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Non-termination is the root cause of a variety of program bugs, such as hanging programs and denial-of-
service vulnerabilities. This makes an automated analysis that can prove the absence of such bugs highly
desirable. To scale termination checks to large systems, an interprocedural termination analysis seems
essential. This is a largely unexplored area of research in termination analysis, where most effort has
focussed on small but difficult single-procedure problems.

We present a modular termination analysis for C programs using template-based interprocedural summari-
sation. Our analysis combines a context-sensitive, over-approximating forward analysis with the inference of
under-approximating preconditions for termination. Bit-precise termination arguments are synthesised over
lexicographic linear ranking function templates. Our experimental results show the advantage of interproce-
dural reasoning over monolithic analysis in terms of efficiency, while retaining comparable precision.

CCS Concepts: •Theory of computation→ Program analysis; Program verification;

1. INTRODUCTION
Termination bugs compromise safety-critical software systems by making them un-
responsive. In particular, termination bugs can be exploited in denial-of-service at-
tacks [CVE 2009]. Termination guarantees are therefore instrumental for ensuring
software reliability. Termination provers are static analysis tools that aim to construct
a proof of termination for a given input program and the implementations of these tools
have made tremendous progress in the past few years. They compute proofs for com-
plex loops that may require linear lexicographic (e.g., [Ben-Amram and Genaim 2013;
Ben-Amram and Genaim 2014; Leike and Heizmann 2014]) or non-linear termination
arguments (e.g., Bradley et al. [2005b]) in a completely automatic way. However, there
remain major practical challenges in analysing the termination of real-world code.

First of all, as observed by Falke et al. [2012], most approaches in the literature are
specialised to linear arithmetic over unbounded mathematical integers. Even though
unbounded arithmetic may reflect the intuitively-expected program behaviour, the
program actually executes over bounded machine integers. The semantics of C allows
unsigned integers to wrap around when they over/underflow. Hence, arithmetic on k-
bit-wide unsigned integers must be performed modulo 2k. According to the C standards,
over/underflows of signed integers are undefined behaviour, but practically also wrap
around on most architectures. Thus, accurate termination analysis requires a bit-precise
analysis of the program semantics (i.e., an analysis that captures the semantics of
programs down to each individual bit by using machine arithmetic). Tools must be
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configurable with architectural specifications such as the width of data types and
endianness. The following examples illustrate that termination behaviour on machine
integers can be completely different than on mathematical integers. For example, the
program fragment
void foo1 (unsigned n)
{

for (unsigned x=0; x<=n ; x ++) ;
}
does terminate with mathematical integers, but does not terminate with machine
integers if n equals the largest unsigned integer. On the other hand, the program
fragment
void foo2 (unsigned x )
{

while ( x>=10) x++;
}
does not terminate with mathematical integers, but terminates with machine integers
because unsigned machine integers wrap around.

A second challenge is to make termination analysis scale to larger programs. The
annual Software Verification Competition (SV-COMP) [Beyer 2016] includes a division
in termination analysis, which reflects a representative picture of the state of the art.
The SV-COMP 2016 termination benchmarks contain challenging termination problems
on smaller programs with at most 453 instructions (average 53), feature at most seven
functions (average three) and four loops (average one).

In this paper, we present a technique that we have successfully run on programs
that are one order of magnitude larger, containing up to 5000 instructions. Larger
instances require different algorithmic techniques to scale, and we conjecture that the
key technique is a modular, interprocedural analysis which decomposes a problem into
sub-problems rather than a monolithic analysis which would put all its resources into
solving the problem all at once.

Modular termination analysis raises several conceptual and practical challenges
that do not arise in monolithic termination analysers. For example, when proving
termination of a program, a possible approach is to prove that all procedures in the
program terminate universally, i.e., in any possible calling context. However, this
criterion is too optimistic, as termination of individual procedures often depends on the
calling context, i.e., procedures terminate conditionally only in specific calling contexts.

The approach that we take is verifying universal program termination in a top-down
manner by proving termination of each procedure relative to its calling contexts, and
propagating upwards which calling contexts guarantee termination of the procedure.
It is too difficult to determine these contexts precisely; analysers thus compute pre-
conditions for termination. A sufficient precondition identifies pre-states in which the
procedure will definitely terminate, and is thus suitable for proving termination. By
contrast, a necessary precondition identifies pre-states in which the procedure may
terminate. Its negation are states in which the procedure will not terminate, which is
useful for proving non-termination.

In this paper we focus on the computation of sufficient preconditions for termination.
Preconditions enable information reuse, and thus scalability, as it is frequently possible
to avoid repeated analysis of parts of the code base, e.g., libraries whose procedures are
called multiple times or parts of the code that did not undergo modifications between
successive analysis runs.
Contributions:
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(1) We propose an algorithm for interprocedural termination analysis. The approach is
based on a template-based static analysis using SAT solving. It combines context-
sensitive, summary-based interprocedural analysis with the inference of precondi-
tions for termination based on template abstractions. Note that, while each of the
components in isolation is not novel, it is non-trivial to combine them in a way that
achieves both scalability and precision. We focus on non-recursive programs, which
cover a large portion of software written, especially in domains such as embedded
systems.

(2) We provide an implementation of the approach in 2LS, a static analysis tool for
C programs [Schrammel and Kroening 2016]. Our instantiation of the algorithm
uses template polyhedra and lexicographic, linear ranking functions templates. The
analysis is bit-precise and purely relies on SAT-solving techniques.

(3) We report the results of an experimental evaluation on 597 procedural SV-COMP
benchmarks with 1100 to 5700 lines of code (2705 on average), 33 to 136 procedures
(67 on average), and four to ten loops (5.5 on average), thus demonstrating the
scalability and applicability of the approach to programs with thousands of lines of
code.

This article is a thoroughly revised version of the paper [Chen et al. 2015], extended
with the lexicographic ranking function synthesis algorithm, more detailed examples,
proofs, illustrations (cf. [Schrammel 2016]), and an experimental comparison with the
most recent version of the available termination analysers.

2. PRELIMINARIES
In this section, we introduce basic notions of interprocedural termination analysis,
template abstract domains and their usage to reduce second-order problems to first-
order ones.

2.1. Program model and notation
We consider non-recursive programs with multiple procedures. We assume that pro-
grams are given in terms of acyclic call graphs, where individual procedures f are
given in terms of symbolic input/output transition systems. Formally, the input/output
transition system of a procedure f is a triple (Initf ,Transf ,Outf ), where Transf (x,x′)
is the transition relation; the input relation Initf (xin,xs) defines the initial states
xs of the transition system and relates them to the inputs xin; the output relation
Outf (xs,x,xout) connects the transition system to the outputs xout of the procedure.
Inputs are procedure parameters, global variables, and memory objects that are read
by f . Outputs are return values, and potential side effects such as global variables and
memory objects written by f . Internal states x are commonly the values of variables at
the loop heads in f .

These relations are given as first-order logic formulae resulting from the logical encod-
ing of the program semantics (using e.g. bitvector and array theories). For illustration,
Figure 2 gives the encoding of the two procedures in Figure 1 into such formulae.

When mapping back to the notation above, the input xin of f is zin and the output
xout consists of the return value denoted wout. The transition relation of h encodes the
loop over the internal state variables (x, y). We may need to introduce Boolean variables
gi to model the control flow. Multiple and nested loops can be similarly encoded in the
relation Trans.

Note that we view these formulae as predicates, e.g., Trans(x,x′), with given pa-
rameters x,x′, and mean the substitution Trans[a/x, b/x′] when we write Trans(a, b).
We omit the parameters and simply write Trans when these are not relevant or clear
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1 unsigned h(unsigned y ) {
2 unsigned x ;
3 for ( x=0; x<10; x+=y ) ;
4 return x ;
5 }

1 unsigned f (unsigned z ) {
2 unsigned w;
3 w=h( z / 2 + 1 ) ;
4 return w;
5 }

Fig. 1: Example for conditional termination

Inith((yin), (xs, ys)) ≡ (xs=0 ∧ ys=yin)
Transh((x, y), (x′, y′)) ≡ (x′=x+y ∧ x<10 ∧ y′=y)

Outh((xs, ys), (x, y), (xout)) ≡ (xout=x ∧ ¬(x<10))

Initf ((zin), (zs)) ≡ (zs=zin)
Transf ((z), (z′)) ≡ true

Outf ((zs), (z), (wout)) ≡ (pin=zs/2+1 ∧ h0((pin), (pout)) ∧ wout=pout)

Fig. 2: Encoding of the functions h and f from Example 1

from the context. Moreover, we write x and x with the understanding that the former is
a vector, whereas the latter is a scalar.

Each call to a procedure h at call site i in a procedure f is modelled by a placeholder
predicate hi(xpin

i ,xpout

i ) occurring in the formulae Initf , Transf , and Outf for f . The
placeholder predicate ranges over intermediate variables representing its actual input
and output parameters xpin

i and xpout

i , respectively. Placeholder predicates evaluate
to true, which corresponds to havocking procedure calls. In procedure f in Figure 2,
the placeholder for the procedure call to h is h0((pin), (pout)) with the actual input and
output parameters pin and pout, respectively.

To give a further example, the procedures in Figure 3 can be encoded as follows:
Procedure inc:

Init((iin), (is)) = (iin=is)
Trans((i), (i′)) = true

Out((is), (i), (iout)) = (iout=is+1)

Procedure inc if pos:

Init((xin, yin), (xs, ys)) = (xs=xin ∧ ys=yin)
Trans((x, y), (x′, y′)) = true

Out((xs, ys), (x, y), (xout)) = (g0=(ys>0.0) ∧ inc0((xs), (x0)) ∧ xout=(g0?x0:xs))

Note that we encode the control flow join after the if statement using the conditional
operator1 on the if ’s condition g0. Since the procedure call to inc is inside the if with
condition g0, we call g0 the guard of procedure inc. More details on the program repre-
sentation can be found in the elaborate example containing nested loops in Section 4.3,
as well as in [Brain et al. 2015].

2.2. Interprocedural Analyses
We introduce the notation for the basic concepts of interprocedural analyses.

Definition 2.1 (Invariants, Summaries, Calling Contexts). For a procedure given by
the triplet (Init ,Trans,Out) we define:

1The conditional operator c?a:b returns a if c evaluates to true, and b otherwise.
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1 int inc ( int i ) {
2 return i +1;
3 }

1 int i n c i f p o s ( int x , float y ) {
2 i f ( y>0.0 f ) {
3 x=inc ( x ) ;
4 }
5 return x ;
6 }

Fig. 3: Example for encoding procedures

— An invariant is a predicate Inv such that:

∀xin,xs,x,x′ :
(
Init(xin,xs) =⇒ Inv(xs,xs)

)
∧(

Inv(xs,x) ∧ Trans(x,x′) =⇒ Inv(xs,x′)
)

— Given an invariant Inv , a summary is a predicate Sum such that:

∀xin,xs,x,xout :
Init(xin,xs) ∧ Inv(xs,x) ∧Out(xs,x,xout) =⇒ Sum(xin,xout)

— Given an invariant Inv , the calling context for a procedure call h at call site i in the
given procedure is a predicate CallCtxhi such that

∀xin,xs,x,x′,xpin

i ,xpout

i :
Init(xin,xs) ∧ Inv(xs,x) ∧ Trans(x,x′) ∧Out(xs,x,xout) =⇒ CallCtxhi

(xpin

i ,xpout

i )

These concepts have the following roles: Invariants abstract the effect of loops on
variables. Summaries abstract the behaviour of called procedures; they are used to
strengthen the placeholder predicates. Calling contexts abstract the caller’s behaviour
w.r.t. the procedure being called, i.e., they are an assumption about the callee’s execution
environment in the sense of assume-guarantee reasoning [Grumberg and Long 1994].
When analysing the callee, these calling contexts are used to constrain its inputs and
outputs.

We give a short example to illustrate the Inv and Sum notions.

1 int add ( int x , int y )
2 {
3 for ( int i =0; i<y ; i ++)
4 x++;
5 return x ;
6 }

In terms of our program model, we can encode this procedure as follows.

