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Abstract

Word representations are mathematical objects which capture the semantic and syntactic
properties of words in a way that is interpretable by machines. Recently, the encoding of word
properties into a low-dimensional vector space using neural networks has become popular.
Neural representations are now used as the main input to Natural Language Processing (NLP)
applications and in most areas of NLP, achieving cutting-edge results.

Our work extends the usefulness of neural representations, with a particular emphasis
on the biomedical domain which is linguistically highly challenging. We focus on three
directions: first, we present a comprehensive study on how the quality of the representation
model varies according to its training parameters. For this, we implement a set of well-
established models with different training settings regarding the size of input corpora, model
architectures and hyper-parameters, and evaluate them thoroughly using the standard methods.
Our best model significantly outperforms the baseline one, demonstrating the high impact of
training parameters and the necessity of their optimization. The study provides an important
reference for researchers using neural representations for biomedical NLP. Second, we
introduce two novel datasets for evaluating noun and verb representations in biomedicine.
These datasets are designed to be consistent with those available for mainstream NLP. They
enable, for the first time, evaluation of verb representations in the domain. Last, we propose a
neural approach to facilitate the development of a VerbNet-Style classification in biomedicine:
we start from a small manual classification of biomedical verbs and apply a state-of-the-art
neural representation model, developed explicitly for verb optimization, to expand that
classification with new members. Evaluation of the resulting resource shows promising
results when representation learning is performed using verb-related contexts. Additionally,
our human- and task-based evaluations reveal that the automatically-created resource is highly
accurate, suggesting that our method can be used to facilitate cost-effective development of
verb resources in biomedicine.
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Chapter 1

Introduction

The performance of Natural Language Processing (NLP) systems depends heavily on the
choice of data representation. Hence, there is active research in the NLP community regarding
how to best represent data in terms of features that can support downstream applications. In
current NLP, such techniques are commonly based on Representation learning.

1.1 Word representation learning

Representation learning, when applied to textual data, generates word representations which
capture the linguistic properties of words in a mathematical form (e.g. vectors). Each
vector dimension corresponds to a feature that might have a semantic or syntactical inter-
pretation [Turian et al., 2010]. Early studies mostly use human experts to propose a set of
representative features for the data, which is expensive to obtain. Recently, the unsupervised
approach, which encodes word meanings into a low-dimensional space using neural networks
has been suggested as an alternative [Bengio et al., 2003]. Such an approach, namely neural
embeddings or word embeddings, represents each word as a dense vector of real numbers,
where synonyms appear as neighbours in vector space. It can learn features unsupervisedly
from large unlabelled corpora.

Despite word embeddings’ usefulness, most studies adopt a unified learning approach
towards different word-types (e.g. nouns and verbs). Since individual word-type often has
certain unique linguistic properties, a single learning approach generally cannot capture
the semantics of all word-types. Hence, there is a need to fine-tune representation learning
algorithms so that they can effectively learn the properties for individual word-types (e.g.
verbs).

While word embeddings have been shown to be beneficial in recent work, most of these
studies are carried out with general-domain texts and evaluation datasets, and their results
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do not necessarily apply to texts in other domains (e.g. biomedicine) that are linguistically
distinct from general English. To get the maximal benefit from using word embeddings for
biomedical NLP tasks, they need to be induced and evaluated using in-domain texts.

1.2 Biomedical NLP

The application of NLP methods to the biomedical domain has long been active because
automated text processing systems need to handle the exponential growth of in-domain litera-
ture. The performance of these methods depends heavily on the choice of data representation.
Thus, much of the efforts in biomedical NLP focus on how to best represent biomedical texts
in terms of features that can support effective applications.

The quality of word representations relates closely to their training settings, including the
sizes of input corpora, model architectures and hyper-parameters. In recent years, a number
of novel representation learning models have been proposed and they have shown to be useful
in supporting a range of NLP tasks. However, only few studies compare among existing
models under different training settings. Hence, the impact level of a particular model’s
training parameters towards its quality is still uncertain.

Another critical concern stems from the means to measure the quality of representation
models. Evaluation methods are broadly categorized into two types: the intrinsic and extrinsic
evaluations. A typical intrinsic evaluation is the word similarity task. Given a list of word
pairs rated with different degrees of similarity by annotators, the task compares the similarity-
ranking produced by humans and representation models. The best model is deemed to be
the one that gives the closest match to humans’ ground-truth. On the other hand, extrinsic
evaluation refers to the task-based evaluation, where the quality of a model is measured by
how well it performs when used as a feature for NLP tasks. Since intrinsic evaluation is easy
to implement, it is commonly used as a proxy measurement before a model is deployed in
NLP applications. Consequently, intrinsic evaluation is expected, to an extent, to reflect how
individual models perform in extrinsic tasks, but this presumption has not been verified in the
research community. Furthermore, although the verb is vital to the meaning interpretation of
biomedical language, the field currently lacks intrinsic evaluations for verb representations.

1.3 Verb classification

The verb forms an indispensable part of sentences, especially biomedical verbs that describe
the actions between entities because it frames the types, numbers, and relations of participants
in the event it describes. To help biomedical NLP researchers in identifying the particular
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type of relation between entities described in the text, it is essential to have resources that
gather the syntactic and semantic information about verbs. An example in the general
domain is VerbNet [Kipper-Schuler, 2005]. It contains information about different linguistic
properties of a set of verbs and the relationships among them. Verbs are grouped into a finite
number of semantic classes, and members in the same class share similar properties (e.g.
syntax). Though VerbNet has shown to be useful to support a wide range of NLP tasks,
including semantic role labelling and other text mining applications [Lippincott et al., 2013;
Rimell et al., 2013; Schmitz et al., 2012], it is created manually by linguists to describe verb
properties in general English, so it provides limited coverage of verbs for other domains
(e.g. biomedicine) where the linguistic properties are different from general English. It
is foreseeable that resources of a similar nature can benefit biomedical NLP, yet the vast
majority of in-domain resources merely cover noun concepts, and only a few small-scale
resources for verbs can be found. Also, most resources are manually created and difficult to
extend.

There is a necessity for the use of NLP techniques to automate the construction of
lexicons. In this regard, automatic lexical acquisition refers to the automatic or semi-
automatic process of learning lexical resources from unstructured text. Recent studies
demonstrate that VerbNet-style lexicon can be acquired unsupervisedly from general and
biomedical texts through automatic verb classification [Joanis et al., 2008; Kawahara et al.,
2014b; Korhonen et al., 2006, 2008; Peterson et al., 2016; Sun, 2013; Vlachos et al., 2009].
However, existing approaches rely heavily on time-consuming feature engineering processes
to extract linguistic properties from corpora. In contrast, unsupervised neural embedding
methods provide an alternative to learning word features from a large unlabelled text. They
have shown to be effective for inducing verb lexicons in the general domain [Vulić et al.,
2017]. In the biomedical domain, studies of similar nature are limited partly because there is
currently a lack of in-domain (intrinsic) evaluation for verb representations.

In general, representation learning is an important technique in NLP because it efficiently
extracts useful features from data. The quality and usefulness of word representations
obtained can be further improved through various ways such as optimizing their training
parameters and developing word-type specific learning approaches. Despite this, biomedical
verb representations currently lack an intrinsic evaluation metric and other measures that
can effectively reflect the performance of representation models in extrinsic tasks. Lastly,
although verbs are essential, most existing lexicons in biomedicine only cover nouns and are
manually created; therefore, to have verb lexicons together with methods that can automate
lexical acquisition are crucial.
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1.4 Our contributions

This thesis aims to extend the utility of word representations to a domain which has distinct
language properties as compared to general English (i.e. biomedicine) as well as to a lexical
task of specific word-types (i.e. verbs).

Our contributions include:

• We investigate how the state-of-the-art representation model (namely, the word2vec
package, [Mikolov et al., 2013a]) developed for general English can be transferred
to a new domain. We experiment with biomedical texts and explore how the sizes
of input corpora, model architectures, and hyper-parameters individually affect the
quality of neural representations, as measured with intrinsic and extrinsic evaluations
in biomedicine. We observe that models perform notably better (5 points in F-score) in
practical NLP tasks after fine-tuning for in-domain text. Our fine-tuned model also
achieves the state-of-the-art score in another study [Baker et al., 2016].

• Existing intrinsic evaluation datasets in biomedicine measure the quality of noun
representations only. Additionally, these benchmarks fail to reflect how well individual
models perform in practical NLP tasks. Hence, we create two new evaluation datasets:
Bio-SimVerb and Bio-SimLex, which facilitate evaluations of biomedical verb and
noun representations. Compared with existing results in biomedicine, the evaluation
results from our datasets correlate better with the performance of NLP tasks.

• We explore how unsupervised neural representations can be used to facilitate cost-
effective lexical acquisition for biomedical verbs. In particular, we propose an approach
that can automatically identify the set of contributive contexts for learning biomedical
verb representations from large amounts of text without manual feature engineering.
As evaluated with Bio-SimVerb (our proposed evaluation dataset), the representation
model shows improvement when it is trained using only verb-related contexts. We
then apply our verb-optimized model to a small manual classification of biomedical
verbs and generate a large lexical class of biomedical verbs.

• We provide both qualitative and quantitative evaluations for our automatically-acquired
lexical classes. We illustrate through human- and task-based evaluations that lexical
classes, as induced by verb-optimized representations, are highly accurate. They
include novel, valid member verbs and classes, and can provide useful features to tasks
like topics and relations identification in scientific abstracts.
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1.5 Thesis outline

The remainder of this thesis is structured into six chapters. The brief overview of each chapter
is as followed:

• In chapter 2, we present the background context and related literature for word repre-
sentation models and describe their evaluation metrics that are used in this thesis.

• In chapter 3, we implement the cutting-edge representation learning approach, perform-
ing both intrinsic and extrinsic evaluations, in order to investigate its optimal training
settings (e.g. model architectures and hyper-parameters) for biomedical NLP tasks.
We highlight some notable practices and settings that are worth noticing when training
word representations for biomedical tasks. Most importantly, when we assess the con-
text window size (one of the training parameters), we find that results from all existing
intrinsic evaluation benchmarks in biomedicine fail to reflect how individual models
perform in extrinsic tasks (referred to as intrinsic–extrinsic contradiction henceforth).

• In chapter 4, we further look into the intrinsic–extrinsic contradiction and investigate
whether this issue is domain-dependent. We train a set of representation models on
general-domain text using different context window sizes and performing both intrinsic
and extrinsic evaluations using general-domain datasets. We have observed a similar
contradiction for general-domain evaluations and models.

• In chapter 5, we describe the creation of two new intrinsic evaluation datasets: Bio-
SimVerb and Bio-SimLex. They can be used to evaluate noun and verb representations
in biomedicine. They are created to address the intrinsic–extrinsic contradiction which
is identified previously in chapter 3 and chapter 4, and they allow evaluations for
representation models of other word-types such as verbs in biomedicine.

• In chapter 6, we investigate how word representations can be optimized for capturing
semantic properties of biomedical verbs. We take our optimized model to construct
a verb lexicon. In addition to evaluating our lexicon against human judgments, we
also perform the task-based evaluation on text classification and relation classification,
demonstrating word representations, after performing verb-optimization, have the
potential to induce type-specific resources which can be used to support NLP tasks in
biomedicine.

• In chapter 7, we summarize the contributions of the thesis and provide directions for
future work.
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1.6 Relevant publications

A number of peer-reviewed publications were produced while conducting the work in this
thesis. They are mentioned below, and a note is made to their relevant chapters.

1. How to train good word embeddings for biomedical NLP [Chiu et al., 2016a].

We conduct a comprehensive study to investigate the optimal settings (the size of
input corpora, model architectures and hyper-parameters) to train word representations
for biomedical named entity recognition. We report a notable improvement in both
intrinsic and extrinsic evaluation after the optimization, highlighting its importance
when using representation models in practical biomedical tasks. Apart from noticing
that a larger corpus does not necessarily guarantee a better result, we also reveal that
one training parameter can lead to contradictory results between intrinsic and extrinsic
evaluations (i.e. the intrinsic–extrinsic contradiction). This publication is relevant to
Chapter 3.

2. Intrinsic evaluation of word vectors fails to predict extrinsic performance [Chiu
et al., 2016b].

After we observe the intrinsic–extrinsic contradiction in existing biomedical datasets,
we further examine whether such issue is domain-specific and conduct experiment
using general texts, finding evidence that the intrinsic–extrinsic contradiction is domain-
independent. In experimenting, an exception intrinsic dataset in the general domain is
found (SimLex-999, [Hill et al., 2015]). We hypothesize that its consistent result with
extrinsic evaluation can be attributed to its unique design protocol which distinguishes
between the concepts of synonymy and relatedness (e.g. pill and tablet v.s. doctor
and medicine). We thus follow its design principle and develop two novel intrinsic
datasets for biomedicine: Bio-SimLex and Bio-SimVerb. This publication is relevant
to Chapter 4.

3. Bio-SimVerb and Bio-SimLex: wide-coverage evaluation sets of word similarity
in biomedicine [Chiu et al., 2018].

Given the intrinsic–extrinsic contradiction in existing biomedical evaluation standards,
we create Bio-SimLex and Bio-SimVerb which evaluate noun and verb representations
in biomedicine respectively. Both datasets show a more consistent intrinsic–extrinsic
estimation as compared with all existing intrinsic datasets in biomedicine. Bio-SimVerb
also symbolizes the first intrinsic evaluation for verb representations in biomedicine.
This publication is relevant to Chapter 5.
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4. A Neural Classification Method for Supporting the Creation of BioVerbNet [Chiu
et al., 2019].

We extend the usefulness of representation models by optimizing their learning for a
particular word-type: verbs. While existing methods typically deploy a single learning
approach for different word-types in corpora, we show that the quality of representation
learning for verbs can be further improved by filtering out those syntactic contexts
which are less contributive to verb semantics (e.g. noun modifiers). In view of a lack
of large-scale verb lexicon in biomedicine, we further apply the verb-optimized repre-
sentations to construct a large lexical class for biomedical verbs. Human validation by
domain experts reveal that the resource, as induced by a verb-optimized representation
model, is highly accurate, suggesting that it can facilitate cost-effective development
of verb lexicons. This publication is relevant to Chapter 6.





Chapter 2

Background

This chapter provides the reader with background information relevant to our work. We
first summarize the well-established algorithms and evaluation metrics that are used for
representation learning, followed by a review on how they have been applied in biomedical
Natural Language Processing (NLP). Then, we describe some lexical resources for NLP
(mainly on verbs), and provide a survey on approaches used for lexical acquisition (both the
manual and automatic ones), covering the data, features and models used in these approaches.

2.1 Representation learning

For many NLP applications, the choice of data representation is a critical aspect of achieving
strong performance. So much of the effort in deploying NLP algorithms goes into feature
engineering that can best represent linguistic features in data that can support downstream
applications. Though useful, feature engineering suffers from several disadvantages. First,
feature engineering can be time-consuming and often requires expert knowledge to produce
informative features. Second, feature engineering is computationally demanding since it
often requires mature NLP pipelines, such as part-of-speech (POS) tagging, dependency
parsing, and named entity Recognition (NER), to extract features from the text. Last, the set
of extracted features are often domain-dependent, which implies they may not be universally
representative to the text in every domain.

To ease the use of feature engineering, one option is to automate the feature learning
process. In this regard, representation learning refers to the set of techniques that automati-
cally discovers and extracts useful features in data needed for classification and prediction
tasks [Bengio et al., 2013]. Representation learning, when applied to textual data, generates
the word representation which captures the linguistic features of words in vector form. Each
word is associated with a finite-dimensional vector of real numbers (better known as word
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vector), and each vector dimension corresponds to a feature which might have a semantic or
syntactic meaning [Turian et al., 2010].

Representation learning is developed on the basis of the distributional hypothesis, which
suggests that lexical items with similar distributions share similar meanings. More specifi-
cally, words that are used and occur in the same contexts tend to have similar meanings [Har-
ris, 1954]. Thus, the core principle of word representation learning algorithms is to find
distributionally similar words (e.g. words having similar co-occurrence counts in corpora)
and assign them word representations that can map them to proximate regions in vector
space. Since distributional information is largely available for many languages and can be
extracted easily from large unannotated texts without depending on other NLP pipelines,
the unsupervised learning of word representations using the distributional hypothesis has
become widely popular.

Recent literature has suggested methods using neural networks to learn word represen-
tations [Bengio et al., 2003]. Thus far, neural representations have been widely-used to
provide useful features to many successful NLP applications. Nevertheless, most existing
models deploy a single learning algorithm and representational form for all words in the
corpus; this disregards the individual word-type (nouns/verbs) and text-domain differences.
Applying learning algorithms tailored to individual word-types is essential not only because
each word-type often has some unique linguistic properties that are distinct from one another,
but also learning algorithms can greatly extend the usefulness of word representations for
applications of a particular word-type (e.g. building verb lexical resources). Besides, work
in domain-NLP (e.g. biomedicine) has revealed that representation learning tends to be
domain-dependent [Stenetorp et al., 2012], implying that representation models need to be
learned from the in-domain text in order to obtain the maximal benefit for domain-NLP tasks.
The current challenge, therefore, is to optimize these techniques for word-type (verbs) and
domain-specific (biomedicine) applications. Next, we will describe some well-known models
in representation learning, along with their evaluation methods.

2.1.1 Representation models

Building a vector representation of word semantics begins with extracting distributional
information such as the co-occurrence frequencies between words from a text corpus. To
illustrate, consider three sentences below:

1. I love chemistry.

2. I love maths.
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3. I tolerate biology.

When one extracts co-occurrence frequencies at the sentence level, every word is said to
be in the context of another word in the same sentence, thus the corpus can be represented in
the following matrix form:

M =

I love Chemistry Maths tolerate Biology



I 0 2 1 1 1 1
love 2 0 1 1 0 0

Chemistry 1 1 0 0 0 0
Maths 1 1 0 0 0 0

tolerate 1 0 0 0 0 1
Biology 1 0 0 0 1 0

M represents the matrix of co-occurrence frequencies of words in the corpus. Each row
of M is interpreted as the vector representation of the word corresponding to the row, and
the columns are features that capture the word semantics. The similarity between words
Chemistry and Biology can be computed as cosine( ⃗Chemistry, ⃗Biology) = 0.5.

Counts weighting

The co-occurrence matrix can be adjusted in a way that gives higher weight to less frequent
co-occurrence pairs to signify the more informative context words out of the common ones.
Other types of weights, including the Pointwise mutual formation (PMI) [Church and Hanks,
1990], have also been suggested in literature. PMI is given as:

log
P(x,y)

P(x)P(y)
(2.1)

P(x,y) is the joint probability of word x and y, whereas P(x) and P(y) is the probability
of word x and y individually appearing in the text. In addition to this, the co-occurrence
matrix can also be designed to capture syntactic features of words by considering the context
of a word to be words that are co-related to it by a syntactic dependency relation in the
text [Baroni and Lenci, 2011; Lin, 1998; Padó and Lapata, 2007].

Neural embeddings

Because the co-occurrence matrix requires a high vector dimension (i.e. the number of
columns in M) to represent every word-to-word co-occurrence in a large corpus, few methods
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that obtain lower dimensional representations from a matrix have been proposed (e.g. Prin-
cipal Component Analysis, PCA). What is becoming popular is encoding word semantics
into a dense vector using a neural network. This method is commonly known as Word
embeddings or Neural embeddings. Neural embeddings’ learning algorithm functions much
like a language modelling task, whose goal is to predict the next word (referred to as contexts
henceforth) given the previous ones in a sentence. Each word is represented as a finite-
dimensional vector of real numbers, and the objective is to maximize the joint probability of
a word and its contexts in terms of word vectors using a feed-forward neural network. Word
vectors are updated using back-propagation and gradient descent.

Continuous Bag-of-Words (CBOW) and Skip-gram

The CBOW and Skip-gram are two cutting-edge representation learning algorithms intro-
duced by Mikolov et al. [2013a,b] as part of the word2vec tool. CBOW and Skip-gram
have been shown to produce highly competitive neural embeddings in many intrinsic and
extrinsic tasks [Baker et al., 2016; Pyysalo et al., 2013a; Rei et al., 2016; Tsvetkov et al.,
2015], as compared to early models such as Random Indexing [Kanerva et al., 2000] and
Latent Semantic Analysis [Landauer and Dumais, 1997], among others.

CBOW and Skip-gram learn word representations through a neural network, which is
composed of an input layer, a fully connected hidden layer, and an output layer. The input
layer size equals to the vocabulary size of the corpus, and each word is represented as a
one-hot vector. (i.e. a vector of size |V | where one dimension of the vector is set to 1
to indicate a word, while other dimensions are set to 0). The hidden layer corresponds
to the dimensions of the output word vectors. If a corpus consists of |V | words and D is
the dimension of these word vectors, then the hidden layer will be a matrix of size V ×D,
where each row corresponds to a word (as illustrated in Fig 2.1 and Fig 2.2). The hidden
layer output is essentially the product of the hidden layer weight matrix (which are the
learned representations). The size of the hidden layer is a hyper-parameter pre-defined by
users. While a higher dimension tends to capture better word representations, their training
produces a larger word representation matrix and is more computationally costly [Mikolov
et al., 2013c].

CBOW and Skip-gram have the objectives of maximizing the probability of an individual
word given its contexts: P(wt |c(wt));w ∈V , where wt refers to the root word (i.e. the target
word to be trained), V is the vocabulary of the corpus, and c(wt) is the set of context words
that surround the root. The size of the context window defines the range of words to be
included as the context of a root word, which again, is a hyper-parameter pre-defined by
users. For instance, a window size of 2 takes two words before and after a root word as its
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Fig. 2.1 An illustration of the CBOW model with window size 2. The model is predicting the
root word ‘brown’ given the context ‘the quick fox jumps’. V is the total words in the corpus,
and D is the dimension of these word vectors. The symbol ∑ implies the average of the input
context word (c(wt)) vectors multiplied by the hidden layer weights. The Softmax function
estimates a probability distribution over all words in the vocabulary.

Fig. 2.2 An illustration of the Skip-gram model with window size 2. The model is predicting
the root word ‘brown’ given the context ‘the’. Every word-context pair will be trained
individually. V is the total words in the corpus, and D is the dimension of these word vectors.
The Softmax function estimates a probability distribution over all words in the vocabulary.
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contexts for training. The window size is an important hyper-parameter in representation
learning models because it controls the number of words to be considered as the context
for representing an individual word. It may need a wider window when training on the
text that is full of long sentences containing complex clausal structures (e.g. biomedical
literature). Additionally, it has been shown that window size of a model influences the
types of word semantics it captures: a larger window size emphasizes the learning of topic
similarity between words, while a narrow context window leads the representation learning
to primarily capture the word function [Turney, 2012].

A key difference between the trainings of CBOW and Skip-gram is the differentiated
ways of denoting the context words (i.e. c(wt)). In CBOW, context is denoted as the average
of word vectors c⃗i within the window (size = i), which is calculated as followed:

c(wt) =
1

|c(wt)|

(
∑

ci∈c(wt)

c⃗i

)⊤
(2.2)

In contrast, Skip-gram considers each context word in a window as a distinct vector,
which is calculated as:

c(wt) =
(

c⃗i

)⊤
(2.3)

Consequently, the output layer generates a probability value for the root word. This is
done by converting the activation values output by the hidden layer into probabilities using
the Softmax function as follows 1:

P(wt |c(wt)) =
exp( ⃗c(wt)

⊤
· w⃗t)

∑vi∈V exp( ⃗c(wt)
⊤
· v⃗i)

(2.4)

The architectures of CBOW and Skip-gram share similar training parameters (e.g. context
window size and vector dimension). Nevertheless, Skip-gram individually maps every word-
context pair within a context window, making it intractable when used with a large amount of
training data. Thus, its approximation counterpart – CBOW is introduced. It only estimates
the probability of each root word with the average of contexts within the window. Other
approximation techniques, such as the negative sampling and the sub-sampling 2, are also
introduced as user-defined parameters in the word2vec package. These parameters control
the number of training examples and facilitate the effective Skip-gram training in a large
corpus. However, it is still uncertain how these training parameters influence the quality of
the learned model.

1Exp stands for the Exponential function
2The description of the parameters is provided in Section 3.3.3
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Context feature

In CBOW and Skip-gram, the representation of a word is learned by predicting all its neigh-
bouring words within a window (contexts), assuming all contexts are useful. However, some
contexts (e.g. stop words) co-occur with many words and thus are less informative features
for distinguishing one word from another. To illustrate, when considering the similarity
between the words doctor and nurse, the context hospital is more indicative than the contexts
have or like. Additionally, some contexts that are useful for the representation learning of
one word-type (e.g. nouns) may be uninformative for another one. For instance, a noun
pre-modifier may be useful for learning noun representations but not verb representations.
Consequently, other sources of contexts, such as the dependency relation between words,
have been suggested in the literature. Such contextual features are shown to yield word
vectors that follow functional similarity instead of the usual topical similarity [Turney, 2012].
In contrast, recent studies have highlighted the importance of developing learning algorithms,
as well as exploring contexts for individual word-types [Schwartz et al., 2015; Vulić et al.,
2017]. For example, Schwartz et al. [2015] expressed that symmetric patterns (e.g. x and y)
yield significant improvements in learning representations for adjectives and verbs, while the
traditional bag-of-words contexts are still the optimal choice for noun representation learning.
Such word-type specific optimization can greatly extend the usefulness of representation
models for tasks relating to a particular word-type (e.g. automatic lexical acquisition for
verbs).

