systems, and relate the results to what was obtained previously 

regarding DCA and TPP loadings, particle size, and colloidal stability. The effect of the 

synthesised materials on breast adenocarcinoma MCF-7 cells and on human embryonic 

kidney HEK-293 cells was assessed by measuring their metabolic activity using an 

MTS reduction assay. Figure 5.8 shows the cell viability after 72 h of MOF exposure at 

various concentrations. The viability values were plotted against both DDS 
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concentration and equivalent drug (DCA) concentration based on the loading values 

determined by ICP-OES. Using DCA20-UiO-66 as an example (46.8 wt % DCA 

loading), in the range 0–1 mg/mL DDS, the equivalent DCA concentration ranged from 

0–0.468 mg/mL. The reason for plotting against both the DDS and DCA concentrations 

is that it was uncertain at that point whether the toxicity was due to DCA alone or 

whether there were other properties inherent to the DDS such as aggregation, particle 

size, and charge that were also affecting the efficacy. Results for DCAx-TPPy-UiO-66 

and DCAx-UiO-66 were shown on separate graphs because the DCA concentration 

range for the latter was much higher. Figures 5.8A, 5.8B, 5.8E, and 5.8F show the cell 

viability of both MCF-7 and HEK-293 cell lines after treatment for 72 h with 

DCAx-TPPy-UiO-66 particles. The relative toxicity of the particles was more or less the 

same whether viability was plotted against DDS or DCA 

concentration (DCA10-TPP1-UiO-66 was the least toxic and DCA1-TPP1-UiO-66 the 

most toxic material). For DCAx-UiO-66 particles, and looking at the results plotted 

against DCA concentration (Figures 5.8D and 5.8H), DCA20-UiO-66 was the least 

toxic material. However, looking at the results plotted against DDS 

concentration (Figures 5.8C and 5.8G), this same material demonstrated the highest 

toxicity and led to the lowest cellular viability at all assessed DDS concentrations above 

0.25 mg/mL, with viability at the highest concentration (1 mg/mL) of DDS decreasing 

to ca. 12 % and ca. 15 % for MCF-7 (Figure 5.8C) and HEK-293 (Figure 5.8G) cell 

lines respectively. This can be explained when considering that DCA20-UiO-66 had a 

very high loading of DCA (46.8 wt %) compared to the rest of the materials, which had 

DCA loadings in the range 6.7–15.5 wt %. Plots against DCA concentration for both 

DCAx-TPPy-UiO-66 and DCAx-UiO-66 materials (Figures 5.8B, 5.8D, 5.8F, and 

5.8H), show that for a given DCA concentration, different materials had different 

toxicities, indicating that toxicity is not only dependent on the DCA concentration, and 

that there are other factors such as particle size or colloidal stability that could be 

affecting toxicity. Toxicity was higher for particles synthesised with a lower 

concentration of DCA as a modulator (DCA1-TPPy-UiO-66 particles were more toxic 

than DCA2.5-TPPy-UiO-66 particles, which were in turn more toxic than 

DCA5-TPPy-UiO-66 and DCA10-TPPy-UiO-66 particles), suggesting that there is some 

property of the DDS that is dependent on the concentration of modulator used that 

affects toxicity. As discussed in Chapter 4, properties affected by modulator 

concentration such as size and surface chemistry play a key role in determining how 
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effective a DDS is by influencing the cellular uptake and final intracellular fate of 

particles. Aggregation could also be a reason for observed toxicity, as the results show a 

correlation between hydrodynamic size and viability (the more toxic DCA1-TPPy-

-UiO-66 particles for example had larger hydrodynamic diameters than 

DCA10-TPPy-UiO-66 particles). An additional factor that could be affecting toxicity is 

the amount of TPP in the DDS. TPP is the molecule that has an affinity for 

mitochondria in the delivery system, meaning that larger amounts of incorporated TPP 

are expected to enhance mitochondrial targeting, thereby increasing the efficacy 

(cytotoxicity) of the DDS. The weight loading of TPP varied from sample to sample, 

with materials like DCA5-TPP5-UiO-66, which had the highest amount of incorporated 

TPP (2.3 wt %), counter-intuitively being one of the least toxic (Figures 5.8A, 5.8B, 

5.8E, and 5.8F). Although TPP-containing materials were generally more toxic than 

particles synthesised without TPP (DCA10-UiO-66 and DCA5-UiO-66 were the two 

least toxic materials on MCF-7 and HEK-293 cell lines, whether plotted against DDS or 

DCA concentrations), there are too many variables that could be affecting the toxicity of 

the materials, making it difficult to isolate the effect of TPP as a targeting functionality. 

In order to eliminate aggregation and particle size as factors that could potentially be 

affecting the efficacy of the DDS, a different approach to incorporating TPP into the 

MOF structure was pursued. 
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Figure 5.8. MTS viability assay measuring enzymatic metabolic activity of MCF-7 (A-D) and 

HEK-293 (E-H) cells after 72 h incubation with DCAx-TPPy-UiO-66 particles. The results were 

plotted as a function of both DDS and equivalent DCA concentrations. DCAx-TPPy-UiO-66 

particles are represented by full circles (A-B-E-F). DCAx-UiO-66 particles are represented by 

empty squares (C-D-G-H). Samples were run in minimum of six replicates. Standard errors are 

shown for each given data point. For some data points error bars are too small to be seen. 
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5.3.1.2 Functionalisation with TPP by Post-Synthetic Modification 

 To control the effect of particle size, improve the stability of the particles and 

eliminate the side effects of aggregation, TPP was post-synthetically attached to the 

DCAx-UiO-66 particles which displayed suitable colloidal stability. As mentioned 

previously, DCA10-UiO-66, DCA5-UiO-66, and DCA2.5-UiO-66 had hydrodynamic 

diameters of 257 nm, 308 nm, and 348 nm in water respectively, with PdI values 

ranging from 0.17–0.21. Different amounts of TPP were attached to the external surface 

of these three MOFs in order to also evaluate the quantity of TPP needed for improved 

cytotoxicity. Table 5.2 shows that the resulting particles, named 

TPP(++)@(DCAx-UiO-66) and TPP(+)@(DCAx-UiO-66) for the high and low levels of 

TPP respectively, showed a slight increase in hydrodynamic diameter. For comparison, 

data for DCAx-UiO-66 is included in Table 5.2. For TPP(++)@(DCA10-UiO-66) and 

TPP(+)@(DCA10-UiO-66), the hydrodynamic diameter increased by 18 and 23 % 

respectively relative to DCA10-UiO-66, with PdI values increasing to 0.29 and 0.28. For 

TPP(++)@(DCA5-UiO-66) and TPP(+)@(DCA5-UiO-66), the diameter increased by 28 

and 15 % respectively relative to DCA5-UiO-66. PdI values increased to 0.35 and 0.33 

respectively. For TPP(++)@(DCA2.5-UiO-66) and TPP(+)@(DCA2.5-UiO-66), the 

increase in hydrodynamic diameter relative to DCA2.5-UiO-66 was by 35 and 40 % 

respectively, with PdI values of 0.35 and 0.36. Even though the hydrodynamic 

diameters for all the particles increased to 302–487 nm, they remained within the size 

range that cells can take up by endocytosis, while still displaying good colloidal 

stability. 

 Table 5.2 also shows that the post-synthetic attachment of TPP to the surface 

of MOFs reduced their zeta potential to the range 7.9–13.3 mV, down from around 

35.5 mV for DCAx-UiO-66 materials. This however, did not affect the colloidal stability 

of the particles, with particles still having hydrodynamic diameters within the range that 

cells can take up by endocytosis. Additionally, the post-synthetic attachment of TPP led 

to particles with TPP loadings (5.3–15.0 wt %) an order of magnitude higher than 

particles synthesised with TPP as a co-modulator (0.5–2.3 wt %). This is because in co-

modulated syntheses, TPP has to compete with DCA and the BDC linker for 

coordination to the metal nodes. With post-synthetic attachment, TPP can adsorb to the 

external surface of the MOFs, and even replace some of the DCA or BDC molecules at 

the surface and coordinate to the zirconium clusters. Basification of the TPP solution 

before mixing with the MOF solution was done to de-protonate the TPP molecules and 
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allow for coordination with the metal nodes at the surface. TPP is hypothesised to only 

be found at the surface of UiO-66 because it is too large to fit through the ca. 6 Å 

windows58.  

Table 5.2. Colloidal analysis of samples with TPP post-synthetically attached, as well as their 

DCA and TPP loadings. (+) indicates samples post-synthetically modified with a TPP:MOF 

ratio of 1:4. (++) indicates samples modified with a TPP:MOF ratio of 1:1.  

MOF 

Effective 
diameter        

(nm)b PdI 
Z-Pot 
(mV) 

DCA 
wt.% 

TPP 
wt. % 

DCA2.5-UiO-66 348 ± 4 0.21 35.5 6.1 0 

DCA5-UiO-66 308 ± 1 0.17 35.3 10.0 0 

DCA10-UiO-66 257 ± 1 0.17 35.4 15.5 0 

TPP(+)@(DCA2.5-UiO-66) 487 ± 8 0.36 7.9 0.4 5.3 

TPP(++)@(DCA2.5-UiO-66) 471 ± 10 0.35 10 1.5 15.0 

TPP(+)@(DCA5-UiO-66) 353 ± 5 0.33 13.3 0.4 6.3 

TPP(++)@(DCA5-UiO-66) 394 ± 6 0.35 12.9 1.2 7.0 

TPP(+)@(DCA10-UiO-66) 317 ± 7 0.29 15.1 1.3 11.0 

TPP(++)@(DCA10-UiO-66) 302 ± 2 0.28 9.3 2.2 14.6 
aMeasured by SEM. bMeasured by DLS. 

 

 The cytotoxicity of the post-synthetically modified particles was then tested to 

determine whether the incorporation of TPP into the DDS increases its efficacy. 

Figure 5.9 shows the toxicity of these particles on MCF-7 and HEK-293 cells. Looking 

at the plots against DDS concentration for MCF-7 cells (Figures 5.9A, 5.9B, 

and 5.9C), it is clear that the addition of even low levels of TPP to the external surface 

of the MOFs dramatically increased the cytotoxicity of the materials, decreasing the 

viability at 1 mg/mL of DDS down to around 35, 26, and 23 % for 

TPP(+)@(DCA10-UiO-66) (green solid triangle), TPP(+)@(DCA5-UiO-66) (red solid 

triangle), and TPP(+)@(DCA2.5-UiO-66) (purple solid triangle), respectively. Particles 

functionalised with high amounts of TPP (TPP(++)@(DCAx-UiO-66), solid squares) 

were slightly more toxic, indicating that very little TPP is needed at the surface for 

presumed mitochondrial targeting. In order to know the threshold level of TPP needed, 

DCA2.5-UiO-66 was functionalised using a TPP solution that is five times less 

concentrated than the one used to prepare TPP(+)@(DCA2.5-UiO-66), and its toxicity 

was tested on MCF-7 cells. The material was named TPP@(DCA2.5-UiO-66) and is 

shown in Figure 5.9C. After 72 h of incubation, the viability (ca. 42 % at 1 mg/mL 

DDS) decreased to an intermediate level between that of cells treated with 
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DCA2.5-UiO-66 (purple dashed line) and of cells treated with both 

TPP(+)@(DCA2.5-UiO-66) and TPP(++)@(DCA2.5-UiO-66) (purple solid triangle and 

square). This suggests that only minute amounts of TPP are needed at the particle 

surface to observe an effect. When the viability values were plotted against equivalent 

DCA concentration (Figures 5.9D, 5.9E, and 5.9F), the materials displayed more or 

less the same level of toxicity regardless of the amount of TPP adsorbed on the surface, 

with viability dramatically decreasing even at low concentrations of DCA. Compared to 

the non-targeted DCAx-UiO-66 particles (dashed lines), a much lower concentration of 

DCA (ca. 10-fold lower) was required to observe the same reduction in viability. For 

HEK-293 cells, Figures 5.9G, 5.9H, and 5.9I show that the surface attachment of low 

levels of TPP (solid triangles) did not increase the toxic effect of the DDS relative to 

non-functionalised DCAx-UiO-66 particles (dashed lines), with viability also decreasing 

to around 60 % at 1 mg/mL DDS. However, when higher amounts of TPP were present 

at the surface as is the case for TPP(++)@(DCAx-UiO-66) particles (solid squares), the 

toxicity of the DDS increased significantly. TPP(++)@(DCA10-UiO-66), 

TPP(++)@(DCA5-UiO-66), and TPP(++)@(DCA2.5-UiO-66) particles decreased the 

viability down to 48, 43, and 32 % respectively, at 1 mg/mL DDS. Viability plots as a 

function of DCA concentration however show that for a given DCA concentration, cell 

viability was the same for both TPP(++)@(DCAx-UiO-66) (solid squares) and 

TPP(+)@(DCAx-UiO-66) (solid triangles) particles, which again suggests that the 

quantity of surface TPP does not greatly affect the efficacy of the DDS and that only 

small amounts are needed (Figures 5.9J, 5.9K, and 5.9L). Given that the TPP-

functionalised and non-functionalised particles have the same physical size and do not 

aggregate in solution, the increase in efficacy of the DDS can be attributed solely to the 

addition of TPP to the surface. Given that free TPP is non-toxic up to concentrations of 

1 mg/mL (results shown in Appendix 3, Figure A.3.1), this increase in efficacy is 

hypothesised to be through particle direction to mitochondria. It is unclear however 

whether it is the DCA or MOF that is toxic to cells once the DDS reaches the 

mitochondria. 



Chapter 5: Targeted Intracellular Delivery to Mitochondria 

S. Haddad – September 2018   105 

 

Figure 5.9. MTS viability assay measuring enzymatic metabolic activity of MCF-7 (A-F) and 

HEK-293 (G-L) cells after 72 h incubation with DCAx-UiO-66 particles to which TPP was post-

synthetically attached. The results were plotted as a function of both DDS and equivalent DCA 

concentrations. DCAx-UiO-66 particles are represented by empty squares. TPP(++)@(DCAx-

UiO-66) particles are represented by full squares. TPP(+)@(DCAx-UiO-66) particles are 

represented by full triangles. TPP@(DCA2.5-UiO-66) is represented by a cross symbol. Samples 

were run in minimum of six replicates. Standard errors are shown for each given data point. For 

some data points error bars are too small to be seen. Lines help to guide the eye. 
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 In order to investigate whether the MOF rather than the drug is toxic to cells 

when directed to mitochondria, UiO-66 with benzoic acid as a modulator was 

synthesised, TPP was attached to its surface (TPP@UiO-66), and the toxicity of the 

material was assessed using the MTS assay. Ideally, synthesis of UiO-66 without any 

modulator would have given the most accurate insight into the inherent toxicity of the 

particles. However, modulators are necessary for the synthesis of MOFs. Benzoic acid, 

which is very chemically similar to the terephtalic acid linker, was therefore chosen in 

order to avoid the use of modulators that would significantly alter the chemical 

properties of the MOFs, such as trifluoroacetic acid. The results are shown in 

Figure 5.10. Interestingly, UiO-66 synthesised with benzoic acid was found to be toxic, 

whereas previous results showed that particles synthesised with DCA as a modulator 

were not. However, the purpose of this experiment was to investigate whether the 

addition of TPP alters the toxicity of particles that do not contain DCA. For all DDS 

concentrations, the viability of MCF-7 cells decreased to the same level when incubated 

with both UiO-66 and TPP@UiO-66, indicating that the addition of TPP does not 

increase the toxicity of the MOF when it is not loaded with DCA. This supports the 

hypothesis that the increase in efficacy of the DDS seen in Figure 5.9 is due to the 

DCA – or a synergistic effect of the MOF and DCA – and not the MOF alone.  

 

Figure 5.10. MTS viability assay measuring enzymatic metabolic activity of MCF-7 cells after 

72 h incubation with UiO-66 and TPP@UiO-66. Samples were run in minimum of six 

replicates. Standard errors are shown for each given data point. For some data points error bars 

are too small to be seen. Lines help to guide the eye. 
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5.3.1.3 Toxicity Time Course Study Using Three Candidate MOFs 

 For the remainder of the study, three DDSs were chosen for further 

investigation of mitochondrial targeting abilities. TPP-containing materials 

functionalised both using coordination modulation and post-synthetic modification were 

included to study whether different modes of functionalisation lead to systems with 

different mechanisms of action.  From the DDSs synthesised using TPP as a co-

modulator, materials that aggregate were discarded from the study – only the colloidally 

stable DCA5-TPP5-UiO-66 was included. From the DDSs with TPP post-synthetically 

attached, which are all colloidally stable, TPP(++)@(DCA5-UiO-66) was further 

investigated. DCA5-UiO-66 was included as a non-targeted control.  