Init((xin, yin), (xs, ys, is)) = (xs = xin ∧ ys = yin ∧ is = 0)

Trans((x, y, i), (x′, y′, i′)) = (i < y ∧ i′ = i+ 1 ∧ x′ = x+ 1 ∧ y′ = y)

Out((xs, ys, is), (x, y, i), (xout)) = (xout = x ∧ ¬(i < y))

Our definition of Inv allows us to relate the current state (x, y, i) inside the loop with the
state (xs, ys, is) at loop entry. Inv((xs, ys, is), (x, y, i)) = (0 ≤ i ≤ y ∧ x = xs + i) satisfies
the definition above and we can use it to derive the summary Sum((xin, yin), (xout)) =
(xout = xin + yin). In Section 3 we will discuss these notions in more details on the
program in Figure 1.

Since we want to reason about termination, we need the notions of ranking functions
and preconditions for termination.
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Definition 2.2 (Ranking function). A ranking function for a procedure (Init , Trans,
Out) is a function r such that

∃∆ > 0, Inv : ∀xin,xs,x,x′ :(
Init(xin,xs) =⇒ Inv(xs,xs)

)
∧ (Inv(xs,x) ∧ Trans(x,x′) =⇒ Inv(xs,x′) ∧ r(x)−r(x′)>∆ ∧ r(x)>0)

Thus, r is a function from the set of program states to a well-founded domain, e.g. R≥0.

We denote by RR(x,x′) the constraints on r that form the termination argument, i.e.,
r(x)− r(x′) > ∆∧ r(x) > 0 for monolithic ranking functions. The existence of a ranking
function for a procedure guarantees its universal termination.

The weakest termination precondition for a procedure describes the inputs for which
it terminates. If it is true, the procedure terminates universally; if it is false, then it will
not terminate for any input. Since the weakest precondition is intractable to compute
or even uncomputable, we under-approximate2 the precondition. Thus, we compute a
sufficient precondition denoting a subset of the terminating inputs. Consequently, a
sufficient precondition for termination guarantees that the program terminates for all
xin that satisfy it.

Definition 2.3 (Precondition for termination). Given a procedure (Init ,Trans,Out),
a sufficient precondition for termination is a predicate Precond such that

∃RR, Inv : ∀xin,xs,x,x′ :(
Precond(xin) ∧ Init(xin,xs) =⇒ Inv(xs,xs)

)
∧ (Inv(xs,x) ∧ Trans(x,x′) =⇒ Inv(xs,x′) ∧RR(x,x′)) .

Note that false is always a trivial model for Precond , but not a very useful one.
A sufficient precondition for termination under-approximates the weakest precondi-

tion, i.e., it contains only inputs for which the program terminates, but not all of them.
The complement of the sufficient precondition over-approximates the inputs for which
the program does not terminate, i.e., it contains all inputs for which the program does
not terminate, but it also contains some inputs for which the program terminates.

2.3. Reduction from Second-order to First-order Problems
Our approach requires us to effectively solve second-order problems. We achieve this by
reducing them to first-order by restricting the space of solutions to expressions of the
form T(xs,x,d) where

— d are parameters to be instantiated with concrete values and xs,x are vectors of
program variables.

— T is a template that gives a blueprint for the shape of the formulas to be computed.

Choosing a template is analogous to choosing an abstract domain in abstract interpre-
tation [Cousot and Cousot 1977]. To allow for a flexible choice, we consider template
polyhedra [Sankaranarayanan et al. 2005]. Polyhedral templates subsume intervals,
zones and octagons [Miné 2006].

We now state a soundness result (where, given a formula σ over existential variables d,
∃d.σ(d), we call d a satisfying model of σ if d |= σ(d)):

2Given two formulae A and B, we say that A is an under-approximation of B if A→B. Conversely, we call B
an over-approximation of A.
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THEOREM 2.4. Any satisfying model d of the reduction of the second-order constraint
for invariants in Definition 2.1 using template T

∃d,∀xin,xs,x,x′ :
(
Init(xin,xs) =⇒ T(xs,x,d)

)
∧ (T(xs,x,d) ∧ Trans(x,x′) =⇒ T(xs,x′,d))

satisfies ∃Inv : ∀xs,x : Inv(xs,x) =⇒ T(xs,x,d), i.e., T(xs,x,d) is a sound over-
approximating invariant. Similar soundness results hold true for summaries and calling
contexts.

PROOF SKETCH. Let PInv be the set of all first-order formulae over variables xs,x.
Let D be the domain of d. Then PT =def {T(xs,x,d)|d ∈ D} is the set of first-order
formulae that T can describe. Obviously, we have PT ⊆ PInv . Assume that T(xs,x,d) is
not a sound over-approximating invariant, i.e., ¬∃Inv : ∀xs,x : Inv(xs,x) =⇒ T(xs,x,d),
then ∀Inv : ∃xs,x : Inv(xs,x) ∧ ¬T(xs,x,d). However, since PT ⊆ PInv there must be a
Inv ∈ PInv such that Inv equals T(xs,x,d), which contradicts the assumption.

In the above, we call d a satisfying model to mean that d |= (∀xin,xs,x,x′ :
Init(xin,xs) =⇒ T(xs,x,d)) ∧ (T(xs,x,d) ∧ Trans(xs,x,x′) =⇒ T(xs,x′,d)). We will
consider the same meaning whenever using the term “satisfying model” in the rest of
the paper (for both first-order and second-order existentially quantified entities).

Similar approaches for template-based synthesis have been described, for instance,
by Gawlitza and Seidl [2007], Gulwani et al. [2008], and Li et al. [2014]. However, these
methods consider programs over mathematical integers.

Note that the second-order logic formulae are independent of specific theories. In the
implementation, they are solved by a series of first-order formulae using quantifier-
free bitvectors and array theory. The corresponding synthesis algorithms have been
presented by Brain et al. [2015].

3. OVERVIEW OF THE APPROACH
In this section, we introduce the architecture of our interprocedural termination analy-
sis. Our analysis combines, in a non-trivial synergistic way, the inference of invariants,
summaries, calling contexts, termination arguments, and preconditions, which have a
concise characterisation in second-order logic (see Definitions 2.1, and 2.3). At the lowest
level our approach relies on the solver back-end for second-order problems described in
Section 2.3. Details about the exact constraints solved by the back-end will be given in
Section 5.

To see how the different analysis components fit together, we now go through the
pseudo-code of our termination analyser (Algorithm 1). We use three global maps Sumso,
Invso, and Precondsu to store the summaries, invariants and preconditions that we
compute for procedures f of the program. Function analyze is given the entry procedure
fentry of the program as argument and proceeds in two analysis phases.

Phase one is an over-approximate forward analysis, given in subroutine
analyzeForward , which recursively descends into the call graph from the entry
point fentry . Subroutine analyzeForward infers for each procedure call in f an
over-approximating calling context CallCtx o, using procedure summaries and other
previously-computed information. Before analyzing a callee, the analysis checks if the
callee has already been analysed and whether the stored summary can be re-used, i.e.,
if it is compatible with the new calling context CallCtx o. Finally, once summaries for
all callees are available, the analysis infers loop invariants and a summary for f itself,
which are stored for later re-use.

The second phase is an under-approximate backward analysis, subroutine
analyzeBackward , which infers termination preconditions. Again, we recursively de-
scend into the call graph. Analogous to the forward analysis, we infer for each procedure
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Algorithm 1: analyze
1 global Sumso, Invso,Precondsu;
2 function analyzeForward(f,CallCtx o

f )
3 foreach procedure call h in f do
4 CallCtx o

h = compCallCtx o(f,CallCtx o
f , h);

5 if needToReAnalyzeo(h,CallCtx o
h) then

6 analyzeForward(h,CallCtx o
h);

7 joino((Sumso[f ], Invso[f ]), compInvSumo(f,CallCtx o
f ))

8 function analyzeBackward(f,CallCtxu
f )

9 termConds = CallCtxu
f ;

10 foreach procedure call h in f do
11 CallCtxu

h = compCallCtxu(f,CallCtxu
f , h);

12 if needToReAnalyzeu(h,CallCtxu
h) then

13 analyzeBackward(h,CallCtxu
h);

14 termConds ← termConds ∧ Precondsu[h];

15
joinu(Precondsu[f ],

compPrecondTerm(f, Invso[f ], termConds);

16 function analyze(fentry)
17 analyzeForward(fentry , true);
18 analyzeBackward(fentry , true);
19 return Precondsu[fentry ];

call in f an under-approximating calling context CallCtxu and recur only if necessary
(Line 12). Finally, we compute the under-approximating precondition for termination
(Line 15). This precondition is inferred w.r.t. the termination conditions that have been
collected: the backward calling context (Line 9), the preconditions for termination of
the callees (Line 14), and the termination arguments for f itself. Note that superscripts
o and u in predicate symbols indicate over- and under-approximation, respectively.

We explain the subroutines joino, joinu, needToReAnalyzeo, and needToReAnalyzeu in
Section 5.3.

Challenges. Our algorithm uses over- and under-approximation in a systematic way
in order to address the challenging problem of finding meaningful preconditions by a
context-sensitive interprocedural termination analysis.

— The precondition in Definition 2.3 admits the trivial solution false for Precond . How
do we find a good candidate? To this end, we “bootstrap” the process with a candidate
precondition: a single value of xin, for which we compute a termination argument.
The key observation is that the resulting termination argument is typically more
general, i.e., it shows termination for many further entry states. The more gen-
eral precondition is then computed by precondition inference w.r.t. the termination
argument.

— A second challenge is to compute under-approximations. Obviously, the predicates
in the definitions in Section 2 can be over-approximated using abstract domains
such as intervals. However, there are only few methods for under-approximating
analysis. In this work, we use a method similar to Cook et al. [2008] to obtain
under-approximating preconditions w.r.t. property p: we infer an over-approximating
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precondition w.r.t. ¬p and negate the result. In our case, p is the termination condition
termConds.

Example 3.1. We illustrate the algorithm on the simple example given in Figure 1
with the encoding given in Figure 2. The entry procedure f calls procedure h. Procedure
h terminates if and only if its argument y is non-zero, i.e., procedure h only terminates
conditionally. The termination of procedure f depends on the argument passed in the
call to h. For instance, passing an argument strictly greater than 0 guarantees universal
termination of procedure f.

Let us assume that unsigned integers are 32 bits wide, i.e., they range from 0 to M
(with M = 232−1). We use the interval abstract domain for invariant, summary and
precondition inference, but the abstract domain with the elements {true, false} that can
only express reachability of a procedure call for calling contexts. Thus, true means that
the call is reachable, and false means that it is unreachable.

Our algorithm proceeds as follows. The first phase is analyzeForward , which starts
from the entry procedure f. By descending into the call graph, we must compute an
over-approximating calling context CallCtx o

h((pin), (pout)) for procedure h for which no
calling context has been computed before. This calling context is true because the
call is reachable. Hence, we recursively analyse h. Given that h does not contain any
procedure calls, we compute the over-approximating summary Sumo

h((yin), (xout)) =
(0≤yin≤M∧0≤xout≤M) and invariant Invo

h((xs, ys), (x, y))) = (0≤x≤M∧0≤y≤M). Now,
this information can be used in order to compute Sumo

f ((zin), (wout)) = (0≤zin≤M ∧
0≤wout≤M) and invariant Invo

f ((zs), (z)) = true for the entry procedure f. As explained
in Section 2.3, we use synthesis techniques that iteratively call an Satisfiability Modulo
Theories (SMT) solver to optimise values of template parameters in order to compute
these predicates.

The backwards analysis starts again from the entry procedure f. It computes an
under-approximating calling context CallCtxu

h((pin), (pout)) for procedure h, which is true
(because h is always backwards reachable from f’s exit point), before descending into
the call graph. It then computes an under-approximating precondition for termination
Precondu

h((yin)) = (1≤yin≤M) or, more precisely, an under-approximating summary
whose projection onto the input variables of h is the precondition Precondu

h. By applying
this summary at the call site of h in f, we can now compute the precondition for
termination Precondu

f ((zin)) = (0≤zin≤M) of f, which proves universal termination
of f.

