Natural variation in *TBP-ASSOCIATED FACTOR 4b* controls meiotic crossover and germline transcription in Arabidopsis

3

Emma J. Lawrence¹, Hongbo Gao², Andrew J. Tock¹, Christophe Lambing¹, Alexander R.
Blackwell¹, Xiaoqi Feng^{2*} and Ian R. Henderson^{1*}

¹ Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2
 3EA, United Kingdom

² Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH,
 United Kingdom

11

* Correspondence: xiaoqi.feng@jic.ac.uk and irh25@cam.ac.uk
 13

14 Summary:

15

Meiotic crossover frequency varies within genomes, which influences genetic diversity and 16 adaptation. In turn, genetic variation within populations can act to modify crossover 17 frequency in *cis* and *trans*. To identify genetic variation that controls meiotic crossover 18 frequency we screened Arabidopsis accessions using fluorescent recombination reporters. 19 We mapped a genetic modifier of crossover frequency in Col×Bur populations of Arabidopsis 20 to a premature stop codon within TBP-ASSOCIATED FACTOR 4b (TAF4b), which encodes 21 22 a subunit of the RNA polymerase II general transcription factor TFIID. The Arabidopsis taf4b mutation is a rare variant found in the British Isles, originating in South-West Ireland. Using 23 genetics, genomics and immunocytology we demonstrate a genome-wide decrease in taf4b 24 crossovers, with strongest reduction in the sub-telomeric regions. Using RNA-seg from 25 26 purified meiocytes, we show that TAF4b expression is meiocyte-enriched, whereas its paralog TAF4 is broadly expressed. Consistent with the role of TFIID in promoting gene 27 expression, RNA-seq of wild type and *taf4b* meiocytes identified widespread transcriptional 28 29 changes, including in genes that regulate the meiotic cell cycle and recombination. Therefore, TAF4b duplication is associated with acquisition of meiocyte-specific expression 30 and promotion of germline transcription, which acts directly or indirectly to elevate 31 crossovers. This identifies a novel mode of meiotic recombination control via a general 32 33 transcription factor. 34

35 Keywords:

36

Meiosis, recombination, crossover, *rQTL*, TAF4b, transcription.

39 Introduction:

40

41 Meiosis is a specialized eukaryotic cell division that produces haploid spores from diploid 42 mother cells, via one round of DNA replication and two rounds of chromosome segregation [1]. During prophase of meiosis I, chromosomes undergo DNA double strand breaks (DSBs) 43 44 that are repaired using a homolog to form reciprocal crossovers or gene conversions [1]. Independent chromosome segregation during meiosis and homologous recombination 45 create new patterns of genetic diversity [1, 2]. Although the core meiotic recombination 46 47 pathway is highly conserved [1, 3], the number and distribution of crossovers varies between species [4, 5]. At least one 'obligate' crossover is generally required per chromosome pair to 48 ensure balanced segregation at anaphase I [1]. However higher numbers of crossovers are 49 rare in natural species, with ~1-3 crossovers typically observed per chromosome pair, 50 irrespective of genome size [1, 4]. Hence, genetic variation that controls recombination 51 within and between species has the potential to influence adaptation [2, 4], although the 52 extent that sequence polymorphism controls crossover remains to be fully understood. 53

54 In plants, *cis*- and *trans*-acting genetic variation influence meiotic recombination frequency 55 [4, 5]. Examples of *cis*-acting variation include structural genetic changes, such as inversions and translocations, which can suppress crossover formation at large physical 56 scales (kilobase-megabase) [5, 6]. Inhibitory cis effects acting at the local scale (nucleotide-57 kilobase) may also occur following interhomolog strand invasion, where heterozygosity 58 causes base pair mismatches [3]. Trans-acting variation that modifies recombination has 59 also been observed in the Arabidopsis thaliana HEI10 gene [7], which encodes a meiosis-60 specific E3 ligase that promotes crossover formation. In mammals, HEI10 is related to 61 62 RNF212, and natural variation in both genes modifies crossover frequency [3, 4]. Hence, the effects of genetic polymorphism on crossover are varied and scale-dependent. 63

64

65 In this work, we sought to further explore natural genetic variation in Arabidopsis that influences meiotic crossover frequency. Arabidopsis thaliana predominantly self-fertilizes, 66 but is estimated to outcross at a rate between 0.3-2.5% [8]. Signatures of outcrossing are 67 68 evident in Arabidopsis, as (i) linkage disequilibrium decays rapidly over kilobase distances, (ii) historical crossover hotspots are detected, and (iii) outcrossing and heterozygosity in 69 natural stands have been directly observed [8-12]. Hence, genetic variation that controls 70 crossover recombination has the potential to influence adaptation in this species. Using this 71 72 approach we have identified the TAF4b TFIID subunit as a novel trans regulator of crossover 73 frequency, which we also show promotes germline gene expression.

7475 **Results:**

76 77 Multiple recombination QTLs (*rQTL*s) control meiotic crossover frequency between 78 the Arabidopsis Col-0 and Bur-0 accessions

79

80 Crossover frequency can be measured in Arabidopsis using Fluorescent Tagged Lines 81 (FTLs) that comprise linked transgenes expressing different colors of fluorescent protein in 82 the seed (NapA promoter), or pollen (LAT52 promoter) [13-16]. Crossovers occurring 83 between hemizygous FTL T-DNAs linked on the same chromosome can be detected via analysis of color inheritance through meiosis [13-16]. FTL T-DNAs typically define 84 megabase intervals and have predominantly been generated in the Col-0 (Col) background 85 86 [13, 16, 17]. We have previously crossed several FTLs to diverse accessions [7, 15], and these data showed that the Irish accession Bur-0 (Bur) shows overall high crossover 87 88 frequency in Col/Bur F1 hybrids, relative to other hybrids [15]. However, specific FTL intervals showed either higher (11fg, 12f, CEN3) or lower (11b, 420) crossovers in Col/Bur F1 89 90 hybrids compared to Col/Col inbreds, indicating region-specific effects of polymorphism [15]. 91 Therefore, we sought to further screen Bur for *cis* and *trans*-acting loci that modify crossover 92 frequency.

93

94 To explore the contribution of *cis* and *trans* modifiers of recombination that are polymorphic 95 between Col and Bur, we used the 420 FTL, which is 5.11 Mb and located sub-telomerically 96 on chromosome 3 (Figure 1A) [17]. We measured crossovers in this interval in 151 Col-97 420×Bur RG/++ F₂ individuals, in order to perform a quantitative trait loci (QTL) scan for 98 regions associating with recombination rate (Figure 1B–1C and Data S1). The variation in F₂ 420 crossover frequency was significantly greater than observed in replicate Col-420/Bur F_1 99 individuals (Brown-Forsythe test, P=9.76×10⁻⁶) (Figure 1D and Data S1), consistent with the 100 presence of Col/Bur trans modifiers influencing recombination. Col-420×Bur F2 individuals 101 were genotyped using simple sequence length polymorphism (SSLP) PCR markers 102 throughout the genome (Figure 1E), and a QTL scan was performed to test for associations 103 with 420 crossover frequency (Figure 1F). This approach identified 4 significant 104 recombination QTLs (rQTLs) (α =0.05, 1,000 permutations), which in a joint additive model 105 explained 64.4% of the variation in crossover frequency, with a total LOD score of 33.8 106 (Figure 1F and Table 1). 107

108 Two strong rQTL peaks were detected on chromosome one that displayed distinct genetic behaviours. Bur alleles of rQTL1a and rQTL1b act recessively and semi-dominantly to 109 reduce crossover frequency, respectively (Figure 1F, Figure S1A–1B and Table 1). rQTL1b 110 111 maps in proximity to HEI10, which has previously been shown to act semi-dominantly [7] (Figure S1B and Table 1). Furthermore, Bur and Ler share the putative causal non-112 synonymous HEI10 R264G substitution [7], which is consistent with rQTL1b representing 113 114 variation in *HEI10*. We also detected a weak rQTL on chromosome 2 caused by a dominant Bur allele, in addition to a previously observed *cis* effect caused by juxtaposition of 115 116 heterozygosity and homozygosity on chromosome 3, where 420 is located (Figure S1C-1E and Table 1) [15]. 117

118

119 Fine mapping of *rQTL1a* identifies variation in the TFIID complex subunit TAF4b

120 As trans recombination modifiers have not previously been observed in vicinity to rQTL1a, 121 122 and due to the strength of its effect on recombination, we sought to fine map this locus (Figure 2 and Figure S2). We generated lines where the rQTL1a region was Col/Bur 123 124 heterozygous and the rest of the genome was Col/Col, in order to remove the effects of the other *rQTL*s (Figure S2). Using these lines we produced a large BC_2F_2 population (*n*=501) 125 126 (Figure S2). BC₂F₂ individuals with a crossover within rQTL1a (n=152) were used to refine 127 the causal region to a 30 kb interval (Figure 2A–2B and Data S1). Further genetic mapping 128 narrowed rQTL1a to a 14.4 kb interval containing five genes, of which At1g27720 carried a SNP in Bur causing a premature stop codon (L481*) (Figure 2C–2D). This mutation was 129 130 absent in other accessions where rQTL1a was not previously detected (Ct-1, Cvi-0, Mt-0, Ler-0 and Can-0 [7, 15]), identifying At1g27720 as the strongest candidate gene underlying 131 132 rQTL1a.

133

To confirm the identity of rQTL1a as At1g27720, we performed transformation experiments 134 135 using a rQTL1a introgression line that carried the 420 FTL. This introgression, denoted as rQTL1a^{Bur}, contains a 1.6 Mb region from Bur, but is Col homozygous throughout the rest of 136 genome. The rQTL1a^{Bur} introgression was transformed with genomic clones of the five 137 genes within the rQTL1a credible interval, or an empty vector, and 420 crossover frequency 138 in the resulting transformants compared to untransformed wild type and the rQTL1a^{Bur} 139 introgression (Figure 2F, Figure S3A-3C and Data S1). These experiments demonstrated 140 that At1g27720, which encodes TAF4b, specifically complemented the *rQTL1a^{Bur}* crossover 141 defect (Figure 2F, Figure S3A-3C and Data S1). The rQTL1a^{Bur} introgression is herein 142 defined as *taf4b-1*. We also obtained an independent T-DNA insertion allele in At1g27720 143 (taf4b-2), which significantly reduced 420 crossover frequency compared to wild type and 144 taf4b-2/+ heterozygotes (generalised linear model [GLM], P<2×10⁻¹⁶) (Figure 2G, Figure 145 S3D-3F and Data S1). Together this provides genetic proof that mutation of TAF4b reduces 146 crossover frequency within the 420 interval and occurs as a natural modifier of 147 recombination in Arabidopsis. 148

149

TAF4b encodes TATA Binding Protein (TBP)-Associated Factor 4b, which is a subunit of the 150 151 TFIID complex [18]. TFIID is a general transcription factor composed of TBP and several TAFs that forms part of the pre-initiation complex which recruits RNA polymerase II to gene 152 promoters [19, 20]. There are 18 TAFs in Arabidopsis, including two TAF4 paralogs; TAF4 153 and TAF4b, which share 43.7% amino acid identity [18] (Figure S4). Both TAF4 and TAF4b 154 possess a RCD1-SRO-TAF4 (RST) domain, histone-fold domain (HFD) and a conserved C-155 terminal domain (CCTD) (Figure S4B). In yeast, the TAF4 HFD heterodimerises with TAF12 156 within the TFIID complex to form a histone-like pair [21]. The Bur taf4b-1 polymorphism 157 produces a stop codon at amino acid 481, upstream of the HFD (Figure 2D). Therefore, 158 159 taf4b-1 is predicted to produce a truncated protein lacking the HFD required for interactions within TFIID [21]. 160

161

162 Bur was collected from the Burren, a region of karstified limestone in South-West Ireland. Within the 1,001 Genomes Project, the Bur taf4b-1 polymorphism was identified in two 163 further accessions, Cal-0 and Cal-2, that were collected in the United Kingdom [22]. Cal-0, 164 165 Cal-2 and Bur have highly similar haplotypes genome-wide, suggesting they are related via recent migration [22]. To further investigate the geographic distribution of taf4b-1, we 166 genotyped an additional set of accessions collected from the British Isles [23]. This identified 167 168 a small number of accessions (9 of 116) from South-West Ireland, collected in proximity to the Burren, and one from Scotland, that carry *taf4b-1* (Figure 2E and Table S1). This shows 169 that taf4b-1 is a rare mutation that likely arose in South-West Ireland. In contrast, the HEI10 170 R264G polymorphism is globally distributed in 11.4% of the 1,001 Genomes Project 171 accessions [7]. We investigated whether fertility was changed in *taf4b* by counting seeds per 172 173 silique in Col, taf4b-1 and taf4b-2, and observed no significant differences between genotypes (Student's t test, P=0.718 and P=0.234) (Table S2). Hence, although crossovers 174 are reduced in *taf4b-1*, this does not associate with significantly decreased fertility. 175

176

177 Sub-telomeric crossover frequency is reduced in *taf4b*

178 We further investigated the effect of taf4b-1 on crossover frequency using an additional 8 179 180 FTL intervals located throughout the genome and representing 40.4 Mb in total (Figure 3A-181 3C) [16]. Crossover frequency significantly decreased in taf4b-1 in all FTL intervals tested 182 compared to wild type siblings, with decreases ranging from 9.0% to 27.1% (Figure 3B-3C 183 and Data S1). Interestingly, the magnitude of taf4b-1 crossover decrease correlated 184 negatively with distance from the telomere (Spearman's ρ =-0.7, P=0.04) (Figure 3B), indicating that distal sub-telomeric recombination is most strongly reduced in taf4b-1. We 185 186 also analysed crossovers via MLH1 immunostaining on diakinesis-stage male meiocytes (Figure 3D–3E and Table S3). MLH1 foci associated with meiotic chromatin (stained with 187 DAPI) can be used to measure Class I crossover numbers [7]. We counted MLH1 foci in 188 189 both taf4b-1 and Bur, which displayed mean reductions of between 2 and 3 MLH1 foci, relative to Col (Mann-Whitney-Wilcoxon tests, $P=3.17\times10^{-6}$ and $P=1.36\times10^{-5}$) (Figure 3D-190 3E and Table S3). We generated a meiotic atlas via DAPI-staining of spread male meiocytes 191 192 in Col and Bur (taf4b-1) (Figure 3F). Meiotic progression showed normal homologous pairing at pachytene and five bivalents at diakinesis and metaphase I in both genotypes (Figure 3F). 193 194 No univalents were detected in 40 Col and 44 Bur metaphase I cells, or 21 Col and 34 Bur cells at diakinesis (Figure 3F). Taken together, these data confirm crossover reduction in 195 taf4b-1 throughout the genome, although the obligate crossover is maintained. As these 196 experiments measure recombination in inbred backgrounds, we next sought to map 197 198 crossovers in *taf4b-1* mutants that were genetically hybrid.

199

210

200 To generate *taf4b-1* hybrids, Bur was crossed to the *taf4b-1* introgression, producing Col/Bur F₁ hybrids that are *taf4b-1* homozygous. Col/Bur F₁ hybrids were generated as a control, 201 which are *taf4b-1* heterozygous. 420 was maintained in these lines and used to confirm that 202 taf4b-1/Bur F₁ display significantly reduced crossover frequency compared to Col/Bur F₁ 203 (GLM, $P < 2.0 \times 10^{-6}$) (Figure 4A and Data S1). F₂ populations were generated and 180 and 204 186 individuals from the Col/Bur and taf4b-1/Bur populations were sequenced, respectively. 205 These data were used to identify crossover locations in each F₂, using a set of 446,361 206 Col/Bur SNPs (Figure 4B-4D). It was necessary to mask the ~0.6 Mb taf4b-1 introgressed 207 region on chromosome 1 from analysis (Figure 4D), which is Bur homozygous in the taf4b-1 208 209 population, meaning crossovers cannot be detected here.

The Col/Bur control F_2 population contained on average 7.72 crossovers per F_2 , whereas the *taf4b-1*/Bur F_2 contained significantly fewer (6.81 crossovers per F_2) (Mann-Whitney-Wilcoxon test, $P=4.06\times10^{-5}$) (Figure 4B and Table S4). Consistent with the previous FTL analysis, we observed that *taf4b-1* crossovers were most strongly reduced in the distal subtelomeric regions (Figure 4D). To statistically assess this, a Poisson model was used to compare the crossover counts in 10 scaled chromosome windows along the telomere to centromere axis, summed across all chromosome arms, between Col/Bur and *taf4b-1*/Bur populations (Figure S5). Crossovers within the 1st and 2nd sub-telomeric windows were significantly reduced in *taf4b-1*/Bur compared to Col/Bur (Benjamini-Hochberg (BH) multipletesting-corrected $P=1.30\times10^{-2}$ and $P=9.88\times10^{-3}$) (Figure S5). Together, these data confirm crossover decrease in *taf4b-1* in both inbred and hybrid contexts, with greatest reduction in the sub-telomeric regions.

223

224 **TAF4b** expression is germline-enriched compared to **TAF4**

225

As noted, two TAF4 paralogs exist in the A. thaliana genome (Figure S4). Several plant and 226 227 animal TBP and TAF genes are duplicated and exhibit cell type-specific expression and 228 functions, including in the germline [19, 24]. Phylogenetic analysis of eukaryotic TAF4 proteins resolved monophyletic animal, fungal and plant clades (Figure S4A). Fungal 229 genomes encode a single TAF4 gene, whereas independent TAF4 duplications have 230 231 occurred within vertebrates and plants (Figure S4). Vertebrate sequences divide into two conserved TAF4 and TAF4b clades, whereas within land plants, basal species possess a 232 233 single TAF4 gene and multiple duplications have occurred within flowering plants, including within the Brassicaceae (Figure S4A). Hence, TAF4 has undergone repeated duplications 234 235 across the eukaryotic phylogeny, associated with functional specialisation.

236

Due to the role of TAF4b in promoting crossovers, we investigated TAF4 and TAF4b gene 237 238 expression using RNA-seq data generated from purified male meiocytes and leaf tissue [25] 239 (Figure 5A). As expected, genes with known roles in mejotic recombination exhibit strongly elevated expression in meiocytes and low expression in leaf tissue, whilst photosynthetic 240 genes display the opposite pattern (Figure 5A). Consistent with a role in meiotic 241 recombination, TAF4b showed high expression in meiocytes and low expression in leaf, 242 whereas TAF4 was constitutively expressed between leaf and meiocyte samples (Figure 243 244 5A). We confirmed these expression patterns for TAF4 and TAF4b using semi-quantitative RT-PCR from floral buds and leaf tissue (Figure S6A-6B). These data demonstrate that 245 TAF4b expression is enriched in the germline and during meiosis, whereas TAF4 adopts a 246 247 broader, constitutive expression pattern.