 To investigate the kinetics of toxicity of the three candidate MOFs, a time 

course study was performed. Figure 5.11 shows the viability determined by the MTS 

assay of MCF-7 and HEK-293 cells at different time intervals between 4 h and 72 h 

when incubated with various concentrations of the three materials. As with previous 

results, viability was plotted as a function of both DDS and DCA concentration in order 

to visualise both the effects of the vector (MOF) and drug (DCA) on cell viability. 

When studying the viability of MCF-7 cells in terms of total DDS concentration for the 

two materials containing TPP (solid red squares and blue circles), the toxicity was 

apparent as early as 4 h. Viability at the highest DDS concentration of 1 mg/mL 

decreased to 78 % and 66 % for DCA5-TPP5-UiO-66 and TPP(++)@(DCA5-UiO-66) 

respectively. Toxicity increased as time progressed, and stabilised between 8 and 48 h, 

as evidenced by the lack of change in the viability curves during these time 

points (viability remained at ca. 60 % and ca. 50 % at 1 mg/mL between 8 h and 48 h 

for DCA5-TPP5-UiO-66 and TPP(++)@(DCA5-UiO-66) respectively). There was a 

further decrease in viability at 72 h, with viability decreasing to 36 % and 12 % at 

1 mg/mL for both MOFs. DCA5-UiO-66 on the other hand, which does not contain 

TPP, remained non-toxic up to 48 h, showing only slight toxicity after 72 h at the 

highest concentration of 1 mg/mL (ca. 63 %).  
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Figure 5.11. MTS viability assay measuring enzymatic metabolic activity of (a) MCF-7 and 

(b) HEK-293 cells after incubation with DCA5-UiO-66 (empty red squares), DCA5-TPP5-UiO-

66 (solid blue circles), and TPP(++)@(DCA5-UiO-66) (solid red squares), for 4 h, 8 h, 24 h, 48 h, 

and 72 h. The results were plotted as a function of both DDS and equivalent DCA 

concentrations. Samples were run in minimum of six replicates. Standard errors are shown for 

each given data point. For some data points error bars are too small to be seen. 

 When plotted as a function of DCA concentration, the same evolution was 

observed, with the difference being that TPP(++)@(DCA5-UiO-66) was the most toxic 

material and caused a sharp decrease in viability of MCF-7 cells even after 4 h of 

incubation. The toxicity of TPP(++)@(DCA5-UiO-66) was more pronounced when 

plotted against DCA concentration because the loading of DCA in this sample was 

much lower than in DCA5-UiO-66 and DCA5-TPP5-UiO-66. While DCA5-UiO-66 
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remained non-toxic even at the highest DCA concentration of 0.10 mg/mL (95 % 

viability), TPP(++)@(DCA5-UiO-66) decreased viability of MCF-7 cells to 90 % at a 

DCA concentration of 0.003 mg/mL (Figure 5.11a, 4 h) . At slightly higher 

concentrations of 0.012 mg/mL, viability after 4 h was further reduced to 66 %. DCA5-

TPP5-UiO-66 was also more toxic than DCA5-UiO-66, although this was only apparent 

after 72 h when plotted against DCA concentration, with viability at the highest DCA 

concentration of 0.13 mg/mL decreasing to 36 %. The reason DCA5-TPP5-UiO-66 

appeared to be more toxic than DCA5-UiO-66 at all measured time points before 72 h 

when plotted against DDS concentration was because the former had a higher drug 

weight loading (13.0 and 10.0 wt % respectively).  

 For HEK-293 cells (Figure 5.11b), DCA5-UiO-66 was also non-toxic even at 

high concentrations and long incubation times. Viability only started decreasing at 72 h 

and at the highest DDS concentration of 1 mg/mL (ca. 57 %). For the two materials 

containing TPP (solid red squares and blue circles), there was a lag in toxicity at 4 h and 

8 h when compared to MCF-7 cells, as the viability remained close to 100 % during this 

time. After this period (at 24 h), viability decreased to ca. 50 % at the highest 

concentrations of both DCA5-TPP5-UiO-66 and TPP(++)@(DCA5-UiO-66). Cells 

incubated with TPP(++)@(DCA5-UiO-66) did not experience any further drop in 

viability after that, whereas DCA5-TPP5-UiO-66 caused a further drop in viability to 

ca. 27 % at the highest concentration of 1 mg/mL at 72 h. This difference in behaviour 

between both MCF-7 and HEK-293 cell lines in the early and late stages of incubation 

can be due to a multitude of factors. Different cell lines can respond differently to 

identical conditions. Agents that induce apoptosis in one cell line might have no effect 

on the other. In some cases, even if the final result is the same (cell death), the death 

mechanisms might be different240. Even with an identical death mechanism, timelines 

for the progression of cell death can vary significantly from one cell line to another. For 

example, DNA fragmentation after apoptosis induction peaked at 6 hours for EL4 

cells241, but at 24 hours for HCE cells242. A lesser-known factor that might have an 

important effect is the cell culture conditions. High cell numbers seem to have a 

protective effect, with higher doses or longer incubation times required to initiate 

apoptosis. MCF-7 and HEK-293 cells have different growth rates, with doubling times 

at approximately 38 h and 24 h respectively, which might explain why the treatments 

have a much more pronounced effect for MCF-7 cells, especially early on.  
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 In conclusion, the results of the present section (Section 5.3.1) have shown that 

the addition of TPP, whether by coordination modulation or post-synthetic 

modification, dramatically increases the efficacy of the UiO-66-based DDS. The 

targeted DDS is fast-acting, with toxicity apparent after 4 h for MCF-7 cells, and 24 h 

for HEK-293 cells. TPP(++)@(DCA5-UiO-66) is much more efficacious than 

DCA5-TPP5-UiO-66, with approximately 10 times less DCA needed to observe the 

same decrease in viability. Further in vitro studies were undertaken to better elucidate 

the mechanism of action of the studied DDSs.   

5.3.2 Cellular Uptake Analysis Using Microscopy and Flow Cytometry 

 To confirm that TPP is directing the DDS to the mitochondria as hypothesised, 

the particles were tracked in vitro using light scanning confocal microscopy. For this, a 

DDS derivative equipped with fluorescent labels was synthesised. It has been shown in 

Chapter 4 that the surface chemistry of MOFs plays a big role in determining the 

endocytosis pathways they go through. To avoid changing the surface chemistry, as is 

the case with the addition of a supplementary fluorophore, the TPP molecule was 

modified to have a fluorescent pyrene group (fTPP) following Tomas-Gamasa et al.’s 

protocol103. The replacement of one of the phosphonium’s phenyl groups with a pyrene 

allowed to maintain TPP’s required hydrophobicity/charge balance for mitochondrial 

targeting, as well as minimise the surface chemistry change of the DDS. fTPP was then 

post-synthetically attached to DCA5-UiO-66, and was named fTPP@(DCA5-UiO-66). 

In order to visualise mitochondria, MCF-7 and HEK-293 cells were transfected with 

CellLight Mitochondria-RFP, BacMam 2.0. This allowed for visualisation of 

mitochondria independently of mitochondrial membrane potential, as opposed to other 

more common mitochondrial stains. It also ensured that there was no interaction 

between the MOFs and the staining fluorophore, which could lead to falsely conclude 

that the MOFs are co-localised with mitochondria. The nuclei were stained with 

DRAQ5™. Figure 5.12 shows the confocal images of MCF-7 and HEK-293 cells after 

2 h of incubation with fTPP@(DCA5-UiO-66) (green). Mitochondria are represented in 

red, and nuclei in blue. The individual channels are shown for each fluorescent label, as 

well as the merged images. In the merged images for both cell lines, some co-

localisation between fTPP@(DCA5-UiO-66) and RFP-labelled mitochondria was 

apparent, as illustrated by the yellow colour (overlap between green and red, shown by 

white arrows). Additionally, most of the non-overlapping signal originating from 
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fTPP@(DCA5-UiO-66) was heavily concentrated around the mitochondria. These 

images suggest that the DDS is being directed to its intended target without necessarily 

being completely taken up by it, possibly due to the size of the DDS being too large for 

mitochondrial uptake. Given that the MTS viability studies have shown that a cytotoxic 

effect is observed using the targeted TPP(++)@(DCA5-UiO-66) (Figure 5.11), the 

images suggest that mitochondrial uptake might not be necessary to observe an increase 

in efficacy of DCA. The mere accumulation of particles near the mitochondria may 

cause high local concentrations of drug which are toxic.  
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Figure 5.12. Confocal microscopy images of (a) MCF-7 and (b) HEK-293 cells incubated for 

2 h with fTPP@(DCA5-UiO-66) (green). Mitochondria are shown in red, and nuclei are shown 

in blue. White arrows show overlap between red and green signals. 
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 In order to better visualise the interaction of the DDS with live cells, cells were 

imaged using structured illumination microscopy (SIM). SIM is a super-resolution 

microscopy technique that can capture images with a resolution of 100 nm, which is 

twice that of a traditional diffraction-limited microscope. Such resolution would allow 

to determine whether there is co-localisation more accurately than using confocal 

microscopy. The main obstacle with the SIM microscope is that it is incompatible with 

UV lasers as they can damage the spatial light modulator (SLP). This meant that fTPP, 

which excites in the UV, could not be used to track the system in vitro. 

TPP(++)@(DCA5-UiO-66) was therefore loaded with the fluorescent molecule calcein. 

To make sure that the surface chemistry change was minimal and that the DDS retained 

its main functionality, i.e. that calcein did not replace all the TPP at the external surface 

of the MOFs, the loading was performed in a methanolic calcein solution that also 

contained TPP at a concentration of 1 mg/mL. The resulting MOF was named 

cal-TPP(++)@(DCA5-UiO-66). Figure 5.13 shows 3-colour images of MCF-7 cells in 

the presence of cal-TPP(++)@(DCA5-UiO-66) after 30 min and 8 h incubation. As with 

the confocal images, the nuclei were coloured in blue, the mitochondria in red, and the 

DDSs in green. These images show that the DDS was taken up by cells, as the red-

coloured mitochondria and green spots of MOF particles are in focus in the same plane. 

Additionally, there is evidence that the cells have internalised some MOF even as early 

as after 30 min of incubation. After 8 h, the image shows that cells have taken up a 

considerably larger amount of MOF. In terms of localisation of the DDS, it is difficult 

to decipher from the images whether the MOFs with targeting agent are distributed 

close to mitochondria. This is because mitochondria are large organelles that occupy up 

to 25 % of the cytoplasm. However, some interesting mitochondria morphological 

characteristics, which can be indicative of cellular health243, were apparent. Healthy 

cells are expected to have elongated mitochondria that form reticular networks. 

However, for cells treated with cal-TPP(++)@(DCA5-UiO-66), most mitochondria had a 

balloon-shaped morphology, and were remarkably short in length.  
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Figure 5.13. SIM images demonstrating cal-TPP(++)@DCA5-UiO-66 (green) internalisation 

into MCF-7 cells after 30 min and 8 h incubation. Mitochondria are coloured in red, nuclei in 

blue.  

 In order to probe the effect of the targeted DDS on mitochondrial morphology 

further, the effect of incubating MCF-7 cells with both targeted and non-targeted DDSs 

was investigated. For that, DCA5-UiO-66 was also loaded with calcein. This system was 

named cal@(DCA5-UiO-66). Figure 5.14 shows 3-colour images of untreated cells, 

cells in the presence of cal-TPP(++)@(DCA5-UiO-66), and cells in the presence of 

cal@(DCA5-UiO-66) after 8 h of incubation. Figure 5.14a shows that untreated cells’ 

mitochondria were elongated and formed reticular networks, as expected. Figure 5.14c 

on the other hand shows that cells incubated with cal-TPP(++)@(DCA5-UiO-66) had 

short, ballon-shaped mitochondria. Incubation with cal@DCA5-UiO-66 (Figure 5.14b) 

caused some mitochondria fragmentation; however, fragmentation was less severe than 

with cal-TPP(++)@(DCA5-UiO-66), and they still remained partially stringy and 

reticular, as shown by the white arrows in Figure 5.14b. By nature, mitochondrial 

morphology is very dynamic. Depending on cellular requirements, mitochondria are 

recycled in a dynamic equilibrium between opposing processes of fission and fusion244. 

Fusion produces extended interconnected mitochondria that form reticular networks, 

while fission produces shorter, balloon-shaped, fragmented mitochondria. Fission is 

required to control cell quality by replacing damaged mitochondria, and also facilitates 

apoptosis during high levels of cellular stress245. These morphological dynamics as well 

as the spatial localisation of mitochondria inside the cell are heavily linked to 

mitochondrial and cellular function, with a good balance of fission and fusion required 
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to maintain general cellular functionality. Kamogashira et al. for example have 

demonstrated a fundamental interdependence between mitochondrial metabolic activity 

and its network structure245. The fact that fragmentation of mitochondria has increased 

upon exposure to the targeted DDS indicates an imbalance between fission and fusion 

(fusion<fission). Some studies245,246 have demonstrated a direct link between 

mitochondrial fission and mitochondrial degradation through mitophagy – a mechanism 

by which impaired or damaged mitochondria are encapsulated in autophagosomes that 

then fuse with lysosomes where they are degraded. Interestingly, fragmentation of 

mitochondria – indicating mitochondrial damage – was observed as early as 30 min 

after incubation with the targeted DDS, as can be seen in Figure 5.13.  

 

Figure 5.14. SIM images showing MCF-7 cells (a) untreated, (b) treated with 

cal@DCA5-UiO-66, and (c) treated with cal-TPP(++)@(DCA5-UiO-66) for 8 h. Mitochondria are 

coloured in red, MOFs in green, and nuclei in blue. White arrows indicate stringy mitochondria. 

 In order to quantify fragmentation of the mitochondria, their eccentricity was 

assessed as described in Section 2.3.8.1 using a custom designed pipeline for Cell 

Profiler106. Briefly, mitochondria were extracted as objects from the images and run 

through a plugin to gather information on the extracted objects’ size and shape. 

Representative images showing the mitochondria objects as identified by the Cell 

Profiler pipeline along with their corresponding original SIM images are shown in 

Figure 5.15. 

c
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Figure 5.15. Images showing mitochondria shape analysis using Cell Profiler. (a-b) shows an 

untreated cell, (c-d) show a cell after 8 h of incubation with cal-TPP(++)@(DCA5-UiO-66). (a) 

and (c) show SIM images with mitochondria in red, MOF in green, and nuclei in blue. (b) and 

(d) show the mitochondria objects as identified by the Cell Profiler pipeline. 

 After applying the appropriate filters, data for eccentricity of the objects was 

analysed. Healthy cells were expected to have more elongated mitochondria whereas 

damaged ones were expected to have more rounded ones. The objects were assigned 

eccentricity values between 0 and 1 (the eccentricity of a circle is 0, and that of an 

ellipse that is not a circle is greater than 0 but less than 1). Figure 5.16 shows the 

average eccentricity value for untreated cells, cells treated with 

cal-TPP(++)@(DCA5-UiO-66) for 30 min and 8 h, and cells treated with 

cal@(DCA5-UiO-66) for 8 h. Statistical significance of the change in eccentricity 

relative to the control was assessed using one-way ANOVA followed by Tukey’s test to 

adjust for multiple comparisons. As expected, healthy cells had the most eccentric 

mitochondria (0.819 ± 0.010). The fact that the error bars were large is indicative of a 
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wide distribution of eccentricity, which is consistent with the fact that mitochondria in 

healthy cells have a dynamic balance between fission and fusion. Cells treated with 

cal@(DCA5-UiO-66) (no TPP) for 8 h had an average eccentricity of 0.793 ± 0.005, 

which was not significantly different than the untreated control. For cells treated with 

cal-TPP(++)@(DCA5-UiO-66), the eccentricity of the mitochondria was significantly 

reduced to 0.768 ± 0.004 after 8 h (p = 0.0002), indicating that the TPP-containing DDS 

had an effect on mitochondrial morphology. Interestingly, treatment with 

cal-TPP(++)@(DCA5-UiO-66) for only 30 min also led to a statistically significant 

change in mitochondrial eccentricity compared to untreated 

cells (0.786 ± 0.005, p = 0.0267), demonstrating that the system has a very rapid effect 

on cells. Treatment with the targeted DDS therefore seems to reduce mitochondrial 

fusion, leading to smaller mitochondrial entities, with the large number of small clusters 

present in the mitochondrial network attributable to the formation of 

autophagosomes247. 

 

Figure 5.16. Effects of different treatments on the eccentricity of mitochondria in MCF-7 

cells. A minimum of 200 mitochondria were studied. Error bars represent the standard error of 

the mean. Statistical significance was assessed using one-way ANOVA and Tukey’s multiple 

comparisons test.  
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which MCF-7 cells take up these two MOFs was studied. As discussed extensively in 

Chapter 4, the intracellular fate of particles is dependent on the endocytosis pathway 

they go through, with particles taken up through clathrin-mediated endocytosis ending 

up being degraded in lysosomes (along with their drug cargo), whereas particles going 

through caveolae-mediated endocytosis can sometimes be released into the cytosol and 

avoid lysosomal degradation. The endocytosis pathways that the DDSs go through were 

studied by using pharmacological inhibitors, as described in Section 2.3.9, in a set up 

similar to Chapter 4. MCF-7 cells were incubated with either 

cal-TPP(++)@(DCA5-UiO-66) or cal@(DCA5-UiO-66), the same two MOFs visualised 

with SIM. Sucrose and chlorpromazine were used to independently inhibit clathrin-

mediated endocytosis, nystatin was used to inhibit caveolae-mediated endocytosis, and 

rottlerin was used hinder macropinocytosis. Cells were also incubated with the DDSs at 

4 °C to ensure that uptake was happening through active – and not passive – transport. 