We illustrate the effect of the choice of the abstract domain on the analysis of the
example program. Assume we replace the {true, false} domain by the interval domain.
In this case, analyzeForward computes3

CallCtx o
h((pin), (pout)) = (1≤pin≤231 ∧ 0≤pout≤M)

The calling context is computed over the actual parameters pin and pout. It is renamed
to the formal parameters yin and xout (the return value) when CallCtx o

h is used for
constraining the pre/postconditions in the analysis of h. Subsequently, analyzeBackward
computes the precondition for termination of h using the union of all calling contexts in
the program. Since h terminates unconditionally in these calling contexts, we trivially
obtain Precondu

h((yin)) = (1≤yin≤231), which in turn proves universal termination of f.

4. INTRAPROCEDURAL TERMINATION ANALYSIS
In this section, we explain the termination analysis for one procedure. The results in
this section will be used in Section 5 for the interprocedural termination analysis.

3Note that bM
2
c+ 1 = 231.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



0:10 Chen, David, Kroening, Schrammel, Wachter

4.1. Lexicographic Ranking Functions
Monolithic ranking functions are complete, i.e., termination can always be proven
monolithically if a program terminates. However, in practice, combinations of linear
ranking functions, e.g., linear lexicographic functions [Bradley et al. 2005a; Cook et al.
2013] are preferred. This is driven by the fact that monolithic linear ranking functions
are not expressive enough, and that non-linear theories are challenging for the existing
SMT solvers, which handle the linear case much more efficiently.

Definition 4.1 (Lexicographic ranking function). A lexicographic ranking func-
tion R for a transition relation Trans(x,x′) is an n-tuple of expressions (Rn,Rn−1, . . . ,
R1) such that

∃∆ > 0, Inv : ∀xin,xs,x,x′ :(
Init(xin,xs) =⇒ Inv(xs,xs)

)
∧
(
Inv(xs,x) ∧ Trans(x,x′) =⇒ Inv(xs,x′) ∧ ∃i ∈ [1, n] :

Ri(x) > 0 (Bounded)
∧ Ri(x)− Ri(x

′) > ∆ (Decreasing)
∧ ∀j > i : Rj(x)− Rj(x

′) ≥ 0
)

(Non-increasing)

Notice that this is a special case of Definition 2.2. In particular, the existence of ∆ > 0
and the Bounded condition guarantee that > is a well-founded relation.

Before we encode the requirements for lexicographic ranking functions into con-
straints, we need to optimise them to take advantage of bit-vector semantics. Since
bit-vectors are bounded, it follows that the Bounded condition is trivially satisfied and
therefore can be omitted. Moreover, bit-vectors are discrete, hence we can replace the
Decreasing condition with Ri(x)− Ri(x

′) > 0. The following formula, LRn, holds if and
only if (Rn,Rn−1, . . . ,R1) is a lexicographic ranking function with n components over
bit-vectors.

LRn(x,x′) =

n∨
i=1

Ri(x)− Ri(x
′) > 0 ∧

n∧
j=i+1

(Rj(x)− Rj(x
′) ≥ 0)


Assume we are given the transition relation Trans(x,x′) of a procedure f . The procedure
f may be composed of several loops, and each of the loops is associated with guards
g (and g′) that express the reachability of the loop head (and the end of the loop
body, respectively; see Section 2.3). That is, suppose f has k loops and ni denotes the
number of lexicographic components for loop i, then the termination argument to prove
termination of f takes the form:

RRn(x,x′) =

k∧
i=1

gi ∧ g′i =⇒ LRni
i (x,x′)

4.2. Synthesising Lexicographic Ranking Functions
In this section, we show how to compute lexicographic ranking functions. While ranking
techniques for mathematical integers use e.g., Farkas’ Lemma, this is not applicable to
bitvector operations. Thus, we use a synthesis approach (like the TAN tool by Kroening
et al. [2010]) and extend it from monolithic to lexicographic ranking functions.

We consider the class of lexicographic ranking functions generated by the tem-
plate where Ri(x) is the product `ix with the row vector `i of template parameters.
We denote the resulting constraints for loop i as LRni

i (x,x′, Lni
i ), where Lni

i is the
vector (`1i , . . . , `

ni
i ). The constraints for the ranking functions of a whole procedure are

RR(x,x′,Ln), where Ln is the vector (Ln1
1 , . . . , Lnk

k ).
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Putting all this together, we obtain the following reduction of ranking function
synthesis to a first-order quantifier elimination problem over templates:

∃Ln : ∀xs,x,x′ : Inv(xs,x) ∧ Trans(x,x′) =⇒ RR(x,x′,Ln)

The parameters Lni
i are signed bitvectors extended by the special value > in order

to complete the lattice of ranking constraints LRni
i . We define LRni

i (x,x′,>) ≡ true
indicating that no ranking function has been found for the given template (“don’t know”).
We write ⊥ for the equivalence class of bottom elements for which LRni

i (x,x′, Lni
i )

evaluates to false, meaning that the ranking function has not yet been computed. For
example, 0 is a bottom element. Note that this intuitively corresponds to the meaning of
⊥ and > as known from invariant inference by abstract interpretation (see Section 2.3).

Algorithm 2: compTermArg

Input: procedure f with invariant Inv , a bound on the number of lexicographic
components N

Output: ranking constraint RR
1 n← 1k; Λn ← ⊥k; M ← ∅k;
2 let ϕ = Inv(x) ∧ Trans(x,x′);
3 while true do
4 let ψ = ϕ ∧ ¬RR(x,x′,Λn);
5 solve ψ for x,x′;
6 if UNSAT then return RR(x,x′,Λn);
7 let (χ,χ′) be a model of ψ;
8 let i ∈ {i | ¬(gi ∧ g′i ⇒ LRni

i (χ,χ′,Λni
i ))};

9 Mi ←Mi ∪ {(χ,χ′)};
10 let θ =

∧
(χ,χ′)∈Mi

LRni
i (χ,χ′, Lni

i );
11 solve θ for Lni

i ;
12 if UNSAT then
13 if ni < N then ni←ni+1; Λni

i =⊥; Mi =∅ ;
14 else return RR(x,x′,>k);
15 else
16 let m be a model of θ;
17 Λni

i ← m;

We now use the example in Figure 4 to walk through Algorithm 2. The left-hand side
of Figure 4 is the C code and the right-hand side is its transition relation.

The ranking template with a single component is of the form

x > 0 =⇒ (`1xx+ `1yy)− (`1xx
′ + `1yy

′) > 0

with L(1) = ((`1x, `
1
y)). The ranking template with two components is of the form

x > 0 =⇒
(

(`1xx+ `1yy)− (`1xx
′ + `1yy

′) > 0 ∨
(`2xx+ `2yy)− (`2xx

′ + `2yy
′) > 0 ∧ (`1xx+ `1yy)− (`1xx

′ + `1yy
′) ≥ 0

)
with L(2) = ((`1x, `

1
y), (`2x, `

2
y)). Since the procedure only has a single loop, we will

omit the guard (g = true). Also, we assume that we have obtained the invariant
Inv((xs, ys), (x, y)) = true. We use Latin letters such as x to denote variables and Greek
letters such as χ to denote the values of these variables.
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int x=1, y=1;
while(x>0) {

if(y<10) x=nondet();
else x--;
if(y<100) y++;

}

Trans((x, y), (x′, y′)) =
x>0⇒

(
(y≥10 ⇒x′=x−1)
∧ (y<100⇒ y′=y+1)
∧ (y≥100⇒ y′ = y)

)
∧

x≤0⇒
(
x′ = x ∧ y′ = y

)
Fig. 4: Example for Algorithm 2 (with simplified Trans)

In each iteration, our algorithm checks the validity of the current ranking function
candidate. If it is not yet a valid ranking function, the SMT solver returns a counterex-
ample transition. Then, a new ranking function candidate that satisfies all previously
observed counterexample transitions is computed. This process is guaranteed to ter-
minate because of the finiteness of the state space. However, with a few heuristic
optimisations (see Section 6), it terminates after a few iterations in practice.

We start from the bottom element for ranking functions with a single component
(Line 1) and solve the corresponding formula ψ, which is x > 0 ∧ Trans((x, y), (x′,
y′)) ∧ ¬false (Line 5). The formula ψ is satisfiable with the model (1, 99, 0, 100) for
(x, y, x′, y′), for instance. This model entails the constraint (1`1x+99`1y)−(0`1x+100`1y) > 0,
i.e., we have `1x − `1y > 0 in Line 10, from which we compute values for the template
coefficients `x and `y. This formula is given to the solver (Line 11) which reports SAT
with the model (1, 0) for (`x, `y), for example. We use this model to update the vector
of template parameter values Λ1

1 to (1, 0) (Line 17), which corresponds to the ranking
function x.

We then continue with the next loop iteration, and check the current ranking function
(Line 5). The formula x > 0∧Trans∧¬(x−x′ > 0) is satisfiable by the model (1, 1, 1001, 2)
for (x, y, x′, y′), for instance. This model entails the constraint (`1x+`1y)−(1001`1x+2`1y) > 0,
i.e., −1000`1x − `1y > 0 in Line 10, which is conjoined with the constraint `1x − `1y > 0 from
the previous iteration. The solver (Line 11) will tell us that this is UNSAT.

Since we did not find a ranking function we add another component to the lexico-
graphic ranking function template (Line 13), and try to solve again (Line 5) and the
solver might again return the model (1, 1, 1001, 2) for (x, y, x′, y′), for instance. Then in
Line 11, we have to check the satisfiability of the constraint (`1x+`1y)−(1001`1x+2`1y)>0∨
(`2x + `2y) − (1001`2x + 2`2y) > 0 ∧ (`1x + `1y) − (1001`1x + 2`1y) ≥ 0, which simplifies to
−1000`1x − `1y > 0 ∨ −1000`2x − `2y > 0 ∧ −1000`1x − `1y ≥ 0. The solver might report that
the model (0,−1, 0,−1) for (`2x, `

2
y, `

1
x, `

1
y) satisfies the constraints. We use this model to

update the ranking function to (−y,−y).
We then continue with the next loop iteration, and check the current ranking function

(Line 5). The formula x > 0 ∧ Trans ∧ ¬(−y + y′ > 0) is satisfiable by the model
(1, 100, 0, 100) for (x, y, x′, y′), for instance. We conjoin the constraint (`1x + 100`1y)− (0`1x +

100`1y)>0 ∨ (`2x + 100`2y)− (0`2x + 100`2y) > 0 ∧ (`1x + 100`1y)− (0`1x + 100`1y) ≥ 0, simplified
`1x>0∨ `2x > 0∧ `1x ≥ 0, with the constraint from the previous iteration −1000`1x− `1y > 0∨
−1000`2x− `2y > 0∧−1000`1x− `1y ≥ 0, and solve it. The solver might report that the model
(0,−1, 1, 0) for (`2x, `

2
y, `

1
x, `

1
y) satisfies the constraints. We use this model to update the

ranking function to (−y, x).
Finally, we check whether there is another model for (−y, x) not being a ranking

function (Line 5), but this time the solver reports the formula to be UNSAT and the
algorithm terminates, returning the ranking function (−y, x).
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4.3. A Worked Example: Bubble Sort
In this section, we illustrate the intraprocedural analysis on an example with nested
loops by using the Bubble Sort procedure. The procedure below takes an array a and
the size n of the array. Note that memory safety is an orthogonal issue. Therefore we
can assume that n indeed corresponds to the actual size of a. Moreover, we make use
of CPROVER assume(n>=0) in order to restrict the possible values of n to non-negative
array sizes and thus prevent the underflow in the loop condition x<n-1 of the outer loop.
The procedure swap is assumed to be terminating.

1 void sort ( int n , int a [ ] )
2 {
3 CPROVER assume(n>=0);
4

5 for ( int x=0; x<n−1; x++)
6 for ( int y=0; y<n−x−1; y++)
7 i f ( a [ y]>a [ y +1])
8 swap ( a [ y ] , a [ y + 1 ] ) ;
9 }

We give the encoding of this procedure into our program model below. The guard g
expresses reachability of the head of the inner loop. The outer loop has guard true.

