
Machine learning methods

for vector-based compositional semantics

Jean Maillard

St John’s College

University of Cambridge

Department of Computer Science and Technology

January 2019

This dissertation is submitted

for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of

work done in collaboration except as declared in the Preface and specified in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently submitted

for a degree or diploma or other qualification at the University of Cambridge or any other

University or similar institution except as declared in the Preface and specified in the text. I

further state that no substantial part of my dissertation has already been submitted, or, is being

concurrently submitted for any such degree, diploma or other qualification at the University of

Cambridge or any other University or similar institution except as declared in the Preface and

specified in the text.

It does not exceed the regulation length of 60000 words, including tables and footnotes.

Machine learning methods for vector-based compositional semantics

Jean Maillard

Rich semantic representations of linguistic data are an essential component to the development

of machine learning algorithms for natural language processing. This thesis explores techniques

to model the meaning of phrases and sentences as dense vectors, which can then be further

analysed and manipulated to perform any number of tasks involving the understanding of

human language. Rather than seeing this task purely as an engineering problem, this thesis

will focus on linguistically-motivated approaches, based on the principle of compositionality.

The first half of the thesis will be dedicated to categorial compositional models, which are based

on the observation that certain types of grammars share the structure of the algebra of vector

spaces. This leads to an approach where the meanings of words are modelled as multilinear

maps, encoded as tensors. In this framework, the meaning of a composite linguistic phrase can

be computed via the tensor multiplication of its constituents, according to the phrase’s syntactic

structure. I contribute two categorial compositional models: the first, an extension of a popular

method for learning semantic representation of words, models the meanings of adjective-noun

phrases as matrix-vector multiplications; the second uses higher-order tensors to represent the

meaning of relative clauses.

In contrast, the models presented in the second half of the thesis do away with traditional

syntactic structures. Rather than using the standard syntax trees of linguistics to drive the

compositional process, these models treat the compositional structure as a latent variable. I

contribute two models that automatically induce trees for a downstream task, without ever

being shown a ‘real’ syntax tree: one model based on chart parsing, and one based on shift-

reduce parsing. While these proposed approaches induce trees that do not resemble traditional

syntax trees, they do lead to models with higher performance on downstream tasks – opening

up avenues for future research.

Acknowledgments

I would like to express my profound gratitude to my family, and especially to my parents Emilia

and Vincent. I am deeply grateful for their unconditional love and encouragement throughout

all of my pursuits. This thesis is dedicated to them. I would also like to express my gratitude

to my grandmother Giulia, my aunt Marina, Daniel Bec, and all the members of my extended

family for their continuous support.

Special thanks go tomy supervisor, SteveClark,who introducedme to the field of Computational

Linguistics. His guidance and support over the past years have made me grow as a researcher

and a scientist. I could not have hoped for a better mentor. I am also sincerely thankful to

the members of my thesis committee, Ted Briscoe and Edward Grefenstette; my advisor, Ann

Copestake; the graduate education manager, Lise Gough; and the epsrc, St John’s College, and

the Computer Laboratory for their generous funding.

My years as a doctoral student were greatly enriched by interacting and collaborating with a

number of brilliant colleagues and friends: Luana Bulat, Kris Cao, Vesna Djokic, Guy Emerson,

Douwe Kiela, Ekaterina Kochmar, Alexander Kuhnle, Ewa Muszyńska, Tamara Polajnar, Marek

Rei, Laura Rimell, Diarmuid Ó Séaghdha, Ekaterina Shutova, Yiannos Stathopoulos, Eva Maria

Vecchi, Anita Vero, Andreas Vlachos, Wenduan Xu, Helen Yannakoudakis, Dani Yogatama,

and all the other current and former members of the Computer Laboratory’s nlip group at the

University of Cambridge.

Finally, my time in Cambridge would not have been the same without the incredible group of

friends I was lucky enough to find, and who have been extremely supportive throughout this

journey. My sincere gratitude goes out to Sandro Bauer, Johannes Bausch, Laura Convertino,

Conrad Koziol, Mircea Micu, Christopher Pulte, Emilie Skulberg, and Sofiya Zlateva. I am

grateful to Ludovica Gonella, Andrea Odone, and Davide Testuggine for their friendships,

which are still lasting after over 15 years through very long distances. I would also like to thank

team awesome, the MPhil crew, my college friends, and all the wonderful people I met while

sailing and dancing.

Thank you!

Contents

I Introduction 13

1 Introduction 15

1.1 Encoding words in computers . 16

1.2 Distributed word representations . 18

1.3 Compositional distributed semantics . 20

1.4 Summary . 25

2 Thesis contributions 27

2.1 Publications . 28

II Categorial compositional models 31

3 Categorial models 33

3.1 The categorial framework . 33

3.2 Combinatory Categorial Grammar . 37

3.3 Tensor-based semantics . 39

4 Relative clause composition 43

4.1 Dataset description . 43

4.2 Compositional models . 45

4.3 Experimental setup . 48

4.4 Results and discussion . 52

4.5 Summary . 53

5 Tensor-based skip-gram for adjective-noun composition 55

5.1 A tensor-based skip-gram model . 55

5.1.1 Training of nouns . 56

5.1.2 Training of adjectives . 56

5.1.3 Similarity measure . 57

5.2 Evaluation . 58

5.2.1 Word Similarity . 58

5.2.2 Phrase Similarity . 59

5.2.3 Semantic Anomaly . 60

5.3 Summary . 61

III Latent tree learning models 63

6 Tree-structured recurrent neural networks 65

6.1 The Long Short-Term Memory architecture . 65

6.2 TreeLSTM . 67

6.3 Latent tree learning . 67

6.3.1 Semi-supervised recursive autoencoders 68

6.3.2 Stack-augmented parser-interpreter neural network 69

6.3.3 Chart-based latent tree learning . 71

6.3.4 Easy-first latent tree learning . 71

6.3.5 Shift-reduce latent tree learning . 73

6.4 Summary . 73

7 Chart parsing 75

7.1 Model . 75

7.1.1 Baselines . 78

7.2 Experimental setup . 78

7.2.1 Natural language inference . 79

7.2.2 Reverse dictionary . 80

7.3 Results and discussion . 81

7.4 Summary . 85

8 Shift-reduce parsing 87

8.1 Models . 87

8.1.1 Beam search shift-reduce treeLSTM . 88

8.1.2 CKY-based treeLSTM . 89

8.2 Experimental setup . 90

8.2.1 Pointer-based stack . 91

8.3 Results and discussion . 93

8.4 Summary . 95

9 Conclusions 97

List of Figures

1.1 Symbolic and distributed representations . 16

1.2 Word co-occurrences. 18

1.3 Word co-occurrence counts and semantic vector spaces. 19

1.4 Skip-gram and Continuous Bag of Words representations. 20

1.5 Syntax trees. 21

1.6 Word order in the additive and categorial models of meaning. 22

1.7 Recursive neural network architecture. 23

1.8 Long Short-Term Memory (LSTM) architecture. 24

1.9 Attachment ambiguities in syntax trees. 25

3.1 Various semantic models for adjective-noun composition. 35

3.2 The multi-step regression approach for tensor-based semantic models. 36

3.3 Practical lexical function model. 36

3.4 CCG derivations with forward and backward application. 38

3.5 CCG derivation of a subject-verb-object phrase. 39

3.6 Tensor-based semantic representation of a subject-verb-object phrase. 40

4.1 Terminology used in the RELPRON dataset. 44

4.2 Representation of relative clauses in the practical lexical function model. . . . 47

4.3 Full practical lexical function model. 48

4.4 Relative pronoun tensor model. 49

4.5 Two-step skip-gram for verb-object phrases. 50

5.1 Skip-gram with negative sampling, and tensor-based skip gram. 57

5.2 Multi-modal tensor-based skip-gram. 62

6.1 Left-to-right LSTM composition. 66

6.2 The treeLSTM architecture. 68

6.3 Semi-supervised recursive autoencoder RNN. 70

6.4 The SPINN model. 70

6.5 Best-first latent tree learning model. 72

7.1 CKY-based latent tree learning model. 77

7.2 Trees induced by the CKY-based LTL model on the NLI task. 84

7.3 Trees induced by the CKY-based LTL model on the dictionary task. 84

8.1 Beam-search shift-reduce latent tree learning model. 89

8.2 Subtree weights in the CKY-based latent tree learning model. 90

8.3 Pointer-based stack in the shift-reduce latent tree learning model. 91

8.4 Trees induced by the shift-reduce and CKY-based latent tree learning models. 95

List of Tables

2.1 A taxonony of vector-based compositional methods. 27

3.1 Performance of semantic models on transitive verb composition. 37

4.1 RELPRON performance of various compositional models. 53

4.2 RELPRON development set performance of various models. 54

5.1 Adjective similarity performance of standard and tensor-based skip-gram. . . 59

5.2 Adjective-noun similarity performance of various compositional models. . . . 60

5.3 Performance on the semantic anomaly dataset for various models. 61

7.1 Simplified parse chart for an example sentence. 76

7.2 SNLI test set accuracy of various models. 82

7.3 SNLI test set accuracy of the attention-based models. 82

7.4 Reverse dictionary performance of various models. 83

8.1 SNLI and MultiNLI test set accuracy. 92

8.2 Self and inter-model F1 scores for latent tree learning models. 93

8.3 Unlabelled F1 scores of trees induced by the latent tree learning models. . . . 94

9.1 Schematic view of compositional models presented in this thesis. 97

Part I

Introduction

13

1 Introduction

Before a machine learning algorithm can perform any task which involves language under-

standing, it needs to obtain some internal characterisation of the meaning of its linguistic

input. Effective semantic representations of linguistic data can then be further analysed and

manipulated to perform any number of Natural Language Processing (nlp) tasks, ranging from

machine translation to the understanding of verbal commands (e.g. in the context of a virtual

assistant such as Apple’s Siri or Amazon’s Alexa). In this thesis, we will explore ways in which

computational models of human language can effectively represent the meaning of phrases and

sentences as vectors. More specifically, we will focus on vector-based semantic models that

respect the principle of compositionality – the fundamental idea in linguistics that the meaning

of an expression is fully determined by its structure and the meaning of its constituent parts.

The principle has been stated in a variety of ways in the literature, and there is no universally

accepted definition of what is meant by terms such as meaning or structure (Goldberg, 2003).

Dowty (2007), for instance, states it as “The meaning of a sentence is a function of the meanings

of the words in it and the way they are combined syntactically”,1 and further discusses howmost

authors have taken this to suggest that there exists a homomorphism (a structure-preserving

map) between syntax and semantics, under which semantics can be seen as the image of syntax.

He illustrates this idea for the sentence Fido barks with the following equation:

meaning-of (Syntactic-Combination-Of (Fido,barks))
= Semantic-Function-of (meaning-of (Fido),meaning-of (barks)) ,

where Semantic-Function-of and Syntactic-Combination-Of are in direct correspondence

under the homomorphism.

In this chapter we discuss how vectors, which are ubiquitous structures throughout machine

learning, represent an effective way of encoding the meaning of words, phrases, and sentences;

and that they offer advantages compared to more traditional approaches. This chapter further

serves as an overview of the existing literature on vector-based semantics within nlp. Additional

in-depth reviews of categorial models of composition and tree-based neural composition are

presented in Chapters 3 and 6, respectively.

1It should be noted, however, that this does not readily apply to metaphorical and idiomatic language, or

constructional meaning (Goldberg, 2003). These aspects are beyond the scope of this thesis, and we refer

interested readers to Westerståhl (2002) and Goldberg (2015).

15

16 1 Introduction

Having presented several approaches to model the meaning of words, the rest of the thesis

discusses ways to combine these to obtain the meaning of the larger expressions they form.

These effectively amount to providing different concrete definitions of Dowty’s “Semantic-

Function-of”, given a syntactic structure. My own contributions are characterised by structural

priors and strong inductive biases, resulting in compositional, linguistically-motivated models

which closely adhere to a view of semantics as a homomorphism –where vector representations

are built in step with the syntactic derivation. Broadly speaking, this thesis aims to compare

these models to more mainstream phrase and sentence encoding approaches, which lack these

inductive biases. We shall see that, while there remain issues of scalability, these linguistically

motivated approaches look promising in various ways.

1.1 Encoding words in computers

For the majority of nlp algorithms, words are the simplest indivisible unit. Therefore, in

accordance with compositionality, it is with them that our story must begin. How do computers

represent words? When encoded digitally, a word is nothing more than a sequence of bytes

representing characters. For most of today’s computers cat is stored as 63 61 74, dog as 64 6F 67,
and ozone as 6F 7A 6F 6E 65.2 These representations are unsuitable for our purposes: they do
not intrinsically contain any semantic information; they are space-inefficient, as the encoding

is meant to represent more entities than just words, such as control characters and drawing

elements; and they are variable in size – which complicates their handling. How, then, are the

meanings of words represented in nlp?

!" # $ %&

(a) Symbolic one-hot representations.

!" # $ %&

(b)Distributed representations.

Figure 1.1: Hypothetical representations of word meanings.

2For more information on the background and peculiarities of this encoding scheme, ascii, see Bemer (1980)

and references therein.

1.1 Encoding words in computers 17

Symbolic representations The traditional approach to the representation of meaning in nlp follows

formal semantics (Dowty et al., 1981). Words are associated with unique, atomic symbols which

are then combined, according to syntax, into some form of logical structure. Examples of such

systems include Bos et al. (2004), who use ccg derivations to construct semantic representa-

tions, and Briscoe and Carroll (2002), who generate underspecified semantic representations.

As a concrete example of this approach, using the formalism of first-order logic with a neo-

Davidsonian analysis of events, the sentence a dog chased a cat might get translated to

∃x ∃y ∃e dog(x) ∧ cat(y) ∧ chase(e) ∧ agent(e, x) ∧ patient(e, y). (1.1)

where cat, dog, and chase are the symbolic representations of the respective words, denoting

objects in a set-theoretic model.

In practical terms, these opaque symbols might be implemented by simply mapping the string

representation of words to unique numerical identifiers, e.g. cat ↦ 1, dog ↦ 2, and so forth for

the rest of the vocabulary; or, if using a machine learning system where vector representations

aremore convenient, the natural solutionwould be to turn these into a one-hot encoding: vectors

of zeroes with a single one in the position corresponding to the word’s index (illustrated in

Figure 1.1a). One obvious shortcoming of this approach is thatword representations are completely

independent from one another, and have no intrinsic notion of similarity: there is therefore

no way of knowing from the representations that cat and kitty can be synonyms, or that both

are relatively close in meaning to dog, at least when compared to e.g. car. Such knowledge

would be very important for applications such as information retrieval systems and search

engines, which could return a wider range of relevant results by considering similar queries.

This information could be learned separately, for instance by using a lexical database such as

WordNet (Fellbaum, 1998), as suggested by Bos (2005). However, any such resources need to

be hand-crafted by trained experts, and their coverage is limited. A more fundamental problem

is that the size of the parameter space associated with these representations grows with the

size of the vocabulary. This issue, known as the curse of dimensionality, becomes particularly

obvious when thinking about modelling joint distributions of words: modelling 10 consecutive

words with a vocabulary of size 100,000 leads to potentially ∼ 1050 free parameters (Bengio

et al., 2003).

Distributed representations Instead of using a symbolic representation of words, an alternative

strategy is to distribute the information content for each word across all dimensions of a vector

space, moving from discrete sparse representations to dense continuous ones. These are known

as distributed representations, and are illustrated in Figure 1.1b. They have the obvious advantage of

being more space efficient, thus requiring fewer parameters and getting around the curse of

dimensionality (Hinton et al., 1986). Further, they can be built in such a way that similar words

will have similar representations, which has two main advantages: a very useful intrinsic notion

of similarity, as discussed in the previous paragraph; and more broadly, a better generalisation

ability, as many algorithms can be expected to have local smoothness properties (Bengio et al.,

18 1 Introduction

…e a look at the top 26 cat whisker facts which you…

… domesticated breed of cat, with a distinctive phy…
…the simplest type is a cat flap, or pet door, whic…
…breeds, the maine coon cat has longer whiskers tha…
… factors, the breed of cat will affect pet insuran…
…f whisker fatigue in a cat whom I pet sit for, and…

… a pet is a particular dog breed that is best for …

… majority of breeds of dog are at most a few hundr…
…in the role of the pet dog, such as the increased …

…emporary people with a dog describe their pet as p…
…ost vocal canid is the dog: its tendency to bark a…
…have trained their pet dog not to bark whenever th…

Figure 1.2: Highlighted occurrences of some words neighbouring cat and dog in a symmetric

window around them. The example sentences come from a web search.

2003), such that similar inputs lead to similar outputs. Finally, these representations have

the advantage that new words can be added to the vocabulary without having to increase the

dimensionality of the vector space.

1.2 Distributed word representations

While we have listed some advantages of distributed word representations, no mention was

made of how these vectors can be obtained. In this section, we discuss several methods to

automatically compute such representations.

Distributional models The distributional hypothesis, popularised by Firth (1957), states that words

used in similar contexts share a similar meaning. This suggests that the semantics of words

can be characterised by harvesting their co-occurrence statistics from large corpora, a process

which is easily automated.3 As illustrated by the example in Figure 1.2, co-occurrence counts are

readily collected by inspecting the neighbours of words in a linguistic corpus, and then collated

into a matrix whose columns correspond to the words in the vocabulary (Figure 1.3a). After some

post-processing of the data such as normalisation, smoothing of the counts, and dimensionality

reduction, the columns can then be seen as vectors representing the semantics ofwords. Looking

at a two-dimensional projection of the resulting vector space will reveal that words with similar

usage are clustered together (Figure 1.3b), showing that geometrical methods can be used on the

vectors to measure the similarity of meaning of the corresponding words. This approach has

had a considerable impact on natural language processing (Turney and Pantel, 2010; Baroni

et al., 2013; Clark, 2015; and references therein), as it provides vector representations of the

3For three seminal papers exploiting these ideas, see Salton et al. (1975), Deerwester et al. (1990), and Schütze

(1998).

1.2 Distributed word representations 19

cat dog
pineapple

breed
pet

bosun

gybe
bark

whisker

…whale
1

184

172
296

7

1
1

3

3

226
189

2

301
0

0

53

6
3

31

0
24

… … … …

(a)Co-occurrence counts of words.

·cat
·dog

·vitamins

·whale

they·
you·

I·

·metronome

·apple
·orange

·violin

floating·

·a·an ·some

(b)Resulting vector space.

Figure 1.3: The co-occurrence counts in a corpus can be used to produce semantic vector

representations of words. The resulting vector space captures some notion of semantic

similarity.

semantics of words which can be readily harvested from large unannotated corpora, and are

easily used in downstream tasks.

Prediction-based models More recently, a new family of methods to train distributed representa-

tions of words has emerged: rather than explicitly collecting counts, these methods learn a

vector parameter for each word that maximises the probability of predicting its neighbours, or

related quantities. Bengio et al. (2003) and Collobert andWeston (2008) are some of the earliest

published approaches, although some of the key insights can already be found in the literature

of the 80s (Hinton et al., 1986; Rumelhart et al., 1986a; Rumelhart et al., 1986b). However it was

arguably the models of Mikolov et al. (2013b), along with their implementation word2vec,4

that have had the greater impact. The paper presented two popular models, skip-gram and

cbow, which are sketched in Figure 1.4. Baroni et al. (2014) perform an extensive evaluation of

the traditional count-based methods and the new prediction-based methods, showing that the

latter perform better on a wide range of lexical semantics evaluations. Some authors take yet

another approach: instead of taking word representations trained with skip-gram or similar

methods and using them for some nlp task, they use randomly initialised vectors, relying on

the downstream task to learn optimal values for them (Sutskever et al., 2014; Bahdanau et al.,

2015; Gehring et al., 2017; inter alia). This approach, in which word representations are learned

directly as a by-product of solving the desired task, is generally effective and has the benefit of

simplifying the experimental pipeline (Kocmi and Bojar, 2017). Vectors obtained with any of

the these methods are often called embeddings in the literature, and we shall also use this term.

4http://word2vec.googlecode.com/

http://word2vec.googlecode.com/

20 1 Introduction

although

happily

… … … …!
apple
"

=

…

the
red

tastes

juicy

(a) Skip-gram is given a word and predicts its neighbours.

the !
red !

tastes !
juicy ! ++

+
…
…
…
…

=
…

mangosteen
happily

apple

although

loves

pear

(b)Cbow predicts a word based on the averaged representations of its neighbours.

Figure 1.4: Sketch of the skip-gram and CBoWmodels of Mikolov et al. (2013a) processing the

word apple in the sentence the red apple tastes juicy.

Other approaches Latent semantic analysis, known as lsa (Deerwester et al., 1990; Landauer

and Dumais, 1997), is a historical method which has had a large impact on the fields of nlp

and Information Retrieval. Starting from a set of documents, it calculates a word/document

co-occurrence matrix, and uses a dimensionality reduction technique to obtain distributed

representations for words. A hybrid method which has been shown to perform well is that of

Pennington et al. (2014), which borrows ideas from both count-based and prediction-based

approaches, and is widely used. Faruqui and Dyer (2015) show how lexical databases can also

be exploited to obtain distributed vectors, which the authors call non-distributional as they do not

encode any word co-occurrence information. A related effort by Faruqui et al. (2015) is to refine

pre-existing distributed vectors with information from semantic lexicons. Bojanowski et al.

(2017) show an interesting extension of skip-gram, where each word is further represented as an

(unordered) set of character n-grams, thus allowing the building of representations for words

not present in the training data. Finally, a very powerful recent method which has improved the

state-of-the-art on a number of tasks is ELMo (Peters et al., 2018), which learns contextualised

word representations as the hidden layers of a deep recurrent bidirectional neural language

model.

1.3 Compositional distributed semantics

How is the meaning of a sentence determined? According to the principle of compositionality,

which is at the basis of most contemporary work in semantics, it is obtained recursively from

1.3 Compositional distributed semantics 21

S

VP

ADJP

JJ

messy

RB

very

VBZ

looks

NP

N

language

Figure 1.5: Syntactic tree of the sentence language looks very messy.

the meaning of its constituents, and the ways in which they are combined (Dowty et al., 1981).

Thus, the meaning of the sentence language looks very messy is given by the meaning of its words,

combined into larger and larger constituents as determined by its syntax (Figure 1.5). It is then a

function of the meaning of the noun language, combined as a subject with the meaning of the

verb phrase looks very messy, which is in turn given by the meaning of the verb looksmodified

by the meaning of the predicative adjective phrase very messy. Finally, the latter is given by the

meaning of the adjective messy, modified by the meaning of the adverb very.

Semantic productivity is often brought forward as an argument supporting the principle of

compositionality, with Frege (1980) claiming

The possibility of our understanding [sentences] which we have never heard before

rests evidently on this, that we can construct the sense of a [sentence] out of parts

that correspond to words.5

Standard distributed models of semantics, described in the previous section, only deal with the

meaning of words as individual units. However, a number of extensions have been developed

in recent years to model the meaning of larger linguistic units, in line with the principle of

compositionality.

Bag-of-words models The simplest models of composition compute the meaning of multi-word

constituents by combining individual word vectors using simple mathematical operations such

as vector addition. It is a very common approach which yields good performance in simple

phrase similarity tasks (Mitchell and Lapata, 2008, 2010; and references therein), but it has

the drawback of being based on a commutative operation, making this a fundamentally order-

and syntax-insensitive bag-of-words model. While this does not contradict the principle of

compositionality, this simplistic approach leads to absurd situations, such as the one illustrated

in Figure 1.6a. This method, as well as closely related models using operations such as element-

wise multiplication and circular convolution, is reviewed in Mitchell and Lapata (2008, 2010)

and Polajnar et al. (2014b), inter alia.

5The square brackets are part of the amended translation given in Szabó (2001).

22 1 Introduction

fishcats eat

+ + =
fish catseat

+ +
(a)Who’s eating whom? The additive compositional model is insensitive to word order.

≠
catsT eat fish fishT eat cats

(b)A hypothetical implementation of the categorial framework where sentence meanings live in a

five-dimensional space, and noun meanings in a four-dimensional one.

Figure 1.6: Representation of the sentences cats eat fish and fish eat cats in an additive and a

categorial compositional model.

Categorial framework One feature that brings the above models together, other than their use of

simple mathematical operations, is their assumption that words, as well as larger linguistic units,

are represented by vectors living in the same semantic space. An alternative approach is to more

closely follow the compositional process of formal semantics (Dowty et al., 1981), by building a

semantic representation in step with the syntactic derivation, and letting the representations

of words be determined by their syntactic type. Coecke et al. (2011) achieve this by treating

relational words such as verbs and adjectives as functions in the semantic space. The functions

are assumed to be multilinear maps, and are therefore realised as tensors, with composition

being achieved through tensor contraction.6 Thus, for instance, words are represented as

vectors, adjectives as matrices,7 transitive verbs as third-order tensors, and so forth. A simple

example illustrating the differences between the representations of the sentences cats eat fish

and fish eat cats is shown in Figure 1.6b and should be contrasted with Figure 1.6a. The figure shows

the transitive verb eat, which is a relational word taking two arguments (subject and object),

represented as a third-order tensor. In this particular example, we have taken the space of

noun representations to be four-dimensional, and the space of sentence representations to be

five-dimensional, making the eat tensor 4×5×4-dimensional. Following Clark et al. (2016), we

will call this approach the categorial framework. A more in-depth review of this specific family of

models, as well as its performance gains compared to bag-of-word models, will be presented in

the opening chapter of Part II of this thesis.