The intracellular fluorescence was measured using flow cytometry and normalised to a 

control uptake at 37 °C without inhibitors.  

 Figure 5.17 shows MCF-7 cells’ internal fluorescence after incubation with the 

two DDSs in the presence of the different endocytic inhibitors. To determine if the 

differences were statistically significant, every value was compared to the control at 

37 °C using one-way analysis of variance (ANOVA) followed by Dunnett’s test to 

adjust for multiple comparisons. Cellular uptake of the MOFs was significantly reduced 

by ca. 80 % for cal@(DCA5-UiO-66) and ca. 60 % for cal-TPP(++)@(DCA5-UiO-66) 

when cells were incubated at 4 °C. Cellular metabolism is greatly slowed down at this 

temperature, which confirms that the particles are taken up by the active mechanism of 

endocytosis. When incubated with chlorpromazine, particle uptake did not decrease 

significantly for cal@(DCA5-UiO-66), whereas there was a moderate decrease to 69 % 

for cal-TPP(++)@(DCA5-UiO-66). When incubated with hypertonic sucrose, particle 

uptake decreased significantly to 28 % and 40 % for cal@(DCA5-UiO-66) and 

cal-TPP(++)@(DCA5-UiO-66) respectively. As mentioned in Chapter 4, although 

sucrose is a known inhibitor of clathrin-mediated endocytosis185, there is evidence 

suggesting that it is non-specific187, which might explain why a much larger degree of 

inhibition was observed when cells were incubated with sucrose as compared to 

chlorpromazine. Inhibition with nystatin (caveolae-mediated endocytosis) showed no 

statistically significant decrease in intracellular fluorescence with respect to the controls 

for both cal@(DCA5-UiO-66) and cal-TPP(++)@(DCA5-UiO-66). Rottlerin significantly 
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decreased the uptake of cal@(DCA5-UiO-66) to 56 %, whereas it did not affect the 

uptake of cal-TPP(++)@(DCA5-UiO-66). These results suggest that cal@(DCA5-UiO-66) 

is internalised mostly by clathrin- and caveolae- independent endocytosis (mostly 

macropinocytosis), whereas cal-TPP(++)@(DCA5-UiO-66) is internalised mostly by 

clathrin-dependent endocytosis. The literature offers conflicting data about the selection 

of endocytic pathways for charged particles. However, studies on HeLa cells using 

charged NPs support clathrin-mediated endocytosis for positively charged particles189, 

which might explain why adding TPP to the surface of the MOF leads to this 

internalisation route. With regards to the final intracellular fate of the particles, and as 

discussed in Chapter 4, particles taken up by clathrin-dependent endocytosis end up 

being degraded in lysosomes along with their cargo, voiding their therapeutic effect. 

However, TPP(++)@(DCA5-UiO-66) is clearly able to reach its intended target despite 

being taken up by clathrin-dependent endocytosis, as demonstrated by its toxicity to 

MCF-7 cells. This could be due to the ability of positively-charged TPP to act as a 

proton sponge and promote endosomal escape248 and the subsequent delivery of cargo 

into the cytosol.  

 

Figure 5.17. Effects of pharmacological endocytosis inhibitors on the uptake of cal@(DCA5-

UiO-66) (white bars) and cal-TPP(++)@(DCA5-UiO-66) (red bars) by MCF-7 cells, measured by 

flow cytometry. Samples were run in triplicate. Error bars represent the standard error of the 

mean. Statistical significance was assessed using one-way ANOVA and Dunnett’s multiple 

comparisons test. 
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5.3.3 Effects of Treatments on Gene Expression of MCF-7 cells 

 To uncover the key biophysical and biochemical cellular pathways triggered by 

the treatments and confirm mitochondrial involvement, microarray analysis was 

performed on MCF-7 cells after exposure to the treatments for 72 h. It was hoped that 

the results would produce important information regarding the way in which the 

transcriptome is altered. The transcriptome is the entire repertoire of RNA transcripts in 

a species, and represents the fundamental link between information coded in genes 

(DNA) and the observed phenotype (proteins). Tools for profiling RNA, such as 

Northern blots, reverse-transcription PCR (RT-PCR), expressed sequence tags (ESTs), 

and serial analysis of gene expression (SAGE), have been available for years249. 

However, the fast and high-throughput quantification of RNA only became a possibility 

with the advent of gene expression microarrays250. These tools consist of probes that are 

immobilised on a solid substrate. These probes are complementary to the transcripts 

whose presence is to be explored. If an RNA strand is complementary to a probe that is 

present in the microarray, it will bind to it and emit light when excited. Differential 

expression of a specific bound transcript can then be deduced from differences in 

fluorescence intensities when comparing two or more samples.  

 For this study, MCF-7 cells (25,000 cells/cm2) were exposed to 0.25 mg/mL of 

DCA5-UiO-66, DCA5-TPP5-UiO-66, and TPP(++)@(DCA5-UiO-66) for 72 h. To 

optimise the conditions for this experiment, both the RNA final extraction procedure 

and the selection of previously observed cytotoxic time points were considered. A MOF 

concentration of 0.25 mg/mL allowed to avoid blockage of the RNA extraction column, 

and the 72 h time point allowed to observe cytotoxicity as determined by previous MTS 

studies (Figure 5.11a, 72 h). The 72 h time point also gave enough time to provide a 

wide-ranging overview of cell processes. Cells were also incubated with free DCA at a 

concentration of 0.25 mg/mL in order to study the effect of using the free drug as 

opposed to incorporating it in MOF NPs. The range of materials examined using this 

transcriptomic analysis allowed to compare the effects on gene expression of the free 

drug (DCA), the non-targeted DDS (DCA5-UiO-66), and the targeted DDS (both DCA5-

TPP5-UiO-66 and TPP(++)@(DCA5-UiO-66)), compared to untreated control cells and to 

each other. Four biological replicates for each condition were analysed.  

 After RNA extraction and microarray analysis, downstream analysis was 

performed to study global gene expression. The normalised gene expression data was 
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investigated using principal component analysis (PCA). PCA clusters the samples in 

two dimensions, decomposing the variance into several components, and identifies the 

largest variations in the data as principal components251. This allows to obtain a 

preliminary idea of the clustering of replicates and of different samples relative to each 

other. Figure 5.18 shows the PCA of MCF-7 gene expression data. Principal 

components 1 and 2 are shown. The data allows to make a number of observations. 

First, biological replicates for each condition generally clustered close to each other. 

The only exception is one of the replicates of cells treated with DCA, which clustered 

apart from the other three replicates, and might be an outlier. Second, cells treated with 

DCA clustered close to untreated cells, suggesting that treatment with DCA induced 

very small changes in gene expression compared to the control. Third, incubation of 

MCF-7 cells with DCA5-UiO-66, TPP5-DCA5-UiO-66, and TPP(++)@(DCA5-UiO-66) 

induced substantial changes in gene expression compared to untreated cells. Fourth, 

TPP5-DCA5-UiO-66 and TPP(++)@(DCA5-UiO-66) clustered together, and away from 

DCA5-UiO-66, indicating that the TPP-containing DDSs elicited different responses in 

MCF-7 cells than DCA5-UiO-66. In summary, PCA analysis suggests that the 

treatments can be clustered into three main groups with regards to their effect on gene 

expression: no treatment and treatment with the free drug in the first group, treatment 

with the non-targeted DDS in the second, and treatments with the mitochondrially-

targeted DDSs in the third.  

 

Figure 5.18. Principal component analysis of MCF-7 gene expression data. Principal 

components 1 and 2 are shown.  
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 The numbers of genes with expression levels significantly changed when 

comparing treatments to each other are shown in Table 5.3. When comparing cells 

treated with DCA to untreated cells, no differentially expressed genes (DEGs) were 

detected, whether with a false-discovery rate-adjusted p < 0.05 or p < 0.01. This 

indicates that DCA at a concentration of 0.25 mg/mL does not have any apparent effect 

on the transcriptome after 72 h, i.e. that it does not alter MCF-7 gene expression. 

Comparing cells treated with DCA5-UiO-66 to untreated cells reveals the presence of 71 

DEGs (p < 0.05). This number drops down to 3 DEGs when p < 0.01. Remarkably, both 

mitochondrially-targeted DDSs, i.e. DCA5-TPP5-UiO-66 and TPP(++)@(DCA5-UiO-66), 

induced drastic widespread changes in gene expression profiles. DCA5-TPP5-UiO-66 

caused significant changes in the expression level of 1,519 genes (p < 0.05), of which 

821 were up-regulated and 698 were down-regulated, and TPP(++)@(DCA5-UiO-66) 

affected the expression level of 931 genes, of which 543 were up-regulated and 367 

were down-regulated. These results are generally in agreement with the PCA results, 

showing no differential gene expression compared to the control for DCA-treated cells, 

only a small number of DEGs in cells treated with DCA5-UiO-66, and a large gene 

response elicited similarly by both TPP-containing DDSs.            

Table 5.3. Number of differentially expressed genes between cells treated with different 

conditions. 

Comparisons p<0.05  p<0.01 
Total number of genes 

detected 

Untreated vs. DCA 0 0 10702 

Untreated vs. DCA5-UiO-66 70 3 10693 

Untreated vs. DCA5-TPP5-UiO-66 1519 465 10691 

Untreated vs. TPP(++)@(DCA5-UiO-66) 910 358 10725 

DCA vs. DCA5-UiO-66 30 4 10676 

DCA vs. DCA5-TPP5-UiO-66 987 269 10700 

DCA vs. TPP(++)@(DCA5-UiO-66) 616 182 10696 

DCA5-TPP5-UiO-66 vs. DCA5-UiO-66 75 3 10687 

DCA5-TPP5-UiO-66 vs. TPP(++)@(DCA5-UiO-66) 19 10 10678 

TPP(++)@(DCA5-UiO-66) vs. DCA5-UiO-66 103 34 10672 

  

 To investigate the overlap in DEGs following the different treatments, Venn 

diagrams showing the number of genes that were differentially expressed compared to 

the untreated control were constructed for up-regulated (p < 0.05, FC > 0) and down-

regulated (p < 0.05, FC < 0) genes separately, and are shown in Figure 5.19a and 
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Figure 5.19b respectively. The diagram was divided according to the type of treatment, 

and the number of common genes is shown in the overlapping regions. Figure 5.19a 

shows that most of the DEGs up-regulated by DCA5-UiO-66 (51 genes, 91 %) were also 

up-regulated by both DCA5-TPP5-UiO-66 and TPP(++)@(DCA5-UiO-66), with the 

targeted systems affecting numerous additional genes (768 and 491 respectively). This 

supports the idea that the addition of TPP to the MOF increases its efficacy on MCF-7 

cells. A comparison of both targeted systems shows that the majority of DEGs up-

regulated by TPP(++)@(DCA5-UiO-66) (359 genes, 66.1 %) were also up-regulated by 

DCA5-TPP5-UiO-66, with the latter affecting an additional 462 genes. The large number 

of overlapping genes suggests that both targeted DDSs affect the cells in a similar 

manner, but that they also potentially have different mechanisms of action, with DCA5-

TPP5-UiO-66 and TPP(++)@(DCA5-UiO-66) affecting 462 and 184 unique up-regulated 

genes respectively. Figure 5.19b shows that there are very few down-regulated DEGs 

for DCA5-UiO-66 (14 DEGs), whereas for DCA5-TPP5-UiO-66 and TPP(++)@(DCA5-

UiO-66) this number is much higher (698 and 367 respectively). There is an overlap 

between 26.1 % of DEGs down-regulated by DCA5-TPP5-UiO-66 and 49.5 % of DEGs 

down-regulated by TPP(++)@(DCA5-UiO-66), corresponding to 182 genes. DCA5-TPP5-

UiO-66 and TPP(++)@(DCA5-UiO-66) also provoke the differential expression of 510 

and 183 unique down-regulated genes respectively, again suggesting different 

mechanisms of action. In summary, treatment with both targeted DDSs causes wider 

changes in gene expression than the non-targeted DDS, supporting the results showing 

the efficacy of TPP as a targeting agent. Additionally, DCA5-TPP5-UiO-66 and 

TPP(++)@(DCA5-UiO-66) affect MCF-7 cells in similar ways as evidenced by the 

overlap in the large number of up- and down-regulated genes, supporting the clustering 

of these two samples observed in the PCA plots (Figure 5.18).  
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Figure 5.19. Venn diagram analysis of a) up-regulated and b) down-regulated differentially 

expressed genes in microarrays of MCF-7 cells treated with DCA5-UiO-66, DCA5-TPP5-UiO-66 

and TPP(++)@(DCA5-UiO-66) compared to an untreated control.  

 Further bioinformatics analysis is being done to obtain a holistic view of the 

transcriptomic dynamics of treated cells in order to give information on what biological 

processes, cellular components, and molecular functions the differentially expressed 

genes are involved in. This would hopefully allow to validate what was observed at the 

functional level. 

5.4 Conclusions 

 A range of UiO-66 materials synthesised using the small drug molecule DCA 

as a modulator was prepared, and functionalised with the mitochondrial targeting agent 

TPP. TPP was incorporated into the MOFs either through coordination modulation 

during synthesis (samples termed DCAx-TPPy-UiO-66) or by post-synthetic attachment 

(termed TPP(+/++)@(DCAx-UiO-66)). SEM images revealed a wide range of particle 

sizes for the different samples, ranging from 81–683 nm. Samples with TPP post-

synthetically attached generally demonstrated better colloidal stability than DCAx-TPPy-

UiO-66 samples. Among the synthesised samples, two DDSs which were in the correct 

size range for cellular uptake and were colloidally stable (DCA5-TPP5-UiO-66 and 

TPP(++)@(DCA5-UiO-66)) were further investigated for mitochondrial targeting 

abilities. Non-functionalised DCA-containing particles (DCA5-UiO-66) were 

investigated as a non-targeted control. MTS viability assays showed that DCA5-UiO-66 

did not demonstrate any toxicity up to 72 h, whereas TPP-functionalised particles 

caused a decrease in viability as early as 4 h after incubation, indicating that TPP 

a. b.
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dramatically increases the efficacy of the system. Although they had much lower DCA 

loadings, particles with TPP post-synthetically attached (TPP(++)@(DCA5-UiO-66)) 

were more cytotoxic than DCA5-TPP5-UiO-66, showing that functionalisation with TPP 

using post-synthetic modification leads to more efficacious mitochondrial targeting.     

Confocal microscopy images using post-synthetically modified particles showed that 

particles accumulate near mitochondria. Super-resolution microscopy images showed 

significant mitochondrial morphology changes associated with toxicity when incubated 

with TPP(++)@(DCA5-UiO-66), even after as little as 30 min treatment. Cellular uptake 

studies showed that both TPP(++)@(DCA5-UiO-66) and DCA5-UiO-66 showed no 

uptake through the caveolae-mediated route, suggesting an endolysosomal route to 

degradation within the cell. The observed toxicity of TPP(++)@(DCA5-UiO-66) is 

nonetheless indicative of its ability to escape endosomes and reach mitochondria. This 

could be attributed to the TPP acting as a proton sponge and allowing the rupture of 

endosomes. Microarray analysis was then performed on MCF-7 cells, and showed that 

cells treated with 0.25 mg/mL of free DCA showed no differentially expressed genes 

(DEGs) compared to the untreated control, whereas cells treated with non-targeted 

DCA5-UiO-66 revealed the presence of 71 DEGs. Remarkably, treatment with both 

DCA5-TPP5-UiO-66 and TPP(++)@(DCA5-UiO-66) caused a dramatic change in gene 

expression of MCF-7 cells compared to the control, with 1,551 and 931 genes 

differentially expressed, respectively. Cells treated with DCA5-TPP5-UiO-66 and 

TPP(++)@(DCA5-UiO-66) had an overlap of 359 up-regulated and 182 down-regulated 

DEGs, suggesting similarities for both targeted systems. However, the two DDSs also 

caused the differential expression of a large number of unique genes (both up- and 

down-regulated), which suggests differences in mechanisms of action that could explain 

the differences in observed toxicities. Identification of key genes and enriched gene 

ontology (GO) pathways would allow to rationalise the different cellular behaviours 

upon exposure to the different delivery systems by providing information on what 

biological processes, cellular components, and molecular functions the differentially 

expressed genes are involved in.    
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6 CONCLUSIONS AND 

FUTURE WORK 

6.1 Conclusions 

 This dissertation evaluated the use of metal-organic frameworks (MOFs) as 

intracellular delivery vectors, with a specific focus on i) testing the delivery of the 

cryoprotective disaccharide trehalose to the cytosol, ii) understanding what affects the 

final intracellular fate of MOF particles and their cargo after cellular uptake, and iii) 

designing a system capable of targeted delivery to mitochondria. While there is still 

further research to be done, significant progress has been made in developing this 

promising material as a targeted intracellular delivery system. 

