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1 Novel cortex lytic enzymes in Bacillus megaterium QM B1551 spores

2
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11 One sentence summary: Proteins encoded at BMQ_2391 and BMQ_3234 encode novel cortex 

12 lytic enzymes that permit cortex hydrolysis in Bacillus megaterium spores deficient in the major 

13 peptidoglycan lysins SleB and CwlJ.
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15 Abstract

16 Present models for spore germination in Bacillus species include a requirement for either the SleB 

17 or CwlJ cortex lytic enzymes to efficiently depolymerise the spore cortex. Previous work has 

18 demonstrated that B. megaterium spores may differ to other species in this regard, since sleB cwlJ 

19 null mutant spores complemented with the gene in trans for the non-peptidoglycan lysin YpeB can 

20 efficiently degrade the cortex. Here we identify two novel cortex lytic enzymes, encoded at the 

21 BMQ_2391 and BMQ_3234 loci, that are essential for cortex hydrolysis in the absence of SleB 

22 and CwlJ. Ellipsoid localisation microscopy places the BMQ_3234 protein within the inner-spore 

23 coat, a region of the spore that is populated by other cortex lytic enzymes. The findings reinforce 

24 the idea that there is a degree of variation in mechanisms of cortex hydrolysis across the Bacillales, 

25 raising potential implications for environmental decontamination strategies based upon targeted 

26 inactivation of components of the spore germination apparatus.

27 Keywords: Bacillus, spore germination, cortex lytic enzyme, peptidoglycan lysin
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29 Introduction

30 Bacteria of the Bacillales and Clostridiales form metabolically dormant endospores (spores) in 

31 response to nutrient limitation. The cellular properties of spores, which include several unique 

32 morphological and physiological features, means that they are equipped to persist in the 

33 environment, in a dormant state, until conditions are conducive to support vegetative growth. The 

34 latter is indicated by the presence of nutrient molecules, typically amino acids, monosaccharides 

35 and nucleosides, which interact with germinant receptor molecules to trigger spore germination 

36 (Setlow et al. 2017). A major event in spore germination concerns depolymerisation of the spore 

37 cortex, a thick layer of structurally unique peptidoglycan that envelops the spore protoplast and 

38 which is a major contributory factor to the maintenance of spore dormancy (Imae & Strominger 

39 1976; Popham & Bernhards 2015). In spores of all species examined the cortex is degraded by 

40 specialised peptidoglycan lysins, which are referred to as cortex lytic enzymes (CLEs). It is well 

41 established that two main CLEs, SleB and CwlJ, can initiate hydrolysis of the cortex during the 

42 germination process (Moriyama et al. 1996; Ishikawa et al. 1998). SleB and CwlJ are semi-

43 redundant enzymes, in the sense that deletion of either gene permits cortex hydrolysis to an extent 

44 where at least a proportion of the spores within a population will retain viability on rich culture 

45 medium. Deletion of both genes, however, results in spores that are severely compromised in their 

46 capacity to depolymerise the cortex resulting in arrested germination and severely reduced colony 

47 forming ability (Ishikawa et al. 1998; Heffron et al. 2009; Setlow et al. 2009).

48 As with other species of Bacillus where CLEs have been characterised by mutational 

49 analysis, Bacillus megaterium spores that are null for sleB and cwlJ lose absorbance (A600 nm) 

50 when suspended in buffer supplemented with germinants (Setlow et al. 2009). A reduction in A600 

51 of approximately 15% is indicative of spores that have released calcium dipicolinate (CaDPA) 

52 from the spore core but cannot proceed to cortical depolymerisation and subsequent core hydration 

53 (for reference, the A600 of wild type spore suspensions decreases by approximately 60% when 

54 germinated under similar circumstances). Furthermore, the viability of B. megaterium sleB cwlJ 

55 spores is reduced by several orders of magnitude compared to the isogenic wild type strain. 

56 Unexpectedly, the introduction on a low copy number plasmid of a truncated sleB gene, encoding 

57 only the N-terminal non-catalytic domain, plus ypeB, which resides in the same operon as sleB, 

58 restores spore viability and absorbance loss to near wild type levels in the sleB cwlJ spores 

59 background (Christie et al. 2010). Structural analysis of cortical fragments produced during 
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60 germination of these spores, and in spores where only ypeB was complemented, which also 

61 germinate efficiently (Ustok et al. 2014), revealed a relative abundance of anhydromuropeptides 

62 in the germination milieu. These are the products of a class of peptidoglycan lysin referred to as a 

63 lytic transglycosylase. Since SleB is a well characterised lytic transglycosylase (Boland et al. 2000; 

64 Jing et al. 2012; Li et al. 2012), the obvious conclusion here is that an orthologue of SleB is present 

65 in B. megaterium spores, which – like SleB - has an undefined requirement for YpeB, and which 

66 can initiate cortex depolymerisation in the absence of SleB and CwlJ.

67 Accordingly, the objective of the current study was to identify and characterise novel CLEs 

68 that are functional during the germination of B. megaterium QM B1551 spores, and in particular, 

69 those that permit efficient cortex hydrolysis in the absence of SleB and CwlJ.

70

71 Materials and Methods

72 Bacterial strains and spore preparation

73 B. megaterium strains employed in this study, which were all isogenic with the QM B1551 strain, 

74 were cultured routinely at 30°C on LB medium supplemented where appropriate with antibiotics 

75 (Table 1). Spores were prepared by nutrient exhaustion in supplemented nutrient broth and 

76 subsequently purified by repeated rounds of centrifugation and resuspension of spore pellets in 

77 deionised ice-cold water (Christie et al. 2010). Purified suspensions comprising >99% phase bright 

78 spores were stored in deionised water, at an A600 of approximately 50, on ice. Escherichia coli 

79 Top 10 cells (Thermo Fisher, UK) were used for cloning procedures, plasmid propagation and for 

80 heterologous protein expression experiments.

81

82 Spore germination and viability assays

83 Spore germination in liquid medium was assessed in microtitre plates by adding 10 µl of heat-

84 shocked (80°C, 30 min) spores to 190 µl of 5% (wt/vol) beef extract (Oxoid, Ltd., Basingstoke, 

85 United Kingdom), preheated to 37°C. The A600 of spore suspensions was 0.4. Plates were sealed 

86 with adhesive film to minimize evaporative losses, and then incubated in a Perkin-Elmer 

87 EnVision-Xcite multilabel plate reader fitted with a 600 nm photometric filter. Plates were agitated 

88 orbitally for 10 seconds prior to absorbance measurements, which were recorded every minute for 

89 90 minutes. Experiments were conducted in triplicate, with at least two or more independent spore 

90 preparations. Spore viability was determined by pipetting 10 µl aliquots of serially diluted 
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91 suspensions of heat-shocked spores (A600 of 1 [108 spores/ml]) onto LB agar plates. Plates were 

92 incubated for 16 to 24 h prior to colony enumeration.

93

94 Molecular biology procedures

95 Transcriptional analysis from loci of interest was examined by RT-PCR, using RNA purified from 

96 sporulating cultures, a QuantiTect Reverse Transcription kit (Qiagen, Manchester, UK) and gene-

97 specific primers designed to amplify approximately 400 bp fragments, essentially as described 

98 previously (Ramirez-Peralta et al. 2013).

99 Inactivation of BMQ_2391 and BMQ_3234 in the B. megaterium sleB cwlJ background 

100 was accomplished by integrating pUCTV2 derived plasmids at the respective loci. Essentially, the 

101 first 300 bp of each gene was amplified from B. megaterium QM B1551 genomic DNA by PCR. 

102 Purified PCR products were ligated with pUCTV2 (digested with EcoRI), and ligation mixtures 

103 subsequently used to transform E. coli to carbenicillin resistance. Isolated plasmids were 

104 introduced to B. megaterium protoplasts using standard polyethylene glycol mediated 

105 transformation procedures. Tetracycline resistant transformants were then repeatedly streaked on 

106 LB agar plates containing 1.25 µg/ml tetracycline at 42oC to permit isolation of clones that had 

107 integrated plasmid DNA at the cloned loci, prior to validating by PCR and sequencing. Strains 

108 with translational gfp fusions to genes of interest were constructed by amplifying entire 

109 BMQ_2391 and BMQ_3234 ORFs, minus stop codons, using primers that incorporated XhoI and 

110 EcoRI restriction sites at the respective 5’ and 3’ ends. Purified and digested PCR amplicons were 

111 ligated with similarly digested pVLG6 vector to create 3’ fusions to gfp. The resultant plasmids 

112 were purified from E. coli and used to transform B. megaterium to chloramphenicol resistance. 

113 Individual colonies were streaked and incubated at the non-permissive temperature of 42°C in the 

114 presence of chloramphenicol, to select for plasmid integrations into the chromosome at cloned 

115 loci. Procedures designed to create spores with transcriptional fusions between putative CLE 

116 promoter sequences and lacZ were constructed using plasmid pNFd13, and resultant 

117 measurements of β-galactosidase activity associated with disrupted spores, were as described 

118 previously (Gupta et al. 2013).