Init((nin, ain), (ns, as, xs, ys, gs)) =
(
(ns = nin) ∧ (as = ain) ∧ (xs = 0) ∧ ¬gs

)
Assumptions((ns, as, xs, ys, gs), (n, a, x, y, g)) = (ns ≥ 0)

Trans((n, a, x, y, g), (n′, a′, x′, y′, g′)) =(
¬g ∧ (x < n− 1) =⇒

(n′ = n) ∧ (a′ = a) ∧ (x′ = x) ∧ (y′ = 0) ∧ g′
)

(A)
∧
(
g ∧ ¬(y < n− x− 1) =⇒

(n′ = n) ∧ (a′ = a) ∧ (x′ = x+ 1) ∧ (y′ = y) ∧ ¬g′
)

(B)
∧
(
g ∧ (y < n− x− 1) ∧ (a[y] > a[y + 1] =⇒

(n′ = n) ∧ (a′ = swap(a[y], a[y + 1])) ∧ (x′ = x) ∧ (y′ = y + 1) ∧ g′
)

(C)
∧
(
g ∧ (y < n− x− 1) ∧ ¬(a[y] > a[y + 1]) =⇒

(n′ = n) ∧ (a′ = a) ∧ (x′ = x) ∧ (y′ = y + 1) ∧ g′
)

(D)
∧
(
¬(x < n− 1) =⇒

(n′ = n) ∧ (a′ = a) ∧ (x′ = x) ∧ (y′ = y) ∧ (g′ = g)
)

(E)

Out((ns, as, xs, ys, gs), (n, a, x, y, g), (aout)) = (aout = a)

The five cases (A)–(E) in Trans describe the following path segments of the procedure:
(A) from the loop head of the outer loop to the loop head of the inner loop; (B) from the
loop head of the inner loop to the loop head of the outer loop, i.e., exiting the inner loop;
(C) an iteration of the inner loop entering the if statement; (D) an iteration of the inner
loop not entering the if statement; and (E) exiting the outer loop.

We obtain the following invariant (true is the guard of the loop head of the outer loop
and g is the guard of the loop head of the inner loop):

(true =⇒ 0 ≤ x ≤ 231 − 2) ∧ (g =⇒ 0 ≤ y ≤ 231 − 2)

and the following termination argument:(
¬g∧ (x < n−1)∧¬g′ =⇒ (−1 · (x−x′) + 0 · (y−y′)) > 0

)
∧
(
g∧g′ =⇒ (−1 · (y−y′) > 0)

)
.
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Algorithm 3: compPrecondTerm

Input: procedure f with invariant Inv , additional termination conditions termConds
Output: precondition Precond

1 (Precond , blocked)← (false, true);
2 let ϕ = Init(xin,x) ∧ Inv(x);
3 while true do
4 ψ ← blocked ∧ ¬Precond(xin) ∧ ϕ;
5 solve ψ for xin,x;
6 if UNSAT then return Precond ;
7 else
8 let χin be a model of ψ;
9 let Invo

p = compInv(f,xin=χin);
10 let RRf = compTermArg(f, Invo

p);
11 if RRf = true then blocked ← blocked ∧ (xin 6= χin);
12 else
13 let θ = termConds ∧RRf ;
14 let Precond ′ = ¬compNecPrecond(f,¬θ);
15 Precond ← Precond ∨ Precond ′;

This means that the outer loop terminates because of the increasing variable x and the
inner loop due to the increasing variable y. Both variables are bounded by the invariant.
Note that, in this example, the ranking function requires only one component.

4.4. Preconditions for Termination
If a procedure terminates conditionally like procedure h in Figure 1, then compTermArg
will not be able to find a satisfying predicate RR. Algorithm 2 returns true (“don’t
know”). However, we would like to know under which preconditions, i.e., values of y in
the case of h, the procedure terminates.

We can state this problem as defined in Definition 2.3. In Algorithm 3 we search for
Precond , Inv , and RR in an interleaved manner. The termination conditions termConds
that must be satisfied in addition to the termination argument come from the propaga-
tion of preconditions for termination from the caller (through the calling context) and
the callees (through summaries that are used). Note that false is a trivial solution for
Precond ; we thus have to aim at finding a good under-approximation of the maximal
solution (weakest precondition) for Precond .

We bootstrap the process by assuming Precond = false and search for values of xin

(Line 5). If such a value χin exists, we can compute an invariant under the precondi-
tion candidate xin = χin (Invo

p, Line 9) and search for the corresponding termination
argument (Line 10).

If we fail to find a termination argument (RRf = true), we block the precondition
candidate (Line 11) and restart the bootstrapping process. Otherwise, the algorithm
returns a termination argument RRf that is valid for the concrete value χin of xin.
Now we need to find a sufficiently weak Precond for which RRf guarantees termina-
tion. To this end, we compute an over-approximating precondition for those inputs for
which we cannot guarantee termination. This is represented by ¬θ in Line 14, which
includes additional termination conditions coming from the backward calling context
and preconditions of procedure calls (see Section 5.2). The negation of this precondition
is an under-approximation of those inputs for which f terminates. Finally, we add this
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Notation Explanation
Init initial states of the transition system
Trans transition relation of the transition system
Out output relation of the transition system
Inv invariant of a procedure
Invs[] map for storing the computed invariants (indexed by procedure)
Sum summary of a procedure
Sums[] map for storing the computed summaries (indexed by procedure)
Summaries summaries for all procedure calls in a procedure instantiated at the call site
CallCtx calling context of a procedure (the subscript indicates the call site)
RR termination argument
RR template for termination argument
Precond precondition of a procedure
Preconds[] map for storing the computed preconditions (indexed by procedure)
Preconditions preconditions for all procedure calls in a procedure instantiated at the call

site
P template for preconditions
Assumptions correspond to assume statements in the code
Superscript o indicates over-approximations
Superscript u indicates under-approximations
Superscript

∼
u indicates complement of under-approximations

Subscript f indicates the associated procedure

Table I: Notation

negated precondition to our Precond (Line 15) before we start over the bootstrapping
process. Our aim is to find precondition candidates outside the current precondition
(¬Precond ) for which we might be able to guarantee termination.

Example 4.2. Let us consider again function h in Figure 1. This time, we will assume
we have the invariant 0 ≤ x ≤ M (with M := 232 − 1). We bootstrap by assuming
Precond = false and searching for values of y satisfying true ∧ ¬false ∧ x=0 ∧ 0 ≤ x ≤M .
The variable y is unconstrained in this formula, hence it can take any value; one
possibility is y = 0. We then compute the invariant under the precondition y = 0 and
get x = 0. Obviously, we cannot find a termination argument in this case. Hence, we
start over and search for values of y satisfying y 6= 0 ∧ ¬false ∧ x=0 ∧ 0≤x≤M . This
formula is for instance satisfied by y = 1. This time we get the invariant 0≤x≤10 and
the ranking function −x. Thus, we have to solve

∃e : P(y, e) ∧ 0≤x≤M ∧ x′=x+y ∧ x<10⇒ ¬(−x>− x′)

to compute an over-approximating precondition over the template P (for details on
templates see Section 2.3). The aboe formula means that we are looking for parame-
ter values e such that P instantiated with these values entails that the termination
argument candidate −x > −x′ does not hold. In this case, P(y, e) turns out to be y = 0,
therefore its negation y 6= 0 is the Precond that we get. Finally, we have to check for
further precondition candidates, but y 6= 0 ∧ ¬(y 6= 0) ∧ x=0 ∧ 0≤x≤M is obviously
UNSAT. Hence, we return the sufficient precondition for termination y 6= 0.

5. INTERPROCEDURAL TERMINATION ANALYSIS
Now that we described how the intraprocedural termination analysis works, we can get
back to the interprocedural analysis described in Algorithm 1. Essentially, Algorithm 1
solves a series of formulae in second-order predicate logic with existentially quantified
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Algorithm 4: analyze for universal termination
1 global Sumso, Invso, termStatus;
2 function analyzeForward(f,CallCtx o

f )
3 foreach procedure call h in f do
4 CallCtx o

h = compCallCtx o(f,CallCtx o
f , h);

5 if needToReAnalyzeo(h,CallCtx o
h) then

6 analyzeForward(h,CallCtx o
h);

7 joino((Sumso[f ], Invso[f ]), compInvSumo(f,CallCtx o
f ))

8 function analyzeBackward ′(f)
9 join(termStatus[f ], compTermArg(f));

10 foreach procedure call h in f do
11 if needToReAnalyzeu(h,CallCtx o

h) then
12 analyzeBackward ′(h);
13 join(termStatus[f ], termStatus[h]);

14 function analyze(fentry)
15 analyzeForward(fentry , true);
16 analyzeBackward ′(fentry);
17 return termStatus[fentry ];

predicates, for which we are seeking a satisfying model.4 In this section, we state the
constraints we solve, including all the side constraints arising from the interprocedural
analysis. Note that this is not a formalisation exercise, but these are precisely the
formulae solved by our synthesis back-end, which is described in Section 2.3. To facilitate
readability, we summarise the notations in Table I. In particular, mind the difference
between Sum, Sums, and Summaries.

5.1. Universal Termination
We first explain a simpler variant of Algorithm 1. The variant is able to show universal
termination (see Algorithm 4). This variant reduces the backward analysis to a call
to compTermArg and propagating back the qualitative result (termStatus) obtained:
terminating, potentially non-terminating or non-terminating.

This section states the constraints that are solved to compute the outcome of the
functions underlined in Algorithm 4 and establishes its soundness:
— compCallCtx o (Definition 5.1)
— compInvSumo (Definition 5.4)
— compTermArg (Lemma 5.8)

To provide further intuition behind the algorithm, Figure 5 illustrates the depen-
dencies between the predicates (Inv , CallCtx , RR, Sum) and termStatus, where h is a
procedure called in f . The element at the arrow tail is required to compute the element
at the arrow head. For instance, in order to compute CallCtxh for a procedure call h
in f we have to compute Invf , which in turn has dependencies on the calling context
CallCtx f of f and the summaries Sumh for each procedure h called in f . The dashed
arrows indicate indirect dependencies. For example, we need the CallCtxh of h to com-

4 To be precise, we are not only looking for model predicates but (good approximations of) weakest or strongest
predicates. Finding such biased models is a feature of our synthesis algorithms.
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Invf

CallCtx f Sumf

RRf

SumhCallCtxh

termStatus[f ]

termStatus[h]

Fig. 5: Dependencies in universal termination and decomposition

pute its summary Sumh. These dependencies become apparent when we consider the
dependencies of each procedure recursively over the call graph, building the predicate
dependency graph for the entire universal termination problem of a procedural program.
This would allow us to construct a single second-order formulae characterising that
problem [Schrammel 2016]. However, this formula might be large and hard to solve. Al-
gorithm 4 breaks down this formula into smaller parts that can be easily solved. These
parts are visualised as ellipses in Figure 5: compCallCtx o in solid blue, compInvSumo in
dotted green, and compTermArg in dashed red.

5.1.1. Over-approximating Calling Contexts

Definition 5.1 (compCallCtx o). A forward calling context CallCtx o
hi

for hi in proce-
dure f in calling context CallCtx o

f is a satisfying model of the following formula:

∃CallCtx o
hi
, Invo

f : ∀xin,xs,x,x′,xout,xpin

i ,xpout

i :
CallCtx o

f (xin,xout) ∧ Summariesof ∧Assumptionsf (xs,x)
=⇒

(
Initf (xin,xs) =⇒ Invo

f (xs,xs)
)
∧(

Initf (xin,xs) ∧ Invo
f (xs,x) ∧ Transf (x,x′) ∧Outf (xs,x′,xout)

=⇒ Invo
f (xs,x′) ∧ (ghi

⇒ CallCtx o
hi

(xpin

i ,xpout

i )
)

with
Summariesof =

∧
calls hj in f

ghj
=⇒ Sumso[h](xpin

j ,xpout

j )

where ghj
is the guard condition of procedure call hj in f capturing the branch conditions

from conditionals.
For example, gh0 of the procedure call to h in f in Figure 1 is z > 0. Sumso[h] is the

currently available summary for h (cf. global variables in Algorithm 1).
Assumptions correspond to assume statements in the code that most program an-

alyzers define in order to restrict non-determinism. In our tool this is done using
CPROVER assume(condition).
Similar to Theorem 2.4, we say that the calling context CallCtx o

hi
(together with Invo

f )
is a satisfying model to mean that:

(CallCtx o
hi
, Invo

f ) |= ∀xin,xs,x,x′,xout,xpin

i ,xpout

i :
CallCtx o

f (xin,xout) ∧ Summariesof ∧Assumptionsf (xs,x)
=⇒

(
Initf (xin,xs) =⇒ Invo

f (xs,x)
)
∧(

Initf (xin,xs) ∧ Invo
f (xs,x) ∧ Transf (x,x′) ∧Outf (xs,x′,xout)

=⇒ Invo
f (xs,x′) ∧ (ghi

⇒ CallCtx o
hi

(xpin

i ,xpout

i )
)

Note that Definition 5.1 states the inductiveness and the initialization conditions for
Invo

f and establishes the calling context CallCtx o
hi

for hi according to Definition 2.1, un-
der the calling context CallCtx o

f , assumptions Assumptionsf and the currently available
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Definition Example
xin (zin)
xs (zs)
x (z)
x′ (z′)
xpin (pin)
xpout (pout)
xout (wout)

Table II: Variable mapping for procedure f

summary for h, Sumso[h]. Using Definition 5.1, we can compute Invo
f and CallCtx o

hi
at

the same time.