248

249 **TAF4b** promotes germline expression of regulators of meiosis

250 As TAF4b is predicted to interact within TFIID and promote transcription, we sought to 251 compare gene expression in taf4b-1, Bur and Col, using RNA-seq of purified meiocytes [25]. 252 Approximately 2,000 male meiocytes were dissected from each genotype and RNA was 253 extracted and sequenced. DESeq2 was used to identify differentially expressed genes in 254 255 taf4b-1 and Bur, relative to Col. We observed down-regulation of 1,271 genes and upregulation of 279 genes in taf4b-1 (BH-adjusted P<0.01), which significantly overlapped 256 those identified in Bur (91.7% overlap of down-regulated genes) (Figure 5C and Figure 257 S7A–S7B). As TAF4b has germline-enriched expression, we predicted that its target genes 258 would also show germline-enriched expression compared to leaf. Indeed, the taf4b-1 down-259 regulated genes are significantly enriched for genes that are up-regulated in wild type 260 meiocytes compared to leaves (hypergeometric test, $P=1.6\times10^{-185}$) (Figure 5D). This shows 261 262 that TAF4b promotes germline gene transcription, with functional relevance for meiotic 263 recombination.

264

Gene ontology (GO) tests were performed on the genes that are down-regulated in *taf4b-1* and up-regulated in wild type meiocytes compared to leaves (Figure S7C and Table S5). Over-represented GO terms include 'protein ubiquitination', 'regulation of transcription', 'meiotic sister chromatid cohesion', 'male meiosis chromosome segregation' and 'chromosome condensation' (Figure S7 and Table S5). This included genes with known meiotic functions, including (i) *WAPL2* and *PATRONUS1*, which are involved in the removal and protection of cohesin during meiosis, respectively [26, 27], (ii) *DUET/MMD1*, which is a transcriptional regulator of male meiosis [28], (iii) *JASON* that is essential for spindle orientation in meiosis II [29], (iv) *OSD1*, which controls meiotic cell cycle progression [30] and (v) *H2A.Z/HTA11* which encodes a histone variant associated with crossover sites in Arabidopsis [12]. TAF4b-dependent transcription of one, or a combination, of these genes could promote meiotic recombination in wild type.

277

A smaller group of 279 genes were significantly up-regulated in taf4b-1, which may 278 279 represent indirect targets. 42.7% of these genes are also up-regulated in wild type 280 meiocytes compared to leaves, which represents a significant overlap (hypergeometric test, $P=4.05 \times 10^{-25}$). Over-represented GO terms within these genes include 'meiotic DNA DSB 281 formation', 'chiasma assembly', 'meiotic sister chromatid cohesion' and 'meiotic 282 chromosome condensation' (Figure S7D and Table S5). Known genes with a role in meiosis 283 include, (i) PRD1, which encodes a SPO11-1 accessory factor required for DSB formation 284 [31], (ii) MSH5, which is required for wild type levels of Class I crossovers [32], (iii) REC8, 285 286 which encodes a cohesin component of the meiotic axis [33], (iv) SW11, which is required for formation of the axis and sister chromatid cohesion [34] and (v) ATM, which is required for 287 288 DNA damage signalling [35]. Hence, transcriptional changes in these genes in taf4b-1 may also contribute to decreased crossover frequency. 289

290

291 **Discussion:**

292

293 Through genetic mapping and immunocytology, we demonstrate a novel role for TAF4b in 294 promoting mejotic crossover in Arabidopsis. TFIID was initially thought to adopt an essential 295 and ubiquitous role in RNA polymerase II transcription. However, TAF gene duplications 296 have occurred in plants and animals that are associated with acquisition of specialised expression patterns and functions [19, 24, 36]. Here we show that Arabidopsis TAF4b is 297 298 expressed in the germline, whereas its paralog TAF4 is broadly and constitutively expressed. This parallels gonad-specific TAF4b expression versus global TAF4 expression 299 observed in mice, Xenopus and Drosophila [37-41]. This is interesting considering that 300 TAF4 duplication occurred independently in animal and plant lineages [42]. In mice, loss of 301 302 TAF4b leads to sterility in males and females, indicating a strict requirement during gametogenesis [37, 43], whereas the Arabidopsis taf4b mutant does not significantly reduce 303 304 fertility. Therefore, in comparison to mice, the Arabidopsis taf4b germline phenotype more specifically influences crossover levels, without causing meiotic arrest or sterility. 305

306

307 The effect of TAF4b on crossover number and distribution may occur indirectly via its effects 308 on transcription of target genes that regulate meiotic recombination (Figure 6A). The 309 enrichment of GO terms associated with ubiquitin in the TAF4b target genes could relate to 310 the role of this post-translational modification in controlling progression of meiosis and recombination [44–47]. Notably, the previously identified rQTL HEI10 encodes a conserved 311 putative ubiquitin or SUMO E3 ligase that promotes crossovers in diverse eukaryotes [7]. 312 WAPL2 and PATRONUS1 have roles in the removal and protection of cohesin, respectively 313 [26, 48]. Notably, the taf4b-1 up-regulated genes include REC8, which encodes a meiosis-314 specific kleisin subunit of cohesin [49], and SWI1, which is required for formation of the 315 meiotic axis and sister chromatid cohesion [34, 50]. It is possible that altered expression of 316 317 any of these genes could act independently, or in combination, to reduce crossovers in taf4b, with greatest effect in the sub-telomeres (Figure 6A). 318

319

It is also possible that TAF4b binding directly regulates crossover formation (Figure 6B-6C).
For example, variant TAF complexes may impart unique chromatin structure at gene promoters, which could have a direct impact on recombination. It is notable that gene promoters are endogenous sites for meiotic DSB and crossover hotspots in Arabidopsis and other plants [11, 12, 51–54]. Hence, TAF4b-TFIID binding, or the act of transcription itself, may modify chromatin and influence the accessibility of gene promoters to recombination proteins (Figure 6B-6C). Notably, cohesin occupancy on chromosomes is also influenced by

transcription in several species [55–57]. Although cohesin is required for organisation of meiotic chromosomes and recombination, it is also associated with suppression of recombination at the local scale [58, 59]. Hence, the effect of TAF4b on meiotic transcription could modify cohesin accumulation and thereby influence recombination. It is also possible that TAF4b may directly recruit recombination proteins to gene promoters and promote meiotic DSB formation or crossover repair (Figure 6C).

333

334 We demonstrate crossover reduction within the euchromatic chromosome arms in taf4b and 335 most strongly in distal sub-telomeric regions. As the 420 FTL interval we used to test for recombination modifiers is sub-telomeric, this may have sensitized our screen towards 336 337 detection of TAF4b. Interestingly, several other genetic backgrounds show greatest 338 increases in sub-telomeric crossover frequency, including (i) HEI10 overexpression lines [7, 60], (ii) the anti-crossover mutants fancm, figl1 and recq4a recq4b [60, 61], (iii) the CG DNA 339 methylation maintenance mutant met1 [62] and (iv) cdka;1 cell division kinase mutants [63]. 340 341 Arabidopsis chromosomes show gradients of sequence polymorphism and chromatin modifications along the telomere to centromere axis [60, 61]. Regional differences in genetic 342 343 and epigenetic information may contribute to relative increases in sub-telomeric crossover frequency in these genetic backgrounds, when the recombination pathways are changed. 344 345 Notably Arabidopsis male meiosis produces more crossovers than female, with additional 346 events occurring in the sub-telomeres, which are derived from the Class I repair pathway [61, 64]. Further work will be required to understand what connects distalization of 347 348 crossovers observed in these diverse backgrounds. It may also be interesting to screen for 349 natural modifiers of crossover frequency specifically in the pericentromeric or interstitial 350 regions of the chromosomes.

351

Recombination modifier loci, such as TAF4b, have the potential to modulate the response of 352 a population to selection [65, 66]. The Col-420×Bur trans modifier rQTLs identified here 353 354 exhibit opposing genetic effects on crossover frequency. This is consistent with the results of 355 rQTL mapping in Col×Ler populations, where the identified rQTLs also displayed opposite 356 effects on crossover frequency [7]. Although our sampling is limited, it appears that recombination rate in natural populations of Arabidopsis is controlled by multiple trans 357 modifiers, indicating a complex genetic architecture. Overall recombination levels are 358 359 maintained at low levels across eukaryotes, with typically one or two crossovers occurring per chromosome per meiosis [1]. This may indicate that high levels of meiotic crossover are 360 unfavourable and consequently selected against. Therefore, antagonistic recombination 361 modifiers may act to balance recombination in natural Arabidopsis populations, at levels 362 sufficient to ensure balanced chromosome segregation and fertility, whilst avoiding 363 excessive disruption of beneficial linked variation. 364 365

366 Acknowledgements:

367

We thank Gregory Copenhaver (University of North Carolina), Avraham Levy (The 368 Weizmann Institute) and Scott Poethig (University of Pennsylvania, USA) for FTLs, Piotr 369 Ziolkowski for Col-420/Bur seed, Sureshkumar Balasubramanian (Monash University) for 370 providing British and Irish Arabidopsis accessions, Mathilde Grelon (INRA, Versailles) for 371 providing the MLH1 antibody, and the Gurdon Institute for access to microscopes. This work 372 was supported by a BBSRC DTP studentship (EJL), European Research Area Network for 373 Coodinating Action in Plant Sciences/BBSRC "DeCOP" (BB/M004937/1) (CAL), a BBSRC 374 David Phillips Fellowship (BB/L025043/1) (HG, XF), the European Research Council (CoG 375 'SynthHotspot') (AJT, CAL, IRH) and (StG 'SexMeth') (XF) and a Sainsbury Charitable 376 Foundation Studentship (ARB). 377

378

379

380 381

382 Author Contributions:

383

386

E.L., H.G., C.L. and A.B. conducted the experiments. E.L., H.G., C.L., A.T., A.B., X.F. and I.H. analysed the data and wrote the paper.

387 **Declaration of Interests:**

- 388389 The authors declare no competing interests.
- 390

391 Main-text Figure and Table Legends:392

393 Figure 1. Recombination QTL (rQTL) mapping in Arabidopsis Col×Bur populations. (A) Physical map of chromosome 3 showing the positions of 420 FTL T-DNA markers (red and 394 green triangles). (B) Diagram illustrating the pedigree used for rQTL mapping. (C) 395 396 Fluorescent micrographs showing 420 (RG/++) seed using red or green fluorescent filters. 397 (D) Histogram of 420 cM phenotypes in F_1 (dark blue) and F_2 (light blue) Col/Bur individuals. Mean values are shown by the dashed lines. (E) Representative ethidium bromide stained 398 gel showing an SSLP marker amplified from Bur, Col and Col/Bur F₁ plants. (F) Col-420×Bur 399 400 F₂ multiple (two-dimensional) QTL scan showing logarithm of the odds ratio (LOD) scores on 401 chromosomes 1, 2 and 3. Positions of genetic markers (cM) are denoted by ticks on the x-402 axis. The horizontal red line indicates the LOD significance threshold (α =0.05). See also 403 Figures S1 and S2, Data S1 and Table S6.

404

Figure 2. Genetic polymorphism in TAF4b underlies rQTL1a. (A) LOD scores for 405 406 markers associated with 420 crossover frequency (cM) using QTL mapping in a BC₂F₂ population, over a 3.5 Mb region containing *rQTL1a*. Physical markers are denoted by *x*-axis 407 ticks (red line=LOD significance threshold, α =0.05). (B) 420 cM for BC₂F₂ individuals 408 409 Col/Col, Col/Bur or Bur/Bur at the rQTL1a peak marker. Error bars represent mean and standard error. (C) Genotypes (Bur/Bur=blue, Col/Bur=purple) of four BC₂F₂ individuals in a 410 30 kb region around rQTL1a with 420 cM. Gene models are shown beneath. (D) TAF4b 411 gene structure (blue rectangles=exons) and domain positions. The taf4b-1 premature stop 412 codon, taf4b-2 T-DNA insertion, and TAF4b genomic region used for complementation, are 413 414 shown. (E) Locations of Arabidopsis accessions collected in the British Isles with Col/Col (red), Col/Bur (purple) or Bur/Bur (blue) TAF4b genotypes (taf4b-1 dCAPS marker=triangles 415 or 1,001 Genomes Project=circles). The Burren is shown beneath at higher resolution. (F) 416 420 cM in rQTL1a^{Bur}, rQTL1a^{Bur} transformed with empty vector, rQTL1a^{Bur} transformed with 417 TAF4b, or wild-type Col-420. Significance was assessed by Mann-Whitney-Wilcoxon tests 418 (***=P≤0.001). (G) As for F, but showing 420 cM in taf4b-2, wild type or taf4b-2/+ 419 420 heterozygous siblings. See also Figures S2, S3 and S4, Data S1 and Tables S1 and S6. 421

Figure 3. TAF4b promotes crossover frequency genome-wide in inbreds. (A) The 422 Arabidopsis genome showing the position of FTL T-DNAs (red and green triangles) used to 423 measure crossovers. Scale bar=5 Mb. (B) Correlation between the % decrease in crossover 424 425 frequency between wild type and *taf4b-1* siblings in FTL intervals shown in A, in addition to 420, and the interval midpoint as a proportion of chromosome arm length, where the 426 telomere (TEL) is 0 and the centromere (CEN) is 1. (C) Crossover frequency (cM) in the FTL 427 intervals in wild type +/+ (red), taf4b-1/+ (purple) and taf4b-1 (blue) F₂ siblings. Error bars 428 represent the standard deviation. Significance was assessed by GLM tests (**=P≤0.01 and 429 ***= $P \le 0.001$). (D) Representative micrographs showing Col, *taf4b-1* and Bur male 430 diakinesis-stage meiocytes stained for DAPI (blue) and immunostained for MLH1 (red). 431 Scale bar=10 µm. (E) Quantification of MLH1 count data from Col, taf4b-1 and Bur. Error 432 433 bars represent the mean and the standard deviation. Significance was assessed by Mann-Whitney-Wilcoxon tests (***=P≤0.001). (F) DAPI-stained spreads of Col (wild type) and Bur 434 (taf4b-1) male meiocytes at the labeled stages of meiosis. All scale bars=10 µm. See also 435 436 Data S1 and Tables S2 and S3.

437

438 Figure 4. *TAF4b* promotes crossover frequency most strongly in distal sub-telomeric regions. (A) 420 crossover frequency (cM) in Col/Bur and taf4b-1/Bur F₁ hybrids. Mean 439 crossover frequency for each genotype is denoted by a red circle. F₁ individuals used as 440 441 parents for Col/Bur and *taf4b-1*/Bur GBS F_2 populations are highlighted in purple and blue, respectively. Significance was assessed by GLM tests (***=P≤0.001). (B) Histograms 442 displaying the number of crossovers per individual in Col/Bur (purple) and taf4b-1/Bur (blue) 443 F_2 GBS populations. Mean crossover number of each population is denoted by a vertical 444 445 dashed line. (C) Crossover frequency along the proportional (scaled) length of all chromosome arms from telomeres (TEL) to centromeres (CEN) in Col/Bur (purple) and 446 taf4b-1/Bur (blue) F₂ populations. Mean values are denoted by the horizontal dashed lines. 447 448 (D) Crossover frequency over the five chromosomes in Col/Bur (purple) and taf4b-1/Bur (blue) F₂ populations. Crossovers were tallied in 300 kb windows, divided by the number of 449 450 F_2 individuals, and a rolling mean plotted along the five chromosomes. Centromere (*CEN*) 451 positions are denoted by vertical dashed lines and telomere (TEL) positions by vertical solid 452 lines. The location of the taf4b-1 introgressed region is represented by grey shading. See 453 also Figure S5. Data S1 and Table S4.

454 Figure 5. TAF4b drives a germline transcriptional program associated with promotion 455 456 of crossovers. (A) Expression level (transcripts per million, TPM) of genes with known roles in meiosis or photosynthesis, and TAF4 and TAF4b, from meiocyte and leaf replicate RNA-457 458 seq libraries [25]. A relative colour scale applies within each panel, where green and red 459 denote high and low TPM values, respectively. (B) As for A, but showing genes significantly down-regulated in taf4b-1 compared to Col meiocytes and up-regulated in Col meiocytes 460 461 compared to Col leaf tissue, ordered according to fold-change in taf4b-1. Expression in Col, taf4b-1 and Bur meiocyte RNA-seq libraries, and Col leaf and meiocyte libraries [25], is 462 shown. Genes with known roles in meiosis are highlighted. (C) Venn diagram displaying the 463 464 overlap between genes that are significantly down-regulated in Bur (false discovery rate 465 [FDR]<0.01), and genes that are significantly down-regulated in taf4b-1 (FDR<0.01), 466 compared to Col. (D) Venn diagram displaying the overlap between genes significantly 467 down-regulated in taf4b-1 relative to Col (FDR<0.01), and genes significantly up-regulated in Col meiocytes relative to Col leaf tissue [25] (FDR<0.01). See also Figures S6 and S7, and 468 469 Tables S5 and S6.

Figure 6. Direct and indirect models for TAF4b in promotion of crossovers. (A) Model 471 for TAF4b acting within the TFIID complex to promote expression of meiotic regulatory 472 473 genes. The putative direct TAF4b targets are those genes which are down-regulated in 474 taf4b-1 (red), while genes that are up-regulated (green) are likely indirect targets. Known 475 regulators of meiotic recombination present in these groups are listed. (B) Direct model showing TAF4b interacting directly with a protein that influences DSB formation or crossover 476 477 progression (X). (C) An alternative direct model showing a TAF4b-containing variant TFIID complex influencing DNA accessibility at the promoter/transcriptional start site region, 478 479 promoting DSB formation by SPO11-1.

