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I nvestigating an adequatelevd of modeling for retrofit decison-making: A case

study of a British semi-detached house

Abstract

This paper investigates what level of modellingnfpg or internal load scheduling) is
required to support heating related retrofit deciginaking. First, this paper tests the effect of
thermal zoning by incrementally reducing the nundf@éhermal zones from modelling every
room as a separate zone to modelling the houseiagla zone. Second, this paper examines
the influence of internal load schedules (occupatighting and equipment schedules) on
prediction accuracy. Actual internal load schedwese derived from the smart meter data of
666 households collected by the Customer-Led NétRavolution project. Cluster analysis
was applied to extract a set of prototypical scheito capture major variations across all
households. Last, this paper evaluates the eftédise zoning and internal load scheduling
modelling assumptions in the context of thermalofétdecision-making.

For the specific parameters studied and the spdumifiding design, the use of different
zoning strategies and different internal load sateslyielded the same ranking of top retrofit
options. For the specific climate and the baselssumptions for the retrofits, different
cluster schedules resulted in different magnituafesnergy savings, but the ranking of top
retrofit options was not impacted by the choice haiusehold internal load schedules.
However, the actual internal load schedules aftetite energy-saving potentials achievable
by the same set of retrofit options. The case studklights that the optimal set of retrofit
options selected given the specific physical charetics of a house is the same regardless

of differences in the input of internal load schiedu However, it was found that energy-
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saving potentials achievable by the same retrgifitoo substantially vary according to the
actual internal load schedules. This finding impligat energy retrofit policies can be
tailored to target certain groups of householdscted by clustering their actual energy use

profiles to cost-effectively maximise energy sawifigpm the domestic sector.

1. Introduction

The Paris Agreement marks a significant positivep ah global action to tackle climate
change. In line with the Paris Agreement, the UKv&oment has set a target for reducing
carbon emissions to net zero by 2050 (Committe€lamate Change, 2018). In 2017, the
domestic sector occupied 28% of the total finalrgpeonsumption in the UK (Department
for Business Energy and Industrial Strategy, 20Thus, it is urgent to improve energy
efficiency in the UK domestic sector. Streicheakt(2017) suggested that large-scale energy
retrofits of residential buildings could have aremgy saving potential of up to 84% in
comparison to the current energy demand. Therefoeeappropriate level of energy retrofit
of existing residential buildings could help to este the net-zero goal by 2050. The UK
Environmental Audit Committee reported that most bbusing stock in the UK is poorly
insulated, and, in 2010, domestic buildings obw@iran average Standard Assessment
Procedure (SAP) rating of 53, much lower than teeommended baseline level which
ranges between 65 and 81 (Power and Lane, 2018)2008 Climate Change Act sets the
legal energy-saving target of improving the enezfficiency of existing homes through deep
retrofit to achieve the net-zero goal (InstitutimihEngineering and Technology, 2018). The
Green Deal was launched in 2013 and provided refrofding for 14,000 properties during
the policy’s operating period of January 2013 toréha2016 (Department of Energy and

Climate Change, 2016). However, in practice, whemsmering the large amount of
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government funding provided, this scheme faile@dhieve a notable result as planned and
resulted in substantially lower carbon savings wbempared to previous policies (Gooding
and Gul 2017). Thus, it is urgent for policy makérssfind a way to maximise the cost-
effectiveness of retrofit programs.

Several studies have developed methods based ddinguienergy simulation to
support large-scale retrofit analysis. Caputo, &osind Ferrari (2013) created 56
representative buildings as a combination of 2dmg functions, 4 archetypes, and 7
construction ages to evaluate energy saving stestesy the city-scale. Each representative
building was modelled as a multiple-zone model, aondrly occupancy-related schedules
were defined based on the Swiss Technical Worksbeltcted by SIA Merkblatt 2024
(2006). In order to create actual occupancy-relgiediles, Shimoda et al. (2003) used the
National Time Use Survey collected by the BroadngsCulture Research Institute (2000)
for computing schedules associated with occupaamtsivities as inputs to multiple-zone
models of 460 dwelling types. They applied a botigmmapproach to modelling every
building of the building stock to predict buildirend-use energy demand at a large-scale,
accounting for variations in building geometridsermal properties, and system types. Tian
et al. (2015) developed an automated programminlg ¢or extracting building geometric
information from GIS and creating EnergyPlus modélsdividual buildings. They applied
the zoning strategy of modelling one single zonmepfrts of a building with similar functions,
and highlighted the necessity of an appropriate efiiong strategy (multiple-zone vs one-
zone) for large-scale energy analysis.