119 Complementation-based analyses of CLE mutant strains were performed using pHT315-

120 derived plasmids, which have a copy number of approximately 15 per cell (Arantes & Lereclus 

121 1991). The existing pHT-sleBN ypeB plasmid (Christie et al. 2010) was modified to additionally 
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122 incorporate ORFs and upstream regulatory sequences for either BMQ_2391 or BMQ_3234 

123 proteins. This was achieved using EcoRI restricted pHT-sleBN ypeB and BMQ_2391 or 

124 BMQ_3234 PCR amplicons designed to facilitate cloning via the Klenow Assembly Method 

125 (Ghosh et al. 2018). Similar procedures were used to introduce BMQ_2391 or BMQ_3234 ORFs 

126 and regulatory sequences into pHT315. The B. megaterium sleB cwlJ BMQ_2391 and B. 

127 megaterium sleB cwlJ BMQ_3234 strains were subsequently transformed, using the appropriate 

128 plasmids, to erythromycin and lincomycin resistance.

129

130 Ellipsoid localisation microscopy

131 The quantitative fluorescence ELM technique was used to measure the location of GFP fusion 

132 proteins in mature spores (Manetsberger et al. 2015; Manton et al. 2018). Briefly, several 

133 independent fields of GFP labelled spores were imaged using an Olympus BX53 microscope fitted 

134 with a 100 1.30 NA oil objective lens, with illumination from a mercury lamp, filters for GFP 

135 fluorescence, and a Retiga 2000R CCD camera. Automated image segmentation was used to 

136 identify single spores, and the image of each candidate was used to fit the parameters of a model 

137 that describes the image of a spheroidal fluorescent shell. For B. megaterium, an equation 

138 describing the image of a spherical fluorescent layer was fitted to the image data. A filter was 

139 applied to exclude fits from overlapping spores and fragments of debris. The average radius 

140 parameter fitted to the spores provides an estimate of the midpoint radial position of the GFP fusion 

141 with respect to the spore centre.

142

143 Protein interactions

144 A bacterial adenylate cyclase two-hybrid (BACTH) system (Euromedex, Souffelweyersheim, 

145 France) was used to characterise potential interactions in vivo between B. megaterium CLEs and 

146 related proteins (BMQ_2391, BMQ_3234, CwlJ, SleB, SleL and YpeB). The BACTH system is 

147 based upon two complementary adenylate cyclase fragments (T25 and T18) being brought together 

148 by interacting fusion partners to form functional enzyme, resulting in cAMP synthesis and 

149 activation of a lacZ reporter gene. Plasmids used for BACTH assays in this work were prepared 

150 by PCR amplifying ORFs encoding CLEs and YpeB from genomic DNA before assembling with 

151 linearised pUT18 and pKT25 plasmids by Klenow assembly. The resulting plasmids, designed for 

152 expression of C-terminal fusions between proteins of interest and T25 or T18 adenylate cyclase 
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153 fragments, were isolated and verified by sequencing. Electrocompetent E. coli BTH101 were co-

154 transformed using various combinations of pKT25 and pUT18 derived plasmids and selected on 

155 LB agar plates supplemented with 40 µg/ml X-Gal (5-bromo-4-chloro-3-indolyl-β-D-

156 galactopyranoside), 1 mM IPTG, and 50 µg/ml carbenicillin and kanamycin, respectively. Cells 

157 were cultured for 24-72 h at 30°C and examined for the development of blue coloration, which is 

158 indicative of positive interactions between pairs of fusion proteins.

159

160 Results

161 Identifying potential CLE genes

162 Genes encoding candidate novel CLEs were identified by conducting NCBI Protein BLAST 

163 searches using sequences for the C-terminal catalytic domain of SleB and full length CwlJ as 

164 probes against the B. megaterium QM B1551 genome (GenBank accession numbers CP001983 – 

165 CP001900). The searches identified five potential CLEs, four of which showed greater amino acid 

166 sequence identity with the catalytic domain of SleB (ranging from 40 – 46 %), whereas BMQ_3234 

167 shared greater sequence identity to CwlJ (49%) (Table 2). Sequence analysis revealed possible 

168 sigma G (G) consensus sequences and predicted signal peptide sequences for all four SleB 

169 homologues, which is consistent with expression in the forespore during sporulation. In contrast, 

170 the BMQ_3234 ORF is preceded by a potential sigma E (E) recognition sequence and lacks a 

171 recognisable signal peptide, which is consistent with mother cell expression in the mother cell 

172 during sporulation. All five predicted proteins are members of the Hydrolase-2 family (PF07486), 

173 which is consistent with a role in peptidoglycan depolymerisation. Two of the putative proteins 

174 contain single peptidoglycan-binding LysM domains (BMQ_1284 and BMQ_2145) with 

175 BMQ_3195 predicted to have two N-terminal LysM domains. LysM domains are present in 

176 established spore CLEs, including SleL (Ustok et al. 2015). In contrast, neither BMQ_2391 nor 

177 BMQ_3234 appear to contain defined substrate binding domains, which is analogous to the 

178 domain architecture of CwlJ. Pairwise sequence alignments indicate that SleB’s single catalytic 

179 residue, E208, is present and conserved in the primary sequence of all five putative CLEs (Table 

180 2).

181

182 Transcriptional analysis of candidate CLE genes

183 In order to ascertain whether the various candidate CLE genes were transcribed during sporulation, 
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184 RT-PCR was conducted on cDNA derived from B. megaterium cultures sampled immediately 

185 prior to entry to stationary phase and at hourly intervals thereafter (Figure 1). These analyses 

186 indicate that two of the candidate CLEs - BMQ_1284 and BMQ_2145 – are transcribed at very 

187 low levels based on the low abundance of RT-PCR products. BMQ_2391 is transcribed from the 

188 early to mid-stages of sporulation, with a pattern of expression that most closely matches that of 

189 sleB. In contrast, BMQ_3195 transcripts are most abundant from the mid to latter stages of 

190 sporulation, whereas BMQ_3234 appears to be transcribed strongly throughout. The latter pattern 

191 of transcription matches that of cwlJ. Further transcriptional analyses of candidate and established 

192 CLE promoters were achieved by placing the lacZ gene under control of putative promoter 

193 sequences for the various genes. The outputs from β-galactosidase assays conducted with 

194 supernatants from disrupted spores of the various lacZ reporter strains are broadly in line with 

195 results from the aforementioned RT-PCR assays i.e. where BMQ_1284 and BMQ_2145 

196 transcriptional fusions are associated with little β-galactosidase activity, while BMQ_2391 and 

197 BMQ_3234 show the highest levels of expression, albeit less than evident for sleB and cwlJ 

198 transcriptional fusions (Table 1).

199
200 Localisation of BMQ_2391 and BMQ_3234 GFP fusion proteins

201 Proteins encoded at the BMQ_2391and BMQ_3234 loci were selected for further analysis since 

202 they appeared to be expressed at the highest levels of the candidate CLEs. The sub-cellular 

203 localisation of both proteins was investigated during sporulation and in mature spores by creating 

204 constructs designed to express C-terminal GFP fusion proteins. Fluorescence microscopy revealed 

205 that the BMQ_3234-GFP protein is expressed during sporulation in the mother cell compartment 

206 and is deposited to form a ring of fluorescence around the developing forespore (Figure 2). A 

207 strong fluorescence signal was retained in mature spores (Figure 2). The average radial location of 

208 the BMQ_3234-GFP protein, as inferred from ellipsoid localisation analyses, was 521 nm 9 nm 

209 in mature spores (where 9 nm is the standard deviation of radial locations found in repeated 

210 measurements and where 865 spores were analysed with a residual fitting error of 8.4%). This 

211 places the location of BMQ_3234 to the inner spore coat, within the same vicinity as SleL (525 

212 nm 11 nm; 362 spores analysed with a residual fitting error of 6.5%), and presumably CwlJ 

213 (Setlow et al. 2017; Ghosh et al. 2018). In contrast, no fluorescence was observed during 

214 sporulation or in mature spores for the BMQ_2391-GFP protein, perhaps due to aberrant protein 
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215 folding or problems associated with the GFP fusion protein translocating the inner membrane (data 

216 not shown). A strain designed to express an N-terminal GFP fusion protein also failed to show any 

217 detectable fluorescence during sporulation or in mature spores.

218

219 Germination of BMQ_2391 and BMQ_3234 null mutant spores

220 To investigate whether the BMQ_2391 and BMQ_3234 proteins have a role in germination, 

221 particularly in the absence of the major CLEs, mutant strains lacking either of these enzymes were 

222 constructed in the B. megaterium sleB cwlJ double mutant background. Despite repeated attempts 

223 we failed to isolate mutants that had undergone allelic exchange with truncated and disrupted gene 

224 variants at either locus. Instead, strains that had undergone single recombination events, integrating 

225 pUCTV2 derived plasmids at the target loci and thereby separating the respective ORFs from their 

226 promoter sequences, were isolated. Copies of sleBN and ypeB under control of the native promoter 

227 sequence were introduced to these strains on a low copy number pHT315 derived plasmid, and the 

228 resultant strains sporulated by nutrient starvation. Both strains were found to have excised the 

229 pBM600 plasmid during mutagenesis. This plasmid encodes the GerU-germinant receptor, hence 

230 the resultant spores were heat shocked and germinated in beef extract medium, which promotes an 

231 efficient germinative response in the absence of GerU (Gupta et al. 2013). Germination assays 

232 conducted with spores suspended in beef extract revealed that both triple mutant strains - sleB cwlJ 

233 BMQ_2391 and sleB cwlJ BMQ_3234 - complemented with plasmid bourne sleBN and ypeB, had 

234 major germination defects, with the A600 decreasing by a comparable amount (~15 %) to sleB 

235 cwlJ spores (Figure 3). This is indicative of CaDPA efflux but limited, if any, cortex 

236 depolymerisation. The viability of both triple mutant strains was also severely compromised 

237 compared to wild type and sleB cwlJ spores complemented with sleBN ypeB, again being 

238 comparable to sleB cwlJ spores lacking plasmid borne sleBN ypeB (Table 1). In contrast, the 

239 viability of triple mutant strains complemented with plasmid borne copies of sleBN ypeB and 

240 BMQ_2391 or BMQ_3234, as appropriate, was restored to approximately half of that observed in 

241 sleB cwlJ pHT-sleBN ypeB spores (35-40 % versus 80 %). Similarly, complemented spores show 

242 a reduction in A600 of ~50 % within 40 minutes in beef extract, which although not as efficient as 

243 sleB cwlJ pHT-sleBN ypeB spores, is indicative of significant cortical depolymerisation (Figure 3). 