LEMMA 5.2. CallCtx o
hi

is over-approximating.

PROOF SKETCH. By induction over the acyclic call graph:
— Base case: CallCtx o

f is true when f is the entry-point procedure; also, the summary
Sumso[h] is initially assumed to be true, i.e., over-approximating.
— Step case: Given that CallCtx o

f and Summariesof (which is built from Sumso[h]) are
over-approximating, CallCtx o

hi
is over-approximating by the soundness of the synthesis

(see Theorem 2.4 in Section 2.3).

Example 5.3. Let us consider procedure f in Figure 1. For ease of understanding,
we provide in Table II the mapping between the variables in Definition 5.1 and those in
the encoding of f.

Procedure f is the entry procedure, hence we have CallCtx o
f ((zin), (wout)) = true,

which is 0≤zin≤M ∧ 0≤wout≤M where M := 232−1 when using the interval abstract do-
main for 32 bit integers. Then, we instantiate Definition 5.1 (for procedure f) to compute
CallCtx o

h0
. We assume that we have not yet computed a summary for h, thus, Sumso[h]

is true. Remember that the placeholder h0((pin), (pout)) evaluates to true. Notably, there
are no assumptions in the code, meaning that Assumptionsf ((zs), (z)) = true.

∃CallCtx o
h0
, Invo

f : ∀zin, zs, z, z′, wout :
0≤zin≤M ∧ 0≤wout≤M ∧ (true =⇒ true) ∧ true
=⇒

(
zs=zin =⇒ Invo

f ((zs), (zs))
)
∧(

zs=zin ∧ Invo
f ((zs), (z)) ∧ true ∧ pin=zs/2+1 ∧ h0((pin), (pout)) ∧ wout=pout

=⇒ Invo
f ((zs), (z′)) ∧ (true ⇒ CallCtx o

h0
((pin), (pout))

)
A solution is Invo

f = true, and CallCtx o
h0

((pin), (pout)) = (1≤pin≤231 ∧ 0≤pout≤M).
Note that bM2 c+ 1 = 231.

5.1.2. Over-approximating Invariants and Summaries

Definition 5.4 (compInvSumo). A forward summary Sumo
f and invariants Invo

f for
procedure f in calling context CallCtx o

f are a satisfying model of the following formula:

∃Sumo
f , Inv

o
f : ∀xin,xs,x,x′,xout :

CallCtx o
f (xin,xout) ∧ Summariesof ∧Assumptionsf (xs,x)

=⇒
(
Initf (xin,xs) ∧ Invo

f (xs,x′) ∧Outf (xs,x′,xout)
=⇒ Invo

f (xs,xs) ∧ Sumo
f (xin,xout)

)
∧(

Invo
f (xs,x) ∧ Transf (x,x′) =⇒ Invo

f (xs,x′)
)
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Definition Example
xin (yin)
xs (xs, ys)
x (x, y)
x′ (x′, y′)
xout (xout)

Table III: Variable mapping for procedure h

Using Definition 5.4, we can compute Invo
f and Sumo

f at the same time. This formula
is the result of merging the definitions for invariant and summary from Definition 2.1
(and adding assumptions, callee summaries, and calling context information). The
first implication of the invariant in Definition 2.1 is merged with the implication of
the summary definition. Invo

f (xs,x) appears on the right-hand side now because it is
inferred, whereas it appears on the left-hand side in Definition 2.1 because it is assumed
given.

Since at this point all callee summaries Summariesof are available, the invariant Invo
f

will be more precise than the one obtained by solving the formula in Definition 5.1. Sim-
ilarly to Definition 5.1, Assumptions in Definition 5.4 corresponds to assume statements
in the code that most program analyzers define in order to restrict non-determinism.

LEMMA 5.5. Sumo
f and Invo

f are over-approximating.

PROOF SKETCH. By induction over the acyclic call graph:
— Base case: By Lemma 5.2, CallCtx o

f is over-approximating. Also, the summaries in
Summariesof are initially assumed to be true, i.e., over-approximating.
— Step case: Given that CallCtx o

f and Summariesof are over-approximating, Sumo
f and

Invo
f are over-approximating by the soundness of the synthesis (Theorem 2.4).

Example 5.6. Let us consider procedure h in Figure 1. The mapping between the
variables in Definition 5.4 and those in the encoding of h is given in Table III.

We have computed CallCtx o
h0

((yin), (xout)) = (1≤yin≤231 ∧ 0≤xout≤M) (with actual
parameters renamed to formal ones) in Example 5.3. Then, we need to obtain models
Invo

h0
and Sumo

h0
to satisfy of the instantiation of Definition 5.4 (for procedure h) as

given below.

∃Invo
h0
,Sumo

h0
: ∀yin, xs, ys, x, y, x′, y′, xout :

1≤yin≤231 ∧ 0≤xout≤M ∧ true ∧ true
=⇒

(
(xs=0 ∧ ys=yin) ∧ Invo

h0
((xs, ys), (x′, y′)) ∧ (xout=x′ ∧ ¬(x′<10))

=⇒ Invo
h0

((xs, ys), (xs, ys)) ∧ Sumo
h0

((yin), (xout))
)
∧(

Invo
h0

((xs, ys), (x, y)) ∧ x′=x+y ∧ x<10 ∧ y=y′) =⇒ Invo
h0

((xs, ys), (x′, y′))
)

A solution is Invo
h0

= (0≤x≤231+9 ∧ 1≤y≤231) and Sumo
h0

= (1≤yin≤231 ∧
10≤xout≤231+9), for instance.

Remark 5.7. Since Definition 5.1 and Definition 5.4 are interdependent, we would
have to compute them iteratively until a fixed point is reached in order to improve the
precision of calling contexts, invariants and summaries. However, for efficiency reasons,
we perform only the first iteration of this (greatest) fixed point computation. This is a
design choice made in order to break the cycles in Figure 5.

5.1.3. Computing Termination Arguments
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LEMMA 5.8 (compTermArg). A procedure f with forward invariants Invo
f terminates

if there is a termination argument RRf :

∃RRf : ∀xs,x,x′ :
Summariesof ∧Assumptionsf (xs,x)∧
Invo

f (xs,x) ∧ Transf (x,x′) =⇒ RRf (x,x′)

Over-approximating forward information may lead to inclusion of spurious non-
terminating traces. For that reason, we might not find a termination argument although
the procedure is terminating. As we essentially under-approximate the set of terminat-
ing procedures, we will not give false positives. Regarding the solving algorithm for this
formula, we present it in the next section.

Example 5.9. Let us consider function h in Figure 1. The mapping between the
variables in Lemma 5.8 and those in the encoding of h is given in Table III. Assume we
have the invariant (0≤x≤231+9) ∧ (1≤y≤231), as computed in Example 5.6. Thus, we
have to solve

∃RRh : ∀xs, ys, x, y, x′, y′ :
true ∧ true∧
(0≤x≤231+9) ∧ (1≤y≤231) ∧ x′=x+y ∧ x<10 ∧ y′=y =⇒ RRh((x, y), (x′, y′))

When using a linear ranking function template `x · x+ `y · y, we obtain as solution, for
example, RRh = (−x>− x′), i.e., `x=−1 and `y=0.

5.1.4. Proving Never-Termination.

If there is no trace from procedure entry to exit, then we can prove non-termination,
even when using over-approximations:

LEMMA 5.10. A procedure f in forward calling context CallCtx o
f 6= false and forward

invariants Invo
f never terminates if its summary Sumo

f is false.

PROOF SKETCH. If the over-approximating summary of f is false then there is no
execution path from the entry to the exit. This entails that f does not terminate.

5.1.5. Propagating the Termination Information.

The summary Sumo
f is computed in Line 7 of Algorithm 4.

Termination information is then propagated in the (acyclic) call graph (join in Line 13
in Algorithm 4):

PROPOSITION 5.11. A procedure f is declared
(1) non-terminating if it is non-terminating by Lemma 5.10.
(2) terminating if

(a) all its procedure calls hi that are potentially reachable (i.e., with CallCtx o
hi
6= false)

are declared terminating, and
(b) f itself is terminating according to Lemma 5.8;

(3) potentially non-terminating otherwise.

Our implementation is more efficient than Algorithm 4 because it avoids computing a
termination argument for f if one of its callees is potentially non-terminating.

THEOREM 5.12. (a) If the entry procedure of a program is declared terminating, then
the program terminates universally.

(b) If the entry procedure of a program is declared non-terminating, then the program
never terminates.
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Invo
f

CallCtx o
f Sumo

f

RRf

Sumo
hCallCtx o

h

Invu
f

CallCtxu
fSumu

f

Precondu
f

Sumu
h CallCtxu

h

Fig. 6: Dependent predicates in conditional termination and decomposition

PROOF SKETCH. (a) Assume that a program does not terminate, but its entry proce-
dure is declared terminating. Then there must be a reachable procedure h in the call
graph that does not terminate. Now, we proceed by induction following the call graph
from h to the entry procedure.
— Base case: If h does not terminate then it is either declared non-terminating by

Lemma 5.10 or potentially non-terminating by a failure to prove its termination by
Lemma 5.8.

— Step case: By Proposition 5.11 procedure f is only declared terminating if all of its
reachable callees have been declared terminating. Hence, if f has a reachable callee
h, f is either declared non-terminating or potentially non-terminating.

It follows that the entry procedure cannot be declared terminating, which contradicts
the assumption.

(b) Assume that a program terminates, but its entry procedure f is declared non-
terminating. Then, by Lemma 5.10, the over-approximating summary of f must be false,
which contradicts the assumption that the program terminates.

5.2. Conditional Termination
We now extend the formalisation to Algorithm 1, which additionally requires the
computation of under-approximating calling contexts and sufficient preconditions for
termination (procedure compPrecondTerm, see Algorithm 3).

We will start by reminding the reader the details of procedure compPrecondTerm. First,
it computes in Line 9 an over-approximating invariant Invo

p entailed by the candidate
precondition. Invo

p is computed through Definition 5.4 by conjoining the candidate
precondition to the antecedent. Then, Line 10 computes the corresponding termination
argument RRf by applying Lemma 5.8 using Invo

p instead of Invo
f . A termination

argument RRf 6= true proves that f terminates for this candidate precondition.
Then, in Line 14 of compPrecondTerm, we compute under-approximating (sufficient)

preconditions for traces satisfying the termination argument RRf via over-approxima-
ting the traces violating RRf .

Now, we are left to specify the formulae corresponding to the following functions:
— compCallCtxu (Definition 5.13)
— compNecPrecond (Definition 5.16)

Figure 6 illustrates the dependencies between the predicates and the decomposi-
tion [Schrammel 2016] that we have chosen. compCallCtxu is the thick blue ellipse and
compNecPrecond the dashed red ellipse.

In the sequel, we use the superscript
∼
u to indicate negations of under-approximating

information.
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5.2.1. Under-approximating Calling Contexts.