The predictive performance of the simulation modiebends greatly on assumptions
and simplifications made in the model and the bdiig of the model input parameters
(Ghiassi et al., 2017). Indeed, a modelling proa&ssn involves subjective judgement to

efficiently create the simulation model that readuy represents the actual situation. The
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simplifications often made in the simulation prac@sclude reducing the number of thermal
zones and using typical occupancy-related schedspesified in national standards. The
common practice for thermal zoning is combiningmsowith similar activities into one zone,
but further simplications of modelling a building a single-zone have been observed in
urban-scale energy studies to facilitate modelbnarge number of buildings (Tian et al.,
2015; Heo et al., 2015; Booth and Choudhary, 20b3yeneral, many building-scale studies
use the typical occupancy-related schedules spdciin national standards for energy
performance simulation (Heiple and Sailor, 2008sd2daki et al., 2011; Ballarini et al.,
2014). These simplifications, however, unavoidadffect the accuracy of model outputs,
which may possibly bias retrofit decision-making.

Several studies have investigated the effect ofetiod simplications on the accuracy
of energy predictions. Korolija and Zhang (2013mpared the prediction accuracy of
detailed simulation models for domestic buildingswhich every room is modelled as a
separate zone and simplified simulation models lciv each floor is modelled as a single
zone. The comparative study indicated that the Idiegh thermal zoning strategy reduced the
simulation time by 30% on average and resultethénmhean absolute relative error of 10.6%
for predicting annual heating demands. Harrou e{2816) also investigated the effect of
thermal zoning strategies on heating demand pred&tThe simulation results indicate that
single-zone simulation yields roughly half the aalnieating demand prediction of multiple-
zone simulation. However, limited research has bdene on evaluating the effect of
modelling simplications on selecting appropriatgéa groups and retrofit options.

This paper aims to investigate the role of majodeliing assumptions in model-based
retrofit analysis through a case study of a sertagteed house in the UK. Section 2 will
present the details of this case study, includmigdmg components, locations and occupants,

as well as the assumptions made in the simulat®astion 3 will test what level of thermal
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zoning is sufficient to support the energy analysisdomestic buildings. To answer this
guestion, we reduce the number of thermal zonesenmentally in the case study and
compare the simulation results predicted by differevels of thermal zoning strategies.
Section 4 will examine the use of actual interred profiles for the energy analysis of
domestic buildings. The details of the smart meega and how it is representative for this
case study building will also be discussed in sec. Section 4 will compare simulation
results predicted with four different methods f@esifying an internal load schedule: (a)
typical schedule in standards according to thedWati Calculation Method (BRE, 2015), (b)
average schedule derived from the dataset, (c) afséuster centroids derived from the
actual internal load profiles, and (d) all schedudlem the dataset. Section 5 will evaluate the
effect of modelling assumptions in the context efrafit decision-making, in which the
energy saving potentials of different retrofit @pts are evaluated and rankings of retrofit
options are compared for the case study. The falgdive retrofit options are considered for
analysis: (A) added wall insulation, (B) added rotdulation, (C) infiltration treatment, (D)
energy-efficient light, and (E) window replacemeithese five retrofit measures were
selected on the basis of recent papers on thefitedrmlysis of British houses (Ben and

Steemers, 2017; Booth and Choudhary, 2013).

2. Introduction of the case study

The semi-detached house was selected as a cagéstialise it is the second most prevalent
dwelling type in 2015, occupying 26% of the UK himgs stock (Department for
Communities and Local Government, 2017). Based amilion et al. (2013), the average
gas demand per household was 17,533 kWh per yeardemi-detached house, 22,823 kWh

per year for a detached house, 16,004 kWh perfgear terrace house, and 11,557 kWh per
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year for a flat. Trotta (2018) indicated that cagplith independent child(ren) living in
detached or semi-detached houses built before a8€0with a length of residence higher
than one year are more likely to invest in retrofgéasures.

The case house consists of a lounge, dining rotchdn and bathroom on the ground
floor and bedrooms and a bathroom on the firstrfleath the total floor area of 98 square
metres. Figure 2 in section 3 shows the origingbld of the house (the kitchen faces North).
It was assumed that the representative house gpmct by a working couple with two
children. The case study location was selectechensuburban area of London, thus the
weather data of London Gatwick was used in the ksitimn. In this climate region, radiators
and boilers provide heating for the vast majorityhouses. The construction materials were

assumed based on BRE National Calculation Meth&E(B015), as shown in Table 1.