 Zirconium-based MOFs were selected for their biocompatibility and high 

stability, but also for their susceptibility to phosphate attack in aqueous solvents, which 

causes their breakdown in physiological media. UiO-66 in particular was investigated as 

an intracellular delivery system of the cryoprotective agent trehalose. Synthesis of the 

MOF was successful, with the PXRD patterns showing all the main characteristic Bragg 

peaks as compared to the patterns predicted from single crystal structures. SEM images 

revealed a mean particle size of 136 ± 27 nm, well within the range that cells can take 

up by endocytosis. DLS indicated significant aggregation in PBS, which was much less 

pronounced in growth media, probably due to the formation of a protective ‘protein 

corona’ around the particles. Synthesised UiO-66 demonstrated prolonged stability in 

distilled water, with PXRD patterns showing retention of crystallinity even after 9 days 
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in solution. Particles were rapidly degraded in PBS however, with ca. 90 % of the linker 

released from the structure after as little as 30 min, and PXRD patterns showing the 

complete disappearance of Bragg peaks. Trehalose was adsorbed onto the MOFs by 

soaking in concentrated trehalose solutions, with weight loadings reaching as high as 

56 %, as determined by TGA. The numbers were validated by measuring the total 

amount of trehalose released after soaking the MOFs in water. Time-dependent release 

of trehalose from the UiO-66 structure in PBS occurred over 5 h, with 50 % being 

released within the first 45 min. With cellular uptake sometimes taking place within a 

couple of minutes, enough time is available for the delivery system to reach the cytosol 

and deliver the trehalose. MTS viability assays showed that the amount of trehalose-

loaded MOF that can be safely used is limited by the toxicity of UiO-66, with cellular 

viability starting to decrease at MOF concentrations of ca. 1.5 mg/mL. Cyroprotecting 

HeLa cells using trehalose-loaded UiO-66 was then tested, and showed no protective 

effect when compared to cells frozen using free trehalose or growth media as 

cryoprotective agents. While this can be due to a number of factors, such as insufficient 

intracellular trehalose concentrations, it was hypothesised that endosomal entrapment of 

the system after cellular uptake could play a critical role.  

 The factors that affect the final intracellular fate of MOF particles after uptake 

were then investigated in order to make sense of the results obtained in the 

cryopreservation experiments. Specifically, the role of surface chemistry on uptake 

efficiency and endocytosis routes of entry was explored. For that, a range of MOFs with 

different surface chemistries was prepared, either by using functionalised organic 

linkers during synthesis (Zr-L1−Zr-L6), or by functionalising the surface of Zr-L1 

particles post-synthesis (Zr-L1-func). For samples synthesised using functionalised 

organic linkers, control of particle size was not possible. In order to isolate the effect of 

surface chemistry of Zr-L1−Zr-L6 on cellular uptake, a range of UiO-66 particles with 

different sizes (xZr-L1) was prepared and used as a reference. It was demonstrated that 

control of surface chemistry, whether through linker functionalisation or post-synthetic 

modification, was critical to tune the pathways through which cells take up particles, 

whereas particle size did not exert a great influence here. Zr-L1−Zr-L4 for example 

were taken up mostly by clathrin-dependent endocytosis, associated with lysosomal 

degradation, whereas Zr-L5 and Zr-L6 partially went through caveolae-mediated 

endocytosis, and were able to potentially release cargo into the cytosol. Confocal 

microscopy confirmed this by showing that fluorescent signal from Zr-L2−Zr-L4 was 
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largely co-localised with signal from lysosomes in HeLa cells, whereas for Zr-L5 and 

Zr-L6 there was a lot of signal that did not overlap with lysosomes. Post-synthetic 

surface functionalisation also allowed to tune the internalisation pathways of Zr-L1 and 

enhance their efficacy. Whereas Zr-L1 particles went mostly through the clathrin-

mediated route, coating with folic acid and PEG partially redirected the particles 

towards the caveolae-mediated route. This resulted in enhanced efficacy when loaded 

with the anti-cancer drug DCA, presumably due to the ability to escape lysosomal 

degradation. Coating with heparin also led to the redirecting of particles towards 

caveolae-mediated endocytosis; however, no toxic effect of drug-loaded particles was 

observed due to low drug loadings. In summary, the study showed the importance of 

considering a combination of factors, such as uptake efficiency, drug loading capacity, 

and endocytosis routes of entry, when designing an efficacious delivery system. The 

fact that no cryoprotective effect was observed in Chapter 3 could therefore be 

explained by the fact that Zr-L1 (UiO-66) was taken up mostly by clathrin-mediated 

endocytosis and ended up being degraded in lysosomes.  

 The design of a delivery system that is capable of bypassing lysosomal 

degradation, reaching the cytosol, and also delivering its cargo specifically to 

mitochondria was then pursued. A range of UiO-66 materials containing DCA as a drug 

was prepared by using DCA as a modulator during synthesis. The mitochondrial 

targeting agent TPP was either attached during synthesis by coordination modulation 

(samples termed DCAx-TPPy-UiO-66), or post-synthetically attached to the surface of 

the MOF (termed TPP(+/++)@(DCAx-UiO-66)). Synthesis of the MOF was successful, 

with the PXRD patterns showing all the main characteristic Bragg peaks as compared to 

the patterns predicted from single crystal UiO-66 structures. TGA and ICP-OES 

demonstrated successful incorporation of both molecules into UiO-66, with DCA and 

TPP weight loadings ranging from 7.7-15.1 wt % and 0.5-2.3 wt % respectively for 

DCAx-TPPy-UiO-66 particles, and 0.4-2.2 wt % and 5.3-15 wt % respectively for 

TPP(+/++)@(DCAx-UiO-66). SEM images revealed a wide range of particle sizes for the 

different samples, ranging from 81-683 nm. Samples with TPP post-synthetically 

attached generally demonstrated better colloidal stability than DCAx-TPPy-UiO-66 

samples, and were further investigated using in vitro studies. MTS viability assay 

showed that the attachment of TPP to the surface of DCAx-UiO-66 dramatically 

increased its toxicity. Post-synthetically attaching TPP to the surface of UiO-66 without 

DCA did not alter its toxicity, confirming that it is DCA that is causing the toxic effect. 
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Confocal microscopy images suggested that the targeted system accumulates near 

mitochondria. Super-resolution microscopy images showed significant mitochondrial 

morphology changes associated with toxicity when incubated with the targeted system, 

even after as little as 30 min treatment. Cellular uptake studies showed that both 

targeted and non-targeted systems showed no uptake through the caveolae-mediated 

route, suggesting an endolysosomal route within the cell. The fact that a toxic effect is 

observed for the targeted system is indicative of its ability to nonetheless escape 

endosomes and reach mitochondria. This could be attributed to the TPP acting as a 

proton sponge and allowing the rupture of endosomes. Microarray analysis was then 

performed on MCF-7 cells, and showed that cells treated with 0.25 mg/mL of free DCA 

showed no differentially expressed genes (DEGs) compared to the untreated control, 

whereas cells treated with non-targeted DCAx-UiO-66 revealed the presence of 71 

DEGs. Remarkably, treatment with both DCA5-TPP5-UiO-66 and 

TPP(++)@(DCA5-UiO-66) caused a dramatic change in gene expression of MCF-7 cells 

compared to the control, with 1,551 and 931 genes differentially expressed, 

respectively.  

 Overall, MOFs showed great promise for intracellular delivery applications; 

they achieved high loadings using low amounts of material, had easily tuneable 

physicochemical properties, and were biocompatible. As these materials are incredibly 

versatile, their development can further be pushed through synthesis and modification 

procedures to advance targeted therapeutic delivery. Focus should be placed on 

targeting and material functionalisation, and encapsulation of larger and more complex 

biological payloads. 

6.2 Future Work 

6.2.1 Optimising Cryopreservation Procedure by Allowing Endosomal 

Escape 

As discussed in Chapter 3, a possible reason for the absence of cryoprotective effect of 

trehalose-loaded UiO-66 is endosomal entrapment of the system, which hinders the 

trehalose from being released into the cytosol. With a better understanding of the factors 

that affect the final intracellular location of MOF delivery systems, the cryopreservation 

process can now be attempted using a MOF that is able to escape endosomes. The goal 

would be to find a MOF that not only can hold large amounts of trehalose, but also be 
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taken up in sufficiently large quantities, and through desired endocytic pathways. 

Endosomal escape can also be promoted by the addition of a proton sponge. 

6.2.2 Elucidating the Biophysical and Biochemical Pathways Triggered by 

Nanoparticle Treatment 

Microarray analysis identified up to 1,551 genes affected by treatment with the 

mitochondria-targeting system. Further bioinformatics analysis can be done to obtain a 

holistic view of the delivery system interaction with the cellular machinery. 

Transcriptomic dynamics of treated cells can identify key genes and enriched gene 

ontology (GO) pathways to obtain a comprehensive and objective snapshot of cellular 

behaviour upon exposure to the delivery system. The analysis could give information on 

what biological processes, cellular components, and molecular functions the 

differentially expressed genes are involved in. This would allow to validate what was 

observed at the functional level in Chapter 5, as well as elucidate effects not easily 

observable at the phenotypical level. The identification of key up- or down-regulated 

genes enriched in certain pathways would also allow to understand the mechanism of 

toxicity of the targeted system, by identifying activated cellular death mechanisms or 

stress-related pathways. It would also allow to determine differences in mechanisms 

between targeted and non-targeted systems.  

6.2.3 Designing a Nucleus-Targeting MOF-based delivery system 

The nucleus is a crucial therapeutic target given that it holds the genetic information and 

transcription machinery of a cell. Some chemotherapeutic drugs such as doxorubicin 

induce cancer cell apoptosis mainly by oxidative DNA damage and topoisomerase II 

inhibition in the nucleus252. However, cancer cells have strong intracellular resistance 

mechanisms to hinder the access of drugs to the nucleus, such as over-expression of 

drug efflux pumps, drug metabolism and detoxification, drug sequestering to acidic 

compartments, and drug deactivation253. As a consequence, only a small fraction of drug 

present in the cytosol reaches the nucleus in drug-resistant cells. The ability to divert a 

drug from the endolyososomal route directly to the nucleus is therefore expected to 

significantly enhance the anticancer efficacy of currently available drugs. Using the 

knowledge acquired during this thesis, it is now possible to design and synthesise a 

MOF that is capable of bypassing endosomes/lysosomes. Modifying its surface with a 

nuclear localisation signal (NLS) could allow to direct it to the nucleus, through the 
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nuclear envelope which consists of a large number of nuclear pore complexes (NPCs) 

with a diameter of 20-70 nm. Particle size can be tuned to fit through the NPCs. HIV-1 

TAT peptide has been shown to translocate NPs into cell nuclei254,255. Its attachment to 

a biocompatible MOF of the appropriate size could in principle direct the system to the 

cell nucleus. Attachment could be performed by a water-based carbodiimide mediated 

reaction, between the exposed amino groups at the surface of MOFs with amino-

functionalised organic linkers, and the C-termini of the TAT peptides. The system could 

also be provided with an imaging functionality by conjugating the fluorescent FITC 

molecule to the N-terminus of the TAT peptide, thus forming a multi-functional 

targeted therapy/imaging system.  

6.2.4 Using MOFs for CRISPR/Cas9 delivery 

CRISPR is a technology for manipulating or editing genes inside cells, and therefore 

has the potential to cure thousands of human genetic diseases. The CRISPR complex 

consists of two components: the protein Cas9 and a guide RNA (sgRNA) that provides 

the template for the required gene modification. Most studies have demonstrated the use 

of this technology by using gene delivery strategies to generate Cas9 inside cells. This 

poses problems with regards to off-target effects and unwanted gene editing, due to the 

required CRISPR genes staying in the host cell after delivery. An alternative strategy 

has been to deliver Cas9 and sgRNA directly into cells, offering a transient way of 

editing genes. The main obstacle with this approach is the large CRISPR complex’s 

inability to efficiently reach the nucleus, due to difficulties crossing the cell membrane 

and escaping endosomal entrapment. MOFs could be designed in a way to carry and 

deliver Cas9 and sgRNA into the cell cytosol, and possibly directly into the nucleus. 

This thesis has shown how it is possible to design a MOF-based system that is capable 

of endosomal escape. As discussed in Section 6.2.3, such a system could also be 

decorated with a nuclear localisation signal that allows it to be taken through the nuclear 

pore complex and into the nucleus.   

     

 

   

 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

132  S. Haddad – September 2018 

7 REFERENCES 

(1)  Stewart, M. P.; Sharei, A.; Ding, X.; Sahay, G.; Langer, R.; Jensen, K. F. In Vitro 

and Ex Vivo Strategies for Intracellular Delivery. Nature 2016, 538, 183–192. 

(2)  Biswas, S.; Torchilin, V. P. Nanopreparations for Organelle-Specific Delivery in 

Cancer. Adv. Drug Deliv. Rev. 2014, 66, 26–41. 

(3)  Torchilin, V. P. Multifunctional, Stimuli-Sensitive Nanoparticulate Systems for 

Drug Delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827. 

(4)  Yoo, J. W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. Bio-Inspired, 

Bioengineered and Biomimetic Drug Delivery Carriers. Nat. Rev. Drug Discov. 

2011, 10, 521–535. 

(5)  Mintzer, M. A.; Simanek, E. E. Nonviral Vectors for Gene Delivery. Chem. Rev. 

2009, 109, 259–302. 

(6)  Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, 

G.; Morris, R. E.; Serre, C. Metal-Organic Frameworks in Biomedicine. Chem. 

Rev. 2012, 112, 1232–1268. 

(7)  Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. 

F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous Metal-Organic-Framework 

Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. 

Mater. 2010, 9, 172–178. 

(8)  Bharti, C.; Gulati, N.; Nagaich, U.; Pal, A. Mesoporous Silica Nanoparticles in 



Chapter 7: References 

S. Haddad – September 2018   133 

Target Drug Delivery System: A Review. Int. J. Pharm. Investig. 2015, 5, 124–

133. 

(9)  Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, 

R. Q. Screening of Bio-Compatible Metal–organic Frameworks as Potential Drug 

Carriers Using Monte Carlo Simulations. J. Mater. Chem. B 2014, 2, 766. 

(10)  Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and 

Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444. 

(11)  Naldini, L. Gene Therapy Returns to Centre Stage. Nature 2015, 526, 351–360. 

(12)  June, C. H.; Riddell, S. R.; Schumacher, T. N. Adoptive Cellular Therapy: A 

Race to the Finish Line. Sci. Transl. Med. 2015, 7 (280), 1–8. 

(13)  Kim, D.; Kim, C. H.; Moon, J. Il; Chung, Y. G.; Chang, M. Y.; Han, B. S.; Ko, 

S.; Yang, E.; Cha, K. Y.; Lanza, R.; et al. Generation of Human Induced 

Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem 

Cell 2009, 4, 472–476. 

(14)  Mout, R.; Ray, M.; Yesilbag Tonga, G.; Lee, Y. W.; Tay, T.; Sasaki, K.; Rotello, 

V. M. Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for 

Efficient Gene Editing. ACS Nano 2017, 11, 2452–2458. 

(15)  Ma, X.; Gong, N.; Zhong, L.; Sun, J.; Liang, X. J. Future of Nanotherapeutics: 

Targeting the Cellular Sub-Organelles. Biomaterials 2016, 97, 10–21. 

(16)  Chou, L. Y. T.; Ming, K.; Chan, W. C. W. Strategies for the Intracellular 

Delivery of Nanoparticles. Chem. Soc. Rev. 2011, 40, 233–245. 

(17)  Hallow, D. M.; Seeger, R. A.; Kamaev, P. P.; Prado, G. R.; LaPlaca, M. C.; 

Prausnitz, M. R. Shear-Induced Intracellular Loading of Cells with Molecules by 

Controlled Microfluidics. Biotechnol. Bioeng. 2008, 99 (4), 846–854. 

(18)  Gurtovenko, A. A.; Anwar, J.; Vattulainen, I. Defect-Mediated Trafficking across 

Cell Membranes: Insights from in Silico Modeling. Chem. Rev. 2010, 110, 6077–

6103. 

(19)  Stewart, M. P.; Lorenz, A.; Dahlman, J.; Sahay, G. Challenges in Carrier-

Mediated Intracellular Delivery: Moving beyond Endosomal Barriers. Wiley 

Interdiscip. Rev. Nanomedicine Nanobiotechnology 2016, 8, 465–478. 