2.1.2 Evaluations for word representations

Two types of evaluations are commonly used to measure the quality of representation models:
intrinsic and extrinsic evaluations. The typical intrinsic evaluation is word similarity, which
consists of a list of word pairs which have been rated by humans with different degrees
of similarity. Every rating measures the similarity between two words as perceived by a
human; these words are rated on a scale of 1-10 (or any other scale provided individually
for every dataset). These ratings are then aggregated across all raters to obtain an average
measure of similarity for each word pair. A higher rating implies a more similar pair (e.g.
quick/rapid: 8.75, word/dictionary: 3.68). To measure the intrinsic quality of a model, the
researchers compute the cosine similarity of these word pairs by their corresponding vector
representation. Then they measure the Spearman’s rank correlation coefficient between the
similarity-ranking produced by humans and models. The quality of a model is determined by
the proximity between its similarity-ranking and the human ranking.
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Conversely, in extrinsic evaluation, the quality of a model is estimated by how well
it performs in NLP tasks. The most common performance metric is accuracy (A), which
measures the proportion of instances that a classifier predicted the labels correctly:

A =
T P+T N

T P+FP+T N +FN
(2.5)

T P stand for the true positives, FP are the false positives, T N are the true negatives, FN
are the false negative instances in the evaluation set.

The accuracy metric is sensitive to the size of datasets. If negative examples dominate a
dataset, a trained classifier may be well-acquainted to classify negative examples but not the
positive ones. The accuracy metric will fail to reflect such a scenario because the number of
T N is still high even if T P is poorly predicted by the classier.

Precision(P) and recall(R) are suggested to address this issue. Precision measures the
proportion of the positively classified instances that are correctly predicted by the classifier,
whereas recall measures the proportion of positive instances in the data that the classifier is
predict correctly. They are defined as followed:

P =
T P

T P+FP
(2.6)

R =
T P

T P+FN
(2.7)

Precision(P) and recall(R) are often combined using the harmonic mean, which is known
as the F1score:

F1 =
2PR

P+R
(2.8)

The ‘1’ in F1 implies that both recall and precision are weighted equally. It is possible to
select different weights like F0.5 which give more weight to recall. In this work, all mentions
of F-score refers to the standard F1.

Evaluation resources in the general domain

For intrinsic evaluation, many word similarity datasets with different characteristics are cre-
ated in the general domain. The sizes of these datasets vary largely, with the smaller datasets
containing only 30 word pairs (MC-30) [Miller and Charles, 1991] to the larger datasets
containing 3,000 word pairs (MEM-3000) [Bruni et al., 2012]. Some datasets are designed
to evaluate the representations of a specific word-type likes nouns (RG-65) [Rubenstein and
Goodenough, 1965] or verbs (YP-130) [Yang and Powers, 2006]. Recently, literature has
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shown that the word pairs in most datasets are assessing both similarity and relatedness
instead of exclusively assessing word similarity [Hill et al., 2015]. For example, company
and stock are rated more similar than train and car, even though train and car share more
common attributes (e.g. wheels and windows) than company and stock which are loosely
related. Since the notion of word similarity is subjective and it is commonly confused with
relatedness, the similarity and relatedness are suggested to be rated separately [Faruqui
et al., 2016]. Subsequently, two word similarity datasets: SimLex-999 [Hill et al., 2015] and
SimVerb-3500 [Gerz et al., 2016] are created to model attributional similarity rather than
relatedness. The former contains a balanced set of noun, verb and adjective pairs, whereas
the latter focuses on the evaluation of verb semantics.

Word similarity evaluation is easy to implement, and it can quickly assess how well the
notion of word similarity according to humans is captured by the word representations. On
the other hand, models can also be evaluated by their utilities as features in extrinsic tasks,
such as text classification. With a lack of standardized extrinsic evaluation methods, intrinsic
evaluation is therefore deemed to be a surrogate that provides quick estimation for models.
Intuitively, models that can capture word similarity might perform well on tasks that require
a notion of explicit semantic similarity between words like named entity recognition (NER).
However, there are no empirical studies of how intrinsic evaluation is representative of the
performance of models in their extrinsic tasks.

Recently, neural embeddings have been consistently proven to be useful in many NLP
applications like NER and automatic lexical acquisition [Ma and Hovy, 2016; Vulić et al.,
2017], yet most studies only involve general-domain texts and evaluation datasets, and
their results do not necessarily apply to domain-NLP tasks (e.g biomedicine). For this,
models need to be trained and evaluated with in-domain datasets for optimal performance.
This would require resources such as scientific literature, evaluation datasets, lexicons, and
terminologies specific to the domain.

2.2 Biomedical NLP

The application of NLP methods to biomedicine has become increasingly popular due to the
need for techniques to automatically process information in the growing amount of scientific
literature. This section describes some basic resources and tools used in biomedical NLP.
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2.2.1 Scientific literature and representation models

Scientific literature serves as one of the main resources for many biomedical NLP applications.
It is often available in the form of a large-scale database. Some examples include the
PubMed abstracts and the PubMed Central open-access (referred to as PubMed and PMC
henceforth). PubMed and PMC are the abstracts and the free full-text archive of biomedical
and life sciences journal literature respectively, as maintained by the US National Library of
Medicine. The rich literature constitutes an unannotated corpus of 5.5 billion tokens, covering
the entire available biomedical scientific literature and forming a representative corpus of
the domain. Thus, the topics on how to extract useful features from these unannotated texts
for NLP tasks have been actively studied in the biomedical NLP community [Kosmopoulos
et al., 2015; Stenetorp et al., 2012]. A number of representation models have been considered
(details in Table 2.1). For example, Pyysalo et al. [2013a] studied the word2vec tool and
found that Skip-gram produced highly competitive word representations in many intrinsic
and extrinsic tasks, as compared to previous models such as Random Indexing and Latent
Semantic Analysis, among others. Additionally, Muneeb et al. [2015] showed that Skip-gram
outperformed other neural models such as Global Vectors (GloVe) [Pennington et al., 2014]
on word similarity tasks.

Because the linguistic properties in the biomedical text differs significantly from general
English (e.g. it is commonly written in long sentences containing a complex clausal structure
and full of terminologies and acronyms), it is difficult to directly use models that are
trained with general text for biomedical NLP. Hence, there is active research on how to
fine-tune generic representation learning methods, particularly their training settings, to
better adapt with the biomedical data for optimal performance. For example, Stenetorp et al.
[2012] studied how the sizes and scopes of corpora affected the performance of various
representation methods, including the Brown clusters and the Hierarchical Log-Bilinear
embeddings (HLBL). As evaluated on three biomedical-NER datasets (AnatEM) [Ohta et al.,
2012], BC2GM [Smith et al., 2008] and NCBID [Doğan and Lu, 2012]), they reported that
models trained on larger in-domain corpora showed greater and more consistent benefits
as compared with the ones induced on general texts. Although they evaluated the qualities
across various representation models, they also highlighted the importance of assessing the
effects of individual training parameters (e.g. corpus size and hyper-parameter values) for a
single model, which is currently lacking in the field.
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Word Representation Descriptions

Brown clusters
[Brown et al., 1992]

It is a hierarchical, bigram-based clustering algorithm. It
introduces a binary tree on top of the corpora, refining information
about the similarity of words with each branch. In the resulting
representation, each word is assigned in a cluster that leads from
the root of that tree to the leaf that the word is assigned to.

Google N-gram clusters
[Lin et al., 2010]

Lin et al. [2010] introduced a new N-gram corpus from
web-crawled data. Each word is assigned to clusters which are
derived from K-means with distance defined by the dot product of
vectors containing mutual information between a word and each
of its context words.

Random Indexing
[Kanerva et al., 2000]

Random indexing is a method for constructing a semantic word
vector model in an incremental manner. First, every word is
assigned an one-hot vector with all elements equal to zero, except
for a small number of randomly distributed +1 and -1 values. The
vector-space representation of a given word is then obtained by
summing up the one-hot vectors of all words in all its context
windows in the corpus

HLBL embeddings
[Mnih and Hinton, 2009]

The Hierarchical Log-Bilinear embeddings is a distributed word
representation. It is low dimensional, real-valued vectors with
mostly non-zero components. The representation is induced using
neural network-like language models. The HLBL embeddings is
composed by condensing all model representations for all
contexts of a given word.

CW embeddings
[Collobert and Weston, 2008]

The Collobert and Weston embeddings is inferred directly as part
of a neural network aimed at solving a particular NLP task (e.g
POS tagging).

BioASQ embeddings
[Kosmopoulos et al., 2015]

The BioASQ embeddings is created as part of the European
project BioASQ. It applies the word2vec tool to abstracts of
PubMed (pre-processed). It is one of the in-domain neural
embeddings that is publicly available.

PubMed-w2v embeddings
[Pyysalo et al., 2013a]

Similar to the BioASQ embeddings, the PubMed-w2v
embeddings is created using the Skip-gram model from the
word2vec tool. In addition to the abstracts of PubMed, the
creators also induce embeddings from PubMed full-text archive
(i.e. PMC), as well as the Wikipedia text. Consequently, they
release three sets of neural embeddings: PubMed-w2v, PMC-w2v
and PubMed-PMC-Wiki-w2v.

Table 2.1 Examples of word representations used in biomedical NLP
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2.2.2 Evaluation resources in the biomedical domain

Intrinsic evaluation

In biomedicine, the most commonly used intrinsic evaluation datasets are MayoSRS [Pakho-
mov et al., 2011] and UMNSRS [Pakhomov et al., 2011]. MayoSRS consists of 101 clinical
term pairs, which are generated manually by a physician. The relatedness of each word
pair is rated by nine medical coders and three physicians, based on a ten-point scale (1:
closely related, 10: unrelated). On the other hand, UMNSRS consists of 566 and 587 medi-
cal word pairs for measuring similarity (UMNSRS-Sim) and relatedness (UMNSRS-Rel)
correspondingly. Word pairs included in the dataset are sourced by first selecting all concepts
from the Unified Medical Language System (UMLS) with one of three semantic types:
disorders, symptoms and drugs, followed by manual filtering from a physician. The degree
of association of each data set is then rated by four medical residents from the University of
Minnesota Medical School.

Regarding dataset size and coverage, MayoSRS is smaller and emphasizes clinical
concepts whereas UMNSRS covers more concepts from different areas of biomedicine (e.g.
drugs and disorders). Both datasets consist of multi-token terms (e.g. ‘difficult walking’ and
‘aloe vera’). Nevertheless, both datasets evaluate only noun representations, and there is a
lack of evaluation benchmarks for verbs, though they are essential when interpreting the
relations between entities mentioned in the biomedical text. Besides, UMNSRS considers
both semantic similarity and relatedness whereas MayoSRS only considers the latter. Hence,
there are cases where related but semantically dissimilar word pairs (e.g. pneumonia and
infiltrate) are rated higher than those that are both related and similar (e.g. dyspnea and
tachypnea). Consequently, evaluation of representation models on these datasets penalizes
the models which capture the fact that pneumonia and infiltrate are dissimilar. The two issues
highlight the importance of developing new intrinsic evaluation resources for biomedicine.

Extrinsic evaluation

Extrinsic evaluation is fundamental because it measures how useful the features in word
representations are for downstream applications. Here, we briefly summarize several relevant
downstream applications that commonly utilize representation models in biomedical-NLP.

Named entity recognition (NER): It is a subtask of information extraction. It involves
extracting and classifying words and phrases in unstructured texts into pre-defined categories
such as person names, organizations and locations. For biomedical-NER, this often includes
categories such as genes, proteins, chemicals, cell types, diseases, and drugs. NER serves as
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Resources Descriptions
Acromine
[Okazaki and Ananiadou, 2006]

An abbreviation dictionary extracted from MEDLINE.

AnatEM
[Pyysalo and Ananiadou, 2013]

A corpus annotated with entities from anatomy.

BC2GM
[Smith et al., 2008]

A corpus annotated with Gene Mention as released in the
Bio-Creative II task.

BC4CHEMD
[Krallinger et al., 2015]

A corpus annotated with chemicals and drugs as released in the
Bio-Creative IV task.

GENETAG
[Tanabe et al., 2005]

A corpus consists of more than 20.000 MEDLINE sentences
relating to gene/protein term identification.

GENIA
[Kim et al., 2003]

A corpus annotated with terms from the GENIA ontology
covering species, chemicals, cell types, genes/protein.

JNLPBA
[Kim et al., 2004]

A corpus annotated with technical terms in molecular biology.

Table 2.2 Examples of NER corpora commonly used in the biomedical NLP community

an essential procedure in many biomedical information extraction pipelines. Some of the
well-established biomedical-NER corpora are described in Table 2.2.

NER for the biomedical text differs from the general-domain text in several aspects:

1. In biomedical-NER, it is common to have alternate spellings and/or abbreviations for
identical entities [Goulart et al., 2011].

2. Biomedical named entities are often composed of long sequences of tokens, making it
harder to detect the boundaries for segmentation [Leser and Hakenberg, 2005].

3. Many terminologies are rarely found in general English dictionaries [Krauthammer
and Nenadic, 2004].

Representation models have been widely-used in biomedical-NER to provide word seman-
tic features. For examples, Lin et al. [2010] showed that information on word relatedness as
provided by representation models could help to determine the correct treatment of acronyms.
Moreover, Habibi et al. [2017] showed that using the pre-trained word embeddings on a
generic neural-NER tool yielded improvements, achieving state-of-the-art results on several
gene and chemical recognition tasks. Similar improvements have also been reported in other
biomedical-NER studies using pre-trained word embeddings [Crichton et al., 2017; Tang
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Resources Descriptions

BioLexicon
[Thompson et al., 2011]

BioLexcion is a corpus-driven lexicon which contains syntactic
and semantic information for nouns and verbs, including the term
variants and relations between entities.

MeSH
[Lipscomb, 2000]

MeSH is a categorized vocabulary for indexing scientific articles.
Maintained by the US NLM.

NCBI-G
[Maglott et al., 2005]

NCBI gene is a database of nomenclatures, reference sequences,
phenotypes for species.

PASBio
[Wattarujeekrit et al., 2004]

PASBio is a lexicon containing predicate-argument structures of
30 verbs as extracted from biological and biomedical lituratures.

UMLS-M
[Bodenreider, 2004]

Unified Medical Language System Metathesaurus is a taxonomy
database that contains information about biomedical and health
related concepts.

UMLS-S
[Browne et al., 2000]

Unified Medical Language System SPECIALIST lexicon is a
vocabulary database that contains syntactic, morphological, and
orthographic information of words commonly found in English
and biomedicine.

UniProt
[Consortium, 2014]

UniProt is a database of protein sequences and biological
functional information.

Table 2.3 Examples of lexical resources commonly used in the biomedical NLP community

et al., 2014]. In this thesis, we will use NER as one of the extrinsic evaluation to measure the
quality of our word embeddings.

Automatic lexical acquisition: The biomedical NLP community often makes use of
many ontologies, vocabularies, taxonomies and lexical resources. Some examples are
provided in Table 2.3.

Building lexicons manually is labour-intensive and time-consuming. There is a need
for utilizing NLP techniques to automate this process. Automatic lexical acquisition refers
to the automatic or semi-automatic process of building lexicons from unstructured texts.
To extract representative features from corpora for lexical acquisition, it typically involves
extensive feature engineering and mature NLP pipelines (e.g. POS taggers). Recently,
unsupervised methods for inducing distributed word representations or word embeddings
have been successfully applied to many NLP tasks. These methods provide an effective
way to learn word features automatically from large corpora, easing the need for feature
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engineering. In this thesis, we evaluate the utility of these unsupervisedly-learned features in
automatic lexical acquisition.

2.3 Lexical resources for NLP

Lexical resources play an important role in NLP because they contain an exhaustive amount
of semantic and syntactic properties of words which facilitate accurate information extrac-
tion from texts. Several general-purpose lexicons, such as WordNet [Miller, 1995] and
FrameNet [Baker et al., 1998], have been developed, providing information about different
linguistic properties and relations between words. WordNet groups words into synsets (i.e.
synonym sets), and documents the semantic relations between synsets, whereas FrameNet
groups words by semantic frames (i.e. conceptual categories regarding a specific type of event
along with its participants) and their predicate-argument patterns. While these resources
cover lexical units of various word-types (e.g. nouns, verbs or adjectives), some resources
are specifically developed for a particular word-type.

VerbNet [Kipper-Schuler, 2005] is the most extensive verb lexicon in the general domain.
It provides class-level information about the semantics and syntax of verbs. The current
version of VerbNet (v3.3) consists of 9,344 verbs organized in 329 classes. Each verb class
has a detailed description of its syntactic and semantic properties, including the typical types,
numbers, and roles of arguments for its member verbs. For example, the members in the
Remove class (e.g. delete and discharge) take similar arguments (agent3) and can be used to
describe similar events. Although VerbNet has a wide-coverage for general-domain NLP
applications, it is not designed for specialized domains, such as biomedicine, where verbs
tend to have a very different meaning and behaviour than in general English [Ananiadou
and Mcnaught, 2006; Venturi et al., 2009]. There are ranges of in-domain terminologies
which are rare in general English (e.g. depolymerize). Furthermore, the same word in general
English and biomedicine can have distinct syntactic and semantic properties. For example,
the verb fire has different types of arguments and meanings in each domain (fire a gun v.s. fire
a neuron). Hence, there is a need to develop domain-specific resources to support biomedical
NLP.

Biomedicine is full of large-scale resources for noun concepts (e.g. entities), including
the UMLS Metathesaurus. However, verbs have been neglected, although they are essential
for the interpretation of biomedical language. For example, trigger, phosphorylate and
interact can be commonly found in documents related to protein-protein reactions. However,
they imply different actions between proteins (casual and non-casual). Many biomedical

3In VerbNet, agent is defined as argument which intentionally carries out the event
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NLP tasks, including relation extraction [Nguyen et al., 2015], use the syntactic structure of
verbs (e.g. the predicate-argument structure) to identify relations in biomedical texts. To help
biomedical NLP researchers in identifying the particular topic of text and type of relation
between entities described in text, it is vital to have resources that contain rich syntactic and
semantic information of individual verbs. Nonetheless, the existing lexicons which cover
biomedical verbs are usually small in scale and limited to certain sub-domains in biomedicine.
For examples, PASBio provides the predicate-argument structures of 30 verbs commonly
used in molecular biology, as extracted from over 14,000 MEDLINE abstracts. Additionally,
the BioLexicon – a corpus-driven lexicon which contains syntactic and semantic information
for verbs – is extracted from the Escherichia Coli (E.Coli) domain, which limits its usefulness
to applications that deal with other sub-domains of biomedicine. Alternatively, the UMLS
SPECIALIST lexicon is a resource which consists of both general English and medical and
health-related vocabularies. Although it provides the typical syntactic patterns for some
verbs, there is no statistical information on which patterns are mostly used. Furthermore, it
is manually-created and maintained by domain experts, making it difficult to be expanded
and extended to other sub-domains in biomedicine. In the next part, we will describe some
approaches for constructing verb lexicons, both manually and automatically.

2.3.1 Manual verb classification

Verbs can be grouped based on their shared syntax and semantics. It has been shown that
verbs sharing similar meanings tend to also share similar (morpho-)syntactic patterns and
thus can be grouped into lexical classes according to a broader range of linguistic proper-
ties [Jackendoff, 1992; Levin, 1993; Pinker, 1989]. Such classes can provide a generalized
form of representation about groups of verbs sharing similar properties. Representing each
verb by its lexical class helps to map many verbs to the same point, and hence reduces the
number of parameters to represent them individually. For example, if a corpus has 100,000
verbs, a naive bag-of-words model would require 100,000 parameters to represent all verbs.
Instead, if we map them into 100 classes, it only takes 100 parameters (i.e. their class IDs) to
represent all.

In literature, the largest and the most widely-used English verb classification is Levin’s
Verb Classes [Levin, 1993]. In Levin’s classification, verbs are primarily grouped in terms of
Diathesis Alternations, which characterize the number and type of arguments a verb can take.
To illustrate, consider two examples for Material/Product Alternation:

• That acorn will grow into an oak tree.

• An oak tree will be developed from that acorn.
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Here, Material/Product Alternation takes two arguments: one raw material type (e.g.
acorn) and one product type (e.g. oak tree) respectively. Verbs that share the same or a
similar set of Diathesis Alternations, including develop and grow, are deemed to share certain
meaning components and are organized into a semantically coherent class (i.e. Grow-26.2).
In total, Levin manually analyzed 3,104 verbs and suggested a list of relevant alternations
and linguistic features (e.g. morphology) for identifying verb classes.

2.3.2 Automatic verb classification

While manual classifications of a large number of verbs is time-consuming, previous studies
have shown that it is possible to automatically acquire verb classes from both general and
biomedical texts. They extensively explored and compared a range of syntactic and semantic
features useful for verb classification. For examples, Joanis et al. [2008] used verb features
such as the frequencies of passive voice usage and the tenses of verbs to classify 845 English
verbs into 14 lexical classes, and Li and Brew [2008] used verb features, including the
dependency relations between the arguments and the prepositions, to classify 1,300 verbs
into 48 Levin’s classes. Moreover, Sun [2013] used rich features based on the predicate-
argument structure (e.g. verb subcategorization frames and selectional preferences) to classify
192 biomedical verbs into 50 classes. In addition to feature selection, a range of machine
learning models have also been considered for verb clustering in the literature, including
the distributional kernel method [Ó Séaghdha and Copestake, 2008] and Support Vector
Machines [Sun et al., 2008a].

The classification approaches mentioned above are mostly supervised. These approaches
assign verbs into one of several pre-defined lexical classes. In contrast, the unsupervised
approaches use clustering techniques to induce classes based on the similarity between verbs.
For example, Kawahara et al. [2014a,b] used an unsupervised method called the Chinese
Restaurant Process [Aldous, 1985] for inducing 699 verb classes from 1,667 verbs. They
deployed a two-step clustering model: the candidate verbs were first clustered into groups
based on their shared predicate-argument structure, then verbs classes were induced by
clustering these features. They suggested that a two-steps clustering method was essential in
tackling verb polysemy, producing polysemy-aware verb classes.

Supervised and unsupervised approaches can serve different purposes: an unsupervised
approach requires less prior knowledge and can be used to discover new classes in scenarios
where no manually-created classification (i.e. training data) is available; however, the
resulting classification unavoidably contains noise. In contrast, when relevant training data
is available, supervised approaches have an immediate advantage in terms of the precision
of verbs they classified, as reflected in previous studies. For example, Sun et al. [2008a]
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classified 204 verbs into 17 Levin’s classes, using three supervised classifiers (Support Vector
Machines, Maximum Entropy and Gaussian method) and one unsupervised method (Pairwise
Clustering). They reported a better result when using the supervised method (Gaussian)
and a markedly worse result when using the unsupervised method (Pairwise Clustering).
Hence, the supervised approach can be useful for supplementing existing classification with
additional (and more accurate) members when training data is available.

Sometimes, a small amount of supervision, in the form of labels on the data (seeds),
constraints or user feedback, is provided with unsupervised clustering algorithms. This type
of approach, commonly known as semi-supervised clustering, not only groups candidates
using the classes learned from the seed data, but also extends and modifies the existing set
of classes as needed to reflect other regularities in the data. For examples, Vlachos et al.
[2009] used the Dirichlet process mixture model to cluster 204 verbs into 17 classes using
features like semantic frame distributions and prepositions of verbs. Additionally, they
showed that the clustering performance could be further improved when a small number of
pairwise constraints indicating if two verbs must link or must not link were added to the
algorithm. In addition, Peterson et al. [2016] expanded the work in Kawahara et al. [2014b]
by incorporating the annotated VerbNet data to guide the clustering process to predict a
VerbNet class for each sense of a verb, which produced a higher-quality clustering.

From the cognitive science perspective, Barak et al. [2014] applied a two-stage Bayesian
model to cluster verbs (first based on syntax then on semantic classes) in order to analyze
how computational clustering was similar to human verb knowledge generalization. Further-
more, methods which induce verb classes of other languages (e.g. Estonian [Särg, 2017],
French [Sun et al., 2008b], Brazilian [Scarton et al., 2014] and German [Roberts and Egg,
2014]) as well as of a particular type of verb (e.g. propositional attitude verbs such as think
and want) have also emerged recently [White et al., 2014].