244 In contrast, the viability of triple mutant spores complemented with either BMQ_2391 or 
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245 BMQ_3234 was comparable to spores of the respective non-complemented strains, indicating that 

246 YpeB is essential for cortical depolymerisation in the sleB cwlJ background.

247

248 Interactions between CLEs

249 Results with null mutant spores reported in this work, and in previous studies (Bernhards & 

250 Popham 2014; Ustok et al. 2014), indicate that direct physical interactions between CLEs and or 

251 CLEs and the YpeB protein may be required to facilitate efficient cortex hydrolysis during 

252 germination. The E. coli based BACTH system was employed in the current study to investigate 

253 potential interactions between the two novel CLEs identified in this work – BMQ_2391 and 

254 BMQ_3234 – with each other and with SleB, CwlJ, SleL and YpeB. Potential interactions 

255 between (i) SleB with YpeB, SleL and CwlJ, (ii) CwlJ with YpeB and SleL, and (iii) SleL with 

256 YpeB, were also examined. Blue coloration of co-transformant E. coli colonies was not observed 

257 in any of the combinations tested, with the exception of the positive control, indicating that none 

258 of the spore proteins of interest interact productively in this system (Figure 4).

259

260 Heterologous expression of BMQ_2391 and BMQ_3234

261 Several attempts were made to express recombinant versions of the BMQ_2391 and BMQ_3234 

262 proteins with a view to characterising the hydrolytic bond specificity of each protein. Hosts for 

263 heterologous expression included E. coli, Lactococcus lactis and B. subtilis, with several variant 

264 proteins – including truncated forms, GFP, and maltose binding protein (solubility enhancer) 

265 fusions – being examined over the course of this work. Unfortunately, levels of expression 

266 commensurate with biochemical analyses were not achieved in any of the systems employed (data 

267 not shown).

268

269 Discussion

270 Initiation of cortex hydrolysis in current models of Bacillus spore germination requires the activity 

271 of either of the semi redundant CLEs SleB or CwlJ. Efficient degradation of the cortex is 

272 subsequently facilitated by enzymes such as SleL, whose function appears to be associated with 

273 further hydrolysis of large peptidoglycan fragments generated by SleB and or CwlJ (Chen et al. 

274 2000; Lambert & Popham 2008; Ustok et al. 2015). While this sequence of events probably occurs 

275 in wild type spores of all species of Bacillus, mutagenesis analyses conducted with B. megaterium 
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276 sleB cwlJ spores have revealed that this species can circumvent the requirement for either of SleB 

277 or CwlJ . Previous work revealed that B. megaterium sleB cwlJ spores could degrade the cortex 

278 with an efficiency comparable to wild type spores when complemented with a plasmid-borne copy 

279 of sleBN, which encodes the non catalytic domain of SleB, plus the adjacent ypeB gene (Christie 

280 et al. 2010). Indeed, complementation with ypeB alone restored efficient cortex hydrolysis to sleB 

281 cwlJ spores (Ustok et al. 2014). The precise function of YpeB has not been determined, although 

282 it is not a peptidoglycan lysin, and instead appears to have a role in localising – and perhaps 

283 regulating the activity - of SleB in the spore (Boland et al. 2000; Bernhards & Popham 2014; Ustok 

284 et al. 2015).

285 Another study in B. megaterium extended these findings and attempted to dissect the 

286 molecular mechanisms that support efficient cortex hydrolysis in sleB cwlJ spores (Ustok et al. 

287 2014). In this case, a triple mutant (sleB cwlJ sleL) strain complemented with sleBN plus ypeB 

288 showed a severe germination defect. Based on this result, the study concluded that ypeB and sleL 

289 are both essential for the initiation of cortex hydrolysis in B. megaterium sleB cwlJ spores. The 

290 requirement for sleL in the sleB cwlJ background was unexpected since, as noted above, SleL is 

291 regarded as a cortical fragment lytic enzyme. Similarly, muropeptide analyses of germination 

292 exudates from sleB cwlJ spores complemented with ypeB clearly indicate the presence of lytic 

293 transglycosylase activity during germination, whereas SleL exhibits N-acetylglucosaminidase 

294 activity (Lambert & Popham 2008; Ustok et al. 2014).

295 With this context in mind, the main purpose of the current study was to identify cortex lytic 

296 enzymes that are functional in B. megaterium sleB cwlJ spores complemented with plasmid borne 

297 ypeB. Progress in this regard was achieved via bioinformatic analyses, which identified five 

298 candidate CLE loci. Subsequent transcriptional analyses, comprising RT-PCR and -galactoside 

299 reporter assays, were used to narrow candidates for further characterisation to proteins encoded at 

300 the BMQ_2391 and BMQ_3234 loci (moderate transcription, relative to sleB and cwlJ, was 

301 associated with BMQ_3195, although this protein was not characterised further).

302 Mutagenesis analyses in this work were compromised to a certain extent in that we could 

303 not isolate null mutant strains that had undergone allelic exchange with truncated and disrupted 

304 versions of BMQ_2391 or BMQ_3234 in the sleB cwlJ background. However, strains in which 

305 BMQ_2391 or BMQ_3234 were disrupted by integrative plasmids, effectively separating the 

306 promoter and first 300 nucleotides of the respective genes from the remainder of the coding 
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307 sequences, were isolated, albeit at the expense of the GerU-encoding pBM600 plasmid. Loss of 

308 the GerU germinant receptor can be circumvented by germinating gerU spores in beef extract, 

309 components of which trigger efficient germination responses via alternative germinant receptors 

310 in B. megaterium (Gupta et al. 2013). In both cases, germination of triple mutant spores – sleB 

311 cwlJ BMQ_2391 and sleB cwlJ BMQ_3234 – complemented with plasmid borne sleBN and ypeB, 

312 was comparable in terms of absorbance loss to non sleBN ypeB complemented triple mutant spores. 

313 The observed reduction in A600 of approximately 15% is indicative of spores that have released 

314 CaDPA and various ions from the spore core but which have failed to depolymerise cortical 

315 peptidoglycan. Viability of the sleBN ypeB complemented triple mutant spores was similarly 

316 comparable to non-complemented spores, with colony forming ability on LB medium being 

317 reduced by more than five logs compared to isogenic wild type spores, indicating again that the 

318 cortex has not been degraded. In contrast, complementation in trans with BMQ_2391 or 

319 BMQ_3234 in sleBN ypeB complemented triple mutant spores restored viability and absorbance 

320 loss to approximately 40% of wild type levels.

321 Outputs from the present study support the hypothesis that BMQ_2391 and BMQ_3234 

322 encode novel CLEs that are not only active during germination of B. megaterium spores, but which 

323 also confer further redundancy within the cortical depolymerisation system of this species (and 

324 perhaps this species alone since sleBN ypeB in trans failed to restore cortex hydrolysis to B. subtilis 

325 sleB cwlJ spores (Li et al. 2013)). In some regards the requirement for three separate enzymes - 

326 SleL, BMQ_2391 and BMQ_3234 – in tandem with YpeB, for efficient spore germination in B. 

327 megaterium sleB cwlJ spores, is difficult to reconcile. One possibility is that the combined activity 

328 of each enzyme – which may be infrequent cutters – is required for cortex depolymerisation to a 

329 degree that is commensurate with germination. It’s possible also that at least some of these proteins 

330 physically interact to ensure correct localisation and or function in the spore. Ellipsoid localisation 

331 microscopy analysis places SleL and BMQ_3234 within the same inner coat location within the 

332 spore, which would facilitate physical interactions. However, where examined - bacterial two-

333 hybrid assays in this work and pull-down assays conducted previously (Li et al. 2013; Ustok et al. 

334 2014) – have failed to provide any evidence of interactions between CLEs. Further insight to the 

335 nature of the inter-dependency between CLEs, and how YpeB may contribute to this, are 

336 objectives for continuing work in this area. Finally, targeted inactivation of CLEs may provide a 

337 novel strategy for spore decontamination in a number of sectors. A potential implication arising 
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338 from the present study is that enzymes in addition to the major CLEs may have to be inhibited, at 

339 least in some species, for efficient spore inactivation.