(20)  Allen, T. M.; Cullis, P. R. Liposomal Drug Delivery Systems: From Concept to 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

134  S. Haddad – September 2018 

Clinical Applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. 

(21)  Freiberg, S.; Zhu, X. X. Polymer Microspheres for Controlled Drug Release. Int. 

J. Pharm. 2004, 282, 1–18. 

(22)  Lynch, A. L.; Chen, R.; Dominowski, P. J.; Shalaev, E. Y.; Yancey, R. J.; Slater, 

N. K. H. Biopolymer Mediated Trehalose Uptake for Enhanced Erythrocyte 

Cryosurvival. Biomaterials 2010, 31 (23), 6096–6103. 

(23)  Kwon, G. S.; Okano, T. Polymeric Micelles as New Drug Carriers. Adv. Drug 

Deliv. Rev. 1996, 21, 107–116. 

(24)  Hoare, T. R.; Kohane, D. S. Hydrogels in Drug Delivery: Progress and 

Challenges. Polymer (Guildf). 2008, 49, 1993–2007. 

(25)  Bangham, A. D.; Standish, M. M.; Watkins, J. C. Diffusion of Univalent Ions 

across the Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238–252. 

(26)  Gregoriadis, G. The Carrier Potential of Liposomes in Biology and Medicine. N. 

Engl. J. Med. 1976, 295, 765–770. 

(27)  Mudshinge, S. R.; Deore, A. B.; Patil, S.; Bhalgat, C. M. Nanoparticles: 

Emerging Carriers for Drug Delivery. Saudi Pharm. J. 2011, 19, 129–141. 

(28)  Torchilin, V. P. Recent Approaches to Intracellular Delivery of Drugs and DNA 

and Organelle Targeting. Annu. Rev. Biomed. Eng. 2006, 8, 343–375. 

(29)  Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L. Amphipathic 

Polyethyleneglycols Effectively Prolong the Circulation Time of Liposomes. 

FEBS Lett. 1990, 268 (1), 235–237. 

(30)  Torchilin, V. P.; Levchenko, T. S.; Lukyanov, A. N.; Khaw, B. A.; Klibanov, A. 

L.; Rammohan, R.; Samokhin, G. P.; Whiteman, K. R. P-Nitrophenylcarbonyl-

PEG-PE-Liposomes: Fast and Simple Attachment of Specific Ligands, Including 

Monoclonal Antibodies, to Distal Ends of PEG Chains via P-

Nitrophenylcarbonyl Groups. Biochim. Biophys. Acta - Biomembr. 2001, 1511, 

397–411. 

(31)  Gaucher, G.; Dufresne, M. H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J. 

C. Block Copolymer Micelles: Preparation, Characterization and Application in 

Drug Delivery. J. Control. Release 2005, 109, 169–188. 

(32)  Kim, S. C.; Kim, D. W.; Shim, Y. H.; Bang, J. S.; Oh, H. S.; Kim, S. W.; Seo, M. 



Chapter 7: References 

S. Haddad – September 2018   135 

H. In Vivo Evaluation of Polymeric Micellar Paclitaxel Formulation: Toxicity 

and Efficacy. J. Control. Release 2001, 72, 191–202. 

(33)  Duncan, R. Polymer Conjugates as Anticancer Nanomedicines. Nat. Rev. Cancer 

2006, 6, 688–701. 

(34)  Khandare, J. J.; Jayant, S.; Singh, A.; Chandna, P.; Wang, Y.; Vorsa, N.; Minko, 

T. Dendrimer versus Linear Conjugate: Influence of Polymeric Architecture on 

the Delivery and Anticancer Effect of Paclitaxel. Bioconjug. Chem. 2006, 17, 

1464–1472. 

(35)  Kuruppuarachchi, M.; Savoie, H.; Lowry, A.; Alonso, C.; Boyle, R. W. 

Polyacrylamide Nanoparticles as a Delivery System in Photodynamic Therapy. 

Mol. Pharm. 2011, 8, 920–931. 

(36)  Turos, E.; Shim, J. Y.; Wang, Y.; Greenhalgh, K.; Reddy, G. S. K.; Dickey, S.; 

Lim, D. V. Antibiotic-Conjugated Polyacrylate Nanoparticles: New 

Opportunities for Development of Anti-MRSA Agents. Bioorganic Med. Chem. 

Lett. 2007, 17, 53–56. 

(37)  Martínez, A.; Iglesias, I.; Lozano, R.; Teijón, J. M.; Blanco, M. D. Synthesis and 

Characterization of Thiolated Alginate-Albumin Nanoparticles Stabilized by 

Disulfide Bonds. Evaluation as Drug Delivery Systems. Carbohydr. Polym. 

2011, 83, 1311–1321. 

(38)  Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan 

Nanoparticles: Preparation, Size Evolution and Stability. Int. J. Pharm. 2013, 

455, 219–228. 

(39)  Willem de Vries, J.; Schnichels, S.; Hurst, J.; Strudel, L.; Gruszka, A.; Kwak, M.; 

Bartz-Schmidt, K. U.; Spitzer, M. S.; Herrmann, A. DNA Nanoparticles for 

Ophthalmic Drug Delivery. Biomaterials 2018, 157, 98–106. 

(40)  des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y. J.; Préat, V. Nanoparticles 

as Potential Oral Delivery Systems of Proteins and Vaccines: A Mechanistic 

Approach. J. Control. Release 2006, 116, 1–27. 

(41)  Liechty, W. B.; Kryscio, D. R.; Slaughter, B. V.; Peppas, N. A. Polymers for 

Drug Delivery Systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149–173. 

(42)  Park, J.; Fong, P. M.; Lu, J.; Russell, K. S.; Booth, C. J.; Saltzman, W. M.; 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

136  S. Haddad – September 2018 

Fahmy, T. M. PEGylated PLGA Nanoparticles for the Improved Delivery of 

Doxorubicin. Nanomedicine Nanotechnology, Biol. Med. 2009, 5, 410–418. 

(43)  Rimoli, M. G.; Rabaioli, M. R.; Melisi, D.; Curcio, A.; Mondello, S.; Mirabelli, 

R.; Abignente, E. Synthetic Zeolites as a New Tool for Drug Delivery. J. Biomed. 

Mater. Res. - Part A 2008, 11, 156–164. 

(44)  Amorim, R.; Vilaça, N.; Martinho, O.; Reis, R. M.; Sardo, M.; Rocha, J.; 

Fonseca, A. M.; Baltazar, F.; Neves, I. C. Zeolite Structures Loading with an 

Anticancer Compound as Drug Delivery Systems. J. Phys. Chem. C 2012, 116, 

25642–25650. 

(45)  Datt, A.; Burns, E. A.; Dhuna, N. A.; Larsen, S. C. Loading and Release of 5-

Fluorouracil from HY Zeolites with Varying SiO2/Al2O3 Ratios. Microporous 

Mesoporous Mater. 2013, 167, 182–187. 

(46)  Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S.-Y. Mesoporous 

Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small 2010, 6 

(18), 1952–1967. 

(47)  Qu, Q.; Ma, X.; Zhao, Y. Targeted Delivery of Doxorubicin to Mitochondria 

Using Mesoporous Silica Nanoparticle Nanocarriers. Nanoscale 2015, 7 (40), 

16677–16686. 

(48)  Pan, L.; He, Q.; Liu, J.; Chen, Y.; Zhang, L.; Shi, J. Nuclear-Targeted Drug 

Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica 

Nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725. 

(49)  Kwon, S.; Singh, R. K.; Perez, R. A.; Abou Neel, E. A.; Kim, H.-W.; 

Chrzanowski, W. Silica-Based Mesoporous Nanoparticles for Controlled Drug 

Delivery. J. Tissue Eng. 2013, 4, 1–18. 

(50)  He, Q.; Shi, J. Mesoporous Silica Nanoparticle Based Nano Drug Delivery 

Systems: Synthesis, Controlled Drug Release and Delivery, Pharmacokinetics 

and Biocompatibility. J. Mater. Chem. 2011, 21, 5845–5855. 

(51)  Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S.-Y. Mesoporous Silica 

Nanoparticles as Controlled Release Drug Delivery and Gene Transfection 

Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288. 

(52)  Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an 



Chapter 7: References 

S. Haddad – September 2018   137 

Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 

1999, 402, 276–279. 

(53)  Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. 

A.; Ward, S. C.; Fairen-Jimenez, D. Development of a Cambridge Structural 

Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, 

and Future. Chem. Mater. 2017, 29, 2618–2625. 

(54)  Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. 

Reticular Synthesis and the Design of New Materials. Nature 2003, 423, 705–

714. 

(55)  Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen,  a G.; Williams, I. D. A 

Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. 

Science (80-. ). 1999, 283, 1148–1150. 

(56)  Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid Synthesis of Zeolitic 

Imidazolate Framework-8 (ZIF-8) Nanocrystals in an Aqueous System. Chem. 

Commun. 2011, 47, 2071–2073. 

(57)  Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; 

Margiolaki, I. A Hybrid Solid with Giant Pores Prepared by a Combination of 

Targeted Chemistry, Simulation, and Powder Diffraction. Angew. Chemie - Int. 

Ed. 2004, 43, 6296–6301. 

(58)  Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; 

Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal 

Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 

13850–13851. 

(59)  Cunha, D.; Gaudin, C.; Colinet, I.; Horcajada, P.; Maurin, G.; Serre, C. 

Rationalization of the Entrapping of Bioactive Molecules into a Series of 

Functionalized Porous Zirconium Terephthalate MOFs. J. Mater. Chem. B 2013, 

1, 1101–1108. 

(60)  Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; 

Hupp, J. T.; Farhat, O. K. A Facile Synthesis of UiO-66 , UiO-67 and Their 

Derivatives. Chem. Commun. 2013, 49 (82), 9449–9451. 

(61)  Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, 

S.; Lillerud, K. P.; Lamberti, C. Disclosing the Complex Structure of UiO-66 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

138  S. Haddad – September 2018 

Metal Organic Framework : A Synergic Combination of Experiment and Theory. 

Chem. Mater. 2011, 23, 1700–1718. 

(62)  Cmarik, G. E.; Kim, M.; Cohen, S. M.; Walton, K. S. Tuning the Adsorption 

Properties of UiO-66 via Ligand Functionalization. Langmuir 2012, 28 (44), 

15606–15613. 

(63)  Marshall, R. J.; Forgan, R. S. Postsynthetic Modification of Zirconium Metal-

Organic Frameworks. Eur. J. Inorg. Chem. 2016, 2016 (27), 4310–4331. 

(64)  Wang, S.; Morris, W.; Liu, A.; Mcguirk, C. M.; Zhou, Y.; Hupp, J. T.; Farha, O. 

K.; Mirkin, C. A. Surface-Specific Functionalization of Nanoscale Metal-Organic 

Frameworks. Angew. Commun. 2015, 54, 14738–14742. 

(65)  Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. 

Defect Engineering: Tuning the Porosity and Composition of the Metal-Organic 

Framework UiO-66 via Modulated Synthesis. Chem. Mater. 2016, 28 (11), 3749–

3761. 

(66)  Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. 

Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angew. 

Chemie 2006, 118 (36), 6120–6124. 

(67)  Chen, W.; Wu, C. Synthesis, Functionalization, and Applications of Metal-

Organic Frameworks in Biomedicine. Dalt. Trans. 2018, 47, 2114–2133. 

(68)  Vasconcelos, I. B.; Silva, T. G. Da; Militão, G. C. G.; Soares, T. a.; Rodrigues, 

N. M.; Rodrigues, M. O.; Costa, N. B. Da; Freire, R. O.; Junior, S. A. 

Cytotoxicity and Slow Release of the Anti-Cancer Drug Doxorubicin from ZIF-8. 

RSC Adv. 2012, 2 (25), 9437–9440. 

(69)  Lucena, F. R. S.; de Araújo, L. C. C.; Rodrigues, M. do D.; da Silva, T. G.; 

Pereira, V. R. A.; Militão, G. C. G.; Fontes, D. A. F.; Rolim-Neto, P. J.; da Silva, 

F. F.; Nascimento, S. C. Induction of Cancer Cell Death by Apoptosis and Slow 

Release of 5-Fluoracil from Metal-Organic Frameworks Cu-BTC. Biomed. 

Pharmacother. 2013, 67, 707–713. 

(70)  He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale Metal-Organic Frameworks for the 

Co-Delivery of Cisplatin and Pooled siRNAs to Enhance Therapeutic Efficacy in 

Drug-Resistant Ovarian Cancer Cells. J. Am. Chem. Soc. 2014, 136 (14), 5181–

5184. 



Chapter 7: References 

S. Haddad – September 2018   139 

(71)  Agostoni, V.; Chalati, T.; Horcajada, P.; Willaime, H.; Anand, R.; Semiramoth, 

N.; Baati, T.; Hall, S.; Maurin, G.; Chacun, H.; et al. Towards an Improved Anti-

HIV Activity of NRTI via Metal-Organic Frameworks Nanoparticles. Adv. 

Healthc. Mater. 2013, 2 (12), 1630–1637. 

(72)  McKinlay, A. C.; Xiao, B.; Wragg, D. S.; Wheatley, P. S.; Megson, I. L.; Morris, 

R. E. Exceptional Behavior over the Whole Adsorption-Storage-Delivery Cycle 

for NO in Porous Metal Organic Frameworks. J. Am. Chem. Soc. 2008, 130 (31), 

10440–10444. 

(73)  Wheatley, P. S.; Butler, A. R.; Crane, M. S.; Fox, S.; Xiao, B.; Rossi, A. G.; 

Megson, I. L.; Morris, R. E. NO-Releasing Zeolites and Their Antithrombotic 

Properties. J. Am. Chem. Soc. 2006, 128, 502–509. 

(74)  Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-

Prieto, M. J.; Horcajada, P. Cytotoxicity of Nanoscaled Metal-Organic 

Frameworks. J. Mater. Chem. B 2014, 2, 262–271. 

(75)  Ruyra, A.; Yazdi, A.; Espín, J.; Carné-Sánchez, A.; Roher, N.; Lorenzo, J.; Imaz, 

I.; Maspoch, D. Synthesis, Culture Medium Stability, and in Vitro and in Vivo 

Zebrafish Embryo Toxicity of Metal-Organic Framework Nanoparticles. Chem. - 

A Eur. J. 2015, 21, 2508–2518. 

(76)  Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M. 

F.; Zakhama, A.; Couvreur, P.; Serre, C.; et al. In Depth Analysis of the in Vivo 

Toxicity of Nanoparticles of Porous Iron(iii) Metal–organic Frameworks. Chem. 

Sci. 2013, 4, 1597–1607. 

(77)  He, C.; Liu, D.; Lin, W. Nanomedicine Applications of Hybrid Nanomaterials 

Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic 

Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015, 115 (19), 

11079–11108. 

(78)  Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; 

Huber, K.; Fischer, R. A. Trapping Metal-Organic Framework Nanocrystals: An 

in-Situ Time-Resolved Light Scattering Study on the Crystal Growth of MOF-5 

in Solution. J. Am. Chem. Soc. 2007, 129, 5324–5325. 

(79)  Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, 

H. Surface Nano-Architecture of a Metal-Organic Framework. Nat. Mater. 2010, 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

140  S. Haddad – September 2018 

9, 565–571. 

(80)  Morris, W.; Wang, S.; Cho, D.; Auyeung, E.; Li, P.; Farha, O. K.; Mirkin, C. A. 

Role of Modulators in Controlling the Colloidal Stability and Polydispersity of 

the UiO-66 Metal–Organic Framework. ACS Appl. Mater. Interfaces 2017, 9 

(39), 33413–33418. 

(81)  Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. 

Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to 

Single Crystals. Chem. - A Eur. J. 2011, 17, 6643–6651. 

(82)  Rijnaarts, T.; Mejia-Ariza, R.; Egberink, R. J. M.; Vanroosmalen, W.; Huskens, 

J. Metal-Organic Frameworks (MOFs) as Multivalent Materials: Size Control 

and Surface Functionalization by Monovalent Capping Ligands. Chem. - A Eur. 

J. 2015, 21, 10296–10301. 

(83)  Guo, H.; Zhu, Y.; Wang, S.; Su, S.; Zhou, L.; Zhang, H. Combining Coordination 

Modulation with Acid-Base Adjustment for the Control over Size of Metal-

Organic Frameworks. Chem. Mater. 2012, 24, 444–450. 

(84)  Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The Effect of Nanoparticle Size on in 

Vivo Pharmacokinetics and Cellular Interaction. Nanomedicine 2016, 11 (6), 

673–692. 

(85)  Taddei, M.; Dümbgen, K. C.; Van Bokhoven, J. A.; Ranocchiari, M. Aging of the 

Reaction Mixture as a Tool to Modulate the Crystallite Size of UiO-66 into the 

Low Nanometer Range. Chem. Commun. 2016, 52, 6411–6414. 