A wide spectrum of approaches, including supervised, unsupervised and semi-supervised,
have been suggested for verb classification. They have been used to classify verb features
extracted from corpus data (raw or POS-tagged). Nonetheless, these approaches rely heavily
on feature engineering and mature NLP pipelines; these approaches are time-consuming
and expensive because expert knowledge is needed to come up with representative features,
and therefore do not provide an optimal solution for classification of verbs in specific
domains. Work which performs verb classification on automatically-learned features (through
neural networks) are emerging recently. For example, Vulić et al. [2017b] performed verb
classification across multiple languages based on automatically-learned features. These
sets of features were induced unsupervisedly from corpora (without expert knowledge or
feature engineering) using neural embeddings. They reported state-of-the-art results in verb
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classification across six languages as compared with previous studies that extract features
using complicated language-specific resources.

In general, VerbNet classes have supported many NLP tasks, including word sense
disambiguation [Brown et al., 2011], information extraction [Schmitz et al., 2012] and text
mining applications [Lippincott et al., 2013; Rimell et al., 2013]. It is foreseeable that
biomedical NLP can benefit from similar resources. Nevertheless, general lexical resources
are not well-suited for biomedical-NLP usage because they provide limited coverage of in-
domain terminologies, yet manually developed in-domain lexical resources cover inadequate
verbs, and are costly to extend. Thus, it is essential to automate the construction of verb
resources in biomedicine. Regarding this, existing approaches rely heavily on feature
engineering to extract verb features from the text, which is time-consuming and requires
expert knowledge. With the advancement of neural embeddings, we explore how these sets
of automatically-learned features can be used to support automatic lexical acquisition.

2.4 Chapter summary

In this chapter, we have briefly described some representation learning approaches, from
vector-space models to neural embeddings, which have been commonly used in the NLP
community. While neural representations have shown to be useful in supporting many NLP
tasks, most studies only involve general-domain texts and evaluation datasets and these results
do not necessarily apply to biomedical-NLP tasks. For optimal performance, representation
models need to be trained and evaluated with biomedical data.

We have also reviewed the evaluation benchmarks used for measuring the intrinsic and
extrinsic properties of word representations. Currently, there is a lack of evaluation datasets
in biomedicine that can measure the intrinsic quality of verb representations, though verbs
are essential in the meaning interpretation of biomedical sentences.

Verb lexicons, which provide class-level information about the semantics and syntax
of verbs, can be a valuable resource for supporting NLP tasks. However, general lexical
resources such as VerbNet only provide limited coverage of biomedical verbs, and manually
constructed in-domain lexicons (e.g. the UMLS SPECIALIST lexicon) cover a limited num-
ber of verbs and are costly to extend. There is a need for utilizing NLP techniques to automate
lexical acquisition. Some approaches have been proposed, yet they rely heavily on feature
engineering to extract word features from corpora, which is time-consuming and requires
expert knowledge. Recently, unsupervised methods for inducing feature representations have
been successfully applied to many NLP tasks. In this work, we explore how these models
can be used to automate lexical acquisition.





Chapter 3

How to train good word embeddings for
biomedical NLP

3.1 Introduction

Offering valuable input to many current NLP applications, word representations have recently
been the subject of much research. The current main approach is to embed words into a low-
dimensional space using neural networks [Bengio et al., 2003; Collobert and Weston, 2008;
Mikolov et al., 2013b; Pennington et al., 2014; Turian et al., 2010]. Such embeddings have
offered useful features for many Natural Language Processing (NLP) applications [Bansal
et al., 2014; Guo et al., 2014].

Although word embeddings have been studied extensively [Lapesa and Evert, 2014;
Lazaridou et al., 2013], most studies only involve general-domain texts and evaluation
datasets, and their results do not necessarily apply to domain-NLP (e.g. biomedicine).
Conversely, NLP work conducted on specific domains has revealed that representation
models tend to be domain-dependent, implying that their training settings (e.g. the scope
of the corpora and hyper-parameters) need to be carefully chosen with consideration of the
linguistics properties relevant to the domain they aim to support in order to get the maximal
performance [Stenetorp et al., 2012].

In this chapter, we conduct large-scale experiments to investigate the optimal training
settings for representation learning when applied to biomedical texts. We focus on three
critical parameters in the training process: the input corpora, model architectures and hyper-
parameter settings. Using the state-of-the-art neural embedding tool (word2vec) and both
intrinsic and extrinsic evaluations, we present a comprehensive study on how the performance
of embeddings changes according to these features.
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3.2 Related work

Among different word embedding methods, the Skip-gram (SG) and Continuous Bag-of-
Words (CBOW) of Mikolov et al. [2013a] in word2vec tool have consistently achieved cutting-
edge results in many NLP tasks, including sentence completion, analogy and sentiment
analysis [Fernández et al., 2014; Mikolov et al., 2013a,b]. In the biomedical domain,
Muneeb et al. [2015] compared two state-of-the-art word embedding tools: word2vec and
Global Vectors (GloVe) on a word similarity task. They found that Skip-gram notably
outperforms other models and that its performance can be further improved by using higher
dimensional vectors. These two models have also been shown to produce highly competitive
representation models in many intrinsic and extrinsic evaluations [Baker et al., 2016; Pyysalo
et al., 2013a; Rei et al., 2016; Tsvetkov et al., 2015], as compared to models such as Random
Indexing [Kanerva et al., 2000] and Latent Semantic Analysis [Landauer and Dumais, 1997],
among others.

Given that the word2vec has been shown to achieve state-of-the-art performance that
can be further improved with parameter tuning, we focus on its performance on biomedical
data with different inputs and hyper-parameters. We use all available biomedical scientific
literature for learning word embeddings using models implemented in word2vec. For intrinsic
evaluation, we use the standard UMNSRS-Rel and UMNSRS-Sim datasets [Pakhomov et al.,
2011], which enable us to measure similarity and relatedness separately. For extrinsic
evaluation, we apply a neural network-based named entity recognition (NER) model to two
standard benchmark NER tasks, JNLPBA [Kim et al., 2004] and the BioCreative II Gene
Mention task [Smith et al., 2008]. We will now describe them in detail.

3.3 Materials and methods

3.3.1 Corpora and pre-processing

We use two corpora to create word vectors: the PubMed Central Open Access subset (PMC)
and PubMed 1. PMC is a digital archive of biomedical and life science literature, which
contains more than 1 million full-text Open Access articles. The PubMed database has
more than 25 million citations that cover the titles and abstracts of biomedical scientific
publications. A version of PMC articles is distributed in text format whereas PubMed is
distributed in XML 2. Thus, we use a PubMed text extractor 3 to extract title and abstract

1The description of the corpora is provided in Section 2.2.1
2PubMed in XML: http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/#Data_Mining
3PubMed text extractor: https://github.com/spyysalo/pubmed
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texts from the PubMed source XML. Both PubMed and PMC were pre-processed with the
Genia Sentence Splitter (GeniaSS) [Sætre et al., 2007], which is optimized for biomedical
texts. We further tokenize the sentences with the Treebank Word Tokenizer provided by the
NLTK python library [Bird, 2006]. The corpus statistics are shown in Table 3.1.

Corpus Total tokens
PubMed 2,721,808,542
PMC 7,959,548,841
PubMed + PMC 10,681,357,383

Table 3.1 Corpus statistics

3.3.2 Word vectors

Factors that affect the performance of word representations include the training corpora, the
model architectures, and the hyper-parameters. To assess the effect of corpora, we generate
three variants of each set of word vectors: one from PubMed, one from PMC, and one
from the combination of the two (PMC-PubMed). To study how preprocessing affects word
vectors, we create vectors from the original text corpora, lower-cased variants, and variants
where sentences are shuffled in random order. We further generate two sets of vectors,
one by applying the Skip-gram model and one applying the CBOW model, built with the
default hyper-parameter values of word2vec. We first evaluate these vectors to determine
the better-performing model architecture. Using the better model, we then build vectors by
varying values of one hyper-parameter (Table 3.2) and keeping others as default. We repeat
the process for every hyper-parameter under examination. We then report the results of these
sets of vectors in our intrinsic and extrinsic evaluations.

Parameters Values
neg 1 / 2 / 3 / 5 / 8 /10 / 15

samp
0 / 1e-1 / 1e-2 / 1e-3 / 1e-4
1e-5 / 1e-6 / 1e-7 / 1e-8 / 1e-9

min-count
0 / 5 / 10 / 20 / 50 / 100 / 200
400 / 800 / 1000 / 1200 / 2400

alpha 0.0125 / 0.025 / 0.05 / 0.1
dim 25 / 50 / 100 / 200 / 400 / 500 / 800
win 1 / 2 / 4 / 5 / 8 / 16 / 20 / 25 / 30

Table 3.2 Hyper-parameters and tested values. Default values shown in bold.
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3.3.3 Hyper-parameters

We test the following key hyper-parameters:

1. Negative sample size (neg): The representation of a word is learned by maximizing
its predicted probability to co-occur with its context words while minimizing the
probability for others. However, the normalization of this probability involves a
denominator deriving from co-occurrences between words and all their contexts in
the corpus, which is time-consuming to compute. To address this issue, Negative
sampling is introduced, which only calculates the probabilities on a set number of other
randomly chosen negative words (neg). With a higher negative sampling, the model
tends to capture better word representations by learning from more negative samples,
yet, its training process is more computationally costly [Mikolov et al., 2013c].

2. Sub-sampling (samp): Sub-sampling refers to the process of reducing occurrences
of frequent words. It selects words appearing with a ratio higher than the threshold
samp, and ignores each occurrence with a given probability. The process is used to
minimize the effect of non-informative frequent words in training. Very frequent words
(e.g. in) are less informative because they co-occur with most words in the corpus. For
example, a model can benefit more from seeing an occurrence of p16 with CDKN2
than an instance of the frequent co-occurrence of p16 with in.

3. Minimum-count (min-count): The minimum-count defines the minimum number of
occurrences required for a word to be included in the word vectors. This parameter
allows control over the size of the vocabulary and, consequently, the resulting word
embedding matrix.

4. Learning Rate (alpha): Neural networks are trained by gradually updating weight
vectors along a gradient to minimize an objective function. The learning rate controls
the magnitude of these updates.

5. Vector dimension (dim): The vector dimension is the size of the learned word vector.
While a higher dimension tends to capture better word representations, their training is
more computationally costly and produces a larger word embedding matrix.

6. Context window size (win): The size of the context window defines the range of
words to be included as the context of a target word. For instance, a window size of 5
takes five words before and after a target word as its context for training.



3.3 Materials and methods 33

3.3.4 Baseline vectors

As baselines, we include the biomedical domain vectors created by Pyysalo et al. [2013a]
and Kosmopoulos et al. [2015]. Their corpus statistics are shown in Table 3.3. All of these
vectors are built with the Skip-gram model with the default parameter values (see Table 3.2).

Vector #Token
PMC-PubMed [Pyysalo et al., 2013a] 5,487,486,225 (total)
PMC [Pyysalo et al., 2013a] 2,591,137,744 (total)
PubMed [Pyysalo et al., 2013a] 2,896,348,481 (total)
PubMed [Kosmopoulos et al., 2015] 1,701,632 (distinct)

Table 3.3 Baseline word vectors

3.3.5 Intrinsic evaluation

A standardized intrinsic measure for word representations in the biomedical domain is the
UMNSRS-Sim (Sim) and UMNSRS-Rel (Rel) dataset [Pakhomov et al., 2011] 4. They have
566 and 587 word pairs for measuring similarity and relatedness (respectively) whose degree
of association was rated by humans. The human evaluation on every word pair is converted to
a score to determine its degree of similarity, a higher score implying a more similar pair. The
range of the score is on an arbitrary scale. While UMNSRS provides scores for determining
the degree of similarity for each word pair, we will measure this by calculating the cosine
similarity score for each word pair using the learned word vectors. Afterwards, we assess
the two scores using Spearman’s correlation coefficient (ρ) which compares the ranking
between variables regardless of scale in word similarity task. It is a standard metric for word
pair ranking comparisons given the word similarity are all cosine scores and we want to
compare their rankings. Also, following the standard evaluation protocol, we exclude words
that appear only in the reference but not in our models.

3.3.6 Extrinsic evaluation

Given that the ultimate evaluation for word vectors is their performance in downstream
applications, we also assess the quality of the vectors by performing NER using two well-
established biomedical reference standards: the BioCreative II Gene Mention task corpus
(BC2) [Smith et al., 2008] and the JNLPBA corpus (PBA) [Kim et al., 2004]. Both of these

4The description of the dataset is provided in Section 2.2.2
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corpora consist of approximately 20,000 sentences from PubMed abstracts manually anno-
tated for mentions of biomedical entity names. Following the window approach architecture
with word-level likelihood proposed by Collobert and Weston [2008], we apply a NER tagger
built on a simple feed-forward neural network, with a window of five words, one hidden layer
of 300 neurons and a hard sigmoid activation, leading to a Softmax output layer. Our word
vectors are used as the embedding layer of the network, with the only other input being a
low-dimensional binary vector of word surface features.5 To emphasize the effect of the input
word vectors on performance, we avoid fine-tuning the word vectors during training as well
as introducing any external resources such as entity name dictionaries. While this causes the
performance of the method to fall notably below the state-of-the-art, we believe this minimal
approach is an effective way to focus on the quality of the word vectors as they are created
by the tool (word2vec).6 For parameter selection, we estimate the extrinsic performance of
word vectors on the development sets of the two corpora using mention-level F-score. For
the final experiment with selected parameters, we apply the test sets and evaluation scripts of
the two tasks in accordance with their original evaluation protocols.

3.4 Results

We have created vectors with PubMed, PMC and the combination of the two. For each set
of vectors, we experiment with different training settings, including the model architectures
and hyper-parameters. In this section, we will report their intrinsic and extrinsic evaluation
results individually.

3.4.1 Skip-gram vs. CBOW

Table 3.4 (first 2 rows) shows results comparing the Skip-gram (SG) and CBOW models with
default hyper-parameter values in intrinsic (left) and extrinsic (right) evaluation, respectively.
In general, the Skip-gram vector shows better results than CBOW in both the word similarity
task and in entity mention tagging. In CBOW, the representations of a group of context
words are learned through predicting one focus word, with the prediction back-propagated
averaged over all context words. By contrast, in Skip-gram, the representation of a focus
word is learned by predicting every other context word in the window separately, with the
prediction error of each context word back-propagated to the target word. This may allow

5For example, whether a word starts or contains a capital letter or number. For detailed reference, we make
our implementation openly available.

6It is an interesting question for future work whether the findings from our extrinsic evaluation apply also
to state-of-the-art taggers.
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better vectors to be learned as a focus word is trained over more data, but with less smoothing
over contexts 7.

Our result is consistent with that of many previous studies, including that of Muneeb et al.
[2015], who compared model architectures on different vector dimensions and reported that
Skip-gram outperforms CBOW in biomedical domain tasks.

Regarding the effects of shuffling and lower-casing, in word2vec, the learning rate is
decayed as training progresses, text appearing early has a larger effect on the model. Shuffling
makes the effect of all text (roughly) equivalent. On the other hand, lower-casing ensures
that same word but different cases, such as protein, Protein and PROTEIN are normalized
(indexed as one term) for training. From Table 3.4, we see that most vectors benefit from
lower-casing and shuffling the corpus sentences. In general, there is about 2 point increase
over the generic vectors. Although the shuffled-lower vectors perform better, in the following,
we report further results based on the unshuffled-text vector to preserve the comparability of
results.

PMC-PubMed PMC PubMed
Model Sim Rel Sim Rel Sim Rel
SG 0.54 0.488 0.507 0.453 0.446 0.497
CBOW 0.435 0.409 0.348 0.351 0.449 0.446

SG-S 0.555 0.515 0.54 0.49 0.551 0.502
SG-L 0.542 0.457 0.502 0.424 0.552 0.47
SG-SL 0.543 0.47 0.52 0.459 0.56 0.481

CBOW-S 0.415 0.403 0.434 0.424 0.43 0.414
CBOW-L 0.452 0.404 0.447 0.41 0.461 0.425
CBOW-SL 0.461 0.422 0.45 0.39 0.471 0.426

PMC-PubMed PMC PubMed
Model BC2 PBA BC2 PBA BC2 PBA
SG 60.86 61.89 59.48 62.11 61 62.52
CBOW 55.11 56.97 54.93 58.1 54.25 58.48

SG-S 59.81 62.13 59.23 62.3 60.75 62.11
SG-L 60.52 62.19 59.93 61.64 60.51 62.64
SG-SL 61.33 62.58 60.23 62.05 61.11 61.65

CBOW-S 51.84 56.78 54.22 58.02 52.82 57.97
CBOW-L 53.72 57.09 54.57 57.51 52.65 57.41
CBOW-SL 52.89 57.15 52.63 56.80 53.21 58.41

Table 3.4 Intrinsic (left, in ρ) and Extrinsic (right, in F-score) evaluation results for vectors
with different pre-processing: Original text, Sentence-shuffled (S), lowercased (L), and
both (SL) for Skip-gram (SG) and CBOW. Bold indicates the best score for a dataset (Sim:
UMNSRS-Sim, Rel: UMNSRS-Rel, BC2: BC2GM and PBA: JNLPBA)

3.4.2 Hyper-parameters

Next, we evaluate six hyper-parameters in word2vec individually, using both intrinsic and
extrinsic evaluations. We found that four out of the six hyper-parameters only improve per-
formance notably in the intrinsic task but not the extrinsic one, while one boosts performance

7In CBOW, the training contexts for each word are smoothed by considering only the average of its context
word vectors within the context window, while Skip-gram trains on every word-context pair
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in both tasks to a great extent. Lastly, one of them shows opposite effects on intrinsic and
extrinsic evaluations.
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Negative sampling (neg)

Intuitively, larger values of the neg parameter could be expected to benefit the training process
by providing more (negative) examples, but we can only see a benefit in the intrinsic result
(Figure 3.1, red lines). Looking into the results in Table 3.6, the performance of word vectors
on the intrinsic task (left) generally improves as neg increases from 1 to 8, whereas extrinsic
task performance (right) remains approximately the same.
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Fig. 3.1 Average intrinsic and extrinsic evaluation results for negative sampling
(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
neg Sim Rel Sim Rel Sim Rel
1 0.52 0.483 0.453 0.405 0.505 0.483
2 0.545 0.493 0.489 0.439 0.511 0.475
3 0.539 0.488 0.506 0.447 0.532 0.482
5 0.538 0.487 0.498 0.444 0.54 0.494
8 0.545 0.501 0.497 0.446 0.543 0.507
10 0.543 0.494 0.517 0.459 0.553 0.499
15 0.542 0.498 0.514 0.457 0.542 0.491

PMC-PubMed PMC PubMed
neg BC2 PBA BC2 PBA BC2 PBA
1 60.78 62.29 59.90 61.52 60.80 61.71
2 60.41 62.03 59.44 60.49 59.59 62.63
3 59.37 62.42 59.55 62.02 60.52 62.45
5 60.37 61.90 59.44 62.12 60.44 62.56
8 60.90 62.19 59.49 62.55 60.23 62.68
10 59.65 62.80 59.58 61.61 61.53 62.03
15 61.09 61.52 59.92 60.98 60.12 63.18

Table 3.6 Detail intrinsic (left, in ρ) and Extrinsic (right, in F-score) evaluation results for
vectors with different number of negative samples (default = 5). Bold indicates the best score
for a dataset.
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Sub-sampling (samp)

Regarding sub-sampling, a lower threshold gives more words a probability of being down-
sampled. This implies words are less likely to be kept and they will be excluded for training.
Intuitively, sub-sampling frequent words not only reduces the computational burden of the
training process, but also improves the quality of its resulting word vectors. From Figure 3.2,
it appears that sub-sampling has a large effect on the intrinsic task (red lines), where most
figures increase substantially before samp = 1e-6. After samp = 1e-7, figures in both measures
drop dramatically. This suggests that the intrinsic tasks are more sensitive to the effect of sub-
sampling frequent words than the extrinsic tasks. Some extremely frequent words (e.g. the)
are effectively non-informative, but other common words may be important for modelling
word meaning. Thus, when the sub-sampling threshold decreases continuously, a substantial
amount of informative frequent words are downsampled (approximately 10-15% words of
the total vocabulary are affected at each sub-sampling points), leading to ineffective learning
of the representation.
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Fig. 3.2 Average intrinsic and extrinsic results for sub-sampling (0 = None)
(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
samp Sim Rel Sim Rel Sim Rel
None 0.529 0.476 0.465 0.419 0.514 0.451
1e-1 0.542 0.496 0.476 0.42 0.507 0.46
1e-2 0.521 0.464 0.471 0.418 0.513 0.471
1e-3 0.545 0.5 0.497 0.442 0.545 0.494
1e-4 0.56 0.506 0.521 0.459 0.578 0.54
1e-5 0.594 0.542 0.55 0.507 0.589 0.546
1e-6 0.601 0.558 0.511 0.491 0.546 0.528
1e-7 0.519 0.475 0.401 0.37 0.336 0.306
1e-8 0.09 0.055 0.074 -0.02 -0.06 -0.15
1e-9 -0.07 -0.17 -0.08 -0.18 0.078 0.147

PMC-PubMed PMC PubMed
samp BC2 PBA BC2 PBA BC2 PBA
None 60.46 61.76 58.83 61.35 60.51 62.00
1e-1 61.31 60.99 59.60 62.45 60.47 62.69
1e-2 60.01 62.51 59.86 61.63 60.29 62.92
1e-3 60.30 61.99 59.78 61.95 59.87 62.57
1e-4 60.93 62.73 59.87 60.91 60.51 62.22
1e-5 60.58 61.39 60.35 61.26 58.98 62.60
1e-6 60.00 61.67 57.94 60.31 59.02 61.35
1e-7 57.52 61.17 57.04 59.70 52.44 57.34
1e-8 47.35 50.41 44.22 47.23 31.23 32.15
1e-9 33.09 33.13 32.30 32.68 27.40 28.70

Table 3.8 Detail intrinsic (left, in ρ) and extrinsic (right, in F-score) evaluation results for
vectors with different sub-sampling (default = 1e-3). Bold indicates the best score for a
dataset.
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Min-count

Words occurring fewer than min-count times will be completely removed from the corpus,
resulting in fewer words in the word vectors. From Figure 3.3, most of the results show limited
effect for this parameter, excepting a notable increase for PubMed vectors in the intrinsic
task (red lines). However, our intrinsic evaluations, following the standard protocol, ignore
words that are excluded by min-count. Hence, for PubMed vectors, when min-count = 400,
only about half of the assessment items are used in intrinsic evaluation. This implies that the
result in min-count > 400 only reflects the representation of frequent words. By contrast, as
the out-of-vocabulary rate in extrinsic tasks is about 2.6%, its influence is less notable.
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Fig. 3.3 Average intrinsic and extrinsic evaluation results for min-counts
(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
min-count Sim Rel Sim Rel Sim Rel
0 0.543 0.498 0.512 0.444 0.505 0.462
5 0.534 0.485 0.492 0.437 0.544 0.494
10 0.536 0.487 0.528 0.485 0.557 0.521
20 0.531 0.499 0.531 0.492 0.574 0.531
50 0.551 0.523 0.535 0.49 0.581 0.534
100 0.546 0.508 0.553 0.502 0.578 0.534
200 0.547 0.513 0.536 0.49 0.591 0.538
400 0.555 0.522 0.543 0.479 0.598 0.531
800 0.55 0.492 0.55 0.467 0.603 0.517
1000 0.551 0.503 0.529 0.443 0.622 0.515
1200 0.56 0.506 0.531 0.452 0.601 0.499
2400 0.565 0.485 0.517 0.405 0.616 0.504

PMC-PubMed PMC PubMed
min-count BC2 PBA BC2 PBA BC2 PBA
0 61.04 62.03 59.73 61.92 59.74 63.41
5 60.56 61.83 59.75 61.80 60.52 62.98
10 60.42 62.48 60.22 61.50 60.56 62.98
20 60.64 62.92 60.24 62.17 60.67 62.56
50 61.32 62.17 59.58 62.06 59.41 62.59
100 60.59 62.37 58.76 61.47 59.90 62.30
200 59.87 61.39 58.97 61.82 60.00 62.53
400 59.75 62.08 59.95 61.04 60.42 61.62
800 59.35 61.79 59.53 61.75 57.88 61.79
1000 59.98 62.08 58.54 60.98 58.67 62.16
1200 59.26 62.34 58.75 60.74 58.34 61.66
2400 59.49 62.44 58.58 61.54 57.11 60.70

Table 3.10 Detail intrinsic (left, in ρ) and extrinsic (right, in F-score) evaluation results for
vectors with different min-count (default = 5). Bold indicates the best score for a dataset.
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Learning rate (alpha)

The learning process will be unstable if the learning rate is too large and will be slow if it is
too small. From Figure 3.4, alpha = 0.05 appears to be an optimal value, for which most of
the vectors have their best or second best results in both evaluations.
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Fig. 3.4 Average intrinsic and extrinsic evaluation results for learning rate
(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
alpha Sim Rel Sim Rel Sim Rel
0.0125 0.511 0.468 0.442 0.401 0.508 0.475
0.025 0.538 0.492 0.492 0.441 0.543 0.493
0.05 0.55 0.501 0.516 0.46 0.584 0.532
0.1 0.542 0.504 0.511 0.46 0.583 0.543