We compute under-approximating calling contexts as follows:

Definition 5.13 (compCallCtxu). The backward calling context CallCtxu
hi

for proce-
dure call hi in procedure f in backward calling context CallCtxu

f and forward invariants

Invo
f is CallCtxu

hi
≡ ¬CallCtx

∼
u
hi

, the negation of a satisfying model for:

∃CallCtx
∼
u
hi
, Inv

∼
u
f : ∀xin,xs,x,x′,x′′,xpin

i ,xpout

i ,xout :

¬CallCtxu
f (xin,xout) ∧ Summaries

∼
u
f ∧Assumptionsf (xs,x)∧

CallCtx o
f (xin,xout) ∧ Invo

f (xs,x) ∧ Summariesof

=⇒
(
Outf (xs,x′,xout) =⇒ Inv

∼
u
f (xs,x′)

)
∧(

Outf (xs,x′′,xout) ∧ Inv
∼
u
f (xs,x′) ∧ Transf (x,x′) ∧ Initf (xin,xs)

=⇒ Inv
∼
u
f (xs,x) ∧ (ghi =⇒ CallCtx

∼
u
hi

(xpin ,xpout))
)

with Summaries
∼
u
f =

∧
calls hj in f ghj =⇒ ¬Sumsu[h](xpin

j ,xpout

j ).

This definition is structurally similar to the definition of CallCtx o (Definition 5.1).
However, here we perform a backwards computation: note that the base case (Line 4)
of the inductive invariant definition starts from Out instead from Init , and that we
reverse Trans in the step case (Line 5). Since CallCtxu must be contained in CallCtx o

(and similarly invariants and callee summaries), we can constrain the formula using
the information obtained from the forward analysis in Line 3. These are not required
for soundness, but they might help solving the formula by restricting the search space.

LEMMA 5.14. CallCtxu
hi

is under-approximating.

PROOF SKETCH. The computation is based on the negation of the under-
approximating calling context of f and the negated under-approximating summaries
for the function calls in f . By Theorem 2.4, this leads to an over-approximation of the
negation of the calling context for hi.

Example 5.15. Let us consider procedure f in Figure 1. For the mapping between
the variables in Definition 5.13 and those in the encoding of f we refer to Table II. Let
us assume that in f, we have CallCtxu

f ((zin), (wout)) = (11≤wout≤M), i.e., f is called
in a context where a return value of less than 11 would cause non-termination of the
caller of f. Then, we instantiate Definition 5.13 (for procedure f) to compute CallCtxu

h0
.

We assume that we have already computed an over-approximating summary Sumo
h0

=
(1≤pin≤M ∧ 0≤pout≤M), but not yet computed an under-approximating summary for h,
thus, Sumu

h is false. Notably, there are no assumptions in the code, meaning that
Assumptionsf ((zs), (z)) = true.

∃CallCtx
∼
u
h0
, Inv

∼
u
f : ∀zin, zs, z, z′, wout :

0≤wout≤10 ∧ (true ⇒ ¬false) ∧ true∧
true ∧ true ∧ (true ⇒ 1≤pin≤M ∧ 0≤pout≤M)

=⇒
(
pin=zs/2+1 ∧ h0((pin), (pout)) ∧ wout=pout =⇒ Inv

∼
u
f ((zs), (z′))

)
∧(

pin=zs/2+1 ∧ h0((pin), (pout)) ∧ wout=pout ∧ Inv
∼
u
f ((zs), (z′)) ∧ true ∧ zs=zin

=⇒ Inv
∼
u
f ((zs), (z)) ∧ (true ⇒ CallCtx

∼
u
h0

((pin), (pout))
)

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



Bit-Precise Procedure-Modular Termination Analysis 0:23

A solution is Inv
∼
u
f = true, and CallCtx

∼
u
h0

= (1≤pin≤M ∧ 0≤pout≤10), i.e., CallCtxu
h0

=
(pin=0 ∨ 11≤pout≤M).

5.2.2. Under-approximating Preconditions for Termination

Definition 5.16 (Line 14 of compPrecondTerm). A precondition for termination
Precondu

f in backward calling context CallCtxu
f and with forward invariants Invo

f is

Precondu
f ≡ ¬Precond

∼
u
f , i.e., the negation of a satisfying model Precond

∼
u
f for:

∃Precond
∼
u
f , Inv

∼
u
f ,Sum

∼
u
f : ∀xin,x,x′,xout :

¬CallCtxu
f (xin,xout) ∧ Summaries

∼
u
f ∧Assumptionsf (x′,x)∧

CallCtx o
f (xin,xout) ∧ Invo

f (x′,x) ∧ Summariesof

=⇒
(
Outf (xs,x′,xout) ∧ Inv

∼
u
f (xs,x′) ∧ Initf (xin,xs)

=⇒ Inv
∼
u
f (xs,x′) ∧ Sum

∼
u
f (xin,xout) ∧ Precond

∼
u
f (xin)

)
∧((

¬RRf (x,x′) ∨ Preconditions
∼
u
f ∨

¬CallCtxu
f (xin,xout) ∧ Initf (xin,xs) ∧Outf (xs,x′,xout)

)
∧

Inv
∼
u
f (xs,x′) ∧ Transf (x,x′) =⇒ Inv

∼
u
f (xs,x)

)
with Preconditions

∼
u
f =

∨
calls hj in f ghj

=⇒ ¬Precondsu[h](xpin

j ,xpout

j ).

Precond
∼
u
f describes the set of inputs for which f might not terminate. Structurally,

the formula is similar to Definition 5.4 regarding the simultaneous computation of
invariants and summary of f . However, similar to Definition 5.13 it proceeds backwards
(xout is directly tied to Sum

∼
u
f through Out , whereas xin is a consequence of Inv

∼
u
f ).

Essentially, this definition is saying that a value satisfying Precond
∼
u
f could cause

non-termination in several ways (disjuncts in Line 5):
— either in f itself, by not satisfying the termination argument RRf ,
— in a callee h, by not satisfying its termination precondition (Preconditions

∼
u
f ),

— or through the outputs of f in the caller of f (¬CallCtxu
f ).

The subformula in Line 5 is the argument ¬θ in Line 14 of Algorithm 3. We denote the
negation of the models found for the summary and the invariant by Sumu

f ≡ ¬Sum
∼
u
f

and Invu
f ≡ ¬Inv

∼
u
f , respectively.

LEMMA 5.17. Precondu
f , Sumu

f and Invu
f are under-approximating.

PROOF SKETCH. We compute an over-approximation of the negation of the precon-
dition w.r.t. the negation of the under-approximating termination argument and the
negation of further under-approximating information (backward calling context, pre-
conditions of procedure calls) — by the soundness of the synthesis (see Theorem 2.4
in Section 2.3), this over-approximates the non-terminating traces, and hence under-
approximates the terminating ones. Hence, the precondition is a sufficient precondition
for termination.

Example 5.18. This example is a continuation of Example 5.15. We will instantiate
Definition 5.16 for h in Figure 1. Regarding the mapping between the variables in
Definition 5.16 and those in the encoding of h we refer to Table III. We assume that
we have CallCtxu

h((yin), (xout)) = (yin=0 ∨ 11≤xout≤M), as computed in Example 5.15.
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We assume CallCtx o
h = true and Invo

h = true. h does not have procedure calls, thus
Summariesoh = true, Summaries

∼
u
h = true and Preconditions

∼
u
h = false. Assume we have the

termination argument candidate RRh = (−x > −x′).

∃Precond
∼
u
h , Inv

∼
u
h ,Sum

∼
u
h : ∀yin, xs, ys, x, y, x′, y′, xout :

¬(yin=0 ∨ 11≤xout≤M) ∧ true ∧ true∧
true ∧ true ∧ true

=⇒
(
(xout=x′ ∧ ¬(x′<10)) ∧ Inv

∼
u
h ((xs, ys), (x′, y′)) ∧ (xs=0 ∧ ys=yin)

=⇒ Inv
∼
u
h ((xs, ys), (x′, y′)) ∧ Sum

∼
u
h (yin, xout) ∧ Precond

∼
u
h (yin)

)
∧((

¬(−x > −x′) ∨ false∨
¬(yin=0 ∨ 11≤xout≤M) ∧ (xs=0 ∧ ys=yin) ∧ (xout=x′ ∧ ¬(x′<10))

)
∧

Inv
∼
u
h ((xs, ys), (x′, y′)) ∧ (x′=x+y ∧ x<10 ∧ y=y′) =⇒ Inv

∼
u
h ((xs, ys), (x, y))

)
The second conjunct in the consequent of the top-level implication is satisfied either

for yin=0 making ¬RRh true or xout≤10 violating the calling context (third disjunct).
Hence, a solution is

Precond
∼
u
h = (0≤yin≤1)

Sum
∼
u
h = (0≤yin≤1 ∧ xout=10)

Inv
∼
u
h = (xs=0 ∧ 0≤ys≤1 ∧ 0≤x≤10 ∧ 0≤y≤1)

Thus, a sufficient precondition for termination is Precondu
h = (2≤yin≤M). Note that

without the backwards propagation of the calling context from the caller of f through f
into h, we would be unable to derive that we require yin ≥ 2 in order to prevent xout ≤ 10
and consequently wout ≤ 10, which would lead to non-termination in the caller of f.

We can therefore conclude:

THEOREM 5.19. A program with entry procedure f terminates for all values of xin

satisfying Precondu
f .

PROOF SKETCH. Assume that there as a value χin that satisfies the precondition,
but for which the program does not terminate. Following Definition 5.16, a value χin

satisfying Precondu
f of a procedure f must cause non-termination either in f (by not

satisfying the termination argument RRf ), in a callee h in f , or through the outputs of
f in the caller of f . We proceed by induction over the call graph from the leaves up to
the entry procedure:
— Base case: Assume that a procedure f has no callees, and χin satisfies RRf (oth-

erwise it would not have been included in Precondu
f , Lemma 5.17). Hence, f itself

terminates, but χin could cause non-termination of the caller of f .
— Step case: Assume that the callees in a procedure f terminate. By Lemma 5.17, χin

satisfies RRf ; hence, f itself terminates. Yet, χin could cause non-termination of the
caller of f .

However, the entry procedure has no caller that would not terminate. Hence, no such
χin can exist, which contradicts the assumption.

5.3. Context-Sensitive Summaries
The key idea of interprocedural analysis is to avoid re-analysing procedures that are
called multiple times. For that reason, Algorithm 1 first checks whether it can re-use
already computed information. For that purpose, summaries are stored as implications
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CallCtx o ⇒ Sumo. As the call graph is traversed, the possible calling contexts CallCtx o
hi

for a procedure h are collected over the call sites i and joined together.
— Subroutine NeedToReAnalyzeo(h,CallCtx o

hi
) (Line 5 in Algorithm 1) checks whether

the current calling context CallCtx o
hi

is subsumed by calling contexts
∨

j CallCtx
o
hj

that we have already encountered, and if so, Sumso[h] is reused; otherwise h needs to
be recomputed in calling context CallCtx o

hi
and the obtained invariant and summaries

are joined conjunctively with previously inferred information as follows.
— Subroutine joino(h, (Sumo

hi
, Invo

hi
),CallCtx o

hi
) in Algorithm 1 performs the following

operation: Sumso[h] ← Sumso[h] ∧ (CallCtx o
hi
⇒ Sumo

hi
), and Invso[h] ← Invso[h] ∧

(CallCtx o
hi
⇒ Invo

hi
).

The same considerations apply to termination arguments and preconditions. We store
under-approximating information (e.g., Precondu

f ) in its complemented form Precond
∼
u
f

so that we can use joino instead of implementing the De-Morgan-dual joinu operator.
The termination status in Algorithm 4 is joined as follows.

join(termStatus1, termStatus2) means that termStatus1 is set to terminating if
termStatus2 is terminating and termStatus1 is either terminating or has not been
initialised (i.e., the corresponding function has not been analysed yet). termStatus1 is
set to non-terminating if termStatus2 is non-terminating. Otherwise termStatus1 is set
to potentially non-terminating.

6. IMPLEMENTATION
We have implemented the algorithm in 2LS [2LS 2016],5 a static analysis tool for C
programs built on the CPROVER framework, using MiniSat 2.2.1 as back-end solver.
Other SAT and SMT solvers with incremental solving support would also be applicable.
Our approach enables us to use a single solver instance per procedure to solve a series
of second-order queries as required by Algorithm 1. It is essential to use incremen-
tal solving as our synthesis algorithms make thousands of very similar solver calls.
Architectural settings (e.g., bitwidths) can be provided on the command line.
Bitvector Width Extension As aforementioned, integers wrap around on most
architectures when they over/underflow, which can result in non-terminating behaviour.
Let us consider the following example, which we give as input to Algorithm 2:

void f ( ) {
signed char x ;
while ( 1 ) x++;

}

The ranking function synthesis aims to compute a value for template parameter `
such that `(x−x′) > 0 holds for all x, x′ under the transition relation x′=x+1 and the
computed invariant true.