(86)  Marshall, R. J.; Hobday, C. L.; Murphie, C. F.; Griffin, S. L.; Morrison, C. A.; 

Moggach, S. A.; Forgan, R. S. Amino Acids as Highly Efficient Modulators for 

Single Crystals of Zirconium and Hafnium Metal–organic Frameworks. J. Mater. 

Chem. A 2016, 4 (18), 6955–6963. 

(87)  Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, 

W. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal − 

Organic Framework UiO-66 and Their Important E Ff Ects on Gas Adsorption. J. 

Am. Chem. Soc. 2013, 135, 10525–10532. 

(88)  Cliffe, M. J.; Hill, J. A.; Murray, C. A.; Coudert, F. X.; Goodwin, A. L. Defect-

Dependent Colossal Negative Thermal Expansion in UiO-66(Hf) Metal-Organic 

Framework. Phys. Chem. Chem. Phys. 2015, 17, 11586–11592. 



Chapter 7: References 

S. Haddad – September 2018   141 

(89)  Wang, Z.; Cohen, S. M. Postsynthetic Modification of Metal-Organic 

Frameworks. Chem. Soc. Rev. 2009, 38, 1315–1329. 

(90)  Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle-Mediated 

Cellular Response Is Size-Dependent. Nat. Nanotechnol. 2008, 3, 145–150. 

(91)  Jin, H.; Heller, D. A.; Sharma, R.; Strano, M. S. Size-Dependent Cellular Uptake 

and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and 

a Generic Uptake Model for Nanoparticles. ACS Nano 2009, 3 (1), 149–158. 

(92)  Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y. Size Effect on Cell Uptake in Well-

Suspended, Uniform Mesoporous Silica Nanoparticles. Small 2009, 5 (12), 1408–

1413. 

(93)  Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; 

Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical 

Interactions at the Nano–bio Interface. Nat. Mater. 2009, 8 (7), 543–557. 

(94)  Sykes, E. A.; Chen, J.; Zheng, G.; Chan, W. C. W. Investigating the Impact of 

Nanoparticle Size on Active and Passive Tumor Targeting Efficiency. ACS Nano 

2014, 8 (6), 5696–5706. 

(95)  Park, J.; Jiang, Q.; Feng, D.; Mao, L.; Zhou, H. C. Size-Controlled Synthesis of 

Porphyrinic Metal-Organic Framework and Functionalization for Targeted 

Photodynamic Therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525. 

(96)  Zhu, X.; Gu, J.; Wang, Y.; Li, B.; Li, Y.; Zhao, W.; Shi, J. Inherent Anchorages 

in UiO-66 Nanoparticles for Efficient Capture of Alendronate and Its Mediated 

Release. Chem. Commun. 2014, 50 (63), 8779–8782. 

(97)  Röder, R.; Preiß, T.; Hirschle, P.; Steinborn, B.; Zimpel, A.; Höhn, M.; Rädler, J. 

O.; Bein, T.; Wagner, E.; Wuttke, S.; et al. Multifunctional Nanoparticles by 

Coordinative Self-Assembly of His-Tagged Units with Metal-Organic 

Frameworks. J. Am. Chem. Soc. 2017, 139 (6), 2359–2368. 

(98)  Wang, W.; Wang, L.; Li, Z.; Xie, Z. BODIPY-Containing Nanoscale Metal-

Organic Frameworks for Photodynamic Therapy. Chem. Commun. 2016, 52, 

5402–5405. 

(99)  Zimpel, A.; Preiß, T.; Der, R. R.; Engelke, H.; Ingrisch, M.; Peller, M.; Ra, J. O.; 

Wagner, E.; Bein, T.; La, U.; et al. Imparting Functionality to MOF 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

142  S. Haddad – September 2018 

Nanoparticles by External Surface Selective Covalent Attachment of Polymers. 

Chem. Mater. 2016, 28, 3318–3326. 

(100)  Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic 

Acid-Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. 

Soc. 2014, 136 (20), 7261–7264. 

(101)  Nagata, S.; Kokado, K.; Sada, K. Metal-Organic Framework Tethering PNIPAM 

for ON-OFF Controlled Release in Solution. Chem. Commun. 2015, 51, 8614–

8617. 

(102)  Wang, C.; Liu, X.; Chen, J. P.; Li, K. Superior Removal of Arsenic from Water 

with Zirconium Metal-Organic Framework UiO-66. Sci. Rep. 2015, 5, 1–10. 

(103)  Tomas-Gamasa, M.; Martinez-Calvo, M.; Couceiro, J. R.; Mascarenas, J. L. 

Transition Metal Catalysis in the Mitochondria of Living Cells. Nat. Commun. 

2016, 7, 12538. 

(104)  Young, L. J.; Ströhl, F.; Kaminski, C. F. A Guide to Structured Illumination 

TIRF Microscopy at High Speed with Multiple Colors. J. Vis. Exp. 2016, 111, 1–

16. 

(105)  Müller, M.; Mönkemöller, V.; Hennig, S.; Hübner, W.; Huser, T. Open-Source 

Image Reconstruction of Super-Resolution Structured Illumination Microscopy 

Data in ImageJ. Nat. Commun. 2016, 7, 1–6. 

(106)  Kamentsky, L.; Jones, T. R.; Fraser, A.; Bray, M. A.; Logan, D. J.; Madden, K. 

L.; Ljosa, V.; Rueden, C.; Eliceiri, K. W.; Carpenter, A. E. Improved Structure, 

Function and Compatibility for Cellprofiler: Modular High-Throughput Image 

Analysis Software. Bioinformatics 2011, 27 (8), 1179–1180. 

(107)  Carvalho, B. S.; Irizarry, R. A. A Framework for Oligonucleotide Microarray 

Preprocessing. Bioinformatics 2010, 26 (19), 2363–2367. 

(108)  Irizarry, R. A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y. D.; Antonellis, K. J.; 

Scherf, U.; Speed, T. P. Exploration, Normalization, and Summaries of High 

Density Oligonucleotide Array Probe Level Data. Biostatistics 2003, 4 (2), 249–

264. 

(109)  Ritchie, M. E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C. W.; Shi, W.; Smyth, G. K. 

Limma Powers Differential Expression Analyses for RNA-Sequencing and 



Chapter 7: References 

S. Haddad – September 2018   143 

Microarray Studies. Nucleic Acids Res. 2015, 43 (7), e47. 

(110)  Benjamini, Y.; Hochberg, Y.; Benjaminit, Y. Controlling the False Discovery 

Rate: A Practical and Powerful Approach to Multiple Controlling the False 

Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Source 

J. R. Stat. Soc. Ser. B J. R. Stat. Soc. Ser. B J. R. Stat. Soc. B 1995, 57 (1), 289–

300. 

(111)  Day, J. G.; Stacey, G. N. Cryopreservation and Freeze-Drying Protocols, 2nd 

ed.; Humana Press, 2007. 

(112)  Gao, D.; Critser, J. K. Mechanisms of Cryoinjury in Living Cells. Inst. Lab. 

Anim. Res. 2000, 4 (4), 187–196. 

(113)  Mazur, P.; Leibo, S. P.; Chu, E. H. Y.; Division, B.; Ridge, O.; Ridge, O. A Two-

Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-

Culture Cells. Exp. Cell Res. 1972, 71, 345–355. 

(114)  Fuller, B. J. Cryoprotectants: The Essential Antifreezes to Protect Life in the 

Frozen State. CryoLetters 2004, 25 (6), 375–388. 

(115)  Karow, A. M.; Webb, W. R. Tissue Freezing: A Theory for Injury and Survival. 

Cryobiology 1965, 2 (3), 99–108. 

(116)  Watson, R. E.; Wiegand, S. J.; Clough, R. W.; Hoffman, G. E. Use of 

Cryoprotectant to Maintain Long-Term Peptide Immunoreactivity and Tissue. 

Peptides 1986, 7 (1), 155–159. 

(117)  Hopkins, R. A. Cardiac Reconstructions with Allograft Valves, 1st ed.; Springer 

Science and Business Media, 2012. 

(118)  Sieme, H.; Oldenhof, H.; Wolkers, W. F. Mode of Action of Cryoprotectants for 

Sperm Preservation. Anim. Reprod. Sci. 2016, 169, 2–5. 

(119)  Farrant, J. Water Transport and Cell Survival in Cryobiological Procedures. Phil. 

Trans. R. Soc. Lond. B 1977, 278, 191–205. 

(120)  Lovelock, J. E.; Bishop, M. W. H. Prevention of Freezing Damage to Living 

Cells by DMSO. Nature 1959, 183 (4672), 1394–1395. 

(121)  Lovelock, J. E. The Denaturation of Lipid-Protein Complexes as a Cause of 

Damage by Freezing. Proc R Soc L. B 1957, 147, 427–434. 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

144  S. Haddad – September 2018 

(122)  Fahy, M. The Relevance of Cryoprotectant Toxicity to Cryobiology. Cryobiology 

1986, 13, 1–13. 

(123)  Katkov, I. I.; Kim, M. S.; Bajpai, R.; Altman, Y. S.; Mercola, M.; Loring, J. F.; 

Terskikh, A. V; Snyder, E. Y.; Levine, F. Cryopreservation by Slow Cooling 

with DMSO Diminished Production of Oct-4 Pluripotency Marker in Human 

Embryonic Stem Cells. Cryobiology 2006, 53 (2), 194–205. 

(124)  Wang, H.; Lun, Z.; Lu, S. Cryopreservation of Umbilical Cord Blood-Derived 

Mesenchymal Stem Cells without Dimethyl Sulfoxide. Cryo Letters 2011, 32 (1), 

81–88. 

(125)  Thaler, R.; Spitzer, S.; Karlic, H.; Klaushofer, K.; Varga, F. DMSO Is a Strong 

Inducer of DNA Hydroxymethylation in Pre-Osteoblastic MC3T3-E1 Cells. 

Epigenetics 2012, 7 (6), 635–651. 

(126)  Cox, M. a; Kastrup, J.; Hrubiško, M. Historical Perspectives and the Future of 

Adverse Reactions Associated with Haemopoietic Stem Cells Cryopreserved 

with Dimethyl Sulfoxide. Cell Tissue Bank. 2012, 13 (2), 203–215. 

(127)  Windrum, P.; Morris, T. C. M.; Drake, M. B.; Niederwieser, D.; Ruutu, T. 

Variation in Dimethyl Sulfoxide Use in Stem Cell Transplantation: A Survey of 

EBMT Centres. Bone Marrow Transplant. 2005, 36 (7), 601–603. 

(128)  Abdelkefi, A.; Lakhal, A.; Moojar, N.; Hamed, L. B.; Fekih, J.; Ladeb, S.; 

Torjman, L.; Benothman, T. Severe Neurotoxicity Associated with DMSO 

Following PBSCT. Bone Marrow Transpl. 2009, 44 (5), 323–324. 

(129)  Benekli, M.; Anderson, B.; Wentling, D.; Bernstein, S.; Czuczman, M.; 

McCarthy, P. Severe Respiratory Depression after DMSO-Containing 

Autologous Stem Cell Infusion in a Patient with AL Amyloidosis. Bone Marrow 

Transpl. 2000, 25 (12), 1299–1301. 

(130)  Hequet, O.; Dumontet, C.; El-Jaafari-Corbin, A.; Salles, G.; Espinouse, D.; 

Arnaud, P.; Thieblemont, C.; Bouafia, F.; Coiffer, B. Epileptic Seizures after 

Autologous Peripheral Blood Progenitor Infusion in a Patient Treated with High-

Dose Chemotherapy for Myeloma. Bone Marrow Transpl. 2002, 29 (6), 544. 

(131)  Sharp, D. M. C.; Picken, A.; Morris, T. J.; Hewitt, C. J.; Coopman, K.; Slater, N. 

K. H. Amphipathic Polymer-Mediated Uptake of Trehalose for Dimethyl 

Sulfoxide-Free Human Cell Cryopreservation. Cryobiology 2013, 67 (3), 305–



Chapter 7: References 

S. Haddad – September 2018   145 

311. 

(132)  Clegg, J. S. Origin of Trehalose and Its Significance During Formation of 

Encysted Dormant Embryos of Artemia Salina. Comp. Biochem. Physiol. 1963, 

14, 135–143. 

(133)  Madin, K. A. C.; Crowe, J. H. Anhydrobiosis in Nematodes: Carbohydrate and 

Lipid Metabo Ism during Dehydration. J. Exp. Zool. 1975, 193, 335–342. 

(134)  Crowe, J. H.; Hoekstra, F. A.; Crowe, L. M. Anhydrobiosis. Annu. Rev. Physiol. 

1992, 54, 579–599. 

(135)  Jain, N. K.; Roy, I. Effect of Trehalose on Protein Structure. Protein Sci. 2009, 

18 (1), 24–36. 

(136)  Leslie, S. B.; Israeli, E.; Lighthart, B.; Crowe, J. H.; Crowe, L. M. Trehalose and 

Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. 

Appl. Environ. Microbiol. 1995, 61 (10), 3592–3597. 

(137)  Eroglu, A.; Russo, M. J.; Bieganski, R.; Fowler, A.; Cheley, S.; Bayley, H.; 

Toner, M. Intracellular Trehalose Improves the Survival of Cryopreserved 

Mammalian Cells. Nat. Biotechnol. 2000, 18 (2), 163–167. 

(138)  Eroglu, A.; Toner, M.; Toth, T. L. Beneficial Effect of Microinjected Trehalose 

on the Cryosurvival of Human Oocytes. Fertil. Steril. 2002, 77 (1), 6–8. 

(139)  Chen, T.; Acker, J. P.; Eroglu,  a; Cheley, S.; Bayley, H.; Fowler,  a; Toner, M. 

Beneficial Effect of Intracellular Trehalose on the Membrane Integrity of Dried 

Mammalian Cells. Cryobiology 2001, 43 (2), 168–181. 

(140)  Hunt, C. J. Cryopreservation of Human Stem Cells for Clinical Application: A 

Review. Transfus. Med. Hemotherapy 2011, 38, 107–123. 

(141)  Beattie, G. M.; Crowe, J. H.; Lopez, A. D.; Cirulli, V.; Ricordi, C.; Hayek, A. 

Trehalose: A Cryoprotectant That Enhances Recovery and Preserves Function of 

Human Pancreatic Islets After Long-Term Storage. Diabetes 1997, 46, 519–523. 

(142)  Oliver, A. E.; Jamil, K.; Crowe, J. H.; Tablin, F. Loading Human Mesenchymal 

Stem Cells with Trehalose by Fluid-Phase Endocytosis. Cell Preserv. Technol. 

2004, 2 (1), 35–49. 

(143)  Guo, N.; Puhlev, I.; Brown, D. R.; Mansbridge, J.; Levine, F. Trehalose 

Expression Confers Desiccation Tolerance on Human Cells. Nat. Biotechnol. 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

146  S. Haddad – September 2018 

2000, 18, 168–171. 

(144)  Holovati, J. L.; Acker, J. P. Spectrophotometric Measurement of Intraliposomal 

Trehalose. Cryobiology 2007, 55 (2), 98–107. 

(145)  Puhlev, I.; Guo, N.; Brown, D. R.; Levine, F. Desiccation Tolerance in Human 

Cells. Cryobiology 2001, 42 (3), 207–217. 

(146)  Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; 

Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van De Streek, J.; Wood, P. A. 

Mercury CSD 2.0 - New Features for the Visualization and Investigation of 

Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. 

(147)  Orellana-Tavra, C.; Baxter, E. F.; Tian, T.; Bennett, T. D.; Slater, N. K. H.; 

Cheetham, A. K.; Fairen-Jimenez, D. Amorphous metal&#x2013;organic 

Frameworks for Drug Delivery. Chem. Commun. 2015, 51 (73), 13878–13881. 

(148)  Shang, L.; Nienhaus, K.; Nienhaus, G. U. Engineered Nanoparticles Interacting 

with Cells: Size Matters. J. Nanobiotechnology 2014, 12 (5), 1–11. 

(149)  Nazarenus, M.; Zhang, Q.; Soliman, M. G.; del Pino, P.; Pelaz, B.; Carregal-

Romero, S.; Rejman, J.; Rothen-Rutishauser, B.; Clift, M. J. D.; Zellner, R.; et al. 

In Vitro Interaction of Colloidal Nanoparticles with Mammalian Cells: What 

Have We Learned Thus Far? Beilstein J. Nanotechnol. 2014, 5 (1), 1477–1490. 

(150)  Cunha, D.; Yahia, M. Ben; Hall, S.; Miller, S. R.; Chevreau, H.; Elka, E.; 

Maurin, G.; Horcajada, P.; Serre, C. Rationale of Drug Encapsulation and 

Release from Biocompatible Porous Metal − Organic Frameworks. Chem. Mater. 

2013, 25 (14), 2767–2776. 

(151)  Orellana-Tavra, C.; Marshall, R. J.; Baxter, E. F.; Abánades-Lázaro, I.; Tao, A.; 

Cheetham, A. K.; Forgan, R. S.; Fairen-Jimenez, D. Drug Delivery and 

Controlled Release from Biocompatible Metal–organic Frameworks Using 

Mechanical Amorphization. J. Mater. Chem. B 2016, 4 (47), 7697–7707. 