PMC-PubMed PMC PubMed
alpha BC2 PBA BC2 PBA BC2 PBA
0.0125 60.03 61.41 60.24 62.04 60.57 63.29
0.025 59.57 61.86 59.86 62.16 59.83 62.68
0.05 59.80 62.86 59.54 61.25 60.77 62.65
0.1 60.41 62.38 60.40 61.94 60.30 62.64

Table 3.12 Detail intrinsic (left, in ρ) and extrinsic (right, in F-score) evaluation results for
vectors with different learning rate (default = 0.025). Bold indicates the best score for a
dataset.
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Vector dimension (dim)

Intuitively, a higher vector dimension tends to capture better word representation because
there is more dimensional space to encode word information. From Figure 3.5, the effect
of vector dimension on our vectors is notable in all tasks. We see a large improvement in
all evaluations when the vector dimension grows. Although the improvement for intrinsic
measures (Figure 3.5, red lines) stops when dim > 200, it is evident that an increase from
low dim gives a very substantial improvement, while the high dimensional representation
models appear to have captured additional word properties that are not contributive to our
intrinsic and extrinsic tasks.
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Fig. 3.5 Average intrinsic and extrinsic evaluation results for vector dimension
(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
dim Sim Rel Sim Rel Sim Rel
25 0.426 0.38 0.385 0.346 0.466 0.438
50 0.508 0.461 0.452 0.407 0.534 0.494
100 0.537 0.491 0.509 0.459 0.543 0.491
200 0.552 0.504 0.511 0.459 0.551 0.495
400 0.562 0.505 0.518 0.469 0.534 0.477
500 0.553 0.507 0.511 0.447 0.531 0.47
800 0.544 0.479 0.51 0.448 0.51 0.45

PMC-PubMed PMC PubMed
dim BC2 PBA BC2 PBA BC2 PBA
25 56.33 59.14 55.38 58.06 55.77 60.26
50 59.03 61.38 57.24 61.40 57.57 61.75
100 60.81 62.39 60.84 62.17 60.38 62.88
200 61.22 63.04 60.13 62.27 61.24 62.68
400 61.17 61.57 60.18 61.61 60.54 62.50
500 60.89 62.21 60.81 62.38 61.03 62.36
800 61.00 62.30 60.43 62.34 60.59 62.92

Table 3.14 Detail intrinsic (left, in ρ) and extrinsic (right, in F-score) evaluation results for
vectors with different vector dimension (default = 100). Bold indicates the best score for a
dataset.
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Context window size (win)

From Figure 3.6, we observe contradictory results from changing the size of the context
window parameter. All three sets of vectors show a notable increase in the intrinsic measures
(red lines) when the context window size grows. However, the extrinsic evaluation (blue)
shows the opposite pattern: all results in extrinsic tasks have an early performance peak
with a narrow window (e.g. win = 1), followed by a gradual decrease when window size
increases. One possible explanation may be that a larger window emphasizes the learn-
ing of domain/topic similarity between words, while a narrow context window leads the
representation to primarily capture word function [Turney, 2012]. It is possible that for
intrinsic evaluation datasets such as UMNSRS it is more important to model topical rather
than functional similarity. Conversely, it is intuitively clear that for tasks such as named
entity recognition the modelling of functional similarity such as co-hyponym is centrally
important.
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Fig. 3.6 Average intrinsic and extrinsic evaluation results for window size
(Unit: ρ: dashed line, F-score: solid line)

PMC-PubMed PMC PubMed
win Sim Rel Sim Rel Sim Rel
1 0.419 0.377 0.342 0.302 0.425 0.387
2 0.488 0.43 0.422 0.374 0.493 0.454
4 0.528 0.477 0.485 0.425 0.53 0.478
5 0.545 0.494 0.496 0.412 0.55 0.497
8 0.562 0.516 0.544 0.487 0.581 0.536
16 0.589 0.535 0.556 0.506 0.597 0.557
20 0.66 0.558 0.562 0.513 0.619 0.574
25 0.6 0.543 0.582 0.531 0.61 0.568
30 0.605 0.541 0.571 0.522 0.627 0.584

PMC-PubMed PMC PubMed
win BC2 PBA BC2 PBA BC2 PBA

1 61.28 62.23 60.18 62.44 60.93 62.70
2 60.81 61.74 60.83 61.59 61.11 63.01
4 61.29 62.45 60.43 61.43 60.74 62.86
5 59.87 62.25 60.08 62.51 59.47 62.80
8 59.52 61.83 58.78 61.26 60.40 62.74
16 59.82 61.41 59.40 61.30 60.18 62.62
20 59.54 60.80 59.92 60.92 60.02 61.76
25 58.86 60.86 58.91 61.41 58.98 62.79
30 57.83 61.28 57.61 60.53 59.22 62.83

Table 3.16 Detail intrinsic (left, in ρ) and extrinsic (right, in F-score) evaluation results for
vectors with context window size (default = 5). Bold indicates the best score for a dataset.
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3.4.3 Comparative evaluation

Based on the parameter selection experiments covering three corpora (PMC, PubMed and
both), various preprocessing options (normal-text, sentence-shuffled text, lower-cased text),
two model architectures (Skip-gram vs CBOW) and six hyper-parameters, we selected the
best-performing options for comparative evaluation against the baseline vectors (Table 3.18).
Since the size of the context window (win) showed contradictory results between the intrinsic
and extrinsic tasks, we created vectors for two different values of this parameter. Note that for
this comparative evaluation we use the test sets and test evaluation scripts of the two extrinsic
tasks, which enables researchers to directly compare our results with the ones reported in
literature on these tasks.

Parameters Values
Corpus PubMed
Architecture Skip-gram
neg 10
dim 200
alpha 0.05
samp 1e-4
win 2, 30
min-count 5

Table 3.18 Settings selected for comparative evaluation

Table 3.19 summarizes the results of the comparative evaluation. For our intrinsic tasks,
our vectors with win = 30 show the best performance, clearly outperforming the baselines
as well as our otherwise identically created vectors with win = 2. This further supports the
suggestion that a higher context window facilitates the learning of domain similarity for the
intrinsic task. For extrinsic tasks, while the difference to the baselines is smaller, our vectors
with win = 2 show the best results for JNLPBA and the second best in BC2GM, while the
vectors with win = 30 are clearly less competitive.

The comparative evaluation on test set data thus confirms the indications from parameter
selection that the context window size has opposite effects on the intrinsic and extrinsic
metrics and indicates that our experiments have succeeded in creating two word embeddings
of win = 2 and win = 30 that show promising performance when applied to tasks appropriate
for each.
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Sim Rel BC2 PBA
PubMed, win 2 (ours) 0.56 0.507 76.89 64.13
PubMed, win 30 (ours) 0.652 0.601 75.51 63.15

Baseline
Pyysalo et al. (PMC-PubMed) 0.523 0.48 77.01 63.6
Pyysalo et al. (PMC) 0.453 0.396 75.48 63.66
Pyysalo et al. (PubMed) 0.549 0.506 76.47 63.66
Kosmopoulos et al. (BioASQ) 0.589 0.509 75.51 62.85

Table 3.19 Intrinsic and extrinsic evaluation with comparison to baseline vectors. Bold
indicates the best score for a dataset.

3.5 Discussion

We have created vectors with PubMed, PMC and the combination of the two with a large
variety of different models, preprocessing and parameter combinations. In theory, a larger
corpus is expected to benefit from the learning of word representations, but we find that
in many cases this does not hold, in particular with the combination of PubMed and PMC
showing lower results than PubMed alone. We offer two possible explanations for this
surprising finding, which contradicts some previous in-domain results. First, we used PMC
texts recently introduced by PubMed Central using an incompletely documented extraction
process, and preliminary examination suggests that the proportion of non-prose text in this
material may be quite high, potentially affecting learning. An alternative explanation may
be that the word2vec implementation has a (somewhat hidden) ‘reduce-vocab’ function that
triggers rare-word removal when the size of the corpus crosses certain thresholds: the larger
the corpus size, the more aggressive the trimming. Preliminary results suggest that this
functionality may have affected PMC-PubMed, our largest corpus, to a larger extent than the
other corpora.

3.6 Chapter summary

In this chapter, we investigate how the performance of word vectors changes with differ-
ent corpora, preprocessing options (normal text, sentence-shuffled text, lower-cased text),
model architectures (Skip-gram vs CBOW) and hyper-parameter settings (negative sampling,
subsample rate, min-count, learning rate, vector dimension, the context window size). For
corpora, sentence-shuffled PubMed texts appear to produce the best performance, exceeding
that of the notably larger combination with PMC texts. For hyper-parameter settings, it is
evident that performance can be notably improved over the default parameters, but the effects
of the different hyper-parameters on performance are mixed and sometimes counterintuitive.
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Most importantly, we also observe that changing the sizes of context windows creates contra-
dictory results between intrinsic and extrinsic evaluations. In the next section, we will further
investigate if this pattern exists in general-domain text.





Chapter 4

Intrinsic Evaluation of Word Vectors
Fails to Predict Extrinsic Performance

4.1 Introduction

With a lack of standardized extrinsic evaluation methods for vector representations of words -
word similarity tasks are frequently used as proxies to estimate word quality and intrinsic lan-
guage properties. Such intrinsic evaluation provides a fast and computationally inexpensive
method to measure the quality of representation models.

Word similarity evaluation can measure with human precision how well the notion of
semantic similarity is captured in the vector-space representations. It facilitates the estimation
of general properties of representation models, which relate to their task performance.
Consequently, word similarity evaluation provides a practical means to compare models
efficiently before applying them to more elaborate and computationally expensive extrinsic
tasks. The underlying assumption is that models that better capture word similarity can,
to some degree, perform well on tasks that require a notion of explicit semantic similarity
between words like named entity recognition (NER).

Nevertheless, in the previous chapter, we found that most intrinsic datasets in biomedicine
are poor predictors of downstream performance. In particular, there is a contradictory estima-
tion between the two sets of evaluations when measuring a series of vector models trained
with varying context window sizes. This implies the superior models in intrinsic evaluation
may not necessarily perform better on extrinsic tasks (they may even perform worse). Hence,
we investigate whether such intrinsic evaluations are suitable for predicting the merits of
representations for downstream tasks in general. If not, this observed contradiction could



48 Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance

be a domain-specific effect that possibly only manifests with datasets such as those in the
biomedical field.

In this chapter, we study the intrinsic-extrinsic correlation using general-domain datasets.
We will focus on vector models of varying context window sizes where the contradictory
estimation was found. We base our results on ten word similarity benchmarks and tagger
performance on three standard sequence labelling tasks in the general domain, using a variety
of word vectors induced from an unannotated corpus of 3.8 billion words from general
English.

4.2 Materials and methods

4.2.1 Word vectors

We generated word representations using the word2vec implementation of the Skip-gram
model [Mikolov et al., 2013a] due to its efficiency when applied to huge corpora. We induced
embeddings with varying values of the context window size parameter ranging between 1
and 30 (same as the ones we used in Chapter 3), holding other hyper-parameters to their
defaults.1

4.2.2 Corpora and pre-processing

We created word vectors by gathering a large corpus of unannotated English text, mainly
drawing on publicly available resources identified in the word2vec distribution materials 2.

Table 4.1 lists the text sources and their sizes. We extracted raw text from the Wikipedia
dumps using the Wikipedia Extractor 3; the other sources are textual. We pre-processed all
text with the Sentence Splitter and the Treebank Word Tokenizer provided by the NLTK
library [Bird, 2006]. In total, there are 3.8 billion tokens (19 million distinct types) in the
processed text.

Name Reference #Tokens
Wikipedia Wikipedia [2016] 2,032,091,934
WMT14 Bojar et al. [2014] 731,451,760
1B-word-LM Chelba et al. [2014] 768,648,884

Table 4.1 Unannotated corpora (sizes before tokenization)

1The default parameters are size=100, sample=0.001, negative=5, min-count=5, and alpha=0.025.
2demo-train-big-model-v1.sh
3http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
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Name Reference #Pairs
Wordsim-353 Finkelstein et al. [2001] 353
WS-Rel Agirre et al. [2009] 252
WS-Sim Agirre et al. [2009] 203
YP-130 Yang and Powers [2006] 130
MC-30 Miller and Charles [1991] 30
MEN Bruni et al. [2012] 3,000
MTurk-287 Radinsky et al. [2011] 287
MTurk-771 Halawi et al. [2012] 771
Rare Word Luong et al. [2013] 2,034
SimLex-999 Hill et al. [2015] 999

Table 4.2 Intrinsic evaluation datasets

4.2.3 Intrinsic evaluation

We performed intrinsic evaluations on the ten benchmark datasets presented in Table 4.2.
We followed the standard experimental protocol for word similarity tasks: for each given
word pair, we computed the cosine similarity of the word vectors in our representations, and
then ranked the word pairs by these values. We finally compared the ranking of the pairs
created in this way using the gold standard human ranking Spearman’s ρ (rank correlation
coefficient).

4.2.4 Extrinsic evaluation

We based our extrinsic evaluation on the seminal work of Collobert and Weston [2008], who
explored the use of neural methods for NLP. In brief, we reimplemented the simple window
approach feedforward neural network architecture proposed by Collobert and Weston [2008],
which takes input words in a window of size five, followed by the word embeddings, a
single hidden layer of 300 units and a hard tanh activation leading to an output Softmax
layer. Besides the index of each word in the embedding, the only other input is a categorical
representation of the capitalization pattern of each word.

We trained each model on the training set for 10 epochs using word-level log-likelihood,
mini-batches of size 50, and the Adam optimization method with the default parameters
suggested by Kingma and Ba [2015]. In order to emphasize the differences between the
different representations, we did not fine-tune word vectors by back-propagation. In this
regard, we diverged from Collobert and Weston [2008] and this led to somewhat reduced
performance. We used greedy decoding to predict labels for test data.
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To evaluate the word representations in downstream tasks, we used word representations
in three standard sequence labeling tasks selected by Collobert et al. [2011]: POS tagging
of Wall Street Journal sections of Penn Treebank (PTB) [Marcus et al., 1993], chunking of
CoNLL’00 shared task data [Tjong Kim Sang and Buchholz, 2000], and NER of CoNLL’03
shared task data [Tjong Kim Sang and De Meulder, 2003]. We used the standard train/test
splits and evaluation criteria for each dataset. We were evaluating PTB POS tagging using
token-level accuracy and CoNLL’00/03 chunking and NER using chunk/entity-level F-scores
as implemented in the conlleval evaluation script. Table 4.3 shows the basic statistics for
each dataset.

Name #Tokens (Train/Test)
PTB 337,195 / 129,892
CoNLL 2000 211,727 / 47,377
CoNLL 2003 203,621 / 46,435

Table 4.3 Extrinsic evaluation datasets
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4.3 Results

Here, we will look at the intrinsic and extrinsic evaluation results of vectors with varying
context window sizes. While the different baselines and the small size of some of the datasets
makes the intrinsic results challenging to interpret, a clear pattern emerges when holding the
result for word vectors of window size 1 as the zero point for each dataset. When examining
the average differences, the intrinsic evaluations show higher overall results with increasing
window size, while extrinsic performance drops (Figure 4.1).
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Fig. 4.1 Average difference to performance for window size 1 for intrinsic and extrinsic
metrics.
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Window size
Dataset 1 2 4 5 8 16 20 25 30
WordSim-353 0.6211 0.6524 0.6658 0.6732 0.6839 0.6991 0.6994 0.7002 0.6981
MC-30 0.7019 0.7326 0.7903 0.7629 0.7889 0.8114 0.8323 0.8003 0.8141
MEN-TR-3K 0.6708 0.6860 0.7010 0.7040 0.7129 0.7222 0.7240 0.7252 0.7242
MTurk-287 0.6069 0.6447 0.6403 0.6536 0.6603 0.6580 0.6625 0.6513 0.6519
MTurk-771 0.5890 0.6012 0.6060 0.6055 0.6047 0.6007 0.5962 0.5931 0.5933
Rare Word 0.3784 0.3893 0.3976 0.4009 0.3919 0.3923 0.3938 0.3949 0.3953
YP130 0.3984 0.4089 0.4147 0.3938 0.4025 0.4382 0.4716 0.4754 0.4819
SimLex-999 0.3439 0.3300 0.3177 0.3144 0.3005 0.2909 0.2873 0.2811 0.2705

Table 4.4 Intrinsic evaluation results (ρ)

Window size
Dataset 1 2 4 5 8 16 20 25 30
CoNLL 2000 0.9143 0.9070 0.9058 0.9052 0.8982 0.8821 0.8761 0.8694 0.8604
CoNLL 2003 0.8522 0.8473 0.8474 0.8475 0.8474 0.8410 0.8432 0.8399 0.8374
PTB POS 0.9691 0.9680 0.9672 0.9674 0.9654 0.9614 0.9592 0.9560 0.9531

Table 4.5 Extrinsic evaluation results (F-score for CoNLL datasets, accuracy for PTB)

Tables 4.4 and 4.5 present the results of the intrinsic and extrinsic evaluations respectively.
Looking at the individual datasets, the preference for the smallest window size is consistent
across all three tagging tasks (Table 4.5), however only one out of the eight intrinsic evaluation
datasets, Simlex-999, selects this window size, with the majority clearly favoring larger
window sizes (Table 4.4). This contradictory pattern is consistent with the one we observed
previously when conducting experiments using biomedical vector models (in Chapter 3).
Here, we empirically illustrate that the contradiction is neither a domain-specific issue nor
merely a scenario that appeared by coincidence.
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CoNLL CoNLL PTB
2000 2003 POS

WordSim-353 -0.90 -0.75 -0.88
MC-30 -0.87 -0.77 -0.90
MEN-TR-3K -0.98 -0.83 -0.97
MTurk-287 -0.57 -0.29 -0.50
MTurk-771 0.28 0.37 0.27
Rare Word -0.57 -0.29 -0.50
YP130 -0.82 -0.93 -0.50
SimLex-999 1.00 0.85 0.98

Table 4.6 Correlation between intrinsic and extrinsic measures (ρ)

To further quantify this discrepancy, we ranked the word vectors from highest- to lowest-
scoring according to each intrinsic and extrinsic measure and evaluated the correlation of
each pair of these rankings using ρ . The results are striking (Table 4.6): six out of the
eight intrinsic measures have negative correlations with all the three extrinsic measures,
indicating that when selecting among the word vectors for these downstream tasks, it is better
to make a choice at random than to base it on the ranking provided by any of the six intrinsic
evaluations.

4.4 Discussion

Only two of the intrinsic evaluation datasets showed positive correlation with the extrinsic
evaluations: MTurk-287 (ρ 0.27 to 0.37) and SimLex-999 (ρ 0.85 to 1.0). One of the
differences between the other datasets and the high-scoring Simlex-999 is that it explicitly
differentiates similarity from relatedness and association. For example, in the MEN dataset,
the nearly synonymous pair (stair, staircase) and the highly associated but non-synonymous
pair (rain, storm) are both given high ratings. However, as Hill et al. [2015] argues, an
evaluation that measures semantic similarity should ideally distinguish these relations and
credit a model for differentiating correctly that (male, man) are highly synonymous, while
(film, cinema) are highly associated but dissimilar.

This distinction is known to be relevant to the effect of the window size parameter. A
larger window not only reduces sparsity by introducing more contexts for each word, but
is also known to affect the trade-off between capturing domain similarity vs. functional
similarity: Turney [2012] notes that with larger context windows, representations tend to
capture the topic or domain or a word, while smaller windows tend to emphasize the learning
of word functions. This is because the role/function of a word is categorized by its proximate
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Window size
Dataset 1 2 4 5 8 16 20 25 30
WS-Rel 0.5430 0.5851 0.6021 0.6112 0.6309 0.6510 0.6551 0.6568 0.6514
WS-Sim 0.7465 0.7700 0.7772 0.7807 0.7809 0.7885 0.7851 0.7789 0.7776

Table 4.7 Intrinsic evaluation results for WS-Rel and WS-Sim (ρ)

syntactic context, while a large window captures words that are less informative for this
categorization. For example, in the sentence Australian scientist discovers star with telescope,
the context of the word discovers in a window of size 1 includes scientist and star, while
a larger context window will include more words related by topic such as telescope [Levy
and Goldberg, 2014]. The association of large window sizes with greater topicality is also
discussed by Hill et al. [2015] and Levy et al. [2015].

This phenomenon provides a possible explanation for the preference for representations
created using larger windows exhibited by many of the intrinsic evaluation datasets: as
these datasets assign high scores also to word pairs that are highly associated but dissimilar,
representations that have similar vectors for all associated words (even if not similar) will
score highly when evaluated on the datasets. A large window is beneficial if there is no
need for the representation to make the distinction between similarity and relatedness. On
the other hand, the best performance in the extrinsic sequence labelling tasks comes from
window size 1. This may be explained by the small window facilitating the learning of
word function, which is more important for the POS tagging, chunking, and NER tasks than
the topic. Similarly, given the emphasis of SimLex-999 on capturing genuine similarity
(synonyms), representations that assign similar vectors to words that are related but not
similar will score poorly. Thus, we observe a decreasing trend with increasing window size
for SimLex-999.

To further assess whether this distinction can explain the results for an intrinsic evaluation
dataset for representations using small vs large context windows, we studied the relatedness
(WS-Rel) and similarity (WS-Sim) subsets [Agirre et al., 2009] of the popular WordSim-353
reference dataset (included in the primary evaluation). Table 4.7 shows the performance
of representations with increasing context window size on these subsets. In general, both
show higher ρ with an increasing context window size. However, the performance in the
relatedness subset increases from 0.54 to 0.65 whereas that in similarity only increases from
0.74 to 0.77. Thus, although the similarity subset did not select a small window size, the
lesser preference for a large window compared to the relatedness subset lends some support
to the proposed explanation.
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4.5 Chapter summary

One of the primary goals of intrinsic evaluation is to provide insight into the quality of
representation before it is used in downstream applications. However, in this chapter, we
found that the majority of word similarity datasets in the general domain fail to predict
which representations will be successful in sequence labelling tasks, with only one intrinsic
measure, SimLex-999, showing high correlation with extrinsic measures. In concurrent work
(as described in Chapter 3), we have also observed a similar effect on biomedical domain tasks
and word vectors. We further considered the differentiation between relatedness (association)
and similarity (synonymy) as an explanatory factor, noting that the majority of intrinsic
evaluation datasets (in both general and biomedical domains) do not systematically make
this distinction. Our results underline once more the importance of such distinction, as well
as including also extrinsic evaluation when assessing NLP methods and resources.





Chapter 5

Bio-SimVerb and Bio-SimLex:
wide-coverage evaluation sets of word
similarity in biomedicine

5.1 Introduction

With the growing use of word representations in Natural Language Processing (NLP) tasks,
the quality and consistency of their evaluations have become pivotal in their develop-
ment [Faruqui et al., 2016; Tsvetkov et al., 2015]. Existing evaluation protocols can be
broadly categorized into two groups: intrinsic and extrinsic.

While several intrinsic evaluation resources have recently been developed for the general
domain, similar resources for biomedicine currently suffer from notable shortcomings. First,
they fail to distinguish between the concepts of semantic similarity (e.g. dyspnea and
tachypnea) versus semantic relatedness (e.g. pneumonia and infiltrate). In the previous
chapter, we showed that such distinctions are important predictors concerning the usefulness
of representation models in extrinsic tasks such as named entity recognition (NER) and
part-of-speech tagging. Consequently, evaluation datasets (e.g. SimLex-999, [Hill et al.,
2015]) which make such distinctions in their design protocols proved to be a better predictor
of vector performance in extrinsic tasks. Second, there is currently a lack of evaluation
datasets for semantic representation of biomedical verbs, despite their indispensable role in
the interpretation of biomedical language.

To address these two shortcomings, in this chapter, we describe the creation of two new
resources for evaluation of word representations in biomedicine: Bio-SimVerb and Bio-
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SimLex. These are wide-coverage and easy-to-implement evaluation resources for analyzing
verb and noun representations, respectively.

5.2 Dataset design

This section describes the design protocols of Bio-SimVerb and Bio-SimLex.

5.2.1 Choice of words

Samples/words in Bio-SimVerb (verbs) and Bio-SimLex (nouns) are collected from a pre-
processed PubMed Central Open Access subset (PMC), which is distributed by Hakala et al.
[2016]. POS tags and tokens in this resource are generated using the BLLIP constituency
parser [Charniak and Johnson, 2005], trained on a biomedical corpus [Mcclosky, 2010]. The
resource covers over 1.4M full articles with more than 388M parsed sentences.