340
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Figure legends

Figure 1 RT-PCR analysis of sleB, cwlJ and potential CLE gene transcription during 

sporulation of B. megaterium QM B1551. RT-PCR was conducted using gene-specific primers 

designed to amplify ~300-bp fragments of the respective genes from RNA isolated from 

sporulating cultures, as described in Materials and Methods. Numbers refer to the times (h) 

after entry to sporulation. Negative, i.e., no template RNA (-), and positive, i.e. genomic 

template DNA (+), control reactions are indicated. Molecular weight markers are shown on the 

left-hand side. Isolated RNAs were verified as being free from genomic DNA by conducting 

PCRs with the same gene-specific primers (data not shown).

Figure 2 Phase contrast and fluorescence microscopy of B. megaterium BMQ_3234-gfp 

sporulating cells (a and b) and mature spores (c and d). Green fluorescence is associated with 

the BMQ_3234-GFP fusion protein and red fluorescence with the membrane-staining FM4-

64 dye. Bar represents 5 µm.

Figure 3 Germination of B. megaterium spores in 5% (wt/vol) beef extract. Spores of the 

various strains were heat shocked (80oC for 30 min) and then cooled before incubating in 

beef extract, and absorbance (A600) measurements recorded as described in the Materials 

and Methods. Key: GC103 (sleB cwlJ), crosses; GC106 (sleB cwlJ pHT315-sleBN 

ypeB), diamonds; BR111 (sleB cwlJ BMQ_2391 pHT-sleBN ypeB) filled squares; BR113 

(sleB cwlJ BMQ_2391 pHT-sleBN ypeB BMQ_2391), open squares; BR112 (sleB 

cwlJ BMQ_3234 pHT-sleBN ypeB), filled circles; BR114 (sleB cwlJ BMQ_3234 pHT-

sleBN ypeB BMQ_3234), open circles.

Figure 4 Sample output from bacterial adenylate cyclase two-hybrid analysis for interactions 

between B. megaterium CLEs. Positive interactions, denoted by blue E. coli colonies, were 

observed only for the manufacturer’s positive control (a). White colonies – indicative of 

proteins that do not interact - were observed for all CLE and YpeB pairings tested, including 

(b) SleB and SleL, and (c) BMQ_2391 and BMQ_3234.

Page 18 of 46

ScholarOne Support 1-434/964-4100

FEMS Microbiology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 1 RT-PCR analysis of sleB, cwlJ and potential CLE gene transcription during sporulation of B. 
megaterium QM B1551. RT-PCR was conducted using gene-specific primers designed to amplify ~300-bp 

fragments of the respective genes from RNA isolated from sporulating cultures, as described in Materials and 
Methods. Numbers refer to the times (h) after entry to sporulation. Negative, i.e., no template RNA (-), and 

positive, i.e. genomic template DNA (+), control reactions are indicated. Molecular weight markers are 
shown on the left-hand side. Isolated RNAs were verified as being free from genomic DNA by conducting 

PCRs with the same gene-specific primers (data not shown). 
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Figure 2 Phase contrast and fluorescence microscopy of B. megaterium BMQ_3234-gfp sporulating cells (a 
and b) and mature spores (c and d). Green fluorescence is associated with the BMQ_3234-GFP fusion 

protein and red fluorescence with the membrane-staining FM4-64 dye. Bar represents 5 µm. 
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Figure 3 Germination of B. megaterium spores in 5% (wt/vol) beef extract. Spores of the various strains 
were heat shocked (80oC for 30 min) and then cooled before incubating in beef extract, and absorbance 
(A600) measurements recorded as described in the Materials and Methods. Key: GC103 (ΔsleB ΔcwlJ), 

crosses; GC106 (ΔsleB ΔcwlJ pHT315-sleBN ypeB), diamonds; BR111 (ΔsleB ΔcwlJ ΔBMQ_2391 pHT-sleBN 
ypeB) filled squares; BR113 (ΔsleB ΔcwlJ ΔBMQ_2391 pHT-sleBN ypeB BMQ_2391), open squares; BR112 
(ΔsleB ΔcwlJ ΔBMQ_3234 pHT-sleBN ypeB), filled circles; BR114 (ΔsleB ΔcwlJ ΔBMQ_3234 pHT-sleBN ypeB 

BMQ_3234), open circles. 
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Figure 4 Sample output from bacterial adenylate cyclase two-hybrid analysis for interactions between B. 
megaterium CLEs. Positive interactions, denoted by blue E. coli colonies, were observed only for the 
manufacturer’s positive control (a). White colonies – indicative of proteins that do not interact - were 
observed for all CLE and YpeB pairings tested, including (b) SleB and SleL, and (c) BMQ_2391 and 

BMQ_3234. 
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Table 1 Strains of Bacillus megaterium used in this work and viability of their sporesa

Strain Relevant genotypic and 

phenotypic characteristicsb

Viability 

(%)

-Galactosidase 

activity (RFU)c

Source 

(reference)

QM B1551 Wild type 100 d Pat Vary

GC103 sleB cwlJ Kmr Spr 0.001  (Christie 

et al., 

2010)

GC106 sleB cwlJ pHT-sleBN ypeB 

Kmr Spr MLSr

80  (Christie 

et al., 

2010)

GC123 sleB cwlJ pHT-ypeB Kmr Spr 

MLSr

50  (Ustok et 

al., 2014)

BR111 sleB cwlJ BMQ_2391 pHT-

sleBN ypeB Kmr Spr Tcr MLSr

<0.001  This study

BR112 sleB cwlJ BMQ_3234 pHT-

sleBN ypeB Kmr Spr Tcr MLSr

<0.001  This study

BR113 sleB cwlJ BMQ_2391 pHT-

sleBN ypeB BMQ_2391 Kmr Spr 

Tcr MLSr

40  This study

BR114 sleB cwlJ BMQ_3234 pHT-

sleBN ypeB BMQ_3234 Kmr Spr 

Tcr MLSr

35  This study

BR115 sleB cwlJ BMQ_2391 pHT-

BMQ_2391 Kmr Spr Tcr MLSr

0.001  This study

BR116 sleB cwlJ BMQ_3234 pHT-

BMQ_3234 Kmr Spr Tcr MLSr

0.002  This study

lacZ fusion 

strains



BR101 BMQ_1284::pNFd13 Kmr  170 This study

BR102 BMQ_2145::pNFd13 Kmr  210 This study

BR103 BMQ_2391::pNFd13 Kmr  1115 This study
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BR104 BMQ_3195::pNFd13 Kmr  490 This study

BR105 BMQ_3234::pNFd13 Kmr  1130 This study

BR106 BMQ_sleB::pNFd13 Kmr  1950 This study

BR107 BMQ_cwlJ::pNFd13 Kmr  1755 This study

gfp fusion 

strains

BR108 BMQ_2391-gfp Cmr   This study

BR109 BMQ_3234-gfp Cmr   This study

BR110 gfp-BMQ_2391 Cmr   This study

a Spores of various strains were prepared, purified, and heat shocked, and their relative viability 

with respect to wild type spores was determined as described in Materials and Methods. All 

values shown are averages of results with two independent spore preparations and are 25% of 

the value shown.
b Abbreviations for antibiotic resistance: Kmr, kanamycin (5 µg/ml); Spr, spectinomycin (100 

µg/ml); Tcr, tetracycline (10 µg/ml); MLSr, lincomycin (25 µg/ml) and erythromycin (1 µg/ml); 

Cmr, chloramphenicol (5 µg/ml).
c Spores were purified and assayed for -galactosidase activity as described in Materials and 

Methods. -galactosidase values (relative fluorescence units [RFU]) are the average of 

triplicate measurements, with background values subtracted, conducted with two different 

spore preparations. Standard deviations for all values are <15%.
d , not determined.
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Table 2 Properties of B. megaterium putative spore cortex lytic enzymes

Locus 

identifier

Number 

of 

amino 

acids

Signal 

peptide 

cleavage 

sitea

Predicted 

size 

(kDa)

Amino 

acid 

sequence 

identity 

with 

SleBC 

(%)b

Amino 

acid 

sequence 

identity 

with 

CwlJ 

(%)b

Predicted 

peptidoglycan 

binding 

domainsc

Predicted 

catalytic 

glutamated

BMQ_1284 233 28/29 22.3 46 (61) 24 (39) LysM E127

BMQ_2145 191 24/25 18.2 40 (63) 27 (39) LysM E90

BMQ_2391 152 24/25 14.1 43 (66) 27 (39) none E50

BMQ_3195 268 28/29 25.5 41 (60) 27 (40) LysM (2) E162

BMQ_3234 146 none 16.8 28 (46) 49 (67) none E21

a Predicted by the SignalP-5.0 Server (http://www.cbs.dtu.dk/services/SignalP/abstract.php). 

Numbers refer to residue position in the primary amino acid sequence.
b Based on EMBOSS Water pairwise local sequence alignments 

(https://www.ebi.ac.uk/Tools/psa/emboss_water/). Values in brackets, % similarity.
c According to UniProt
d The EMBOSS Water sequence alignment tool indicates that these residues are conserved 

with catalytic E208 in B. megaterium SleB.

Page 25 of 46

ScholarOne Support 1-434/964-4100

FEMS Microbiology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.cbs.dtu.dk/services/SignalP/abstract.php
https://www.ebi.ac.uk/Tools/psa/emboss_water/


For Peer Review

Response to Reviewers’ comments

Novel cortex lytic enzymes in Bacillus megaterium QM B1551 spores

Manuscript id: FEMSLE-19-03-0180

Authors: Al-Riyami, Bahja; Ghosh, Abhinaba; Rees, Eric; Christie, Graham

The authors appreciate the time and effort taken by the reviewers in considering our manuscript and 
thank them for their useful suggestions, critiques and clarifications.