480

470

481

Table 1. Location and effect size of *rQTLs* identified in the Col-420×Bur F₂ population. See also Figure S1.
 483

		D	Drevimel	+/- 1.5	+/- 1.5 LOD	420 cM			Mode of action		
Chr	rQTL	Position (cM)	Proximal marker (bp)	LOD units (cM)	COD markers (kb) Col/ Col/ Bur/ Bur Mode of a Col/ Col/ Bur/ Bur		Mode of action	LOD	(%)		
1	rQTL1a	34.1	9,567,731	3137	8,54710,655	16.6	15.6	10.9	Recessive Bur	15	20.7
1	rQTL1b	77.5	18,237,140	6994	16,16125,036	17.8	15.3	12.3	Semi-dominant	9.4	11.8
2	rQTL2	2.0	132,652	026	13214,407	13.4	15.3	15.1	Dominant Bur	5.5	6.6
3	rQTL3	22.0	10,695,968	934	4,04917,088	16.0	13.7	17.0	Cis effect	7.8	9.5

484

485 **STAR Methods:**

- 486
- 487 488

EXPERIMENTAL MODEL AND SUBJECT DETAILS

- 489 Plant material
- 490

Arabidopsis thaliana accessions were obtained from the Nottingham Arabidopsis Stock 491 492 Centre (NASC) or kindly donated by Sureshkumar Balasubramanian (Monash University). 493 Fluorescent Tagged Lines (FTLs) were kindly provided by Avraham Levy (Weizmann Institute) and Scott Poethig (University of Pennsylvania). The taf4b-2 T-DNA insertion 494 (SALK 025468) was obtained from NASC. Plants were cultivated on commercial F2 495 496 compost and grown in controlled environment chambers at 20°C with long day 16/8 hour light/dark photoperiods, 60% humidity and 150 µmol light intensity. Prior to germination 497 498 seeds were kept for two days in the dark at 4°C to stratify germination.

500 METHOD DETAILS

501

499

502 *Measurement of crossovers using FTLs*

502

504 Three pictures of FTL seed were acquired at minimum magnification using a charge coupled 505 device (CCD) camera; (i) brightfield, (ii) UV through a dsRed filter and (iii) UV through a GFP 506 filter. The CellProfiler program was used to identify seed boundaries in micrographs and to 507 assign a RFP and GFP fluorescence intensity value to each seed object [15, 67]. Histograms of seed fluorescence can be used to classify fluorescent and non-fluorescent 508 509 seed for each colour. When plants have been self-fertilized, genetic distance is calculated using the formula: $cM = 100 \times (1 - [1 - 2(N_G + N_R)/N_T]^{\frac{1}{2}})$, where N_G is a number of green-alone 510 fluorescent seeds, N_R is a number of red-alone fluorescent seed and N_T is the total number 511 512 of seeds counted. 513

- 514 **Complementation of rQTL1a^{Bur} via transformation**
- 515

rQTL1a candidate genes were PCR amplified from Col genomic DNA using Phusion High-Fidelity DNA Polymerase (New England Biolabs), and cloned into binary vector pGREEN0029 using restriction digestion. Binary vectors were transformed into *Agrobacterium tumefaciens* GV3101, which were used to transform Arabidopsis via floral dipping.

521

522 *MLH1 immunostaining of diakinesis-stage meiocytes* 523

524 Inflorescences were collected from 5 week-old A. thaliana plants and placed in fixative (3:1 absolute ethanol:glacial acetic acid) at 4°C, followed by three fixative washes. Flower buds 525 at floral stages 8-10 were dissected from the inflorescences under a dissecting microscope 526 in a solution of fresh fixative solution. Buds were washed (3x2 minutes) in citrate buffer (4.45 527 mM trisodium citrate, 5.55 mM citric acid) before being transferred to an enzyme solution 528 (0.3% w/v cellulase (Sigma), 0.3% w/v pectolyase (Sigma)) in a moist chamber at 37°C for 529 1.5 hours. Cell wall digestion was stopped by replacing the enzyme solution with citrate 530 buffer. Buds were then individually transferred into a drop of water on a polysine slide 531 (Thermo Scientific) and gently disrupted by tapping with a brass rod to release the 532 meiocytes. 5 µl of 60% acetic acid were added twice and mixed with the meiocytes and 533 placed on a heated block at 48°C for one minute. 100 µl of ice-cold fixative solution was 534 added to the slides, followed by drying while inverted using a hairdryer. Slides were stained 535 536 with a solution of DAPI (10 µg/ml) in Vectashield antifade mounting medium. Immunostaining of MLH1 was performed on acetic acid chromosome spreads from the fixed 537 floral buds. The following antibodies were used: α-ASY1 (rabbit, 1/500 dilution) (gift from 538 539 Chris Franklin, University of Birmingham) and α-MLH1 (rabbit, 1/200 dilution) (gift from

540 Mathilde Grelon, INRA, Versailles). Microscopy was conducted using a DeltaVision Personal 541 DV microscope (Applied Precision/GE Healthcare) equipped with a CDD CoolSNAP HQ2 542 camera (Photometrics). Image capture was performed using softWoRx software version 5.5 543 (Applied Precision/GE Healthcare).

544

545 Genotyping-by-sequencing

546 547 DNA was extracted and used to prepare sequencing libraries from 180 Col/Bur and 186 548 taf4b-1/Bur F₂ individuals. DNA was digested with 0.3 units of dsDNA Shearase (Zymo Research) in a final volume of 15 µL. The resulting DNA fragments were end-repaired with 3 549 550 units of T4 DNA polymerase (New England Biolabs), 10 units of T4 polynucleotide kinase 551 (Thermo Fisher Scientific) and 1.25 units of Klenow fragment (New England Biolabs), in the presence of 0.4 mM dNTPs in a reaction volume of 30 µL for 30 min at 20°C. DNA 552 fragments were cleaned as described [68], and the protocol was followed until the DNA 553 554 fragment size selection step. To size-select DNA following barcoded Illumina adaptor 555 ligation, 30 µL of a mixture of eight concentrated DNA libraries were combined in a tube 556 containing 48 µL of a 1:1 mix of AMPure XP magnetic SPRI beads (Beckman-Coulter) in water. After 5 minutes incubation at room temperature, the samples were placed on a 557 558 magnetic rack and allowed to clear before supernatant was transferred to a fresh tube and 559 mixed with 0.12 volumes of undiluted SPRI beads. After 5 min of incubation at room temperature, the tubes were placed on a magnetic rack and allowed to clear. The 560 561 supernatants were discarded, and the beads washed twice with 80% ethanol. DNA was eluted in 20 µL of 10 mM Tris (pH 8.0). 12 µL of the eluate was used for PCR amplification in 562 a reaction volume of 50 µL using KAPA HiFi Hot-Start ReadyMix PCR kit (Kapabiosystems) 563 and the reported DNA oligonucleotides [68]. Twelve cycles of PCR amplification were 564 performed, and PCR products were then purified using SPRI beads and quantified using a 565 Bioanalyzer. The resulting libraries were subjected to paired-end 150 bp sequencing on an 566 567 Illumina NextSeq instrument, with 96 barcoded libraries sequenced per lane.

568

569 *Meiocyte purification and RNA-seq*

570

571 Stage 9 flower buds were collected and squeezed between a glass slide and coverslip to 572 release meiocytes in prophase I [25]. Meiocytes were cleaned and transferred to a new 573 slide with a glass capillary pipette and washed with 1xPBS buffer three times. 574 Approximately 2,000 meiocytes were collected per replicate. RNA-seq libraries were 575 generated and sequenced using an Illumina NextSeq500 instrument and a 75 bp single-576 end sequencing (Illumina).

577

578 **QUANTIFICATION AND STATISTICAL ANALYSIS**

579580 *Recombination quantitative trait loci mapping*

581

Simple sequence length polymorphism (SSLP) PCR primers were designed using the 1,001 582 Genomes Bur-0 sequence [22], and used to collect genotype data in Col-420/Bur 583 populations. Two-dimensional QTL mapping was performed using Haley-Knott regression 584 with a 2 cM step size in R/qtl version 1.40-8 [69]. Significant loci were combined into an 585 additive model using the *fitqtl* function, after performing addint to test for significant 586 interactions between loci. refinegtl was used to refine the positions of the rQTLs in the 587 context of the final model and derive the percentage of phenotypic variation explained by 588 each locus. For fine mapping, one-dimensional mapping was performed using a 0.1 cM step 589 size. LOD thresholds for genome-wide significance (α =0.05) were established from 1,000 590 591 permutation replicates.

592593 Genotyping-by-sequencing data analysis

594

595 Sequencing reads derived from one lane of Col/Bur F₂ genomic DNA were aligned to the TAIR10 genome assembly using Bowtie2 [60, 70]. Col/Bur variant sites were called using 596 SAMtools and BCFtools [71]. Sites were filtered to remove those with qualities <100 and 597 598 >2.5x mean coverage and repeat masked. A set of 446,361 SNPs were selected for analysis. Sequencing data from barcoded libraries was then aligned to TAIR10 and analysed 599 for genotype at the 446,361 SNPs previously identified. These data were then used to 600 identity crossover sites using the TIGER pipeline [68]. To evaluate differences between 601 crossovers in Col/Bur and taf4b-1/Bur F2 populations, crossovers were counted in 602 603 proportionally scaled windows (10^{ths}) between each telomere and centromere. For each population, windowed crossover frequencies were summed across all F₂ individuals and 604 chromosome arms. For each 10th of the combined chromosome arms, crossovers were 605 606 modeled by Poisson regression with the log link function using the *glm* function in R, with population included as the predictor variable. Model goodness-of-fit was evaluated using chi-607 squared tests based on the residual deviance and degrees of freedom (P>0.05), by 608 609 comparison of observed and model-predicted means and standard errors, and by comparison of Bayesian Information Criterion values for Poisson and alternative regression 610 611 models.

612

613 Bioinformatics analysis of RNA-seq data

614

615 For each library, transcript abundances were quantified by mapping reads to the TAIR10 reference transcriptome using Salmon version 0.9.1 in "quasi-mapping-based mode" with 616 617 default parameters [72]. Transcript-level estimates were summed to derive a single expression estimate for each parent gene identifier [73], and the regularized logarithm (rlog) 618 619 transformation was applied, yielding approximately equal variances across mean expression estimates. Euclidean distances between samples were calculated using the rlog-transformed 620 data. Sample-to-sample distances were visualized with principal component analysis and 621 622 multi-dimensional scaling plots using the rlog transformed data. For heat map analysis, 623 gene-level transcripts per million (TPM) expression values were derived by summing transcript-level TPM values estimated by Salmon. 624

625

626 Differentially expressed genes were identified using DESeq2 version 1.16.1 [74], using 627 untransformed expression. Genes with more than one read across all samples within a contrast were retained. Additional filtering of genes with low mean read counts was 628 automatically applied by DESeq2. For each contrast, differentially expressed genes with BH-629 630 adjusted *P*-values < 0.01 were identified. Log_2 fold change in gene expression was plotted against the mean of read counts normalized by library size for each gene in MA plots. A 631 Bayesian method implemented in DESeg2 was used to moderate the log₂ fold changes 632 obtained for genes with low or variable expression levels. Up-regulated and down-regulated 633 634 genes in *taf4b-1* were evaluated for enrichment of genes up-regulated in wild type meiocytes compared to leaves (BH-adjusted P<0.01) using the hypergeometric distribution. Genes 635 representing the intersection of those down-regulated, or up-regulated, in taf4b-1 (BH-636 adjusted P<0.01) and up-regulated in meiocytes (BH-adjusted P<0.01), were analyzed for 637 638 gene ontology (GO) term enrichment. Gene sets were analyzed for over-representation of "biological process" GO terms relative to their representation among all genes in the TAIR10 639 annotation, using topGO (version 2.26.0) [75]. Significantly enriched terms were identified by 640 applying the default topGO algorithm coupled with the Fisher's exact test statistic ($P \le 0.05$). 641 642

643 DATA AND CODE AVAILABILITY

645 Data and Code Availability Statement

646

644

The sequencing data files generated during this study are available at Annotare (EMBL-EBI) accessions E-MTAB-XXXX (GBS) and E-MTAB-7870 (RNA-seq). Downstream code, files and analysis are available from the corresponding authors on request.

650 Lead Contact and Materials Availability Statement

651

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Ian Henderson (irh25@cam.ac.uk). Sequencing data files generated in this study have been deposited in ArrayExpress accessions E-MTAB-XXXX and E-MTAB-7870.

- 656657 Legends for supplemental Excel tables, videos or dataset files:
- 658

Data S1. FTL fluorescent seed count data. *Related to Figures 1, 2, 3 and 4.* Data is subdivided to indicate the specific experiment the data is associated with; (A) Col-420×Bur F_2 mapping population, (B) Col-420/Bur F_1 hybrids, (C) Col-420×Bur BC₂ F_2 mapping population, (D) Transformation of $rQTL1a^{Bur}$ with candidate genes, (E) taf4b-2×Col-420 F_2 , (F) taf4b-1×Col-FTL F_2 and (G) Col/Bur and taf4b-1/Bur F_1 hybrids. Genetic distance is calculated as cM=100×(1-[1-2(N_G+N_R)/N_T]^{1/2}), where N_G is the number of green alone seeds, N_R is the number of red alone seeds and N_T is the total number of seeds analysed.

666

Table S6. SSLP, CAPS and dCAPS genotyping and additional oligonucleotides. 667 Related to Figures 1, 2 and 5. For SSLP oligonucleotides, expected amplicon size from Col 668 and Bur sequence, chromosome, and coordinates (base pairs, bp) of the first nucleotide of 669 670 the deletion according to the TAIR10 reference assembly, are displayed. For CAPS and dCAPS oligonucleotides, the restriction enzyme used, expected amplicon size(s) from Col 671 and Bur sequence, chromosome, and coordinates (bp) of the polymorphism according to the 672 TAIR10 reference assembly are displayed. The d-taf4b-1-F and d-taf4b-1-R primers were 673 674 used for genotyping the *taf4b-1* mutation. 675

676 **References:**

- 677
- Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N., and Grelon, M. (2015). The
 molecular biology of meiosis in plants. Annu. Rev. Plant Biol. *66*, 297–327.
- Barton, N. H., and Charlesworth, B. (1998). Why sex and recombination? Cold Spring
 Harb. Symp. Quant. Biol. 281, 187–95.
- 482 3. Hunter, N. (2015). Meiotic Recombination: The Essence of Heredity. Cold Spring
 483 Harb. Perspect. Biol. 7, a016618.
- Stapley, J., Feulner, P. G. D., Johnston, S. E., Santure, A. W., and Smadja, C. M.
 (2017). Variation in recombination frequency and distribution across eukaryotes:
 patterns and processes. Philos. Trans. R. Soc. B Biol. Sci. *372*, 20160455.
- 6875.Lawrence, E. J., Griffin, C. H., and Henderson, I. R. (2017). Modification of meiotic688recombination by natural variation in plants. J. Exp. Bot. 68, 5471–5483.
- 689 6. Fransz, P., Linc, G., Lee, C.-R., Aflitos, S. A., Lasky, J. R., Toomajian, C., Hoda, A., 690 Peters, J., van Dam, P., Ji, X., et al. (2016). Molecular, genetic and evolutionary 691 analysis of a paracentric inversion in Arabidopsis thaliana. Plant J. 88, 159–178.
- Ziolkowski, P. A., Underwood, C. J., Lambing, C., Martinez-Garcia, M., Lawrence, E.
 J., Ziolkowska, L., Griffin, C., Choi, K., Franklin, F. C. H., Martienssen, R. A., et al.
 (2017). Natural variation and dosage of the HEI10 meiotic E3 ligase control
 Arabidopsis crossover recombination. Genes Dev. *31*, 306–317.
- Bomblies, K., Yant, L., Laitinen, R. A., Kim, S.-T., Hollister, J. D., Warthmann, N., Fitz, J., and Weigel, D. (2010). Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana. PLoS Genet. *6*, e1000890.
- 9. Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D.,
- Lanz, C., Stegle, O., Lippert, C., et al. (2011). Whole-genome sequencing of multiple
 Arabidopsis thaliana populations. Nat. Genet. *43*, 956–63.
- 70210.Kim, S., Plagnol, V., Hu, T. T., Toomajian, C., Clark, R. M., Ossowski, S., Ecker, J. R.,703Weigel, D., and Nordborg, M. (2007). Recombination and linkage disequilibrium in
- Arabidopsis thaliana. Nat. Genet. 39, 1151–1155.