(152)  Abanades-Lazaro, I.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, 

D.; Forgan, R. S. Selective Surface PEGylation of UiO-66 Nanoparticles for 

Enhanced Stability , Cell Uptake , and pH-Responsive Drug Delivery. Chem 

2017, 2, 561–578. 

(153)  Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J. M.; Orellana-Tavra, C.; Del 



Chapter 7: References 

S. Haddad – September 2018   147 

Pozo, V.; Fairen-Jimenez, D.; Forgan, R. S. Mechanistic Investigation into the 

Selective Anticancer Cytotoxicity and Immune System Response of Surface-

Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS Appl. 

Mater. Interfaces 2018, 10 (6), 5255–5268. 

(154)  Raimi-abraham, B. T.; Mo, J. G.; Belton, P. S.; Barker, S. A.; Craig, D. Q. M. 

Generation and Characterization of Standardized Forms of Trehalose Dihydrate 

and Their Associated Solid-State Behavior. Cryst. Growth Des. 2014, 14, 4955–

4967. 

(155)  Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; 

Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F.; et al. Temperature 

Treatment of Highly Porous Zirconium-Containing Metal-Organic Frameworks 

Extends Drug Delivery Release. J. Am. Chem. Soc. 2017, 139 (22), 7522–7532. 

(156)  Oldstone, M. B. A.; Compans, R. W. Influenza Pathogenesis and Control, 2nd 

ed.; Springer, 2014. 

(157)  Mazur, P. Freezing of Living Cells: Mechanisms and Implications. Am. J. 

Physiol. 1984, 247 (16), 125–142. 

(158)  Kaushik, J. K.; Bhat, R. Why Is Trehalose an Exceptional Protein Stabilizer? An 

Analysis of the Thermal Stability of Proteins in the Presence of the Compatible 

Osmolyte Trehalose. J. Biol. Chem. 2003, 278 (29), 26458–26465. 

(159)  Higashiyama, T. Novel Functions and Applications of Trehalose* A Special 

Topic Issue on the Science of Sweeteners. Pure Appl. Chem 2002, 74 (7), 1263–

1269. 

(160)  Chithrani, B. D.; Chan, W. C. W. Elucidating the Mechanism of Cellular Uptake 

and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and 

Shapes. Nano Lett. 2007, 7 (6), 1542–1550. 

(161)  Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; 

Napier, M. E.; DeSimone, J. M. The Effect of Particle Design on Cellular 

Internalization Pathways. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (33), 11613–

11618. 

(162)  Kou, L.; Sun, J.; Zhai, Y.; He, Z. The Endocytosis and Intracellular Fate of 

Nanomedicines: Implication for Rational Design. Asian J. Pharm. Sci. 2013, 8 

(1), 1–10. 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

148  S. Haddad – September 2018 

(163)  Mayor, S.; Pagano, R. E. Pathways of Clathrin-Independent Endocytosis. Nat. 

Rev. Mol. Cell Biol. 2007, 8 (8), 603–612. 

(164)  Iversen, T.-G.; Skotland, T.; Sandvig, K. Endocytosis and Intracellular Transport 

of Nanoparticles: Present Knowledge and Need for Future Studies. Nano Today 

2011, 6 (2), 176–185. 

(165)  Park, J. H.; Oh, N. Endocytosis and Exocytosis of Nanoparticles in Mammalian 

Cells. Int. J. Nanomedicine 2014, 51–55. 

(166)  Win, K. Y.; Feng, S.-S. Effects of Particle Size and Surface Coating on Cellular 

Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs. 

Biomaterials 2005, 26 (15), 2713–2722. 

(167)  Chithrani, B. D.; Ghazani, A. a.; Chan, W. C. W. Determining the Size and 

Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano 

Lett. 2006, 6 (4), 662–668. 

(168)  He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of Particle Size and Surface 

Charge on Cellular Uptake and Biodistribution of Polymeric Nanoparticles. 

Biomaterials 2010, 31 (13), 3657–3666. 

(169)  Lorenz, M. R.; Holzapfel, V.; Musyanovych, A.; Nothelfer, K.; Walther, P.; 

Frank, H.; Landfester, K.; Schrezenmeier, H.; Mailänder, V. Uptake of 

Functionalized, Fluorescent-Labeled Polymeric Particles in Different Cell Lines 

and Stem Cells. Biomaterials 2006, 27 (14), 2820–2828. 

(170)  Kumari, S.; Mg, S.; Mayor, S. Endocytosis Unplugged: Multiple Ways to Enter 

the Cell. Cell Res. 2010, 20 (3), 256–275. 

(171)  dos Santos, T.; Varela, J.; Lynch, I.; Salvati, A.; Dawson, K. a. Effects of 

Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene 

Nanoparticles in Different Cell Lines. PLoS One 2011, 6 (9), e24438. 

(172)  Mellman, I. Endocytosis and Molecular Sorting. Annu. Rev. Cell Dev. Biol. 1996, 

12, 575–625. 

(173)  Rejman, J.; Oberle, V.; Zuhorn, I. S.; Hoekstra, D. Size-Dependent 

Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated 

Endocytosis. Biochem. J. 2004, 377 (Pt 1), 159–169. 

(174)  Conner, S. D.; Schmid, S. L. Regulated Portals of Entry into the Cell. Nature 



Chapter 7: References 

S. Haddad – September 2018   149 

2003, 422 (6927), 37–44. 

(175)  Doherty, G. J.; McMahon, H. T. Mechanisms of Endocytosis. Annu. Rev. 

Biochem. 2009, 78 (1), 857–902. 

(176)  Damm, E. M.; Pelkmans, L.; Kartenbeck, J.; Mezzacasa, A.; Kurzchalia, T.; 

Helenius, A. Clathrin- and Caveolin-1-Independent Endocytosis: Entry of Simian 

Virus 40 into Cells Devoid of Caveolae. J. Cell Biol. 2005, 168 (3), 477–488. 

(177)  Kettler, K.; Veltman, K.; van de Meent, D.; van Wezel, A.; Hendriks,  a J. 

Cellular Uptake of Nanoparticles as Determined by Particle Properties, 

Experimental Conditions, and Cell Type. Environ. Toxicol. Chem. 2014, 33 (3), 

481–492. 

(178)  McMahon, H. T.; Boucrot, E. Molecular Mechanism and Physiological Functions 

of Clathrin-Mediated Endocytosis. Nat. Rev. Mol. Cell Biol. 2011, 12 (8), 517–

533. 

(179)  Guo, C.-J.; Wu, Y.-Y.; Yang, L.-S.; Yang, X.-B.; He, J.; Mi, S.; Jia, K.-T.; 

Weng, S.-P.; Yu, X.-Q.; He, J.-G. Infectious Spleen and Kidney Necrosis Virus 

(a Fish Iridovirus) Enters Mandarin Fish Fry Cells via Caveola-Dependent 

Endocytosis. J. Virol. 2012, 86 (5), 2621–2631. 

(180)  Pelkmans, L.; Kartenbeck, J.; Helenius, A. Caveolar Endocytosis of Simian Virus 

40 Reveals a New Two-Step Vesicular- Transport Pathway to the ER. Nat. Cell 

Biol. 2001, 3, 473–484. 

(181)  Gonzalez-Gaitan, M.; Stenmark, H. Endocytosis and Signaling : A Relationship 

under Development Meeting. Cell 2003, 115, 513–521. 

(182)  Orellana-Tavra, C.; Mercado, S. a; Fairen-Jimenez, D. Endocytosis Mechanism 

of Nano Metal-Organic Frameworks for Drug Delivery. Adv. Healthc. Mater. 

2016, 5 (17), 2261–2270. 

(183)  Ivanov, A. I. Exocytosis and Endocytosis, 1st ed.; John M. Walker, Ed.; Human 

Press, 2008. 

(184)  Sarkar, K.; Kruhlak, M. J.; Erlandsen, S. L.; Shaw, S. Selective Inhibition by 

Rottlerin of Macropinocytosis in Monocyte-Derived Dendritic Cells. 

Immunology 2005, 116 (4), 513–524. 

(185)  Inal, J.; Miot, S.; Schifferli, J. A. The Complement Inhibitor, CRIT, Undergoes 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

150  S. Haddad – September 2018 

Clathrin-Dependent Endocytosis. Exp. Cell Res. 2005, 310 (1), 54–65. 

(186)  Yao, D.; Ehrlich, M.; Henis, Y. I.; Leof, E. B. Transforming Growth Factor-B 

Receptors Interact with AP2 by Direct Binding to B2 Subunit. Mol. Biol. Cell 

2002, 13 (6), 4001–4012. 

(187)  Carpentier, J. L.; Sawano, F.; Geiger, D.; Gorden, P.; Perrelet,  a; Orci, L. 

Potassium Depletion and Hypertonic Medium Reduce “non-Coated” and 

Clathrin-Coated Pit Formation, as Well as Endocytosis through These Two 

Gates. J. Cell. Physiol. 1989, 138 (3), 519–526. 

(188)  Guo, S.; Zhang, X.; Zheng, M.; Zhang, X.; Min, C.; Wang, Z.; Cheon, S. H.; 

Oak, M. H.; Nah, S. Y.; Kim, K. M. Selectivity of Commonly Used Inhibitors of 

Clathrin-Mediated and Caveolae-Dependent Endocytosis of G Protein-Coupled 

Receptors. Biochim. Biophys. Acta - Biomembr. 2015, 1848, 2101–2110. 

(189)  Dausend, J.; Musyanovych, A.; Dass, M.; Walther, P.; Schrezenmeier, H.; 

Landfester, K.; Maila, V. Uptake Mechanism of Oppositely Charged Fluorescent 

Nanoparticles in HeLa Cells. Macromol. Biosci. 2008, 8, 1135–1143. 

(190)  Harush-frenkel, O.; Debotton, N.; Benita, S.; Altschuler, Y. Targeting of 

Nanoparticles to the Clathrin-Mediated Endocytic Pathway. Biochem. Biophys. 

Res. Commun. 2007, 353, 26–32. 

(191)  Okamoto, C. T. Endocytosis and Transcytosis. Adv. Drug Deliv. Rev. 1998, 29, 

215–228. 

(192)  Ferrari, A.; Pellegrini, V.; Arcangeli, C.; Fittipaldi, A.; Giacca, M.; Beltram, F. 

Caveolae-Mediated Internalization of Extracellular HIV-1 Tat Fusion Proteins 

Visualized in Real Time. Mol. Ther. 2003, 8 (2), 284–294. 

(193)  Shin, J.-S.; Abraham, S. N. Caveolae as Portals of Entry for Microbes. Microbes 

Infect. 2001, 3 (9), 755–761. 

(194)  Manders, E. M. M., Verbeek, F. J., Aten, J. A. Measurement of Co-Localization 

of Objects in Dual-Colour Confocal Images. J. Microsc. 1993, 169, 375–382. 

(195)  Boltes, S.; Cordelieres, F. P. A Guided Tour into Subcellular Colocalization 

Analysis in Light Microscopy. J. Microsc. 2006, 224, 213–232. 

(196)  Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Targeting of Cancer 

Nanotherapeutics. Nano Rev. 2012, 1, 1–11. 



Chapter 7: References 

S. Haddad – September 2018   151 

(197)  Bonnet, S.; Archer, S. L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.; 

Thompson, R.; Lee, C. T.; Lopaschuk, G. D.; Puttagunta, L.; Bonnet, S.; et al. A 

Mitochondria-K+Channel Axis Is Suppressed in Cancer and Its Normalization 

Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell 2007, 11 (1), 37–

51. 

(198)  Michelakis, E. D.; Webster, L.; Mackey, J. R. Dichloroacetate (DCA) as a 

Potential Metabolic-Targeting Therapy for Cancer. Br. J. Cancer 2008, 99 (7), 

989–994. 

(199)  Porporato, P. E.; Filigheddu, N.; Pedro, J. M. B.-S.; Kroemer, G.; Galluzzi, L. 

Mitochondrial Metabolism and Cancer. Cell Res. 2017, 28 (3), 265–280. 

(200)  Wiemerslage, L.; Lee, D. HHS Public Access. J. Neurosci. Methods 2016, 262, 

56–65. 

(201)  Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry, 2nd ed.; John 

Wiley and Sons, 2006. 

(202)  Alkarakooly, Z.; Kilaparty, S. P.; Al-anbaky, Q. A.; Khan, M. S. Dichloroacetic 

Acid ( DCA )-Induced Cytotoxicity in Human Breast Cancer Cells Accompanies 

Changes in Mitochondrial Membrane Permeability and Production of Reactive 

Oxygen Species. 2014, 1234–1248. 

(203)  Fulda, S. Tumor Resistance to Apoptosis. Int. J. Cancer 2009, 124 (3), 511–515. 

(204)  Hanahan, D.; Weinberg, R. A. The Hallmarks of Cancer. Cell 2000, 100 (1), 57–

70. 

(205)  Mcilwain, D. R.; Berger, T.; Mak, T. W. Caspase Functions in Cell Death and 

Disease. 2013, 6, 1–29. 

(206)  Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting Mitochondria for Cancer Therapy. 

Nat. Rev. Drug Discov. 2010, 9, 447–464. 

(207)  Armstrong, J. S. Mitochondrial Medicine: Pharmacological Targeting of 

Mitochondria in Disease. Br. J. Pharmacol. 2007, 151 (8), 1154–1165. 

(208)  Galluzzi, L.; Larochette, N.; Zamzami, N.; Kroemer, G. Mitochondria as 

Therapeutic Targets for Cancer Chemotherapy. Oncogene 2006, 25 (34), 4812–

4830. 

(209)  Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria as Targets for Cancer 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

152  S. Haddad – September 2018 

Chemotherapy. Semin. Cancer Biol. 2009, 19 (1), 57–66. 

(210)  Kroemer, G.; Pouyssegur, J. Tumor Cell Metabolism: Cancer’s Achilles’ Heel. 

Cancer Cell 2008, 13 (6), 472–482. 

(211)  García-Sáez, A. J. The Secrets of the Bcl-2 Family. Cell Death Differ. 2012, 19 

(11), 1733–1740. 

(212)  Wei, M. C.; Zong, W.; Cheng, E. H.; Lindsten, T.; Ross, A. J.; Roth, K. A.; 

Macgregor, G. R.; Craig, B.; Korsmeyer, S. J. Proapoptotic Bax and Bak: A 

Requesite Gateway to Mitochondrial Dysfunction and Death. Science (80-. ). 

2001, 292 (5517), 727–730. 

(213)  Llambi, F.; Moldoveanu, T.; Tait, S. W. G.; Bouchier-Hayes, L.; Temirov, J.; 

McCormick, L. L.; Dillon, C. P.; Green, D. R. A Unified Model of Mammalian 

BCL-2 Protein Family Interactions at the Mitochondria. Mol. Cell 2011, 44 (4), 

517–531. 

(214)  Konopleva, M.; Contractor, R.; Tsao, T.; Samudio, I.; Ruvolo, P. P.; Kitada, S.; 

Deng, X.; Zhai, D.; Shi, Y. X.; Sneed, T.; et al. Mechanisms of Apoptosis 

Sensitivity and Resistance to the BH3 Mimetic ABT-737 in Acute Myeloid 

Leukemia. Cancer Cell 2006, 10 (5), 375–388. 

(215)  Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; 

Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; et al. An 

Inhibitor of Bcl-2 Family Proteins Induces Regression of Solid Tumours. Nature 

2005, 435 (7042), 677–681. 

(216)  Mason, K. D.; Vandenberg, C. J.; Scott, C. L.; Wei, A. H.; Cory, S.; Huang, D. 

C. S.; Roberts, A. W. In Vivo Efficacy of the Bcl-2 Antagonist ABT-737 against 

Aggressive Myc-Driven Lymphomas. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 

(46), 17961–17966. 

(217)  Kim, E. Y.; Jung, J. Y.; Kim, A.; Chang, Y. S.; Kim, S. K. ABT-737 Synergizes 

with Cisplatin Bypassing Aberration of Apoptotic Pathway in Non-Small Cell 

Lung Cancer. Neoplasia (United States) 2017, 19 (4), 354–363. 

(218)  Noll, T.; Schultze-Seemann, S.; Kuckuck, I.; Michalska, M.; Wolf, P. Synergistic 

Cytotoxicity of a Prostate Cancer-Specific Immunotoxin in Combination with the 

BH3 Mimetic ABT-737. Cancer Immunol. Immunother. 2018, 67 (3), 413–422. 



Chapter 7: References 

S. Haddad – September 2018   153 

(219)  Radha, G.; Raghavan, S. C. BCL2: A Promising Cancer Therapeutic Target. 

Biochim. Biophys. Acta - Rev. Cancer 2017, 1868 (1), 309–314. 