6Baroni et al. (2013) and Paperno et al. (2014) develop similar approaches.
7An approach also suggested by Baroni and Zamparelli (2010).

1.3 Compositional distributed semantics 23

eat
fish

cats

! "+tanh

cats

eat fish

fish

eat

! "+tanh

Figure 1.7: Sketch of the simple RNN model from Socher et al. (2010), processing the sentence

cats eat fish according to the tree (cats (eat fish)).

Neural compositional models Both the addition model and the categorial models rely on multilinear

functions to perform composition. More recent compositional models are based on neural

networks, which are inherently nonlinear. Good examples are the recursive neural network

architectures of Socher et al. (2010), the simplest of which we illustrate in Figure 1.7: the model

uses vectors to represent the meaning of words, and combines them according to a given parse

tree using an affine transformation and a nonlinear function. Further examples are variants

of this recursive architecture that are lexicalised (Socher et al., 2012) or parametrised on the

syntactic categories (Socher et al., 2013; Hermann and Blunsom, 2013); convolutional networks

(Collobert and Weston, 2008; Kalchbrenner et al., 2014; Kim, 2014; Mou et al., 2016); or more

complex tree-structured approaches based on the treelstm architecture (Tai et al., 2015; Zhu

et al., 2015; Bowman et al., 2016). These models, as well as the categorial ones, use the syntactic

structure of sentences to drive their composition, and therefore will require parse trees to be

provided at runtime, either from an automatic parser or in the form of annotations from trained

experts. Chapter 6 will contain a more thorough review of some of these models. Latent tree

learning models, which automatically induce a composition structure which is optimal for the

downstream task and therefore do not require parse trees, are the subject of Part III of this thesis.

Linear-chain rnns Finally, a very large number of works have been published which obtain sen-

tence representations by using recurrent neural networks with a linear chain structure. They have

been successfully applied to a wide range of linguistic tasks: language modelling (Sundermeyer

24 1 Introduction

forget
gate

input
gate

+σ #f %f

+σ #o %o

+σ #i %i

+tanh #u %u

current
input

previous
output

previous
cell
state

prev.
cell
state

+ ⊙⊙
update

⊙
output
gate

new
cell
state

new
cell
state

new
output

Figure 1.8: Long Short-Term Memory (LSTM) cell (Hochreiter and Schmidhuber, 1997). At each

time step it receives an input, the previous output, and its internal state.

et al., 2012; Jozefowicz et al., 2016), word sense disambiguation (Yuan et al., 2016), and machine

translation (Sutskever et al., 2014) amongst others. The most commonly used architectures are

lstms (Hochreiter and Schmidhuber, 1997; illustrated in Figure 1.8), grus (Cho et al., 2014), as

well as their bidirectional variants (Schuster and Paliwal, 1997; Graves and Schmidhuber, 2005)

and extensions using attention mechanisms (Bahdanau et al., 2015). They differ from simple

rnns by having mechanisms which help them better model long-range dependencies, which we

will look at in Chapter 6. Lstm and variants continue to be a very popular choice when needing

to encode the meaning of a sentence into a vector, even though the treelstm architecture (Tai

et al., 2015) is starting to outperform them on an increasing number of tasks. Indeed, Manning

(2017) recently stated that ‘the de facto consensus in nlp in 2017 is that no matter what the

task, you throw a [bidirectional lstm] at it’. Recent work which demonstrates the effectiveness

of these architectures is the attempt to learn general-purpose sentence representations. Of

particular note are the approaches of Subramanian et al. (2018), based on the gru architecture,

and Conneau et al. (2017), based on a bidirectional lstm encoder.

It should be noted that while lstm and variants can be seen as conforming to the principle of

compositionality in a strict sense, they do so in a somewhat simplistic way. As their composition

order is always linear, typically left-to-right, they are effectively assuming that words are always

1.4 Summary 25

VP

NP

PP

NP

NN

telescope

DT

a

IN

with

NN

astronomer

DT

the

VB

see

(a) See the astronomer who is carrying a telescope.

VP

PP

NP

NN

telescope

DT

a

IN

with

NP

NN

astronomer

DT

the

VB

see

(b) See the astronomer by looking through a telescope.

Figure 1.9: Two equally valid syntatic trees for see the astronomer with a telescope.

put together according to a fully left-branching tree. While there exist formalisms that would

allow a fully left-branching composition order (e.g. Lambek, 2008; Steedman, 2000), standard

recurrent neural networks cannot be parametrised to support the mechanisms, such as type-

raising, that are required by these formalisms. As such, this family of models can only be

considered to be compositional in a weak sense.

1.4 Summary

We began this chapter with a brief introduction to traditional symbolic methods in nlp, which

represent the meaning of phrases and sentences as logical forms with a model-theoretic treat-

ment.8 These approaches can provide a precise treatment of aspects such as logical connectives

and quantifiers (Montague, 1973), and shine in applications that can make use of the associated

inference mechanisms (Blackburn and Bos, 2005). What they lack, however, is the ability

8For a more thorough discussion see Dowty et al. (1981), Cann (1993), and Blackburn and Bos (2005).

26 1 Introduction

to easily characterise the meaning of content words – i.e. words such as nouns, verbs, and

adjectives that have intrinsic meaning, as opposed to function words such as conjunctions

and articles. These systems are brittle, as they can only deal with words that are part of their

ontologies, and grammatical constructs that match their rules. Further, they also lack an intrinsic

notion of similarity between constituents which, as discussed in § 1.1, is useful for nlp tasks.9

The rest of the chapter was dedicated to the presentation of distributed semanticmodels, starting

from the meaning of individual words, and extending it to the meaning of larger linguistic

units with the use of compositional models. Distributed models have a robust, comprehensive,

data-driven approach to the characterisation of the meaning of content words, and provide ways

of dealing with unknown tokens – either via a special embedding (see e.g. the implementation

of Pennington et al., 2014) or by other approaches such as character- or n-gram-based algorithms

(e.g. Bojanowski et al., 2017).

Are distributed models, then, better in every way? While traditional symbolic methods are

able to represent the meaning of phrases and whole sentences through composition in a well-

defined way, despite recent successes it is not yet clear how to best achieve this with distributed

models. This will be the main topic of my dissertation. In § 1.3 we reviewed the existing

literature on the subject. We saw that there are approaches, such as bag-of-wordsmodels and

linear-chain rnns, that follow the principle of compositionality only in a weak sense. Other

approaches, e.g. categorial models and Socher et al. (2010), take a stronger stance and use

linguistically-motivated, syntax-driven composition functions. In Parts II and III we will look at

my own proposals for compositional models, which belong to this second class of linguistically-

motivavetd approaches. Twowill be based on the categorial framework, and two on the treelstm

architecture.

A further open question is how to incorporate concepts from formal semantics into distributed

models, to be used in applications such as question answering and inference. Distributed

methods are still not able to reason about language in the elaborate and interpretablewayswhich

are possible in a logic-based system such as the one described by Blackburn and Bos (2005).

While there has been promising recent work on inference about entailment and contradiction

in sentences (Bowman et al., 2015; Williams et al., 2018b) and question answering (Lewis and

Steedman, 2013; Rajpurkar et al., 2018), this remains an open problem.

9A good discussion of the limitations of formal semantic approaches can be found in Boleda and Herbelot

(2016) and the references therein. For a more informal treatment, see also the scenarios presented in Gazdar

(1996).

2 Thesis contributions

Table 2.1: A taxonomy of vector-based compositional semantic models, showing a sample of

representative papers. My contributions are highlighted.

Composition function

Multilinear Nonlinear

C
o
m
p
o
si
ti
o
n
st
ru
ct
u
re

P
ro
v
id
e
d

Baroni and Zamparelli (2010)

Grefenstette et al. (2013)

Paperno et al. (2014)

Maillard and Clark (2015)

Rimell et al. (2016)1

Socher et al. (2012)

Socher et al. (2013)

Tai et al. (2015)

Zhu et al. (2015)

Bowman et al. (2016)

In
d
u
ce
d

Socher et al. (2011)

Yogatama et al. (2017)

Maillard et al. (2017)

Choi et al. (2018)

Maillard and Clark (2018)

This thesis contributes a number of vector-based models of semantics that respect the principle

of compositionality. In Part II, Chapters 3 to 5, we explore new categorial models that can be seen as

implementations of the theoretical framework of Coecke et al. (2011). First, in Chapter 4, we look at

the specific case of subject and object relative clauses, and implement a number of tensor-based

models for it, which have been separately published in Rimell et al. (2016).1 Then, in Chapter 5,

we look at a new approach to learning matrices for categorial models, which was published

separately in Maillard and Clark (2015). This differs from the more standard approaches of

Baroni and Zamparelli (2010), Guevara (2010), and Paperno et al. (2014) by being the analogue,

for matrices, of the prediction-based models of word semantics already discussed in § 1.3.

The final part of this thesis, Part III, Chapters 6 to 8, deals with latent tree learning models. These

models are similar to the recursive neural networks already discussed in § 1.3, with one crucial

1My contributions in Rimell et al. (2016) are as follows: designing, coding, and running the algorithms for

learning holistic vectors together with word embeddings, described in § 5.1.3 of the article; coding and running of

the verb matrix learning algorithms described in § 5.2.2, as well as the code for learning relative pronoun tensors;

coding and running the categorial compositional methods described in § 5.5. This will be further clarified in

Chapter 4.

27

28 2 Thesis contributions

difference: rather than relying on externally provided parse trees similar to the ones that would

be assigned by trained linguists, these models automatically induce a task-specific ‘grammar’

based on their downstream task (Williams et al., 2018a). They achieve this by integrating, within

the compositional model, a natural language parser which is either differentiable (and therefore

trainable via backpropagation), or trained via reinforcement learning. We will look at two new

models: in Chapter 7 we will examine the first latent tree learning model based on chart parsing;

and in Chapter 8 the first one based on the combination of shift-reduce parsing and beam search.

We will see how they are able to outperform compositional models which use traditional syntax

trees. Finally, we will analyse the trees that they induce, comparing and contrasting them to

traditional ones.

An alternative way of navigating through parts of the sea of literature describing compositional

models is to classify them based on two features: the nature of the composition function, which

can either be multilinear (e.g. for the categorial models) or nonlinear (e.g. for the recursive

neural models); and the origin of the composition structure, which can be either externally

provided (e.g. by a parser, for the categorial and recursive neural models) or automatically

induced (as is the case for the latent tree learning models). This view is illustrated schematically

in Table 9.1.2 If we take this picture as a guiding map, then in Part II of this thesis we will explore

the upper left section of the table, and in Part III the lower right section.

2.1 Publications

This thesis builds on the following papers, which I list in reverse chronological order:

• J. Maillard, S. Clark, D. Yogatama (In press). ‘Jointly Learning Sentence Embeddings and

Syntax with Unsupervised Tree-LSTMs’. Natural Language Engineering. (Extended version

of arXiv:1705.09189).

• J. Maillard, S. Clark (2018). ‘Latent Tree Learning with Differentiable Parsers: Shift-

Reduce Parsing and Chart Parsing’. In: Proceedings of the Workshop on the Relevance of

Linguistic Structure in Neural Architectures for NLP. Melbourne, Australia.

• J. Maillard, S. Clark, D. Yogatama (2017). ‘Jointly Learning Sentence Embeddings and

Syntax with Unsupervised Tree-LSTMs’. arXiv:1705.09189.

• L. Rimell, J. Maillard, T. Polajnar, S. Clark (2016). ‘RELPRON: A Relative Clause Eval-

uation Data Set for Compositional Distributional Semantics’. Computational Linguistics,

42.4, pp. 661–701.

2Kartsaklis (2014; p. 26) presents a related taxonomyof vector-based compositional semantics. They differentiate

models just based on the nature of their composition function, and follow with an interesting discussion of their

theoretical power and distinguishing features.

2.1 Publications 29

• J.Maillard, S Clark (2015). ‘Learning Adjective Meanings with a Tensor-Based Skip-Gram

Model’. In: Proceedings of the 19th Conference on Computational Natural Language Learning.

Beijing, China.

The following papers, while not included in this thesis, relate to its topical matter:

• V. G. Djokic, J. Maillard, L. Bulat, E. Shutova (2019). ‘Modeling Affirmative and Negated

Action Processing in the Brain with Lexical and Compositional Semantic Models’. In:

Proceedings of the 57thAnnualMeeting of theAssociation for Computational Linguistics. Florence,

Italy.

• E. Shutova, D. Kiela, J. Maillard (2016). ‘Black Holes and White Rabbits: Metaphor Iden-

tification with Visual Features’. In: Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies. San

Diego, California. Best paper runner up.

• S. Clark, L. Rimell, T. Polajnar, J. Maillard (2016). The Categorial Framework for Composi-

tional Distributional Semantics. Technical report, University of Cambridge.

Finally, the source code used in the experiments is available on my personal website, www.
maillard.it.

www.maillard.it
www.maillard.it

30 2 Thesis contributions

Part II

Categorial compositional models

31

3 Categorial models

Having given a general overview of vector-basedword semantic models and their compositional

extensions in Chapter 1, we will now look into more detail at the framework introduced by Coecke

et al. (2011), and its application to Combinatory Categorial Grammar (ccg, see Steedman, 2000).

Following Clark et al. (2016), we will call the framework of Coecke et al. categorial, and its

implementations categorial models. We will introduce the main theoretical result of Coecke

et al. (2011), and discuss some of its first concrete implementations. Following a presentation

of the core aspects of ccg, we will see how this formalism can be seamlessly integrated with

the categorial framework, to obtain a practical tensor-based compositional distributed model

of semantics. This chapter will serve as an introduction to Chapters 4 and 5, which describe my

contributions in this area.

3.1 The categorial framework

Coecke et al. (2011) make the crucial observation that pregroup categorial grammars (Lambek,

2008) – a context-free variant of categorial grammars (Buszkowski, 2001) – share a common

structure with the vector spaces of distributed models from the point of view of category theory:

both can be represented as compact closed categories, a special case of categories which are

additionally equipped with the notion of tensor product, and where each object has a left

and right adjoint, subject to coherence conditions.1 Indeed vector spaces – which are used in

distributed models to represent the semantics of words – together with linear maps and tensor

products, can be seen as a compact closed category. The same is also true of the syntactic types

of a pregroup grammar, together with adjoints and multiplication. These categories also admit

a practical form of diagrammatic calculus, which can be useful to intuitively depict grammatical

reductions (as demonstrated in Clark et al., 2008; Coecke et al., 2011; inter alia).

Using this unifying structure, Coecke et al. describe a category-theoretic framework in which

the compositional nature of pregroup grammars is mapped to the category of vector spaces.

This allows the assignment of meaning to well-formed compound linguistic units, starting from

the meaning of their constituents.

1A discussion of these concepts is beyond the scope of this thesis. Several excellent introductions to category

theory exist, such as the classic textbook by Mac Lane (1978), or the more recent presentations by Lawvere and

Schanuel (2009) and Coecke and Paquette (2010).

33

34 3 Categorial models

Adjective-noun composition One of the earliest proposals that can be seen as an implementation

of this theoretical framework, even though it was developed separately, is the adjective-noun

model of composition by Baroni and Zamparelli (2010). The authors start from the idea from

formal semantics that attributive adjectives can be seen as functions from themeaning of a noun

to the meaning of the modified noun – in mathematical terms, fsmelly ∶ cat ↦ smelly_cat.
They then propose a concrete implementation of such functions for distributional models of

semantics, in the form of linear maps acting on word vectors, e.g. square matrices. The matrices

are trained via linear regression to approximate a set of adjective-noun semantic vectors. These

vectors are extracted from the corpus, in an analogous way to how the individual word vectors

are learned, by considering the adjective-noun as a single token. The model is illustrated in

Figure 3.1b for the two phrases smelly cat and tabby cat, and the resulting transformations in a

hypothetical semantic space are shown in Figure 3.1c. A related model by Guevara (2010), which

uses two separate matrices (shared by all adjectives), is shown in Figure 3.1a. A third model which

can be applied to adjective-noun composition is by Maillard and Clark (2015). It can be seen as

an extension of the skip-gram model of Mikolov et al. (2013b), and will be described in detail in

Chapter 5.

General composition Grefenstette and Sadrzadeh (2011a) propose an implementation of the cat-

egorial framework for relational words, and demonstrate its application to transitive and in-

transitive verbs. Concretely, letting N be the vector space of noun meanings, they propose that

the tensor of a relational word with n arguments live in the space N⊗n, i.e. n tensor products

of the noun space with itself. Composition is performed via the element-wise product of the

relational word tensor R with the Kronecker product of the vectors of its arguments 𝐚i, i.e.

R ⊙ (𝐚1 ⊗ ⋯ ⊗ 𝐚n). Therefore, transitive verb tensors live in N ⊗ N. The authors propose

calculating their representation as V = ∑i 𝐬i ⊗ 𝐨i, where (𝐬i, 𝐨i) are the pairs of vectors for
the corpus-observed subjects and objects of the corresponding verb. An alternative way of

calculating the verb tensor representations, which is shown to perform better in a disambig-

uation task, is to simply compute the Kronecker product of the verb’s word vector with itself

(Grefenstette and Sadrzadeh, 2011b).

The two methods presented above are based on Kronecker products of arguments and element-

wise multiplication. Due to their use of multiplication, they cannot be meaningfully applied

to vectors which contain negative values (Grefenstette et al., 2013) which are, however, very

common in nlp due to methods such as skip-gram (Mikolov et al., 2013b) or GloVe (Pennington

et al., 2014), or the use of dimensionality reduction techniques such as svd. A different family

of verb composition, which does not have this limitation and has been shown to perform

better, is the extension of the adjective-noun regression approach of Baroni and Zamparelli

(2010) to relational words of greater arity. Grefenstette et al. (2013) propose an approach

using multi-step regression, and demonstrate learning third-order transitive verb tensors: this

involves first learning matrices for verb phrases such that, when multiplied with subject vectors,

they approximate corpus-extracted sentence vectors; and then learning a verb tensor which,

3.1 The categorial framework 35

!cat"!smelly#
+

!cat"!tabby#
+

(a)Guevara

!cat"smelly

!cat"tabby
(b)Baroni and Zamparelli

!cat !tabby cat

!smelly cat

"smelly

"tabby

(c) Linear transformations

Figure 3.1: Adjective-noun phrases smelly cat and tabby cat according to the compositional

models of Guevara (2010) and Baroni and Zamparelli (2010). Below, the linear transformations

corresponding to Baroni and Zamparelli’s adjective-specific matrices on a 2d projection of a

hypothetical noun phrase vector space.

when multiplied with object vectors, approximates the corresponding verb phrase matrix.

Composition is then performed by multiplying the verb tensor with the vectors of its object

and subject.

Polajnar et al. (2014a) propose to avoid issues with data sparseness and computational complex-

ity that are associated with learning high-order tensors by proposing several low-dimensional

approximations, and Fried et al. (2015) attempt the same by using tensor rank decompositions,

representing transitive verb tensors as sums of tensor products of vectors. In the same spirit,

Paperno et al. (2014) propose the Practical Lexical Function model (henceforth plf): in their

approach, relational words of n arguments are not represented as an nth order tensor, but rather

as a single vector together with a set ofnmatrices. In order to perform composition, eachmatrix

is multiplied with the corresponding argument’s vector, and all resulting vectors are added

together, along with the relational word’s vector. This is illustrated in Figure 3.3 for the case of a

transitive verb eat. In a task involving composition of sentences involving verbs and adjectives,

36 3 Categorial models

crêpesfish

catseat fish

≈…
sharks cats sharks

eat
fish

eat
fish

…

kidseat crêpes

≈…
Bretons kids Bretons

eat
crêpes

eat
crêpes

…

eat

≈…
eat fish eat crêpes

…
Step 1

Step 2

Figure 3.2:Multi-step regression (Grefenstette et al., 2013). Highlighted in orange are the tensors

which are being learned via regression: in step 1, the verb phrase matrices; and in step 2, the

verb tensor.

cats
!

eat
" S

fish
!

eat
" O

eat
!

+ +
Figure 3.3: Transitive verb composition for cats eat fish in the PLF model. Gupta et al. (2015)

suggest dropping the last summand, i.e. the word embedding of the verb.

plf was shown to outperform baselines such as addition and element-wise multiplication, as

well as composition with tensors learned via multi-step regression (see Paperno et al., 2014;

whose results we report in Table 3.1).

Further developments Other aspects of natural language have been investigated in the context of

the categorial framework. While categorial models have been mainly applied to tasks involving

phrase similarity, Balkır et al. (2018) argue that they can also be used for textual entailment

tasks, and provide preliminary results in support of this position. Grefenstette (2013b) shows

how aspects of predicate logic, such as connectives and quantifiers, can be replicated in a

tensor-based framework. Sadrzadeh et al. (2013, 2016) discuss relative pronouns and perform

3.2 Combinatory Categorial Grammar 37

Table 3.1: Performance of transitive verb composition models on two tasks involving predict-

ing the similarity of sentences with the structure adjective-noun-verb-adjective-noun. The

numbers given are the Spearman rank correlation coefficients with human similarity ratings.

ANVAN1 is by Kartsaklis et al. (2013); ANVAN2 is by Grefenstette (2013a). All numbers are

as reported in Paperno et al. (2014; table 5). We also show the inter-annotator agreement

(denoted humans below), which serves as an upper bound on the performance.

Model Anvan1 Anvan2

Addition 0.08 0.22

Multi-step 0.15 0.30

Plf 0.20 0.36

Humans 0.38 0.48

preliminary experiments. Taking this work as inspiration, Rimell et al. (2016) implement a

number of categorial models for relative clause composition, including an extension of the plf

model of Paperno et al. (2014) and a tensor-based model. The work of Rimell et al. will be

discussed in detail in Chapter 4, including a full description of the models used and the results of

an evaluation involving term retrieval from relative clauses.

3.2 Combinatory Categorial Grammar

The original formulation of the categorial framework was made in terms of pregroup grammars,

due to their sharing common structure with vector spaces and linear maps. In this thesis, we

prefer to implement the framework in terms of a different grammatical formalism, ccg. This

idea was originally suggested by Grefenstette (2013a), and later expanded upon by Maillard

et al. (2014) and Grefenstette and Sadrzadeh (2015). While ccg and pregroup grammars are

theoretically different formalisms, and are therefore not generally interchangeable, Buszkowski

and Moroz (2008) and Grefenstette and Sadrzadeh (2015) observe how ccgs are equivalent to

pregroup grammars, and can therefore be used within the categorial framework.

Our choice is motivated by the wide use of ccg within nlp (Hockenmaier and Steedman, 2007;

Krishnamurthy and Mitchell, 2014; Zettlemoyer and Collins, 2007; Nadejde et al., 2017; inter

alia), the availability of several high-quality parsers (Clark and Curran, 2007; Xu et al., 2014;

Xu, 2016; Lewis et al., 2016) and, finally, the ease with which this grammatical formalism can

be integrated with the categorial framework (Grefenstette, 2013a; pp. 136–147; Maillard et al.,

2014).

In ccg (Steedman, 2000), all constituents are assigned a type, which identifies them as either

functions or arguments. These combine in various ways according to combinatory rules, to ulti-

mately produce the syntactic derivation of a linguistic unit. Types in ccg are defined recursively

38 3 Categorial models

smellyNP/NP catNP
>NP

(a)Adjective-nounphrase compositionwith for-

ward application.

S
catsNP eat(S\NP)/NP fishNP

>(S\NP)
<

(b) Subject-verb-object composition with for-

ward and backward application.

>

deviceNP that(NP\NP)/(S\NP) detects(S\NP)/NP planetsNP(S\NP)(NP\NP) >

<NP
(c) Subject relative clause composition with forward and backward application.

Figure 3.4: CCG derivations of smelly cat, cats eat fish, and device that detects planets, demon-

strating the use of forward application (>) and backward application (<).

in terms of the primitive types, which are the types of atomic arguments. Here we will assume

there are only two: the type of nouns and noun phrases,NP; and the type of sentences, S.

Functions have composite types, which specify the number, type, and direction of their argu-

ments, and the type that results from their application (their codomain). A function taking an

argument of some type Y to the right, and resulting in some type X, has type X/Y. A function

taking an argument of type X to the left, and resulting in type Y, has type X\Y. Brackets are
used to avoid ambiguity in the precedence of slashes. Adjacent constituents can be reduced by

applying the combinatory rules of the grammar. In this thesis, we will mainly be concerned

with two rules: forward (rightward) application and backward (leftward) application,2 denoted

by > and < respectively.

X/Y Y ⟹ X (>)
Y X\Y ⟹ X (<)

Forward application combines any function with type X/Y with an immediately following

Y, yielding X. Backward application works analogously, but for the case of function words

expecting arguments to their left.

To illustrate these concepts, let us consider the case of adjective-noun phrase composition. As

2In the parser of Clark and Curran (2007), for example, a larger set of rules is implemented including (general-

ized) composition, leading to a mildly context sensitive grammar. In this thesis we only consider a small set of

grammatical constructions, and so do not need the full grammar. However, the categorial framework applies to

ccg more generally, including type-raising and composition rules (Maillard et al., 2014).

3.3 Tensor-based semantics 39

discussed above, nouns and noun phrases have primitive typeNP. Adjectives combine with

nouns to their right to produce a noun phrase, and thus have typeNP/NP. Figure 3.4a shows

how, through the rule of forward application, adjective smelly combines with noun phrase cat to

yield a noun phrase, which has typeNP. A similar example is given in Figure 3.4b depicting the

composition of a subject-verb-object sentence. Transitive verb eat, which expects a direct object

to the right and a subject to the left, is combined with two noun phrases through forward and

backward application. The result is a sentence, which has primitive type S. Finally, Figure 3.4c

demonstrates composition of a relative clause.