Thus, assuming that the current value for ` is −1, the constraint to be solved (Algo-
rithm 2 Line 5) is

true ∧ x′=x+1 ∧ ¬(−1 · (x−x′)>0),

which is equivalent to ¬(−1(x−(x+1))>0). While for mathematical integers this is
satisfiable, it is unsatisfiable for signed bit-vectors due to overflows. For x=127, the
overflow happens such that x+1=−128. Thus, ¬(−1 · (127−(−128))>0) becomes ¬(1>0),
which makes the constraint unsatisfiable, and we would incorrectly conclude that −x
is a ranking function, which does not hold for signed bitvector semantics. However, if

5The source code of the tool and instructions for its usage can be found on http://www.cprover.org/2LS.
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we extend the bitvector width to k=9 such that the arithmetic in the template does not
overflow, then ¬(−1 · ((signed9)127−(signed9)(−128)) > 0) evaluates to ¬((−1 · 255) > 0),
where signedk is a cast to a k-bit signed integer. Now, x=127 is a model that shows that
−x is not a valid ranking function.

For these reasons to retain soundness, we extend the bit-width of signed and unsigned
integer operands to integers that can hold the result of the operation without over- or
underflow, e.g., one additional bit for additions and doubling the size plus one bit for
multiplications. The maximum bit-width required depends on the shape of the template.
Since our templates contain a finite number of operations, the maximum bit-width is
finite.

Floating-point numbers do not require extensions as they overflow (resp. underflow)
to infinity (resp. minus infinity), which does not impact soundness.

Optimisations Our ranking function synthesis algorithm searches for coefficients `
such that a constraint is unsatisfiable. However, this may result in enumerating all
the values for ` in the range allowed by its type, which is inefficient. In many cases,
a ranking function can be found for which `j ∈ {−1, 0, 1}. In our implementation, we
have embedded Algorithm 2 into an outer refinement loop which iteratively extends the
range for ` if a ranking function could not be found. We start with `j ∈ {−1, 0, 1}, then
we try `j ∈ [−10, 10] before extending it to the whole range.

Further Bounds As explained in Algorithm 2, we bound the number of lexicographic
components (default 3), because otherwise Algorithm 2 does not terminate if there is
no number n such that a lexicographic ranking function with n components proves
termination.

Since the domains of x,x′ in Algorithm 2 and of xin in Algorithm 3 might be large,
we limit also the number of iterations (default 20) of the while loops in these algorithms.
In the spirit of bounded model checking, these bounds only restrict completeness, i.e.,
there might exist ranking functions or preconditions which we could have found for
larger bounds. The bounds can be given on the command line.

7. EXPERIMENTS
We performed experiments to support the following claims:
(1) Interprocedural termination analysis (IPTA) is faster than monolithic termination

analysis (MTA).
(2) The precision of IPTA is comparable to MTA.
(3) 2LS is competitive with termination analysis tools on procedural programs.
(4) 2LS’s analysis is bit-precise.
(5) 2LS computes valuable preconditions for termination.

IPTA is the approach presented in this article; MTA is IPTA applied to the program
where all procedures have been inlined.

We used the product line benchmarks of the [SV-COMP 2016] benchmark repository.
In contrast to other categories, this benchmark set contains programs with non-trivial
procedural structure. This benchmark set contains 597 programs with 1100 to 5700
lines of code (2705 on average),6 33 to 136 procedures (67 on average), and four to ten
loops (5.5 on average). Of these benchmarks, 264 terminate universally, whereas 333
never terminate when starting from main.

The experiments were run on a Xeon E3-1270 at 3.6 GHz running CentOS 7.2 with
64-bit binaries. Memory and CPU time were restricted to 16 GB and 1800 seconds per

6Measured using cloc 1.53.
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Table IV: Tool comparison
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terminating 264 263 234 18 150 6 178
non-terminating 333 320 328 3 325 135 –
potentially non-terminating — 14 35 425 0 0 4
timed out — 0 0 151 118 61 233
out of memory — 0 0 0 4 111 182
errors — 0 0 0 0 284 0
total run time (h) — 0.35 1.88 92.8 63.6 42.9 144.9

benchmark, respectively (following [Roussel 2011]). We have observed that interval
templates are sufficient to obtain reasonable precision.7

Modular termination analysis is fast We compared IPTA with MTA. Table IV
shows that the total analysis time of IPTA is 5.3 times lower than the time taken by
MTA. The geometric mean speed-up of IPTA w.r.t. MTA on those benchmarks for which
both approaches return a definitive answer (terminating or non-terminating) is 2.02.
Modular termination analysis is precise Again, we compare IPTA with MTA.
Table IV shows that IPTA proves 99.6 % of the terminating benchmarks, whereas
88.6 % were proven by MTA. MTA can prove 98.5 % of the non-terminating benchmarks
including eight benchmarks that IPTA classifies potentially non-terminating due to
imprecision introduced by the use of summaries to handle function calls. Therefore
neither approach is strictly better than the other.
2LS is competitive with existing termination analysis tools on procedural
programs We tried to compare 2LS with 10 termination tools for C programs. We
succeeded to run the following 4 tools, namely TAN [TAN 2014], Ultimate [Heizmann
et al. 2016], T2 [T2 2016], and KITTeL [KiTTeL/KoAT 2016]. For the latter two tools
we used the front-end llvm2KITTeL [llvm2KITTeL 2016] for generating the required
input formats. Moreover, we tried AProVE [AProVE 2016], CppInv [CppInv 2015] and
SeaHorn [SeaHorn 2016], but these tools abort with errors (either during parsing or
later when translating into an SMT formula) on all benchmarks. We include these
results in the replication package. Unfortunately, the tools Loopus [Loopus 2014],
ARMC [Podelski and Rybalchenko 2007], FuncTion [FuncTion 2015], and HipTNT [Le
et al. 2014] have limitations regarding the subset of C that they can handle that make
them unable to analyze any of the benchmarks out of the box. We provide details on our
experiences with all these tools on our website.8

TAN [Kroening et al. 2010] and KITTeL [Falke et al. 2012] support bit-precise C
semantics. Ultimate uses mathematical integer reasoning but tries to ensure confor-
mance with bit-vector semantics. Also, Ultimate uses a semantic decomposition of the
program [Heizmann et al. 2014] to make its analysis efficient.

For each of the tools, Table IV lists the number of instances solved, timed out, run
out of memory or aborted because of an internal error. None of the tools reported wrong
results w.r.t. the expected outcome (column “expected”).

7We provide a replication package for the experiments at http://www.cprover.org/termination/modular/
replication-package.tgz.
8http://www.cprover.org/termination/modular/results-logs.txt.
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1 void ex15 ( int m, int n , int p , int q ) {
2 for ( int i = n ; i >= 1; i = i − 1)
3 for ( int j = 1 ; j <= m; j = j + 1)
4 for ( int k = i ; k <= p ; k = k + 1)
5 for ( int l = q ; l <= j ; l = l + 1)
6 ;
7 }

Fig. 7: Example ABC ex15.c from the Loopus benchmarks

Ultimate proves 56.8 % of the terminating benchmarks correctly, and 97.6 % of the
non-terminating ones. T2 proved 2.3 % of the terminating benchmarks and 40.5 % of the
non-terminating ones, whereas KITTeL proved 67.4 % of the terminating ones. KITTeL
cannot prove non-termination. The comparison with the latter two tools suffered from
the deficiencies of the available front-ends. llvm2KITTeL timed out on some benchmarks
and was unable to generate syntactically correct T2 files for almost half the benchmarks
(error).

This suggests that current termination tools are quite specialised in handling and
performing well on different sets of benchmarks, which makes it difficult to compare
them in a fair manner.

Our results show that the technique implemented in 2LS is very efficient in analyzing
procedural programs. However, one has to be careful in comparing the run times as
the tools have different capabilities w.r.t. finding termination and non-termination
arguments. In particular, 2LS uses relatively weak abstractions (linear lexicographic
ranking functions and very simple polyhedral invariants), which make it very fast,
but these abstractions are not expressive enough to provide as complex termination
arguments as the other tools are able produce. Implementing more powerful domains is
ongoing work.

Regarding non-termination, 2LS can currently only show that a program never
terminates for all inputs, whereas Ultimate and T2 can show that there exists a non-
terminating execution for some inputs. An extension of 2LS w.r.t. this capability is
ongoing work.
2LS’s analysis is bit-precise To demonstrate that one has to be careful when using
tools that are not bit-precise for proving termination of C programs, we compared 2LS
with Loopus, a tool that uses mathematical integers, on a collection of 15 benchmarks
(ABC ex01.c to ABC ex15.c) taken from the Loopus benchmark suite [Loopus 2014].
While they are short (between 7 and 41 LOC), the main characteristic of these programs
is the fact that they exhibit different terminating behaviours for mathematical integers
and bit-vectors. For illustration, ABC ex15.c (Figure 7) terminates with mathematical
integers, but not with machine integers if, for instance, m equals INT MAX. Next, we
summarise the results of our experiments on these benchmarks when considering
machine integers:

— Only two of the programs terminate, and are correctly identified by both 2LS and
Loopus.

— For the rest of the 13 non-terminating programs, Loopus claims they terminate,
whereas 2LS correctly classifies nine as potentially non-terminating (including
ABC ex15.c in Figure 7) and times out on four.

As a further example, let us consider the two procedures in Figure 8, which involve
floating-point arithmetic. We assume that the argument for x that is passed to the
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1 void h( float x )
2 {
3 while ( x>0.0 f )
4 x ∗= 0.1 f ;
5 }

1 void g ( float x )
2 {
3 while ( x>0.0 f )
4 x ∗= 0.9 f ;
5 }

Fig. 8: Examples of loops with floating-point arithmetic

procedures is not NaN, i.e., -FLT MAX<=x && x<=FLT MAX (using the constants defined
in float.h). For NaN these loops would trivially terminate because any comparison
with NaN is false. Obviously, a tool that interprets x as a rational or real-valued
variable would classify both procedures non-terminating. However, 2LS uses a bit-
precise interpretation of x and determines that h is terminating whereas g is non-
terminating (with round-to-nearest/ties-to-even rounding mode). The reason why this
happens is that x gets eventually rounded to 0.0f in h, whereas in g it keeps being
rounded up to the FLT MIN (the smallest representable floating-point number above
zero) and therefore never reaches zero.
2LS computes valuable preconditions for termination This experiment was
performed on benchmarks extracted from Debian packages and the linear algebra
library CLapack.

The quality of preconditions, i.e., usability or ability to help the developer to spot
problems in the code, is difficult to quantify. We give several examples where func-
tions terminate conditionally. The abe package of Debian contains a function, given
in Figure 9, where increments of the loop counter are not constant but dynamically
depend on the dimensions of an image data structure. We make assumptions on the
maximum image dimensions (using CPROVER assume), which are justified to prevent
the functionally incorrect overflow behaviour in the assignments to pos.x and pos.y.
We infer the precondition img.h > 0 ∧ img.w > 0.

The program in Figure 10 is a code snippet taken from the summation procedure
sasum within [CLAPACK 2014], the C version of the popular LAPACK linear algebra
library. The loop in procedure f does not terminate if incx = 0. If incx > 0 (incx < 0),
the termination argument is that i increases (decreases). Therefore, incx 6= 0 is a
termination precondition for f. In this example, we make assumptions on the array
size and the increment incx. Note that lifting these assumptions results in a very
complex precondition due to overflows of i. This demonstrates a limitation of our current
implementation that uses convex domains that cannot express these preconditions; we
would therefore report the precondition false in this case.

The example in Figure 11 is taken from the benchmark basename in the busybox-
category of SV-COMP 2016, which contains simplified versions of Debian packages. The
termination of function full write depends on the return value of its callee function
safe write. Here, we infer the calling context cc > 0, i.e., the contract for the function
safe write, such that the termination of full write is guaranteed. Given a proof that
safe write terminates and returns a strictly positive value regardless of the arguments
it is called with, we can conclude that full write terminates universally.