- Horton, M. W., Hancock, A. M., Huang, Y. S., Toomajian, C., Atwell, S., Auton, A.,
 Muliyati, N. W., Platt, A., Sperone, F. G., Vilhjálmsson, B. J., et al. (2012). Genomewide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from
 the RegMap panel. Nat. Genet. *44*, 212–6.
- Choi, K., Zhao, X., Kelly, K. A., Venn, O., Higgins, J. D., Yelina, N. E., Hardcastle, T.
 J., Ziolkowski, P. A., Copenhaver, G. P., Franklin, F. C. H., et al. (2013). Arabidopsis
 meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat.
 Genet. 45, 1327–36.
- Berchowitz, L. E., and Copenhaver, G. P. (2008). Fluorescent Arabidopsis tetrads: a
 visual assay for quickly developing large crossover and crossover interference data
 sets. Nat. Protoc. *3*, 41–50.
- Yelina, N. E., Ziolkowski, P. A., Miller, N., Zhao, X., Kelly, K. A., Muñoz, D. F., Mann,
 D. J., Copenhaver, G. P., and Henderson, I. R. (2013). High-throughput analysis of
 meiotic crossover frequency and interference via flow cytometry of fluorescent pollen
 in Arabidopsis thaliana. Nat. Protoc. *8*, 2119–2134.
- 15. Ziolkowski, P. A., Berchowitz, L. E., Lambing, C., Yelina, N. E., Zhao, X., Kelly, K. A.,
 Choi, K., Ziolkowska, L., June, V., Sanchez-Moran, E., et al. (2015). Juxtaposition of
 heterozygosity and homozygosity during meiosis causes reciprocal crossover
 remodeling via interference. Elife *4*, e03708.
- 16. Wu, G., Rossidivito, G., Hu, T., Berlyand, Y., and Poethig, R. S. (2015). Traffic lines: new tools for genetic analysis in Arabidopsis thaliana. Genetics *200*, 35–45.
- Melamed-Bessudo, C., Yehuda, E., Stuitje, A. R., and Levy, A. A. (2005). A new
 seed-based assay for meiotic recombination in Arabidopsis thaliana. Plant J. *43*, 458–
 66.
- 18. Lago, C., Clerici, E., Mizzi, L., Colombo, L., and Kater, M. M. (2004). TBP-associated
 factors in Arabidopsis. Gene *342*, 231–241.
- 19. Goodrich, J. A., and Tjian, R. (2010). Unexpected roles for core promoter recognition
 factors in cell-type-specific transcription and gene regulation. Nat. Rev. Genet. *11*,
 549–558.
- 20. Louder, R. K., He, Y., López-Blanco, J. R., Fang, J., Chacón, P., and Nogales, E.
 (2016). Structure of promoter-bound TFIID and model of human pre-initiation complex
 assembly. Nature *531*, 604–609.
- Gangloff, Y.-G., Romier, C., Thuault, S., Werten, S., and Davidson, I. (2001). The
 histone fold is a key structural motif of transcription factor TFIID. Trends Biochem. Sci.
 26, 250–257.
- The 1001 Genomes Consortium, Alonso-Blanco, C., Andrade, J., Becker, C., Bemm,
 F., Bergelson, J., Borgwardt, K. M. M., Cao, J., Chae, E., Dezwaan, T. M. M., et al.
 (2016). 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis
 thaliana. Cell *166*, 481–491.
- Tabib, A., Vishwanathan, S., Seleznev, A., McKeown, P. C., Downing, T., Dent, C.,
 Sanchez-Bermejo, E., Colling, L., Spillane, C., and Balasubramanian, S. (2016). A
 Polynucleotide Repeat Expansion Causing Temperature-Sensitivity Persists in Wild
 Irish Accessions of Arabidopsis thaliana. Front. Plant Sci. *7*, 1311.
- Freiman, R. N. (2009). Specific variants of general transcription factors regulate germ
 cell development in diverse organisms. Biochim. Biophys. Acta *1789*, 161–6.
- Walker, J., Gao, H., Zhang, J., Aldridge, B., Vickers, M., Higgins, J. D., and Feng, X.
 (2018). Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis.
 Nat. Genet. *50*, 130–137.
- De, K., Sterle, L., Krueger, L., Yang, X., and Makaroff, C. A. (2014). Arabidopsis
 thaliana WAPL Is Essential for the Prophase Removal of Cohesin during Meiosis.
 PLoS Genet. *10*, e1004497.
- Cromer, L., Jolivet, S., Horlow, C., Chelysheva, L., Heyman, J., De Jaeger, G., Koncz,
 C., De Veylder, L., and Mercier, R. (2013). Centromeric cohesion is protected twice at
 meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis. Curr.
 Biol. 23, 2090–9.

- Andreuzza, S., Nishal, B., Singh, A., and Siddiqi, I. (2015). The Chromatin Protein
 DUET/MMD1 Controls Expression of the Meiotic Gene TDM1 during Male Meiosis in
 Arabidopsis. PLoS Genet. *11*, e1005396.
- De Storme, N., and Geelen, D. (2011). The Arabidopsis Mutant jason Produces
 Unreduced First Division Restitution Male Gametes through a Parallel/Fused Spindle
 Mechanism in Meiosis II. PLANT Physiol. *155*, 1403–1415.
- Cromer, L., Heyman, J., Touati, S., Harashima, H., Araou, E., Girard, C., Horlow, C.,
 Wassmann, K., Schnittger, A., De Veylder, L., et al. (2012). OSD1 Promotes Meiotic
 Progression via APC/C Inhibition and Forms a Regulatory Network with TDM and
 CYCA1;2/TAM. PLoS Genet. *8*, e1002865.
- 31. De Muyt, A., Vezon, D., Gendrot, G., Gallois, J.-L., Stevens, R., and Grelon, M.
 (2007). AtPRD1 is required for meiotic double strand break formation in Arabidopsis
 thaliana. EMBO J. 26, 4126–37.
- Higgins, J. D., Vignard, J., Mercier, R., Pugh, A. G., Franklin, F. C. H., and Jones, G.
 H. (2008). AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in
 Arabidopsis thaliana, but is not required for synapsis. Plant J. *55*, 28–39.
- 33. Chelysheva, L., Diallo, S., Vezon, D., Gendrot, G., Vrielynck, N., Belcram, K.,
 Rocques, N., Márquez-Lema, A., Bhatt, A. M., Horlow, C., et al. (2005). AtREC8 and
 AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis.
 J. Cell Sci. *118*, 4621–32.
- Mercier, R., Vezon, D., Bullier, E., Motamayor, J. C., Sellier, A., Lefèvre, F., Pelletier,
 G., and Horlow, C. (2001). SWITCH1 (SWI1): a novel protein required for the
 establishment of sister chromatid cohesion and for bivalent formation at meiosis.
 Genes Dev. 15, 1859–71.
- 35. Garcia, V., Bruchet, H., Camescasse, D., Granier, F., Bouchez, D., and Tissier, A.
 (2003). AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell *15*, 119–32.
- Hochheimer, A., and Tjian, R. (2003). Diversified transcription initiation complexes
 expand promoter selectivity and tissue-specific gene expression. Genes Dev. *17*,
 1309–20.
- Falender, A. E., Freiman, R. N., Geles, K. G., Lo, K. C., Hwang, K., Lamb, D. J.,
 Morris, P. L., Tjian, R., and Richards, J. S. (2005). Maintenance of spermatogenesis
 requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev. *19*, 794–803.
- Xiao, L., Kim, M., and DeJong, J. (2006). Developmental and cell type-specific
 regulation of core promoter transcription factors in germ cells of frogs and mice. Gene
 Expr. Patterns *6*, 409–419.
- 39. Grive, K. J., Gustafson, E. A., Seymour, K. A., Baddoo, M., Schorl, C., Golnoski, K.,
 Rajkovic, A., Brodsky, A. S., and Freiman, R. N. (2016). TAF4b Regulates OocyteSpecific Genes Essential for Meiosis. PLOS Genet. *12*, e1006128.
- Hiller, M., Chen, X., Pringle, M. J., Suchorolski, M., Sancak, Y., Viswanathan, S.,
 Bolival, B., Lin, T.-Y., Marino, S., and Fuller, M. T. (2004). Testis-specific TAF
 homologs collaborate to control a tissue-specific transcription program. Development
 131, 5297–5308.
- Freiman, R. N., Albright, S. R., Zheng, S., Sha, W. C., Hammer, R. E., and Tjian, R.
 (2001). Requirement of Tissue-Selective TBP-Associated Factor TAFII105 in Ovarian
 Development. Science (80-.). 293, 2084–2087.
- Antonova, S. V., Boeren, J., Timmers, H. T. M., and Snel, B. (2019). Epigenetics and transcription regulation during eukaryotic diversification: the saga of TFIID. Genes
 Dev. doi: 10.1101/gad.3000475.117.
- 43. Falender, A. E., Shimada, M., Lo, Y. K., and Richards, J. S. (2005). TAF4b, a TBP
 associated factor, is required for oocyte development and function. Dev. Biol. 288,
 405–419.
- Reynolds, A., Qiao, H., Yang, Y., Chen, J. K., Jackson, N., Biswas, K., Holloway, J.
 K., Baudat, F., De Massy, B., Wang, J., et al. (2013). RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat. Genet. *45*, 269–78.

- Rao, H. B. D. P., Qiao, H., Bhatt, S. K., Bailey, L. R. J., Tran, H. D., Bourne, S. L.,
 Qiu, W., Deshpande, A., Sharma, A. N., Beebout, C. J., et al. (2017). A SUMOubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic
 recombination. Science 355, 403–407.
- 46. Qiao, H., Prasada Rao, H. B. D., Yang, Y., Fong, J. H., Cloutier, J. M., Deacon, D. C.,
 Nagel, K. E., Swartz, R. K., Strong, E., Holloway, J. K., et al. (2014). Antagonistic
 roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic
 recombination. Nat. Genet. 46, 194–9.
- 47. Chelysheva, L., Vezon, D., Chambon, A., Gendrot, G., Pereira, L., Lemhemdi, A.,
 Vrielynck, N., Le Guin, S., Novatchkova, M., and Grelon, M. (2012). The Arabidopsis
 HEI10 is a new ZMM protein related to Zip3. PLoS Genet. *8*, e1002799.
- 48. Zamariola, L., De Storme, N., Vannerum, K., Vandepoele, K., Armstrong, S. J.,
 Franklin, F. C. H., and Geelen, D. (2014). SHUGOSHINs and PATRONUS protect
 meiotic centromere cohesion in *Arabidopsis thaliana*. Plant J. *77*, 782–794.
- 49. Cai, X., Dong, F., Edelmann, R. E., and Makaroff, C. A. (2003). The Arabidopsis
 SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous
 chromosome pairing. J. Cell Sci. *116*, 2999–3007.
- 83250.Mercier, R. (2003). The meiotic protein SWI1 is required for axial element formation833and recombination initiation in Arabidopsis. Development 130, 3309–3318.
- S1. Choi, K., Reinhard, C., Serra, H., Ziolkowski, P.A., Underwood, C. J., Zhao, X.,
 Hardcastle, T. J. T., Yelina, N. N. E., Griffin, C., Jackson, M., et al. (2016).
 Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.
 PLoS Genet. *12*, e1006179.
- 52. Choi, K., Zhao, X., Tock, A. J., Lambing, C., Underwood, C. J., Hardcastle, T. J.,
 Serra, H., Kim, J., Cho, H. S., Kim, J., et al. (2018). Nucleosomes and DNA
 methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and
 gene regulatory regions. Genome Res., 28, 532–546.
- Shilo, S., Melamed-Bessudo, C., Dorone, Y., Barkai, N., and Levy, A. A. (2015). DNA
 Crossover Motifs Associated with Epigenetic Modifications Delineate Open Chromatin
 Regions in Arabidopsis. Plant Cell *27*, 2427–2436.
- 54. Wijnker, E., Velikkakam James, G., Ding, J., Becker, F., Klasen, J. R., Rawat, V.,
 Rowan, B. A., de Jong, D. F., de Snoo, C. B., Zapata, L., et al. (2013). The genomic
 landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife
 2, e01426.
- Busslinger, G. A., Stocsits, R. R., van der Lelij, P., Axelsson, E., Tedeschi, A., Galjart,
 N., and Peters, J.-M. (2017). Cohesin is positioned in mammalian genomes by
 transcription, CTCF and Wapl. Nature *544*, 503–507.
- Lengronne, A., Katou, Y., Mori, S., Yokobayashi, S., Kelly, G. P., Itoh, T., Watanabe,
 Y., Shirahige, K., and Uhlmann, F. (2004). Cohesin relocation from sites of
- chromosomal loading to places of convergent transcription. Nature *430*, 573–578.
- Sun, X., Huang, L., Markowitz, T. E., Blitzblau, H. G., Chen, D., Klein, F., and
 Hochwagen, A. (2015). Transcription dynamically patterns the meiotic chromosomeaxis interface. Elife *4*. doi: 10.7554/eLife.07424
- 58. Kugou, K., Fukuda, T., Yamada, S., Ito, M., Sasanuma, H., Mori, S., Katou, Y., Itoh,
 T., Matsumoto, K., Shibata, T., et al. (2009). Rec8 guides canonical Spo11 distribution
 along yeast meiotic chromosomes. Mol. Biol. Cell *20*, 3064–76.
- Kim, K. P., Weiner, B. M., Zhang, L., Jordan, A., Dekker, J., and Kleckner, N. (2010).
 Sister cohesion and structural axis components mediate homolog bias of meiotic
 recombination. Cell *143*, 924–37.
- 864 60. Serra, H., Lambing, C., Griffin, C. H., Topp, S. D., Seguela-Arnaud, M., Fernandes, J.,
 865 Mercier, R., and Henderson, I. R. (2018). Massive crossover elevation via
 866 combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. Proc. Natl.
 867 Acad. Sci. U. S. A., 2437–2442.
- Fernandes, J. B., Seguela-Arnaud, M., Larcheveque, C., Lloyd, A. H., and Mercier, R.
 (2017). Unleashing meiotic crossovers in hybrid plants. Proc. Natl. Acad. Sci. U. S. A.

870 115, 2431-2436. 62. Yelina, N. E., Lambing, C., Hardcastle, T. J., Zhao, X., Santos, B., and Henderson, I. 871 R. (2015). DNA methylation epigenetically silences crossover hot spots and controls 872 873 chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 29, 2183-202. 874 Wijnker, E., Harashima, H., Müller, K., Parra-Nuñez, P., de Snoo, C. B., van de Belt, 63. 875 876 J., Dissmeyer, N., Bayer, M., Pradillo, M., and Schnittger, A. (2019). The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in Arabidopsis. Proc. Natl. 877 878 Acad. Sci. U. S. A., 116, 12534-12539. 64. Giraut, L., Falque, M., Drouaud, J., Pereira, L., Martin, O. C., and Mézard, C. (2011). 879 Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-880 specific patterns along chromosomes. PLoS Genet. 7, e1002354. 881 Coop, G., and Przeworski, M. (2006). An evolutionary view of human recombination. 882 65. Nat. Rev. Genet. 8, 23-34. 883 Feldman, M. W., Otto, S. P., and Christiansen, F. B. (1996). POPULATION GENETIC 884 66. PERSPECTIVES ON THE EVOLUTION OF RECOMBINATION. Annu. Rev. Genet. 885 886 30. 261-295. 67. Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., 887 Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J., et al. (2006). CellProfiler: 888 image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 889 7, R100. 890 Rowan, B. A., Patel, V., Weigel, D., and Schneeberger, K. (2015). Rapid and 891 68. Inexpensive Whole-Genome Genotyping-by-Sequencing for Crossover Localization 892 and Fine-Scale Genetic Mapping. G3 (Bethesda). 5, 385-98. 893 Arends, D., Prins, P., Jansen, R. C., and Broman, K. W. (2010). R/qtl: high-throughput 894 69. multiple QTL mapping. Bioinformatics 26, 2990-2. 895 70. Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. 896 897 Nat. Methods 9, 357-9. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 898 71. 899 Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and 900 SAMtools. Bioinformatics 25. 2078-9. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017). Salmon 901 72. 902 provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417-419. 903 Soneson, C., Love, M. I., and Robinson, M. D. (2016). Differential analyses for RNA-904 73. 905 seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 906 1521. Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change 907 74. and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. 908 Alexa, A., and Rahnenfuhrer, J. (2016). topGO: Enrichment Analysis for Gene 909 75. Ontology. R Package. version 2.26.0. 910 911 912

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Deposited Data		
Genotyping-by-sequencing sequencing read fastq files	This manuscript	E-MTAB-XXXX
RNA-sequencing read fastq files	This manuscript	E-MTAB-7870
Experimental Models: Organisms/Strains		
A. thaliana Bur-0	NASC	N22679
A. thaliana Col-0	NASC	N22681
<i>A. thaliana taf4b-1</i> introgression and recombinant Col/Bur lines	This manuscript	N/A
A. thaliana taf4b-2 T-DNA line	NASC	SALK_025468 (N525468)
A. thaliana Col-420 FTL	Avraham Levy Laboratory	[17]
A. thaliana 1.18, 1.13, 2.2, 3.15, 5.1, 5.2, 5.1 and 5.18 FTLs in Col background	Scott Poethig Laboratory	[16]
A. thaliana Irish and Scottish accessions	Sureshkumar Balasubramanian Laboratory	[23]
Oligonucleotides		
See Table S6	This manuscript	N/A
Software and Algorithms		
R/qtl version 1.40-8	[69]	http://www.rqtl.o rg/
Bowtie2	[70]	https://github.co m/BenLangmea d/bowtie2
SAMtools	[71]	https://github.co m/samtools
TIGER	[68]	N/A
Salmon	[72]	https://github.co m/COMBINE- lab/salmon
DESeq2	[74]	https://biocondu ctor.org/packag es/release/bioc/ html/DESeg2 ht

topGO	[75]	https://biocondu ctor.org/packag
		es/release/bioc/
		html/topGO.html

Figure 1

Supplemental Figures S1 to S7

Figure S1. 420 crossover phenotypes according to *rQTL* genotype in Col/Bur F_2 individuals. Related to Figure 1 and Table 1. (A) 420 crossover frequency (cM) for F_2 individuals with Col/Col, Col/Bur or Bur/Bur genotype at the *rQTL1a* peak marker. Error bars represent the mean and the standard error. (B) As for A, but for the *rQTL1b* peak marker. (C) As for A, but for the *rQTL2* peak marker. (D) As for A, but for the *rQTL3* peak marker. (E) Heterozygosity (%) on chromosome 3 for all F_2 individuals in the highest crossover frequency quartile (red), lowest crossover frequency quartile (blue), and the population mean (purple). X-axis ticks denote the physical locations of genotyping markers. Locations of fluorescent reporter T-DNAs are indicated by vertical dashed lines.

Figure S2. Crossing schematic for generation of Col-420×Bur genetic mapping populations. *Related to Figures 1 and 2.* Crossing schematic for generation of Col-420×Bur F_2 and BC₂ F_2 mapping populations, and *taf4b-1* introgression lines. Col/Col genotypes are indicated in red, Col/Bur genotypes in purple, and Bur/Bur genotypes in blue. The size of *rQTL1a* segregating/fixed regions in different lines is indicated.

Figure S3. Transformation of rQTL1a candidate genes to test for complementation of the crossover phenotype and analysis of the taf4b-2 T-DNA insertion allele. Related to Figure 2. (A) Diagram illustrating T-DNA constructs containing the Col amplicon of each candidate gene and KanR (kanamycin resistance gene), between left and right T-DNA borders that are represented by black arrows. rQTL1a^{Bur} denotes the rQTL1a introgression line containing 420 in cis (RG/++). (B) 420 crossover frequencies (cM) of individual $rQTL1a^{Bur}$ T₁ following transformation with empty vector or the rQTL1a candidate genes At1g27700^{Col}, At1g27710^{Col}, At1g27720^{Col} and At1g27730^{Col}). (At1g27695^{Col}, The untransformed rQTL1a^{Bur} introgression line and Col-420 controls are displayed for comparison. Individual T₁ are denoted as black circles and population means as red circles. (C) Regions amplified for restriction cloning of the five rQTL1a candidate genes. Genomic positions of each gene are denoted by black arrows, and shaded bars represent the regions amplified for each construct. (D) Sequencing reads displaying the boundary between genomic sequence (blue) and T-DNA insertion sequence (black) in SALK_025468 (taf4b-2). (E) Genomic location of taf4b-2 T-DNA insertion identified in A, indicated on a schematic of TAF4b, where blue rectangles denote exons. (F) RT-PCR using taf4b-2 and Col floral bud cDNA, and genomic DNA and water controls, using the primer pairs indicated in E (F1+R1, F2+R2). A GAPC control amplification on the same samples is also shown.