Table 1 Assumption of building materials based on the chgsdy

Components U-value
Wall 0.37 W/miK
Roof 0.26 W/nK

Window 1.96 W/K

To specify internal heat gains and indoor tempeeasiettings in this case study, we
used standard schedules specified in the Natioratu@tion Method (NCM) in the
simulation, downloaded from the Building ReseardtaBlishment (BRE) website (BRE,
2015). Internal load density values from occupahgting, and equipment and heating
temperature setpoints during occupied and unocdupaairs are presented in Table 2. In
addition, Figure 1 shows the standard hourly he@t gchedules from occupants, lighting,
and equipment for each room type, which were ddrikg multiplying its internal load

density value with associated hourly diversity peofvalues. Across all room types, the
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magnitude of heat gains from occupants is negkgilblcomparison to that from lighting and
equipment. The kitchen has much higher lighting aqdipment power densities than other
rooms, which have relatively similar power densi&yues. Particularly, peak equipment heat
gains in the kitchen are predominantly much higineanghly 10 times higher) than those in
the other rooms. As British domestic houses are&jly equipped with a boiler for heating
and rely on natural ventilation for cooling, thisudy considers only heating setpoint
temperatures that impact the energy consumptiorthénNCM, the lounge has a higher
heating setpoint temperature {€) during occupied hours than the other rooms, lwlaie
set at 18C. All the rooms are set back to°2during non-occupied hours. In addition, the
heating schedule varies per room type; heatingasiged to the bedroom during the night
time (from 20:00 to 8:00), to the lounge during #féernoon and evening (from 14:00 to

22:00), and to the other rooms during the mornimg) @/ening.

Table 2 Standard internal load density values and heagtgpoint temperatures

Occupancy Light Equipment T _heating_occ T_heating_unocc
Room

(m?/person) (W/n) (W/m?) (°C) (°C)
Lounge 53.3 7.5 3.9 21 12
Dining 59.1 7.5 3.1 18 12
Bathroom 53.4 7.5 1.7 18 12
Kitchen 42.2 15.0 30.3 18 12
Bedroom 43.6 5.0 3.6 18 12
Corridor 64.5 5.0 1.6 18 12

(Source: BRE, 2015)
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Figure 1 Standard hourly heat gains and heating setpaimpéeature schedules

In section 4, we use selected smart meter datarteedaverage internal load schedules
and a set of cluster centroids that are represeatat all actual profiles within each cluster.
The domestic electricity use dataset was collebtethe Customer-Led Network Revolution
(CLNR, 2015) during the period between May 2011 &weptember 2013. Information
regarding household characteristics (such as nuroberesidents, family composition,
employment status, level of earnings) was not pleyiby the report, but the report grouped
all households into 15 mosaic types based on ExpdB018). By considering the selected
location of this case study, we selected the mdSamup F “Suburban Mindsets” for further
analysis, which is defined asnaturing families on mid-range incomes living a e@ade
lifestyle in suburban seniigExperian, 2018). According to Experian (2018)yb8rban
Mindsets are mostly married people of middle agend together with their children in
family houses built between the 1930s and the 19b@scally, these homes conform to one
of a limited number of designs for semi-detachedses which were popular during the

inter-war years or during the period between 1948 4960. This group of people are
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typically middle class and skilled working classnilies looking for a comfortable house in
which to bring up a family. The Suburban Mindsetsup properly matches the households
of representative buildings as the case study @uspvere assumed to be maturing families
on mid-range incomes living a moderate lifestylegluding a working couple with one or

two child(ren).

3. Thermal zoning

This section examines the effect of thermal zorongprediction accuracy through a case
study. Figure 2 presents the original plan andetlsteps in which the thermal zoning of the
house is incrementally simplified. First, everymoof the house is modelled as a single zone
to represent the actual house layout. Then, Stepibines rooms with similar space types
into one thermal zone. This step represents a conth@mal zoning strategy in practice in
which rooms with similar characteristics (e.g., same and operation schedules, orientation,
and perimeter vs core areas) are grouped intoghesihermal zone. The bathrooms on the
ground floor and on the first floor are combinedhatirculation areas into a new thermal
zone, as the floor area of bathrooms and circuladi@as are small and the use of electrical
appliances in these two types of zone is very [blaen, Step 2 combines all rooms on the
same floor into one thermal zone, and Step 3 matielsntire house as one single zone.
These two steps (Steps 2-3) are often used in-tn@e energy analysis where the cost-
effectiveness of the modelling process is key talelimg every building of the building

stock.
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Figure 2 Incremental simplications in thermal zoning