After retrieving all samples from the PMC, we remove all multi-word expressions (e.g.
‘37 degrees C’) and auxiliary verbs (e.g. ‘must’). We also filter out noise, such as symbols
(e.g. ‘<’), numbers (e.g. ‘2010’), strings too short to be reliably understood (e.g. ‘a’, ‘v’,
‘b1’) and Greek letters (‘α’). In the next step, we use the Bio-lemmatizer [Liu et al., 2012] for
lemmatization of non-lemmas (e.g. ‘gone’, ‘went’, ‘cells’). We also normalize words with
the British English spelling into their American English variants for consistency. We exclude
terms occurring less than five times, as they are most likely uninformative. These steps filter
down our samples from 20,281 to 6,425 verbs, and from 1,339,806 to 217,425 nouns. We
have then invited two researchers working in biomedical NLP to determine whether these
terms are mostly used in the biomedical or general domains. We exclude samples with
ambiguous and multiple usages in both domains (e.g. ‘play’, ‘fire’). Consequently, 526 and
483 verbs, plus 1,312 and 840 nouns, are categorized as commonly used in the biomedical
domain and general domain, respectively. Several example words from both domains are
provided in Table 5.1.

Biomedical General
depolymerize automate
electrophorese study
phosphorylate argue
centrosome idea
pathophysiology people
endothelium river

Table 5.1 Biomedical- and general-domain word samples in Bio-SimVerb and Bio-SimLex.
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To show that the selected biomedical terms are domain-specific, we have examined
individual samples based on their frequency differences in the biomedical and general
English texts. We compare the relative frequency of our samples in PMC with that in the
British National Corpus (BNC) [Consortium, 2007]. We calculate the Spearman’s correlation
(ρ) between their frequency ranking in these corpora. The result is only a weak correlation:
ρ = 0.39, implying that the usage patterns of words in these areas are distinct.

To ensure broad coverage of samples from various areas of biomedicine, we keep track of
every journal where a sample appears. These journals are categorized by 125 Broad Subject
Terms [NLM, 2017], which are assigned by the U.S National Library of Medicine (NLM)
to MEDLINE journals to describe the journal’s overall scope and nature. For each sample
obtained from PMC, we record the PMCIDs of all the journals in which it appears. We then
map the PMCIDs to their corresponding Broad Subject Terms. Consequently, we generate
the distribution of Broad Subject Terms for individual samples based on their occurrence in
journals. Since one sample can appear in journals with different Broad Subject Terms, we
assign the one with the highest occurrence frequency.

The use of Broad Subjects Terms and the examination of frequency for our samples
demonstrate the extensive coverage of words in Bio-SimLex and Bio-SimVerb originating
from different biomedical areas.

5.2.2 Constructing concept pairs

Next, we sketch the process of constructing concept word pairs for the final annotation.
In general, our dataset is made up of quarters of word pairs: around 250 associated pairs
and 250 unassociated pairs are from the biomedical domain; 250 associated pairs and 250
unassociated pairs are from the general domain.

Concept pairs from the biomedical domain

To form associated pairs in the biomedical quarter, we use two publicly available semantic
resources:

1. SPECIALIST Lexicon As part of the Unified Medical Language System (UMLS),
the SPECIALIST Lexicon provides information about common English vocabulary
and biomedical terms found in MEDLINE as well as in the UMLS Metathesaurus.
Each entry in SPECIALIST includes syntactic (e.g. form and forms), morphological
(e.g. localised and localized), and semantic variants (e.g. breathe and respire). To
form associated pairs, we pair up our concepts randomly sampled from the PMC. From
these random pairings, we have detected that 121 nouns and 80 verb synonymous
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Ontology Reference
Chemical Entities of Biological Interest (ChEBI) Hastings et al. [2013]
Gene Ontology (GO) Ashburner et al. [2000]
NCI Thesaurus (NCIT) Golbeck et al. [2011]
Foundational Model of Anatomy (FMA) Rosse and Mejino Jr [2008]
Disease Ontology (DOID) Kibbe et al. [2014]
Uberon multi-species anatomy ontology (UBERON) Mungall et al. [2012]
Plant Ontology (PO) Walls et al. [2012]
Plant Phenotypes and Traits (PATO) Gkoutos et al. [2004]
Ontology for Biomedical Investigations(OBI) Brinkman et al. [2010]
Molecular Process Ontology (MOP) Batchelor [2017]
Zebrafish anatomy and development (ZFA) Van Slyke et al. [2014]
Protein modification (PSI-MOD) Montecchi-Palazzi et al. [2008]
Common Anatomy Reference Ontology (CARO) Haendel et al. [2008]
Xenopus anatomy and development (XAO) Segerdell et al. [2008]

Table 5.2 14 Ontologies used for sampling synonymous pairs in Bio-SimVerb and Bio-
SimLex

pairs appear in SPECIALIST. These pairs, together with pairs found in other resources
(described in the next section), are included in Bio-SimLex and Bio-SimVerb after a
manual inspection by our biomedical NLP researchers.

2. The Open Biomedical Ontologies The Open Biomedical Ontologies Foundry [Smith
et al., 2007] creates a collection of ontologies for shared use across different biological
and medical domains. Each ontology provides a fine-grained representation of similar
entities within a sub-domain. We use synonyms, as well as sibling entities (i.e., entities
sharing the same parent node in an ontology), provided in 14 ontologies (see Table 5.2)
as the reference for finding synonymous pairs. Since many terms in these ontologies are
nominalized forms of verbs (e.g. phosphorylation instead of phosphorylate), we first
include all word forms for every term in the Ontologies by querying its morphological
variants in the SPECIALIST Lexicon. Following that, we match our random pairs to
the synonymous pairs found in these ontologies.

From our random pairs, we find 506 (nouns) and 287 (verbs) synonymous pairs in these
ontologies, together with the semantic pairs previously found in SPECIALIST (nouns: 121
and verbs: 80). This yields a total of 627 noun pairs and 367 verb pairs. They are all
inspected by our biomedical NLP researchers manually to ensure that pairs are associated
in a biomedical sense. The experts agree that 247 noun pairs and 250 verb pairs have an
association: this forms the quarter of associated word pairs in the biomedical domain.
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Using a set of random pairs which are not found in any of the two semantic resources, we
randomly sample 247 noun pairs and 250 verb pairs. We also consult the experts to ensure
that all these pairs are either minimally associated or completely unassociated. They form
the quarter of unassociated pairs in the biomedical domain.

Concept pairs from the general domain

Bio-SimLex and Bio-SimVerb contain 494 noun pairs and 500 verb pairs that are commonly
used in English. We now describe how to form such word pairs from our samples, with
reference to the USF norms dataset [Nelson et al., 2004] containing word association norms.

The USF Norms Dataset The USF dataset is the largest database of free word association
collected in word norming experiments for English. It has 72,000 associated word pairs.
The pairs are created by presenting one of 5,000 cue concepts to human subjects and then
recording their first associated words. This way, each concept is rated by over 10 participants,
yielding a set of associates for every concept. The forward and backward association strengths
between a concept and its associates are reported in the USF. It includes both related but
dissimilar pairs (e.g. player/team), as well as similar pairs (e.g. to wash/to rinse).

In our case, we again pair up concepts randomly sampled from the PMC. From these
pairs, we extract 247 noun pairs and 250 verb pairs represented in the USF: we require the
pairs to be assessed by more than 10 USF participants, as well as to have both forward and
backward association strengths assigned. These two filtering conditions not only ensure
that two words in a pair have a degree of semantic association but also guarantee that the
association link is bidirectional. A similar sampling procedure is used in the construction of
general-domain benchmarks including SimLex [Hill et al., 2015] and SimVerb [Gerz et al.,
2016]. Finally, we also extract 247 noun pairs and 250 verb pairs not present in the USF to
form the quarter of unassociated words pairs in the general domain.

5.2.3 Concept pair scoring

Bio-SimLex and Bio-SimVerb consist of 988 noun pairs and 1,000 verb pairs respectively.
The similarity between concepts in each pair is determined by twelve annotators who all have
a background in biology. Seven annotators are undergraduate or post-graduate students in the
Biology School, University of Cambridge, while the remaining five are biologists working at
the Institute of Environmental Medicine, Karolinska Institutet 1. The similarity is assessed

1We did not keep track of the English proficiency of the annotators provided that the main concern in this
study is their domain expertise regarding the biomedical verb semantic, yet, we will keep a note on this and
will address it in future study



62
Bio-SimVerb and Bio-SimLex: wide-coverage evaluation sets of word similarity in

biomedicine

on a scale of 0-6, where 0 is assigned to completely unrelated concepts, and 6 represents
highly synonymous concepts. The same scale is used in the construction of SimVerb and
SimLex.

We adopt the annotation protocol established in prior work on SimVerb and SimLex:
the annotators are instructed to assign low scores to related but dissimilar word pairs (e.g.
drug/pharmacy). In each data set, we randomly select 50 pairs to serve as a consistency set.
This set is used to detect possible variation between annotators and data subsets. We then
divide all pairs from Bio-SimVerb and Bio-SimLex into two groups, containing approximately
600 pairs each. Out of these 600 pairs, 500 are unique to each group, and 50 pairs are from
the consistency set, included in both groups. Another 50 are duplicate pairs displayed to
each rater twice to detect his or her inconsistent annotations. Each annotator rates one group.
Consequently, each pair is rated by six participants in total. The final survey is implemented
so that each rater sees 120 pairs per page on the interface: 100 unique ones, 10 from the
consistency set, and 10 duplicate pairs.

The pairs are rated by moving a slider. The participants are explicitly asked to give the
same rating to the same pairs for consistency 2. Furthermore, we also monitor for suspicious
rating patterns (e.g., randomly alternating between two ratings). If a participant uses a single
rating for ten consecutive questions, we issue a warning to the participant as a reminder to
pay attention throughout the survey.

250 are duplicate pairs displayed to each rater twice to detect his or her inconsistent annotations
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5.3 Experimental setup

5.3.1 Word representation models

To evaluate Bio-SimVerb and Bio-SimLex, we apply a range of popular word representation
models. All models are trained on a corpus of PubMed abstracts consisting of approximately
2.7 billion tokens (11,980,338 types). The common hyper-parameters shared by these models
are standardized to the values shown in Table 5.3, while parameters specific to individual
models are kept at their defaults 3.

Parameters Values
Context window size 5
Vector dimension 200
Learning rate 0.05
Negative sampling 5
Min-count 5
Sampling rate 1e-5

Table 5.3 Hyper-parameter values for word representation models. Parameters specific to
individual models are set to their defaults.

3Throughout the study in Chapter 3, 4 and 5, we used the same set of default values, as suggested in the
word2vec package. For the description of individual hyper-parameters, one can refer to Chapter 3 (Section 3.3.3)
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We included five representation models which are commonly used in the field:

1. Skip-gram (SG) and Continuous Bag of Words (CBOW) The word2vec tool [Mikolov
et al., 2013a] has been shown to produce highly competitive representation models
in many intrinsic and extrinsic tasks [Baker et al., 2016; Pyysalo et al., 2013a; Rei
et al., 2016; Tsvetkov et al., 2015]. Hence, the representation models used in these
experiments are mostly built on the Skip-gram and CBOW architectures. In Skip-gram,
the vector for each word is learned by predicting other words within a given context
window. Conversely, in the CBOW model, a word is predicted given its context 4.

2. Structured Skip-gram (SSG) Based on the SG model, Ling et al. [2015a] proposed
an extension, Structured Skip-gram (SSG), which captures word order information. In
the SSG model, the vector of each word is learned by predicting not only its context
words but also its relative position. This model has shown improvement in various
syntactic tasks as compared to original SG models [Ling et al., 2015a].

3. CBOW with attention (Attention) Based on the CBOW architecture, Ling et al.
[2015b] introduced an attention mechanism which finds the contextual words that are
most relevant for each prediction. Their results showed that this model could benefit
both semantic and syntactic tasks [Ling et al., 2015b].

4. SG with dependency-parse (Dependency) Levy and Goldberg [2014] proposed using
dependency-parsed texts to help representation learning in word2vec so that learning
includes syntactic dependencies and is not restricted to a fixed context window. This
model has been shown to better capture the functional similarity of words than the
original SG models [Levy and Goldberg, 2014].

In addition to applying the above models, we also include seven previously released word
representations in both the general and biomedical domains:

1. Paragram, Paragram+CF, Symmetric, CBOW-general and Dep-general Biomed-
ical representation models are domain-specific, which implies that the word semantics
they capture can be different from those in the general domain. To study this, we also in-
clude five general-domain representation models previously benchmarked on SimVerb
and SimLex: a model learned from the paraphrase database (Paragram) [Wieting
et al., 2015] and its extension fine-tuned by linguistic constraints from other knowledge

4The descriptions of SG and CBOW are provided in Section 2.1.1
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resources (Paragram+CF) [Mrkšic et al., 2016], a model learned from symmetric-
patterns in corpus such as ‘x rather than y’ and ‘either x or y’ (Symmetric) [Schwartz
et al., 2015] as well as CBOW (CBOW-general) and dependency models (Dep-
general).

2. PubMed-w2v and BioASQ created by Pyysalo et al. [2013a] and Kosmopoulos et al.
[2015] (resp.) and built with the SG model with vector dimension of 200 and a context
window size of 5. 5 They denote the biomedical domain vectors which have been
popularly used in literature [Björne, 2014; Björne and Salakoski, 2018].

5.3.2 Intrinsic evaluation

We perform intrinsic evaluations on the MayoSRS [Pakhomov et al., 2011] and UMNSRS
word similarity datasets [Pakhomov et al., 2010]. For UMNSRS, We use its UMNSRS-
Sim and UMNSRS-Rel subsets as our references. They have 566 and 587 word pairs for
measuring similarity and relatedness (respectively) whose degree of association was rated
by participants from the University of Minnesota Medical School. We use the standard
experimental protocol for word similarity tasks: for each word pair in a dataset, we compute
the cosine similarity of the two word representations and rank the word pairs by these values.
We then compare the ranking against a ranking based on human similarity scores using
Spearman’s correlation (ρ).

5.3.3 Extrinsic evaluation

We assess our representation models using a NER task with four established corpora: the
Anatomical Entity Mention corpus (AnatEM) [Pyysalo and Ananiadou, 2013], the BioCre-
ative II Gene Mention task corpus (BC2) [Smith et al., 2008], the BioCreative IV Chem-
ical and Drug NER corpus (CHEMD) [Krallinger et al., 2015] and the JNLPBA corpus
(PBA) [Kim et al., 2004]. The NER model follows the simple window-based feed-forward
network architecture proposed by Collobert and Weston [2008]. Table 5.4 shows the hyper-
parameters used in this model.

The model input consists of the vectors of words within a context window, connected
to a single hidden layer with a hard tanh activation, leading to an output Softmax layer for
predicting labels for named entities. Performance is evaluated using entity-level F-score as
implemented in the standard conlleval evaluation script.

5The descriptions of these models are provided in Section 3.3.4
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Parameters Values
Vector dimension 200
Hidden layer dimension 300
Context window size 5
Learning rate 0.01
Dropout probability 0.2
Epochs 20
Minibatch size 50

Table 5.4 Hyper-parameters used in NER

5.4 Results

5.4.1 Inter-rater reliability

In this study, each annotator rated one sub-group of pairs in Bio-SimVerb and Bio-SimLex.
We used the previously published implementation from the SimLex and SimVerb studies
to estimate inter-annotator agreement (IAA). In this implementation, IAA-1 computes the
average pairwise Spearman’s correlation (ρ) of ratings for each annotator with the ratings of
all the other annotators. To smooth individual rater effects, we also include IAA-2 (mean),
which computes the Spearman’s correlation of individual annotators’ ratings with the average
ratings of all the other annotators within the same group.

We first computed IAA-1 between the ratings of all annotators on the consistency set.
Based on these results, we removed the annotations of one outlier whose IAA-1 was con-
siderably lower than the average IAA-1 of all the other annotators from the data. After that,
we computed IAA-1 and IAA-2 between annotators rating the same group. The average
IAA-1 and IAA-2 for Bio-SimVerb are 0.65 and 0.69 respectively, whereas the results for
Bio-SimLex are 0.72 (IAA-1) and 0.78 (IAA-2). We then calculated the average of all ratings
from the accepted annotators for each pair and scaled the scores linearly from the 0-6 to the
0-10 interval to match other datasets such as MayoSRS. Following the standard protocol,
the similarity score for a representation model is computed using cosine similarity for each
word pair, and the performance of the model is then measured by the Spearman’s correlation
between its ranking of the pairs and the human ranking.
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Model
UMN-

rel
UMN-

sim
Mayo

Bio-
SimVerb

Bio-
SimLex

CHEMD BC2 AnatEM PBA

Attention 0.5248 0.5551 0.6113 0.471 0.7155 79.11 65.91 80.49 62.3
SSG 0.5189 0.552 0.6003 0.4744 0.7181 79.62 67.3 81.3 63.78
SG 0.5767 0.6271 0.5744 0.4638 0.7151 81.37 70.2 81.32 65.16
CBOW 0.5 0.5348 0.5146 0.4367 0.702 78.41 64.05 80.3 61.9
Dependency 0.3934 0.4622 0.3445 0.3978 0.7436 83.69 71.43 82.4 65.01
PM-w2v 0.506 0.549 0.5133 0.4376 0.6984 80.71 67.4 81.1 64.86
BioASQ 0.5092 0.5893 0.4729 0.4228 0.6982 56.95 48.86 53.34 50.51

Table 5.5 Intrinsic (left 5 columns, in ρ) and extrinsic scores (right 4 columns, in F-score) of
different representation models trained on the biomedical corpus.

5.4.2 Performance of representation models on intrinsic evaluation datasets

Table 5.5 shows the intrinsic (left 5 columns) and extrinsic scores (right 4 columns) of the
different representation models. To address ties in human scores in intrinsic evaluations,
we use the Scipy implementation (v0.19) [Jones et al., 2001] to compute the tie-corrected
Spearman’s correlation as suggested by Kendall and George [1955]. This correction handles
the ties by averaging the uncorrected correlation values over all possible valid (without ties)
rankings of the underlying variable. To account for variance in neural networks due to their
random initialization, we run three trials for all extrinsic tasks and report their averages.

In general, scores are higher in Bio-SimLex than in Bio-SimVerb for all representation
models, indicating that it is still difficult for current models to capture verb semantics. In
particular, the score of the dependency model is low in Bio-SimVerb, which implies that using
dependency parses to reach beyond bag-of-word context may not contribute equally to the
representation learning of verbs and nouns. To a large extent, to identify learning algorithms
that are useful for learning word-type specific representations (e.g. verbs), resources for the
evaluation of specific word-types are a necessity.
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CHEMD BC2 AnatEM PBA
Bio-SimVerb (ours) 0.2 0.18 0.29 0.24
Bio-SimLex (ours) 0.53 0.6 0.46 0.48

Baseline
UMN-rel -0.15 -0.14 -0.08 -0.07
UMN-sim -0.38 -0.34 -0.34 -0.3
Mayo 0.08 0.04 0.18 0.12

Table 5.6 Pearson’s correlation between word-similarity/Bio-SimVerb and Bio-SimLex scores
and the NER tasks evaluated on biomedical representation models trained with different
approaches. None of the scores are statistically significant. (Bold: best scores)

5.4.3 Correlation between intrinsic and extrinsic scores

From Table 5.5, we observe that there is variation in the performance of different representa-
tion models across various tasks. For example, the best-performing model in MayoSRS is the
attention model, whereas the dependency model performs best in most NER tasks. To study
if our datasets can predict extrinsic performance, we compute the Pearson’s correlation (r) to
quantify the linear relationship between the intrinsic (UMNSRS, MayoSRS, Bio-SimVerb
and Bio-SimLex) and the extrinsic scores (CHEMD, BC2, AnatEM and PBA) 6.

Table 5.6 shows the correlation between the performances of representation models
on various intrinsic evaluation datasets and the NER tasks. When compared to different
benchmarks, the correlations between our datasets and downstream tasks are on par with or
notably higher than the ones in UMNSRS and MayoSRS. The result suggests that our datasets
can better predict the performance in NER, as compared with other intrinsic evaluation
standards in biomedical NLP. Nevertheless, we find that there is no statistically significant
correlation on any dataset (two-tailed t-test with al pha = 0.05). A possible reason is that
the experiment involves only a limited number of data points, and only a large effect can be
statistically significant.

6Spearman’s ρ has been more natural for word similarity ranking comparisons given they are all cosine
scores and we only want to compare the ranking. In contrast, here, using Pearson’s r allows us to directly
measure how well the performance metric in extrinsic tasks correlates with the intrinsic performance one.
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Next, we compute the same performance-correlations using a set of SG models with
different context window sizes (other hyper-parameters are kept default). The scores for
individual tasks and their correlations are shown in Table 5.7 and Table 5.8 respectively.

With the same model architecture but different context window sizes, most extrinsic
scores (right 4 columns of Table 5.7) have a performance peak with a narrow window (e.g.
win= 1), followed by a gradual decrease when window size increases. The results in Table
5.8 show that our evaluation scores correlate better with downstream tasks than all other
available intrinsic evaluation datasets. Although we only test on nine models, we observe two
significant positive correlations in Bio-SimLex (CHEMD and AnatEM). Notably, UMNSRS
and MayoSRS show a negative correlation with all NER tasks. Similar patterns are previously
observed in Chapter 3 when comparing these scores using representation models trained
with other corpora including PMC. They suggest that datasets such as MayoSRS emphasize
modelling topical relatedness rather than similarity, which is learned better by a representation
model with a larger context window. Nevertheless, tasks such as NER rely more on the
modelling of similarity such as co-hyponymy, which is typically captured better with a
narrow context window [Turney, 2012]. This disagreement in emphasis may lead to negative
correlations between the intrinsic and extrinsic scores, as shown in Table 5.8. In contrast, we
emphasized modelling relatedness and similarity separately during the annotation phase of
Bio-SimLex and Bio-SimVerb. Annotators were instructed (with clear case examples) to give
low scores to related but dissimilar word pairs, and this design leads to a higher correlation
with extrinsic tasks in our experiments. Therefore, our datasets capture some properties of
word similarity and relatedness that can predict performance at extrinsic tasks. Furthermore,
Bio-SimLex shows a better correlation with extrinsic performance than Bio-SimVerb. One
possible explanation is that the extrinsic tasks we considered in this experiment are NER,
where performance is closely related to the quality of noun representations. More importantly,
these results confirm our hypothesis that evaluating the qualities of the representation models
separately for various word-types (e.g. verbs) provides insight into how they individually
contribute to extrinsic performance.
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Win
Size

UMN-
rel

UMN-
sim Mayo

Bio-
SimVerb

Bio-
SimLex

CHEMD BC2 AnatEM PBA

1 0.5317 0.5759 0.5551 0.4594 0.7294 81.51 70.06 82.16 65.34
2 0.563 0.6144 0.6238 0.4696 0.7207 81.44 70 82.21 65.51
4 0.5768 0.6247 0.581 0.464 0.7188 81.5 70.04 82 65.75
5 0.5767 0.6271 0.5744 0.4638 0.7151 81.37 70.20 81.32 65.16
8 0.582 0.6377 0.5975 0.4611 0.7086 81.24 69.56 80.99 65.53
16 0.5888 0.6431 0.6123 0.4667 0.7034 81.02 69.39 80.72 64.78
20 0.5896 0.6418 0.6319 0.4584 0.7031 81.12 69.62 80.49 65.19
25 0.6018 0.6489 0.6188 0.4519 0.7004 81.07 69.93 80.92 65.14
30 0.6007 0.6457 0.6486 0.4502 0.7043 80.71 69.2 81.03 64.79

Table 5.7 Intrinsic (left 5 columns, in ρ) and extrinsic scores (right 4 columns, in F-score) of
the biomedical representation models trained using different window sizes.

CHEMD BC2 AnatEM PBA
Bio-SimVerb (ours) 0.63 0.36 0.42 0.40
Bio-SimLex (ours) 0.83* 0.66 0.92* 0.59

Baseline
UMN-rel -0.78* -0.56 -0.78* -0.46
UMN-sim -0.73 -0.57* -0.81 -0.42*
MayoSRS -0.78 -0.69 -0.54* -0.47*

Table 5.8 Pearson’s correlation between word-similarity/Bio-SimVerb and Bio-SimLex scores
and the NER tasks evaluated on biomedical representation models trained with different
window sizes (Bold: best scores, *: statistically significant)
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5.4.4 Comparison with general-domain datasets

We have shown that our resources capture some properties (e.g. word semantics) that
can predict performance in biomedical NER. These properties are expected to be domain-
dependent, which suggests that it should be more effective to evaluate with in-domain datasets
to predict performance for biomedical tasks. To study this, we use five representation models
(detailed in Section 5.3), benchmarked on general-domain datasets (SimVerb and SimLex),
and evaluate their performance-correlation on our datasets and biomedical tasks.

Table 5.9 shows the correlation between intrinsic and extrinsic scores for general-domain
representation models. Most scores for general-domain datasets (SimLex and SimVerb)
correlate negatively with biomedical NER tasks. Due to domain-specificity, the properties
that SimVerb and SimLex measure generally do not reflect how well a representation model
will perform in biomedical tasks, and may even give contradictory indications. Bio-SimLex
achieves the best results also in this evaluation and shows a positive correlation with per-
formance in BC2 and PBA despite measuring out-of-domain representation models. (In
interpreting these results, it should be noted that none reaches statistical significance.)