8. LIMITATIONS, RELATED WORK AND FUTURE DIRECTIONS
Our approach makes significant progress towards analysing real-world software, ad-
vancing the state of the art of termination analysis of large programs. Conceptually,
we decompose the analysis into a sequence of well-defined second-order predicate logic
formulae with existentially quantified predicates. In addition to [Grebenshchikov et al.
2012], we consider context-sensitive analysis, under-approximate backwards analysis,
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1 struct SDL Surface {
2 unsigned int h ;
3 unsigned int w;
4 } ;
5 struct SDL Rect
6 {
7 signed short int x ;
8 signed short int y ;
9 unsigned short int h ;

10 unsigned short int w;
11 } ;
12

13 void createBack ( struct SDL Surface back surf , struct SDL Surface img )
14 {
15 CPROVER assume( back surf .w <= 16383 &&
16 back surf . h <= 16383 &&
17 0 <= img .w && img .w <= 16383 &&
18 0 <= img . h && img . h <= 16383);
19 struct SDL Rect pos ;
20 for ( int x = 0; ! ( x >= back surf . h ) ; x += img . h) {
21 for ( int y = 0; ! ( y >= back surf .w; y += img .w) {
22 pos . x = ( signed short int ) x ;
23 pos . y = ( signed short int ) y ;
24 // SDL UpperBlit(&img , NULL, &back surf , &pos ) ;
25 // . . .
26 }
27 }
28 }

Fig. 9: Example createBack from Debian package abe

1 int f ( int ∗sx , int n , int incx ) {
2 CPROVER assume(1 <= n && n <= 32768 &&
3 −32768 <= incx && incx <= 32768);
4 int nincx = n ∗ incx ;
5 int stemp = 0;
6 for ( int i = 0 ; incx < 0 ? i >= nincx : i <= nincx ; i += incx ) {
7 stemp += sx [ i −1];
8 }
9 return stemp ;

10 }

Fig. 10: Non-unit increment from CLapack
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1 signed long int f u l l w r i t e (
2 signed int fd ,
3 const void ∗buf ,
4 unsigned long int len ,
5 signed long int cc ) {
6 signed long int t o t a l = ( signed long int ) 0 ;
7 for ( ; ! ( len == 0ul ) ; len = len − (unsigned long int ) cc ) {
8 cc=safe wri te ( fd , buf , len ) ;
9 CPROVER assume(−1 <= cc && cc <= 1 ) ;

10 i f ( cc < 0 l ) {
11 i f ( ! ( t o t a l == 0 l ) )
12 return t o t a l ;
13 return cc ;
14 }
15 t o t a l = t o t a l + cc ;
16 buf = ( const void ∗ ) ( ( const char ∗ ) buf + cc ) ;
17 }
18 }

Fig. 11: Example from SV-COMP 2016 busybox

and make the interaction with termination analysis explicit. Notably, these seemingly
tedious formulae are actually solved by our generic template-based synthesis algorithm,
making it an efficient alternative to predicate abstraction.

An important aspect of our analysis is that it is bit-precise. As opposed to the synthe-
sis of termination arguments for linear programs over integers (rationals) [Cook et al.
2006; Lee et al. 2012; Ben-Amram and Genaim 2013; Podelski and Rybalchenko 2004;
Heizmann et al. 2013; Bradley et al. 2005a; Cook et al. 2013; Ben-Amram and Genaim
2014; Gonnord et al. 2015], this subclass of termination analyses is substantially less
covered. Moreover, Cook et al. [2006] construct a termination argument as a disjunction
of ranking functions for paths, which has the drawback of having to consider the transi-
tive closure of the transition relation when checking for disjunctive well-foundedness of
the termination argument. We incrementally (in the number of components) construct
a lexicographic ranking function, which is disjunctively well-founded by construction.

While Kroening et al. [2010] and Cook et al. [2010] present methods based on a
reduction to Presburger arithmetic, and a template-matching approach for predefined
classes of ranking functions based on reduction to SAT- and QBF-solving. Falke et al.
[2012] and Hensel et al. [2016] present restricted encodings of machine integer seman-
tics into integer arithmetic. Maurica et al. [2016] use rational enclosures of floating
point arithmetic in order to reuse existing techniques that use reasoning over rationals.
David et al. [2015] synthesise intraprocedural termination arguments in the form of
unrestricted boolean functions.

There are still a number of limitations to be addressed, all of which connect to open
challenges subject to active research. While some are orthogonal (e.g., data structures,
strings, refinement) to our interprocedural analysis framework, others (recursion,
necessary preconditions) require extensions of it. In this section, we discuss related
work, as well as, characteristics and limitations of our analysis, and future directions
(cost analysis and concurrency).
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Dynamically allocated linked data structures We currently ignore such data
structures. This limitation could be lifted by using specific abstract domains. For
illustration, let us consider the following example traversing a singly-linked list.

List x ;
while ( x != NULL) { x = x−>next ; }

Deciding the termination of such a program requires knowledge about the shape
of the data structure pointed by x, namely, the program only terminates if the list
is acyclic. Thus, we would require an abstract domain capable of capturing such a
property and also relate the shape of the data structure to its length. Similar to Cook
et al. [2013], we could use a technique introduced by Magill et al. [2010] in order to
abstract heap-manipulating programs to arithmetic ones; they introduce additional
ghost variables that symbolically record a snapshot of the depths of pieces of the heap
used by the list. Another option is using an abstract interpretation based on separation
logic formulae that tracks the depths of pieces of heaps similarly to Berdine et al.
[2006] and Manevich et al. [2016]. Examples of analysers that do consider the heap
are AProVE [Giesl et al. 2017], JULIA [Spoto et al. 2010], and COSTA [Albert et al.
2007]. The former focuses on the termination of term rewrite systems and, in order
to analyze programs, it transforms them into a symbolic execution graph. Sharing
effects of heap operations in Java, pointer arithmetic and memory safety in C are
handled when generating this graph. The termination analysis in JULIA is based on a
path-length abstraction and it is targeted at Java bytecode. As opposed to our analysis,
none of these generates preconditions for termination or is bit-precise. When applying
these solution, we would assume that the length of each list is bounded by a constant.
Note that a bound such as 264 is sufficient to verify every program running on a 64-bit
processor.
Strings and arrays Similar to dynamically allocated data structures, handling
strings and arrays requires specific abstract domains. String abstractions (e.g. [Dor
et al. 2001]) that reduce null-terminated strings to integers (indices, length, and size)
are usually sufficient in many practical cases; scenarios where termination is dependent
on the content of arrays (e.g. [Albert et al. 2014] are much harder and would require
quantified invariants [McMillan 2008]. Note that it is favourable to run a safety checker
before the termination checker. The latter can assume that assertions for buffer overflow
checks hold which strengthens invariants and makes termination proofs easier.
Recursion We currently use downward fixed point iterations for computing calling
contexts and invariants that involve summaries (see Remark 5.7). This is cheap but
gives only imprecise results in the presence of recursion, which would impair the termi-
nation analysis. We could handle recursions by detecting cycles in the call graph and
switching to an upward iteration scheme in such situations. Moreover, an adaptation
regarding the generation of the ranking function templates is necessary. An alternative
approach would be to make use of the theoretic framework presented by Podelski et al.
[2005] for verifying total correctness and liveness properties of while programs with
recursion that could be used for the verification of termination properties.
Template refinement We currently use interval templates together with heuris-
tics for selecting the variables that should be taken into consideration. This is often
sufficient in practice, but it does not exploit the full power of the machinery in place.
While counterexample-guided abstraction refinement (CEGAR) techniques are preva-
lent in predicate abstraction [Clarke et al. 2000], attempts to use them in abstract
interpretation are rare [Ranzato et al. 2008]. We consider our template-based abstract
interpretation that automatically synthesises abstract transformers more amenable
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to refinement techniques than classical abstract interpretations where abstract trans-
formers are implemented manually.
Sufficient preconditions to termination Conditional termination has recently at-
tracted increased interest [Cook et al. 2008; Bozga et al. 2012; Ganty and Genaim 2013;
Massé 2012; Massé 2014; Urban and Miné 2014; Urban and Miné 2017]. In this paper,
we compute sufficient preconditions, i.e., under-approximating preconditions to termi-
nation via computing over-approximating preconditions to potential non-termination.
The same concept is used by other works [Cook et al. 2008; Bozga et al. 2012; Ganty
and Genaim 2013; Urban and Miné 2014]. However, they consider only a single pro-
cedure and do not leverage their results to perform interprocedural analysis on large
benchmarks which adds, in particular, the additional challenge of propagating under-
approximating information up to the entry procedure. Moreover, in contrast to Cook
et al. [2008], who use a heuristic FINITE-operator left unspecified for bootstrapping
their preconditions, our bootstrapping is systematic through constraint solving.

The inference of conditions under which programs are guaranteed to terminate has
also been an active area of research in the context of logic programming. In [King and
Lu 2002], the authors use a backward analysis to infer conditions on a query which, if
satisfied, guarantee that resulting derivations satisfy propertis such as termination,
whereas in [Genaim and Codish 2005] Genaim and Codish combine traditional termi-
nation analysis and backwards analysis to infer modes for which a logic program is
guaranteed to terminate. In [Mesnard 1996], Mesnard et al. compute a termination con-
dition ensuring that the Prolog computation tree for a certain goal is finite. Urban and
Miné [2017] aim at inferring sufficient precondition for certain subclasses of liveness
properties.

We could compute necessary preconditions by computing over-approximating precon-
ditions to non-termination (and negating the result). This requires a method for proving
that there exist non-terminating executions, which is a well-explored topic. While Gupta
et al. [2008] dynamically enumerate lasso-shaped candidate paths for counterexamples,
and then statically prove their feasibility, Chen et al. [2014] prove non-termination via
reduction to safety proving and Le et al. [2015] use bi-abduction to construct summaries
of terminating and non-terminating behaviours for each method. Massé [2014] uses
policy iteration techniques in order to compute an over-approximation of the potentially
non-terminating states. In order to prove both termination and non-termination, Harris
et al. [2010] compose several program analyses (termination provers for multi-path
loops, non-termination provers for cycles, and safety provers).
Cost analysis A potential future application for our work is cost and resource
analysis. Instances of this type of analyses are worst case execution time (WCET)
analysis [Wilhelm et al. 2008; Knoop et al. 2011; Knoop et al. 2012], as well as bound
and amortised complexity analysis [Alias et al. 2010; Albert et al. 2012; Sinn et al.
2014; Flores-Montoya and Hähnle 2014; Brockschmidt et al. 2016]. A symbolic bound is
calculated by expressing the complexity function as a system of recurrence relations;
combinatorial techniques are then used to solve these relations. Automatic techniques
for computing closed-form solutions of recurrence relations are based on rewriting
rules [Métayer 1988; Rosendahl 1989] or solving difference equations using symbolic
algebra manipulation systems [Wegbreit 1975; Knoop et al. 2011; Knoop et al. 2012]. The
control flow refinement approach [Gulwani et al. 2009; Chen et al. 2013] instruments a
program with counters and uses progress invariants to compute worst case or average
case bounds.
Concurrency Our current analysis handles single-threaded C programs. We en-
visage extending the analysis to multi-threaded C programs. One way of extending
the analysis to multi-threaded programs is using the rely-guarantee technique which
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is proposed by Jones [1983], and explored in several works [Cook et al. 2007; Gupta
et al. 2011; Popeea and Rybalchenko 2012; Albert et al. 2017] for termination analysis.
In our setting, the predicates for environment assumptions can be used in a similar
way as invariants and summaries are used in the analysis of sequential programs.
Other approaches to checking termination of multi-threaded programs characterize the
existence of non-terminating executions as concurrent traces and apply causality-based
transformation rules to refine them until a contradiction can be shown [Kupriyanov
and Finkbeiner 2014].

9. CONCLUSIONS
Many termination provers mainly target small, hard programs, and consequently, the
termination analysis of larger code bases has received little attention. We present an
algorithm for interprocedural termination analysis for non-recursive programs. We
describe in full detail the entire machinery necessary to perform such an analysis.
Our approach relies on a bit-precise static analysis combining SAT/SMT solving, tem-
plate polyhedra and lexicographic, linear ranking function templates. We provide an
implementation of the approach in the static analysis tool 2LS, and demonstrate the
applicability of the approach to programs with thousands of lines of code.
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