Additional combination rules are forward and backward composition, denoted B> and B<

respectively, which are analogous to the composition of functions in mathematics; and forward

and backward type-raising, denoted T> and T< respectively, which are used to turn argument

types into function types. They are defined as follows:

X/Y Y/Z ⟹ X/Z (B>)
Y\Z X\Y ⟹ X\Z (B<)

X ⟹ T/(T\X) (T>)
X ⟹ T\(T/X) (T<)

CCG tightly couples syntax with semantics, as each category can be augmentedwith its semantic

type, and the combinatory rules apply in the same way to the semantic representations. Using

λ-calculus to encode the semantics (as in Steedman, 2000) the meaning of the adjective smelly

can be represented as λx smelly(x), and the noun cat as the symbol cat. Application rules

correspond to function application, so that combining smelly cat via forward application will

lead to a semantic interpretation of smelly(cat). The slightly more involved case of subject-

verb-object composition is demonstrated in Figure 3.5 for the sample sentence cats eat fish. First, a

forward application is performed, replacing the bound variable y in the semantic representation

of eat with the semantic representation of fish. Then, a backward application replaces the bound

variable x with the semantic representation of cats.

S: eat(cats,fish)
>

catsNP: cats eat(S\NP)/NP: λyλx eat(x,y) fishNP: fish(S\NP): λx eat(x,fish)
<

Figure 3.5: Subject-verb-object CCG derivation with semantic composition.

3.3 Tensor-based semantics

The semantic representations introduced in the previous section in terms of abstract λ-calculus
are not vector-based, but are closer to the logical forms of the symbolic tradition of nlp described

40 3 Categorial models

in Chapter 1. We will now show how the ccg formalism can be integrated with distributed models

of semantics, following the framework of Maillard et al. (2014) to which we refer readers for a

more complete treatment.

We start by assuming that the meanings of primitive types live in potentially distinct vector

spaces. Thus, the typeNP of nouns and noun phrases will have an associated semantic vector

space N, the type S of sentences will have a space S, and in general N ≠ S. Having done

this, we further assume that words which are identified as functions in the syntax will also be

treated as functions in the semantics. More specifically, we choose to model the semantics of

all function words as a multilinear maps (encoded as tensors) of order n + 1, where n is the

number of primitive types making up its ccg type. The specific tensor space of these maps is

easily determined by taking the syntactic type of a function word, replacing all ccg primitive

types by their associated vector spaces, and replacing all slashes by tensor products. Thus an

adjective, of syntactic typeNP/NP, has a semantic representation living in the spaceN⊗N; and
a transitive verb, of type (S\NP)/NP, has a semantic representation living in S⊗N⊗N. Finally,

forward and backward composition rules correspond, in the semantics, to tensor contraction.

We can thus take a derivation such as the one shown in Figure 3.5 and turn it into a tensor formula,

as shown in Figure 3.6.

cats

NP:
eat

(S\NP)/NP:
fish

NP:
>

(S\NP): =
<S: =

Figure 3.6: Subject-verb-object composition in the tensor-based CCG semantic framework.

Note how, for the adjective case, this fits perfectly with the model of Baroni and Zamparelli

(2010) discussed in § 3.1: adjective meanings are represented as tensors in N ⊗ N, i.e. they

are n × nmatrices; nouns meanings are represented as n-dimensional vectors; and adjective-

noun composition corresponds to matrix multiplication. What is still missing, however, is

how these vectors and matrices are learned: on this topic, this ccg-flavoured variant of the

categorial framework – as described in Maillard et al. (2014) and Clark et al. (2016) – makes no

assumptions. As such, it is still a theoretical framework, requiring practical implementations.

3.3 Tensor-based semantics 41

Several models fit this picture well, providing concrete implementations. Other than the

aforementioned Baroni and Zamparelli (2010), we also have Grefenstette et al. (2013) who

model transitive verbs as third-order tensors and use tensor multiplication. Two interesting

approaches are those of Paperno et al. (2014) and Polajnar et al. (2014a) who, in order to get

around the data sparsity issues that arise with tensors of higher orders, use simpler, lower-

dimensional representations. Apart from the last, all these models have in common the way in

which they learn the tensors andmatrices corresponding to functionwords, initially proposed by

Baroni and Zamparelli (2010): first a number of phrase vectors, all containing the same function

word, are extracted from the corpus; then, the function word tensor or matrix is learned via

regression to be close to the corpus-extracted phrase vectors whenmultiplied by the appropriate

argument vectors.

The next two chapters will describe my contributions in this area. Both can be seen as practical

implementations of the ccg-flavoured categorial framework described in this section. In Chapter 4

I will focus on relative clause composition, and test several models: the plf model as proposed

by Paperno et al. (2014), a proposed extension of plf specific to relative clauses, and a newmodel

based on a third-order relative clause tensor. Then, in Chapter 5, I will propose an alternative to

regression for learning function word tensors, and evaluate it on two tasks involving adjective-

noun compositionality.

42 3 Categorial models

4 Relative clause composition

Evaluation tasks for compositional distributed models have mostly involved measuring the

similarity of simple phrases: adjective-noun phrases (Baroni and Zamparelli, 2010; Mitchell

and Lapata, 2010; Vecchi et al., 2011; Boleda et al., 2012; Vecchi et al., 2017), subject-verb

and verb-object combinations (Mitchell and Lapata, 2008, 2010; Grefenstette and Sadrzadeh,

2011a), or simple transitive sentences (Kartsaklis et al., 2013; Grefenstette, 2013a). While these

datasets have been fundamental in evaluating the first generation of compositional distributed

models, the simplicity of the grammatical structures that they evaluate means that a wide range

of compositional phenomena is left untested. Other evaluation tasks involve measuring the

similarity of pairs of full sentences (Agirre et al., 2012; Marelli et al., 2014; Agirre et al., 2015;

Pham et al., 2013). While the grammatical constructions in these tasks are more complex,

reducing sentence similarity to a single numerical value offers no insight into the performance

of models on specific phrase types, and thus might mask areas where models need improvement

(Rimell et al., 2016).

Feeling that a wider range of compositional phenomena should be investigated in compositional

distributed models, my co-authors in Rimell et al. (2016) decided to build relpron, a dataset for

the evaluation of subject and object relative clause composition. In the next section, § 4.1, I will

describe the nature of relpron and how to evaluate compositional distributed models with it.

In the following sections, §§ 4.2 to 4.4, I will discuss the experiments I ran using relpron, and

the distributed models I evaluated. Namely, these are the plf model of Paperno et al. (2014)

and several ablated versions; a new extension of plf to relative clauses; and a new approach

involving third-order tensors, learned with a strategy reminiscent of Grefenstette et al. (2013),

but without the ad hoc intermediate regression. Training thesemodels required having semantic

vectors for phrases, which are used as training targets when learning matrices and tensors for

function words via linear regression. These phrase vectors were learned with an extension of

skip-gram (Mikolov et al., 2013b) that I designed, which will be described in § 4.3. All results

presented in this chapter were published separately in Rimell et al. (2016).

4.1 Dataset description

One of the inspirations for the relpron dataset was the toy experiment by Sadrzadeh et al.

(2013) involving relative clauses. Starting from the motivation that relative clauses are often

used to describe words, Sadrzadeh et al. chose a set of nine words and manually described them

43

44 4 Relative clause composition

that

argument

astronomers

verb

use

that

argument
planetsdetects

verb
relative clause

relative clause

property

property

head noun
device

head noun

device

term

telescope :

term
telescope :

Figure 4.1: Terminology used to describe the terms and properties in the dataset. Above, the

noun phrase with subject relative clause device that detects planets; below, the noun phrase

with object relative clause device that astronomers use. Both refer to the term telescope.

using a noun phrase which includes a relative clause – for instance, they described mammal

as animal which gives birth. The goal of their task was then to compute, according to the model

being tested, how many of the words were closest in meaning to their descriptions.

The relpron dataset is made up of similar tuples, but is larger, and with more realistic noun

phrases which are based on data extracted from a corpus. Rather than being definitions, the

noun phrases in relpron express representative properties of various words, and are thus

called properties in this dataset. Two examples, with a subject and an object relative clause, are

‘telescope: device that detects planets’ and ‘telescope: device that astronomers use’. These are illustrated

in Figure 4.1 along with the terminology used to describe various parts of the properties: we call

telescope the term, device the head noun, and the verb’s dependent the argument (this is the verb’s

object in a subject relative clause, and its subject in an object relative clause). Between four

and ten properties were included in the dataset for each term.

Rather than directly extracting relative clauses from a corpus, which would have led to few

examples due to sparsity issues, my co-authors extracted subject-verb-object triples from a 2010

Wikipedia dump and the British National Corpus,1 using the C&C tools (Clark and Curran,

2007) to parse the data and extract the subject and object relations. Then, they joined the

extracted triples with appropriate hypernyms as head nouns: for example, the extracted triple

astronomers use telescope was joined with head noun device (a hypernym of telescope) to form

the term-property tuple ‘telescope: device that astronomers use’, which contains an object relative

clause; and similarly the triple telescope detects planets formed the tuple ‘telescope: device that

detects planets’, which contains a subject relative clause. For simplicity, that was used as the

only relative pronoun throughout the dataset. In order to make the task more challenging, and

ensure that models could not simply rely on the similarity between terms and head nouns,

1The British National Corpus, version 3 (2007). http://www.natcorp.ox.ac.uk/.

http://www.natcorp.ox.ac.uk/

4.2 Compositional models 45

multiple terms that shared the same head noun were chosen: for example, the terms telescope,

watch, button, and pipe, being all hyponyms of device, were all assigned properties that start with

device that. Finally, frequency cutoffs were applied, and the data was manually filtered to ensure

that only terms with four or more good identifying properties were retained; and that only head

nouns with at least four terms were retained.2

This procedure resulted in a total of 1087 tuples, including both subject and object relative

clauses, modifying both abstract and concrete nouns. This was further divided into a devel-

opment set of 518 properties (comprising 7 head nouns and 65 terms) and a test set of 569

properties (comprising 8 head nouns and 73 terms). The canonical task for relpron is, given

a term, to rank all properties corresponding to it above other unrelated properties. For all

experiments described in the following sections I use as evaluation measure the mean average

precision (henceforth map), as suggested by Rimell et al. (2016).3 It is defined as

MAP = 1
N

N

∑
i=1

AP(ti), (4.1)

whereN is the number of terms to be ranked, and AP is the average precision, defined as

AP = 1
Pt

M

∑
k=1

Prec(k) ⋅ 𝕀t(k),

where Pt is the number of properties corresponding to term t according to the dataset;M is

the total number of properties in the dataset; Prec(k) is the precision at rank k; and 𝕀t(k) is an
indicator function, equal to one if the property at rank k is valid for term t, and zero otherwise.

4.2 Compositional models

I will now describe the various models that were used to compute distributed semantic rep-

resentations of noun phrases modified by relative clauses. Apart from the baseline methods

described below, all other models, which can be seen as implementations of the categorial

framework described in Chapter 3, were implemented and evaluated by me.

Arithmetic methods My co-authors trained and evaluated a number of methods using three differ-

ent sets of distributed vectors: my 100-dimensional skip-gramvectors; a set of 2000-dimensional

count-based vectors built on Wikipedia, using the same settings as Grefenstette and Sadrzadeh

(2011a); and count-based vectors reduced to 300 dimensions with svd, using the same settings as

Polajnar et al. (2014a). These methods, called here arithmetic, included using only the vector of

2For a more detailed step-by-step description of how my co-authors built relpron, see the paper, Rimell et al.

(2016).
3This was chosen so that results would be comparable to those published in Rimell et al. (2016). As map is

difficult to interpret, readers are advised to consider alternative, more standard metrics from information retrieval,

such as recall and mean reciprocal rank.

46 4 Relative clause composition

the argument or the verb, and adding or element-wise multiplying the vectors for the argument,

verb, and head noun. All these methods were evaluated on the development set. Only addition

with the skip-gram vectors was found to be competitive with the other methods:

𝐍h +𝐍a +𝐍v

where𝐍 is the word embedding matrix, and h, a, and v represent the indices of the head noun,

argument, and verb respectively (see Figure 4.1 and the previous section for the definitions of

these terms).

PLF and ablated variants The first model I implemented and evaluated was the Practical Lexical

Function model (plf) of Paperno et al. (2014). Transitive verbs have ccg type (S\NP)/NP
which, according to the tensor-based semantic framework described in § 3.3, leads to them being

represented as third-order tensors living in S⊗ N⊗ N. Paperno et al. simplify this in order to

make learning more tractable, by modelling a transitive verb as two matrices in S ⊗ N. One

matrix, the verb-subject matrix, models the interaction of the verb with its subject, and the other,

the verb-object matrix, with its object. Therefore, the composition of a subject-verb-object

sentence is modelled in plf as

𝐕S
v𝐍s +𝐕O

v 𝐍o,

where𝐍 is the word embedding matrix as before;𝐕S and𝐕O are verb-subject and verb-object

embedding tensors, which contain the full set of verb-subject and verb-object matrices; and

s, v, and o are the indices of the subject, verb, and object respectively. The original paper by

Paperno et al. also included a third term to the addition above, i.e. the word vector of the verb.

Gupta et al. (2015) found that removing this third term yielded better results, and I also adopted

this modification.

In plf most grammatical words, including relative pronouns, are treated as ‘empty’ elements that

do not project into semantics. This leads to noun phrases modified by relative clauses being

treated as subject-verb-object sentences: for example, device that detects planets is equivalent

to device detects planets, and device that astronomers use is equivalent to astronomers use device.

Therefore, noun phrases modified by a subject and object relative clause are represented in plf

respectively as

𝐕S
v𝐍h + 𝐕O

v 𝐍a (splf, subject) and 𝐕O
v 𝐍h +𝐕S

v𝐍a (splf, object),

where h, a, and v represent again the indices of the head noun, argument, and verb.

I further evaluated three ablated variants of plf. The first, called simplified plf (henceforth splf),

drops the interaction of the verb with the head noun:

𝐍h + 𝐕O
v 𝐍a (subject) and 𝐍h +𝐕S

v𝐍a (object).

The second, varg, only models the verb-argument composition, effectively dropping the head

noun altogether. The third, vhn, drops the argument. They are defined, respectively, as

𝐕O
v 𝐍a (varg, subject) and 𝐕S

v𝐍a (varg, object),

4.2 Compositional models 47

SPLF

device

!
detect

" S !
planetdetect

" O
+

VArg

PLF

VHN

(a)Noun with subject relative clause: device that

detects planets.

SPLF

VArg

PLF

astronomer

!
use

" S
+

VHN

device

!
use

" O

(b)Noun with object relative clause: device that

astronomers use.

Figure 4.2: PLF model, as presented in Paperno et al. (2014) with the modification proposed

by Gupta et al. (2015). Also shown are two ablated versions: a simplified alternative which

effectively replaces the verbmatrix modifying the head nounwith the identity (SPLF); a version

which drops the head noun altogether (VArg); and one which drops the argument (VHn)

𝐕S
v𝐍h (vhn, subject) and 𝐕O

v 𝐍h (vhn, object).

These ablated models, as well as the standard plf, are illustrated in Figure 4.2.

Full plf We then extended the plf intuition to relative pronouns, with an approach that captures

the interaction of the relative pronoun with the head and the verb-argument phrase via two

matrices. In this model – which we call full plf (fplf) – instead of ignoring relative pronouns, a

noun modified by a subject relative clause is composed as

𝐑S,va𝐕O
v 𝐍o + 𝐑S,n𝐍h (rptensor, subject),

where 𝐑S,n and 𝐑S,va are the relative pronoun matrices capturing interactions with the head

noun and verb-argument phrase respectively; and all other variables are defined as previously.

Analogously, the composition of a noun modified by an object relative clause is modelled as

𝐑O,va𝐕S
v𝐍s + 𝐑O,n𝐍h (rptensor, object).

See Figure 4.3 for a graphical representation of fplf composing a noun with a subject and an

object relative clause.

Relative pronoun tensor Finally, the last approach models relative pronouns as tensors. Subject

relative pronouns have ccg type (NP\NP)/(S\NP), and object relative pronouns have type

(NP\NP)/(S/NP), which should both result in fourth-order tensors living in N⊗ N⊗ S⊗ N.

In order to make the learning of relative pronoun tensors tractable, we decided to make use of

48 4 Relative clause composition

device
!

that
"S,n

planet
!

detect
% O

+
that
"S,va

(a)device that detects planets

astronomer

!
use
" S

device

!
that

%O,n
+

that

%O,va
(b)device that astronomers use

Figure 4.3: FPLF model composing subject and object relative phrases.

the plf approach, which reduces the semantic space of transitive verbs from S⊗N⊗N to S⊗N.

This, in turn, leads to a reduction of the semantic space of both subject and object relative

pronouns from N⊗ N⊗ S⊗ N to N⊗ N⊗ S, which was tractable given the computing power

available to me. Using the relative pronoun tensor approach (henceforth rptensor), nouns

modified by subject and object relative phrases are composed respectively as

𝐑S ⋅ 𝐕O
v 𝐍o ⋅ 𝐍h, (4.2)

𝐑O ⋅ 𝐕S
v𝐍s ⋅ 𝐍h, (4.3)

where 𝐑S and 𝐑O are the subject and object relative pronoun tensors; the dots represent

tensor contractions with the rightmost index; and all other variables are defined as in previous

examples. This is illustrated in Figure 4.4.

4.3 Experimental setup

In the previous section, I described a number of compositional models. I will now explain

how their parameters were learned. All code was written in Python 3, using the 11.1 release of

NumPy.

Word vectors I learned 100-dimensional word vectors for my experiments using skip-gram with

negative sampling (Mikolov et al., 2013b), a method which was shown to provide the best

results in early experiments on the development data, when compared to traditional count-

4.3 Experimental setup 49

planet

!
detect

" O
device

!
that

%S
(a)device that detects planets

astronomer

!
use

" S
device

!
that

%O
(b)device that astronomers use

Figure 4.4: RPTensor model composing subject and object relative phrases.

basedmethods as well as the neural-based cbow (Mikolov et al., 2013a). It is based on optimising

the following cost function

1

|𝒟W|
∑

(t,c)∈𝒟W (
logσ(𝐍t ⋅ 𝐖c) +

k

∑𝔼c′∼P [logσ(−𝐍t ⋅ 𝐖c′)]
)
, (4.4)

where𝒟W is the corpus, seen as pairs (t, c) of target words and context (neighbour) words; σ
is the standard logistic function;𝐍 and𝐖 are, respectively, the word embedding and context

word matrices, both learned parameters; and P is the noise distribution used to draw random

words, set to the unigram distribution raised to the power of 3/4 (as recommended by Goldberg

and Levy, 2014). The second term in the outer summation, called negative sampling by the

authors, can be seen as a simplified variant of noise-contrastive estimation (Gutmann and

Hyvärinen, 2012), an approximation to a full hierarchical softmax objective which is more

efficient.4 This process is illustrated in Figure 4.5a, for target word telescope. I ran skip-gram on a

2015 dump of Wikipedia, lemmatised using the Stanford CoreNLP tools (Manning et al., 2014).

I used a window of ten words on either side of the target, with ten negative samples per word,

and 100-dimensional target and context vectors. Lemmas with fewer than 100 occurrences in

the corpus were ignored.

4Readers should note that, although the use of negative sampling was necessary when these experiments were

originally run, given the current state of technology it should now be feasible to directly maximise the likelihood.

50 4 Relative clause composition

telescope

!
=

bowline

…

physicists
stars

their

observe

pamphlet

to

use
tironian#… … … …

(a) First, we learn the noun vectors using the

standard skip-gram algorithm.

use
telescope

! VO
=

bowline

…

physicists
stars

their

observe

pamphlet

to

planets
tironian&… … … …

(b) Then, we learn the corpus-based phrase

embeddings, keeping𝐖 fixed.

Figure 4.5: The two-step skip-gram method for learning corpus-based phrase vectors with skip-

gram. Shown above is the special case for verb-object phrases, with the example sentence

physicists use telescope to observe stars.

Phrase vectors The categorial models I tested on the relpron dataset use matrices and tensors to

model the meaning of function words. To learn these matrices and tensors, phrase vectors are

needed as targets for linear regression. They are analogous to word vectors, but rather than

encoding information on neighbours co-occurring with a word, they encode information on

the neighbours co-occurring with the head word of a given phrase: for example, the vector for

the verb-object phrase use telescope encodes information on the co-occurring neighbours of use

when the verb appears in the corpus with object telescope.

To learn phrase vectors, I extracted from the same Wikipedia corpus subject-verb phrases, verb-

object phrases, and noun phrases modified by subject and object relative clauses, as well as the

words neighbouring the head word of each phrase. This was achieved by parsing the corpus

with the Stanford CoreNLP tools using Universal Dependencies (Marneffe et al., 2014), and

extracting relations of type nsubj and obj for subject-verb and verb-object phrases respectively;
and acl:relcl with PronType=Rel for relative clauses, looking at the verb argument’s role to

determine whether they were subject or object relative clauses. Then, I learned phrase vectors

using the same objective as skip-gram with negative sampling, described in Equation 4.4, but

replacing the word embedding matrix𝐍 with a phrase embedding matrix, where each row is

the embedding of a particular phrase: these were called 𝐏VO for verb-object phrases, 𝐏SRC for

noun phrases modified by subject relative clauses, and so forth. For example, for the case of

verb-object phrases, the cost function was defined as

1

|𝒟VO|
∑

(t,c)∈𝒟VO [
logσ (𝐏VO

t ⋅ 𝐖c) +
k

∑𝔼c′∼P (logσ [−𝐏VO
t ⋅ 𝐖c′])

]
,

where𝒟VO is the set of verb-object phrases and their neighbours.

4.3 Experimental setup 51

Crucially, in order to ensure that both word and phrase vectors encoded information in a similar

way, and could thus be seen as living in the same vector space, I found it necessary to freeze

the context word matrix 𝐖. I therefore took the matrix 𝐖 that was learned while training

the word embeddings and re-used it, keeping it constant this time, also for training the phrase

embeddings. Practically, this removed the influence of the random initialisation of𝐖, which

would have been different for this second round of skip-gram. Phrases occurring fewer than

twice in the corpus were discarded, and we used a wider window of 15 as suggested by Paperno

et al. (2014). All other training parameters were the same as used for training word embeddings.

I will call this method two-step skip-gram. The whole process is illustrated in Figure 4.5b for the case

of verb-object phrase use telescope, whose vector is stored in one of the rows of the verb-object

phrase embedding matrix 𝐏VO.

Verb matrices In order to learn verb-subject and verb-object matrices described in the previous

section, I followed the procedure in Paperno et al. (2014), with two differences: (1) instead of

using count-based vectors, I used the aforementioned skip-gram word embeddings, and the

phrase embeddings obtained with my two-step skip-gram method; (2) matrices were learned

via ℓ2-regularised regression (also known as ridge regression), additionally weighting each

phrase-argument tuple by the logarithm of the number of occurrences of the phrase in the

corpus. Given, for example, a verb-object matrix𝐕O
v to be learned, and a set of tuples of vectors

(𝐏VO
i ,𝐍oi

)i, where 𝐏VO
i is a corpus-extracted verb-object phrase vector and𝐍oi

is the word

vector of the corresponding object, the weighted ridge regression problem is then formulated as

𝐕O
v = argmin

𝐌
∑
i

wi ‖𝐏VO
i −𝐌𝐍oi‖ + γ ‖𝐌‖2 ,

where γ is the regularisation weight, and wi is the weight of the ith phrase-argument tuple,

defined as the logarithm of the number of occurrences of the phrase in the corpus. This is

solved analytically as

𝐕O
v = 𝐏T𝛀−1𝐎T (𝐎T𝛀−1𝐎+ 𝚪T𝚪)

−1 ,

where 𝐏 and𝐎 are matrices obtained by stacking as columns the phrase and object vectors,

respectively; 𝛀 = diag(w1, w2, …) is the diagonal matrix of the weights; and 𝚪 = γ𝐈 is the
identity matrix scaled by the regularisation weight. After tuning on the development set, the

regularisation weight was set to γ = 75.

Weighting was introduced as an attempt to capture two ideas, which I illustrate using the verb

write as an example: (1) when learning the verb-object matrix for write via regression, recreating

the phrase vectors for write music and write article, which appear over 100000 times in the

corpus, should be more important than recreating the vector for write opioid, which only has

three occurrences; (2) furthermore, the corpus-extracted phrase vector for write opioid is likely to

52 4 Relative clause composition

be of low quality, due to the sparsity of the phrase, and this should be accounted for. Different

weighting schemes were tested on the development set: standard unweighted ridge regression,

and ridge regression using the simple counts as weights, as well as the logarithm, square root,

and various powers of the counts. I found logarithms to yield the best result.