To summarize, Bio-SimVerb and Bio-SimLex are better predictors of performance in
biomedical NER than other in-domain datasets (UMNSRS, MayoSRS) and general-domain
datasets (SimLex, SimVerb). We observed moderate to high positive correlations between
performance on our datasets and in biomedical NER, which are consistent across corpora
and different models as well as within the same model architecture with different windows
sizes. Although it is possible to use our datasets to evaluate general-domain representation
models, the results indicate that they are most effective in the evaluation of biomedical
domain representation models.

CHEMD BC2 AnatEM PBA
Bio-SimVerb (ours) -0.38 -0.18 -0.47 -0.22
Bio-SimLex (ours) 0.00 0.23 -0.09 0.18

Baseline
SimVerb -0.31 -0.09 -0.41 -0.12
SimLex -0.36 -0.20 -0.49 -0.19

Table 5.9 Pearson’s correlation between general-domain datasets/Bio-SimVerb and Bio-
SimLex scores and the NER tasks evaluated on general-domain representation models
benchmarked in SimVerb and SimLex. None of the scores are statistically significant. (Bold:
best scores)
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Fig. 5.1 Subset-based evaluation (y axis unit: ρ) for Bio-SimLex (left) and Bio-SimVerb
(right), where subsets are created based on the word-frequency in PMC. To be included in
each group it is required that both words in a pair are in the same frequency interval (x axis)

5.4.5 Subset evaluation

The extensive coverage and scale of Bio-SimVerb and Bio-SimLex enable model evaluation
based on various criteria. In this section, we showcase two examples.

Frequency We first select word pairs based on their frequency of occurrence in PMC and
form three groups, with 300-400 pairs in each group. Results for Bio-SimLex (left) and
Bio-SimVerb (right) are shown in Figure 5.1. They suggest that the performance of all
models improves as the frequency of the words in the pair increases. Since distributional
models are data-driven, their qualities of capturing word-semantics are mainly governed by
the word-frequency in the corpus.
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Number of Broad Subject Terms

Fig. 5.2 Subset-based evaluation (y axis unit: ρ) for Bio-SimLex (left) and Bio-SimVerb
(right). where subsets are created based on the word’s number of unique Broad Subject
Terms. A word can have multiple Broad Subject terms when it appears in journals of different
areas in biomedicine. To be included in each group, it is required that both words in a pair
are contained in the same Subject Term interval (x axis)

Broad Subject Terms In general, words with more diverse usage patterns (polysemy) are
expected to be harder to learn with statistical models. To test this hypothesis, we divide the
word pairs into three groups based on their numbers of Broad Subject Terms, which represent
the sub-domains of text in which a word appears. Words that have more Broad Subject Terms
appear in text across different areas of biomedicine and tend to have more diverse usage
patterns compared to words used only in a single domain.

From Figures 5.2, we see a clear overall downward trend, suggesting that it is still
a challenge for distributional models to capture the diverse usage patterns of words that
appear across different domains. However, using additional information beyond corpus co-
occurrence (e.g. dependency parsing) facilitates the learning of representation for such verbs,
as reflected in the notable improvement for the dependency model seen in Figure 5.2 (right).
Intuitively, dependency parses can provide discriminative context to facilitate representation
learning: for example, two verbs are similar if they share similar nominal subjects (nsubj
and nsubjpass). Nevertheless, our result shows that dependency parses do not contribute
equally to the learning of noun and verb representations. Again, this supports our notion that
representations of particular word types should be evaluated separately to better understand
the type-specific properties learned by different models.
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Frequency
Subset

Bio-
SimVerb

Bio-
SimLex

low 0.9848 1.5621
medium 0.8059 0.6784
high 1.2352 1.0237
average 1.009 1.088

Subject
Subset

Bio-
SimVerb

Bio-
SimLex

low 0.8941 1.2395
medium 0.9084 0.7585
high 1.25 1.1204
average 1.018 1.039

Table 5.10 Average standard deviation of ratings per subset (bold) by the word-frequency
(left) and the number of Broad Subject Term (right). We use low, medium and high to label
subsets for brevity. Range values of corresponding subsets can be found in Fig 5.1 and
Fig 5.2.

Human Agreement Since distributional models are sensitive to word-frequency and the
diversity of usage patterns, we also examine if these factors affect human perception of word
similarity. In Table 5.10, we report the average standard deviation of ratings per subset by
word frequency (left) and by Broad Subject Terms (right). That allows us to compare human
agreement across subsets through the ratings of individual items in each subset. In general,
the overall average standard deviations across all subsets are almost identical (≈1.0). The
subset where we find the highest deviation is the low-frequency subset of Bio-SimLex (left in
Table 5.10). It is possible that annotators may not have been familiar with some rare words
in Bio-SimLex, leading to higher variance in ratings.

5.5 Chapter summary

In this chapter, we have presented two new resources for the evaluation of word representation
models: Bio-SimLex and Bio-SimVerb. These datasets allow researchers to investigate how
humans and machines represent noun and verb semantics. Their sizes and coverage of
concepts make it possible for the datasets to be used for comparing representation models in
different areas of biomedicine. Furthermore, we have observed a positive correlation between
the performance of biomedical representation models on Bio-SimLex and in biomedical
NER. This indicates that our datasets can effectively measure properties that are relevant for
performance in extrinsic tasks. We have also examined the impact of different representation
learning approaches on nouns and verbs separately and observed that a single learning
approach could not capture the semantics of all word types. To identify useful methods for
learning type-specific representations, resources for the evaluation of individual word types,
such as Bio-SimLex and Bio-SimVerb, are indispensable.



Chapter 6

A Neural Classification Method for
Supporting the Creation of BioVerbNet

VerbNet, an extensive computational verb lexicon for English, has proved to be useful for
supporting a wide range of Natural Language Processing (NLP) tasks requiring information
about the behaviour and meaning of verbs, including word sense disambiguation [Brown et al.,
2011], information extraction [Schmitz et al., 2012] and text mining applications [Lippincott
et al., 2013; Rimell et al., 2013]. It is foreseeable that biomedical text processing and mining
could benefit from a similar resource. However, while relatively well-developed resources
are available for nouns in biomedicine (e.g. UMLS Metathesaurus, [Nelson et al., 2004]),
verb-related resources are still lacking in both depth and coverage [Ananiadou and Mcnaught,
2006; Mondal et al., 2017; Tan, 2014; Venturi et al., 2009].

In this chapter, we will explore the application of neural representation for inducing
verb lexicons in biomedicine. We will first describe how to fine-tune existing representation
models to achieve this goal (Section 6.1). Then, will evaluate the utility of the induced
lexicon in supporting biomedical NLP tasks (Section 6.2).

6.1 Creation of verb lexicon

Constructing verb lexicons manually is extremely labour-intensive. Instead, previous studies
have shown that it is possible to automatically induce verb lexicons from both general [Barak
et al., 2014; Joanis et al., 2008; Ó Séaghdha and Copestake, 2008; Vlachos et al., 2009] and
biomedical texts [Korhonen et al., 2006, 2008; Sun, 2013]. Nonetheless, a vast majority of
verb lexicon inductions rely heavily on feature engineering, which is time-consuming and
requires added expert knowledge. Therefore, using hand-crafted features for verb lexicon
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induction does not provide an optimal solution for lexicon acquisition in specific domains.
However, in recent times, works which acquire general lexical resource on automatically-
learned features (e.g. distributional word semantics) through neural networks are emerg-
ing [Vulić et al., 2017]. These sets of features are unsupervisedly induced from corpora,
using neural representation learning models (a.k.a. neural embeddings) which have been
fine-tuned to better capture verb semantics in the text. In the biomedical domain, there has
been little work on the application and optimization of the neural representations for verb
lexicon acquisition, partly attributed to the lack of an in-domain evaluation resource for
verbs.

In the previous chapter, we have created a resource for the intrinsic evaluation of verb
representations in the biomedical domain (Bio-SimVerb). It allows us to effectively measure
properties that are relevant for learning verb-specific representations. In this chapter, we will
investigate the potential of using verb-specific representations to develop a cost-effective,
VerbNet-Style resource specifically aimed at describing verbs in the area of biomedicine.
We propose an approach that can automatically identify contributive contexts for learning
biomedical verb representations from large amounts of text without manual feature engi-
neering. We will then apply this verb-optimized model on a small manual classification of
biomedical verbs to expand it with new candidates using all the PubMed abstracts and the
full articles in the PubMed Central Open Access subset as data.

6.1.1 Related work

Representation learning methods typically operate on two fundamental elements: Words
and contexts. They represent a target word (word) using its neighbouring words (contexts).
In literature, many models use the bag-of-words (BOW) contexts for learning the word
representation, in which a fixed number of neighbours within the context window are used
as the context of a target word. Nevertheless, using a fixed context window throughout the
entire representation learning process implies that it is possible to miss important contextual
features which appear outside the window. Conversely, expanding the window to capture all
relevant words increases the level of noise from irrelevant words.

Hence, other types of contexts, such as dependency relations and symmetric patterns
(e.g. x and y), have been proposed [Levy and Goldberg, 2014; Schwartz et al., 2015]. These
studies show that representation learning requires different context configurations to produce
improved results for each word-type (e.g. nouns or verbs). For example, Schwartz et al.
[2015] reports that symmetric patterns (e.g. x or y) are essential to contexts for learning
verb and adjective representations, whereas BOW is useful for learning noun representations.
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Additionally, Vulić et al. [2017] proposes a framework for identifying the most useful (type-
specific) contexts for learning representations for nouns, verbs and adjectives respectively.

These studies have only involved the general-domain text, and their results do not
necessarily apply to the biomedical text. Additionally, in the biomedical domain, there has
been little work on verb representation, partly attributed to the lack of an in-domain evaluation
resource for verbs. With Bio-SimVerb we created in Chapter 5, we can now effectively
measure properties that are relevant for learning verb-specific representations. Hence, in this
chapter, we aim to identify the optimal dependency-based context configurations for learning
representations of biomedical verbs, whose lexical characteristics can be different from the
general-domain ones. We also extend the usefulness of neural representation by using our
optimized models as features to induce a verb lexicon for supporting NLP and text mining in
biomedicine. In the next section, we will describe its design and construction.

6.1.2 Dataset design

The design of our lexicon consists of two parts: First, we apply the recent method by Vulić
et al. [2017] to identify best contexts for learning biomedical verb representations. The
method, based on the Skip-gram model with negative sampling (SGNS), has produced
successful results in the general domain but has not previously been applied to specialised
domains such as biomedicine. It involves first creating a context configuration space based
on dependency relations between words, followed by applying an adapted beam search
algorithm [Pearl, 1984] to search this space for the verb-specific contexts, and finally using
these contexts it creates verb representations.

Next, the optimized representation is used to provide word features for building a verb
lexicon. This is obtained by expanding the small manually developed VerbNet-style classi-
fication of 192 biomedical verbs by Korhonen et al. [2006] (referred to as Korhonen-VN
henceforth) with 957 new candidate verbs. The candidate verbs are chosen from the Bio-
SimVerb we created in Chapter 5; verbs were selected based on their frequent occurrence
in biomedical journals across 120 subdomains of biomedicine (as categorized by Broad
Subject Terms [NLM, 2017]). It ensures the wide-coverage of verb classification ideal for
the development of our lexicon. We then use the Nearest Centroid Classifier to connect the
new candidates to an appropriate class in Korhonen-VN. The resulting classification provides
1,149 verbs assigned to the 50 classes in the original resource. It lists, for each verb, the
most frequent dependency contexts that reflect their syntactic behaviour along with example
sentences.
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Context selection

Our aim is to fine-tune the learning of verb representation so that it can be used to build a verb
lexicon. For this, we first identify contexts contributing to biomedical verb representation
learning. We use the Stanford typed dependencies (DEPS, [De Marneffe and Manning,
2008]) as contexts for selection. It is because, first, DEPS can help representation models
learn lexical information beyond the BOW context window and, second, they can provide a
natural grouping of related words [Vulić et al., 2017]. For example: (contain, glucose_dobj)
and (generates, radiation_dobj) which share the same dependency dobj can be grouped into
dobj bag (referred to as context bag henceforth). In the next section, we describe how we
construct these context bags.

Creation of context bags

We organized the dependency-parsed corpus for training representation in the form of (word,
context) pairs, as in the work of Levy and Goldberg [2014]. Word is the target word for
training the representation model whereas context stands for its corresponding context
elements in text (e.g. dependency relations and the head of the dependent word). Consider
the following as an example: the pair (modulator, efficient_amod) denotes a target word
modulator with an adjectival modifier (amod) context: efficient. Given the dependency-
parsed corpus, we break it down into individual context bags based on the dependency
relation of each (word, context) pair. Hence, the context bag dobj consists of pairs such as
(regulate, cells_dobj) or (fire, neuron_dobj). We follow the same procedure as Vulić et al. to
process the context bags. First, Prepositional and Conjunction relations are collapsed. Hence,
all pairs with (prep_x) or (conj_y) such as (prep_in) and (conj_or) will be merged into the
context bags (prep) and (conj) correspondingly. Secondly, similar dependencies (i.e. those at
the bottom two levels of each dependency type in the Stanford dependency hierarchy) are
merged. For example, direct (nsubj) and indirect subjects (nsubjpass) are merged into the
context bag (subj). Thirdly, infrequent pairs and uninformative dependencies are removed
(e.g. punctuation). A context configuration denotes a set of individual context bags used
for training representation models. We call a configuration consisting of M individual
context bags a M-set configuration 1. Examining every possible context configuration is
computationally expensive when there are many context bags. For example, assessing all
contexts in a 10-set configuration (i.e. 10 context bags) would involve training ∑

10
k=1(10Ck) =

1023 different representation models 2. In this case, we train and evaluate the representation

1For example, a 3-set configuration will consist of 3 individual context bags such as comp, conj and prep
2A short formula for the summation of combination is: 210 −1 = 1023
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on 10 initial set of contexts and recursively consider smaller and smaller sets of them (from 10
to 1 set). We aim to improve the representation without exhaustively evaluating all possible
combinations. To achieve this, we apply the context selection framework proposed by Vulić
et al. [2017], which uses a beam search style selection to reduce the numbers of visited
configurations. We will describe the details in the next section.

Configuration search

We implement the framework for context selection as proposed by Vulić et al. [2017]. First,
we filter contexts that are uninformative for learning verb representation. For example, the
nn bag denotes contexts linked from a noun to its noun pre-modifier. It is likely to be useful
for learning noun representations, but not verb representations. Hence, when evaluating the
quality of verb representation trained solely with the nn bag, we expect its score will be
low. To filter uninformative contexts, we first train a set of representation models with every
context bag we obtained from the dependency-parsed corpus, and evaluate them individually
with Bio-SimVerb, the verb similarity gold standard we previously created in Chapter 5. A
threshold score of ρ ≥ 0.2 is used to filter uninformative contexts. Consequently, we use
seven context bags as the initial configuration in our experiments. They are: comp, conj,
prep, pcomp, rel, subj and obj. Vulić et al. [2017] suggest this step can effectively remove
less relevant contexts at a minimal cost to accuracy.

After constructing the initial context configuration, the search algorithm starts from the
full M-set configuration and tests M(M-1)-set configurations in which one individual bag
is removed at a time to generate each such configuration. The algorithm narrows down the
search by keeping only those sets of configurations which outperform the original M-set
configuration. It continues searching over lower-level (M-1)-set configurations until it reaches
the lowest level or when no further improvements over its original configurations are found.

Using this context selection framework, the search for the optimal configuration for verbs
is reduced to only 27 context configurations out of 127 possible configurations (27 − 1 =
127). It includes seven 1-set configurations (i.e. individual context bag) plus twenty other
configurations. After we identify the optimal context configuration for verbs, we train a
representation model with this configuration. This model will be used for constructing an
initial candidate grouping for our verb lexicon. We describe our construction in the next
section.
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Verb classification

As described earlier, we expand Korhonen-VN with a list of new candidate verbs selected
from Bio-SimVerb. We use Bio-SimVerb as a source for candidate verbs for multiple reasons:
first, it contains verbs that have been manually validated by domain experts, chosen based on
their common usages in biomedical text. It avoids the problem of including overly general
verbs such as ‘have’ and ‘be’ or too specific verbs such as ‘x-ray’. Second, these verbs have
been sourced from journals across 120 sub-domains of biomedicine (as categorized by Broad
Subject Terms [NLM, 2017]), ensuring extensive coverage over different areas, which is
essential as our methodology is ultimately aimed at supporting the creation of a large-scale
VerbNet-style resource. Furthermore, since we evaluate our models against Bio-SimVerb,
we expect that our optimized model can best capture the syntactic and semantic properties
of verbs in Bio-SimVerb. Finally, to connect new candidates to a class in the existing verb
resource, we use the Nearest Centroid Classifier. It represents each class by the centroid of
its member verbs in vector space (from our optimized representation) and connects the new
candidates to their nearest class centroids (in terms of Euclidean distance).

To investigate the suitability of our classification methodology for facilitating the cost-
effective creation of a large-scale verb resources, we considered human evaluation. We will
now describe it in detail.

Human evaluation of verb classes

Since our aim is to investigate the suitability of our classification methodology for facilitating
the creation of a verb lexicon, we use human experts (two linguists and two biologists) to
evaluate the new member verbs and possible novel classes in the sample of a classifier output.
Following well-established practices in related works [Majewska et al., 2018; Sun, 2013],
the experts’ task is to determine whether the new member verbs within each verb class are
similar enough in terms of their meaning and syntactic patterns to the existing verbs in the
original classification. This is done to determine if each verb is a legitimate member of the
verb class. Whenever this is the case, the method has accurately learned correct classification.
When this is not the case, the verbs are examined further for potential discovery of new
subclasses to be included in the original classification. When verbs are clearly misclassified,
they are excluded or re-assigned to other classes as agreed by the experts.

For this evaluation, the experts followed guidelines specifically developed for the purpose
(can be found in Appendix A). The data provided for the experts include the original class
names and member verbs from Korhonen-VN, the new member verbs from the classifier
output and the set of 10 most frequent dependency contexts for each verb. For example, all
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verbs from the Class 1.2 are labelled as ‘Verb of affection’, the class consists of member
verbs such as modulate and regulate which are used to describe events that have an effect on
entities. The dependency context of regulate as in the sentence Dox could effectively regulate
bFGF expression is denoted as (subj#obj). Thirty sentences, three per the ten most frequent
dependencies of each verb, are also provided along with the dependency information to
demonstrate how each verb is used in context.
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6.1.3 Dataset construction

Word representation

Data The dependency-parsed corpus is compiled from the pre-processed PubMed Central
Open Access subset (PMC) and PubMed abstracts which are distributed by Hakala et al.
[2016]. POS tags and tokens in this resource are generated using the BLLIP constituency
parser [Charniak and Johnson, 2005] trained on a biomedical corpus [Mcclosky, 2010] 3.
The resource covers over 26M abstracts and 1.4M full articles with more than 388M parsed
sentences. We filter out words that appear fewer than 100 times in the text, as suggested in
the work of Levy and Goldberg [2014]. Consequently, the corpus consists of approximately
27 million word types.

Model In this experiment, we use the popular Skip-gram model with negative sampling
architecture (SGNS) to train the word representations. Levy and Goldberg [2014] have
developed a tool which allows SGNS to learn representations from dependency-parsed
contexts formatted as (word, context) pairs. All representation models used in this exper-
iment are trained with vector dimension (d=300). Similar settings can be found in other
studies [Schwartz et al., 2015; Vulić and Korhonen, 2016]. The baseline model we used is
a SGNS trained with all dependency contexts in the corpus (DEP-ALL), a SGNS model
trained only with the seven verb-related contexts (POOL-ALL) we identified in section 6.1.2
(i.e. contexts with evaluation scores ρ ≥ 0.2 on Bio-SimVerb) and a standard SGNS trained
with bag-of-words contexts (BOW) using the word2vec tool [Mikolov et al., 2013a]. These
models are used to compare against other representation models with different context con-
figurations. The best-performing model (as evaluated with Bio-SimVerb) is then used to
build the prototype of our verb lexicon that is validated and corrected manually.

Evaluation The Bio-SimVerb (a word similarity evaluation dataset we created in Chapter
5) is used as the gold standard to measure the quality of our verb representation models. It
consists of 1,000 verb pairs whose degree of similarity are ranked by human judges. The
similarity ranking of a given representation model is computed as the cosine similarity of
the vectors of these verb pairs. Following the standard evaluation protocol, we compare the
similarity rankings produced by humans and by individual models on those 1,000 verb pairs
using the Spearman’s ρ correlation. A higher correlation value implies a better model in
capturing verb semantics in the text.

3The description of corpora is provided in Section 5.2.1
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Index Class name Subclass name Example members

2.2.1 Biochemical events Biochemical modification dephosphorylate, phosphorylate
4.1.3 Experimental procedure Label stain, label, immunoblot, probe

fix
4.2.0 Precipitate coprecipitate, coimmunoprecipi-

tate, precipitate
9.1.1 Report Examine assess, evaluate, estimate, exam-

ine, explore analyze
9.1.2 Establish establish, test, investigate
9.2.1 Presentational argue, hypothesize, conclude, rea-

son, note, speculate, assume
10.1.1 Perform Quantitate quantify, quantitate, measure,

monitor
11.0.0 Release Release release, detach, excise, dissociate
12.0.0 Use Use utilize, employ, exploit
14.0.0 Call Call name, designate
16.0.0 Appear Appear become, occur, seem

Table 6.1 Example gold standard classes and class members from Korhonen et al. (2006)

Verb resource (Korhonen-VN)

Korhonen et al. [2006] manually developed a VerbNet-style gold standard for verb classifica-
tion in biomedicine containing 192 verbs organised into a class taxonomy of 50 fine-grained
classes for biomedical verbs (Examples are shown in Table 6.1). To the best of our knowledge,
it is the only biomedical resource of this type. We use this resource as a starting point for the
creation of a supervised approach intended to facilitate the development of a verb lexicon.
Essentially our goal is to expand Korhonen-VN by automatically connecting new candidate
verbs to existing verbs based on their Euclidean distance found in the vector space of an
optimized representation model.
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Model Spearman’s ρ

Baseline
BOW (win=5) 0.4664
DEP-ALL 0.4323

Configurations: Verb
POOL-ALL 0.4724
conj+obj+pcomp+prep+rel+subj 0.475
conj+obj+prep+rel+subj(Best) 0.4889
conj+obj+pcomp+prep+subj 0.4578
conj+obj+pcomp+rel+subj 0.4478
conj+obj+pcomp+prep+rel 0.4406
conj+obj+prep+subj 0.4611
conj+obj+rel+subj 0.4572
conj+obj+prep+rel 0.442
comp+obj+pcomp+prep+rel+subj 0.4376
comp+conj+obj+prep+rel+subj 0.4762
comp+conj+obj+pcomp+prep+subj 0.4655
comp+conj+obj+pcomp+rel+subj 0.4583
comp+conj+obj+pcomp+prep+rel 0.4413
comp+conj+obj+prep+subj 0.4635
comp+conj+obj+rel+subj 0.4592
comp+conj+obj+prep+rel 0.442
obj+pcomp+prep+rel+subj 0.4446
obj+prep+rel+subj 0.441

Table 6.2 Performance on Bio-SimVerb (in ρ) using representations learned with different
context configurations. BOW denotes a basic SGNS learned with bag-of-words context with
the context window size 5. DEP-ALL denotes a configuration where no filtering of contexts
are used. POOL-ALL denotes a configuration where all individual context bags from the
verb-related pools are used. "Best" identifies the best-performing configuration found.

6.1.4 Results

Representation learning

We examine whether different context configurations can improve the quality of verb repre-
sentation when evaluated against human judgments on a verb similarity task (Bio-SimVerb,
as measured on ρ points). Results are shown in Table 6.2. In general, selecting an optimal
context configuration for verbs gives better performance. From Table 6.2, there is an apparent
difference (5 ρ points) between models trained with and without context selection: While an
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evident improvement (4 ρ points) can already be found when we pool only contexts that are
useful for verbs (POOL-ALL, detail in Section 6.1.2) from the generic corpus (DEP-ALL).
A further selection among these verb-related contexts yields additional improvements (1 ρ

point). Overall, the model trained with the best context configuration is approximately 2
ρ points over the best baseline. The results provide us some linguistic insights on which
contexts are contributive to the learning of biomedical verb representations. For example, two
verbs are similar if they are used with similar subjects subj, objects obj as well as pronoun
phrases in a relative clause rel. Also, semantically similar verbs are commonly connected
by the conjunction likes and (e.g. walk and run). In this study, we observe that identifying
verb-specific contexts is valuable for learning verb representations.