Reviewer: 1

This manuscript provides strong evidence on the identity of additional enzymes besides the two 
known redundant cortex-lytic enzymes CwlJ and SleB can give sufficient cortex peptidoglycan 
hydrolysis to allow completion of B. megaterium spore germination.  There are, however, a number 
of relatively minor concerns that need to be addressed as follows.

1) There are a number of examples of unusual word usage in the manuscript. Three early in the 
manuscript are "initiate" on l 17, "consistent" on l 24 and "encompass" on l 31

Response
The abstract has been modified i.e. ‘initiate’ has been deleted, whereas the sentence with ‘consistent’ 
now reads ‘The findings reinforce the idea that there is a degree of variation in mechanisms of cortex 
hydrolysis across the Bacillales, raising potential implications for environmental decontamination 
strategies based upon targeted inactivation of components of the spore germination apparatus.’ Line 
31 has been changed from ‘encompass’ to ‘include’.

2) The abstract never mentions YpeB, yet this alone is sufficient to allow cwlJ sleB spore to 
germinate.

Response
The abstract has been modified to include the sentence: ‘Previous work has demonstrated that B. 
megaterium spores may differ to other species in this regard, since sleB cwlJ null mutant spores 
complemented with the gene in trans for the non-peptidoglycan lysin YpeB can efficiently degrade 
the cortex.’

3) The issue of the possible implications of the additional CLEs shown in this manuscript to 
environmental decontamination is never mentioned again.

Response
A short section has been added to the end of the manuscript i.e. “Finally, targeted inactivation of 
CLEs may provide a novel strategy for spore decontamination in a number of sectors. A potential 
implication arising from the present study is that enzymes in addition to the major CLEs may have to 
be inhibited, at least in some species, for efficient spore inactivation.’

4) l 39/40 - A little misleading here, in that all Clostridial spores have CLEs, just many don't have 
CwlJ and SleB, but rather SleC.

Response
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Correct, that was an unintended consequence from a previous edit. The sentence now reads ‘In spores 
of all species examined the cortex is degraded by specialised peptidoglycan lysins, which are referred 
to as cortex lytic enzymes (CLEs).’

5) l 56 - what is the copy number, and was the truncated SleB needed, and if not, what is the YpeB 
level needed to get cwlJ sleB spores to germinate?

Response
The copy number of pHT315-derived plasmids is approximately 15 per cell. We’ve added a reference 
to this effect in the manuscript. A significant number of sleB cwlJ spores germinate in the absence of 
truncated SleB, although the efficiency is decreased with respect to spores where both ypeB and 
SleBN are present. A citation to the relevant work is now included in line 61.

6) How was YpeB complemented and what was the level in complemented spores?

Response
YpeB was complemented using a pHT315-derived plasmid. A reference to this work is now cited in 
line 61.

7) l 119 - what is "low-copy number"?

Response
This sentence has been changed and the appropriate reference added to the manuscript: 
‘Complementation-based analyses of CLE mutant strains were performed using pHT315-derived 
plasmids, which have a copy number of approximately 15 per cell (Arantes & Lereclus 1991).

8) Are you sure you have all upstream regulatory sequences, and if so, why?

Response
Promoter sequences with appropriate sigma factor recognition sequences were identified by sequence 
analysis so we are confident that the regulatory sequences were captured. Successful 
complementation analyses indicate also that the cloned ORFs plus upstream sequences were 
expressed.

9) l 207 - is the fusion protein even expressed- as determined by a Western?

Response
We didn’t check this but given that the upstream regulatory sequence was identical to that used in 
complementation analyses it seems highly likely that the fusion protein was expressed.

10) Fig. 2, legend - state explicitly that the green fluorescence is due to the fusion protein, as the 
parental strain shows no fluorescence.

Response
The appropriate sentence in the legend has been modified to read: ‘Green fluorescence is associated 
with the BMQ_3234-GFP fusion protein and red fluorescence with the membrane-staining FM4-64 
dye.’

11) In Fig. 3, give the relevant genotype in the legend so readers don't have to go back to the strain 
Table.

Response
Strain identifiers and full genotypes have been added to the figure legend.
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12 Table 1 - were backgrounds subtracted from values for RFU in Table 1?

Response
Yes. The footnote now reads: ‘-galactosidase values (relative fluorescence units [RFU]) are the 
average of triplicate measurements, with background values subtracted, conducted with two different 
spore preparations.’

Reviewer: 2

Comments to the Author
This paper by Al-Riyami et al describes the identification of two apparent spore cortex lytic enzymes 
that can play minor roles in B. megaterium spore germination.  This data can help to explain 
previously observed differences between this species and some other Bacilli, though, as the authors 
note, it leaves unresolved, and even possibly complicates the question of how YpeB (and possibly the 
N-terminal domain of SleB), which does not have lytic activity, facilitates the activity of other 
enzymes that are not even expected to reside in the same location in the spore.
The methods are properly applied, the data are clearly presented, and the conclusions are mostly 
justified.  My concerns are with one major point of the complementation studies and with under-
presentation of bioinformatic analyses of the loci.

1. The inclusion of additional information regarding the new loci under study would help the 
reader (and authors) to interpret the data.
a. Table 2: Do any of these proteins have predicted signal sequences? (For comparison, SleB 
does and CwlJ does not.) This could also help with analysis of the GFP-fusion study (see below)

Response
The four SleB homologues have predicted signal sequences whereas the CwlJ homologue doesn’t. 
The manuscript has been updated to include the following sentences: ‘Sequence analysis revealed 
possible sigma G (G) consensus sequences and predicted signal peptide sequences for all four SleB 
homologues, which is consistent with expression in the forespore during sporulation. In contrast, the 
BMQ_3234 ORF is preceded by a potential sigma E (E) recognition sequence and lacks a 
recognisable signal peptide, which is consistent with expression in the mother cell during 
sporulation.’ Table 2 has also been updated to include signal sequence information.

b. Are any of these loci in predicted operons?  If so, it greatly complicates the complementation 
studies. This might also inform the surprising inability to create deletion mutations in these genes and 
the odd, perhaps obligatory, loss of GerU in the mutant strains.

Response
Neither BMQ_2391 nor BMQ_3234 are predicted to reside in operons. We’re not sure why it proved 
difficult to create deletion mutants in these genes, although we’ve experienced similar problems with 
several other spore associated genes. Loss of the large plasmid that encodes GerU is also very 
common during mutant construction. Ultimately, an improved mutagenesis method for B. megaterium 
is required.

2. Lines 206-210: The fact that a GFP fusion to BMQ_3234 works and a fusion to BMQ_2391 
does not might be related to the localization of the protein.  If BMQ_3234 is expressed in the mother 
cell and localizes to the spore coats, as for CwlJ, the fusion protein would not have to cross a 
membrane, similarly to CwlJ, for which a GFP fusion is functional.  If BMQ_2391 has to cross a 
membrane for incorporation into the mature spore, then GFP will not work, as for SleB.  Do these 
proteins have predicted signal sequences?

Response
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That’s a good point. BMQ_2391 almost certainly has a signal sequence (as detailed above), meaning 
that the N-terminal fusion was unlikely to ever work! The manuscript has been modified to read: ‘In 
contrast, no fluorescence was observed during sporulation or in mature spores for the BMQ_2391-
GFP protein, perhaps due to aberrant protein folding or problems associated with the GFP fusion 
protein translocating the inner membrane (data not shown). A strain designed to express an N-
terminal GFP fusion protein also failed to show any detectable fluorescence during sporulation or in 
mature spores.’

3. It is especially hard to explain how complementation with YpeB works along with 
BMQ_3234, which is apparently in the spore coat, while YpeB is expected to be associated with the 
inner spore membrane.  This raises the question of whether YpeB (and SleBN) are actually needed for 
this complementation.  The complementation is done with a “low copy” plasmid, but what is the 
actual copy number, and more importantly, what is the expression level of BMQ-2391 and 
BMQ_3234 from this plasmid?  It is possible that simply several-fold overexpression of these gene 
products is sufficient to provide the cortex lysis needed to compete the observed slow germination. 
The presence of SleBN and YpeB on the complementation plasmids might not be required at all!  To 
properly address this, complementation plasmids carrying the new novel genes alone should be tested.