Relative pronoun tensor As with the verb matrices discussed above, relative pronoun tensors for

the rptensor model were also learned via weighted ridge regression. Training data for nouns

modified by relative clauses consisted of tuples of head noun, verb, and argument, together

with the corresponding corpus-extracted vectors for the whole phrase. Instead of using the

multi-step regression method of Grefenstette et al. (2013), I found it was simpler in this case

to reformulate the problem into a matrix regression problem, exploiting the verb-object and

verb-subject matrices already learned for plf. I did this by matricising the tensors 𝐑S and 𝐑O

into matrices𝐌S
R and𝐌O

R , flattening their last two dimensions into one. I then combined all

of their vector arguments with a Kronecker product, and flattened the result. This turned the

subject relative clause example of Equation 4.2 into the mathematically equivalent

𝐌S
R vec (𝐕O

v 𝐍o ⊗𝐍h) ,

where vec(⋅) represents the flattening of a matrix into a vector; and similarly for the case of

object relative clauses. Regression was then performed on the matrix form of the equations

analogously to the case of verb matrices, using the flattened Kronecker product as input, and

the vector of the full phrase as target.

Relativepronounmatrices Finally, for the fplfmodelwe learned the twopairs ofmatrices (𝐑S,n, 𝐑S,va)
and (𝐑O,n, 𝐑O,va) in an analogous way to the verb matrices, using weighted ridge regression

with corpus-extracted phrase vectors as targets.

4.4 Results and discussion

We evaluated all models on the relpron development and test sets, using the map measure as

defined in Equation 4.1. Results are shown in Table 4.1. The addition and splf methods achieved the

highest performance on both development and test sets. The performance of splf was higher

on the test data, although the difference is not significant. The map scores can be made more

easily interpretable by realising that a model ranking, on average, a correct property in every

second place, would achieve a score of 50%.

The next highest performingmodel is standard plf. Recall that, while splf models the interaction

with the head noun as an addition, plf uses a verb-subject or verb-object matrix, depending

on the type of relative clause. Effectively, this means that plf treats nouns modified by relative

clauses as subject-verb-object sentences. Its significantly lower performance when compared to

4.5 Summary 53

Table 4.1: MAP scores of various methods on the RELPRON development and test set. Results

marked with * are significantly higher than the next lowest result (p < 0.005).

Model Development (%) Test (%)

splf 49.6 49.7

addition 49.6* 47.2*

plf 44.4 43.3*

fplf 40.5 38.7*

rptensor 38.0 35.4

varg 44.8 39.7

vhn 21.9 20.4

splf suggests that this approach might be suboptimal. The representations produced by plf can

also be seen as the addition of two terms: one representing the interaction of the verb with the

argument (varg), and one representing the interaction of the verb with the head noun (vhn). It

is interesting to look at the performance of these two components separately, which are shown

at the bottom of table Table 4.1: vhn is the worst-performing of the listed models, while varg

performs better. The head noun does however contribute to the composed representation, as

evidenced by the fact that both splf (which includes the head noun via addition) and plf (which

includes it after multiplication with the verb matrix) achieve a significantly higher map on the

development data than varg.

The two models which learn subject and object relative pronoun functions by regression, fplf

and rptensor, perform poorly; and both are outperformed by the varg baseline. One possible

explanation is that these methods might be lacking enough training data to learn their higher

number of parameters when compared to the other, simpler methods. In order to investigate

this, we looked at the performance of these models split by grammatical function, as there was a

heavy imbalance in the availability of training data for relative pronouns. Indeed, the extracted

relative clauses from the corpus were heavily skewed towards the subject case, with 771 k subject

relative clauses found versus only 21 k object relative clauses. The results, shown in Table 4.2,

support this hypothesis: for splf, addition, and varg, the scores are relatively well-balanced,

while fplf and rptensor show a higher discrepancy in the results.

4.5 Summary

In this chapter I introduced relpron, a relative clause evaluation dataset built bymy collaborators

(Rimell et al., 2016). I described the motivations behind its creation, and how it was built. Then,

I discussed how I implemented a number of categorial models, and their evaluation on relpron.

Several new ideas were presented: (1) a two-step skip-grammethod for the training of word and

54 4 Relative clause composition

Table 4.2:MAP scores of various methods on the relpron development set, split by grammatical

function. The training data for fplf and rptensor consisted of 771 k subject relative clauses

and 21 k object relative clauses.

Model Subject rc (%) Object rc (%)

splf 58.5 54.1

addition 57.1 57.4

fplf 57.0 42.8

rptensor 52.0 40.0

varg 53.0 48.9

arbitrary phrase vectors; (2) fplf, an extension of the plf compositional model of Paperno et al.

(2014) to relative pronouns; (3) splf, an ablated variant of plf, which was one of the two best-

performing models on the relpron task; and (4) rptensor, the first concrete implementation of

a relative pronoun tensor.

When evaluating these models we saw two simple methods, splf and basic addition, taking

the top spots. This suggests the hypothesis that there may not be enough data to effectively

train the parameters of fplf and rptensor, the two more advanced models that learn relative

pronoun functions via regression. A further experiment (Table 4.2) supports this idea, showing

that fplf and rptensor perform better on subject relative clauses, which benefit from an amount

of training data greater by an order of magnitude.

Addition – a trivially simple model – was one of the best performing approaches. It is likely,

however, that substantial improvements over the presented results will require more sophistic-

ated models. There are two reasons to believe this. First, any gains for methods as simple as

addition will be limited to what can be achieved by improving the underlying word vectors,

which would also benefit other distributed models. Second – and more important – the quality

of additive vector representations has been shown to degrade with sentences longer than about

ten words (Polajnar et al., 2014b). While this factor does not play a role with the simple relative

clauses in relpron, it is likely to have a greater effect on longer linguistic constructions.

While addition has little obvious room for gains, the more complex categorial models have an

obvious avenue for increasing performance by improving the quality and amount of training

data. It is also possible that methods designed specifically for the relpron task, as opposed to

the general-purpose phrase embeddings models tested here, will perform better.

5 Tensor-based skip-gram

for adjective-noun composition

Baroni and Zamparelli, in their seminal 2010 paper, successfully demonstrated how, in dis-

tributed semantics, function words could be modelled as functions acting on the semantic

representations of their arguments. Analogously to formal semantics, their approach treats

adjectives in distributed semantics as endomorphic functions1 on the vector space of noun

meanings. These functions are encoded as matrices, learned via regression to approximate

corpus-extracted vectors of a target phrase. This idea has been influential in nlp, giving rise

to a number of models based on the same principles – see § 3.1 for a review, and the previous

chapter for several more examples of models fitting this picture.

The original approach by Baroni and Zamparelli used count-based vectors, which were standard

at the time of its publication, but have since been superseded by neural-based approaches

(Baroni et al., 2014) such as skip-gram and cbow (Mikolov et al., 2013b,a), and more recently

FastText (Bojanowski et al., 2017) and ELMo (Peters et al., 2018). In this chapter I will describe

tensor-based skip-gram (tbsg), a model first published in Maillard and Clark (2015), which can

be seen as the neural-based counterpart of the count-based approach of Baroni and Zamparelli

(2010).

Following the steps of Baroni and Zamparelli, I will also test tbsg on adjective-noun composition.

Despite evaluation being limited here to the adjective-noun case, tbsg is a general method, that

can be readily extended to other types of composition and higher order tensors.

5.1 A tensor-based skip-grammodel

Adjectives have ccg typeNP/NP2 and thus, according to the tensor-based semantic framework

previously described in § 3.3, should have semantic type N ⊗ N. Therefore, like previous

approaches (Baroni and Zamparelli, 2010; Paperno et al., 2014), the tensor-based skip-gram

(henceforth tbsg) described in this chapter will treat adjectives as linear maps, encoded as

matrices, over the vector space of noun meanings.

1That is, functions from a set onto itself.
2In the Clark and Curran (2007) parser, their actual type isN/N. In this thesis, we take the simplified approach

of dropping the distinction between theN andNP types, as in Maillard et al. (2014).

55

56 5 Tensor-based skip-gram for adjective-noun composition

The algorithm relies on standard skip-gram (Mikolov et al., 2013b), and works in two stages:

(1) the first stage learns the noun vectors, as in a standard skip-gram model, but additionally

storing the matrix of neighbour word parameters; and (2) the second stage learns the adjective

matrices, re-using (as constants) the parameters learned in the first step.

In this section, I will start by describing the two stages of the tbsg algorithm. I will then conclude

by defining a new similarity measure between adjective matrices since, as I will discuss, the

standard cosine similarity function of vectors does not translate well to matrices.

5.1.1 Training of nouns

As the first step of tbsg, noun vectors are learned by using a skip-gram model with negative

sampling3 (Mikolov et al., 2013b). Given a training corpus𝒟W – seen as a set of tuples (t, c)
indexing target nouns and neighbourwords (contexts) – the algorithm learns a noun embedding

matrix𝐍, whose rows constitute the noun embeddings; and a context word matrix𝐖. It does

so by optimising the following objective, previously described in § 4.3 and Equation 4.4:

1

|𝒟W|
∑

(t,c)∈𝒟W (
logσ(𝐍t ⋅ 𝐖c) +

k

∑𝔼c′∼P [logσ(−𝐍t ⋅ 𝐖c′)]
)
, (5.1)

where, for each target noun index t, neighbours c are the indices corresponding to words in

a fixed symmetrical window of size ten around it; and P is the noise distribution from which

negative samples are drawn, set to the unigram distribution raised to the power of 3/4 (as

recommended by Goldberg and Levy, 2014). The parameter k, which controls how many

negative samples are drawn per positive example, was set to 5 in these experiments.

Intuitively, this procedure leads to noun embeddings having a high inner product with the

context vectors of words appearing in their neighbourhood within the corpus; and a low inner

product with context vectors of negatively sampled words. Figure 5.1a shows this intuition. It

should be noted that at this stage of the algorithm, both𝐍 and𝐖 are being updated.

5.1.2 Training of adjectives

For the training of adjectives, the training data𝒟J is a set of tuples (j, n, c) of adjective, noun,
and neighbour word indices. These are extracted from a corpus: the adjectives and nouns are

those found in adjective-noun phrases in the corpus, while their neighbours are words found in

a symmetric window around the corresponding phrase.

Adjective matrices are learned with a variation of the skip-gram algorithm, which trains an

adjective embedding tensor 𝐉, whose rows constitute the adjective matrices. It takes as input the

3While this was a necessary simplification at the time these experiments were run, given the fall in costs of

computational power, it should now be possible to directly maximise the likelihood.

5.1 A tensor-based skip-grammodel 57

apple

!
=

sextant

…

green
small

very

sour

halyard

tasted

unripe
defer#… … … …

(a) Learning the word vector for apple with

context green small unripe apple tasted

very sour.

!… … … …

apple

"
=

sextant

…

green
small

very

sour

halyard

tasted

the
defer

unripe

$
(b) Learning the adjective matrix for unripe with the con-

text the green small unripe apple tasted very sour.

Figure 5.1: Skip-gram with negative sampling. Parameters are updated to increase the inner

product with rows of 𝐖 corresponding to positive examples, and decrease it with negative

examples drawn from the noise distribution. On the left, standard skip-gram with negative

sampling. On the right, TBSG applied to the adjective-noun case, where nouns vectors are

kept fixed. Highlighted in orange are the parameters that are being updated: 𝐖 and𝐍 on

the left, 𝐉 on the right.

noun embedding matrix𝐍 and the context word matrix𝐖 learned by Equation 5.1, and optimises

the following cost function

1

|𝒟J|
∑

(j,n,c)∈𝒟J (
logσ(𝐉j𝐍n ⋅ 𝐖c) +

k

∑𝔼c′∼P [logσ(−𝐉j𝐍n ⋅ 𝐖c′)])
, (5.2)

where P and k are defined as in Equation 5.1. Matrices in 𝐉 are initialised to the identity plus noise,

while𝐍 and𝐖 are kept constant.

Intuitively, optimising Equation 5.2 means that the induced matrices will have the following

property: when multiplying the matrix with a noun vector, the resulting adjective-noun vector

will have a high inner product with words which are neighbours of the adjective-noun phrase

in the corpus; and low inner product with the negatively sampled words. This is exemplified in

Figure 5.1b.

5.1.3 Similarity measure

In distributed semantic models, the similarity of two vectors 𝐧 and𝐦 is generally measured

using the cosine similarity function (Turney and Pantel, 2010; Baroni et al., 2014), which is

defined as

58 5 Tensor-based skip-gram for adjective-noun composition

vecsim(𝐧,𝐦) = 𝐧 ⋅ 𝐦
‖𝐧‖ ‖𝐦‖

.

Based on tests using a development set, I found that using cosine to measure the similarity of

adjective matrices leads to no correlation with gold-standard similarity judgements. Cosine

similarity, while suitable for vectors as it is related to the angle between them, does not capture

any information about the function of matrices as linear maps. While several ways of measuring

matrix similarity could be devised using matrix norms, we postulate that a suitable measure of

the similarity of two adjective matrices should be related to how similarly they transform the

vectors of valid nouns.

Consider two adjective matrices 𝐀 and 𝐁. If 𝐀𝐧 and 𝐁𝐧 are similar vectors for every noun

vector 𝐧, then we deem the adjectives to be similar. Therefore, one possible measure involves

calculating the cosine distance between the images of all nouns under the two adjectives, and

taking an average or median of these distances. Rather than working on every noun in the

vocabulary, which is expensive, we instead take the most frequent nouns, cluster them, and use

the cluster centroids (obtained in our case using k-means). The resulting distance function is

given by

matsim(𝐀,𝐁) = median
𝐧∈𝒩

vecsim(𝐀𝐧,𝐁𝐧),

where the median is taken over the set of cluster centroids𝒩. The median was chosen instead

of the average as it is more resistant to outliers in the data.

5.2 Evaluation

I trained the tbsgmodel on a dump of the EnglishWikipedia, automatically parsedwith the C&C

parser (Clark and Curran, 2007). The corpus contains around 200 million noun examples, and

30 million adjective-noun examples. For every neighbour word in the corpus, 5 negative words

were sampled from the unigram distribution, as described in the previous section. Subsampling

was used to decrease the number of frequent words (Mikolov et al., 2013b). I trained 100-

dimensional noun vectors and 100×100-dimensional adjective matrices.

5.2.1 Word Similarity

First I tested word similarity, as opposed to phrase similarity, on the men test collection (Bruni et

al., 2014), which contains a set of part-of-speech tagged word pairs together with gold-standard

human similarity judgements. I used the part-of-speech tags included in the dataset to select

all noun-noun and adjective-adjective pairs, resulting in a set of 643 noun-noun pairs and 96

adjective-adjective pairs.

5.2 Evaluation 59

Table 5.1: Spearman rank correlation of the two models on the noun and adjective similarity

tasks of the MEN test collection.

Model Nouns Adjectives

300d skip-gram 0.78 0.64

100d tbsg 0.77 0.65

For the noun-noun dataset, I tested the quality of the 100-dimensional noun vectors learned in

the first stage of tbsg, which is equivalent to the standard skip-gram shipped with word2vec,
but limited to learning just the vectors for nouns. I compared these to the 300-dimensional skip-

gram vectors available from the word2vec page, which were trained on a very large, proprietary

100 billion token dataset.4

The adjective-adjective pairs from the men dataset were then used to test the 100×100dmatrices

obtained from the second step of the tbsg procedure, and these were again compared to the

300-dimensional skip-gram vectors. The resulting Spearman correlations between human

judgements and the similarity of vectors are reported in Table 5.1. Note that for adjectives I used

the similarity measure described in § 5.1.3.

The results show that, despite the lower dimensionality and smaller training corpus, the noun

vectors used in tbsgwere of a high quality, performing comparably to the skip-gramnoun vectors

on the noun-noun similarity data. The tbsg adjectivematrices, usedwith the new similaritymeas-

ure, also performed comparably to the skip-gram adjective vectors on the adjective-adjective

similarity data.

5.2.2 Phrase Similarity

The tbsg model aims to learn matrices that act in a compositional manner. Therefore, a more

interesting evaluation of its performance is to test how well the matrices combine with noun

vectors. To do this, I used the Mitchell and Lapata (2010) adjective-noun similarity dataset,

which contains pairs of adjective-noun phrases such as last number – vast majority, together with

gold-standard human similarity judgements. For the evaluation, I calculated the Spearman

correlation between human similarity judgements (individual ones, rather than their average)

and the cosine similarity of the vectors produced by various compositional models.

The results in Table 5.2 show that tbsg has the best correlation with human judgements of the

other models tested. It outperforms skip-gram vectors with both addition and element-wise

multiplication as composition functions (the latter not shown in the table, as it is worse than

addition). Also reported is the baseline performance of skip-gram and tbsg when using only

nouns to compute similarity, i.e. ignoring the adjectives. It is interesting to note that tbsg

4http://code.google.com/archive/p/word2vec/

http://code.google.com/archive/p/word2vec/

60 5 Tensor-based skip-gram for adjective-noun composition

Table 5.2: Spearman rank correlation for the various models on the adjective-noun similarity

task of Mitchell and Lapata. In the last row, the inter-annotator agreement, calculated by the

dataset’s authors via leave one-out resampling, which can be seen as an upper bound for the

task.

Model Correlation

100d tbsg 0.50

300d skip-gram (add) 0.48

300d skip-gram (N only) 0.43

100d tbsg (N only) 0.42

600d lr 0.37

humans 0.52

also outperforms the result of the matrix-vector linear regression method (lr) of Baroni and

Zamparelli (2010) on this dataset, as implemented and reported by Vecchi et al. (2017). The

Baroni and Zamparelli method is the most similar to tbsg and, as described in the introduction

to this chapter, inspired its development.

5.2.3 Semantic Anomaly

As a further evaluation of the new model, I used tbsg to attempt to distinguish between se-

mantically acceptable adjective-noun phrases and anomalous ones. This was done using the

dataset provided by Vecchi et al. (2011), which consists of two sets of phrases: a set of unob-

served acceptable phrases (e.g. ethical statute) and one of deviant phrases (e.g. cultural acne).

Following Vecchi et al. (2011), I used two measures of semantic anomaly. The first, denoted

cosine, is the cosine similarity between the adjective-noun vector and the noun vector. This

index is based on the hypothesis that deviant adjective-noun vectors will form a wider angle

with the noun vector. The second, denoted density, is the average cosine distance between

the adjective-noun vector and its 10 nearest noun neighbours. This measure is based on the

hypothesis that nonsensical adjective-nouns should not have many neighbours in the space of

(meaningful) nouns.5 These two measures are computed for the acceptable and deviant sets,

and compared using a two-tailed Welch’s t-test as in the dataset’s paper.

Table 5.3 shows the results of this experiment, including the performances of tbsg, count-based

vectors using addition and element-wise multiplication as implemented and reported by Vecchi

et al. (2011), as well as the matrix-vector linear regression method (lr) of Baroni and Zamparelli

(2010). With both the cosine and the density index, tbsg obtains the highest score.

5Vecchi et al. (2011) also used a third measure of semantic anomaly, based on the length of adjective-noun

vectors. We omitted this measure as we deemed it unsuitable for models not based on counts and element-wise

vector operations.

5.3 Summary 61

Table 5.3: Correlation on test data for semantic anomalies. Significance levels are marked ���

for p < 0.001, �� for p < 0.01.

Cosine Density

Model t sig. t sig.

100d tbsg 5.16 ��� 5.72 ���

300d addition 0.31 2.63 ��

300d multiplication -0.56 2.68 ��

300d lr 0.48 3.12 ��

5.3 Summary

In this chapter, I described tbsg, a tensor-based extension of skip-gram with negative sampling,

a popular neural word embedding model (Mikolov et al., 2013b). Like other models in Part II

of this thesis, it can be seen as an implementation of the categorial framework of Coecke et al.

(2011), which also fits into the ccg-flavoured tensor-based semantic framework described in

§ 3.3.

Further, I wrote and evaluated a concrete implementation of tbsg for the specific case of adjective-

noun composition. The model was shown to produce high quality noun and adjective embed-

dings, when compared to standard skip-gram embeddings on single-word similarity tasks. It

also compared favourably to other approaches on a phrase similarity task and a task involving

the detection of semantically anonmalous adjective-noun combinations.

A few interesting lines of research suggest themselves for future work. First, while adjectives and

nouns are learned separately in this study, an obvious extension is to learn these embeddings

jointly. Second, while tbsg was tested here only on adjective-noun combinations, there are

obvious ways in which it can be extended to other parts of speech in line with the framework

described in § 3.3. The approach of reshaping the contraction of higher-order tensors into

simple matrix-vector multiplications, as already demonstrated in § 4.3, would be useful here

for simplifying the implementation of higher-order versions of tbsg; and for allowing them to

exploit the highly optimised linear algebra libraries which are available on modern computers,

such as blas. Finally, the generality of this approach would lend itself well to the implementation

of multi-modal versions of tbsg, incorporating information from e.g. the visual domain. This

could be achieved by including feature vectors for the appropriate images within the neighbours

of a target word, as illustrated in Figure 5.2.

62 5 Tensor-based skip-gram for adjective-noun composition

⚽! apple

"
=

sextant

…

green
small

very

sour

halyard

tasted

the
"

unripe

$
… … … …

#

Figure 5.2: A multi-modal version of TBSG, currently processing the adjective phrase unripe

apple, using for context the fragment green small unripe apple tasted sour and two images

of an apple.

Part III

Latent tree learning models

63

6 Tree-structured recurrent neural networks

Part III of this thesis is devoted to latent tree learning (henceforth ltl) models, a family of neural

networks that jointly learn to induce trees and compose sentences according to them. This

chapter serves as an introduction to the subject. We will start with a presentation of the lstm

neural architecture, which forms the basis of the treelstm composition function used by the

ltl models discussed Chapters 7 and 8 of this thesis. This will be followed by some essential

theoretical background; a discussion of a number of tree-structured recurrent neural network

models from the literature; and finally a review of related work within latent tree learning.

6.1 The Long Short-Term Memory architecture

Recurrent neural networks, in particular the Long Short-Term Memory architecture (henceforth

lstm) of Hochreiter and Schmidhuber (1997) and some of its variants (Graves and Schmidhuber,

2005; Bahdanau et al., 2015; Cho et al., 2014), have been widely applied to problems in nlp,

such as textual entailment (Bowman et al., 2015; Williams et al., 2018b), question answering

(Suster and Daelemans, 2018; Hermann et al., 2015), and machine translation (Bahdanau et al.,

2015; Sutskever et al., 2014), amongst others. An lstm is a recurrent network which, given a

sentence represented by a sequence of word vectors𝐰1, … ,𝐰T ∈ ℝd, runs for T time steps

t = 1…T and computes

⎡
⎢⎢⎢⎢⎣

𝐢t
𝐟t
𝐮t

𝐨t

⎤
⎥⎥⎥⎥⎦
= 𝐖𝐰t +𝐔𝐡t−1 + 𝐛,

𝐜t = 𝐜t−1 ⊙ σ(𝐟t) + tanh(𝐮t) ⊙ σ(𝐢t),
𝐡t = σ(𝐨t) ⊙ tanh(𝐜t),

LSTM𝛉(𝐰t, 𝐜t−1, 𝐡t−1) = (𝐜t, 𝐡t),

(6.1)

where σ(x) = 1
1+e−x is the standard logistic function, and the square bracket notation is

used to represent vector concatenation. The architecture is parametrised by a collection 𝛉 of

learned matrices𝐖 ∈ ℝ4D×d,𝐔 ∈ ℝ4D×d, and a learned bias vector 𝐛 ∈ ℝ4D. The vectors

σ(𝐢t), σ(𝐟t), σ(𝐨t) ∈ ℝD are known as input, forget, and output gates respectively; and the

vector tanh(𝐮t) ∈ ℝD is the candidate update. The vectors 𝐜t, 𝐡t ∈ ℝD are known as the cell

65

66 6 Tree-structured recurrent neural networks

LSTM LSTM LSTM

cats eat fish

Figure 6.1: LSTM composing the sentence cats eat fish from left to right. The final output vector

is often taken as the representation of the whole sentence. Intermediate outputs are shown

as faded in the image, as they are commonly discarded in simpler models.

state and output of time step t, respectively. Commonly𝐡T, the final output, is taken as the vector

representation of the full sentence. The computational process involved in a single time step

was already illustrated in Figure 1.8. The composition of a whole sentence is shown in Figure 6.1,

using a single ‘lstm’ box to represent the whole cell in simplified form.

As can be seen from the schematic illustration, the topology of an lstm is linear: words are read

sequentially, typically in left-to-right order. However, language is known to have an underlying

hierarchical, tree-like structure (Chomsky, 1957). How to best capture this structure in a neural

network, and whether doing so leads to improved performance on common linguistic tasks,

remains an open question. In this and the following chapters, we will explore potential answers

to this issue. The treelstm architecture (Tai et al., 2015; Zhu et al., 2015) – which generalises the

lstm to tree-structured topologies – provides a possible solution, and will be discussed in more

depth in § 6.2.

Despite their superior performance on a number of tasks, treelstm networks have the drawback

of needing to know the order in which to compose the sentences – i.e., they require an extra

labelling of the input sentences, in the form of parse trees. This is often problematic to obtain,

requiring either costly manual annotation of data by experts, or the use of automatic parsers

which have been trained on the appropriate language and domain. Yogatama et al. (2017)

proposed to remove this requirement, by including a shift-reduce parser in their sentence

encoding model, to be optimised alongside the treelstm composition function based on a

downstream task. This type of approach, where treelstms learn to parse without ever being

given an example of a correct parse tree, has been called a latent tree learning model by Williams

et al. (2018a), and we shall adopt this term. We will discuss three such models in § 6.3: the

recursive auto-encoder model of Socher et al. (2011), the aforementioned model by Yogatama

et al., and a model by Choi et al. (2018) based on best-first parsing.