We selected EnergyPlus to create the energy siionlatodels of the studied house
with four levels of zoning strategies for three sm@s: first, EnergyPlus is a reliable
simulation tool for building performance simulaticsecond, the idf profiles generated by
EnergyPlus could be modified in Matlab for multigénulation runs in section 4; third,
EnergyPlus has the function of group simulationclh¢ould automatically run thousands
times of simulations by one click. In simulatiohetoccupancy schedules, as well as lighting
and appliance schedules were revised in EnergyBitusach thermal zone by area-weighted
averaging of all density values and diversity pgesfiof rooms that fell into the same zone,
respectively. For instance, for Step 1, the dimogm and lounge were combined into one
thermal zone, thus the density values were compaged

average density value

dining room density value X floor area + lounge density value X floor area

dining room floor area + lounge floor area

10



216 After multiple simulation runs in EnergyPlus, TaBlsummarises the annual electricity
217 and heating demand predictions with different nurslé thermal zones in comparison to
218 modelling every room as a zone based on the abtuade layout. Overall, the simplified
219 zoning strategies have a minor effect on the Iighglectricity use prediction, but they result
220 in much larger differences in the prediction of ipguent electricity use. This disparity
221 occurs in Step 2 due to large differences in theipggent diversity profile between the
222 kitchen and the other rooms. The kitchen with timalgfloor area has the highest equipment
223 power density value with only a two-hour peak peéramd quite low diversity values for the
224  non-peak period, whereas the other rooms havegeitqreriod of peak hours. In Step 2, the
225 average diversity profile for a thermal zone of ¢ineund floor is calculated from all diversity
226 profiles of different rooms with area weighting arcdnsequently, has higher hourly diversity
227 values than the original one for the kitchen. Teecpntage values in the second part of Table
228 3 were calculated by first subtracting the annuahand prediction of each step from the
229 original annual demand prediction, and then théedihces were divided by the original
230 demand. As the result, for the specific paramestrdied and the specific building design,
231 Steps 2 and 3 over-predict the annual equipmentrgliéy demand by roughly 21%, and the
232 total electricity demand by 11% and 8%, respedivel

233

234 Table 3 Comparison of annual demand predictions in themaaing

Lighting (kwh) Equipment (kwWh) Electricity (kwh) é#aiting (kwh)

Original 1567 1388 2955 6199
Step 1 1572 1382 2954 5774
Step 2 1604 1688 3292 5143
Step 3 1505 1679 3184 4581

Lighting (%) Equipment (%) Electricity (%) Heatirigp)

11
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Step 1 0.3% -0.4% 0.0% -6.9%
Step 2 2.4% 21.6% 11.4% -17.0%

Step 3 -4.0% 21.0% 7.7% -26.1%

(Note: Electricity [kWh] = Lighting [kWh] + Equipnma [KWh])

4. Internal load scheduling
This section examines whether using actual intelved profiles is necessary to provide
accurate energy predictions by comparing energyligiens with actual internal load
schedules against those with assumptions from madtistandards. The standard schedules
used in this section are the average density valndsassociated diversity profiles computed
by area-weighted averaging of standard densityesand diversity profiles of rooms based
on the National Calculation Method (BRE, 2015). Wate that the standard heating set-point
profiles in Figure 1 were used without adjustmeatsdd on the smart meter data, as
information about the temperature settings wasamatiable in the dataset used for analysis.
In this section, we tested the single-zone simutatvith the internal load data collected
by the Customer-Led Network Revolution (CLNR, 20X&pject. Based on the reasons
explained in section 2, the group F “Suburban Matsiswas chosen for further analysis, and
666 out of the total 9200 recorded households @8)2#vere finally selected. Figure 3
presents the profiles of average hourly electriciyppsumption at each hour of the day of
weekdays and weekends that fall under the grouladsification. Overall, a similar trend is
observed across individual household scheduleswadth substantial variation exists. In the
weekday schedule, peaks occur sharply around 8amdbort period, the curve is relatively
smooth during 8am and 6pm, and another peak odoura longer period between 5pm-—
10pm. The weekend profile also shows two peak derione in the morning and the other in
the evening, but the trend is smoother than thekdage one. As noticeable differences

between weekday and weekend schedules are obsewmedienerated separate average

12



258 internal load schedules of individual households i@ekdays and weekends for further
259 analysis.

Average weekday daily profile, Group F

Average weekend daily profile, Group F

- M d ® ® N
o o - b by b
(=] @ -- N - (=] @ N

Electricity consumption [kWh]
o
e -

Electricity consumption [kWh]

0.2 B
1 1 18 20 22 24 2 4 6 8 10 12 14 16 1é 20 22 24
Time of day [h] Time of day [h]

260 Figure 3 Average hourly electricity consumption at weekdaift) and weekend (right)

261

262 The average hourly electricity consumption at dagthr of the day was calculated for
263 each household as internal load schedules, andpesmare shown in Figure 3. The internal
264 load schedules derived from the electricity dataewesed as the model input for hourly
265 internal loads for lighting and equipment. Howewérs simulation method may result in a
266 simulation gap between the actual consumption aedigted results. For instance, fridges
267 may consume a different amount of energy than thigyose as heat gain in the space, or at
268 least they may have a time lag between the timgradgy is consumed and the time heat is
269 dissipated in the kitchen. Those discrepanciesaateptable, as the electricity consumed by
270 the fridge is relatively small when compared withey domestic appliances.