Automatic verb classification

To classify verbs into semantic groups, we run a Nearest Centroid Classifier on top of the
verb-specific representations, using vector dimensions as features for learning verb classes.
The classifier is first trained using verbs in Korhonen-VN. It then connects new verbs to
classes based on their Euclidean distance. Consequently, 957 verbs are classified into 50
classes.

Human validation of verb classes

In order to evaluate the output of the classifier, we employed four experts, two linguists and
two biologists with at least a postgraduate level of training in their subject areas. The experts
first performed the validation of selected classes individually according to the guidelines
(included as Appendix A), and then consulted and discussed their validations in each domain-
specific pair and in linguist-biologist pairs. The 14 classes selected for validation were chosen
at random from the classifier output so as to ensure that both the biomedical and the general
scientific domains were represented, with 7 classes chosen per domain, each class consisting
of 4-28 member verbs.

The experts were presented with written guidelines and the following materials: (1) a
file including the verb classes, their original members from Korhonen-VN, and the new
candidates to be reviewed (Table 6.3); (2) an Excel spreadsheet for recording the updated
index of the class for each verb based on the manual revision of the class candidates, (3) 30
example sentences drawn from the corpus used in the experiment representing the 10 most
frequent dependency contexts for each verb.

The guidelines instructed the experts to verify whether the new candidate verbs were
similar in terms of their meaning as well as syntactic patterns to the existing member verbs
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Index Subclass name Example members
(from Korhonen-VN) New candidates

1.1.2 Suppress suppress, repress downregulate, transactivate
7.1.0 Collect harvest, select, collect decide, pick, cultivate, procure,

gather, choose, transfuse, pri-
oritize, obtain

13.1.0 Encompass encompass, possess, comprise,
bear, span, harbor

overlie, display, hold, exhibit,
cover, infest, belong, range

14.0.0 Call call, name, designate qualify, regard, rename, men-
tion, request

1.4.0 Modify modify, catalyze hydroxylate, hydrolyze,
methylate, deaminate, esterify,
oxidize, detoxify, metabolize

4.1.3 Label stain, label, immunoblot,
probe, fix

supershift, assay, immunos-
tain, tag, immunolabel, clone,
postfix, digest, clamp, counter-
stain, buffer, electroblot, fluo-
resce, radiolabel, blot

11.0.0 Release release, detach, excise, dissoci-
ate

reinsert, retract, disassemble,
deacylate, extrude, remove, de-
polymerize, mobilize, lose, re-
sect, separate

10.1.3 Conduct perform, conduct execute, undertake

Table 6.3 Example classes validated by experts

in the original classification. The 30 example sentences provided were meant to facilitate
the review process by illustrating how a given verb is used in biomedical texts (keeping in
mind that this may differ from its typical usage in the general language domain), i.e. the
most common syntactic structures in which it appears. Based on the analysis of the semantic
and syntactic behaviour of the new candidates with respect to the existing class members,
the experts were asked to decide if each new candidate has been correctly assigned to a
given class, or if not, whether it should be (a) reassigned to another class in the classification,
(b) form a subclass within a broader existing class, or (c) should be moved to a new class
altogether (along with some other misclassified verbs); or otherwise, if no appropriate class
could be thought of, (d) whether it should be discarded as noise (i.e. a mistake by the
classifier). Polysemous verbs were controlled, we chose verbs and classes that have less
diverse usage patterns (i.e. verbs that have less than twenty Broad Subject Terms 4. We further
consult experts to assure that most of the chosen verbs have a dominant sense. Consequently,
a given verb could only be assigned to a single class or subclass (i.e. soft clustering was not
permitted).

4The description of Broad Subject Terms is provided in Section 5.2.1
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#New candi-
dates

#Correct can-
didates

%Correct
candidates

#Incorrect
candidates

%Incorrect
candidates

7.1.0 COLLECT 9 6 66.7 3 33.3
9.1.1 EXAMINE 21 19 90.5 2 9.5
9.3.0 INDICATE 11 10 90.9 1 9.1
10.1.3 CONDUCT 2 2 100 0 0.0
13.1.0 ENCOMPASS 8 6 75.0 2 25.0
14.0.0 CALL 5 4 80.0 1 20.0
16.0.0 APPEAR 19 16 84.2 3 15.8

General total 75 63 83.9 12 16.1

1.1.2 SUPPRESS 2 2 100 0 0.0
1.1.4 INACTIVATE 15 11 73.3 4 26.7
1.4.0 MODIFY 8 6 75 2 25
2.3.0 INTERACT 21 19 90.5 2 9.5
4.1.3 LABEL 15 11 73.3 4 26.7
8.3.1 TRANSPORT 19 17 89.5 2 10.5
11.0.0 RELEASE 11 10 90.9 1 9.1

Biomedical total 91 76 84.6 15 15.4

Total 166 139 84.3 27 15.7

Table 6.4 Results of class validation by experts, for seven general scientific (General) and
seven biomedical classes (Biomedical), and across the two domains (Total)

Qualitative analysis

After having completed the validation task, the experts compared and discussed their analyses
to come up with the final classification that they agreed on. The results of the validation are
presented in Table 6.4.

The evaluation shows that over 83% of the new candidates generated across the two
domains are valid class members, and in each of the 14 individual classes the majority of
novel classifications are correct. From the total number of 166 novel candidates, 139 were
judged as correct, which demonstrates that our automatic method can be used as a highly
accurate starting point for the creation of a verb lexicon.

In two of the evaluated classes, ‘Conduct’ in the general domain and ‘Suppress’ in the
biomedical domain, all of the novel classifications were marked as valid member verbs, while
in four other classes - ‘Examine’ and ‘Indicate’ in the general domain and ‘Interact’and
‘Release’ in the biomedical domain - over 90% of new candidates were judged as correct. The
‘Conduct’ class provides a good example of how our system accurately selects candidates
that are semantically similar to the existing class members based on similarity of their
syntactic behaviour: the original member verbs, perform and conduct, are provided with
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new synonymous counterparts, execute and undertake. Analogous cases are found in the
biomedical domain, e.g., in the ‘Interact’ class, a new candidate collaborate is a close
synonym of one of the original class members, cooperate. What is more, our classifier picks
up not only synonymous but also antonymous verbs as candidates for a given class, as seen
in the biomedical domain (e.g. downregulate - transactivate). It is consistent with what has
been observed in previous work on the manual semantic classification of verbs [Majewska
et al., 2018], where human annotators were found to consistently group antonyms together as
semantically similar. Despite representing the opposites of a meaning continuum, antonyms
have almost identical distributions, and that paradigmatic similarity is what makes annotators
judge them as semantically closely related.

An in-depth analysis of the candidate verbs by the experts sheds light on the strengths
of the presented approach, as well as the error patterns and areas for future improvement.
Overall, only 15.7% of new candidates were judged as incorrect across all 14 classes, with
slightly more noise found in the general scientific classes (16.1%) than in the biomedical
classes (15.4%). In the general language domain, the linguists identified between 0 to 3
incorrect candidates per class, whereas in the biomedical domain, the experts marked between
0 to 4 candidates per class as incorrect for the class in question, either judged as mistakes or
as candidates for reassignment to another class.

Several recurrent reasons behind the erroneously classified verbs can be identified:

a. Verbs share syntactic but not semantic similarity: Examples of candidates which
ended up in a given class purely through accidental syntactic similarity to the exist-
ing members are found, for instance, in the biomedical class ‘Transport’. The two
incorrect candidates identified, tailor and generalize, share the syntactic contexts of
subj#obj (The methods generalize earlier approaches...), subj#prep (This advantage
did not generalize to the visual domain), and subj#obj#prep (We also generalize some
known results from the real-valued case to the complex-valued one) with the original
class members (e.g. Highly resistive wires transmit intracardiac electrograms, Occa-
sionally these viruses transmit to other mammals, GPCRs transmit signals through
heterotrimeric G proteins). In the general scientific domain, examples of coincidentally
parallel syntactic behaviour between new and original class members were noted, for
instance, in the ‘Collect’ class: decide and prioritize, marked as noisy, share the syn-
tactic contexts of subj#obj (Future research should prioritize addressing symptoms...)
and obj#prep (Should the surgeon decide on relaparoscopy...) with harvest, select and
collect.
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b. Parsing errors: In some cases the syntactic contexts themselves were mistakenly
identified as identical due to a parser error, which produced noisy candidates. For
example, the verb lie got classified with the ‘Appear’ class members based, among
others, on the shared subj#obj#prep context, exemplified by the phrase: Thermal
imaging as a lie detection tool at airports, where ‘lie’ is a noun modifier of ‘detection’,
both of which form a compound modifying the noun ‘tool’, rather than being a verb
taking a noun object and a preposition. Or similarly, in the context subj#obj#prep
We review the technical challenges that lie ahead, ‘ahead’ is mistakenly analyzed as
the object rather than a preposition. Another type of error had to do with analyzing
the particle ‘to’ as a preposition rather than an infinitive marker, as in the few cases
of misidentified syntactic contexts such as HIV and HCV seem to co-opt DDX3 as
identical to subj#prep: many interventions may vary between population groups, or
(...) await for clinical applications, which contributed to clustering dissimilar verbs
such as vary, await, pave together in the ‘Appear’ class with appear and seem.

c. Clustering loosely related verbs (rather than strictly semantically similar): An-
other type of misclassification involves candidate verbs which are related to the existing
class members but are dissimilar to them with respect to some meaning components or
semantic properties identified as characteristic of the class in question. In the biomedi-
cal domain, examples of this kind of error are found in the ‘Modify’ class, where 8 new
candidates are added: hydroxylate, hydrolyze, methylate, deaminate, esterify, oxidize,
detoxify, metabolize. Out of these, the last two (detoxify, metabolize) were flagged
as standing out from the rest, based on the fact that they describe processes on the
cellular level, in contrast to the rest of member verbs referring to a specific chemical
changing (i.e. terms pertaining to the chemical level). In the general scientific domain,
examples of related but not strictly similar verbs added through looser association with
the existing members include optimize and understand yielded for the ‘Examine’ class,
or cultivate in the ‘Collect’ class.

In some cases, the new verbs judged as not valid were marked as candidates for reassign-
ment to another existing class, or as members of a subclass or a new class altogether. An
incidence matrix showing the class reassignments is presented in Appendix B. For instance,
exacerbate, aggravate and magnify, found in the ‘Inactivate’ class, were highlighted as
forming a separate cluster of similar verbs, while the verb deacylate found in the ‘Release’
class was reassigned to the ‘Modify’ class. In the general scientific domain, an example of
reassignment involved verbs display and exhibit, considered better suited for the ‘Indicate’
class, within which four other candidates, underline, underscore, highlight, emphasize, were
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marked as forming a subclass of ‘underline’-type verbs. Such cases demonstrate the poten-
tial of the classification method for also discovering valid novel classes not in the original
classification.

6.1.5 Discussion

The in-depth scrutiny of the new candidates shows that our automatic classification approach
is highly accurate and thus likely to be very useful for extending the manual classification
of biomedical verbs to a large-scale lexical resource. Although some human validation
and filtering of the noise is necessary for the development of a fully accurate resource, the
time and cost required for this are likely to be small in comparison with a fully manual
development of such a large resource from scratch. The manual development of the original
Levin classification [Levin, 1993] and VerbNet [Kipper-Schuler, 2005] required years of
research efforts, although semi-automatic methods were used to facilitate their extensions
too [Kipper et al., 2008]. Our qualitative analysis shows that despite being based purely on
syntactic behaviour and combinatorial properties of verbs, the method also associates verbs
in terms of their shared semantics, yielding classes of semantically similar and closely related
members.

The error analysis reveals some areas of potential improvement. While the accidental
syntactic parallels are a difficult problem to deal with (and have, in fact, been reported to
challenge verb classification regardless of the clustering approach adopted [Sun, 2013]),
errors from parsing could be addressed in the future via use of tools capable of dealing
with the problem cases highlighted in the previous section. Misclassifications involving
candidate verbs which are related to the existing class members but dissimilar to them with
respect to some semantic properties are not necessarily an issue that needs to be addressed.
Rather, such cases may actually demonstrate the potential of the method to hypothesize
new classes and classifications for human validation and offer the means for subsequent
refinement of the original classification. It is important because the original classification is,
by no means, comprehensive and is likely to require further development as we scale it up to
cover language in biomedicine.
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6.2 Task-based evaluation

So far, we have described the creation of our lexicon from a verb-optimized neural repre-
sentation and its evaluation based on human judgments. In this section, we will evaluate
the utility of the verb lexicon in regards to improving downstream NLP tasks when used
as features. For this, we first apply the retrofitting approach as proposed by Faruqui et al.
[2015] to incorporate the verb class information (as obtained from our automatically-created
lexicon) into the vector-space representation. The retrofitted-representation will then be used
to provide features for text classification and relation classification tasks.

6.2.1 Related work

Lexical resources can be used to enrich representation models by providing them other
sources of linguistic information beyond the distributional statistics obtained from cor-
pora. In recent literature, various methods to leverage knowledge available in human- and
automatically-constructed lexical resources have been proposed. One type of method involves
modifying the objectives in the original representation learning procedures so that they can
jointly-learn both distributional and lexical information. For example, Yu and Dredze [2014]
modify the CBOW objective function by introducing semantic constraints (as obtained from
the paraphrase database [Ganitkevitch et al., 2013]) to train word representations which
focus on word similarity over word relatedness. Another type of method incorporates lexical
information into the vector representations as a post-processing procedure. The method fine-
tunes the pre-trained word vectors to satisfy linguistic constraints from the external resources.
The method can be applied to any off-the-shelf model without requiring large corpora for
(re-) training as in the joint-learning models do. Among these methods retrofitting [Faruqui
et al., 2015] is widely used; given any (pre-trained) vector-space representations, the goal of
retrofitting is to bring closer words which are connected via a relation (e.g. synonym) in a
given semantic network or lexical resource (i.e. linguistic constraints). For example, Yu et al.
[2016] retrofit word vector spaces of MeSH terms by using additional linkage information
from UMNSRS to improve the representations of biomedical concepts. Additionally, build-
ing upon retrofitting, Lengerich et al. [2018] generalize retrofitting methods by explicitly
modelling individual linguistic constraints that are commonly found in health/clinical-related
lexicons (e.g. causal-relations between diseases and drugs).

In theory, the joint-learning models could be as effective (or better) than the ones produced
by fine-tuning distributional vectors. However, the performance of joint-learning models has
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not surpassed that of fine-tuning methods. 5 Furthermore, the joint-learning objectives are
usually model-specific and are tailored to a particular model making them difficult to be used
in other methods. In this work, we will use retrofitting to incorporate our lexical features into
the word representations.

6.2.2 Methodology

We base our retrofitting method on the one proposed by Faruqui et al. [2015]. Given any
pre-trained vector-space representation, the main idea of retrofitting is to pull words which
are connected in relation to the provided semantic lexicon closer to the vector space. The
main objective function to minimize in the retrofitting model is expressed as:

|V |

∑
i=1

(
αi

∥∥∥⃗vi −⃗̂vi

∥∥∥+ ∑
(i, j)∈S

βi j
∥∥⃗vi − v⃗ j

∥∥) (6.1)

where |V| represents the size of the vocabulary; v⃗i and v⃗ j corresponds to word vectors in a
pre-trained representation, and ⃗̂ iv represents the output word vector, which is fine-tuned with
the lexical constraints. S is the input lexicon represented as a set of linguistic constraints. In
our case, they are pairs of word indices, denoting the pair-wise relations between member
verbs in each class. For example, a pair (i, j) in S implies that the i-th and j-th words in the
vocabulary V belong to the same verb class in the lexicon. αi and βi j are pre-defined values
that control the relative strength of associations between members. The ranges of α and β is
0-1. A large α would constrain the retrofitted vectors to be as similar as the initial ones. It
aims to preserve the high-quality semantic content as presented in the initial vector space, as
long as this information does not contradict the linguistic constraints to be retrofitted. On
the other hand, the retrofitting process will be unstable if β is too large and will be slow if
it is too small. Here, we follow the default settings as stated in the authors’ work and use
α = 1 and β = 0.05 in all of the experiments. To minimize the objective function for a set
of starting vectors v⃗ and produce retrofitted vectors ⃗̂v, we run stochastic gradient descent
(SGD) for 20 epochs. An implementation of this algorithm has been published online by the
authors [Faruqui, 2015]. We used their implementation in the current work.

Baseline word representation

Based on the parameter selection experiments covering corpora, model architectures and
hyper-parameters (Chapter 3), we selected the best-performing options for learning biomedi-

5The SimLex-999 home page (www.cl.cam.ac.uk/ fh295/simlex.html) lists state-of-the-art performance
models, none of which have jointly-learned the representations
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cal representations. Here, we include the model trained with those options as the baseline
for our comparative evaluation against the retrofitted models. Table 6.5 shows the options’
training settings: 6

Parameters Values
Corpus PubMed
Architecture Skip-gram
neg 10
dim 200
alpha 0.05
samp 1e-4
win 2
min-count 5

Table 6.5 Settings selected for comparative evaluation

Semantic lexicons

Our automatically-created lexicon is generated by extending Korhonen-VN. Hence, we
include both lexicons and compare their utilities in improving the representation models.
Both lexicons are organized in a hierarchical form, which consists of three levels with 16,
34, 50 verb classes on each level correspondingly. Table 6.6 shows the linguistic constraint
counts under each class as derived from the two lexicons. When retrofitted against the three
top levels, those member verbs at each sub-class are merged with its upper-class, as in the
work of Faruqui et al. [2015].

#Verb pairs

Korhonen-VN Our lexicon

16-classes 1,774 96,998
34-classes 638 54,063
50-classes 376 50,104

Table 6.6 Linguistic constraint counts under each class as obtained from the Korhonen’s
resource and our automatically-created lexicon. Total number of verbs (Korhonen-VN: 192,
our lexicon: 1,149).

6One can refer to Chapter 3 for the description of individual parameters (Section 3.3.3)
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6.2.3 Evaluation

We apply retrofitting to incorporate the lexical information into word representations. Then
we evaluate the quality of the retrofitted-representation as features for two NLP tasks: text
classification and relation classification. We will now describe them in further detail:

Task 1: Text classification

We evaluate our word representations using two established biomedical datasets for text
classification: the Hallmarks of Cancer (HOC) [Baker et al., 2015, 2017] and the Exposure
taxonomy (EXP) [Larsson et al., 2017]. We evaluate each based on their document-level and
sentence-level classifications. The Hallmarks of Cancer depicts a set of interrelated biological
factors and behaviours that enable cancer to thrive in the body. It was introduced in the work
by Weinberg and Hanahan [2000] and has been widely-used in biomedical NLP for many
systems and works, such as the BioNLP Shared Task 2013, ‘Cancer Genetics task’ [Pyysalo
et al., 2013b].

Baker et al. [2015, 2017] have released an expert-annotated dataset of cancer hallmark
classifications for both sentences and documents from PubMed. The data consists of multi-
labelled documents and sentences using a taxonomy of 37 classes.

The Exposure taxonomy is an annotated dataset for the classification of text (documents
or sentences) about chemical risk assessments, as introduced by Larsson et al. [2017]. It
is related to the assessment of exposure routes (such as ingestion, inhalation, or dermal
absorption) and human bio-monitoring (the measurement of Exposure Bio-markers). The
taxonomy of 32 classes is divided into two branches: Bio-monitoring and Exposure routes.
Table 6.7 shows the basic statistics for each dataset. 7

HOC EXP

Document Sentence Document Sentence

Train 1,303 12,279 2,555 25,307
Dev 183 1,775 384 3,770
Test 366 3,410 722 7,100
Total 1,852 17,464 3,661 36,177

Table 6.7 Summary statistics of the Hallmarks of Cancer (HOC) and the Exposure Taxonomy
(EXP)

7We refer the interested readers to Baker [2018] (Table 3.12 and 3.13) for the detailed description and
distribution of the classes.
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Model The model follows the convolutional neural network model (CNN) proposed by Kim
[2014]. An implementation of this algorithm on HOC and EXP has been published by Baker
and Korhonen [2017]. We use their implementation in our experiment. The model input is
an initial word embedding layer that maps input texts into matrices, which is then followed
by convolutions of different filter sizes, 1-max pooling, and finally a fully connected layer
leading to an output Softmax layer for predicting labels for text. Model hyper-parameters
and the training set-up are summarized in Table 6.8:

Parameters Values
Vector dimension 200
Filter sizes 3,4 and 5
Number of filters 300
Dropout probability 0.5
Minibatch size 50
Input size (in tokens) 500 (documents), 100 (sentences)

Table 6.8 Hyper-parameters used in Baker and Korhonen [2017]

Performance is evaluated using the standard precision, recall, and F-score metrics of the
labels in the model using the one-vs.-rest setup: we train and evaluate K independent binary
CNN classifiers (i.e. a single classifier per class with the instances of that class as positive
samples and all other instances as negatives). Due to their random initialization, we repeat
each CNN experiment 20 times and report the mean of the evaluation results to account for
variances in neural networks. Besides, to address over-fitting in the CNN, we follow the
authors’ early stopping approach: testing only the model that achieved the highest results on
the development set.

Task 2: Relation classification

We evaluate our retrofitted-representations on the Bio-Creative VI Chemical–Protein relation
extraction dataset (CHEMPROT) [Krallinger et al., 2017]. The corpus provides mention and
relation annotations for complex events related to chemical-protein interaction in molecular
biology. The goal of this task is to predict whether a given chemical–protein pair is related
or not, and to then verify its corresponding relation type. There are five types of relations:
Up-regulator, Down-regulator, Agonist, Antagonist and Substrate. The corpus is provided
in the Turku Event Extraction System (TEES) XML format and is installed with the Turku
Extraction System [Björne, 2014]. It is parsed with BLLIP parser [Charniak and Johnson,
2005] with the McClosky bio-model [Mcclosky, 2010], followed by conversion of the
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constituency parses into dependency parses using the Stanford Tools [MacCartney et al.,
2006]. Table 6.9 summarizes key statistics for the dataset.

#Documents #Entities #Relations
Train 1,020 25,769 4,157
Dev 612 15,571 2,416
Test 800 20,829 3,458
Total 2,432 62,169 10,031

Table 6.9 Summary statistics of the Chemical-Protein interaction dataset (CHEMPROT)

Model The model follows the CNN model proposed by Björne and Salakoski [2018]. We
directly use their published implementation. The model input is an initial word embedding
layer that maps input texts into matrices, followed by convolutions of different filter sizes and
1-max pooling, and finally a fully connected layer, leading to an output Softmax layer for
predicting labels. Performance is evaluated using the standard precision, recall, and F-score
metrics of the labels in the model. Classification is performed as multilabel classification
where each example may have 0–n positive labels. Model hyper-parameters and the training
set-up are summarized in Table 6.10.

Parameters Values
Vector dimension 200
Filter sizes 1, 3, 5 and 7
Number of filters 400 (100 of each size)
Dropout probability 0.5
learning rate 0.001
Minibatch size 50

Table 6.10 Hyper-parameters used in Björne and Salakoski [2018]

To account for variance in neural networks due to their random initialization, we follow
the ensembles settings as used in Björne and Salakoski [2018]’s work. We train 20 models
and take the n-best ones (n=5), ranked with their F-score on the development set, and use
their averaged predictions. The ensemble predictions are calculated for each label as the
average of all the models’ predicted confidence scores. Furthermore, we also incorporate the
authors’ early stopping approach where the model is trained until the development loss no
longer decreases. We train for up to 500 epochs, stopping once validation loss has no longer
decreased for 10 consecutive epochs. Conversely, to focus on the effect of our lexicon on
biomedical representations, we experiment with word representations induced on biomedical
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texts, diverging from the authors’ work which use the embeddings from Pyysalo et al. [2013a]
that is induced on a combination of biomedical and general-domain data (PubMed, PMC and
Wikipedia texts).

6.2.4 Results

We evaluate the utility of our automatically-created lexicon by improving the word rep-
resentations (through retrofitting). We compare the performance of the baseline with the
retrofitted representation models by measuring their precision (P), recall (R), and F-scores in
text classification and relation classification when used as features.

For text classification, Table 6.11 and Table 6.12 show the micro-averaged scores for
HOC and the EXP respectively. Each table shows performance on document and sentence-
level classification (as columns) with different semantic lexicons (as rows). For relation
classification, Table 6.13 shows the micro-averaged scores for CHEMPROT. Best results are
shown in bold and statistically significant scores are shown with an asterisk. All statistical
tests are done using a two-tailed t-test with α = 0.05. We first describe experiments measuring
improvements from the retrofitting method, followed by comparisons to using different sets
of lexicons during retrofitting.

Retrofitting

We use Eq. 6.1 to retrofit word representations using linguistic constraints derived from verb
lexicons. Overall, the retrofitted models show improvements in most tasks.