Figure S4. Phylogenetic analysis of eukaryotic TAF4 homologs. *Related to Figure 2.* (A) Phylogenetic tree of TAF4 orthologs identified by BLAST searches in eukaryotic genomes. The phylogenetic tree was constructed using a multiple sequence alignment of full length amino acid sequences and RaxML. The tree was rooted using an amoeba sequence (Acanthamoeba). Monophyletic fungi, animal and plant clades are indicated in blue, red and green, respectively. Annotations for species of interest are also indicated. (B) Comparison of *Arabidopsis thaliana* TAF4b (712 α a) and TAF4 (852 α a) protein structure, highlighting the relative positions of the RST domain, TAF4 domain and HFD. The location of each domain was determined using annotated protein databases, with the exception of the HFD of TAF4 which was determined by alignment to TAF4b.

Figure S5. Testing the significance of crossover changes along telomere to centromere axes in *taf4b-1/Bur* and Col/Bur. *Related to Figure 4.* (A) Crossover frequency in 10 scaled windows along the proportional length of all chromosome arms from telomeres (*TEL*) to centromeres (*CEN*) in Col/Bur (purple) and *taf4b-1/Bur* (blue) F_2 populations. (B) *P*-values (black) and Benjamini-Hochberg (BH) multiple-testing-corrected *P*-values (grey) derived using a Poisson model to compare crossover counts in each scaled window, summed across all chromosome arms, between Col/Bur and *taf4b-1/Bur* populations. Horizontal dashed lines correspond to an unadjusted *P*-value threshold of $-\log_{10}(0.05)$ (black) and a BH multiple-testing-corrected *P*-value threshold of $-\log_{10}(0.1)$ (grey).

Figure S6. Expression analysis of TAF4 and TAF4b. Related to Figure 5. (A) Ethidium bromide stained gels showing RT-PCR amplification products from cDNA of 3 bud replicates and 3 leaf replicates using primers for *TAF4b* (upper), *TAF4* (middle), and *GAPC* (lower). Amplifications from genomic DNA and water controls are also shown. (B) Pixel quantification of *TAF4b* RT-PCR bands from bud and leaf shown in A, normalised by *GAPC* for each equivalent sample. Significance was assessed using Student's t test (*= $P \le 0.05$). Error bars represent the standard deviation. (C) As for B, but for *TAF4.* (D) Screenshots of *TAF4* and *TAF4b* expression analysis from the Bioanalytic Resource eFP browser. (E) Gene expression data from AtGenExpress for *TAF4* and *TAF4b.*

Figure S7. Identification of differentially expressed meiotic genes in Bur and *taf4b-1* compared to Col. Related to Figure 5. (A) MA plot displaying \log_2 fold change in gene expression for all genes in *taf4b-1* relative to Col, plotted against the mean of read counts normalised by library size. Differentially expressed genes at a Benjamini-Hochberg-adjusted *P*-value FDR threshold of less than 0.01 are highlighted in blue. (B) As for A, but showing differentially expressed genes in Col vs Bur in orange. (C) Significant GO terms (*P*≤0.05) identified in the intersecting gene set down-regulated in *taf4b-1* and up-regulated in meiocytes, ranked by topGOFisher *P*-values [S1]. Genes with functions in meiosis are highlighted adjacent to the most significant GO term category in which they appear and are shaded according to their \log_2 fold change in *taf4b-1* relative to Col. (D) As for C, but displaying significant GO terms (*P*≤0.05) identified in the intersecting gene set that were up-regulated in *taf4b-1* and up-regulated in meiocytes.

Supplemental Tables S1 to S5

Table S1. Presence of the L481* *taf4b-1* mutation in Arabidopsis accessions collected in the British Isles. *Related to Figure 2.* Location of accessions in the British Isles and their genotype at 9,644,611 bp on chromosome 1 are listed. A Bur allele at this position indicates the presence of the L481* *taf4b-1* mutation, whereas a Col allele indicates its absence. The first 68 accessions are part of the 1,001 Genomes Project and genotype was determined based on published sequences [S2]. The remaining accessions (69-116) were obtained from Dr. Sureshkumar Balasubramanian [S3]. Two plants per line were genotyped using the *d-taf4b-1* dCAPs marker (Table S6) to determine genotype. Lines where at least one plant was heterozygous are indicated as Col/Bur.

No.	Name	Latitude	Longitude	de Location Count		<i>taf4b-1</i> genotype
1	11C1	55.89	-3.21	Hillend	UK	Col/Col
2	Abd-0	57.15	-2.22	Aberdeen	UK	Col/Col
3	Alst-1	54.8	-2.43	Alston	UK	Col/Col
4	Ba-1	56.55	-4.8	Blackmount	UK	Col/Col
5	Boot-1	54.4	-3.27	Boot, Eskdale	UK	Col/Col
6	Bra-1	54.6	-3.2	Braithwaite	UK	Col/Col
7	Bur-0	53.03	-9.08	Clare	Ireland	Bur/Bur
8	Cal-0	53.27	-1.64	Calver	UK	Bur/Bur
9	Cal-2	53.3	-1.6	Calver	UK	Bur/Bur
10	CIBC-17	51.41	-0.64	Ascot, Berkshire	UK	Col/Col
11	CIBC-5	51.41	-0.64	Ascot, Berkshire	UK	Col/Col
12	Cnt-1	51.3	1.1	Canterbury	UK	Col/Col
13	Durh-1	54.78	-1.57	Durham	UK	Col/Col
14	Edi-0	55.95	-3.16	Edinburgh	UK	Col/Col
15	Edi-1	55.97	-3.22	North Edinburgh	UK	Col/Col
16	Ema-1	51.3	0.5	East Malling	UK	Col/Col
17	For-2	56.6	-4.1	Fortingdale	UK	Col/Col
18	Gol-2	57.97	-3.97	Golspie, Scotland	UK	Col/Col
19	HR-10	51.41	-0.64	HR Ascot	UK	Col/Col
20	HR-5	51.41	-0.64	HR Ascot	UK	Col/Col
21	Kent	51.15	0.4	Kent	UK	Col/Col
22	Kil-0	56	-4.4	Killean	UK	Col/Col
23	Lan-0	55.67	-3.78	Lanark	UK	Col/Col
24	Mc-1	54.6	-2.3	Mickell's Fell	UK	Col/Col
25	NFA-10	51.41	-0.64	Ascot	UK	Col/Col
26	NFA-8	51.41	-0.64	Ascot	UK	Col/Col
27	Ragl-1	54.35	-3.42	Ravensglas	UK	Col/Col
28	Set-1	54.1	-2.3	Settle	UK	Col/Col
29	Sq-1	51.41	-0.64	Ascot	UK	Col/Col
30	Sq-8	51.41	-0.64	Ascot	UK	Col/Col
31	Su-0	53.65	-3.01	Southport	UK	Col/Col
32	Ty-1	56.4	-5.2	Taynuilt	UK	Col/Col
33	UKID107	52.9	-3.1	Chirk	UK	Col/Col

34	UKID11	57	-3.4	Braemar	UK	Col/Col
35	UKID116	56.73	-5.98	Ardtoe	UK	Col/Col
36	UKID63	54.1	-1.5	Ripon	UK	Col/Col
37	UKID71	52.9	-1.3	Stanton-by-Dale	UK	Col/Col
38	UKID74	51	-3.1	Taunton	UK	Col/Col
39	UKID93	53.1	-3.3	Ruthin	UK	Col/Col
40	UKID96	57.4	-5.5	Lochcarron	UK	Col/Col
41	UKNW06-003	54.5	-3	Grasmere	UK	Col/Col
42	UKNW06-102	54.4	-3	Outgate	UK	Col/Col
43	UKNW06-233	54.6	-3.3	High Lorton	UK	Col/Col
44	UKNW06-403	54.7	-3.4	Cockermouth	UK	Col/Col
45	UKNW06-481	54.4	-2.9	Windemere	UK	Col/Col
46	UKNW06-488	54.4	-2.9	Windemere	UK	Col/Col
47	UKSE06-118	51.3	0.5	East Malling	UK	Col/Col
48	UKSE06-252	51.3	0.5	East Malling	UK	Col/Col
49	UKSE06-325	52.2	-1.7	West Malling	UK	Col/Col
50	UKSE06-362	51.3	0.4	Wateringbury	UK	Col/Col
51	UKSE06-432	51.2	0.3	Tonbridge Castle	UK	Col/Col
52	UKSE06-470	51.2	0.4	Paddock Wood	UK	Col/Col
53	UKSE06-491	51.2	0.3	Sissinghurst	UK	Col/Col
54	UKSE06-500	51.1	0.6	Sissinghurst	UK	Col/Col
55	UKSE06-533	51.3	1.1	Canterbury	UK	Col/Col
56	UKSE06-541	51.3	1.1	Canterbury	UK	Col/Col
57	UKSE06-639	51.1	0.4	Scotney Castle	UK	Col/Col
58	UKSW06-179	50.4	-4.9	St Columb	UK	Col/Col
59	UKSW06-207	50.4	-4.9	Indian Queen	UK	Col/Col
60	UKSW06-226	50.4	-4.9	St Dennis	UK	Col/Col
61	UKSW06-240	50.4	-4.9	St Dennis	UK	Col/Col
62	UKSW06-257	50.3	-4.9	St Stephens	UK	Col/Col
63	UKSW06-285	50.3	-4.9	St Stephens	UK	Col/Col
64	UKSW06-302	50.3	-4.8	St Austel	UK	Col/Col
65	UKSW06-341	50.4	-4.7	Lostwitheil	UK	Col/Col
66	UKSW06-360	50.5	-4.5	Liskeard	UK	Col/Col
67	Ullapool-8	57.9	-5.15	Ullapool, Scotland	UK	Col/Col
68	Vind-1	54.99	-2.37	Vindolanda	UK	Col/Col
69	At12	53.11	-9.13	Clare	Ireland	Col/Col
70	At24	53.28	-9.06	Galway	Ireland	Col/Col
71	At32	53.4	-9.92	Galway	Ireland	Col/Col
72	At34	53.4	-9.92	Galway	Ireland	Col/Col
73	At50-57	53.56	-9.89	Galway	Ireland	Col/Col
74	At69	53.56	-9.89	Galway	Ireland	Col/Col
75	At75-76	53.55	-9.95	Galway	Ireland	Col/Col
76	At77-79	53.52	-9.45	Galway	Ireland	Col/Col
77	At80-86	53.52	-9.45	Galway	Ireland	Col/Col
78	At100	53.48	-9.13	Galway	Ireland	Col/Col

79	At109-135	52.91	-9.06	Clare	Ireland	Bur/Bur
80	At112	52.91	-9.06	Clare	Ireland	Col/Col
81	At136-140	52.91	-9.07	Clare	Ireland	Col/Col
82	At143	52.91	-9.09	Clare	Ireland	Col/Col
83	At158	52.91	-9.09	Clare	Ireland	Col/Col
84	At161-162	53.27	-9.06	Galway	Ireland	Col/Col
85	At164-170	53.27	-9.05	Galway	Ireland	Col/Col
86	At208-217	52.36	-7.58	Waterford	Ireland	Col/Col
87	At249	52.37	-7.93	Tipperary	Ireland	Bur/Bur
88	At308	52.27	-7.1	Waterford	Ireland	Col/Col
89	At313-314	53.13	-8.96	Galway	Ireland	Col/Col
90	At317	53.13	-8.96	Galway	Ireland	Col/Col
91	At339-348	53.09	-8.99	Clare	Ireland	Bur/Bur
92	At359	53.28	-9.06	Galway	Ireland	Col/Col
93	At361	52.93	-8.44	Clare	Ireland	Col/Col
94	At365	53.04	-9.08	Clare	Ireland	Col/Bur
95	At369	53.06	-9.08	Clare	Ireland	Col/Col
96	At370	53.13	-8.96	Clare	Ireland	Col/Col
97	At376	53.95	-9.32	Мауо	Ireland	Col/Col
98	At379	53.12	-9.07	Clare	Ireland	Col/Col
99	At383	53.27	-8.92	Galway	Ireland	Col/Col
100	At386	53.04	-9.08	Clare	Ireland	Col/Col
101	At394-395	53.43	-9.32	Galway	Ireland	Col/Col
102	At396	53.44	-9.31	Galway	Ireland	Col/Col
103	At400-404	53.32	-9.74	Galway	Ireland	Col/Col
104	At405	53.25	-9.28	Galway	Ireland	Col/Col
105	At407-408	53.27	-9.21	Galway	Ireland	Col/Col
106	At409-412	53.28	-9.14	Galway	Ireland	Col/Col
107	At413-414	53.43	-9.32	Galway	Ireland	Col/Col
108	At434	56.3	-4.33	Callander, Scotland	UK	Col/Bur
109	At444-448	53.3	-8.74	Galway	Ireland	Col/Col
110	At454-459	53.73	-7.13	Meath, Galway	Ireland	Col/Col
111	At463-465	53.33	-8.22	West Meath, Galway	Ireland	Col/Col
112	At467-468	53.69	-7.6	Longford	Ireland	Col/Col
113	At477-478	52.88	-8.6	Clare	Ireland	Col/Col
114	At494	52.87	-8.62	Clare	Ireland	Col/Col
115	At510	53.41	-9.01	Galway	Ireland	Col/Col
116	At533	53.15	-9.08	Clare	Ireland	Bur/Bur

Table S2. Seeds per silique counts in *taf4b-1, taf4b-2* **and Col.***Related to Figure 3.* Seed quantity in 10 siliques per plant (5 siliques above and the 5 siliques below the midpoint of the primary stem), for 8 plants per genotype. *P*-values were obtained by performing Student's *t* tests comparing mean seeds per silique in Col wild type to *taf4b-1* and *taf4b-2*.

Constino	Plant					See	d per	siliqu	ie				D
Genotype		1	2	3	4	5	6	7	8	9	10	Mean	P
	1	53	55	63	63	65	63	61	72	64	67	62.6	
	2	65	66	61	61	59	64	60	64	61	57	61.8	
	3	60	61	60	58	60	63	63	58	66	1	61.0	
Col	4	55	57	58	55	-	-	-	-	-	I	56.3	
	5	63	62	57	63	63	64	52	64	61	57	60.6	
	6	64	61	59	65	58	61	58	59	61	63	60.9	
	7	64	61	58	63	67	65	66	69	69	61	64.3	
	8	60	58	61	61	60	59	59	54	66	66	60.4	n.d
	1	60	69	67	61	58	65	59	65	67	64	63.5	
	2	58	65	64	56	66	65	59	57	63	61	61.4	
	3	64	53	45	57	50	62	51	57	62	63	56.4	
taf4b-1	4	63	68	58	59	65	70	65	61	63	61	63.3	
	5	61	62	64	61	65	58	63	64	45	60	60.3	
	6	45	64	50	58	62	64	54	52	63	60	57.2	
	7	64	60	66	62	57	61	53	56	60	48	58.7	
	8	62	66	62	65	66	67	61	61	68	55	63.3	0.718
	1	61	64	67	65	61	67	62	62	61	63	63.3	
	2	61	61	63	61	63	59	57	61	61	64	61.1	
	3	67	65	66	59	62	65	69	67	61	60	64.1	
taf4b-2	4	64	64	66	61	61	68	63	65	63	65	64.0	
	5	59	55	65	61	61	62	60	46	59	61	58.9	
	6	68	64	61	67	65	65	69	64	58	61	64.2	
	7	57	61	64	61	63	65	56	62	62	62	61.3	
	8	62	57	57	64	67	61	64	60	64	59	61.5	0.234

Table S3. MLH1 foci counts in Col, *taf4b-1* and Bur. *Related to Figure 3.* Frequency of diakinesis meiocytes with the indicated quantity of MLH1 foci in Col, *taf4b-1* and Bur. *P*-values were obtained by performing Mann-Whitney-Wilcoxon tests comparing MLH1 foci counts in Col to both *taf4b-1* and Bur MLH1 foci counts.

No. of fooi	Frequency of meiocytes					
	Col	taf4b-1	Bur			
6	0	6	2			
7	0	5	3			
8	1	9	6			
9	3	4	11			
10	5	6	6			
11	6	1	0			
12	4	1	1			
13	1	1	1			
14	1	0	0			
15	2	0	0			
Total	23	33	30			
Р	n.d.	3.17×10⁻ ⁶	1.36×10⁻⁵			

Table S4. Total crossovers identified by GBS in Col/Bur and *taf4b-1*/Bur F_2 populations. *Related to Figure 4.* Total crossover (CO) counts per chromosome, and as an average per F_2 individual, are displayed for Col/Bur and *taf4b-1*/Bur F_2 populations.

	Col/ (<i>n</i> =1	/Bur 180)	<i>taf4b-1</i> /Bur (<i>n</i> =186)		
	Total CO CO/F ₂		Total CO	CO/F ₂	
Chr 1	334	1.86	319	1.72	
Chr 2	223	1.24	203	1.09	
Chr 3	259	1.44	247	1.33	
Chr 4	251	1.39	222	1.19	
Chr 5	322	1.79	276	1.48	
Total	1,389 7.72		1,267	6.81	

Table S5. Significantly enriched GO terms in genes down-regulated or up-regulated in *taf4b-1* meiocytes relative to Col, and significantly enriched in Col meiocytes relative to Col leaves. *Related to Figure 5.* For each significantly enriched GO term ($P \le 0.05$), the number of genes annotated to this term in the *A. thaliana* genome (Annotated), the number annotated in the gene set (Observed) and the number expected if there was no significant enrichment (Expected) is displayed. The *P*-values were obtained using topGO, coupled with the Fisher's exact test statistic. Genes of biological interest are displayed for their relevant GO term.