271 Cluster analysis is a convenient method used tbwddathousands of electricity daily
272 profiles, to effectively capture variability in thectual internal load profile and extract the
273 representative profile for each household. We perénl K-means cluster analysis to
274  effectively capture major variability in the actuaternal load schedule with a small set of
275 schedules. K-means uses an iterative processghbigina customers into groups based on the

276 distance between themselves and a cluster centcéo(flyhlin, 2013). K-means clustering

13
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aims to partition n observations into K subsetasdo minimize the within-cluster sum of
squares, and wherg is the geometric centroid of the data pointsim®rder to achieve a
global minimum for J. Figure 4 shows the predictamturacy of using different numbers of
cluster centroids used as representative schefluledl household schedules falling under
each cluster, in comparison to using all individimiusehold schedules. The prediction
accuracy is quantified in terms of the coefficieatssariation of the root mean square error
(CVRMSE) that is obtained by computing the squai of the mean square error between
actual profiles and the corresponding cluster cgéhtand normalising it by the mean of the
actual profiles. When the number of clusters ineesdrom 1 to 5, the CVRMSE value drops
dramatically from 0.50 to 0.30, and further dropsQ.27 when the number of clusters
increases to 10. As the number increases from 1@0tclusters, the CVRMSE value
gradually decreases from 0.27 to 0.24. Based osethesults, we selected 10 clusters that
sufficiently capture the variability in the actusthedule. One thing to note is that the
possible number of clusters can be also deterntiyagsing statistical methods such as gap

statistics (Tibshirani et al., 2001) and the DaBesildin index (Mcloughlin, 2013).

0.5¢

CVRMSE value

o o
I e I N~
w [4)] N [¢)]

o
o
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02 L L L L L L L 1 L L L L L L I
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of clusters

Figure 4 CVRMSE values for different numbers of clusters
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Figure 5 presents 10 cluster centroids of hourlgkday and weekend schedules in
comparison to the average hourly schedule of theeedataset. Overall, all the centroid
schedules indicate a similar pattern of internaddky internal loads rise from 5am,
continuously increase until 8am, and gradually éase or remain constant until 3pm. Then,
they increase again until reaching the peak loadirad 6pm and gradually decrease until
midnight. However, the trend is slightly differdrgtween the weekday and weekend profiles.
From 8am to 4pm, the average profiles (red doites) for the weekend are higher than for
the weekday as the house is more likely to be deduduring the weekends. There are
differences between clusters, as some clusters (@scClusters 4, 5 and 10) have peaks
during 12am and 4pm, but some clusters (such ageZtul and 5) have a constant value but
are slightly higher than the equivalent value orkaays.

Although the timing of changes in the internal laadsimilar across the clusters, the
cluster centroids show distinct differences in thagnitude of base loads and peak loads.
Clusters 1 and 6 show consistently lower base lpattssmaller peak loads than the average
schedule. Clusters 3, 7, and 8 show a relativetylai trend to the average schedule, with
slight differences in the peak shape. Clustersdildn on the other hand, show spiky peaks
with much higher magnitudes whereas Cluster 5 slommstantly higher base and peak loads.
In order to test whether the centroid schedules reéiect all household schedules included
in each cluster, all the household schedules flectsd clusters are plotted in Figure 6 and
visually inspected in terms of the similarity amandividual schedules. Individual schedules
within each cluster show variation, and some spikdasdividual schedules were smoothed
by the cluster analysis and not represented ircligter centroids. Nevertheless, the cluster
centroids capture the major trend of changes inrtegnal load pattern observed across the

households under each cluster.
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Figure 6 All household schedules falling under each clulsteselected clusters

the simulation results with different internal loadhedules derived from the electricity

dataset against those with the standard schedmesath room specified in the NCM. The

In order to evaluate the effect of internal loalestules on the prediction, we compared
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single-zone model of the two-storey house (Stepo8et) was used to analyse the effect of
internal load schedules on electricity and heatilegnand predictions. The internal load
schedules derived from the electricity data wersduss the model input for hourly internal
loads from lighting and equipment. As the electyiciata does not provide information about
occupant heat gains, this simulation study usessthedard occupant heat gain schedule
derived from NCM and, hence, does not account &ration in the actual occupant heat
gains for heating demand predictions. However, @aupant heat gains are negligible in
comparison to those from lighting and equipmenioygh in Figure 1), model outcomes
which consider variability only in lighting and dgment heat gains are sufficiently reliable
to draw valid modelling recommendations relatethternal load scheduling.