For text classification, better scores are found in three out of the four cases. From the
results of HOC in Table 6.11, all retrofitted models outperform the baseline in F-score, which
is contributed by a substantial improvement in recall particularly at the document level where
there is a 15 point increase over the baseline. In total, five out of twelve improvements
reported are statistically significant. The results for EXP in Table 6.12 are more mixed.
At the document level, all retrofitted models achieve a slight F-score gain and half of the
scores are significant. There is an improvement in recall at the cost of lower precision when
compared to the baseline. However, we can see that sentence-level classification is more
difficult, due to the smaller amounts of context information available. On the sentence level,
the baseline seems to outperform all others, and only two out of six cases are significant. It
indicates that the lexicons did not aid sentence-level classification in this particular task.

In relation classification, the word representation achieves the state-of-the-art result after
incorporating our lexical information (34-classes). From Table 6.13, there is about 1.5 point
(F-score) increase over the baseline, and half of the improvements reported are significant.



98 A Neural Classification Method for Supporting the Creation of BioVerbNet

The results from both tasks suggest that the semantic classes provided by verb lexicons
improve performance over the raw verb features.

Semantic lexicons

When compared among the tested-lexicons, we find that our automatically-created lexicon
clearly gives a better improvement to the baseline representations over the Korhonen-VN in
all evaluated tasks. One possible reason is that our lexicon has a notably larger dataset size in
comparison to the Korhonen-VN (see Table 6.6), thus providing features for more verbs.

Lexical resources can be useful for NLP tasks for their abilities to capture generalizations
about a range of linguistic properties, yet, the degrees of generalization needed may vary
from task to task. When experimenting retrofitting with different levels of verb classes,
we observe a notable difference (1-2 points in F-score) between models retrofitted with
the coarse-grained level of 16-classes and the fine-grained level of 50-classes. For text
classification (Table 6.11 and Table 6.12), on the document-level classifications (in both
datasets), models appear to benefit by a finer-grained classification of 50-classes, whereas
on the sentence-level classifications, a medium-level of generalization (34-classes) seems
optimal. In relation classification (Table 6.13), the best result is also obtained with a medium-
level of generalization (34-classes).
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Document classification Sentence classification

Lexicon P R F1 P R F1

Baseline (no lexicon) 77.8 51.7 62.1 56.8 30.7 39.9

Korhonen-VN
16-classes 75.1 56.4 64.8 47.1 34.6 39.9
34-classes 74.2 56.6 64.3 48.4 35.5 41
50-classes 74.9 59.2 66.2 48.4 35.2 40.7*

Our lexicon
16-classes 75.5 64.4 69.5* 45.2 36.5 40.4*
34-classes 74.3 63.5 68.5* 52.7 35.6 42.5
50-classes 73.9 66.1 69.8* 50.9 34.7 41.3

Table 6.11 Performance results for the Hallmarks of Cancer (HOC) when different sets of
lexicons are used for retrofitting the baseline model. Baseline denotes a Skip-gram model
generated with our optimized training settings. Its scores are adopted from Baker and
Korhonen [2017]. All figures are micro-averages expressed as percentages (Bold: the best
score, *: statistically significant)

Document classification Sentence classification

Lexicon P R F1 P R F1

Baseline (no lexicon) 89.5 87.1 88.3 66.2 62.8 64.5

Korhonen-VN
16-classes 88.9 87.7 88.3* 67.1 58.9 62.7
34-classes 89.4 87.8 88.6* 67.2 58.2 62.4*
50-classes 88.9 88.7 88.8 65.6 55.7 60.3

Our lexicon
16-classes 89.2 87.9 88.5 66.7 60.0 63.2
34-classes 88.7 88.9 88.8* 67.3 58.7 62.7
50-classes 88.6 89.1 88.9 67.5 58.6 62.7*

Table 6.12 Performance results for the Exposure Taxonomy (EXP) when different sets of
lexicons are used for retrofitting the baseline model. Baseline denotes a Skip-gram model
generated with our optimized training settings. Its scores are adopted from Baker and
Korhonen [2017]. All figures are micro-averages expressed as percentages. (Bold: the best
score for a task, *: statistically significant)
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Lexicon P R F1

Baseline (no lexicon) 76.9 63.5 69.5*
SOTA (no lexicon) 75.1 65.1 69.7

Korhonen-VN
16-classes 76.5 64.6 70.1
34-classes 78.2 63.8 70.3*
50-classes 76.5 65.0 70.3*

Our lexicon
16-classes 76.3 65.2 70.3
34-classes 77.5 65.6 71
50-classes 76.2 65.9 70.7*

Table 6.13 Performance results for the Chemical-Protein Interaction (CHEMPROT) when
different sets of lexicons are used for retrofitting the baseline model. Baseline denotes a Skip-
gram model generated with our optimized training settings. SOTA denotes the state-of-the-art
result reported by Björne and Salakoski [2018] using Pyysalo et al. [2013a]s’ embeddings.
All figures are micro-averages expressed as percentages. (Bold: the best score for a task, *:
statistically significant)
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6.2.5 Discussion

The task-based evaluations suggest that our lexicon, as induced from a verb-optimized repre-
sentation, can be a useful resource in supporting biomedical NLP tasks. In text classification,
it has been observed that the occurrence patterns of verbs can be ‘topic-related’ and certain
set of verbs frequently appear within a specific topic of documents [Doan et al., 2009; Hatzi-
vassiloglou and Weng, 2002; Sekimizu et al., 1998]. Regarding this, our lexicon appears to
have captured some of these ‘topic-related’ properties. In HOC, we notice that some high
frequent verbs appeared in documents relating to the topic: Sustaining proliferative signaling,
e.g. proliferate and grow also share the same classes in our automatically-created lexicon.
Similarly, for exposure assessments documents describing air monitoring data in EXP, we
can frequently see member verbs in the ‘Proceed’ class such as inhale and breathe.

Entities-relations described in the biomedical literature are often expressed in a predicative
form where a trigger word (mostly a verb) connects two or more entities, and a range of
verbs can be used to describe similar relations. Understanding the commonalities shared
among individual verbs helps NLP systems to identify the particular type of relation the text
is describing. Consider e.g. the ‘Suppress’ class in our lexicon. It captures the fact that
its members are similar in terms of syntax and semantics, and they can be used to make
similar statements which describe similar events. In CHEMPROT, member verbs in the
‘Suppress’ class such as suppress and inhibit can often be found in sentences depicting the
‘down-regulation’ relation between chemicals and proteins. Additionally, our lexicon covers
more verbs than Korhonen-VN. Verbs like up-regulate (in the ‘Change Activity’ class) and
down-regulate (in the ‘Suppress’ class) which are the direct indicators of their corresponding
relation types in CHEMPROT, are available in our lexicon.

For many NLP applications, lexical classes are useful for their abilities to capture gener-
alizations about a range of linguistic properties: by retrofitting word representations with
our lexical resource, semantically-similar verbs (i.e. member verbs within the same lexical
class) like ‘suppress’ and ‘inhibit’ will be pulled together in vector space, whereas verbs
like ‘collect’ and ‘examine’ will not. Consequently, this allows NLP systems to generalize
away from individual verbs, alleviating the data sparseness problem of representing each
verb in the corpora individually. Our lexical classes provide different levels of generalization
power to support tasks of various needs, from the coarse-grained level of 16 classes to the
fine-grained one of 50-classes. A notable performance difference is observed when we
evaluate models retrofitted with different levels of verb classes. Among all three classes, we
observe a larger improvement over models at the finer-grained levels of 34 or 50 classes,
which reveal that finer-grained levels of verb semantic distinction seem more contributive in
our assessed tasks.
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6.3 Chapter summary

In this chapter, we have introduced and evaluated an approach to facilitate cost-effective de-
velopment of verb lexicons. In Section 6.1, we describe how our approach can automatically
identify a set of useful contributive contexts for learning biomedical verb representations
from large amounts of texts without manual feature engineering. Direct evaluation of the
resulting models against Bio-SimVerb shows promising results when representation learning
is performed using verb-related contexts. We further apply our verb-optimized representation
models as features to induce a large-scale resource — a verb lexicon aims at describing
verbs in the area of biomedicine. Human validation by linguists and biologists reveal that
the lexicon, as induced using our optimized representation, is highly accurate and includes
novel, valid member verbs and classes. Then, in Section 6.2, we evaluate our lexicon in the
contexts of text classification and relation classification, it brings about a clear improvements
over the raw verb features in most tasks, suggesting that the classification of 957 new verbs
created by our approach (details in Section 6.1.4) and released with this thesis can be used to
readily support application tasks in biomedicine.



Chapter 7

Conclusions

In this chapter, we summarize the contributions of this thesis and outline directions for future
research.

7.1 Contributions of this thesis

The main contribution of this thesis is to advance the research of representation learning by
improving its applicability across domains and word-types. Here we describe how the key
six objectives of this work (given in Chapter 1 and summarized below) have been addressed.

1. Investigation of how the cutting-edge representation learning methods developed for
general English can be transferred to the biomedical domain.

2. Development of an intrinsic evaluation dataset that can better reflect how individual
representation models perform in extrinsic/downstream tasks.

3. Development of an intrinsic evaluation dataset that can measure the quality of verb
representations in the biomedical domain.

4. Development of a technique that facilitates automatic lexical acquisition for biomedical
verbs.

5. Reduction of the burden of feature engineering in automatic lexical acquisition.

6. Evaluation of the quality of our automatically-induced lexicon with domain experts, as
well as its utility in supporting downstream tasks.

In Chapter 3, we conducted a large-scale experiment to find the best training settings for
learning word representations from biomedical texts. These settings include corpora size,
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model architectures and hyper-parameter values. Our experiments resulted in several key
findings: First, we observed that a larger corpus does not necessarily guarantee better results
in actual tasks. Also, we showed that optimization of hyper-parameters could significantly
improve the performance of vectors. The optimized training configurations are highly domain-
specific, and thus can serve as a reference for researchers who use neural word embeddings
in biomedical NLP. More importantly, we find that one hyper-parameter (the context window
size) leads to contradictory results between intrinsic and extrinsic evaluations.

In Chapter 4, we further investigated the intrinsic-extrinsic contradiction using general-
domain datasets. We generated a set of word representations with varying context window
sizes and compared their performance in intrinsic and extrinsic evaluations, showing that
these evaluations yield mutually inconsistent results. Among all the benchmarks explored in
our study, only SimLex-999 [Hill et al., 2015] proved to be a good predictor of downstream
performance. We further considered the differentiation between relatedness (association) and
similarity (synonymy) as an explanatory factor, noting that SimLex-999 stands out among
other benchmark datasets in distinguishing highly similar concepts (male, man) from highly
related but dissimilar ones (computer, keyboard).

In Chapter 5, we presented two new comprehensive resources targeting the evaluation
of word representations in biomedicine. These resources, Bio-SimVerb and Bio-SimLex,
address the intrinsic-extrinsic contradiction and can be used for evaluations of verb and noun
representations respectively. In our experiments, we computed the Pearson’s correlation
between performances on intrinsic and extrinsic tasks using twelve popular state-of-the-
art representation models (e.g. word2vec models). The intrinsic–extrinsic correlations
using our datasets were notably higher than with previous intrinsic evaluation benchmarks
such as UMNSRS and MayoSRS. Besides, when evaluating representation models for their
abilities to capture verb and noun semantics individually, we showed a considerable variation
between performances across all models. This result highlights not only the importance of
developing dedicated evaluation resources for NLP in biomedicine for particular word-types
(e.g. verbs), but also the need to identify the most accurate methods for learning type-specific
representations.

In Chapter 6, we proposed and evaluated an automatic verb classification approach to
facilitate cost-effective development of a verb lexicon. From the methodological point of
view, our work constitutes the first effort on applying a state-of-the-art architecture for neural
representation learning to biomedical verb classification. In terms of our contribution to
representation learning, while previous works have shown that such neural models can be
highly effective for learning linguistic properties from large corpora, there has been little work
on fine-tuning the models for word-type specific tasks (e.g. verbs). Our work demonstrates
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that the learning of verb-specific representation is highly context-sensitive. In particular,
we identify the contexts that are essential for training representation for biomedical verbs.
Our study can facilitate the development of different learning approaches for word-type
specific representations as well as support researchers in biomedicine to better understand
the syntactic and semantic properties of verbs in biomedical texts. On the other hand, as a
verb classification method, our method is attractive in terms of avoiding the heavy feature
engineering involved in most previous approaches. The human evaluation reveals that the
lexicon, as induced created by our method, is highly accurate. Additionally, our promising
results in the task-based evaluation empirically show that the resource can be used to support
NLP applications in biomedicine.

7.2 Future directions

Here, we discuss how research reported in this thesis can be developed further in the future.

7.2.1 Hyper-parameter tuning

Regarding the optimization of training settings for representation models, we tuned indi-
vidual parameters in isolation. As the next step, we can study the effect of tuning two or
more parameters simultaneously. For example, the hyper-parameter min-count controls the
minimum occurrences for a word to be included in representation learning. Careful tuning of
this parameter both separately and jointly with associated parameters such as samp (which
defines the occurrences for high-frequency words to be down-sampled) may offer further
opportunities for improvement.

7.2.2 Evaluation resources

Regarding Bio-SimLex and Bio-SimVerb (our novel intrinsic evaluation datasets for biomed-
ical representation), they are created to measure how well the notion of word similarity
according to humans is captured by the word representations. Apart from word similarity,
there are other semantic relations which are important for language understanding. One
example is the ‘hyponymy–hypernymy’ (a.k.a ‘is-a’) relation that exists between concept
groups such as mammal and their constituent members: lion or tiger. Being one of the essen-
tial linkages between entities as found in many biomedical ontologies (e.g. gene ontology),
the ‘is-a’ relation underlines the lexical entailment relation. The ability to effectively model
both lexical and phrasal entailment like humans can extend the usefulness of word repre-
sentations to many related applications, such as question answering, information retrieval
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and text summarization. For example, to answer a question such as ‘Which insects can
fly?’, a question-answering system has to distinguish that a bee or a butterfly are types of
insects, whereas an eagle or a pigeon are not. While intrinsic evaluation resources for lexical
entailment have recently been developed for the general domain [Vulić et al., 2017a], there is
a lack of similar resources in biomedicine, which suggests a potential research direction for
this work.

We observe a positive correlation between the performance of representation models on
Bio-SimLex and biomedical named entity recognition (NER). It is reasonable to expect that
the evaluation of noun representations (Bio-SimLex) is more relevant to the performance
of NER than evaluation of verb representations (Bio-SimVerb). In the future, it would be
interesting to further assess the correlation between performance on Bio-SimVerb and other
extrinsic tasks, such as relation typing, where performance is closely-related to the quality of
verb representations.

7.2.3 Verb classification

We explore methods for fine-tuning existing neural representation methods for verb classifi-
cation. This methodology can be improved in various directions: First, our representation
models are trained on word co-occurrence frequencies to capture verb semantics on the
word-level. Because many word formations in biomedicine follow regular patterns (e.g. phos-
phorylate and dephosphorylate), it might be possible to improve representation learning by
incorporating both word and character-level information. In the future, we can explore other
representation learning techniques for verb classification including FastText [Bojanowski
et al., 2017] where learning procedure takes into account the morphological (subword)
information.

Another potential research avenue is to improve the quality of representation learning
through context modelling. Currently, we experiment with dependency-based contexts,
showing that they can be useful in producing large semantically meaningful groups of classes.
Nevertheless, there are a few cases where semantically dissimilar verbs are misclassified
together because they share similar syntax. It indicates that there is room for improvement in
identifying other discriminative contexts.

In this thesis, we used a supervised approach to verb classification (Nearest Centroid
Classifier). While this provides an immediate benefit in terms of the accuracy of verbs
classified, it requires a fixed set of pre-defined verb classes as part of the training data. To
allow an unsupervised discovery of novel verb classes and subclasses, one idea for future
work would be to improve the performance of unsupervised clustering algorithms with a
small amount of supervision. It can take the form of labels on the data (seeds), constraints,
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or user feedback. This type of approach, commonly known as semi-supervised clustering,
not only can group candidates using the classes learned from the seed data, but it can also
extend and modify the existing set of classes as needed to reflect other regularities in the data.
Studies of this nature are emerging [Cuba Gyllensten and Sahlgren, 2018; Kuo et al., 2008]
and it would be interesting to investigate how they can be applied to our task to reduce the
need for pre-defined classes while maintaining promising precision.

In the last part of this thesis, we evaluated our automatically-created lexicon on text
classification and relation classification. Our task-based evaluation can be further extended
in various directions. First, we used retrofitting to incorporate the lexical features into
word representations. This method has been widely-used in biomedicine and thus can
serve as a baseline method for comparison. However, it focuses on synonyms within the
same lexical class, and the ‘hyponymy-hypernymy’ relation between classes/sub-classes
is largely neglected 1. Because our lexicon is hierarchical, we can explore other more
sophistical methods in the future. Examples included LEAR [Vulić, 2018], which utilizes
the asymmetric relation of lexical entailment (the ‘IS-A’ relation). Second, retrofitting likes
many other post-processing approaches of similar nature, are limited to updating only the
vectors of words appearing in external lexicons (i.e. seen words), leaving the vectors of
all other words unchanged (i.e. unseen words that only appear in either the models or the
lexicons). In recent work of Ponti et al. [2018], they use the pre-retrofitted and post-retrofitted
vector space to train a global specialization function (a.k.a. a transformer). This transformer
will then be applied to the large subspace of unseen words to update their vectors. Their
method effectively extends the specialization of word representation to the full vocabulary
of the input distributional vector space, yet, it is carried out on general lexical resources
with a mixed word-types (e.g. WordNet). To apply their method on lexicons of a specific
word-type like our verb lexicon, a potential research avenue is to explore ways to guide the
specialization to verb representations. Last, regarding our evaluation results, an in-depth
performance/error analysis based on each classified-category can be carried out to investigate
the effects of our lexical classes on individual document/relation types. Additionally, many
other important NLP tasks and datasets can also be considered in the future.

Our current work constitutes the first effort on applying a state-of-the-art architecture for
neural representation learning to biomedical verb classification. The preliminary experiment
suggests that the verb resource, as created by our method, can be used to support application
tasks in biomedicine. Our plan is to ultimately use our automatically-created lexicon to sup-
port the development of BioVerbNet via expert validation - an approach that can yield a fully
accurate computational resource and enriched taxonomy with novel classes in biomedicine.

1In retrofitting, all sub-classes are merged and regarded as a unified classes
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Once developed, such verb resource will provide a welcome addition to lexical resources in
biomedicine which largely focus on nouns (e.g. the UMLS Metathesaurus mainly covers
noun concepts) or a limited set of verbs (e.g. the BioLexicon provides the syntactic and
semantic information of 168 verbs commonly used in E.Coli).

Viewed as a whole, we believe that the contributions presented by this thesis demonstrates
the practical application of representation learning across domains (biomedicine) and word-
types (verbs). In particular, our work shows that neural word embeddings can be used to
benefit biomedical NLP in many ways.
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Appendix A

Guidelines for classification of
biomedical verbs for an
automatically-created resource

A.1 Background

The experiment aims to extend the small biomedical verb classification of Korhonen et al.
[2006] with the view facilitating the creation of an automatically created resource. The small
classification contains 192 verbs organized into a 3-level taxonomy consisting of 16, 34 and
50 classes. We have now applied an automatic classification approach (described in Chapter
6) to create an extended classification. It consists of 1,149 verbs in total (the 192 original
ones plus 957 new ones) that have been grouped into the original class taxonomy based on
their shared meanings and syntax according to our learning technique.

Your task is to verify whether these new candidate verbs are really similar in terms of
their meanings as well as syntactic patterns to existing verbs in the original classification.
Here is our initial proposal for how the task could be conducted.

The task has the following the steps (in blue, tasks to be answered in the Excel spreadsheet:
Answer.xlsx):
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A.2 Task A: Decide whether new verbs in each verb class
share the similar meanings and syntactic patterns

A.2.1 Materials

You will be provided with 3 documents to support this task. They are:

1. Question.xlsx: The list of verbs grouped into classes, with descriptions of each class.

2. Answer.xlsx: An Excel spreadsheet for recording the updated index of the class for
each verb based on your perception.

3. Examples (folder): Example sentences for each verb.

Please download and unzip the materials from:
https://drive.google.com/open?id=1tbV92X7fG13ereSIxo2oTC0Ly1zGbXqM

A.2.2 Task description

Open the file: Question.xlsx, you will see verbs grouped into classes based on their shared
meanings and syntax. They are organised in five columns (see Figure A.1) as follows:

Class Name: The name of each class.

Sub-class Name: The name of each sub-class.

Class index: The unique identifier (which you will need to use throughout the entire
task).

Example Verbs: Example verbs for each class from the original 192 classification.

New candidates: The list of new candidate verbs for verification.

Your task is to decide whether each new candidate verb (i.e. New Candidates in Fig A.1) has
been assigned to the right class/sub-class based on your interpretation of the Example verbs
in each class, as well as the sentence examples we provided for each verb (in the Example
folder, as describes in Section A.2.2). You should give your answers on the file we provided
(Answer.xlsx, as describes in Section A.2.2).

https://drive.google.com/open?id=1tbV92X7fG13ereSIxo2oTC0Ly1zGbXqM
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Fig. A.1 A screen-shot of the subset of verb class in Question.xlsx. Class Name is the name of
the top-level class. Sub-class Name is the name of each sub-class. Class index is the unique
identifier of each class/sub-class. Example Verbs has the member verbs of each sub-class.
New candidates contains verbs to be verified by annotators. They are separated from Example
verbs by red line for distinction

Sentence examples

To help you understand how a verb is used in biomedical text, we provide about thirty
example sentences from the corpus we used in our experiment, which illustrate the most
common syntactic structures of each verb (in descending order, most common on top and
least common at bottom). They are stored in folder: Example with the test verb as the
filename. They are organized in 3 columns: The first column is the name of the dependency
pattern exemplified in the sentence. The second column is the sentence example. The third
column is the word in sentences corresponding to the syntactic pattern (see Figure A.2).

Fig. A.2 A screen-shot of example sentences of increase (in Folder: Example). The first
column contains common syntactic patterns for increase in descending order (e.g. obj=object).
The second column stores the sentence example for using the corresponding pattern. The
third column stores the corresponding words in the sentence for the pattern (e.g. strain)

Look into the sentence examples of each New candidates and Example Verbs in each class
(as mentioned in Section A.2.2), decide if each new candidate verb has been assigned to the
right class. Give your answers on our answer template in the pre-defined format, which is
described in the next section.
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Fig. A.3 A screen-shot of the answer sheet for annotators (filename: Answer.xlsx). New
candidates contains verbs to be verified by annotators. Current Class is the index of the class
where a verb currently assigned to. Final Class records the updated class indexes for the
verbs after verified by annotators.

Answers template

Open the file: Answer.xlsx, you will see all the new candidates (Column 1) and the classes
they are currently assigned to (Column 2). Please write down the Class Index (reference
from Question.xlsx) you think each verb should be assigned to. Here, we use demethylate
and biotinylate as examples (see Fig A.3), they are currently assigned to the Class 1.1.1 and
Class 8.1.0 correspondingly. There are three options to choose:

1. If you think the verbs are correctly assigned, just put down the same class indexes as
their suggested ones (i.e. 1.1.1 and 8.1.0) in their corresponding cell in the Final Class
column.

2. In contrast, If you think the verbs are incorrectly assigned:

(a) If the mis-assigned verb should be in another class, please put down the corre-
sponding class index. For example, if you think demethylate should be in the
class: Biochemical modification (see Fig A.1), then put down its index: 2.2.1 in
the Final Class column.

(b) If at least two mis-assigned verbs can be part of an entirely new top class, please
put down a new class index in the format: (N+1.0.0) where N is the current
largest top-class index (By default, we have 16 top-level classes (N=16), so new
index begins with 17.0.0). For example, if you think demethylate and biotinylate
can be part of an entirely new classes, and this is the first class index you create,
then put down 17.0.0 in both of their cells in the Final Class column. Subsequent
new class index will then be 18.0.0, 19.0.0...etc).

(c) Any verbs you cannot find a good class for, please put in 0 as its class index in
the Final Class column.

Give a final class index to each new candidate verb. HOWEVER, A VERB CAN ONLY BE
ASSIGNED TO ONE CLASS/SUBCLASS ONLY!!!



Appendix B

An incidence matrix showing the class
reassignments of verbs in our
automatically-created lexicon

The new verbs judged as not valid were marked as candidates for reassignment to another
existing class, or as members of a subclass or a new class altogether. An incidence matrix
showing the class reassignments is presented in Table B.1. For instance, exacerbate, aggra-
vate and magnify, found in the ‘Inactivate’ class, were highlighted as forming a separate
cluster of similar verbs, while the verb deacylate found in the ‘Release’ class was reassigned
to the ‘Modify’ class. In the general scientific domain, an example of reassignment involved
verbs display and exhibit, found in the ‘Encompass’ class but considered better suited for the
‘Indicate’ class, within which four other candidates, underline, underscore, highlight, empha-
size, were marked as forming a subclass of ‘underline’-type verbs. Such cases demonstrate
the potential of the classification method for also discovering valid novel classes not in the
original classification.
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