(1) -						
(A) Down-r	egulated					
GO ID	GO term	Annotated	Observed	Expected	topGO Fisher (<i>P</i>)	Included genes of interest
GO:0045814	negative regulation of gene expression, epigenetic	71	7	1.54	0.00019	DRM1, H2A.Z
GO:0006511	ubiquitin-dependent protein catabolic process	392	21	8.52	0.00021	
GO:0016567	protein ubiquitination	544	29	11.82	0.00038	
GO:0006355	regulation of transcription, DNA- templated	2367	76	51.42	0.00064	
GO:0010077	maintenance of inflorescence meristem identity	9	3	0.2	0.00078	
GO:0051301	cell division	363	16	7.89	0.00086	
GO:0010228	vegetative to reproductive phase transition of meristem	207	16	4.5	0.00089	
GO:1902000	homogentisate catabolic process	3	2	0.07	0.00139	
GO:0006260	DNA replication	141	9	3.06	0.00184	
GO:0009561	megagametogenesis	74	6	1.61	0.00186	
GO:0010492	maintenance of shoot apical meristem identity	17	3	0.37	0.00552	
GO:0051726	regulation of cell cycle	219	15	4.76	0.00642	
GO:0005986	sucrose biosynthetic process	18	3	0.39	0.00652	
GO:0048577	negative regulation of short-day photoperiodism, flowering	6	2	0.13	0.00667	
GO:0071554	cell wall organization or biogenesis	709	12	15.4	0.00707	
GO:0010540	basipetal auxin transport	19	3	0.41	0.00762	
GO:0055046	microgametogenesis	56	6	1.22	0.00872	
GO:0070897	DNA-templated transcriptional preinitiation complex assembly	21	3	0.46	0.00918	
GO:0001709	cell fate determination	7	2	0.15	0.0092	
GO:0016579	protein deubiquitination	40	4	0.87	0.01084	
GO:0007064	mitotic sister chromatid cohesion	8	2	0.17	0.01209	WAPL2, PDS5D
GO:0032957	inositol trisphosphate metabolic process	8	2	0.17	0.01209	
GO:0048573	photoperiodism, flowering	114	8	2.48	0.0137	
GO:0010076	maintenance of floral meristem identity	9	2	0.2	0.01532	
GO:0000183	chromatin silencing at rDNA	1	1	0.02	0.02172	
GO:0002752	cell surface pattern recognition receptor signalling pathway	1	1	0.02	0.02172	
GO:0006844	acyl carnitine transport	1	1	0.02	0.02172	
GO:0007060	male meiosis chromosome segregation	1	1	0.02	0.02172	DUET
GO:0007113	endomitotic cell cycle	1	1	0.02	0.02172	
GO:0007142	male meiosis II	1	1	0.02	0.02172	JASON

GO:0010401	pectic galactan metabolic process	1	1	0.02	0.02172	
GO:0016048	detection of temperature stimulus	1	1	0.02	0.02172	
GO:0030327	prenylated protein catabolic process	1	1	0.02	0.02172	
GO:0030328	prenylcysteine catabolic process	1	1	0.02	0.02172	
GO:0031054	pre-miRNA processing	1	1	0.02	0.02172	
GO:0032499	detection of peptidoglycan	1	1	0.02	0.02172	
GO:1902047	polyamine transmembrane transport	1	1	0.02	0.02172	
GO:1904580	regulation of intracellular mRNA localization	1	1	0.02	0.02172	
GO:2000711	positive regulation of maintenance of meiotic sister chromatid cohesion, centromeric	1	1	0.02	0.02172	PATRONUS 1
GO:0006000	fructose metabolic process	11	2	0.24	0.02275	
GO:0031053	primary miRNA processing	11	2	0.24	0.02275	
GO:0007169	transmembrane receptor protein tyrosine kinase signalling pathway	130	7	2.82	0.02361	
GO:0006885	regulation of pH	51	4	1.11	0.02444	
GO:0009910	negative regulation of flower development	51	4	1.11	0.02463	
GO:0010100	negative regulation of photomorphogenesis	12	2	0.26	0.02691	
GO:0006351	transcription, DNA-templated	2476	82	53.79	0.02958	
GO:0009556	microsporogenesis	32	3	0.7	0.03172	
GO:0010044	response to aluminum ion	14	2	0.3	0.03607	
GO:0051865	protein autoubiquitination	14	2	0.3	0.03607	
GO:0046835	carbohydrate phosphorylation	17	3	0.37	0.04089	
GO:0010267	production of ta-siRNAs involved in RNA interference	15	2	0.33	0.04103	
GO:0000398	mRNA splicing, via spliceosome	125	7	2.72	0.0423	
GO:0007135	meiosis II	16	4	0.35	0.04276	JASON, WAPL2, OSD1, PATRONUS 1
GO:0048235	pollen sperm cell differentiation	36	3	0.78	0.04287	
GO:0051569	regulation of histone H3-K4 methylation	7	2	0.15	0.0429	
GO:0000212	meiotic spindle organization	2	1	0.04	0.04297	
GO:0007095	mitotic G2 DNA damage checkpoint	2	1	0.04	0.04297	
GO:0010789	meiotic sister chromatid cohesion involved in meiosis I	2	1	0.04	0.04297	WAPL2
GO:0015839	cadaverine transport	2	1	0.04	0.04297	
GO:0031567	mitotic cell size control checkpoint	2	1	0.04	0.04297	
GO:0031573	intra-S DNA damage checkpoint	2	1	0.04	0.04297	
GO:0034214	protein hexamerization	2	1	0.04	0.04297	
GO:0043971	histone H3-K18 acetylation	2	1	0.04	0.04297	
GO:0046208	spermine catabolic process	2	1	0.04	0.04297	
GO:0048026	positive regulation of mRNA splicing, via spliceosome	2	1	0.04	0.04297	
GO:0052746	inositol phosphorylation	2	1	0.04	0.04297	
GO:0060623	regulation of chromosome condensation	2	1	0.04	0.04297	
GO:0061760	antifungal innate immune response	2	1	0.04	0.04297	

GO:0071076	RNA 3' uridylation	2	1	0.04	0.04297	
GO:0071922	regulation of cohesin loading	2	1	0.04	0.04297	
GO:0097298	regulation of nucleus size	2	1	0.04	0.04297	
GO:1903335	regulation of vacuolar transport	2	1	0.04	0.04297	
GO:1990619	histone H3-K9 deacetylation	2	1	0.04	0.04297	
GO:0048268	clathrin coat assembly	16	2	0.35	0.04623	
(B) Up-regu	lated					
GO ID	GO term	Annotated	Observed	Expected	topGO Fisher (<i>P</i>)	Included genes of interest
GO:0006303	double-strand break repair via nonhomologous end joining	12	2	0.04	0.0006	ATM
GO:0051026	chiasma assembly	16	2	0.05	0.0011	MSH5, PRD1
GO:0007065	male meiosis sister chromatid cohesion	1	1	0	0.0031	SWI1
GO:0007066	female meiosis sister chromatid cohesion	1	1	0	0.0031	SWI1
GO:0031222	arabinan catabolic process	1	1	0	0.0031	
GO:0048283	indeterminate inflorescence morphogenesis	1	1	0	0.0031	
GO:0008360	regulation of cell shape	34	2	0.1	0.0049	
GO:0000056	ribosomal small subunit export from nucleus	3	1	0.01	0.0092	
GO:0010032	meiotic chromosome condensation	3	1	0.01	0.0092	REC8
GO:0043247	telomere maintenance in response to DNA damage	3	1	0.01	0.0092	
GO:0051455	attachment of spindle microtubules to kinetochore	3	1	0.01	0.0092	
GO:0071258	cellular response to gravity	3	1	0.01	0.0092	
GO:000003	reproduction	1808	9	5.56	0.0118	
GO:0046825	regulation of protein export from nucleus	4	1	0.01	0.0122	
GO:0051754	meiotic sister chromatid cohesion, centromeric	4	1	0.01	0.0122	REC8
GO:0032204	regulation of telomere maintenance	5	1	0.02	0.0153	
GO:0006273	lagging strand elongation	6	1	0.02	0.0183	
GO:0019566	arabinose metabolic process	6	1	0.02	0.0183	
GO:0051103	DNA ligation involved in DNA repair	6	1	0.02	0.0183	
GO:0000055	ribosomal large subunit export from nucleus	7	1	0.02	0.0213	
GO:0015886	heme transport	7	1	0.02	0.0213	
GO:0008535	respiratory chain complex IV assembly	8	1	0.02	0.0243	
GO:0042138	meiotic DNA double-strand break formation	8	1	0.02	0.0243	PRD1
GO:0007129	synapsis	29	3	0.09	0.0382	MSH5, ATM, PRD1
GO:0009926	auxin polar transport	101	2	0.31	0.0387	
GO:0006075	(1->3)-beta-D-glucan biosynthetic process	13	1	0.04	0.0392	
GO:0010332	response to gamma radiation	13	1	0.04	0.0392	ATM
GO:0045003	double-strand break repair via synthesis-dependent strand annealing	13	1	0.04	0.0392	ATM

Supplemental References:

- S1. Alexa, A., and Rahnenfuhrer, J. (2016). topGO: Enrichment Analysis for Gene Ontology. R Package. version 2.26.0.
- S2. The 1001 Genomes Consortium, Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K. M. M., Cao, J., Chae, E., Dezwaan, T. M. M., et al. (2016). 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell *166*, 481–491.
- S3. Tabib, A., Vishwanathan, S., Seleznev, A., McKeown, P. C., Downing, T., Dent, C., Sanchez-Bermejo, E., Colling, L., Spillane, C., and Balasubramanian, S. (2016). A Polynucleotide Repeat Expansion Causing Temperature-Sensitivity Persists in Wild Irish Accessions of Arabidopsis thaliana. Front. Plant Sci. 7, 1311.

FTL	Genotype	Green alone	Red alone	Both	None	Total	сМ
420	Col-420×Bur F ₂	59	79	1,479	437	2,054	6.96
420	Col-420×Bur F ₂	69	55	1,336	379	1,839	6.99
420	Col-420×Bur F ₂	46	66	1,216	310	1,638	7.09
420	Col-420×Bur F ₂	50	43	940	266	1,299	7.44
420	Col-420×Bur F ₂	33	40	693	197	963	7.89
420	Col-420×Bur F ₂	35	49	779	211	1,074	8.15
420	Col-420×Bur F ₂	44	50	863	242	1,199	8.17
420	Col-420×Bur F ₂	63	69	1,174	327	1,633	8.44
420	Col-420×Bur F ₂	66	63	1,124	336	1,589	8.48
420	Col-420×Bur F ₂	60	65	1,099	298	1,522	8.58
420	Col-420×Bur F ₂	70	65	1,121	314	1,570	9.00
420	Col-420×Bur F ₂	57	64	1,018	262	1,401	9.05
420	Col-420×Bur F ₂	12	17	232	74	335	9.07
420	Col-420×Bur F ₂	35	59	751	219	1,064	9.26
420	Col-420×Bur F ₂	59	82	1,105	325	1,571	9.42
420	Col-420×Bur F ₂	68	80	1,160	336	1,644	9.45
420	Col-420×Bur F ₂	95	105	1,551	466	2,217	9.47
420	Col-420×Bur F ₂	42	45	660	214	961	9.50
420	Col-420×Bur F ₂	34	39	589	141	803	9.55
420	Col-420×Bur F ₂	72	72	1,088	352	1,584	9.55
420	Col-420×Bur F ₂	84	95	1,380	381	1,940	9.70
420	Col-420×Bur F ₂	79	96	1,298	397	1,870	9.84
420	Col-420×Bur F ₂	80	102	1,384	353	1,919	9.98
420	Col-420×Bur F ₂	56	67	905	262	1,290	10.04
420	Col-420×Bur F ₂	55	89	1,072	286	1,502	10.10
420	Col-420×Bur F ₂	95	127	1,617	462	2,301	10.16
420	Col-420×Bur F ₂	74	79	1,129	303	1,585	10.17
420	Col-420×Bur F ₂	80	88	1,222	339	1,729	10.24
420	Col-420×Bur F ₂	96	92	1,315	382	1,885	10.53
420	Col-420×Bur F ₂	88	96	1,269	357	1,810	10.74
420	Col-420×Bur F ₂	71	87	1,077	315	1,550	10.77
420	Col-420×Bur F ₂	119	93	1,452	387	2,051	10.93
420	Col-420×Bur F ₂	64	90	999	300	1,453	11.23
420	Col-420×Bur F ₂	106	107	1,399	370	1,982	11.40
420	Col-420×Bur F ₂	100	111	1,388	343	1,942	11.53
420	Col-420×Bur F ₂	103	133	1,497	427	2,160	11.60
420	Col-420×Bur F ₂	94	103	1,293	308	1,798	11.63
420	Col-420×Bur F ₂	61	88	922	266	1,337	11.85
420	Col-420×Bur F ₂	58	72	843	191	1,164	11.87
420	Col-420×Bur F ₂	98	96	1,166	376	1,736	11.88
420	Col-420×Bur F ₂	81	71	947	250	1,349	11.99
420	Col-420×Bur F ₂	61	59	734	210	1,064	12.00
420	Col-420×Bur F ₂	142	113	1,521	449	2,225	12.21
420	Col-420×Bur F ₂	79	74	935	241	1,329	12.26

A) Col-420×Bur F₂ mapping population. Related to Figure 1.

420	Col-420×Bur F ₂	102	102	1,191	325	1,720	12.66
420	Col-420 ×Bur F ₂	106	80	1,100	280	1,566	12.68
420	Col-420×Bur F ₂	117	120	1,401	349	1,987	12.74
420	Col-420 ×Bur F ₂	84	131	1,249	337	1,801	12.75
420	Col-420 ×Bur F ₂	115	126	1,382	375	1,998	12.89
420	Col-420 ×Bur F ₂	68	88	866	265	1,287	12.96
420	Col-420 ×Bur F ₂	80	106	1,065	259	1,510	13.19
420	Col-420 ×Bur F ₂	132	157	1.599	450	2.338	13.24
420	Col-420 ×Bur F ₂	72	73	820	200	1.165	13.34
420	Col-420 ×Bur F ₂	92	94	999	279	1.464	13.63
420	Col-420 ×Bur F ₂	114	142	1.397	361	2.014	13.64
420	Col-420 ×Bur F ₂	75	63	744	202	1.084	13.66
420	Col-420 xBur F ₂	130	116	1.337	348	1,931	13.67
420	Col-420 xBur F ₂	109	116	1 217	323	1 765	13.68
420	Col-420 xBur F ₂	115	129	1,21	340	1,905	13 75
420	Col-420 xBur F ₂	150	114	1 409	371	2 044	13.88
420	$Col-420 \times Bur F_2$	111	117	1 248	288	1 764	13.89
420	Col-420 ×Bur F	112	120	1 293	269	1,704	13.00
420	Col-420 xBur F_2	123	120	1 378	341	1 975	13.00
420	Col-420 ×Bur Fo	91	100	997	270	1,373	14.09
420 120	Col-420 xBur F	53	73	620	202	057	14.05
420	Col-420 xBur F	83	95	023	202	1 3/19	14.17
420 120	Col-420 xBur F	84	03	015	243	1 330	14.20
420	Col-420 xBur F_2	/Q	50	502	1/6	7/7	14.23
420		43	175	1 631	/30	2 3 8 7	14.27
420	Col_{-420} ×Bur F	00	80	017	220	1 2 2 2	14.50
420	$Col_{-420} \times Bur F$	102	102	1 052	229	1,525	14.42
420	Col_{-420} × Bur F	102	100	1,002	214	1,001	14.43
420		104 50	70	1,195	100	1,720	14.47
420	Col-420 x Bur F_2	52	10	040	192	900	14.40
420	Col-420 x Bur F_2	112	148	1,310	350	1,920	14.50
420	Col-420 x Bur F_2	130	153	1,439	412	2,140	14.57
420	Col-420 x Bur F_2	108	140	1,241	336	1,825	14.66
420	Col-420 x But F_2	140	135	1,390	340	2,005	14.81
420	Col-420 xBur F_2	137	110	1,211	337	1,795	14.87
420	Col-420 xBur F_2	103	106	1,074	229	1,512	14.94
420	Col-420 ×Bur F_2	127	151	1,377	346	2,001	15.02
420	$Col-420 \times Bur F_2$	72	93	827	195	1,187	15.03
420	Col-420 ×Bur F_2	129	152	1,357	356	1,994	15.26
420	Col-420 ×Bur F_2	144	155	1,409	402	2,110	15.35
420	Col-420 ×Bur F_2	121	154	1,335	327	1,937	15.38
420	Col-420 ×Bur F_2	109	105	1,030	263	1,507	15.38
420	Col-420 ×Bur F_2	120	108	1,045	322	1,595	15.50
420	Col-420 ×Bur F_2	142	151	1,392	351	2,036	15.61
420	Col-420 ×Bur F_2	125	167	1,384	352	2,028	15.62
420	Col-420 × Bur F_2	149	155	1,437	369	2,110	15.63
420	Col-420 × Bur F_2	119	134	1,182	317	1,752	15.67
420	Col-420×Bur F ₂	123	120	1,160	272	1,675	15.75
420	Col-420×Bur F ₂	133	124	1,220	287	1,764	15.82