In the following chapters, Chapters 7 and 8, we will explore two new proposed latent tree learning

models. They differ from the work of Yogatama et al. (2017) by being trainable via simple

backpropagation, which removes the need to use reinforcement learning. We will show how

this leads to better downstream performance, and non-trivial induced tree structures.

6.2 TreeLSTM 67

6.2 TreeLSTM

The treelstm is a generalisation of the popular lstm architecture to tree topologies (Tai et al.,

2015; Zhu et al., 2015), which has been shown to be more effective than a standard lstm in

semantic relatedness and sentiment analysis tasks.

Multiple variants of the treelstm architecture exist. We will focus here on the most popular

version, commonly known as binary treelstm. Tai et al. (2015) also describe other variants for

trees with different branching numbers, as well as a variant that supports trees with a variable

number of children. Henceforth, we shall use ‘treelstm’ to refer to the binary variant, unless

otherwise specified.

The binary treelstm is defined by the following recurrent relations,

⎡
⎢⎢⎢⎢⎢⎢⎣

𝐢
𝐟ℓ
𝐟r
𝐮
𝐨

⎤
⎥⎥⎥⎥⎥⎥⎦
= 𝐖𝐰+𝐔𝐡ℓ +𝐕𝐡r + 𝐛,

𝐜 = 𝐜ℓ ⊙ σ(𝐟ℓ) + 𝐜r ⊙ σ(𝐟r) + tanh(𝐮) ⊙ σ(𝐢),
𝐡 = σ(𝐨) ⊙ tanh(𝐜),

treeLSTM𝛉(𝐰, 𝐜ℓ, 𝐡ℓ, 𝐜r, 𝐡r) = (𝐜, 𝐡),

(6.2)

where all parameters are defined analogously to the lstm of Equation 6.1. The linear chain archi-

tecture of the lstm, with different words being input at different time steps, is replaced here

with a binary tree-structured architecture: nodes can therefore have a left and right child, whose

memory cells and outputs are denoted by subscripts ℓ and r, respectively. Much like in a parse

tree, tree nodes can be either terminals (leaves), in which case the equation above has left

and right children set to zero (𝐜ℓ/r = 𝐡ℓ/r = 0) and the input𝐰 set to the appropriate word

embedding; or they can be nonterminals (branches), in which case the input𝐰 is set to zero,

and the left and right children are set to the outputs of the appropriate nodes.

This process is exemplified in Figure 6.2 with the sentence colourless green ideas sleep furiously

(Chomsky, 1957), using one particular choice of composition order. It should be noted that we

have said nothing about how the tree structure is chosen: commonly, either gold standard trees

or the outputs of an external parser are used to drive the composition process (Tai et al., 2015;

Bowman et al., 2016; inter alia).

6.3 Latent tree learning

By not committing to a specific composition order, but rather treating parse trees as another

input, treelstms remain simple and flexible. What could be seen as a strength is, however, also

68 6 Tree-structured recurrent neural networks

treeLSTM

green

treeLSTM

ideas

treeLSTM

treeLSTMtreeLSTM

colourless

treeLSTM

sleep furiously

treeLSTM

treeLSTM

treeLSTM

Figure 6.2: The treeLSTM architecture of Tai et al. (2015), showing both leaf and branch trans-

formations, composing the sentence colourless green ideas sleep furiously according to the

tree ((colourless (green ideas)) (sleep furiously)).

a weakness: annotating sentences requires experts, is expensive, and is slow; while using an

automatic parser may introduce errors, and is only a feasible route for high-resource languages

and domains. There is one further question to consider: do the standard parse trees produced

by automatic parsers really represent the best order in which to compose words, or might there

be better structures, perhaps specific to the downstream task at hand?

Latent tree learning models (Williams et al., 2018a) address these points by learning not only the

composition function (usually a treelstm) but also the order in which it should be applied –

all solely driven by the downstream task. They can be said to learn ‘grammars’ (seen here as

mere strategies for assigning tree structures to sentences) that are optimised for a given task,

without ever being shown a single parse tree as input. In the following sections we will review

the models that populate this recently developed area of research.

6.3.1 Semi-supervised recursive autoencoders

Back in 2011, Socher et al. proposed a sentence embedding model for sentiment analysis

based on a treernn architecture, which they called semi-supervised recursive autoencoder. After

representing thewords as vector embeddings, their model recursively composes them according

to a binary tree structure. Given two child nodes with corresponding vectors 𝐡ℓ and 𝐡r, the

parent is represented as the vector

𝐡p = tanh
(
𝐖

[

𝐡ℓ

𝐡r]
+ 𝐛

)
,

6.3 Latent tree learning 69

where the matrix 𝐖 and the vector 𝐛 are learned parameters. In order to assess how well

the resulting parent vector represents the composition of its children, the model attempts to

reconstruct them as

[

𝐡′
ℓ

𝐡′
r]

= 𝐖′𝐡p + 𝐛′,

where𝐖′ and𝐛′ are learned parameters. During training, on top of optimising for the sentiment

analysis task, the model also attempts to minimise the reconstruction error, defined as

E(𝐡ℓ, 𝐡r) =
1
2 ‖[

𝐡ℓ

𝐡r]
−
[

𝐡′
ℓ

𝐡′
r]‖

2

.

The novelty of Socher et al.’s approach consists in the way the composition order is chosen.

Unlike other similar architectures which take external parse trees (Socher et al., 2010; Hermann

and Blunsom, 2013; inter alia) here the model merges, at each time step, the pair of nodes which

minimises the total reconstruction error of the tree. Letting 𝒯 be the set of all possible trees

for a given sentence, and 𝒞(𝐭) be the set of pairs of sibling nodes for a tree 𝐭, the model will

choose the tree 𝐭∗ given by

𝐭∗ = argmin
𝐭∈𝒯

∑
(𝐡ℓ,𝐡r)∈𝒞(𝐭)

E(𝐡ℓ, 𝐡r).

This process is sketched in Figure 6.3.

The semi-supervised recursive autoencoder model can be seen as a proto-ltl approach: it shares

with other ltl models the fundamental idea of using the same vector representations (𝐡p) to

both encode the sentence and select a parse tree for it. However, it differs from other ltl models

by driving the parsing component using an additional objective – a recursive autoencoder –

rather than using the downstream task itself.

6.3.2 Stack-augmented parser-interpreter neural network

The stack-augmented parser-interpreter neural network (henceforth spinn) is a proposal by Bowman

et al. (2016) to solve the problem of treelstms being only applicable to already-parsed sentences.

The authors propose to include a shift-reduce parser directly into themodel, so that the complete

model is able to both parse and compose sentences.

Like a standard shift-reduce parser,1 spinn contains a buffer and a stack. Unlike a standard

parser, these data structures are used to store vectors: the buffer contains the embeddings of

words that are still to be processed; while the stack contains the embeddings of nodes that have

been composed. An lstm, known as the tracking lstm, is given inputs from the buffer and the

stack at each time step – intuitively, this is meant to keep a summary of what has been parsed

so far. The outputs of the tracking lstm are used to drive the transition classifier, and are also

1For examples of the application of this parsing technique to nlp, see Shieber (1983) and Nivre (2003).

70 6 Tree-structured recurrent neural networks

cats eat fish

eat fishcats

cats eat eat fish

RNNRNN

RNN

Figure 6.3: Semi-supervised recursive autoencoder RNN by Socher et al. (2011). At each step,

the model attempts every pairwise composition, and picks whichever one gives the best

performance on the auxiliary autoencoder loss. In the illustration, the model settles on the

parse tree (cats (eat fish)).

used as an additional input to the treelstm, with the aim of allowing the composition function

to be influenced by context. The transition classifier is trained to match the transitions emitted

by an external parser – the Stanford pcfg parser (Manning et al., 2014) – allowing the model to

operate on unparsed data. The architecture of spinn is sketched in Figure 6.4, showing the last

three transitions of the sentence cats eat fish. We refer readers to Bowman et al. (2016) for more

details on the model.

eat

Buffer

Stack

cats eat fish

cats
cats
 eat
fish eat fish

cats

LSTM LSTM LSTM

SHIFT REDUCE REDUCE

. . .

treeLSTM treeLSTM

fish

Figure 6.4: The SPINN model of Bowman et al. (2016), showing the final three transitions (shift,

reduce, reduce) for the sentence cats eat fish. The model here performs the composition

according to the tree (cats (eat fish)).

While spinn does not require parsed data at inference time, it cannot be considered an ltl

model: the parse trees it generates are chosen to emulate the choices of an automatic parser

trained on gold-standard data, rather than being driven entirely by the downstream task.

6.3 Latent tree learning 71

Yogatama et al. (2017) were the first to propose a model which fully matches the ltl definition,

as given in § 6.3 and Williams et al. (2018a). They achieved this by taking spinn and training its

transition classifier with reinforce (Williams, 1992), using performance on a downstream task as

the reward. Themodel is thus no longer selecting trees thatmatch thosewhichmight be assigned

by trained linguists, but rather thosewhich yield the best downstream performance. The authors

evaluated their model on sentiment analysis, semantic relatedness, natural language inference,

and sentence generation; and found that this approach outperforms sequential models such as

lstms and bilstms, as well as models being explicitly provided with tree annotations.

6.3.3 Chart-based latent tree learning

The second ltl model, which will be discussed in full detail in Chapter 7, was developed by

Maillard et al. (2017). It differs from the reinforce-trained variant of spinn by Yogatama et al.

(2017) in two main ways. First, rather than being based on a shift-reduce paradigm, it is based

on a chart-based parsing method, inspired by the cky algorithm (Cocke, 1969; Kasami, 1965;

Younger, 1967). Second, it is fully differentiable, making it possible to train the whole model

using off-the-shelf gradient descent.

The model was tested on a reverse dictionary task (Hill et al., 2016), showing improvements

over several baselines, including a treelstm receiving supervision in the form of parse trees.

It was also evaluated on a natural language inference task (Bowman et al., 2015), where it

outperformed the approach of Yogatama et al. (2017) while also producing more interesting

tree structures (Maillard et al., 2017; Maillard and Clark, 2018).

6.3.4 Easy-first latent tree learning

An alternative approach, proposed by Choi et al. (2018), is to perform latent tree learning using

the easy-first parsing paradigm (Goldberg and Elhadad, 2010). Their model represents the

sentence by composing, at every time step, two neighbouring nodes using a treelstm. At time

step t, the model hasN− t nodes left (whereN is the total number of words) and must choose

which two adjacent nodes to merge. It attempts all possible compositions, leading toN− t − 1
candidate parent representations 𝐡1, … , 𝐡N−t−1. It then calculates the validity score vi of each
candidate via a softmax function,

vi =
e𝐪⋅𝐡i

∑j e
𝐪⋅𝐡j

, (6.3)

where 𝐪 is a learned parameter known as the composition query vector, meant to measure the

‘validity’ of a representation. During training, the model samples the pair of nodes to be merged

using the straight-through Gumbel-softmax estimator (Jang et al., 2017) – described in the next

72 6 Tree-structured recurrent neural networks

treelstm

treelstm

neuro linguistic programming rocks

bilstm bilstm bilstm bilstm

treelstm treelstm

neuro
linguistic

programming
linguistic

rocks
programming

programming rocks

treelstm

rocks
programming

neuro linguistic
programming

rocks

neuro linguistic programming rocks

treelstm

Figure 6.5: Latent tree learning model of Choi et al. (2018), based on a best-first parsing strategy.

At each step, the parser attempts to compose every pair of neighbouring words, scores them,

but only goes forward with the top ranking option. The procedure is repeated until the whole

sentence is processed. The image illustrates an instance where the model picked the tree (
((neuro linguistic) programming) rocks).

paragraphs – based on the validity scores vi. During evaluation, the model simply selects the

highest scoring candidate. This process is illustrated in Figure 6.5.

TheGumbel-softmax estimator is a continuous relaxation of the process of drawing samples from

a categorial distribution. It is based on the Gumbel-max trick (Gumbel, 1954), and additionally

employs the softmax function as a smooth, differentiable approximation to argmax. Given

class probabilities πi, it yields a k-dimensional sample vector 𝐲 given by

yi =
e(logπi+gi)/τ

∑
k
j=1 e

(logπj+gj)/τ
, (6.4)

where g1, … , gk are samples drawn from the Gumbel distribution, and τ is a hyperparameter

known as the temperature. As τ → 0, samples drawn from Equation 6.4 become one-hot. The

straight-through Gumbel-softmax estimator – the variant chosen by Choi et al. – is a discretisation

of the Gumbel-softmax distribution: in the forward pass, it behaves exactly as Equation 6.4, while

6.4 Summary 73

in the backward pass it replaces that expression with a one-hot discrete approximation,

y′
i =

⎧
⎨
⎩
1 i = argmaxj yj,

0 otherwise.

Choi et al. tested their model on a natural language inference task, where it outperformed the

cky-based model and supervised-tree baselines; and a sentiment analysis task. Other than

performing well on downstream tasks, this approach has the added advantage of being fast

to train, as it requires only 𝒪(n2) rnn evaluations for a sentence of n words, compared to the

cubic complexity of the cky-based approach.

6.3.5 Shift-reduce latent tree learning

Maillard and Clark (2018) have more recently proposed a new model which, like the spinn

variant described in § 6.3.2, is also based on shift-reduce parsing. The novelty of the approach

is in the way in which the shift-reduce parsing component – which is based on intrinsically

discrete actions – is made trainable via simple backpropagation and gradient descent. This is

achieved by using a combination of beam search and a soft gating function to select between

beam elements.

This model is much faster to train than the cky-based approach, as it has a linear runtime of

𝒪(nb) in both the length of the sentence n and the size of the beam b. A full description of the

model and of several experiments conducted with it will be given in Chapter 8.

6.4 Summary

Latent tree learning (ltl) is a recently developed family of sentence embedding models, demon-

strating that it is possible to induce task-specific ‘grammars’ from a downstream task.

We discussed a number of ltlmodels that induce trees which, when used to drive treernn-based

composition functions, outperform traditional trees in the style of the Penn Treebank (Marcus

et al., 1994) on a particular set of tasks.

Central to these models is a parsing component, whose role is to induce the tree structures used

to drive the composition process. I described four ltl models, based on a variety of parsing

paradigms: two make use of shift-reduce parsing (Yogatama et al., 2017; Maillard and Clark,

2018), one uses chart parsing (Maillard et al., 2017), and one uses best-first parsing (Choi et al.,

2018). In the next two chapters, I will describe in detail my two ltl models: in Chapter 7 I will

present the cky-inspired model already published inMaillard et al. (2017); while in Chapter 8 I will

discuss the shift-reduce model recently published in Maillard and Clark (2018). I will further

perform an analysis of the induced trees, using evaluation techniques first proposed byWilliams

74 6 Tree-structured recurrent neural networks

et al. (2018a), in order to investigate whether they resemble traditional constituency parse trees;

whether they contain any sort of recognisable structure; and to assess if different versions of the

same model, differing only in their random initialisation, end up inducing similar-looking trees.

7 Chart parsing

Yogatama et al. (2017) were amongst the first to show that a treelstm architecture, trained

to also induce optimal trees, is able to outperform a similar model which uses input from a

parser to drive the compositional process. Their model, described in § 6.3.2, is based on a

version of the spinn architecture of Bowman et al. (2016) trained to jointly select trees and

compose words. As this process makes the model non-differentiable, it needs to be trained

with reinforcement learning, which can lead to high variance and slow convergence rates. In

subsequent experiments, this approach was shown to have low performance compared to

certain baselines, and the induced trees were shown to be mostly trivial (Williams et al., 2018a).

In this chapter, I describe an approach (already published inMaillard et al., 2017) to include a fully

differentiable chart parser in a treelstm-based compositional model, inspired by the cky chart

parser (Cocke, 1969; Kasami, 1965; Younger, 1967). Due to the parser being made differentiable,

the entire network can be trained end-to-end for a downstream task via backpropagation and

gradient descent, which is easily available out-of-the-box in all the common deep learning

frameworks. I will show how this model outperforms the approach of Yogatama et al., as well as

supervised treelstm baselines, on a natural language inference task. Finally, I will also describe

how this model and several baselines were tested on a reverse dictionary task, showing again

how the proposed model compares favourably to the tested alternatives.

7.1 Model

While the treelstm composition function is very powerful, it requires as input not only the

sentence, but also a parse tree structure defined over it. The extension proposed here optimises

this step away, by including a basic cky-style (Cocke, 1969; Kasami, 1965; Younger, 1967) chart

parser in the model. The parser has the property of being fully differentiable, and can therefore

be trained jointly with the treelstm for some downstream task.

The cky parser relies on a chart data structure, which provides a convenient way of representing

the possible binary parse trees of a sentence, according to some grammar. Here the chart is used

as an efficient means to store all possible unlabelled binary-branching trees, effectively using a

grammar with only a single non-terminal. This grammar can be described by two production

rules, X → XX and X → α, where X is the non-terminal and α is any word in the vocabulary.

The chart is sketched in simplified form in Table 7.1 for the example input neuro linguistic pro-

gramming rocks. It is drawn as a diagonal matrix, where the bottom row contains the individual

75

76 7 Chart parsing

Table 7.1: Simplified chart for the sentence neuro linguistic programming rocks. In this illustration,

parsing starts from the bottom where the cells correspond to individual words. Larger and

larger constituents are progressively built up in the upper rows.

neuro linguistic programming rocks

neuro linguistic programming linguistic programming rocks

neuro linguistic linguistic programming programming rocks

neuro linguistic programming rocks

words of the input sentence. The nth row from the bottom contains all cells with branch nodes

spanning n words (here, each cell is represented simply by the span – see Figure 7.1 below for a

forest representation of the nodes in all possible trees). By combining nodes in this chart in

various ways it is possible to efficiently represent every binary parse tree of the input sentence.

For a more exhaustive treatment of cky parsing and the core concepts behind it, see Jurafsky

and Martin (2009; §13.4.1).

The cky-based unsupervised treelstm uses an analogous chart to guide the order of composition.

Instead of storing sets of non-terminals, however, as in a standard chart parser, here each cell

is made up of a pair of vectors (𝐡, 𝐜) representing the state of the treelstm recurrent neural

network at that particular node in the tree. The process starts at the bottom row, where each

cell is filled in by calculating the treelstm output as defined in Equation 6.2, with 𝐰 set to the

embedding of the corresponding word and 𝐡ℓ/r and 𝐜ℓ/r set to zero. These are the leaves of
the parse tree. Then, the second row is computed by repeatedly calling the treelstm with the

appropriate children, and the word embedding input set to zero. This row contains the nodes

that are directly combining two leaves. They might not all be needed for the final parse tree:

some leaves might connect directly to higher-level nodes, which have not yet been considered.

However, they are all computed, as we cannot yet know whether there are better ways of

connecting them to the tree. This decision is made at a later stage.

Starting from the third row, ambiguity arises since constituents can be built up in more than one

way: for example, the constituent neuro linguistic programming in Table 7.1 can be made up either

by combining the leaf neuro and the second-row node linguistic programming, or by combining

the second-row node neuro linguistic and the leaf programming. In these cases, all possible

compositions are performed, leading to a set of candidate constituents (𝐜1, 𝐡2), … , (𝐜n, 𝐡n).
Each is assigned an energy, given by

εi = cos(𝐪, 𝐡i), (7.1)

where cos(⋅, ⋅) indicates the cosine similarity function and 𝐪 is a (learned) vector of weights,

playing an analogous role to the composition query vector in Equation 6.3 of § 6.3.4.1 All energies

1I initially experimented with a more sophisticated approach, analogous to the tracking lstm of Bowman et al.

(2016). The much simpler approach using the𝐪 vector, however, proved to work just as well for these experiments.

7.1 Model 77

treelstm

neuro linguistic programming rocks

neuro linguistic
programming

neuro
linguistic

neuro linguistic programming rocks

linguistic
programming rocks

programming
linguistic

treelstm treelstm

treelstm treelstmtreelstm treelstm

treelstm treelstm treelstm

treelstm treelstm treelstm treelstm

rocks
programming

Figure 7.1: A latent tree learning sentence encoder based on the CKY parser.

are then passed through a softmax function to normalise them, and the cell representation is

finally calculated as a weighted sum of all candidates using the softmax output:

si =
eεi/τ

∑j e
εj/τ

, (7.2)

𝐜 =
n

∑
i=1

si𝐜i, 𝐡 =
n

∑
i=1

si𝐡i.

Analogously to Equation 6.4, the softmax here uses a temperature hyperparameter τ which, for
small values, has the effect of making the distribution sparse by making the highest score tend

to one. In all experiments the temperature is initialised as τ = 1, and is smoothly decreased as

τ = 1/2f, where f ∈ ℚ is the fraction of training epochs that have been completed. In the limit

as τ → 0+, this mechanism will only select the highest scoring option, and is equivalent to the

argmax operation. The same procedure is repeated for all higher rows, and the final output is

given by the 𝐡-state of the top cell of the chart.

The whole process is sketched in Figure 7.1 for an example sentence. Note how, for instance, the

final sentence representation can be obtained in three different ways, each represented by a

treelstm cell with an outgoing dashed line. All are computed, and the final representation is a

weighted sum of the three, represented by the merging of the three dashed lines. When the

78 7 Chart parsing

temperature τ in Equation 7.2 reaches very low values, this effectively reduces to the single ‘best’

tree, as selected by gradient descent.

7.1.1 Baselines

Bag-of-words The simplest baseline used in these experiments is a bag-of-words model. Given

word embeddings𝐰1, … ,𝐰n, it represents the corresponding sentence as

𝐡 =
n

∑
i=1

tanh (𝐖𝐰i + 𝐛) ,

where𝐖 is a learned input projection square matrix, and 𝐛 is a learned bias vector. Due to its

reliance on addition, which is commutative, any information about the original word order is

lost.

LSTM The next baseline is the popular Long Short-Term Memory network (Hochreiter and

Schmidhuber, 1997), previously described and illustrated in § 1.3 and in the introduction of

Chapter 6. Following the recommendation of Jozefowicz et al. (2015), I deviate slightly from the

vanilla lstm architecture described in Equation 6.1 by initialising the bias of the forget gate to one,

which was found to improve performance.

TreeLSTM One of the differences between the proposed cky-based model and the more common

lstm encoder is the composition function, which for the former is a treelstm. In order to

determine whether any improvements achieved by the proposed model are only due to the

different composition function, I use as baseline a left-branching treelstm which processes

words left-to-right. This is identical to the lstm baseline, other than the slightly more complex

mathematical operation used to compose words. Due to English branching generally to the

right, I also test a right-branching treelstm. Finally, the most complex baseline is termed

supervised treelstm, and it composes words according to trees produced by the Stanford pcfg

parser (Manning et al., 2014).

7.2 Experimental setup

All experiments in this chapterwere implemented in Python 3.5.2with theDyNet neural network

library (Neubig et al., 2017) at commit 25be489. The code for all following experiments is

available at my personal website2. Performance on the development data was used to determine

when to stop training.

Each model was trained three times, and the test set performance is reported for the model

which performed best on the development set. The natural language inference model took

2http://www.maillard.it/

http://www.maillard.it/

7.2 Experimental setup 79

three days to converge on a 2.2GHz Intel Xeon e5-2660 cpu, and the reverse dictionary model

took five days on an Nvidia GeForce gtx Titan Black gpu.

7.2.1 Natural language inference

The first evaluation makes use of the Stanford Natural Language Inference dataset (Bowman

et al., 2015), consisting of 570 k manually annotated pairs of sentences. Given two sentences,

the aim is to predict whether the first entails, contradicts, or is neutral with respect to the second.

For example, given children smiling and waving at camera and there are children present, the model

would be expected to predict entailment.

The model uses 100-dimensional hidden states. It is given as input word embeddings which

are initialised using 100-dimensional GloVe vectors (Pennington et al., 2014), with out-of-

vocabulary words set to the average of all other vectors. This results in a 100×37 369 word

embedding matrix, fine-tuned during training. The supervised treelstm model is also given as

an additional input the parse trees which are included in the dataset. For training I chose the

Adam optimisation algorithm (Kingma and Ba, 2014), with a batch size of 16.

Given a pair of sentences, one of the models is used to produce the embeddings 𝐬1, 𝐬2 ∈ ℝ100.

Following Yogatama et al. (2017) and Bowman et al. (2016), I then compute

𝐮 = (𝐬1 − 𝐬2)2,
𝐯 = 𝐬1 ⊙ 𝐬2, (7.3)

𝐪 = ReLU

⎛
⎜⎜⎜⎜⎝
𝐀

⎡
⎢⎢⎢⎢⎣

𝐮
𝐯
𝐬1
𝐬2

⎤
⎥⎥⎥⎥⎦
+ 𝐚

⎞
⎟⎟⎟⎟⎠

,

where 𝐀 ∈ ℝ200×400 and 𝐚 ∈ ℝ200 are trained parameters. Finally, the correct label is

predicted by p(ŷ = c ∣ 𝐪; 𝐁, 𝐛) ∝ exp(𝐁c𝐪 + 𝐛c), where 𝐁 ∈ ℝ3×200 and 𝐛 ∈ ℝ3 are trained

parameters.

Attention

Attention is a mechanism which allows a model to soft-search for relevant parts of a sentence.

It has been shown to be effective in a variety of linguistic tasks, such as machine translation

(Bahdanau et al., 2015; Vaswani et al., 2017), summarisation (Rush et al., 2015), and textual

entailment (Shen et al., 2017).