Figure 7 presents the annual electricity and hgatemand predictions computed using
the input schedules of 1) the average density gadnel diversity profiles computed by area-
weighted averaging of standard schedules for easin rspecified in NCM, 2) the average
profiles derived from the actual profiles of 666ukeholds, 3) the 10 cluster centroid
schedules derived from the profiles of the 666 kbokls, and 4) the individual internal load
profiles of the 666 households. For the specifiapeeters studied and the specific building
design, the standard schedule produces electraity heating demand predictions that
closely match those predicted by the average sthedbe annual electricity and heating
demand predictions with different centroid schedwary significantly between 1,600-6,800
kWh and between 3,200-5,400 kWh, respectively.

This large variation suggests that, for this specése study, obtaining actual internal
load schedules of specific households substantialjyroves the accuracy of the building
energy prediction. The simulation results usingclster schedules effectively cover the

majority of variation in the predictions computesing the entire set of actual schedules,
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which shows the potential value of developing albs® of occupancy-related schedules to

predict a plausible range of energy predictionarirefficient manner.
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Figure 7 Annual electricity demand (left) and heating dethgnght) predictions using

different internal load schedules

In addition to annual predictions, we further ewatduthe effect of using different
internal load schedules on average hourly heatergashd predictions in January. Figure 8
presents the simulation results of the averagelyhbeating demand predicted in EnergyPlus.
Overall, the results predicted with the standardedale from the National Calculation
Method (green line) align well with the average fpes of all 666 actual internal load
schedules (red line). This comparison indicates fioa the specific parameters studied and
the specific building design, the standard schedigieved from the NCM is sufficient to
reliably predict the average energy behaviour ahestic buildings on an hourly time scale.
Additionally, hourly demand predictions with diféart centroid schedules resulted in almost

the same pattern of hourly predictions with vaoatmainly in the load magnitude.

18



367
368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

'S

-=c1-113
= = c2-54
- £3-98
- c4-29
- = c5-23
c6-96
- ¢7-60
= = c8-96
- = ¢9-55
c10-42
—average
——standard

] w
T T

Hourly heating demand [kWh]

o

2 4 6 8 10 12 14 16 18 20 22 24
Time of day [h]

Figure 8 Average hourly heating demands for January

5. Retrofit analysis
The effect of various retrofit options on the enepgerformance of UK houses has been
tested in recent research papers. Hardy et al8j2@%ted the effect of internal and external
solid wall insulation, using the recorded data l&ceicity, gas and temperature readings
before and after the retrofit. It was found thabf8the 14 houses presented a significant
decrease in daily gas use and 6 of the 14 housegesha decrease in daily electricity use.
Ben and Steemers (2017) compared the energy speiegtial from eight retrofit measures
(the insulation of external walls, ground floorftJoceiling, window, and tank/pipes, with
boiler upgrade and smart control) across five hiookkebehavioural patterns (active spender,
conscious occupier, average user, conserver, ativae user), by simulation of a mid-
terraced house.

This section investigates the effect of thermalizgrand internal load scheduling on
retrofit decisions. Table 4 presents five retrofitions considered for the case building: (A)
added wall insulation, (B) added roof insulatioQ;) (infiltration treatment, (D) energy-

efficient light, and (E) window replacement. Théeefiveness of these retrofit options was
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evaluated in terms of the annual energy saving fepace heating demand. These five
retrofit measures were selected on the basis ehtggapers on the retrofit analysis of British

houses (Ben and Steemers 2017; Booth and ChoudB&8y Hall et al. 2013).

Table4 List of different retrofit options

Retrofit options Detail

(A) Wall insulation Improve the wall U-value from3¥ W/niK to 0.19 W/niK by adding
an extra extruded polystyrene layer with air cavity

(B) Roof insulation Improve the roof U-value fron26 W/nfK to 0.13 W/niK by adding
an extra glass wool layer

(C) Infiltration treatment  Reduce infiltration rdtem 1 ACH to 0.5 ACH through improved
draught proofing

(D) Energy-efficient light  Improve lighting efficiey by 20%, from 5 W//100 lux to 4 W/rf
100 lux