420	Col-420×Bur F ₂	123	134	1,182	313	1,752	15.94
420	Col-420×Bur F ₂	102	100	931	239	1,372	16.00
420	Col-420×Bur F ₂	99	137	1,067	292	1,595	16.09
420	Col-420×Bur F ₂	163	143	1,408	354	2,068	16.09
420	Col-420×Bur F ₂	133	126	1,186	303	1,748	16.12
420	Col-420×Bur F ₂	130	121	1,133	299	1,683	16.23
420	Col-420×Bur F ₂	163	156	1,448	371	2,138	16.24
420	Col-420×Bur F ₂	107	99	945	219	1,370	16.38
420	Col-420×Bur F ₂	117	106	988	272	1,483	16.38
420	Col-420×Bur F ₂	125	119	1,094	279	1,617	16.44
420	Col-420×Bur F ₂	78	90	732	211	1,111	16.48
420	Col-420×Bur F ₂	146	193	1,510	381	2,230	16.58
420	Col-420×Bur F ₂	113	128	1,102	238	1,581	16.63
420	Col-420×Bur F ₂	140	166	1.343	350	1.999	16.70
420	Col-420×Bur F ₂	124	133	1,137	284	1,678	16.71
420	Col-420×Bur F ₂	84	118	889	226	1.317	16.74
420	Col-420 ×Bur F ₂	132	127	1.108	283	1.650	17.17
420	Col-420×Bur F ₂	152	152	1,326	286	1,916	17.38
420	Col-420 ×Bur F ₂	69	60	555	125	809	17.47
420	Col-420×Bur F ₂	71	116	745	235	1,167	17.57
420	Col-420×Bur F ₂	133	122	1.074	255	1.584	17.66
420	Col-420×Bur F ₂	122	138	1,121	232	1,613	17.68
420	Col-420×Bur F ₂	108	140	1.082	199	1.529	17.80
420	Col-420×Bur F ₂	128	130	1,040	284	1,582	17.91
420	Col-420×Bur F ₂	147	176	1,327	327	1,977	17.95
420	Col-420×Bur F ₂	147	163	1,250	331	1,891	18.02
420	Col-420×Bur F ₂	161	159	1,277	353	1,950	18.04
420	Col-420×Bur F ₂	172	166	1,388	333	2,059	18.04
420	Col-420×Bur F ₂	124	127	1,074	204	1,529	18.04
420	Col-420×Bur F ₂	176	150	1,314	338	1,978	18.12
420	Col-420×Bur F ₂	203	136	1,384	331	2,054	18.15
420	Col-420×Bur F ₂	137	177	1,280	308	1,902	18.16
420	Col-420×Bur F ₂	138	124	1,063	259	1,584	18.20
420	Col-420×Bur F ₂	116	124	974	235	1,449	18.22
420	Col-420×Bur F ₂	123	146	1,089	263	1,621	18.26
420	Col-420×Bur F ₂	163	165	1,314	326	1,968	18.35
420	Col-420×Bur F ₂	170	203	1,484	373	2,230	18.42
420	Col-420×Bur F ₂	158	173	1,341	303	1,975	18.46
420	Col-420×Bur F ₂	85	103	748	181	1,117	18.55
420	Col-420×Bur F ₂	88	117	819	192	1,216	18.59
420	Col-420×Bur F ₂	119	150	1,083	240	1,592	18.63
420	Col-420×Bur F ₂	86	101	741	163	1,091	18.93
420	Col-420×Bur F ₂	84	101	728	162	1,075	19.02
420	Col-420×Bur F ₂	162	171	1,299	286	1,918	19.21
420	Col-420×Bur F ₂	178	182	1,353	312	2,025	19.72
420	$col-420 \times Bur F_2$	158	178	1,247	306	1,889	19.73
420	Col-420×Bur F ₂	137	160	1,068	286	1,651	19.99
420	Col-420×Bur F ₂	134	142	983	274	1,533	20.00

420	Col-420×Bur F ₂	195	169	1,355	301	2,020	20.02
420	Col-420×Bur F ₂	111	98	746	192	1,147	20.28
420	Col-420×Bur F ₂	230	214	1,581	404	2,429	20.35
420	Col-420×Bur F ₂	99	98	716	164	1,077	20.37
420	Col-420×Bur F ₂	193	166	1,278	314	1,951	20.50
420	Col-420×Bur F ₂	196	180	1,316	338	2,030	20.66
420	Col-420×Bur F ₂	163	168	1,179	256	1,766	21.40
420	Col-420×Bur F ₂	197	192	1,345	281	2,015	21.65
420	Col-420×Bur F ₂	191	175	1,240	257	1,863	22.08
420	Col-420×Bur F ₂	86	96	597	122	901	22.80
420	Col-420×Bur F ₂	190	157	1,017	213	1,577	25.17

B) Col-420/Bur F_1 hybrids. <i>Related to Figure 1.</i>	

L				•				
	FTL	Genotype	Green alone	Red alone	Both	None	Total	сM
	420	Col- <i>4</i> 20/Bur F ₁	115	104	975	231	1,425	16.78
	420	Col- <i>4</i> 20/Bur F ₁	70	92	814	225	1,201	14.55
	420	Col- <i>4</i> 20/Bur F ₁	89	81	842	211	1,223	15.03
	420	Col- <i>4</i> 20/Bur F ₁	87	81	766	189	1,123	16.29
	420	Col- <i>4</i> 20/Bur F ₁	78	88	816	214	1,196	15.01
	420	Col- <i>4</i> 20/Bur F ₁	95	91	958	220	1,364	14.72
	420	Col- <i>4</i> 20/Bur F ₁	99	88	788	183	1,158	17.72
	420	Col- <i>4</i> 20/Bur F ₁	81	98	829	200	1,208	16.12
	420	Col- <i>4</i> 20/Bur F ₁	83	125	940	222	1,370	16.55
	420	Col- <i>4</i> 20/Bur F ₁	87	99	900	236	1,322	15.23
	420	Col- <i>4</i> 20/Bur F ₁	97	102	937	220	1,356	15.95
	420	Col- <i>4</i> 20/Bur F ₁	81	114	884	201	1,280	16.61
	420	Col- <i>4</i> 20/Bur F ₁	67	65	737	188	1,057	13.38
	420	Col- <i>4</i> 20/Bur F ₁	73	63	686	181	1,003	14.63
	420	Col- <i>4</i> 20/Bur F ₁	88	87	867	212	1,254	15.09
	420	Col- <i>4</i> 20/Bur F ₁	103	91	936	200	1,330	15.84
	420	Col- <i>4</i> 20/Bur F ₁	128	175	1,327	342	1,972	16.77
	420	Col- <i>4</i> 20/Bur F ₁	121	122	1,277	308	1,828	14.32
	420	Col- <i>4</i> 20/Bur F ₁	128	108	1,189	323	1,748	14.56
	420	Col- <i>4</i> 20/Bur F ₁	97	100	825	198	1,220	17.72
	420	Col- <i>4</i> 20/Bur F ₁	87	91	911	242	1,331	14.41
	420	Col- <i>4</i> 20/Bur F ₁	129	130	1,063	281	1,603	17.73
	420	Col- <i>4</i> 20/Bur F ₁	121	125	1,225	263	1,734	15.37

C) Col-420 × Bur BC_2F_2 mapping population. Related to Figure 2.

FTL	Genotype	Green alone	Red alone	Both	None	Total	сM
420	Col-420×Bur BC ₂ F ₂	112	108	1,571	487	2,278	10.18
420	$Col-420 \times Bur BC_2F_2$	102	122	1,595	463	2,282	10.35
420	$Col-420 \times Bur BC_2F_2$	96	117	1,474	467	2,154	10.43
420	$Col-420 \times Bur BC_2F_2$	93	99	1,314	416	1,922	10.55
420	$Col-420 \times Bur BC_2F_2$	105	113	1,511	449	2,178	10.57
420	$Col-420 \times Bur BC_2F_2$	93	108	1,356	413	1,970	10.78
420	$Col-420 \times Bur BC_2F_2$	115	123	1,615	467	2,320	10.85
420	$Col-420 \times Bur BC_2F_2$	109	114	1,449	453	2,125	11.11
420	$Col-420 \times Bur BC_2F_2$	121	130	1,643	489	2,383	11.16
420	Col-420×Bur BC ₂ F ₂	135	129	1,716	524	2,504	11.17
420	$Col-420 \times Bur BC_2F_2$	109	123	1,536	432	2,200	11.17
420	$Col-420 \times Bur BC_2F_2$	111	111	1,499	378	2,099	11.20
420	Col-420×Bur BC ₂ F ₂	136	110	1,620	455	2,321	11.23
420	Col-420×Bur BC ₂ F ₂	116	111	1,488	418	2,133	11.28
420	Col-420×Bur BC ₂ F ₂	114	135	1,622	458	2,329	11.33
420	Col-420×Bur BC ₂ F ₂	124	124	1,576	474	2,298	11.45
420	Col-420×Bur BC ₂ F ₂	116	134	1,597	468	2,315	11.46
420	Col-420×Bur BC ₂ F ₂	111	126	1,481	447	2,165	11.62
420	Col-420×Bur BC ₂ F ₂	125	122	1,554	450	2,251	11.65
420	Col-420×Bur BC ₂ F ₂	123	124	1,550	451	2,248	11.67
420	Col-420×Bur BC ₂ F ₂	112	125	1,512	401	2,150	11.71
420	Col-420×Bur BC ₂ F ₂	124	119	1,508	449	2,200	11.73
420	Col-420×Bur BC ₂ F ₂	129	125	1,577	444	2,275	11.87
420	Col-420×Bur BC ₂ F ₂	106	122	1,326	388	1,942	12.52
420	$Col-420 \times Bur BC_2F_2$	118	114	1,341	381	1,954	12.68
420	Col-420×Bur BC ₂ F ₂	142	124	1,463	413	2,142	13.30
420	$Col-420 \times Bur BC_2F_2$	146	132	1,518	410	2,206	13.52
420	$Col-420 \times Bur BC_2F_2$	161	145	1,643	473	2,422	13.55
420	Col-420 ×Bur BC ₂ F ₂	148	164	1,659	489	2,460	13.61
420	$Col-420 \times Bur BC_2F_2$	148	156	1,560	404	2,268	14.45
420	Col-420 ×Bur BC ₂ F ₂	128	152	1,416	382	2,078	14.53
420	$Col-420 \times Bur BC_2F_2$	144	144	1,436	398	2,122	14.64
420	Col-420 ×Bur BC ₂ F ₂	159	128	1,424	403	2,114	14.65
420	Col-420 ×Bur BC ₂ F ₂	161	174	1,675	457	2,467	14.65
420	Col-420 ×Bur BC ₂ F ₂	167	143	1,536	407	2,253	14.86
420	Col-420 ×Bur BC ₂ F ₂	158	148	1,509	389	2,204	15.01
420	$Col-420 \times Bur BC_2F_2$	138	151	1,413	377	2,079	15.03
420	Col-420 ×Bur BC ₂ F ₂	150	148	1,457	380	2,135	15.10
420	Col-420 ×Bur BC ₂ F ₂	158	145	1,472	375	2,150	15.26
420	Col-420 ×Bur BC ₂ F ₂	161	169	1,604	402	2,336	15.30
420	Col-420 ×Bur BC ₂ F ₂	146	137	1,367	350	2,000	15.32
420	Col-420 ×Bur BC ₂ F ₂	160	163	1,543	413	2,279	15.35
420	Col-420 ×Bur BC ₂ F ₂	145	148	1.398	376	2.067	15.35
420	Col-420 × Bur BC_2F_2	163	155	1,514	397	2,229	15.46

420	$Col-420 \times Bur BC_2F_2$	167	170	1,611	405	2,353	15.53
420	Col-420 ×Bur BC ₂ F ₂	154	176	1,534	421	2,285	15.67
420	Col-420×Bur BC ₂ F ₂	157	175	1,555	410	2,297	15.68
420	Col-420×Bur BC ₂ F ₂	183	154	1,586	408	2,331	15.69
420	Col-420×Bur BC ₂ F ₂	168	161	1,521	416	2,266	15.76
420	Col-420×Bur BC ₂ F ₂	151	207	1,683	422	2,463	15.78
420	Col-420 ×Bur BC ₂ F ₂	168	176	1,587	432	2,363	15.81
420	$Col-420 \times Bur BC_2F_2$	159	177	1,590	382	2,308	15.81
420	Col-420 ×Bur BC ₂ F ₂	152	145	1,393	343	2,033	15.87
420	$Col-420 \times Bur BC_2F_2$	157	167	1,498	392	2,214	15.90
420	Col-420 ×Bur BC ₂ F ₂	169	156	1,522	373	2,220	15.90
420	Col-420 ×Bur BC ₂ F ₂	166	172	1,567	399	2,304	15.94
420	Col-420 ×Bur BC ₂ F ₂	172	164	1,556	391	2,283	16.00
420	Col-420 ×Bur BC ₂ F ₂	190	168	1.654	419	2.431	16.01
420	Col-420 ×Bur BC ₂ F ₂	170	155	1.491	386	2.202	16.05
420	Col-420 ×Bur BC ₂ F ₂	139	158	1.362	351	2.010	16.07
420	Col-420 ×Bur BC ₂ F ₂	173	149	1.429	425	2.176	16.09
420	Col-420 ×Bur BC ₂ F ₂	163	160	1.472	384	2.179	16.12
420	Col-420 ×Bur BC ₂ F ₂	177	145	1.470	380	2.172	16.13
420	Col-420 ×Bur BC ₂ F ₂	150	141	1.345	326	1.962	16.13
420	Col-420 ×Bur BC ₂ F ₂	163	175	1.514	422	2.274	16.17
420	Col-420 ×Bur BC ₂ F ₂	168	180	1.582	411	2.341	16.17
420	Col-420 ×Bur BC ₂ F ₂	179	168	1.561	426	2.334	16.18
420	Col-420 ×Bur BC ₂ F ₂	161	150	1.415	359	2.085	16.23
420	Col-420 ×Bur BC ₂ F ₂	158	176	1.512	383	2.229	16.32
420	Col-420 ×Bur BC ₂ F ₂	162	167	1.503	361	2.193	16.34
420	Col-420 ×Bur BC ₂ F ₂	159	178	1,520	385	2,242	16.37
420	Col-420 ×Bur BC ₂ F ₂	157	159	1.406	375	2.097	16.42
420	Col-420 ×Bur BC ₂ F ₂	165	159	1,452	374	2,150	16.42
420	Col-420 ×Bur BC ₂ F ₂	168	173	1,512	406	2,259	16.45
420	Col-420 ×Bur BC ₂ F ₂	165	159	1,419	400	2,143	16.48
420	Col-420 ×Bur BC ₂ F ₂	171	157	1,438	381	2,147	16.67
420	$Col-420 \times Bur BC_2F_2$	169	166	1,481	368	2,184	16.74
420	$Col-420 \times Bur BC_2F_2$	185	173	1,570	403	2,331	16.76
420	$Col-420 \times Bur BC_2F_2$	180	183	1,591	409	2,363	16.77
420	$Col-420 \times Bur BC_2F_2$	167	176	1,504	383	2,230	16.79
420	$Col-420 \times Bur BC_2F_2$	163	167	1,459	356	2,145	16.79
420	Col-420×Bur BC ₂ F ₂	163	182	1,469	426	2,240	16.82
420	Col-420×Bur BC ₂ F ₂	187	169	1,564	390	2,310	16.83
420	Col-420×Bur BC ₂ F ₂	182	162	1,501	387	2,232	16.83
420	Col-420×Bur BC ₂ F ₂	184	187	1,639	388	2,398	16.90
420	Col-420×Bur BC ₂ F ₂	173	179	1,542	381	2,275	16.90
420	Col-420×Bur BC ₂ F ₂	163	188	1,492	422	2,265	16.93
420	$\text{Col-}420 \times \text{Bur BC}_2\text{F}_2$	187	189	1,602	441	2,419	16.99
420	Col-420×Bur BC ₂ F ₂	152	154	1,295	367	1,968	16.99
420	$Col-420 \times Bur BC_2F_2$	164	174	1,462	373	2,173	17.00
420	Col-420×Bur BC ₂ F ₂	153	166	1,393	337	2,049	17.02
420	$Col-420 \times Bur BC_2F_2$	172	171	1,472	387	2,202	17.03

420	$Col-420 \times Bur BC_2F_2$	183	196	1,638	411	2,428	17.07
420	Col-420 ×Bur BC ₂ F ₂	192	183	1,607	419	2,401	17.08
420	Col-420×Bur BC ₂ F ₂	179	191	1,591	407	2,368	17.08
420	Col-420×Bur BC ₂ F ₂	165	169	1,441	362	2,137	17.09
420	Col-420×Bur BC ₂ F ₂	170	182	1,500	396	2,248	17.12
420	Col-420×Bur BC ₂ F ₂	129	144	1,139	331	1,743	17.13
420	$Col-420 \times Bur BC_2F_2$	186	186	1,585	418	2,375	17.13
420	Col-420 ×Bur BC ₂ F ₂	148	152	1.304	307	1.911	17.17
420	$Col-420 \times Bur BC_2F_2$	175	178	1.496	398	2.247	17.19
420	$Col-420 \times Bur BC_2F_2$	183	166	1,490	382	2.221	17.19
420	Col-420 ×Bur BC ₂ F ₂	180	188	1,546	427	2.341	17.20
420	Col-420 ×Bur BC ₂ F ₂	167	179	1 473	381	2 200	17.21
420	Col-420 ×Bur BC ₂ F ₂	180	178	1,110	401	2 271	17.25
420	Col-420 ×Bur BC ₂ F ₂	172	201	1,512	303	2 361	17.20
420	Col-420 ×Bur BC ₂ F ₂	151	157	1,000	330	1 949	17.20
420	Col-420 xBur BC ₂ F ₂	177	216	1,611	۵۵۵ ۸12	2 / 85	17.00
420	Col-420 ×Bur BC ₂ F ₂	100	108	1,000	/32	2,400	17.34
420	Col-420 xBur BC ₂ F ₂	150	188	1,000	365	2,400	17.04
420	Col-420 ×Bur BC ₂ F ₂	185	155	1,430	360	2,134	17.40
420	$Col_{20} \times Bur BC_{2} r_{2}$	172	166	1,430	370	2,109	17.41
420	Col_{-420} ×Bur BC_{2} F_{2}	172	100	1,405	575 A1A	2,122	17.45
420	$Col-420 \times Bur BC_2 r_2$	172	194	1 301	370	2,290	17.47
420		176	167	1,391	262	2,095	17.47
420		101	107	1,445	412	2,101	17.47
420		101	1/1	1,445	412	2,207	17.40
420	Col-420 xBur BC $_2$	195	147	1,430	30Z	2,109	17.52
420	Col-420 xBui BC_2F_2	180	171	1,409	375	2,195	17.53
420	Col-420 x Dui BC_2F_2	101	172	1,407	387	2,207	17.53
420	Col-420 x Dui BC_2F_2	152	178	1,366	364	2,060	17.56
420	Col-420 xBur BC_2F_2	155	179	1,411	332	2,077	17.64
420	Col-420 xBur BC_2F_2	211	174	1,620	380	2,385	17.71
420	$Col-420 \times Bur BC_2F_2$	186	1//	1,501	380	2,244	17.75
420	$Col-420 \times Bur BC_2F_2$	174	182	1,471	371	2,198	17.78
420	$Col-420 \times Bur BC_2F_2$	190	1/4	1,488	389	2,241	17.83
420	$\text{Col-}420 \times \text{Bur BC}_2\text{F}_2$	172	206	1,538	402	2,318	17.91
420	$\text{Col-}420 \times \text{Bur BC}_2\text{F}_2$	187	192	1,563	373	2,315	17.99
420	$\text{Col-}420 \times \text{Bur BC}_2\text{F}_2$	184	203	1,580	389	2,356	18.06
420	$\text{Col-}420 \times \text{Bur BC}_2\text{F}_2$	189	184	1,493	398	2,264	18.12
420	$Col-420 \times Bur BC_2F_2$	212	180	1,567	417	2,376	18.14
420	$Col-420 \times Bur BC_2F_2$	184	211	1,560	430	2,385	18.22
420	$Col-420 \times Bur BC_2F_2$	182	192	1,500	377	2,251	18.29
420	$Col-420 \times Bur BC_2F_2$	188	198	1,535	396	2,317	18.34
420	$Col-420 \times Bur BC_2F_2$	174	213	1,525	405	2,317	18.39
420	$Col-420 \times Bur BC_2F_2$	187	192	1,497	378	2,254	18.53
420	$Col-420 \times Bur BC_2F_2$	187	182	1,432	386	2,187	18.60
420	$Col-420 \times Bur BC_2F_2$	198	196	1,553	381	2,328	18.67
420	$Col-420 \times Bur BC_2F_2$	215	202	1,581	454	2,452	18.77
420	$Col-420 \times Bur BC_2F_2$	193	189	1,480	384	2,246	18.77
420	$Col-420 \times Bur BC_2F_2$	187	206	1,537	378	2,308	18.79