In the spirit of Bahdanau et al. (2015), I modify the lstm baseline such that it returns not just

the output of the last time step, but rather the outputs for all steps. Thus, it no longer yields a

single pair of vectors 𝐬𝟏, 𝐬𝟐 as in Equation 7.3, but rather two lists of vectors 𝐬𝟏,𝟏, … , 𝐬𝟏,𝐧𝟏
and

80 7 Chart parsing

𝐬𝟐,𝟏, … , 𝐬𝟐,𝐧𝟐
. Then, in order to determine how the model should attend over all the outputs

𝐬𝟏,𝐢 of the first sentence, I compute the attention weights using a softmax operation:

w1,i =
exp(f(𝐬𝟏,𝐢, 𝐬𝟐,𝐧𝟐

))

∑
n1
j=1 exp(f(𝐬𝟏,𝐣, 𝐬𝟐,𝐧𝟐

))
, with f(𝐱, 𝐲) ≡ 𝐚 ⋅ tanh (𝐀i𝐱 + 𝐀s𝐲) ,

where f is the attention mechanism, with vector parameter 𝐚 and matrix parameters 𝐀i, 𝐀s.

Finally I replace the overall sentence representation 𝐬𝟏 in Equation 7.3 with the weighted sum

𝐬′𝟏 =
n1

∑
i=1

w1,i𝐬𝟏,𝐢,

where the weightsw1,i are as defined above. This can be interpreted as attending over the first

sentence, informed by the context of the second via the vector 𝐬𝟐,𝐧𝟐
. Similarly, 𝐬𝟐 is replaced

by an analogously defined 𝐬′𝟐, with separate attention parameters.

Further, I also extend the mechanism of Bahdanau et al. (2015) to the cky-based treelstm. In

this case, instead of attending over the list of outputs of an lstm at different time steps, attention

is over the whole chart structure described in Table 7.1. Thus, the model is no longer attending

over all words in the source sentences, but rather over all their possible subspans.

7.2.2 Reverse dictionary

For the second evaluation, I use the reverse dictionary dataset of Hill et al. (2016), which consists

of 852 k word-definition pairs. The aim is to retrieve the name of a concept from a list of words,

given its definition. For example, when provided with the input control consisting of a mechanical

device for controlling fluid flow, a model would be expected to rank the word valve above other

confounders in a list. I use the three test sets provided by the authors: two sets involving word

definitions, either seen during training or held out (respectively called the seen and unseen

test sets); and one set involving concept descriptions instead of formal definitions (called the

concepts test set). Performance is measured via three statistics: the median rank of the correct

answer over a list of over 66 k words; and the proportion of cases in which the correct answer

appears in the top 10 and 100 ranked words (top 10 accuracy and top 100 accuracy).

For this task, there are two sets of embeddings, which I shall call output and input embeddings.

The input embeddings are the vectors used to represent the words making up the definitions,

and they are fed to the model. The output embeddings are used to represent the words being

defined (known as headwords in a dictionary). They live in the same space as the outputs of the

model. While the two embedding spaces do not have to be separate, I choose to follow Hill

et al. and use two distinct set of vectors.

As output embeddings, I use the 500-dimensional cbow vectors (Mikolov et al., 2013a) provided

by the authors. As input embeddings I use the same vectors, reduced to 256 dimensions with

7.3 Results and discussion 81

pca. As for the inference task, the model uses 100-dimensional hidden states in the treelstm.

Given a training definition as a sequence of input embeddings𝐰1, … ,𝐰n ∈ ℝ256, the model

produces an embedding 𝐬 ∈ ℝ256 which is then mapped to the output space via a trained

projection matrix𝐖 ∈ ℝ500×256. The training objective to be maximised is then the cosine

similarity cos(𝐖𝐬, 𝐝) between the definition embedding and the output embedding 𝐝 of the

word being defined. For the supervised treelstm model, I additionally parsed the definitions

with the Stanford pcfg parser to obtain syntax trees.

The model was trained using simple stochastic gradient descent, as that proved to work better

on the development data compared to more complex optimisation algorithms, such as adaptive

gradient methods. The first 128 batches were held out from the training set to be used as

development data. The softmax temperature in Equation 7.2 was allowed to decrease as described

in § 7.1 until it reached a value of τ = 0.005, and then kept constant. This was found to have the

best performance on the development set.

7.3 Results and discussion

Table 7.2 lists the snli test set accuracy for the cky-based model, the baselines, as well as other

sentence embedding models in the literature.3 It also shows the number of model parameters,

to give an idea of the complexity of each model. These figures are based on the original papers,

when available, and the data from the snli website.4 Table 7.3 shows results on the same task

for the attention-augmented lstm and cky-based treelstm models. Finally, Table 7.4 shows the

reverse dictionary task results for the proposed model and baselines, as well as the numbers for

the cosine-based w2vmodels of Hill et al. (2016), taken directly from their paper.5

These results show a strong performance of the cky-based treelstm against the baselines I

implemented, as well as other similar methods in the literature with a comparable number

of parameters. For the natural language inference task, the proposed model outperforms all

baselines including the supervised treelstm, as well as some of the other sentence embedding

models in the literature with a higher number of parameters. The use of attention, extended for

the cky-based model to be over all possible subspans, further improves performance.

In the reverse dictionary task, the poor performance of the treelstm can be explained by the

unusual tokenisation used in the dataset of Hill et al. (2016): punctuation is simply stripped,

turning e.g. (archaic) a section of a poem into archaic a section of a poem, or stripping away the

3Models specifically designed to solve this task, rather than being based on a more general-purpose sentence

embedding architecture, are able to obtain higher performance. The current record on snli is held by Kim et al.

(2018), with 90.1 test set accuracy.
4https://nlp.stanford.edu/projects/snli/
5My reimplementation of the w2v cosine models of Hill et al. (2016), using vectors provided by the authors,

achieved lower performance than theirs. While I was unable to reproduce their results, I include their numbers for

completeness. The baselines I implemented are architecturally different from theirs, but I found my variants to

perform better on development data.

https://nlp.stanford.edu/projects/snli/

82 7 Chart parsing

Table 7.2: Test set accuracy (higher is better) on the SNLI dataset, and number of parameters.

Also reported is the number of intrinsic model parameters (excluding the number of word

embedding parameters). Other models based on sentence embeddings are also reported.

Model Test accuracy # Parameters

100d bag-of-words 77.6% 91 k

100d LSTM 82.2% 161 k

100d left-branching treeLSTM 82.1% 231 k

100d right-branching treeLSTM 82.5% 231 k

100d supervised treeLSTM 82.5% 231 k

100d CKY-based treeLSTM 82.8% 231k

100d LSTM (Bowman et al., 2015) 77.6% 220 k

300d SPINN (Bowman et al., 2016) 83.2% 3.7M

100d Yogatama et al. (2017) 80.5% 500 k

100d Choi et al. (2018) 82.6% 262 k

300d Choi et al. (2018) 85.6% 2.9M

300d DiSAN (Shen et al., 2017) 85.6% 2.35M

Table 7.3: Test set accuracy (higher is better) on the SNLI dataset for the two attentive models.

Model Test accuracy

100d LSTM + attention 82.7%

100d CKY-based treeLSTM + attention 83.2%

semicolons in long lists of synonyms, leading to many ungrammatical sentences. On the one

hand, this might seem unfair on the supervised treelstm, which received suboptimal trees as

input. On the other hand, it demonstrates the robustness of cky-based method to noisy data:

in a real-world setting, there is no guarantee that a trained parser would be available for the

appropriate domain and language. The cky-based model also performed well in comparison to

the lstm and the other treelstm baselines.

Following Yogatama et al. (2017), I also manually inspect the learned trees to see how closely

they match conventional syntax trees, as would typically be assigned by trained linguists. I

analyse the same four sentences they chose, taken from the snli corpus. The trees produced

by the cky-based model are shown in Figure 7.2. One notable feature is the fact that verbs are

often joined with their subject noun phrases first, which differs from the standard verb phrase

structure. This can be seen in Figure 7.2, and was also observed when manually inspecting trees

from the development data. It should be noted that formalisms such as combinatory categorial

grammar (Steedman, 2000), through type-raising and composition operators, do allow such

constituents. The spans of prepositional phrases in Figures 7.2b to 7.2d are correctly identified at

7.3 Results and discussion 83

Table 7.4: Median rank (lower is better) and accuracies (higher is better) at 10 and 100 on the

three test sets for the reverse dictionary task: seen words (S), unseen words (U), and concept

descriptions (C). Bold numbers indicate the top performance and exclude the greyed-out

results of Hill et al. (2016), which I could not reproduce – see footnote 5 in this section for

more information.

Model Median rank Top 10 accuracy Top 100 accuracy

S U C S U C S U C

100d bag-of-words 75.0 66.0 70.5 30.3 29.9 25.8 53.7 55.2 56.6

100d LSTM 57.5 59.0 48.5 28.9 29.7 29.3 55.3 56.8 57.1

100d left-br. treeLSTM 78.0 64.0 48.0 28.9 28.3 28.8 52.7 54.8 61.1

100d right-br. treeLSTM 70.5 51.0 42.5 30.1 30.9 29.8 54.5 58.0 62.1

100d supervised treeLSTM 108.5 79.0 160.5 23.1 26.9 20.2 49.0 52.9 42.4

100d CKY-based treeLSTM 58.5 40.0 40.0 30.9 33.4 30.3 56.1 57.1 62.6

51 2 d LSTM (Hill et al., 2016) 19 19 26 44 44 38 70 69 66

500d bag-of-words (Hill et al.) 15 14 28 46 46 36 71 71 66

the highest level; but only in Figure 7.2d does the structure of the subtree match convention. As

could be expected, other features such as the attachment of the full stops or of some determiners

do not appear to match human intuition.

Further, I also analyse the trees induced by the model trained on the reverse dictionary task.

The unusual tokenisation of this data, described earlier in the chapter, makes it hard to perform

any kind of systematic comparison between the trees induced by the models trained on the

two datasets. However, a manual inspection of the development set reveals some interesting

regularities specific to the language constructs typical of dictionary definitions. Figure 7.3 shows

definitions which refer the reader to other words, and how they were parsed. The referenced

word, which is semantically closest to the word being defined, is almost always at the top of the

tree, presumably making its effect stronger on the whole sentence representation, and aiding

the model in performing its downstream task. Another notable regularity involved definitions

of verbs (e.g. trawling: to fish from a slow moving boat, or defer: to commit or entrust to another)

which were often very close to fully right-branching, putting the initial to and the subsequent

infinitive very close to the top. A similar behaviour is observed for definitions of nouns starting

with the indefinite article a, such as fawn: a young deer, especially... . None of these phenomena

are observed for the model trained on natural language inference. Chapter 8 will include a more

in-depth, quantitative analysis of the induced trees.

84 7 Chart parsing

⋅
frowning

is

sunglasseswearing

womana

(a)

⋅
snow

thethrough

sledshisdrags

boya

(b)

⋅
home

aoutside

standing

membersfamily

(c)

⋅

parkthe

infrisbeeplayingare

mentwo

(d)

Figure 7.2: Binary parse trees of sentences induced by the CKY-based treeLSTM model trained

on the SNLI dataset.

clot

ofparticiplepastandtensepast

simple

(a)Definition of clotted.

can

offormobsoletean

(b)Definition of canes.

westthe

in

situatedor

towardlying

(c)Definition of western.

blade

aresembling

anything

(d)Definition of blade.

Figure 7.3: Binary parse trees of sentences induced by the CKY-based treeLSTM model trained

on the dictionary task.

7.4 Summary 85

7.4 Summary

In this chapter I presented a fully differentiable model to jointly learn sentence embeddings

and syntax, based on the treelstm composition function. Its benefits over standard treelstm

encoders were demonstrated for a natural language inference task and a reverse dictionary

task. Introducing an attention mechanism over the parse chart was shown to further improve

performance. The model is a conceptually simple adaptation of the cky parser, and it is easy to

train via backpropagation and stochastic gradient descent with popular deep learning toolkits

based on dynamic computation graphs, such as DyNet (Neubig et al., 2017) and PyTorch (Paszke

et al., 2017).

The cky-based treelstm I presented is relatively simple, but could be plausibly improved by

combining it with aspects of other models. It should be noted in particular that Equation 7.1, the

function assigning an energy to alternative ways of forming constituents, is extremely basic

and does not rely on any global information on the sentence. Using a more complex function,

perhaps relying on a mechanism such as the tracking lstm in Bowman et al. (2016), might lead

to improvements in performance. Techniques such as batch normalization (Ioffe and Szegedy,

2015) or layer normalization (Ba et al., 2016) might also lead to further improvements. In future

work, it may be possible to obtain trees closer to human intuition by training models to perform

well on multiple tasks instead of a single one, which is an important feature for intelligent agents

to demonstrate (Legg and Hutter, 2007).

86 7 Chart parsing

8 Shift-reduce parsing

In Chapter 7 I presented a latent tree learning model based on the cky parser, which requires

𝒪(n3) evaluation of its rnn cell per sentence, where n is the number of words. This leads

to long training times. One of the more attractive aspects of the latent tree learning model of

Yogatama et al. (2017), previously described in § 6.3.2, is its time complexity: a simple greedy

shift-reduce parser, operating on an unlabelled binary grammar, will only require 𝒪(n) rnn
evaluations. Unfortunately, as shown by Williams et al. (2018a) and as will be discussed later

in this chapter, the trees induced by the model of Yogatama et al. are mostly trivial; and its

downstream performance is lower compared to other models.

In this chapter, I will present a model (already published inMaillard and Clark, 2018) which, like

Yogatama et al.’s, is based on shift-reduce parsing and therefore inherits its low time complexity;

but with less trivial induced trees and better downstream performance on two natural language

inference tasks. In order to avoid the complexities and potential drawbacks of reinforcement

learning, the model exploits a trick to make its shift-reduce parsing component trainable via

gradient descent. Using beam search, the final sentence representation is obtained using a

soft-selection mechanism over representations corresponding to different beam elements. The

selection mechanism makes use of the scores of the individual parsing actions, such that the

training signal can reach the parsing component.

After having looked at the downstream performance, I will perform an analysis of the trees

induced by the model, to investigate whether they are consistent with each other and across

re-runs, and whether they resemble the trees produced by a standard parser. Further, I will

compare these trees to those induced by the cky-based model presented in the previous section,

and to those induced by alternative models as reported by Williams et al. (2018a).

8.1 Models

For the experiments described in this chapter, I implement two models: the proposed beam

search shift-reduce approach, and the cky-based model, which I described in the previous

chapter. The latter is reimplemented here with some slight differences compared to Chapter 7 to

make comparisons to other latent tree learning models more fair, as will be described below in

§ 8.1.2.

87

88 8 Shift-reduce parsing

8.1.1 Beam search shift-reduce treeLSTM

The proposed approach is based on shift-reduce parsing, and uses beam search to make the

model differentiable. The cky component of the model described in Chapter 7 is replaced here

with a shift-reduce parser. It works with a queue, which holds the embeddings𝐰i ∈ ℝd for

the nodes representing individual words which are still to be processed; and a stack, which

holds the 𝐜-states and 𝐡-states (∈ ℝD) of the nodes which have already been computed. The

standard binary treelstm function, described in § 6.2, is used to compute the embeddings of

nodes.

At the start, the queue contains embeddings for the nodes corresponding to single words. When

a shift action is performed, the topmost element of the queue is popped, passed through the

treelstm (Equation 6.2), and pushed onto the stack. The resulting values at the top of the stack are

thus

𝐜, 𝐡 = treeLSTM(𝐰 = 𝐰word, 𝐜ℓ = 𝐡ℓ = 𝐜r = 𝐡r = 𝟎),

where𝐰word is the word embedding that was popped off the queue. This is analogous to how

leaf nodes are computed for the cky-based model, as previously described in § 7.1.

When a reduce action is performed, the top two elements of the stack are popped. A new node

is then computed as their parent, by passing the children’s 𝐜- and 𝐡-states through the treelstm,

with𝐰 = 0. The resulting node is then pushed onto the stack. Details on how this component

was implemented efficiently are available in § 8.2.1.

Parsing actions are scored with a simple multi-layer perceptron, which looks at the top two

stack elements and the top queue element:

𝐫 = 𝐖s1 ⋅ 𝐡s1 +𝐖s2 ⋅ 𝐡s2 +𝐖q ⋅ 𝐡q1, (8.1)

𝐩 = softmax (𝐚 + 𝐀 ⋅ tanh 𝐫), (8.2)

where 𝐡s1, 𝐡s2, 𝐡q1 are the 𝐡-states of the top two elements of the stack and the top element

of the queue, respectively. The three matrices𝐖 ∈ ℝD×D, the vector 𝐚 ∈ ℝ2, and the matrix

𝐀 ∈ ℝ2×D are all learned. The final scores are given by log𝐩, and the best action is greedily

selected at every time step. The sentence representation is given by the 𝐡-state of the top

element of the stack after 2n − 1 steps.

In order to make this model trainable with gradient descent, beam search is used to select

the b best action sequences, where the score of a sequence of actions is given by the sum

of the scores of the individual actions. The final sentence representation is then a weighted

sum of the sentence representations from the elements of the beam. The weights are given by

the respective scores of the action sequences, normalised by a softmax and passed through

a straight-through estimator (Bengio et al., 2013). This is equivalent to having an argmax on

the forward pass, which discretely selects the top-scoring beam element, and a softmax in

8.1 Models 89

neuro

linguistic
progr. rocks

linguistic

treelstm
programming

rocks

treelstm

programming

treelstm

rocks

treelstm

treelstm

treelstm

treelstm

programming
rocks

treelstm

rocks

treelstm

programming

treelstm

neuro
linguistic

treelstm

linguistic

treelstm

neuro

treelstm

rocks

neuro linguistic
programming

programming

treelstm
neuro

linguistic

treelstm

linguistic

treelstm

neuro

treelstm

treelstm

treelstm

treelstm
treelstm

neuro linguistic programming rocks

Figure 8.1: A latent tree learning sentence encoder based on a shift-reduce constituency parser,

with beam search. In this example, the beam has size three. The treeLSTM composition

functions are coloured differently to highlight the three beam elements. It should be noted,

however, that they are the same function and share the same parameters.

the backward pass. The whole process for a beam of size b = 3 is illustrated in Figure 8.1 with

an example sentence. The diagram shows the three different trees with the corresponding

embeddings, and their weighted sum represented by the dashed lines merging into one.

8.1.2 CKY-based treeLSTM

When running preliminary experiments with the cky-based model it became apparent that,

despite the use of the temperature hyperparameter in Equation 7.2, the weighted sum still occa-

sionally assigned non-trivial weight to more than one option. This was especially apparent with

the longer sentences present in the Multinli dataset, as opposed to the generally shorter snli

sentences used in the experiments of Chapter 7.

An example is given in Figure 8.2: the branch nodes show the weight assigned to each subtree,

normalised over all possible other subtrees with the same span. For instance, out of the 16

possible choices the model could have made for the root node, the highest scoring one (showed

in the figure) was assigned a normalised weight of 0.73. The remaining weight was spread over

the other options.

The model was thus able to utilize multiple inferred trees, rather than a single one. This

would have potentially given it an advantage over other tree-inducing models, making it not

comparable to the other approaches. Hence, as the aim of this chapter’s experiments is to

analyse the (single) tree produced by each model for a given sentence, here I replace the

temperature-weighting mechanism with a softmax followed by a straight-through estimator,

90 8 Shift-reduce parsing

0.73

0.98

0.91

0.79

1.00

⋅pickle

0.99

1.00

andcheese

with

0.99

1.00

sandwicha

eats

0.80

woman1.00

awhile

0.92

1.00

beach1.00

theon

1.00

runs1.00

mana

Figure 8.2: The tree induced for a man runs on the beach while a woman eats a sandwich

with pickle and cheese. Branch nodes show the (normalised) weight that was assigned to

a particular subtree for a given span, out of all possible other binary trees. Weights are

coloured to highlight cases in which the model assigned non-zero weights to more than one

option.

identical to the one used by the beam search model above. This change led to a slight decrease

in downstream performance for the cky-based model, when compared to the results of the

experiments of Chapter 7. This was deemed acceptable, as the aim of this set of experiments is

not to obtain the best possible downstream performance, but rather to perform a quantitative

analysis of the induced trees.

8.2 Experimental setup

I initially attempted to run these experiments using the Tensorflow neural network library

(Martın Abadi et al., 2015), at version 1.0. It quickly became apparent that this was not a viable

approach. Tensorflow relies on a static computation graph, meaning that its computations

are heavily optimised, but any changes to their structure will take a long time to re-optimise.

Empirically, I found that building a new parse chart for the cky-based model could take up

to several minutes. As every batch of training data would have required a different sized

parse chart, this would have made training prohibitively slow. The alternative approach of

using padding was also highly inefficient, due to the time complexity of the algorithm. The

experiments described in this chapter were thus run using the DyNet neural network library

(Neubig et al., 2017) which, as the name suggests, is based on a dynamic computation graph.1

1As of April 2018, a form of dynamic computation is available in the stable version of Tensorflow under the name

eager execution. While it does not support some of the advanced features of DyNet, such as automatic batching, it

should now be possible to efficiently implement the experiments using Tensorflow.

8.2 Experimental setup 91

SSSSS

SSSSR

SSSRS

SSRSS

colourless green

green ideas

furiously
ideas sleep

TOP

green

ideas

sleep

colourless

(a) Pointer-based stack.

colourless

green

ideas

sleep

furiously

colourless

sleep

green ideas

ideas sleep

colourless

green

sleep

colourless green

ideas

(b)Naïve stack implementation.

Figure 8.3: The pointer-based (left) and naïve (right) stack implementations. The example shows

the fifth time step of the parsing of colourless green ideas sleep furiously. Different styles of

lines represent different beam elements, each with a corresponding sequence of parsing

actions (bottom left). For the given example, using a pointer based stack reduces memory

usage by a factor of 1.75, and avoids 12 repeated treeLSTM evaluations.

All experiments use natural language inference as the downstream task, evaluating on both

the snli corpus (Bowman et al., 2015) and the Multinli corpus (Williams et al., 2018b) using

the matched version of the development set. Following a common approach in the literature

(Conneau et al., 2017; Williams et al., 2018a; inter alia), the Multinli corpus was augmented

with snli training data.

As in Chapter 7, I used pre-trained 100-dimensional GloVe word embeddings (Pennington et

al., 2014), fine-tuned during training, and Adam (Kingma and Ba, 2014) as the optimisation

algorithm. For each combination of model and dataset, I trained five instances, each with a

different random initialisation of the neural network parameters. Each instance was also fed the

training data in a different random order. Thus, in total, I trained 2×2×5=20 different model

instances, for a total training time of one and a half weeks.

8.2.1 Pointer-based stack

Due to the beam search used in the shift-reduce model, a naïve implementation of the al-

gorithm would have led to multiple repeated computations. Let us consider, for example, the

sentence colourless green ideas sleep furiously. Any beam element starting with the parsing actions

92 8 Shift-reduce parsing

Table 8.1: SNLI andMultiNLI (matched) test set accuracy. Results marked with ∗ are for themodel

variant without the leaf RNN transformation. Top results for 300-dimensional latent tree

learning models are highlighted in bold; for 100-dimensional models, they are underlined.

Model SNLI MultiNLI

100d LSTM (Yogatama et al., 2017) 80.2 —

300d LSTM (Williams et al., 2018a) 82.6 69.1

100d treeLSTM (Yogatama et al., 2017) 78.5 —

300d SPINN (Bowman et al., 2016) 82.2 67.5

100d ST-Gumbel (Choi et al., 2018) 81.9 —

300d ST-Gumbel (Williams et al., 2018a) 83.3 69.5

300d ST-Gumbel∗ (Williams et al., 2018a) 83.7 67.5

100d RL-SPINN (Yogatama et al., 2017) 80.5 —

300d RL-SPINN∗ (Williams et al., 2018a) 82.3 67.4

100d CKY-based treeLSTM 82.2 69.1

100d shift-reduce treeLSTM 83.0 69.0

shift,shift,reduce would have needed to compute

𝐜1, 𝐡1 = treeLSTM(𝐰 = 𝐰colourless),
𝐜2, 𝐡2 = treeLSTM(𝐰 = 𝐰green),
𝐜3, 𝐡3 = treeLSTM(𝐜ℓ = 𝐜1, 𝐡ℓ = 𝐡1, 𝐜r = 𝐜2, 𝐡r = 𝐡2),

where𝐰word is the embedding for word, and the treelstm function is as described in Equation 6.2.

As there are five possible parse trees startingwith these actions, thiswould have led to potentially

12 repeated treelstm evaluations in the beam, just for the first three time steps.

In order to avoid these useless computations – and to make memory usage of the stack more

efficient – I implemented the shift-reduce model using an approach vaguely inspired by the

graph-structured stack of Tomita’s glr parsing algorithm (Tomita, 1984). The pointer-based

approach, illustrated for an example sentence in Figure 8.3a, consists in representing the individual

stacks of the beam elements as stacks of pointers, with the actual embeddings being memoised.

As a result, different beam elements are effectively sharing memory. This should be compared

to the naïve approach, shown in Figure 8.3b, which requires duplicating the stack several times.

In the experiments described in this chapter, the pointer-based approach led to a reduction in

memory usage of about 50% on average.

8.3 Results and discussion 93

Table 8.2: Self and inter-model F1 scores for a number of models on the two datasets. Results

marked with † are as reported in Williams et al. (2018a); and those marked with ∗ are for the

model variant without the leaf RNN transformation.

(a) Self F1.