Response
Two new strains were constructed to test this possibility (BR115 and BR116, added to Table 1). The 
viability of these spores was not appreciably different to sleB cwlJ spores indicating that YpeB is 
required for efficient cortex hydrolysis in the sleB cwlJ background as opposed to over-expression 
of CLEs (the plasmid copy number is approximately 15 per cell). How YpeB influences CLEs that are 
synthesised in the mother cell and deposited in the spore coat is a mystery, although the Moir lab 
provided evidence via antibody labelling that YpeB has a dual location (coat and inner membrane; 
equally, our own unpublished super resolution analyses indicate inner membrane only). A sentence 
has been added to the manuscript: ‘In contrast, the viability of triple mutant spores complemented 
with either BMQ_2391 or BMQ_3234 was comparable to spores of the respective non-complemented 
strains, indicating that YpeB is essential for cortical depolymerisation in the sleB cwlJ background.’
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11 One sentence summary: Proteins encoded at BMQ_2391 and BMQ_3234 encode novel cortex 

12 lytic enzymes that permit cortex hydrolysis in Bacillus megaterium spores deficient in the major 

13 peptidoglycan lysins SleB and CwlJ.
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15 Abstract

16 Present models for spore germination in Bacillus species include a requirement for either the SleB 

17 or CwlJ cortex lytic enzymes to initiate and efficiently depolymerise the spore cortex. Previous 

18 work has demonstrated that B. megaterium spores may differ to other species in this regard, since 

19 sleB cwlJ null mutant spores complemented with definedthe gene in trans for the non-

20 peptidoglycan lysin genes in transYpeB can efficiently degrade the cortex. Here we identify two 

21 novel cortex lytic enzymes, encoded at the BMQ_2391 and BMQ_3234 loci, that are essential for 

22 cortex hydrolysis in the absence of SleB and CwlJ. Ellipsoid localisation microscopy places the 

23 BMQ_3234 protein within the inner-spore coat, a region of the spore that is populated by other 

24 cortex lytic enzymes. The findings reinforce the idea that there is a degree of variation in 

25 mechanisms of cortex hydrolysis across the Bacillales are not entirely consistent and raise, raising 

26 potential implications for environmental decontamination strategies based upon targeted 

27 inactivation of components of the spore germination apparatus.

28 Keywords: Bacillus, spore germination, cortex lytic enzyme, peptidoglycan lysin

29
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30 Introduction

31 Bacteria of the Bacillales and Clostridiales form metabolically dormant endospores (spores) in 

32 response to nutrient limitation. The cellular properties of spores, which encompassinclude several 

33 unique morphological and physiological features, means that they are equipped to persist in the 

34 environment, in a dormant state, until conditions are conducive to support vegetative growth. The 

35 latter is indicated by the presence of nutrient molecules, typically amino acids, monosaccharides 

36 and nucleosides, which interact with germinant receptor molecules to trigger spore germination 

37 (Setlow et al. 2017). A major event in spore germination concerns depolymerisation of the spore 

38 cortex, a thick layer of structurally unique peptidoglycan that envelops the spore protoplast and 

39 which is a major contributory factor to the maintenance of spore dormancy (Imae & Strominger 

40 1976; Popham & Bernhards 2015). In Bacillusspores of all species, and some Clostridia, examined 

41 the cortex is degraded by specialised peptidoglycan lysins, which are referred to as cortex lytic 

42 enzymes (CLEs). It is well established that two main CLEs, SleB and CwlJ, can initiate hydrolysis 

43 of the cortex during the germination process (Moriyama et al. 1996; Ishikawa et al. 1998). SleB 

44 and CwlJ are semi-redundant enzymes, in the sense that deletion of either gene permits cortex 

45 hydrolysis to an extent where at least a proportion of the spores within a population will retain 

46 viability on rich culture medium. Deletion of both genes, however, results in spores that are 

47 severely compromised in their capacity to depolymerise the cortex resulting in arrested germination 

48 and severely reduced colony forming ability (Ishikawa et al. 1998; Heffron et al. 2009; Setlow et 

49 al. 2009).

50 As with other species of Bacillus where CLEs have been characterised by mutational 

51 analysis, Bacillus megaterium spores that are null for sleB and cwlJ lose absorbance (A600 nm) 

52 when suspended in buffer supplemented with germinants (Setlow et al. 2009). A reduction in A600 

53 of approximately 15% is indicative of spores that have released calcium dipicolinate (CaDPA) 

54 from the spore core but cannot proceed to cortical depolymerisation and subsequent core hydration 

55 (for reference, the A600 of wild type spore suspensions decreases by approximately 60% when 

56 germinated under similar circumstances). Furthermore, the viability of B. megaterium sleB cwlJ 

57 spores is reduced by several orders of magnitude compared to the isogenic wild type strain. 

58 Unexpectedly, the introduction on a low copy number plasmid of a truncated sleB gene, encoding 

59 only the N-terminal non-catalytic domain, plus ypeB, which resides in the same operon as sleB, 

60 restores spore viability and absorbance loss to near wild type levels in the sleB cwlJ spores 
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61 background (Christie et al. 2010). Structural analysis of cortical fragments produced during 

62 germination of these spores, and in spores where only ypeB was complemented, which also 

63 germinate efficiently, revealed a relative abundance of anhydromuropeptides in the germination 

64 milieu. (Ustok et al. 2014), revealed a relative abundance of anhydromuropeptides in the 

65 germination milieu. These are the products of a class of peptidoglycan lysin referred to as a lytic 

66 transglycosylase. Since SleB is a well characterised lytic transglycosylase (Boland et al. 2000; 

67 Jing et al. 2012; Li et al. 2012), the obvious conclusion here is that an orthologue of SleB is present 

68 in B. megaterium spores, which – like SleB - has an undefined requirement for YpeB, and which 

69 can initiate cortex depolymerisation in the absence of SleB and CwlJ.

70 Accordingly, the objective of the current study was to identify and characterise novel CLEs 

71 that are functional during the germination of B. megaterium QM B1551 spores, and in particular, 

72 those that permit efficient cortex hydrolysis in the absence of SleB and CwlJ.

73

74 Materials and Methods

75 Bacterial strains and spore preparation

76 B. megaterium strains employed in this study, which were all isogenic with the QM B1551 strain, 

77 were cultured routinely at 30°C on LB medium supplemented where appropriate with antibiotics 

78 (Table 1). Spores were prepared by nutrient exhaustion in supplemented nutrient broth and 

79 subsequently purified by repeated rounds of centrifugation and resuspension of spore pellets in 

80 deionised ice-cold water (Christie et al. 2010). Purified suspensions comprising >99% phase bright 

81 spores were stored in deionised water, at an A600 of approximately 50, on ice. Escherichia coli 

82 Top 10 cells (Thermo Fisher, UK) were used for cloning procedures, plasmid propagation and for 

83 heterologous protein expression experiments.

84

85 Spore germination and viability assays

86 Spore germination in liquid medium was assessed in microtitre plates by adding 10 µl of heat-

87 shocked (80°C, 30 min) spores to 190 µl of 5% (wt/vol) beef extract (Oxoid, Ltd., Basingstoke, 

88 United Kingdom), preheated to 37°C. The A600 of spore suspensions was 0.4. Plates were sealed 

89 with adhesive film to minimize evaporative losses, and then incubated in a Perkin-Elmer 

90 EnVision-Xcite multilabel plate reader fitted with a 600 nm photometric filter. Plates were agitated 

91 orbitally for 10 seconds prior to absorbance measurements, which were recorded every minute for 
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92 90 minutes. Experiments were conducted in triplicate, with at least two or more independent spore 

93 preparations. Spore viability was determined by pipetting 10 µl aliquots of serially diluted 

94 suspensions of heat-shocked spores (A600 of 1 [108 spores/ml]) onto LB agar plates. Plates were 

95 incubated for 16 to 24 h prior to colony enumeration.

96

97 Molecular biology procedures

98 Transcriptional analysis from loci of interest was examined by RT-PCR, using RNA purified from 

99 sporulating cultures, a QuantiTect Reverse Transcription kit (Qiagen, Manchester, UK) and gene-

100 specific primers designed to amplify approximately 400 bp fragments, essentially as described 

101 previously (Ramirez-Peralta et al. 2013).

102 Inactivation of BMQ_2391 and BMQ_3234 in the B. megaterium sleB cwlJ background 

103 was accomplished by integrating pUCTV2 derived plasmids at the respective loci. Essentially, the 

104 first 300 bp of each gene was amplified from B. megaterium QM B1551 genomic DNA by PCR. 

105 Purified PCR products were ligated with pUCTV2 (digested with EcoRI), and ligation mixtures 

106 subsequently used to transform E. coli to carbenicillin resistance. Isolated plasmids were 

107 introduced to B. megaterium protoplasts using standard polyethylene glycol mediated 

108 transformation procedures. Tetracycline resistant transformants were then repeatedly streaked on 

109 LB agar plates containing 1.25 µg/ml tetracycline at 42oC to permit isolation of clones that had 

110 integrated plasmid DNA at the cloned loci, prior to validating by PCR and sequencing. Strains 

111 with translational gfp fusions to genes of interest were constructed by amplifying entire 

112 BMQ_2391 and BMQ_3234 ORFs, minus stop codons, using primers that incorporated XhoI and 

113 EcoRI restriction sites at the respective 5’ and 3’ ends. Purified and digested PCR amplicons were 

114 ligated with similarly digested pVLG6 vector to create 3’ fusions to gfp. The resultant plasmids 

115 were purified from E. coli and used to transform B. megaterium to chloramphenicol resistance. 

116 Individual colonies were streaked and incubated at the non-permissive temperature of 42°C in the 

117 presence of chloramphenicol, to select for plasmid integrations into the chromosome at cloned 

118 loci. Procedures designed to create spores with transcriptional fusions between putative CLE 

119 promoter sequences and lacZ were constructed using plasmid pNFd13, and resultant 

120 measurements of β-galactosidase activity associated with disrupted spores, were as described 

121 previously (Gupta et al. 2013).