(E) Window replacement Replace double glazing wifile glazing and improve U-value from
1.96 W/niK to 1.40 W/niK, Visible Transmittance from 0.74 to 0.68,

and Solar Heat Gain Coefficient (SHGC) from 0.69 .63

First, we evaluated the effect of different thernzaining strategies on predicting
relative percentage energy saving estimates affrietiptions and resulting retrofit decisions.
Table 5 presents the relative percentages of arenexlgy saving estimates of five retrofit
options predicted with the four different levelstbérmal zoning strategies as described in
Section 3. Although the different thermal zoningatggies resulted in a discrepancy of up to
26% in baseline energy predictions (in Table 33ythesult in the similar ranking of retrofit
options (in Table 5); infiltration treatment (opti®) is the most preferred option, followed

by wall insulation (option A). For the specific ate and the baseline assumptions for the
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retrofits, not only do all zoning strategies idgnthe same set of two retrofit options as the
most effective measures that far outperform theersthbut they produce similar energy

saving estimates for all retrofit options.

Table 5 Relative percentage in annual energy saving estsrd retrofit options predicted

with different thermal zoning strategies

Retrofit Option Original Step 1 Step 2 Step 3
(A) 14.5% 14.3% 13.5% 14.1%
(B) 2.9% 3.0% 2.9% 2.9%
© 20.7% 17.0% 20.9% 21.9%
(D) 2.9% 3.6% 3.8% 3.9%
(E) 1.7% 1.8% 1.8% 1.9%

Second, we evaluated the relative percentage ersanggg estimates of using single-
zone simulation with actual internal load profil€sgure 9 presents the mean and standard
deviation of relative percentage energy savingreses of the five retrofit options predicted
with individual profiles of the 666 households.témms of the average performance, option C
was selected as the best choice, but possible yesauing predictions ranged from about 13%
to 30% for different households. Among the fiveraét options, retrofit options A and C
showed much higher energy-saving potential tharother three options, but also showed a
high variation in the annual energy saving predittiThis suggests that, in this case study,
for the specific climate and the baseline assumptfor the retrofits, retrofit options A and C
were highly impacted by the energy-use behaviowosiipants. It is admitted that there are
constant-on internal loads that are not linked thiihn occupants, such as the electricity use by
a fridge, but the differences are acceptable asldwdricity use by a fridge is relatively small

when compared with other domestic appliances usgdgithe two peak periods.
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Figure 9 Boxplot of annual energy saving estimates fronmfitreretrofit options predicted

with individual profiles of the 666 households

Table 6 presents the annual energy saving estimaftethe five retrofit options
predicted using the standard schedule derived fiftmenNational Calculation Method and
using each of the 10 cluster centroid schedulewil&i to retrofit decisions derived using
different thermal zoning strategies (shown in Tab)e Table 6 shows that option C is
selected as the best choice regardless of thenaltlerad schedules, followed by option A. It
highlights that the optimal set of retrofit optiosslected in this case study remains the same
regardless of differences in energy-use behavidowever, differences in the energy-use
behaviour result in substantially different enesgyving estimates. For instance, in Table 6,
the Cluster 5 schedule yields the smallest mageitfdannual energy savings from the top
two options: 10% and 15% from options A and C, eesipely. In contrast, the Cluster 6
schedule produces the highest magnitude of enexgyngs, 16% and 26% from the same
options in the same order. This difference indigdtat certain groups of households have
larger energy saving potential depending on thermatl load pattern that is highly related to

occupant lifestyle.
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Table 6 Annual energy saving estimates (%) of retrofii@m predicted by the standard

schedules and 10 cluster schedules

Standard C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

(A) 14.1 149 119 142 110 9.9 164 13.0 136 612.11.5
(B) 2.9 3.0 2.4 2.9 2.2 2.0 3.3 2.6 2.7 2.5 2.3
© 21.9 234 182 222 167 148 258 20.1 211 419175
(D) 3.9 2.0 3.3 2.3 3.6 4.0 14 2.8 2.6 3.0 3.4

(E) 1.9 2.0 1.7 1.9 1.7 1.6 2.1 1.8 1.9 1.8 1.7

In addition, we investigated whether the clusterticed profiles are representative of
the households within each cluster. Particularlyleoiked into the retrofit options A and C as
they were identified as the top choices and theifgpmance was substantially impacted by
internal load schedules. Figure 10 illustratesrdreges of annual energy saving potential of
retrofit options A and C, predicted with the 66@uat internal load profiles grouped by 10
clusters (left-side) and with the 10 cluster cedtrprofiles (right-side). The average
prediction with individual household profiles inabacluster is very similar to the single
prediction with the corresponding cluster centnoidfile. This comparison indicates that the
cluster centroid profiles could be used to prethet overall energy-saving performance of