Model Self-F1

MultiNLI

300d SPINN† 71.5

300d ST-Gumbel† 49.9

300d ST-Gumbel∗† 41.2

300d RL-SPINN∗† 98.5

100d CKY-based 45.9

100d shift-reduce 46.6

Random Trees† 32.6

SNLI

100d CKY-based 59.2

100d shift-reduce 60.0

Random Trees 35.9

(b)CKY-based and shift-reduce inter-model F1.

Dataset Inter-model F1

SNLI 42.6

MultiNLI 55.0

8.3 Results and discussion

To ensure that models are learning useful sentence representations, I measure the downstream

performance of the best cky-based and shift-reduce models (as selected by development set

performance) for both datasets. Table 8.1 shows accuracies of the two top-performing models

and those of several other baselines, as well as the models of Yogatama et al. (2017) and Choi

et al. (2018). These figures, along with the similar results from the previous studies in Tables 7.2

and 7.4, demonstrate that while the two models do not achieve the state of the art, they match or

outperform other tree-inducing methods using 100-dimensional embeddings, as well as larger

models using externally-provided parse trees.

In order to examine the consistency of trees induced by the cky-based and shift-reduce models,

I adapt the code of Williams et al. (2018a) to find the models’ self-f1. This is defined as the

unlabelled f1 between trees by two instances of the same model (given by different random

initializations), averaged over all possible pairs. To make these figures more easily interpretable,

I also report the self-f1 between randomly generated trees. Further, I measure the inter-model

f1, which is defined as the unlabelled f1 between instances of the cky-based and shift-reduce

models trained on the same data, averaged over all possible pairs. These are reported in Tables 8.2a

and 8.2b.

From the self-f1 results, it can be seen that both the cky-based and the shift-reduce models are

94 8 Shift-reduce parsing

Table 8.3: Unlabelled F1 scores of the trees induced by various models against: other runs of

the same model, fully left- and right-branching trees, and Stanford parser trees provided with

the datasets. Results marked with † are as reported in Williams et al. (2018a); those marked

with ‡ are from Yogatama et al. (2017); and those marked with ∗ are for the model variant

without the leaf RNN transformation.

F1 with respect to:

Left-branching Right-branching Stanford parser

Model 𝛍 (𝛔) max 𝛍 (𝛔) max 𝛍 (𝛔) max

MultiNLI

300d SPINN† 19.3 (0.4) 19.8 36.9 (3.4) 42.6 70.2 (3.6) 74.5

300d ST-Gumbel† 32.6 (2.0) 35.6 37.5 (2.4) 40.3 23.7 (0.9) 25.2

300d ST-Gumbel∗† 30.8 (1.2) 32.3 35.6 (3.3) 39.9 27.5 (1.0) 29.0

300d RL-SPINN∗† 99.1 (0.6) 99.8 10.7 (0.2) 11.1 18.1 (0.1) 18.2

100d CKY-based 32.9 (1.9) 35.1 31.5 (2.3) 35.1 23.7 (1.1) 25.0

100d shift-reduce 40.6 (6.5) 47.6 24.2 (6.0) 27.7 23.5 (1.8) 26.2

Random Trees† 27.9 (0.1) 27.9 28.0 (0.1) 28.1 27.0 (0.1) 27.1

SNLI

100d RL-SPINN‡ — 41.4 — 19.9 — 41.7

100d CKY-based 43.9 (2.2) 46.9 33.7 (2.6) 36.7 30.3 (1.1) 32.1

100d shift-reduce 48.8 (5.2) 53.9 26.5 (6.9) 34.0 32.8 (3.5) 36.4

Random Trees 32.3 (0.1) 32.4 32.5 (0.1) 32.6 32.3 (0.1) 32.5

well above the baseline of random trees. Remarkably, the models trained on snli are noticeably

more self-consistent, showing that the specific training data can play an important role, even

when the downstream task is the same. A possible explanation is that the Multinli corpus has

longer sentences, as well as multiple genres (including telephone conversations, which often

do not constitute full sentences).

The inter-model f1 scores are not much lower than the self f1 scores. This shows that, given

the same training data, the grammars learned by the two different models are not much more

different than the grammars learned by two instances of the same model.

Finally, I investigate whether these models induce trees which are left-branching or right-

branching, or similar to trees produceds by the Stanford parser. The rightmost column on

Table 8.3 shows the unlabelled f1 between these and the trees from various models. While some

models show a slight preference towards left-branching structures, it can be seen from the table

that they do not learn anything resembling the trees from the Stanford parser. Figure 8.4 shows

the trees induced by the cky-based and shift-reduce models for a sentence sampled randomly

from the development set. In this example, the shift-reduce model has a slight preference for

8.4 Summary 95

?

room

’singlethorp

mr.

into

door

theand

(a) Shift-reduce model.

?room

’s

inglethorp

mr.intodoor

theand

(b)CKY-based model.

Figure 8.4: Trees induced by the shift-reduce and CKY-based models for a sentence chosen at

random from the MultiNLI development set: And the door into Mr. Inglethorp’s room?

left-branching structures, confirming the numbers in Table 8.3.

8.4 Summary

In Chapter 7, we saw a latent tree learning model based on the cky parsing. In this chapter, I went

back to a shift-reduce parsing approach. I tried to see whether it would be possible to build

an effective latent tree learning model using this parsing paradigm, without the drawbacks

exhibited by the model of Yogatama et al. (2017).

I used beam search as a trick to enable training via gradient descent, even though shift-reduce

parsing is based on a series of discrete actions. This is in contrast to the rl-spinn model of

Yogatama et al., which required reinforcement learning for training.

Even though the model is conceptually simpler than spinn-based models, by replacing the

tracking lstm component (Figure 6.4) with a simple action scoring function (Equation 8.2), it was

shown to outperform both 100- and 300-dimensional versions of rl-spinn on the downstream

tasks.

In the final section of this chapter I analysed the trees induced by the cky-based and shift-reduce

models, as well as two other latent tree learning models. The results confirm those of previous

work on differentmodels (Williams et al., 2018a), showing that the learned trees do not resemble

Penn Treebank-style grammars. Interestingly, the two proposed models tend to induce trees

which are not much more different than those learned by two instances of the same model.

There are several directions in which this work could be taken. Both the cky-based and the

shift-reduce models could be extended using a leaf transformation in the style of Choi et al.

(2018), to give the model a more global overview of the sentence before the start of the parsing

process. The shift-reduce model could be extended with a more sophisticated scoring function,

96 8 Shift-reduce parsing

either via a multi-layer perceptron that looks at more of the stack, or via a mechanism similar to

the tracking lstm of Bowman et al. (2016). Finally, it would be interesting to investigate using a

shift-reduce dependency parser in the model, and allowing it to ignore words of low semantic

content.

9 Conclusions

This thesis has compared two broad schools of thought regarding phrase and sentence embed-

ding models. Both starting from the meanings of individual words as vectors, they differ in how

they combine these to obtain the meaning of larger linguistic units. The first, widely adopted,

mostly sees language processing as an engineering problem: recurrent neural networks, lstm

encoders, and bag-of-wordsmodels have little in common with the compositional process the-

orised in formal semantics, and are commonly used in other areas of machine learning. The

second family, that of compositionalmodels, is based on approaches which more closely follow

the principle of compositionality, by imposing structural constraints or strong inductive biases

consistent with the assumption of a syntax-semantics homomorphism (Dowty, 2007).

To summarise, after an introduction to compositional semantics in Part I, I presented several

concrete proposals of compositional models. My contributions can be broadly grouped into

two families: the tensor-based categorial methods, where the composition order is entirely

driven (and therefore constrained) by an externally provided parse tree (Part II); and the latent

tree learning methods, which are based on recurrent neural networks, and compose according to

an automatically induced parse tree (Part III). Schematically, the areas covered by the core parts

of this thesis can be visualised as follows:

Table 9.1: Schematic view of compositional models presented in this thesis.

Composition function

Tensor-based Recurrent NN

P
a
rs
e
tr
e
e P
ro
v
id
e
d

Part II:

Categorial models

In
d
u
ce
d

Part III:

Latent tree learning models

In Part II we saw some encouraging results for categorial models of simple adjective-noun

compositionality (Chapter 5). However a similar technique, extended to the more complex case

of relative clauses, failed to outperform a very simple bag-of-words baseline (Chapter 4). While

97

98 9 Conclusions

there are reasons to believe that categorial models have more room for improvement than

bag-of-words models (§ 4.5), the fact remains that these parameter-rich methods require a large

amount of data to train. Furthermore, due to the nature of the approach, this data must be

parsed, making it harder to create large training sets, especially for domains and languages that

lack high-quality automatic parsers. Finally, it could be the case that modelling composition

via element-element interactions, as is done by tensors, may not be the right approach after

all – a potential mistake which would be costly in terms of model size, especially for complex

grammatical structures requiring tensors of fourth and higher orders.

In order to obviate the need for automatic parsers, and to reducemodel size, I began investigating

a class of methods that would later become known as latent tree learning models. These are

based on word embeddings and a variant of the popular lstm architecture, leading to a dramatic

reduction in the number of parameters. Furthermore, they are able to operate on unparsed

inputs, thus widening the range of training data they can consume. We may summarise their

differences with categorial models as follows:

Model class Number of parameters Training data

tensor-based categorial ∑k |Vk| ⋅ Dk parsed

treeLSTM-based latent tree learning |V| ⋅ D + 5D2 raw

where |V| is the total size of the vocabulary; |Vk| is the size of the vocabulary of words with
corresponding k-th order tensors, with ⋃k Vk = V; and D is the size of the semantic vector

space – which, for simplicity, is here assumed to be equal for all atomic arguments, as well as

for the hidden states of the rnn.1 The 5D2 term in the second row derives from the treelstm

composition function, with bias terms left out for simplicity.

The two latent tree learning models I put forward in Part III are based on chart parsing (Chapter 7)

and shift-reduce parsing (Chapter 8). They showed promising results when evaluated on two

natural language inference datasets and a reverse dictionary task, and an analysis of the induced

trees revealed a certain level of consistency in the structures chosen by the models (§ 8.3). While

these results, by themselves, are not enough to argue that these models should replace lstms in

the standard nlp toolkit, there are reasons to be optimistic. The field of latent tree learning has

seen some rapid development in the past few months. A success story that is worth mentioning

is the very recently proposed model of Shen et al. (2018) – who, at the time of writing the paper,

did not seem to be aware of any of the other literature on latent tree learning. Their model, based

on convolutional neural networks and greedy parsing, achieves near state-of-the-art results

on character- and word-based language modelling, and promising results on unsupervised

constituency parsing. In a follow-up paper, Htut et al. (2018) show the viability of this approach

for grammar induction. They demonstrate that the model of Shen et al. correctly brackets over

1This does not have to be true and, further, tensors could be decomposed to reduce the number of parameters

(as previously discussed in § 3.1). In general, however, a tensor-based categorial model will have a much higher

number of parameters than a treelstm-based latent tree learning model.

99

64% of the noun phrases in the Wall Street Journal corpus, and that it achieves over 70% f1

on a subset of the dataset with sentences of at most 10 words. Another novel approach is the

on-lstm model (unpublished work by Shen et al., 2019), which imposes a strict hierarchy on

constituents, but unlike a treelstm it does so without resorting to an explicit tree structure. This

new generation of models, along with the rest of the results presented in this thesis, show that

latent tree learning can achieve strong results in a variety of nlp tasks, while keeping model

complexity and data annotation costs low.

With this thesis, I hope to have shown that models with strong inductive biases which are in

line with the principle of compositionality – such as latent tree learning models – constitute

a promising area for future research in compositional semantics. While we didn’t completely

succeed in finding a fully scalable, transparent, linguistically motivated approach, these models

look promising in various ways, both in terms of downstream performance and interpretability.

The results presented in the previous chapters point out several potential future directions of

investigation. Given the increase in availability of computational power since 2014, it would be

interesting to repeat the experiments of Chapter 5 with a directly maximised likelihood. Similarly,

for any further work on the relative clause models of Chapter 4, it would be worth investigating

the use of nonlinearities to enable the modelling of higher-order interactions. For the latent

tree learning approaches of Part III, the search space over possible model and task architectures

is extremely vast, and only a small number of options were evaluated. Topics that are yet to

be explored include: sampling via the Gumbel trick when using a straight-through estimator

(§ 8.1.1), and more generally a thorough comparison of various gradient estimation techniques

through discrete choices; testing different transition systems with the shift-reduce parser (to

support, e.g., a dependency-based approach); and a comparison of the trees induced by models

trained on a wider range of linguistic tasks. Finally, latent tree learning suggests new ways

of performing regularisation. Currently, to reduce overfitting, neural models mainly rely on

methods such as weight penalties, dropout, and architectural ablation. An interesting area of

research would be to explore the use of soft constraints over types of trees as a regulariser.

100 9 Conclusions

Bibliography

E. Agirre, D. Cer, M. Diab, and A. Gonzalez-Agirre (2012). ‘SemEval-2012 Task 6: A Pilot on

Semantic Textual Similarity’. In: *SEM 2012: The First Joint Conference on Lexical and Computa-

tional Semantics – Volume 1: Proceedings of the main conference and the shared task, and Volume 2:

Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012). Montréal,

Canada: Association for Computational Linguistics, pp. 385–393.

E. Agirre et al. (2015). ‘SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and

Pilot on Interpretability’. In: Proceedings of the 9th InternationalWorkshop on Semantic Evaluation

(SemEval 2015). Denver, Colorado: Association for Computational Linguistics, pp. 252–263.

J. L. Ba, J. R. Kiros, and G. E. Hinton (2016). Layer Normalization. url: http://arxiv.org/
abs/1607.06450.

D. Bahdanau, K. Cho, and Y. Bengio (2015). ‘Neural Machine Translation by Jointly Learning to

Align and Translate’. In: Proceedings of the 3rd International Conference on LearningRepresentations

(ICLR 2015).

E. Balkır, D. Kartsaklis, and M. Sadrzadeh (2018). ‘Sentence Entailment in Compositional Distri-

butional Semantics’. In: Annals of Mathematics and Artificial Intelligence 82.4, pp. 189–218. issn:

1012-2443. doi: 10.1007/s10472-017-9570-x.
M. Baroni, R. Bernardi, and R. Zamparelli (2013). ‘Frege in space: A program for compositional

distributional semantics’. In: Linguistic Issues in Language Technology 9.

M. Baroni, G. Dinu, and G. Kruszewski (2014). ‘Don’t count, predict! A systematic comparison of

context-counting vs. context-predicting semantic vectors’. In: Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Baltimore,

Maryland: Association for Computational Linguistics, pp. 238–247. doi: 10.3115/v1/P14-
1023.

M. Baroni and R. Zamparelli (2010). ‘Nouns are Vectors, Adjectives are Matrices: Representing

Adjective-Noun Constructions in Semantic Space’. In: Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing. Cambridge, MA: Association for Computa-

tional Linguistics, pp. 1183–1193.

R. W. Bemer (1980). ‘Best of Interface Age, Volume 2: General Purpose Software’. In: Portland,

OR, USA: Dilithium Press. Chap. Chapter 1: Inside ASCII, pp. 1–50. isbn: 0-918398-37-1.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin (2003). ‘A Neural Probabilistic Language

Model’. In: The Journal of Machine Learning Research 3, pp. 1137–1155. issn: 1532-4435.

Y. Bengio, N. Léonard, and A. C. Courville (2013). ‘Estimating or Propagating Gradients Through

Stochastic Neurons for Conditional Computation’. In:

101

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.1007/s10472-017-9570-x
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023

102 Bibliography

P. Blackburn and J. Bos (2005). Representation and Inference for Natural Language: a First Course in

Computational Semantics. Center for the Study of Language and Information. isbn: 1575864967.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov (2017). ‘EnrichingWord Vectors with Subword

Information’. In: Transactions of the Association for Computational Linguistics 5, pp. 135–146.

issn: 2307-387X.

G. Boleda and A. Herbelot (2016). ‘Formal Distributional Semantics: Introduction to the Special

Issue’. In: Computational Linguistics 42.4, pp. 619–635. doi: 10.1162/COLI_a_00261.
G. Boleda, E. M. Vecchi, M. Cornudella, and L. McNally (2012). ‘First Order vs. Higher Order

Modification in Distributional Semantics’. In: Proceedings of the 2012 Joint Conference on Empir-

ical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju

Island, Korea: Association for Computational Linguistics, pp. 1223–1233.

J. Bos (2005). ‘Towards wide-coverage semantic interpretation’. In: Proceedings of the Sixth Inter-

national Workshop on Computational Semantics (IWCS-6), pp. 42–53.

J. Bos, S. Clark,M. Steedman, J. R. Curran, and J. Hockenmaier (2004). ‘Wide-Coverage Semantic

Representations from a CCG Parser’. In: Proceedings of Coling 2004. Geneva, Switzerland:

COLING, pp. 1240–1246.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning (2015). ‘A large annotated corpus for

learning natural language inference’. In: Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics,

pp. 632–642.

S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts (2016). ‘A Fast

Unified Model for Parsing and Sentence Understanding’. In: Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:

Association for Computational Linguistics, pp. 1466–1477.

T. Briscoe and J. Carroll (2002). ‘Robust accurate statistical annotation of general text’. In:

Proceedings of the 3rd LREC Conference. Las Palmas, Gran Canaria, pp. 1499–1504.

E. Bruni, N. K. Tran, and M. Baroni (2014). ‘Multimodal Distributional Semantics’. In: Journal of

Artificial Intelligence Research 49.1, pp. 1–47. issn: 1076-9757.

W. Buszkowski and K. Moroz (2008). ‘Pregroup grammars and context-free grammars’. In:

Computational Algebraic Approaches to Natural Language. Ed. by C. Casadio and J. Lambek.

Polimetrica, pp. 1–21.

W. Buszkowski (2001). ‘Lambek Grammars Based on Pregroups’. In: Logical Aspects of Computa-

tional Linguistics. Ed. by P. de Groote, G. Morrill, and C. Retoré. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 95–109. isbn: 978-3-540-48199-7.

R. Cann (1993). Formal Semantics: An Introduction. Cambridge Textbooks in Linguistics. Cam-

bridge University Press. doi: 10.1017/CBO9781139166317.
K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-

gio (2014). ‘Learning Phrase Representations using RNN Encoder–Decoder for Statistical

Machine Translation’. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-

https://doi.org/10.1162/COLI_a_00261
https://doi.org/10.1017/CBO9781139166317

Bibliography 103

guage Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 1724–

1734.

J. Choi, K. M. Yoo, and S.-g. Lee (2018). ‘Learning to Compose Task-Specific Tree Structures’. In:

Proceedings of the 32nd AAAI Conference on Artificial Intelligence.

N. Chomsky (1957). Syntactic Structures. Mouton de Gruyter. isbn: 978-3-11-017279-9.

S. Clark (2015). ‘Vector Space Models of Lexical Meaning’. In: The Handbook of Contemporary Se-

mantic Theory. Ed. by S. Lappin andC. Fox.Wiley-Blackwell. doi: 10.1002/9781118882139.
ch16.

S. Clark, B. Coecke, and M. Sadrzadeh (2008). ‘A compositional distributional model of mean-

ing’. In: Proceedings of the Second Quantum Interaction Symposium (QI-2008). Oxford, United

Kingdom.

S. Clark and J. R. Curran (2007). ‘Wide-coverage Efficient Statistical Parsing with Ccg and

Log-linear Models’. In: Computational Linguistics 33.4, pp. 493–552. issn: 0891-2017. doi:

10.1162/coli.2007.33.4.493.
S. Clark, L. Rimell, T. Polajnar, and J. Maillard (2016). The Categorial Framework for Compositional

Distributional Semantics. Tech. rep. University of Cambridge.

J. Cocke (1969). Programming Languages and Their Compilers: Preliminary Notes. Courant Institute

of Mathematical Sciences, New York University. isbn: B0007F4UOA.

B. Coecke and É. O. Paquette (2010). ‘Categories for the Practising Physicist’. In: New Structures

for Physics. Lecture Notes in Physics. Springer, Berlin, Heidelberg, pp. 173–286. isbn: 978-3-

642-12820-2 978-3-642-12821-9. doi: 10.1007/978-3-642-12821-9_3.
B. Coecke, M. Sadrzadeh, and S. Clark (2011). ‘Mathematical Foundations for a Compositional

Distributed Model of Meaning’. In: Linguistic Analysis 36.1–4, pp. 133–140.

R. Collobert and J. Weston (2008). ‘A Unified Architecture for Natural Language Processing:

Deep Neural Networks with Multitask Learning’. In: Proceedings of the 25th International

Conference on Machine Learning. ICML ’08. Helsinki, Finland: ACM, pp. 160–167. isbn: 978-1-

60558-205-4. doi: 10.1145/1390156.1390177.
A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes (2017). ‘Supervised Learning of

Universal Sentence Representations fromNatural Language Inference Data’. In: Proceedings of

the 2017Conference onEmpiricalMethods inNatural Language Processing. Copenhagen,Denmark:

Association for Computational Linguistics, pp. 670–680.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman (1990). ‘Indexing

by latent semantic analysis’. In: Journal of the American Society for Information Science 41.6,

pp. 391–407.

D. Dowty (2007). ‘Compositionality as an empirical problem’. In: Direct Compositionality. Ed. by

C. Barker and P. Jacobson. Oxford: Oxford University Press. Chap. 2.

D. R. Dowty, R. Wall, and S. Peters (1981). Introduction to Montague Semantics. Studies in Linguist-

ics and Philosophy. Springer Netherlands. isbn: 9789027711410.

M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A. Smith (2015). ‘Retrofitting Word

Vectors to Semantic Lexicons’. In: Proceedings of the 2015 Conference of the North American

https://doi.org/10.1002/9781118882139.ch16
https://doi.org/10.1002/9781118882139.ch16
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1007/978-3-642-12821-9_3
https://doi.org/10.1145/1390156.1390177

104 Bibliography

Chapter of the Association for Computational Linguistics: Human Language Technologies. Denver,

Colorado: Association for Computational Linguistics, pp. 1606–1615.

M. Faruqui and C. Dyer (2015). ‘Non-distributional Word Vector Representations’. In: Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language Processing (Volume 2: Short Papers). Beijing, China:

Association for Computational Linguistics, pp. 464–469. doi: 10.3115/v1/P15-2076.
C. Fellbaum (1998).WordNet: An Electronic Lexical Database. MIT Press. isbn: 9780262061971.

J. Firth (1957). Papers in linguistics, 1934-1951. Oxford University Press.

G. Frege (1980). ‘Letter to Jourdain’. In: Philosophical and Mathematical Correspondence. Ed. by

G. Gabriel, H. Hermes, F. Kambartel, C. Thiel, and A. Veraart. Trans. by H. Kaal. Chicago

University Press. Original date ca. 1914.

D. Fried, T. Polajnar, and S. Clark (2015). ‘Low-Rank Tensors for Verbs in Compositional Distribu-

tional Semantics’. In: Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2:

Short Papers). Beijing, China: Association for Computational Linguistics, pp. 731–736.

G. Gazdar (1996). ‘Paradigm Merger in Natural Language Processing’. In: Computing Tomorrow.

Ed. by I. Wand and R. Milner. New York, NY, USA: Cambridge University Press, pp. 88–109.

isbn: 0-521-46085-9.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin (2017). ‘Convolutional Sequence

to Sequence Learning’. In: Proceedings of the 34th International Conference on Machine Learning,

ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 1243–1252.

A. Goldberg (2003). ‘Constructions: A New Theoretical Approach to Language’. In: Trends in

Cognitive Sciences 7.5, pp. 219–224.

A. Goldberg (2015). ‘Compositionality’. In: The Routledge Handbook of Semantics. Routledge.

Chap. 24, pp. 419–433.

Y. Goldberg and M. Elhadad (2010). ‘An Efficient Algorithm for Easy-First Non-Directional

Dependency Parsing’. In: Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational Linguistics. Los Angeles, California:

Association for Computational Linguistics, pp. 742–750.

Y. Goldberg and O. Levy (2014). word2vec Explained: deriving Mikolov et al.’s negative-sampling

word-embedding method. url: http://arxiv.org/abs/1402.3722.
A. Graves and J. Schmidhuber (2005). ‘Framewise phoneme classification with bidirectional

LSTM and other neural network architectures’. In: Neural Networks 18.5–6, pp. 602–610.

E. Grefenstette, G. Dinu, Y. Zhang, M. Sadrzadeh, and M. Baroni (2013). ‘Multi-Step Regression

Learning for Compositional Distributional Semantics’. In: Proceedings of the 10th Interna-

tional Conference on Computational Semantics (IWCS 2013) – Long Papers. Potsdam, Germany:

Association for Computational Linguistics, pp. 131–142.

E. Grefenstette (2013a). ‘Category-Theoretic Quantitative Compositional Distributional Models

of Natural Language Semantics’. PhD thesis. University of Oxford.

https://doi.org/10.3115/v1/P15-2076
http://arxiv.org/abs/1402.3722

Bibliography 105

E. Grefenstette (2013b). ‘Towards a Formal Distributional Semantics: Simulating Logical Calculi

with Tensors’. In: Second Joint Conference on Lexical andComputational Semantics (*SEM),Volume

1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity. Atlanta,

Georgia, USA: Association for Computational Linguistics, pp. 1–10.

E. Grefenstette and M. Sadrzadeh (2011a). ‘Experimental Support for a Categorical Compos-

itional Distributional Model of Meaning’. In: Proceedings of the 2011 Conference on Empirical

Methods in Natural Language Processing. Edinburgh, Scotland, UK.: Association for Computa-

tional Linguistics, pp. 1394–1404.