122 Complementation-based analyses of CLE mutant strains were performed using low copy 

Page 34 of 46

ScholarOne Support 1-434/964-4100

FEMS Microbiology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6

123 number pHT315-derived plasmids.pHT315-derived plasmids, which have a copy number of 

124 approximately 15 per cell (Arantes & Lereclus 1991). The existing pHT-sleBN ypeB plasmid 

125 (Christie et al. 2010) was modified to additionally incorporate ORFs and upstream regulatory 

126 sequences for either BMQ_2391 or BMQ_3234 proteins. This was achieved using EcoRI restricted 

127 pHT-sleBN ypeB and BMQ_2391 or BMQ_3234 PCR amplicons designed to facilitate cloning via 

128 the Klenow Assembly Method (Ghosh et al. 2018). Similar procedures were used to introduce 

129 BMQ_2391 or BMQ_3234 ORFs and regulatory sequences into pHT315. The B. megaterium sleB 

130 cwlJ BMQ_2391 and B. megaterium sleB cwlJ BMQ_3234 strains were subsequently transformed, 

131 using the appropriate plasmidplasmids, to erythromycin and lincomycin resistance.

132

133 Ellipsoid localisation microscopy

134 The quantitative fluorescence ELM technique was used to measure the location of GFP fusion 

135 proteins in mature spores (Manetsberger et al. 2015; Manton et al. 2018). Briefly, several 

136 independent fields of GFP labelled spores were imaged using an Olympus BX53 microscope fitted 

137 with a 100 1.30 NA oil objective lens, with illumination from a mercury lamp, filters for GFP 

138 fluorescence, and a Retiga 2000R CCD camera. Automated image segmentation was used to 

139 identify single spores, and the image of each candidate was used to fit the parameters of a model 

140 that describes the image of a spheroidal fluorescent shell. For B. megaterium, an equation 

141 describing the image of a spherical fluorescent layer was fitted to the image data. A filter was 

142 applied to exclude fits from overlapping spores and fragments of debris. The average radius 

143 parameter fitted to the spores provides an estimate of the midpoint radial position of the GFP fusion 

144 with respect to the spore centre.

145

146 Protein interactions

147 A bacterial adenylate cyclase two-hybrid (BACTH) system (Euromedex, Souffelweyersheim, 

148 France) was used to characterise potential interactions in vivo between B. megaterium CLEs and 

149 related proteins (BMQ_2391, BMQ_3234, CwlJ, SleB, SleL and YpeB). The BACTH system is 

150 based upon two complementary adenylate cyclase fragments (T25 and T18) being brought together 

151 by interacting fusion partners to form functional enzyme, resulting in cAMP synthesis and 

152 activation of a lacZ reporter gene. Plasmids used for BACTH assays in this work were prepared 

153 by PCR amplifying ORFs encoding CLEs and YpeB from genomic DNA before assembling with 

Page 35 of 46

ScholarOne Support 1-434/964-4100

FEMS Microbiology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7

154 linearised pUT18 and pKT25 plasmids by Klenow assembly. The resulting plasmids, designed for 

155 expression of C-terminal fusions between proteins of interest and T25 or T18 adenylate cyclase 

156 fragments, were isolated and verified by sequencing. Electrocompetent E. coli BTH101 were co-

157 transformed using various combinations of pKT25 and pUT18 derived plasmids and selected on 

158 LB agar plates supplemented with 40 µg/ml X-Gal (5-bromo-4-chloro-3-indolyl-β-D-

159 galactopyranoside), 1 mM IPTG, and 50 µg/ml carbenicillin and kanamycin, respectively. Cells 

160 were cultured for 24-72 h at 30°C and examined for the development of blue coloration, which is 

161 indicative of positive interactions between pairs of fusion proteins.
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162

163 Results

164 Identifying potential CLE genes

165 Genes encoding candidate novel CLEs were identified by conducting NCBI Protein BLAST 

166 searches using sequences for the C-terminal catalytic domain of SleB and full length CwlJ as 

167 probes against the B. megaterium QM B1551 genome (GenBank accession numbers CP001983 – 

168 CP001900). The searches identified five potential CLEs, four of which showed greater amino acid 

169 sequence identity with the catalytic domain of SleB (ranging from 40 – 46 %), whereas BMQ_3234 

170 shared greater sequence identity to CwlJ (49%) (Table 2). Sequence analysis revealed possible 

171 sigma G (G) consensus sequences and predicted signal peptide sequences for all four SleB 

172 homologues, which is consistent with expression in the forespore during sporulation. In contrast, 

173 the BMQ_3234 ORF is preceded by a potential sigma E (E) recognition sequence and lacks a 

174 recognisable signal peptide, which is consistent with mother cell expression in the mother cell 

175 during sporulation. All five predicted proteins are members of the Hydrolase-2 family (PF07486), 

176 which is consistent with a role in peptidoglycan depolymerisation. Two of the putative proteins 

177 contain single peptidoglycan-binding LysM domains (BMQ_1284 and BMQ_2145) with 

178 BMQ_3195 predicted to have two N-terminal LysM domains. LysM domains are present in 

179 established spore CLEs, including SleL (Ustok et al. 2015b2015). In contrast, neither BMQ_2391 

180 nor BMQ_3234 appear to contain defined substrate binding domains, which is analogous to the 

181 domain architecture of CwlJ. Pairwise sequence alignments indicate that SleB’s single catalytic 

182 residue, E208, is present and conserved in the primary sequence of all five putative CLEs (Table 

183 2).

184

185 Transcriptional analysis of candidate CLE genes

186 In order to ascertain whether the various candidate CLE genes were transcribed during sporulation, 

187 RT-PCR was conducted on cDNA derived from B. megaterium cultures sampled immediately 

188 prior to entry to stationary phase and at hourly intervals thereafter (Figure 1). These analyses 

189 indicate that two of the candidate CLEs - BMQ_1284 and BMQ_2145 – are transcribed at very 

190 low levels based on the low abundance of RT-PCR products. BMQ_2391 is transcribed from the 

191 early to mid-stages of sporulation, with a pattern of expression that most closely matches that of 

192 sleB. In contrast, BMQ_3195 transcripts are most abundant from the mid to latter stages of 
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193 sporulation, whereas BMQ_3234 appears to be transcribed strongly throughout. The latter pattern 

194 of transcription matches that of cwlJ. Further transcriptional analyses of candidate and established 

195 CLE promoters were achieved by placing the lacZ gene under control of putative promoter 

196 sequences for the various genes. The outputs from β-galactosidase assays conducted with 

197 supernatants from disrupted spores of the various lacZ reporter strains are broadly in line with 

198 results from the aforementioned RT-PCR assays i.e. where BMQ_1284 and BMQ_2145 

199 transcriptional fusions are associated with little β-galactosidase activity, while BMQ_2391 and 

200 BMQ_3234 show the highest levels of expression, albeit less than evident for sleB and cwlJ 

201 transcriptional fusions (Table 1).

202
203 Localisation of BMQ_2391 and BMQ_3234 GFP fusion proteins

204 Proteins encoded at the BMQ_2391and BMQ_3234 loci were selected for further analysis since 

205 they appeared to be expressed at the highest levels of the candidate CLEs. The sub-cellular 

206 localisation of both proteins was investigated during sporulation and in mature spores by creating 

207 constructs designed to express C-terminal GFP fusion proteins. Fluorescence microscopy revealed 

208 that the BMQ_3234-GFP protein is expressed during sporulation in the mother cell compartment 

209 and is deposited to form a ring of fluorescence around the developing forespore (Figure 2). A 

210 strong fluorescence signal was retained in mature spores (Figure 2). The average radial location of 

211 the BMQ_3234-GFP protein, as inferred from ellipsoid localisation analyses, was 521 nm 9 nm 

212 in mature spores (where 9 nm is the standard deviation of radial locations found in repeated 

213 measurements and where 865 spores were analysed with a residual fitting error of 8.4%). This 

214 places the location of BMQ_3234 to the inner spore coat, within the same vicinity as SleL (525 

215 nm 11 nm; 362 spores analysed with a residual fitting error of 6.5%), and presumably CwlJ 

216 (Setlow et al. 2017; Ghosh et al. 2018). In contrast, no fluorescence was observed during 

217 sporulation or in mature spores for the BMQ_2391-GFP protein, presumablyperhaps due to 

218 aberrant protein folding or mis-localisation ofproblems associated with the GFP fusion protein 

219 translocating the inner membrane (data not shown). Consequently, anotherA strain was 

220 constructed, in this case designed to express an N-terminal GFP fusion protein. Again, also failed 

221 to show any detectable fluorescence signal was not detected throughoutduring sporulation or in 

222 mature spores.