retrofit options for different clusters.
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For the specific climate and the baseline assumgtior the retrofits, the analysis
results from this specific case suggest that thangp set of retrofit options is not impacted
by the household internal load schedules, but mighergy-saving potentials achievable by
the set of retrofit options is substantially immatby the internal load schedules. The results
from this study are consistent with existing reskafindings. Marshall et al. (2016)
investigated the effectiveness of three retrofinguges (boiler upgrade, roof insulation, wall
insulation) for three occupancy patterns (workiagily, working couple, day-time present
couple) and concluded that the energy saving dependthe occupancy patterns of the

household. Similar to these findings, this studgveéd that the energy saving estimates are
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impacted by occupancy-related internal load sctesdilowever, unlike this case study, Ben
and Steemers (2017) concluded that the optimalmgrd energy efficiency measures varied
across five behavioural patterns. The differencghtnbe because the household energy-use
behaviour considered in this study is limited tquating the simulation assumptions of
internal load schedules, but not considering theashdemperature setting for each single
room of each household. However, the aim of thisl\sis to analyse the retrofit options at

the large scale, and it is not possible to obta@irtemperature setpoint in the real case.

6. Conclusion

This paper investigated the effect of zoning andrimal load scheduling assumptions on the
large-scale retrofit analysis of domestic buildingsrough the case study of the British semi-
detached house, the effect of simplications comgnamdde in thermal zoning and internal

load scheduling was examined in terms of the basegtirediction accuracy and retrofit

decisions. For the specific parameters studiedt@dpecific building design, the common

thermal zoning strategy of combining rooms with ilamthermal characteristics into a zone

underestimates the annual heating demand by 7%nnparison to modelling every room as

a separate zone, and modelling a single zone nfodéhe entire house underestimates the
annual heating demand by 24%.

In order to evaluate the value of using actualridkload schedules, cluster analysis
was applied to the electricity interval data of @&@mes to generate a set of prototypical
schedules that effectively capture variability asrdwouseholds. For this specific case, the
EnergyPlus simulation results using the Nationdt@ation Method standard schedule show
a good agreement with predictions made using therage schedule derived from the

electricity use data. However, different scheduesived by the cluster analysis result in
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large variation in the prediction, which suggesiat tusing the actual internal load schedules
of specific households could substantially imprdahie accuracy of the building energy
prediction.

The effect of different zoning and internal loadhesduling strategies was examined in
the context of large-scale retrofit decision-makifige use of different zoning strategies and
different internal load schedules all selectedréteofit option C (infiltration treatment) as the
best choice, which suggests that, for the speciiiicate and the baseline assumptions for the
retrofits, the most simplified thermal zoning stigy (modelling the entire house as a single
zone) is sufficient to reliably evaluate the pemfance of different retrofit options. In this
case study, options A and C (wall insulation, anfiltration treatment) are the top two
retrofit options, but the variations in the enesgying potential are large for these top retrofit
options. It was also found that the level of enesgying potential achievable by the same set
of retrofit options substantially depends on thtennal load schedules of each household. In
addition, the case study demonstrated that thenialtéoad schedules derived on the basis of
the cluster analysis effectively predict the averagergy saving prediction of retrofit options
for all clusters. It may appear that the compaeatsult analysis is more likely a validation
to the simulation results, as different zoning amdrnal load scheduling strategies all result
in selecting the same retrofit options. In theaktranalysis, the energy saving potential of
different clusters is diverse, which implies thlaé tinformation of household internal load
schedules can be valuable for urban-planners #@rdétision-making between retrofitting
scenarios. For instance, simulations with smartemdata could help to identify the target
retrofit groups with higher energy-saving potenti@luster analysis of the electricity data
from smart meters is a useful method to understaocupancy-related schedules of
households and cost-effectively maximise the ensegyng potential of the limited retrofit

funding provided by the government.
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There is a need to note that the heating set-p@mperature is not included under the
scope of this paper due to lack of data, and neithaocio-economic analysis within the
scope of research. This paper only explored theotisetual internal load profiles used for
the simulation of electricity scheduling strategi€his paper is not aimed at generalising the
findings and conclusions from a single case st&igilar studies should be expanded to
address more building designs in different climatnditions. Overall, this study has
contributed to the understanding of how occupanagtepns affect the energy savings
achievable using different retrofit measures, amisao propose an effective method that
could be used for urban-planners, modellers, anlitypmakers for large-scale retrofit

analysis and retrofit policy design.
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Highlights

e Single-zone simulation with smart meter data to improve simulation efficiency
e Retrofit energy saving potential is impacted by occupants’ energy use patterns
e Cluster centroid profiles to capture variations in occupancy-related schedules

e Use cluster method to select priority group for house thermal retrofit