E. Grefenstette and M. Sadrzadeh (2011b). ‘Experimenting with transitive verbs in a DisCoCat’.

In: Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics.

Edinburgh, UK: Association for Computational Linguistics, pp. 62–66.

E. Grefenstette and M. Sadrzadeh (2015). ‘Concrete Models and Empirical Evaluations for the

Categorical Compositional Distributional Model of Meaning’. In: Computational Linguistics

41.1, pp. 71–118. issn: 0891-2017. doi: 10.1162/COLI_a_00209.
E. Guevara (2010). ‘A Regression Model of Adjective-Noun Compositionality in Distributional

Semantics’. In: Proceedings of the 2010 Workshop on GEometrical Models of Natural Language

Semantics. Uppsala, Sweden: Association for Computational Linguistics, pp. 33–37.

E. Gumbel (1954). Statistical Theory of Extreme Values and Some Practical Applications: A Series of

Lectures. U.S. Government Printing Office.

A. Gupta, J. Utt, and S. Padó (2015). ‘Dissecting the practical lexical function model for composi-

tional distributional semantics’. In: Proceedings of the the Fourth Joint Conference on Lexical and

Computational Semantics (*SEM 2015). Denver, Colorado, pp. 153–158.

M. U. Gutmann and A. Hyvärinen (2012). ‘Noise-contrastive Estimation of Unnormalized

Statistical Models, with Applications to Natural Image Statistics’. In: The Journal of Machine

Learning Research 13.1, pp. 307–361. issn: 1532-4435.

K. M. Hermann and P. Blunsom (2013). ‘The Role of Syntax in Vector Space Models of Composi-

tional Semantics’. In: Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Sofia, Bulgaria: Association for Computational Linguistics,

pp. 894–904.

K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom

(2015). ‘Teaching Machines to Read and Comprehend’. In: Advances in Neural Information

Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.

Garnett. Curran Associates, Inc., pp. 1693–1701.

F. Hill, K. Cho, A. Korhonen, and Y. Bengio (2016). ‘Learning to Understand Phrases by Embed-

ding the Dictionary’. In: Transactions of the Association for Computational Linguistics 4, pp. 17–30.

issn: 2307-387X.

G. E. Hinton, J. L. McClelland, and D. E. Rumelhart (1986). ‘Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, Vol. 1’. In: ed. by D. E. Rumelhart, J. L. Mc-

Clelland, and C. PDP Research Group. Cambridge, MA, USA: MIT Press. Chap. Distributed

Representations, pp. 77–109. isbn: 0-262-68053-X.

https://doi.org/10.1162/COLI_a_00209

106 Bibliography

S. Hochreiter and J. Schmidhuber (1997). ‘Long Short-Term Memory’. In: Neural Computation 9.8,

pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
J. Hockenmaier and M. Steedman (2007). ‘CCGbank: A Corpus of CCG Derivations and De-

pendency Structures Extracted from the Penn Treebank’. In: Computational Linguistics 33.3.

P. M. Htut, K. Cho, and S. Bowman (2018). ‘Grammar Induction with Neural Language Models:

An Unusual Replication’. In: Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing. Brussels, Belgium: Association for Computational Linguistics, pp. 4998–

5003.

S. Ioffe and C. Szegedy (2015). ‘Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift’. In: Proceedings of the 32nd International Conference on

International Conference on Machine Learning (ICML). Vol. 37. Lille, France, pp. 448–456.

E. Jang, S. Gu, and B. Poole (2017). ‘Categorical Reparameterization with Gumbel-Softmax’. In:

anternational Conference on Learning Representations.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu (2016). Exploring the Limits of

Language Modeling. url: https://arxiv.org/abs/1602.02410.
R. Jozefowicz, W. Zaremba, and I. Sutskever (2015). ‘An empirical exploration of recurrent

network architectures’. In: Journal of Machine Learning Research.

D. Jurafsky and J. H. Martin (2009). Speech and Language Processing. 2nd ed. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc. isbn: 0131873210.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom (2014). ‘A Convolutional Neural Network for

Modelling Sentences’. In: Proceedings of the 52nd Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers). Baltimore,Maryland: Association for Computational

Linguistics, pp. 655–665.

D. Kartsaklis, M. Sadrzadeh, and S. Pulman (2013). ‘Separating Disambiguation from Compos-

ition in Distributional Semantics’. In: Proceedings of the Seventeenth Conference on Computa-

tional Natural Language Learning. Sofia, Bulgaria: Association for Computational Linguistics,

pp. 114–123.

D. Kartsaklis (2014). ‘Compositional Distributional Semantics with Compact Closed Categories

and Frobenius Algebras’. PhD thesis. University of Oxford.

T. Kasami (1965). An efficient recognition and syntax analysis algorithm for context-free languages.

Tech. rep. AFCRL-65-758. Bedford, MA: Air Force Cambridge Research Laboratory.

S. Kim, J. Hong, I. Kang, and N. Kwak (2018). Semantic Sentence Matching with Densely-connected

Recurrent and Co-attentive Information. url: http://arxiv.org/abs/1805.11360.
Y. Kim (2014). ‘Convolutional Neural Networks for Sentence Classification’. In: Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:

Association for Computational Linguistics, pp. 1746–1751.

D. P. Kingma and J. Ba (2014). ‘Adam: A Method for Stochastic Optimization’. In:

T. Kocmi and O. Bojar (2017). ‘An Exploration of Word Embedding Initialization in Deep-

Learning Tasks’. In: Proceedings of the 14th International Conference onNatural Language Processing

(ICON-2017). Kolkata, India: NLP Association of India, pp. 56–64.

https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1805.11360

Bibliography 107

J. Krishnamurthy and T. M. Mitchell (2014). ‘Joint Syntactic and Semantic Parsing with Com-

binatory Categorial Grammar’. In: Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Baltimore, Maryland: Association for

Computational Linguistics, pp. 1188–1198.

J. Lambek (2008). FromWord to Sentence: A Computational Algebraic Approach to Grammar. Poli-

metrica.

T. K. Landauer and S. T. Dumais (1997). ‘A solution to Plato’s problem: the latent semantic

analysis theory of acquisition, induction and representation of knowledge’. In: Psychological

Review 104(2), pp. 211–240.

F. W. Lawvere and S. H. Schanuel (2009).ConceptualMathematics: A First Introduction to Categories.

2nd ed. Cambridge University Press. isbn: 978-0-521-71916-2.

S. Legg and M. Hutter (2007). ‘Universal Intelligence: A Definition of Machine Intelligence’. In:

Minds Mach. 17.4, pp. 391–444. issn: 0924-6495. doi: 10.1007/s11023-007-9079-x.
M. Lewis, K. Lee, and L. Zettlemoyer (2016). ‘LSTM CCG Parsing’. In: Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. San Diego, California: Association for Computational Linguistics,

pp. 221–231.

M. Lewis and M. Steedman (2013). ‘Combined Distributional and Logical Semantics’. In: Trans-

actions of the Association for Computational Linguistics 1, pp. 179–192.

S. Mac Lane (1978). Categories for the Working Mathematician. 2nd ed. Graduate Texts in Mathem-

atics. New York: Springer-Verlag. isbn: 978-0-387-98403-2.

J. Maillard and S. Clark (2015). ‘Learning Adjective Meanings with a Tensor-Based Skip-Gram

Model’. In: Proceedings of the Nineteenth Conference on Computational Natural Language Learning.

Beijing, China: Association for Computational Linguistics, pp. 327–331.

J. Maillard and S. Clark (2018). ‘Latent Tree Learning with Differentiable Parsers: Shift-Reduce

Parsing and Chart Parsing’. In: Proceedings of the Workshop on the Relevance of Linguistic Struc-

ture in Neural Architectures for NLP. Melbourne, Australia: Association for Computational

Linguistics, pp. 13–18.

J. Maillard, S. Clark, and E. Grefenstette (2014). ‘A Type-Driven Tensor-Based Semantics for

CCG’. In: Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language Semantics

(TTNLS). Gothenburg, Sweden: Association for Computational Linguistics, pp. 46–54. doi:

10.3115/v1/W14-1406.
J. Maillard, S. Clark, and D. Yogatama (2017). Jointly Learning Sentence Embeddings and Syntax

with Unsupervised Tree-LSTMs. url: http://arxiv.org/abs/1705.09189.
C. D. Manning (2017). Representations for Language: From Word Embeddings to Sentence Mean-

ings. url: https://simons.berkeley.edu/sites/default/files/docs/6449/
christophermanning.pdf.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky (2014). ‘The

Stanford CoreNLP Natural Language Processing Toolkit’. In: Association for Computational

Linguistics (ACL) System Demonstrations, pp. 55–60.

https://doi.org/10.1007/s11023-007-9079-x
https://doi.org/10.3115/v1/W14-1406
http://arxiv.org/abs/1705.09189
https://simons.berkeley.edu/sites/default/files/docs/6449/christophermanning.pdf
https://simons.berkeley.edu/sites/default/files/docs/6449/christophermanning.pdf

108 Bibliography

M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K. Katz, and B.

Schasberger (1994). ‘The Penn Treebank: Annotating Predicate Argument Structure’. In: Pro-

ceedings of the Workshop on Human Language Technology. HLT ’94. Plainsboro, NJ: Association

for Computational Linguistics, pp. 114–119. isbn: 1-55860-357-3. doi: 10.3115/1075812.
1075835.

M. Marelli, L. Bentivogli, M. Baroni, R. Bernardi, S. Menini, and R. Zamparelli (2014). ‘SemEval-

2014 Task 1: Evaluation of Compositional Distributional Semantic Models on Full Sentences

through Semantic Relatedness and Textual Entailment’. In: Proceedings of the 8th International

Workshop on Semantic Evaluation (SemEval 2014). Dublin, Ireland: Association for Computa-

tional Linguistics and Dublin City University, pp. 1–8.

M.-C. d. Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre, and C. D. Manning

(2014). ‘Universal Stanford dependencies: A cross-linguistic typology’. In: Proceedings of the

Ninth International Conference on Language Resources and Evaluation (LREC-2014). Reykjavik,

Iceland: European Language Resources Association (ELRA).

Martın Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

T. Mikolov, K. Chen, G. Corrado, and J. Dean (2013a). ‘Efficient Estimation of Word Representa-

tions in Vector Space’. In: International Conference on Learning Representations (ICLR) Workshop.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013b). ‘Distributed Representa-

tions of Words and Phrases and their Compositionality’. In: Advances in Neural Information

Processing Systems 26. Ed. by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

K. Q. Weinberger. Curran Associates, Inc., pp. 3111–3119.

J. Mitchell andM. Lapata (2008). ‘Vector-basedModels of Semantic Composition’. In: Proceedings

of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics, pp. 236–244.

J. Mitchell and M. Lapata (2010). ‘Composition in distributional models of semantics’. In: Cog-

nitive Science 34.8, pp. 1388–1429.

R. Montague (1973). ‘The Proper Treatment of Quantification in Ordinary English’. In: Approaches

to Natural Language. Ed. by P. Suppes, J. Moravcsik, and J. Hintikka. Reidel, pp. 221–242.

L. Mou, R. Men, G. Li, Y. Xu, L. Zhang, R. Yan, and Z. Jin (2016). ‘Natural Language Inference

by Tree-Based Convolution and Heuristic Matching’. In: Proceedings of the 54th Annual Meet-

ing of the Association for Computational Linguistics (Volume 2: Short Papers). Berlin, Germany:

Association for Computational Linguistics, pp. 130–136.

M. Nadejde, S. Reddy, R. Sennrich, T. Dwojak, M. Junczys-Dowmunt, P. Koehn, and A. Birch

(2017). ‘Predicting Target Language CCG Supertags Improves Neural Machine Transla-

tion’. In: Proceedings of the Second Conference on Machine Translation. Copenhagen, Denmark:

Association for Computational Linguistics, pp. 68–79.

G. Neubig et al. (2017). ‘DyNet: The Dynamic Neural Network Toolkit’. In:

J. Nivre (2003). ‘An Efficient Algorithm for Projective Dependency Parsing’. In: Proceedings of the

8th International Workshop on Parsing Technologies (IWPT, pp. 149–160.

D. Paperno, N. T. Pham, and M. Baroni (2014). ‘A practical and linguistically-motivated ap-

proach to compositional distributional semantics’. In: Proceedings of the 52nd Annual Meeting

https://doi.org/10.3115/1075812.1075835
https://doi.org/10.3115/1075812.1075835

Bibliography 109

of the Association for Computational Linguistics (Volume 1: Long Papers). Baltimore, Maryland:

Association for Computational Linguistics, pp. 90–99. doi: 10.3115/v1/P14-1009.
A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,

and A. Lerer (2017). ‘Automatic differentiation in PyTorch’. In: NIPS Autodiff Workshop.

J. Pennington, R. Socher, and C. D. Manning (2014). ‘Glove: Global Vectors for Word Represent-

ation’. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 1532–1543.

M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer (2018).

‘Deep ContextualizedWord Representations’. In: Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers). New Orleans, Louisiana: Association for Computational Linguistics,

pp. 2227–2237.

N. Pham, R. Bernardi, Y. Z. Zhang, and M. Baroni (2013). ‘Sentence paraphrase detection: When

determiners and word order make the difference’. In: Proceedings of IWCS 2013 Workshop

Towards a Formal Distributional Semantics. Potsdam, Germany: Association for Computational

Linguistics, pp. 21–29.

T. Polajnar, L. Fagarasan, and S. Clark (2014a). ‘Reducing Dimensions of Tensors in Type-Driven

Distributional Semantics’. In: Proceedings of the 2014 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics,

pp. 1036–1046.

T. Polajnar, L. Rimell, and S. Clark (2014b). ‘Evaluation of Simple Distributional Compositional

Operations on Longer Texts’. In: Proceedings of the Ninth International Conference on Language

Resources and Evaluation (LREC’14). Ed. by N. C. (Chair), K. Choukri, T. Declerck, H. Loftsson,

B. Maegaard, J. Mariani, A. Moreno, J. Odijk, and S. Piperidis. Reykjavik, Iceland: European

Language Resources Association (ELRA). isbn: 978-2-9517408-8-4.

P. Rajpurkar, R. Jia, and P. Liang (2018). ‘KnowWhat You Don’t Know: Unanswerable Questions

for SQuAD’. In: Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers). Melbourne, Australia: Association for Computational

Linguistics, pp. 784–789.

L. Rimell, J. Maillard, T. Polajnar, and S. Clark (2016). ‘RELPRON: A Relative Clause Evaluation

Data Set for Compositional Distributional Semantics’. In: Computational Linguistics 42.4,

pp. 661–701. doi: 10.1162/COLI_a_00263.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1986a). ‘Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, Vol. 1’. In: ed. by D. E. Rumelhart, J. L.

McClelland, and C. PDP Research Group. Cambridge, MA, USA: MIT Press. Chap. Learning

Internal Representations by Error Propagation, pp. 318–362. isbn: 0-262-68053-X.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1986b). ‘Learning representations by back-

propagating errors’. In: Nature 323.6088, pp. 533–536. issn: 1476-4687. doi: 10 . 1038 /
323533a0.

https://doi.org/10.3115/v1/P14-1009
https://doi.org/10.1162/COLI_a_00263
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0

110 Bibliography

A.M. Rush, S. Chopra, and J. Weston (2015). ‘A Neural AttentionModel for Abstractive Sentence

Summarization’. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing. Lisbon, Portugal: Association for Computational Linguistics, pp. 379–389.

M. Sadrzadeh, S. Clark, and B. Coecke (2013). ‘The Frobenius anatomy of word meanings I:

subject and object relative pronouns’. In: Journal of Logic and Computation 23.6, pp. 1293–1317.

M. Sadrzadeh, S. Clark, and B. Coecke (2016). ‘The Frobenius anatomy of word meanings II:

possessive relative pronouns’. In: Journal of Logic and Computation 26.2, pp. 785–815.

G. Salton, A. Wong, and C. S. Yang (1975). ‘A Vector Space Model for Automatic Indexing’. In:

Commun. ACM 18.11, pp. 613–620. issn: 0001-0782. doi: 10.1145/361219.361220.
M. Schuster and K. K. Paliwal (1997). ‘Bidirectional recurrent neural networks’. In: IEEE Transac-

tions on Signal Processing 45.11.

H. Schütze (1998). ‘Automatic Word Sense Discrimination’. In: Computational Linguistics Special-

Issue-on-Word Sense Disambiguation 24.1.

T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang (2017). ‘DiSAN: Directional Self-

Attention Network for RNN/CNN-free Language Understanding’. In:

Y. Shen, Z. Lin, C.-w. Huang, and A. Courville (2018). ‘Neural Language Modeling by Jointly

Learning Syntax and Lexicon’. In: International Conference on Learning Representations.

Y. Shen, S. Tan, A. Sordoni, and A. Courville (2019). ‘Ordered Neurons: Integrating Tree Struc-

tures into Recurrent Neural Networks’. In: International Conference on Learning Representations.

S. M. Shieber (1983). ‘Sentence Disambiguation by a Shift-Reduce Parsing Technique’. In:

Proceedings of the 21st Annual Meeting of the Association for Computational Linguistics. Cam-

bridge, Massachusetts, USA: Association for Computational Linguistics, pp. 113–118. doi:

10.3115/981311.981334.
R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng (2013). ‘Parsing with Compositional Vector

Grammars’. In: Proceedings of the 51st Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers). Sofia, Bulgaria: Association for Computational Linguistics,

pp. 455–465.

R. Socher, B. Huval, C. D. Manning, and A. Y. Ng (2012). ‘Semantic Compositionality Through

RecursiveMatrix-vector Spaces’. In: Proceedings of the 2012 Joint Conference on EmpiricalMethods

in Natural Language Processing and Computational Natural Language Learning. EMNLP-CoNLL

’12. Jeju Island, Korea: Association for Computational Linguistics, pp. 1201–1211.

R. Socher, C. D. Manning, and A. Y. Ng (2010). ‘Learning Continuous Phrase Representations

and Syntactic Parsing with Recursive Neural Networks’. In: Proceedings of the Deep Learning

and Unsupervised Feature Learning Workshop of NIPS 2010, pp. 1–9.

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning (2011). ‘Semi-Supervised

Recursive Autoencoders for Predicting Sentiment Distributions’. In: Proceedings of the 2011

Conference on Empirical Methods in Natural Language Processing. Edinburgh, Scotland, UK.:

Association for Computational Linguistics, pp. 151–161.

M. Steedman (2000). The Syntactic Process. Cambridge,MA, USA: MIT Press. isbn: 0-262-19420-1.

https://doi.org/10.1145/361219.361220
https://doi.org/10.3115/981311.981334

Bibliography 111

S. Subramanian, A. Trischler, Y. Bengio, and C. J. Pal (2018). ‘Learning General Purpose Dis-

tributed Sentence Representations via Large Scale Multi-task Learning’. In: International

Conference on Learning Representations.

M. Sundermeyer, R. Schlüter, and H. Ney (2012). ‘LSTM Neural Networks for Language Mod-

eling’. In: Proceedings of the 13th Annual Conference of the International Speech Communication

Association (INTERSPEECH 2012). Portland, Oregon, USA, pp. 194–197.

S. Suster and W. Daelemans (2018). ‘CliCR: a Dataset of Clinical Case Reports for Machine

Reading Comprehension’. In: Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers). New Orleans, Louisiana: Association for Computational Linguistics, pp. 1551–1563.

I. Sutskever, O. Vinyals, and Q. V. Le (2014). ‘Sequence to Sequence Learning with Neural

Networks’. In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger. Curran Associates, Inc.,

pp. 3104–3112.

Z. G. Szabó (2001). Problems of Compositionality. Routledge. isbn: 9780815337904.

K. S. Tai, R. Socher, and C. D. Manning (2015). ‘Improved Semantic Representations From Tree-

Structured Long Short-Term Memory Networks’. In: Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers). Beijing, China: Association for Computational

Linguistics, pp. 1556–1566.

M. Tomita (1984). ‘LR Parsers for Natural Languages’. In: Proceedings of the 10th International

Conference on Computational Linguistics and 22Nd Annual Meeting on Association for Computa-

tional Linguistics. ACL ’84/COLING ’84. Stanford, California: Association for Computational

Linguistics, pp. 354–357. doi: 10.3115/980491.980564.
P. D. Turney and P. Pantel (2010). ‘From Frequency to Meaning: Vector Space Models of Se-

mantics’. In: Journal of Artificial Intelligence Research 37.1, pp. 141–188. issn: 1076-9757.

A. Vaswani,N. Shazeer,N. Parmar, J. Uszkoreit, L. Jones,A.N.Gomez,L. Kaiser, and I. Polosukhin

(2017). ‘Attention Is All You Need’. In:

E. M. Vecchi, M. Baroni, and R. Zamparelli (2011). ‘(Linear) Maps of the Impossible: Capturing

Semantic Anomalies in Distributional Space’. In: Proceedings of the Workshop on Distributional

Semantics and Compositionality. DiSCo ’11. Portland, Oregon: Association for Computational

Linguistics, pp. 1–9. isbn: 9781937284022.

E. M. Vecchi, M. Marelli, R. Zamparelli, and M. Baroni (2017). ‘Spicy Adjectives and Nominal

Donkeys: Capturing Semantic Deviance Using Compositionality in Distributional Spaces’.

In: Cognitive Science 41.1, pp. 102–136. doi: 10.1111/cogs.12330.
D. Westerståhl (2002). ‘On the compositionality of idioms: An abstract approach’. In:Words,

proofs, and diagrams. Ed. by D. Barker-Plummer, D. Beaver, J. van Benthem, and P. Scotto

di Luzio. CSLI press, pp. 241–271.

https://doi.org/10.3115/980491.980564
https://doi.org/10.1111/cogs.12330

112 Bibliography

A. Williams, A. Drozdov, and S. R. Bowman (2018a). ‘Do latent tree learning models identify

meaningful structure in sentences?’ In: Transactions of the Association for Computational Lin-

guistics 6, pp. 253–267. issn: 2307-387X.

A. Williams, N. Nangia, and S. Bowman (2018b). ‘A Broad-Coverage Challenge Corpus for

Sentence Understanding through Inference’. In: Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers). New Orleans, Louisiana: Association for Computational Linguistics,

pp. 1112–1122.

R. J. Williams (1992). ‘Simple statistical gradient-following algorithms for connectionist rein-

forcement learning’. In:Machine Learning, pp. 229–256.

W. Xu (2016). ‘LSTM Shift-Reduce CCG Parsing’. In: Proceedings of the 2016 Conference on Empir-

ical Methods in Natural Language Processing. Austin, Texas: Association for Computational

Linguistics, pp. 1754–1764.

W. Xu, S. Clark, and Y. Zhang (2014). ‘Shift-Reduce CCG Parsing with a Dependency Model’. In:

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). Baltimore, Maryland: Association for Computational Linguistics, pp. 218–227.

D. Yogatama, P. Blunsom, C. Dyer, E. Grefenstette, and W. Ling (2017). ‘Learning to compose

words into sentences with reinforcement learning’. In: Proceedings of the 5th International

Conference on Learning Representations (ICLR 2017).

D. H. Younger (1967). ‘Recognition and Parsing of Context-Free Languages in Time n3’. In:

Information and Control 10, pp. 189–208.

D. Yuan, J. Richardson, R. Doherty, C. Evans, and E. Altendorf (2016). ‘Semi-supervised Word

Sense Disambiguation with Neural Models’. In: Proceedings of COLING 2016, the 26th Interna-

tional Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING

2016 Organizing Committee, pp. 1374–1385.

L. Zettlemoyer and M. Collins (2007). ‘Online Learning of Relaxed CCG Grammars for Parsing

to Logical Form’. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). Prague,

Czech Republic: Association for Computational Linguistics, pp. 678–687.

X. Zhu, P. Sobhani, and H. Guo (2015). ‘Long Short-term Memory over Recursive Structures’. In:

Proceedings of the 32Nd International Conference on International Conference on Machine Learning -

Volume 37. ICML’15. Lille, France: JMLR.org, pp. 1604–1612.

	I Introduction
	Introduction
	Encoding words in computers
	Distributed word representations
	Compositional distributed semantics
	Summary

	Thesis contributions
	Publications

	II Categorial compositional models
	Categorial models
	The categorial framework
	Combinatory Categorial Grammar
	Tensor-based semantics

	Relative clause composition
	Dataset description
	Compositional models
	Experimental setup
	Results and discussion
	Summary

	Tensor-based skip-gram for adjective-noun composition
	A tensor-based skip-gram model
	Training of nouns
	Training of adjectives
	Similarity measure

	Evaluation
	Word Similarity
	Phrase Similarity
	Semantic Anomaly

	Summary

	III Latent tree learning models
	Tree-structured recurrent neural networks
	The Long Short-Term Memory architecture
	TreeLSTM
	Latent tree learning
	Semi-supervised recursive autoencoders
	Stack-augmented parser-interpreter neural network
	Chart-based latent tree learning
	Easy-first latent tree learning
	Shift-reduce latent tree learning

	Summary

	Chart parsing
	Model
	Baselines

	Experimental setup
	Natural language inference
	Reverse dictionary

	Results and discussion
	Summary

	Shift-reduce parsing
	Models
	Beam search shift-reduce treeLSTM
	CKY-based treeLSTM

	Experimental setup
	Pointer-based stack

	Results and discussion
	Summary

	Conclusions