223
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224 Germination of BMQ_2391 and BMQ_3234 null mutant spores

225 To investigate whether the BMQ_2391 and BMQ_3234 proteins have a role in germination, 

226 particularly in the absence of the major CLEs, mutant strains lacking either of these enzymes were 

227 constructed in the B. megaterium sleB cwlJ double mutant background. Despite repeated attempts 

228 we failed to isolate mutants that had undergone allelic exchange with truncated and disrupted gene 

229 variants at either locus. Instead, strains that had undergone single recombination events, integrating 

230 pUCTV2 derived plasmids at the target loci and thereby separating the respective ORFs from their 

231 promoter sequences, were isolated. Copies of sleBN and ypeB under control of the native promoter 

232 sequence were introduced to these strains on a low copy number pHT315 derived plasmid, and the 

233 resultant strains sporulated by nutrient starvation. Both strains were found to have excised the 

234 pBM600 plasmid during mutagenesis. This plasmid encodes the GerU-germinant receptor, hence 

235 the resultant spores were heat shocked and germinated in beef extract medium, which promotes an 

236 efficient germinative response in the absence of GerU (Gupta et al. 2013). Germination assays 

237 conducted with spores suspended in beef extract revealed that both triple mutant strains - sleB cwlJ 

238 BMQ_2391 and sleB cwlJ BMQ_3234 - complemented with plasmid bourne sleBN and ypeB, had 

239 major germination defects, with the A600 decreasing by a comparable amount (~15 %) to sleB 

240 cwlJ spores (Figure 3). This is indicative of CaDPA efflux but limited, if any, cortex 

241 depolymerisation. The viability of both triple mutant strains was also severely compromised 

242 compared to wild type and sleB cwlJ spores complemented with sleBN ypeB, again being 

243 comparable to sleB cwlJ spores lacking plasmid borne sleBN ypeB (Table 1). In contrast, the 

244 viability of triple mutant strains complemented with plasmid borne copies of sleBN ypeB and 

245 BMQ_2391 or BMQ_3234, as appropriate, was restored to approximately half of that observed in 

246 sleB cwlJ pHT-sleBN ypeB spores (35-40 % versus 80 %). Similarly, complemented spores show 

247 a reduction in A600 of ~50 % within 40 minutes in beef extract, which although not as efficient as 

248 sleB cwlJ pHT-sleBN ypeB spores, is indicative of significant cortical depolymerisation (Figure 3). 

249 In contrast, the viability of triple mutant spores complemented with either BMQ_2391 or 

250 BMQ_3234 was comparable to spores of the respective non-complemented strains, indicating that 

251 YpeB is essential for cortical depolymerisation in the sleB cwlJ background.

252

253 Interactions between CLEs
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254 Results with null mutant spores reported in this work, and in previous studies (Bernhards & 

255 Popham 2014; Ustok et al. 2014), indicate that direct physical interactions between CLEs and or 

256 CLEs and the YpeB protein may be required to facilitate efficient cortex hydrolysis during 

257 germination. The E. coli based BACTH system was employed in the current study to investigate 

258 potential interactions between the two novel CLEs identified in this work – BMQ_2391 and 

259 BMQ_3234 – with each other and with SleB, CwlJ, SleL and YpeB. Potential interactions 

260 between (i) SleB with YpeB, SleL and CwlJ, (ii) CwlJ with YpeB and SleL, and (iii) SleL with 

261 YpeB, were also examined. Blue coloration of co-transformant E. coli colonies was not observed 

262 in any of the combinations tested, with the exception of the positive control, indicating that none 

263 of the spore proteins of interest interact productively in this system (Figure 4).

264

265 Heterologous expression of BMQ_2391 and BMQ_3234

266 Several attempts were made to express recombinant versions of the BMQ_2391 and BMQ_3234 

267 proteins with a view to characterising the hydrolytic bond specificity of each protein. Hosts for 

268 heterologous expression included E. coli, Lactococcus lactis and B. subtilis, with several variant 

269 proteins – including truncated forms, GFP, and maltose binding protein (solubility enhancer) 

270 fusions – being examined over the course of this work. Unfortunately, levels of expression 

271 commensurate with biochemical analyses were not achieved in any of the systems employed (data 

272 not shown).

273

274 Discussion

275 Initiation of cortex hydrolysis in current models of Bacillus spore germination requires the activity 

276 of either of the semi redundant CLEs SleB or CwlJ. Efficient degradation of the cortex is 

277 subsequently facilitated by enzymes such as SleL, whose function appears to be associated with 

278 further hydrolysis of large peptidoglycan fragments generated by SleB and or CwlJ (Chen et al. 

279 2000; Lambert & Popham 2008; Ustok et al. 2015). While this sequence of events probably occurs 

280 in wild type spores of all species of Bacillus, mutagenesis analyses conducted with B. megaterium 

281 sleB cwlJ spores have revealed that this species can circumvent the requirement for either of SleB 

282 or CwlJ . Previous work revealed that B. megaterium sleB cwlJ spores could degrade the cortex 

283 with an efficiency comparable to wild type spores when complemented with a plasmid-borne copy 

284 of sleBN, which encodes the non catalytic domain of SleB, plus the adjacent ypeB gene (Christie 
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285 et al. 2010). Indeed, complementation with ypeB alone restored efficient cortex hydrolysis to sleB 

286 cwlJ spores (Ustok et al. 2014). The precise function of YpeB has not been determined, although 

287 it is not a peptidoglycan lysin, and instead appears to have a role in localising – and perhaps 

288 regulating the activity - of SleB in the spore (Boland et al. 2000; Bernhards & Popham 2014; Ustok 

289 et al. 2015).

290 Another study in B. megaterium extended these findings and attempted to dissect the 

291 molecular mechanisms that support efficient cortex hydrolysis in sleB cwlJ spores (Ustok et al. 

292 2014). In this case, a triple mutant (sleB cwlJ sleL) strain complemented with sleBN plus ypeB 

293 showed a severe germination defect. Based on this result, the study concluded that ypeB and sleL 

294 are both essential for the initiation of cortex hydrolysis in B. megaterium sleB cwlJ spores. The 

295 requirement for sleL in the sleB cwlJ background was unexpected since, as noted above, SleL is 

296 regarded as a cortical fragment lytic enzyme. Similarly, muropeptide analyses of germination 

297 exudates from sleB cwlJ spores complemented with ypeB clearly indicate the presence of lytic 

298 transglycosylase activity during germination, whereas SleL exhibits N-acetylglucosaminidase 

299 activity (Lambert & Popham 2008; Ustok et al. 2014).

300 With this context in mind, the main purpose of the current study was to identify cortex lytic 

301 enzymes that are functional in B. megaterium sleB cwlJ spores complemented with plasmid borne 

302 ypeB. Progress in this regard was achieved via bioinformatic analyses, which identified five 

303 candidate CLE loci. Subsequent transcriptional analyses, comprising RT-PCR and -galactoside 

304 reporter assays, were used to narrow candidates for further characterisation to proteins encoded at 

305 the BMQ_2391 and BMQ_3234 loci (moderate transcription, relative to sleB and cwlJ, was 

306 associated with BMQ_3195, although this protein was not characterised further).

307 Mutagenesis analyses in this work were compromised to a certain extent in that we could 

308 not isolate null mutant strains that had undergone allelic exchange with truncated and disrupted 

309 versions of BMQ_2391 or BMQ_3234 in the sleB cwlJ background. However, strains in which 

310 BMQ_2391 or BMQ_3234 were disrupted by integrative plasmids, effectively separating the 

311 promoter and first 300 nucleotides of the respective genes from the remainder of the coding 

312 sequences, were isolated, albeit at the expense of the GerU-encoding pBM600 plasmid. Loss of 

313 the GerU germinant receptor can be circumvented by germinating gerU spores in beef extract, 

314 components of which trigger efficient germination responses via alternative germinant receptors 

315 in B. megaterium (Gupta et al. 2013). In both cases, germination of triple mutant spores – sleB 
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316 cwlJ BMQ_2391 and sleB cwlJ BMQ_3234 – complemented with plasmid borne sleBN and ypeB, 

317 was comparable in terms of absorbance loss to non sleBN ypeB complemented triple mutant spores. 

318 The observed reduction in A600 of approximately 15% is indicative of spores that have released 

319 CaDPA and various ions from the spore core but which have failed to depolymerise cortical 

320 peptidoglycan. Viability of the sleBN ypeB complemented triple mutant spores was similarly 

321 comparable to non-complemented spores, with colony forming ability on LB medium being 

322 reduced by more than five logs compared to isogenic wild type spores, indicating again that the 

323 cortex has not been degraded. In contrast, complementation in trans with BMQ_2391 or 

324 BMQ_3234 in sleBN ypeB complemented triple mutant spores restored viability and absorbance 

325 loss to approximately 40% of wild type levels.

326 Outputs from the present study support the hypothesis that BMQ_2391 and BMQ_3234 

327 encode novel CLEs that are not only active during germination of B. megaterium spores, but which 

328 also confer further redundancy within the cortical depolymerisation system of this species (and 

329 perhaps this species alone since sleBN ypeB in trans failed to restore cortex hydrolysis to B. subtilis 

330 sleB cwlJ spores (Li et al. 2013)). In some regards the requirement for three separate enzymes - 

331 SleL, BMQ_2391 and BMQ_3234 – in tandem with YpeB, for efficient spore germination in B. 

332 megaterium sleB cwlJ spores, is difficult to reconcile. One possibility is that the combined activity 

333 of each enzyme – which may be infrequent cutters – is required for cortex depolymerisation to a 

334 degree that is commensurate with germination. It’s possible also that at least some of these proteins 

335 physically interact to ensure correct localisation and or function in the spore. Ellipsoid localisation 

336 microscopy analysis places SleL and BMQ_3234 within the same inner coat location within the 

337 spore, which would facilitate physical interactions. However, where examined - bacterial two-

338 hybrid assays in this work and pull-down assays conducted previously (Li et al. 2013; Ustok et al. 

339 2014) – have failed to provide any evidence of interactions between CLEs. Accordingly, 

340 furtherFurther insight to the nature of the inter-dependency between CLEs, and how YpeB may 

341 contribute to this, are objectives for continuing work in this area. Finally, targeted inactivation of 

342 CLEs may provide a novel strategy for spore decontamination in a number of sectors. A potential 

343 implication arising from the present study is that enzymes in addition to the major CLEs may have 

344 to be inhibited, at least in some species, for efficient spore inactivation.

345
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