(220)  Liu, G.; Kelly, W. K.; Wilding, G.; Leopold, L.; Brill, K.; Somer, B. An Open-

Label, Multicenter, Phase I/II Study of Single-Agent AT-101 in Men with 

Castrate-Resistant Prostate Cancer. Clin. Cancer Res. 2009, 15 (9), 3172–3176. 

(221)  Indran, I. R.; Tufo, G.; Pervaiz, S.; Brenner, C. Recent Advances in Apoptosis, 

Mitochondria and Drug Resistance in Cancer Cells. Biochim. Biophys. Acta - 

Bioenerg. 2011, 1807 (6), 735–745. 

(222)  Crompton, M. The Mitochondrial Permeability Transition Pore and Its Role in 

Cell Death. Biochem. J. 1999, 341, 233–249. 

(223)  Desagher, S.; Martinou, J. C. Mitochondria as the Central Control Point of 

Apoptosis. Trends Cell Biol. 2000, 10 (9), 369–377. 

(224)  Madhok, B. M.; Yeluri, S.; Perry, S. L.; Hughes, T. a; Jayne, D. G. 

Dichloroacetate Induces Apoptosis and Cell-Cycle Arrest in Colorectal Cancer 

Cells. Br. J. Cancer 2010, 102 (12), 1746–1752. 

(225)  Cheng, G.; Zielonka, J.; McAllister, D.; Hardy, M.; Ouari, O.; Joseph, J.; 

Dwinell, M. B.; Kalyanaraman, B. Antiproliferative Effects of Mitochondria-

Targeted Cationic Antioxidants and Analogs: Role of Mitochondrial 

Bioenergetics and Energy-Sensing Mechanism. Cancer Lett. 2015, 365 (1), 96–

106. 

(226)  Sassi, N.; Mattarei, A.; Azzolini, M.; Szabo’, I.; Paradisi, C.; Zoratti, M.; 

Biasutto, L. Cytotoxicity of Mitochondria-Targeted Resveratrol Derivatives: 

Interactions with Respiratory Chain Complexes and ATP Synthase. Biochim. 

Biophys. Acta - Bioenerg. 2014, 1837 (10), 1781–1789. 

(227)  Rao, V. A.; Klein, S. R.; Bonar, S. J.; Zielonka, J.; Mizuno, N.; Dickey, J. S.; 

Keller, P. W.; Joseph, J.; Kalyanaraman, B.; Shacter, E. The Antioxidant 

Transcription Factor Nrf2 Negatively Regulates Autophagy and Growth Arrest 

Induced by the Anticancer Redox Agent Mitoquinone. J. Biol. Chem. 2010, 285 

(45), 34447–34459. 

(228)  Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.; Vasquez-Vivar, J.; 

Cheng, G.; Lopez, M.; Kalyanaraman, B. Mitochondria-Targeted 

Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

154  S. Haddad – September 2018 

and Therapeutic and Diagnostic Applications. Chem. Rev. 2017, 117 (15), 

10043–10120. 

(229)  Burns, R. J.; Smith, R. A. J.; Murphy, M. P. Synthesis and Characterization of 

Thiobutyltriphenylphosphonium Bromide, a Novel Thiol Reagent Targeted to the 

Mitochondrial Matrix. Arch. Biochem. Biophys. 1995, 322 (1), 60–68. 

(230)  Murphy, M. P. Selective Targeting of Bioactive Compounds to Mitochondria. 

Trends Biotechnol. 1997, 15 (8), 326–330. 

(231)  Smith, R. A. J.; Porteous, C. M.; Coulter, C. V.; Murphy, M. P. Selective 

Targeting of an Antioxidant to Mitochondria. Eur. J. Biochem. 1999, 263 (3), 

709–716. 

(232)  Han, M.; Vakili, M. R.; Soleymani Abyaneh, H.; Molavi, O.; Lai, R.; 

Lavasanifar, A. Mitochondrial Delivery of Doxorubicin via Triphenylphosphine 

Modification for Overcoming Drug Resistance in MDA-MB-435/DOX Cells. 

Mol. Pharm. 2014, 11 (8), 2640–2649. 

(233)  Kelso, G. F.; Porteous, C. M.; Coulter, C. V.; Hughes, G.; Porteous, W. K.; 

Ledgerwood, E. C.; Smith, R. A. J.; Murphy, M. P. Selective Targeting of a 

Redox-Active Ubiquinone to Mitochondria within Cells: Antioxidant and 

Antiapoptotic Properties. J. Biol. Chem. 2001, 276 (7), 4588–4596. 

(234)  Pathak, R. K.; Marrache, S.; Harn, D. A.; Dhar, S. Mito-DCA: A Mitochondria 

Targeted Molecular Scaffold for Efficacious Delivery of Metabolic Modulator 

Dichloroacetate. ACS Chem. Biol. 2014, 9 (5), 1178–1187. 

(235)  Boddapati, S. V.; D’Souza, G. G. M.; Erdogan, S.; Torchilin, V. P.; Weissig, V. 

Organelle-Targeted Nanocarriers: Specific Delivery of Liposomal Ceramide to 

Mitochondria Enhances Its Cytotoxicity in Vitro and in Vivo. Nano Lett. 2008, 8 

(8), 2559–2563. 

(236)  Biswas, S.; Dodwadkar, N. S.; Deshpande, P. P.; Torchilin, V. P. Liposomes 

Loaded with Paclitaxel and Modified with Novel Triphenylphosphonium-PEG-

PE Conjugate Possess Low Toxicity, Target Mitochondria and Demonstrate 

Enhanced Antitumor Effects in Vitro and in Vivo. J. Control. Release 2012, 159 

(3), 393–402. 

(237)  Bielski, E. R.; Zhong, Q.; Brown, M.; Da Rocha, S. R. P. Effect of the 

Conjugation Density of Triphenylphosphonium Cation on the Mitochondrial 



Chapter 7: References 

S. Haddad – September 2018   155 

Targeting of Poly(amidoamine) Dendrimers. Mol. Pharm. 2015, 12 (8), 3043–

3053. 

(238)  CRC Handbook of Chemistry and Physics, 86th ed.; Lide, D. R., Ed.; CRC Press: 

FL, 2005. 

(239)  Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications, 

Revised.; Ottewill, R. H., Rowell, R. L., Eds.; Academic press, 2013. 

(240)  Belmokhtar, C. A.; Hillion, J.; Segal-Bendirdjian, E. Staurosporine Induces 

Apoptosis through Both Caspase-Dependent and Independent Mechanisms. 

Oncogene 2001, 20, 3354–3362. 

(241)  Jessel, R.; Haertel, S.; Socaciu, C.; Tykhonova, S.; Diehl, H. a. Kinetics of 

Apoptotic Markers in Exogeneously Induced Apoptosis of EL4 Cells. J. Cell. 

Mol. Med. 2002, 6 (1), 82–92. 

(242)  Härtel, S.; Zorn-Kruppa, M.; Tykhonova, S.; Alajuuma, P.; Engelke, M.; Diehl, 

H. A. Staurosporine-Induced Apoptosis in Human Cornea Epithelial Cells in 

Vitro. Cytom. Part A  J. Int. Soc. Anal. Cytol. 2003, 55 (1), 15–23. 

(243)  Shutt, T. E.; McBride, H. M. Staying Cool in Difficult Times: Mitochondrial 

Dynamics, Quality Control and the Stress Response. Biochim. Biophys. Acta - 

Mol. Cell Res. 2013, 1833 (2), 417–424. 

(244)  Frazier, A. E.; Kiu, C.; Stojanovski, D.; Hoogenraad, N. J.; Ryan, M. T. 

Mitochondrial Morphology and Distribution in Mammalian Cells. Biol. Chem. 

2006, 387 (12), 1551–1558. 

(245)  Kamogashira, T.; Hayashi, K.; Fujimoto, C.; Iwasaki, S.; Yamasoba, T. 

Functionally and Morphologically Damaged Mitochondria Observed in Auditory 

Cells under Senescence-Inducing Stress. npj Aging Mech. Dis. 2017, 3 (1), 2. 

(246)  Mao, K.; Klionsky, D. J. Mitochondrial Fission Facilitates Mitophagy in 

Saccharomyces Cerevisiae. Autophagy 2013, 9 (11), 1900–1901. 

(247)  Rambold, A. S.; Kostelecky, B.; Elia, N.; Lippincott-Schwartz, J. Tubular 

Network Formation Protects Mitochondria from Autophagosomal Degradation 

during Nutrient Starvation. Proc. Natl. Acad. Sci. 2011, 108 (25), 10190–10195. 

(248)  Pathak, R. K.; Kolishetti, N.; Dhar, S. Targeted Nanoparticles in Mitochondrial 

Medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015, 7 (3), 315–329. 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

156  S. Haddad – September 2018 

(249)  Malone, J. H.; Oliver, B. Microarrays, Deep Sequencing and the True Measure of 

the Transcriptome. BMC Biol. 2011, 9, 1–9. 

(250)  Schena, M.; Shalon, D. Quantitative Monitoring of Gene Expression Patterns 

with a Complementary DNA Microarray. Science (80-. ). 1995, 270 (5235), 467–

470. 

(251)  Ringnér, M.; Ringner, M. What Is Principal Component Analysis? Nat 

Biotechnol 2008, 26 (3), 303–304. 

(252)  Mizutani, H.; Tada-Oikawa, S.; Hiraku, Y.; Kojima, M.; Kawanishi, S. 

Mechanism of Apoptosis Induced by Doxorubicin through the Generation of 

Hydrogen Peroxide. Life Sci. 2005, 76, 1439–1453. 

(253)  Burrow, S. M.; Phoenix, D. A.; Wainwright, M.; Tobin, M. J. Intracellular 

Localisation Studies of Doxorubicin and Victoria Blue BO in EMT6-S and 

EMT6-R Cells Using Confocal Microscopy. Cytotechnology 2002, 39, 15–25. 

(254)  Patel, S. S.; Belmont, B. J.; Sante, J. M.; Rexach, M. F. Natively Unfolded 

Nucleoporins Gate Protein Diffusion across the Nuclear Pore Complex. Cell 

2007, 129, 83–96. 

(255)  Alber, F.; Dokudovskaya, S.; Veenhoff, L. M.; Zhang, W.; Kipper, J.; Devos, D.; 

Suprapto, A.; Karni-Schmidt, O.; Williams, R.; Chait, B. T.; et al. The Molecular 

Architecture of the Nuclear Pore Complex. Nature 2007, 450, 695–701. 

 

 

 

 

 

 



Chapter 8: Appendices 

S. Haddad – September 2018   157 

8 APPENDICES 

APPENDIX 1 STATISTICAL SIGNIFICANCE OF VIABILITY RESULTS AFTER 

CRYOPRESERVATION FROM CHAPTER 3 ................................................................. 158 

APPENDIX 2 ENDOCYTOSIS PATHWAY STUDIES RESULTS FROM CHAPTER 4 .................. 159 

APPENDIX 3 MTS TOXICITY OF DCA, TPP, AND THE COMBINATION OF BOTH FROM 

CHAPTER 5 ............................................................................................................. 161 

 



Metal-Organic Frameworks as Intracellular Delivery Vectors 

158  S. Haddad – September 2018 

APPENDIX 1 STATISTICAL SIGNIFICANCE OF VIABILITY 

RESULTS AFTER CRYOPRESERVATION FROM CHAPTER 3 

Table A.1.1 Comparison of the viability of HeLa cells treated with different conditions pre-

freezing. Statistical significance, determined by one-way ANOVA (ns P > 0.05, * P ≤ 0.05, 

** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001). 

MOF vs. MOF 0 h 24 h 48 h 

Media vs. Treh ns ns ns 

Media vs. MOF ns * * 

Media vs. Treh + MOF ns ns ns 

Media vs. (+) **** **** **** 

Media vs. (-) ns * * 

Treh vs. Treh + MOF ns ns ns 

Treh vs. MOF ns ns * 

Treh vs. (+) **** **** **** 

Treh vs. (-) ns ns * 

Treh + MOF vs. MOF ns ns ns 

Treh + MOF vs. (+) **** **** **** 

Treh + MOF vs. (-) ns ns * 

MOF vs. (+) **** **** **** 

MOF vs. (-) ns ns ns 

(+) vs, (-) **** **** **** 
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APPENDIX 2 ENDOCYTOSIS PATHWAY STUDIES RESULTS 

FROM CHAPTER 4 

Table A2.1. Normalized internal fluorescence of HeLa cells incubated with UiO-66 and Zr-

based family of MOFs along with different pharmacological inhibitors. The values were 

normalized to a control incubated with the corresponding MOF in the absence of any inhibitor 

at 37 °C. 

MOF 4 °C Sucrose Chlorpromazine Nystatin Rottlerin 

50Zr-L1 13 ± 0.6 29 ± 1.9 86 ± 4.6 94 ± 6 83 ± 5 

75Zr-L1 14 ± 0.7 24 ± 3.8 43 ± 4.8 78 ± 5.8 75 ± 6.2 

92Zr-L1 15 ± 1.2 47 ± 3.4 44 ± 4.1 84 ± 9.2 78 ± 8.1 

260Zr-L1 13 ± 1.7 44 ± 1.9 27 ± 2.7 78 ± 3.1 75 ± 2.8 

Zr-L2 13 ± 0.9 20 ± 1.3 22 ± 0.5 73 ± 3 56 ± 3.5 

Zr-L3 16 ± 0.9 22 ± 3.9 19 ± 1.6 62 ± 4.7 49 ± 3.4 

Zr-L4 12 ± 0.9 20 ± 1.2 39 ± 2.3 68 ± 1.2 50 ± 1.2 

Zr-L5 26 ± 0.6 61 ± 8.1 90 ± 1.5 43 ± 1.5 68 ± 5 

Zr-L6 16 ± 0.9 69 ± 6.3 90 ± 1.9 42 ± 1.6 66 ± 10 

Zr-L1 44 ± 3.3 27 ± 1.1 37 ± 4.7 107 ± 7.1 79 ± 6.1 

Zr-L1-FA 14 ± 1.2 36 ± 4.1 96 ± 3.1 62 ± 2.1 81 ± 4.6 

Zr-L1-Hep 20 ± 1.3 41 ± 4.2 70 ± 1.5 60 ± 1.5 83 ± 3.0 

Zr-L1-Lact 60 ± 6.5 50 ± 5.2 84 ± 11.4 106 ± 13 95 ± 10.2 

Zr-L1-PNIPAM 22 ± 1.3 54 ± 0.9 105 ± 5.3 103 ± 3.5 80 ± 4.3 

Zr-L1-PEG550 36 ± 1.8 37 ± 1.6 26 ± 1.9 106 ± 3.3 89 ± 3.4 

Zr-L1-PEG2000 23 ±1.2 29 ± 2.4 27 ± 1.5 51 ± 1.7 44 ± 4.1 
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Table A2.2. Comparison of the normalised intracellular fluorescence of HeLa cells treated 

with each MOF and different pharmacological inhibitors. Statistical significance, determined by 

unpaired t test (ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001).  

MOF vs. MOF Sucrose Chlorpromazine Nystatin Rottlerin 

 Clathrin Clathrin Caveolae Macropinocytosis 

50Zr-L1 vs. 75Zr-L1 ns ** ns ns 

50Zr-L1 vs. 92Zr-L1 ** ** ns ns 

50Zr-L1 vs. 260Zr-L1 ** *** ns ns 

75Zr-L1 vs. 92Zr-L1 * ns ns ns 

75Zr-L1 vs. 260Zr-L1 ** * ns ns 

92Zr-L1 vs. 260Zr-L1 ns * ns ns 

 

Table A2.3. Comparison of the normalised intracellular fluorescence of HeLa cells treated 

with each MOF and different pharmacological inhibitors. Statistical significance, determined by 

unpaired t test (ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001). Rottlerin 

(macropinocytosis) has not been included because all the results show no significance. 

MOF vs. MOF Sucrose Chlorpromazine Nystatin 

 Clathrin Clathrin Caveolae 

Zr-L2 vs. Zr-L3 ns ns ns 

Zr-L2 vs. Zr-L4 ns ** ns 

Zr-L3 vs. Zr-L4 ns ** ns 

Zr-L2 vs. Zr-L5 ** **** *** 

Zr-L2 vs. Zr-L6 *** **** **** 

Zr-L3 vs. Zr-L5 ** **** ** 

Zr-L3 vs. Zr-L6 *** **** ** 

Zr-L4 vs. Zr-L5 ** **** *** 

Zr-L4 vs. Zr-L6 *** **** *** 

Zr-L5 vs. Zr-L6 ns ns ns 

 

 



Chapter 8: Appendices 

S. Haddad – September 2018   161 

APPENDIX 3 MTS TOXICITY OF DCA, TPP, AND THE 

COMBINATION OF BOTH FROM CHAPTER 5  

 

 

Figure A.3.1. Viability of MCF7 cells as determined by the MTS assay after incubation with 

DCA, TPP, and a combination of both for 72 h. 
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