420	$Col-420 \times Bur BC_2F_2$	188	200	1,487	392	2,267	18.90
420	$Col-420 \times Bur BC_2F_2$	165	165	1,267	325	1,922	18.97
420	$Col-420 \times Bur BC_2F_2$	211	193	1,513	430	2,347	19.02
420	$Col-420 \times Bur BC_2F_2$	204	190	1,497	392	2,283	19.08
420	$Col-420 \times Bur BC_2F_2$	163	198	1,341	386	2,088	19.12
420	$Col-420 \times Bur BC_2F_2$	164	187	1,340	338	2,029	19.13
420	$Col-420 \times Bur BC_2F_2$	177	183	1,355	364	2,079	19.15
420	$Col-420 \times Bur BC_2F_2$	172	183	1,306	376	2,037	19.29
420	$Col-420 \times Bur BC_2F_2$	171	189	1,346	357	2,063	19.32
420	$Col-420 \times Bur BC_2F_2$	182	201	1,427	382	2,192	19.34
420	$Col-420 \times Bur BC_2F_2$	203	171	1,403	355	2,132	19.43
420	$Col-420 \times Bur BC_2F_2$	205	200	1,434	395	2,234	20.16

D) Transformation of *rQTL1a^{Bur}* with candidate genes. *Related to Figure 2.*

FTL	Genotype (Plant + construct)	Green alone	Red alone	Both	None	Total	сМ
420	<i>rQTL1a^{Bur}+</i> Empty	117	109	1,461	448	2,135	11.21
420	<i>rQTL1a^{Bur}+</i> Empty	138	118	1,597	429	2,282	11.93
420	<i>rQTL1a^{Bur}+</i> Empty	118	137	1,635	480	2,370	11.41
420	<i>rQTL1a^{Bur}+</i> Empty	117	129	1,464	443	2,153	12.17
420	<i>rQTL1a^{Bur}+</i> Empty	142	133	1,584	479	2,338	12.55
420	<i>rQTL1a^{Bur}+</i> Empty	117	108	1,574	437	2,236	10.63
420	<i>rQTL1a^{Bur}+</i> Empty	123	127	1,653	446	2,349	11.28
420	<i>rQTL1a^{Bur}+</i> Empty	130	135	1,619	474	2,358	11.95
420	<i>rQTL1a^{Bur}+</i> Empty	116	107	1,655	443	2,321	10.12
420	<i>rQTL1a^{Bur}+</i> Empty	127	106	1,562	447	2,242	11.00
4 20	<i>rQTL1a^{Bur}+</i> Empty	136	119	1,578	437	2,270	11.95
420	rQTL1a ^{Bur} +Empty	131	151	1,526	399	2,207	13.72
420	rQTL1a ^{Bur} +Empty	129	154	1,580	476	2,339	12.94
420	<i>rQTL1a^{Bur}+</i> Empty	113	120	1,585	493	2,311	10.65
420	<i>rQTL1a^{Bur}+</i> Empty	152	136	1,642	480	2,410	12.76
420	<i>rQTL1a^{Bur}+</i> Empty	126	112	1,638	470	2,346	10.72
420	<i>rQTL1a^{Bur}+</i> Empty	112	121	1,564	459	2,256	10.92
420	<i>rQTL1a^{Bur}+</i> Empty	130	105	1,555	452	2,242	11.10
420	<i>rQTL1a^{Bur}+</i> Empty	129	127	1,620	433	2,309	11.78
420	<i>rQTL1a^{Bur}+</i> Empty	131	135	1,651	460	2,377	11.90
420	<i>rQTL1a^{Bur}+</i> Empty	132	127	1,723	492	2,474	11.08
420	<i>rQTL1a^{Bur}+</i> Empty	120	117	1,688	477	2,402	10.41
420	<i>rQTL1a^{Bur}+</i> Empty	140	131	1,578	479	2,328	12.41
420	<i>rQTL1a^{Bur}+</i> Empty	116	145	1,740	511	2,512	10.99
420	<i>rQTL1a^{Bur}</i> +TAF4b	202	178	1,468	360	2,208	19.02
420	<i>rQTL1a^{Bur}</i> +TAF4b	221	183	1,450	361	2,215	20.30
420	<i>rQTL1a^{Bur}</i> +TAF4b	197	185	1,626	433	2,441	17.11
420	<i>rQTL1a^{Bur}</i> +TAF4b	171	152	1,248	290	1,861	19.20
420	<i>rQTL1a^{Bur}</i> +TAF4b	166	166	1,514	388	2,234	16.17
420	<i>rQTL1a^{Bur}</i> +TAF4b	187	189	1,550	364	2,290	18.05
420	<i>rQTL1a^{Bur}</i> +TAF4b	162	171	1,436	407	2,176	16.70
420	<i>rQTL1a^{Bur}</i> +TAF4b	176	185	1,564	373	2,298	17.19
420	<i>rQTL1a^{Bur}</i> +TAF4b	207	186	1,542	372	2,307	18.80
420	<i>rQTL1a^{Bur}</i> +TAF4b	195	217	1,325	258	1,995	23.39
420	<i>rQTL1a^{Bur}</i> +TAF4b	195	217	1,565	431	2,408	18.89
420	<i>rQTL1a^{Bur}</i> +TAF4b	200	220	1,576	355	2,351	19.83
420	<i>rQTL1a^{Bur}</i> +TAF4b	179	199	1,549	387	2,314	17.95
420	<i>rQTL1a^{Bur}</i> +TAF4b	196	179	1,626	364	2,365	17.36
420	<i>rQTL1a^{Bur}</i> +TAF4b	196	186	1,608	428	2,418	17.29
420	<i>rQTL1a^{Bur}</i> +TAF4b	198	163	1,005	218	1,584	26.23
420	<i>rQTL1a^{Bur}</i> +TAF4b	187	195	1,248	292	1,922	22.38
420	<i>rQTL1a^{Bur}+</i> TAF4b	180	187	1.420	377	2.164	18.71

420	<i>rQTL1a^{Bur}</i> +TAF4b	207	196	1,553	393	2,349	18.95
420	<i>rQTL1a^{Bur}+</i> TAF4b	199	158	1,581	391	2,329	16.73
420	<i>rQTL1a^{Bur}</i> +At1g27695	113	105	1,558	482	2,258	10.17
420	<i>rQTL1a^{Bur}</i> +At1g27695	54	80	943	287	1,364	10.36
420	<i>rQTL1a^{Bur}</i> +At1g27695	105	97	1,629	485	2,316	9.14
420	rQTL1a ^{Bur} +At1g27695	98	135	1,522	440	2,195	11.25
420	rQTL1a ^{Bur} +At1g27695	121	129	1,568	490	2,308	11.49
420	<i>rQTL1a^{Bur}</i> +At1g27695	118	112	1,546	487	2,263	10.74
420	rQTL1a ^{Bur} +At1g27695	125	128	1,646	503	2,402	11.16
420	<i>rQTL1a^{Bur}</i> +At1g27695	110	132	1,565	481	2,288	11.20
420	<i>rQTL1a^{Bur}</i> +At1g27695	97	137	1,538	455	2,227	11.13
420	<i>rQTL1a^{Bur}</i> +At1g27695	136	131	1,483	426	2,176	13.13
420	rQTL1a ^{Bur} +At1g27700	116	149	1,657	458	2,380	11.83
420	<i>rQTL1a^{Bur}</i> +At1g27700	132	124	1,438	389	2,083	13.16
420	<i>rQTL1a^{Bur}</i> +At1g27700	107	105	1,444	425	2,081	10.77
420	<i>rQTL1a^{Bur}</i> +At1g27710	141	110	1,681	513	2,445	10.86
420	<i>rQTL1a^{Bur}</i> +At1g27710	96	97	1,602	483	2,278	8.87
420	<i>rQTL1a^{Bur}</i> +At1g27710	121	122	1,662	497	2,402	10.69
420	<i>rQTL1a^{Bur}</i> +At1g27710	94	114	1,598	508	2,314	9.43
420	<i>rQTL1a^{Bur}</i> +At1g27710	139	126	1,480	430	2,175	13.03
420	<i>rQTL1a^{Bur}</i> +At1g27710	165	132	1,569	408	2,274	14.05
420	<i>rQTL1a^{Bur}</i> +At1g27710	183	167	1,200	264	1,814	21.63
420	<i>rQTL1a^{Bur}</i> +At1g27710	105	115	1,386	402	2,008	11.63
420	<i>rQTL1a^{Bur}</i> +At1g27710	121	119	1,595	470	2,305	11.02
420	<i>rQTL1a^{Bur}</i> +At1g27710	131	119	1,539	404	2,193	12.14
420	<i>rQTL1a^{Bur}</i> +At1g27710	129	114	1,527	420	2,190	11.79
420	<i>rQTL1a^{Bur}</i> +At1g27730	108	133	1,678	500	2,419	10.52
420	<i>rQTL1a^{Bur}</i> +At1g27730	128	107	1,694	466	2,395	10.35
420	rQTL1a ^{Bur}	164	162	1,613	466	2,405	14.62
420	rQTL1a ^{Bur}	149	136	1,482	434	2,201	13.92
420	rQTL1a ^{Bur}	121	125	1,470	451	2,167	12.08
420	rQTL1a ^{Bur}	134	121	1,529	430	2,214	12.27
420	rQTL1a ^{Bur}	132	129	1,460	401	2,122	13.17
420	rQTL1a ^{Bur}	144	150	1,496	430	2,220	14.26
420	rQTL1a ^{Bur}	144	149	1,616	433	2,342	13.41
420	rQTL1a ^{Bur}	135	154	1,520	418	2,227	13.95
420	rQTL1a ^{Bur}	141	131	1,529	427	2,228	13.06
420	rQTL1a [™]	122	132	1,504	422	2,180	12.42
420	Col-420	168	178	1,465	373	2,184	17.35
420	Col-420	207	200	1,383	359	2,149	21.18
420	Col-420	184	195	1,474	350	2,203	19.01
420	Col-420	199	182	1,414	378	2,173	19.42
420	Col-420	197	184	1,396	388	2,165	19.50
420	Col-420	189	198	1,534	388	2,309	18.47
420	Col-420	192	189	1,440	408	2,229	18.87
420	Col-420	202	192	1,322	313	2,029	21.79
420	Col-420	164	198	1,390	332	2,084	19.22

420	Col-420	162	199	1,347	345	2,053	19.48
420	Col-420	198	183	1,456	384	2,221	18.95

<i>E)</i> taf4b-2×Col-420 F _{2.} Related to Figure 2.	
--	--

Genotype	Green alone	Red alone	Both	None	Total	сМ
+/+	202	237	1,808	479	2,726	17.66
+/+	206	177	1,681	461	2,525	16.54
+/+	190	248	1,823	477	2,738	17.53
+/+	216	196	1,802	468	2,682	16.77
+/+	190	189	1,668	440	2,487	16.62
+/+	214	212	1,734	453	2,613	17.91
+/+	241	249	1,885	480	2,855	18.96
+/+	216	213	1,714	405	2,548	18.56
taf4b-2/+	223	229	1,801	433	2,686	18.55
taf4b-2/+	205	192	1,785	500	2,682	16.10
taf4b-2/+	244	177	1,797	453	2,671	17.25
taf4b-2/+	225	231	1,795	517	2,768	18.11
taf4b-2/+	227	240	1,965	506	2,938	17.41
taf4b-2/+	228	213	1,922	477	2,840	16.97
taf4b-2/+	239	237	1,896	477	2,849	18.40
taf4b-2/+	209	240	1,812	426	2,687	18.40
taf4b-2/+	215	184	1,714	445	2,558	17.05
taf4b-2	155	142	1,798	491	2,586	12.23
taf4b-2	154	133	1,813	503	2,603	11.71
taf4b-2	173	174	1,811	552	2,710	13.75
taf4b-2	190	175	1,857	519	2,741	14.35
taf4b-2	155	174	1,869	501	2,699	13.04
taf4b-2	189	162	1,865	491	2,707	13.94
	Genotype +/+ +/+ +/+ +/+ +/+ +/+ +/+ taf4b-2/+ taf4b-2/+ taf4b-2/+ taf4b-2/+ taf4b-2/+ taf4b-2/+ taf4b-2/+ taf4b-2/+ taf4b-2/+ taf4b-2	Genotype Green alone +/+ 202 +/+ 206 +/+ 206 +/+ 190 +/+ 216 +/+ 214 +/+ 214 +/+ 214 +/+ 216 taf4b-2/+ 223 taf4b-2/+ 205 taf4b-2/+ 205 taf4b-2/+ 225 taf4b-2/+ 225 taf4b-2/+ 228 taf4b-2/+ 228 taf4b-2/+ 209 taf4b-2/+ 209 taf4b-2/+ 209 taf4b-2/+ 215 taf4b-2/+ 215 taf4b-2/+ 215 taf4b-2/+ 215 taf4b-2/+ 155 taf4b-2 173 taf4b-2 173 taf4b-2 190 taf4b-2 155 taf4b-2 155 taf4b-2 155 taf4b	GenotypeGreen aloneRed alone+/+202237+/+206177+/+190248+/+190248+/+216196+/+214212+/+214212+/+241249+/+216213taf4b-2/+223229taf4b-2/+205192taf4b-2/+205192taf4b-2/+225231taf4b-2/+227240taf4b-2/+239237taf4b-2/+209240taf4b-2/+215184taf4b-2/+215142taf4b-2/+155142taf4b-2/+155142taf4b-2154133taf4b-2155174taf4b-2190175taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174taf4b-2155174	GenotypeGreen aloneRed aloneBoth+/+2022371,808+/+2061771,681+/+1902481,823+/+2161961,802+/+1901891,668+/+2142121,734+/+2412491,885+/+2162131,714taf4b-2/+2232291,801taf4b-2/+2051921,785taf4b-2/+2051921,785taf4b-2/+2252311,795taf4b-2/+2282131,922taf4b-2/+2392371,896taf4b-2/+2092401,812taf4b-2/+2151841,714taf4b-21551421,798taf4b-21551421,798taf4b-21551421,798taf4b-21551441,811taf4b-21551741,811taf4b-21551741,869taf4b-21551741,869taf4b-21551741,869taf4b-21891621,865	GenotypeGreen aloneRed aloneBothNone+/+2022371,808479+/+2061771,681461+/+1902481,823477+/+2161961,802468+/+1901891,668440+/+2142121,734453+/+2412491,885480+/+2162131,714405taf4b-2/+2232291,801433taf4b-2/+2051921,785500taf4b-2/+2252311,795517taf4b-2/+2272401,965506taf4b-2/+2282131,922477taf4b-2/+2092401,812426taf4b-2/+2151841,714445taf4b-2/+2151841,714445taf4b-2/+1551421,798491taf4b-21541331,813503taf4b-21551741,869501taf4b-21551741,869501taf4b-21551741,869501taf4b-21551741,869501taf4b-21551741,869501taf4b-21551741,865491	GenotypeGreen aloneRed aloneBothNoneTotal+/+2022371,8084792,726+/+2061771,6814612,525+/+1902481,8234772,738+/+2161961,8024682,682+/+1901891,6684402,487+/+2142121,7344532,613+/+2162131,7144052,548taf4b-2/+2232291,8014332,686taf4b-2/+2051921,7855002,682taf4b-2/+2252311,7955172,768taf4b-2/+2272401,9655062,938taf4b-2/+2282131,9224772,840taf4b-2/+2092401,8124262,687taf4b-2/+2151841,7144452,558taf4b-2/+2151841,7144452,558taf4b-2/+1551421,7984912,586taf4b-21551421,7984912,586taf4b-21551741,8695012,699taf4b-21551741,8695012,699taf4b-21551741,8695012,699taf4b-21551741,8695012,699

F) taf4b-1 ×Col-FTL F_{2.} Related to Figure 3.

FTL	Genotype	Green alone	Red alone	Both	None	Total	сМ
1.18	+/+	146	172	1,317	396	2,031	17.12
1.18	+/+	159	125	1,350	352	1,986	15.50
1.18	+/+	163	189	1,552	423	2,327	16.49
1.18	taf4b-1/+	136	135	1,380	406	2,057	14.18
1.18	taf4b-1/+	143	147	1,274	321	1,885	16.79
1.18	taf4b-1/+	167	155	1,578	414	2,314	15.05
1.18	taf4b-1/+	144	159	1,489	375	2,167	15.13
1.18	taf4b-1/+	151	153	1,510	452	2,266	14.46
1.18	taf4b-1/+	131	152	1,398	396	2,077	14.71
1.18	taf4b-1/+	139	155	1,488	376	2,158	14.70
1.18	taf4b-1/+	132	145	1,445	373	2,095	14.24
1.18	taf4b-1/+	148	152	1,492	402	2,194	14.76
1.18	taf4b-1	109	125	1,350	380	1,964	12.72
1.18	taf4b-1	124	113	1,359	397	1,993	12.70
1.18	taf4b-1	85	109	1,330	362	1,886	10.88
1.13	+/+	226	208	1,466	330	2,230	21.85
1.13	+/+	224	262	1,445	314	2,245	24.70
1.13	+/+	193	163	1,308	318	1,982	19.95
1.13	+/+	239	214	1,407	344	2,204	23.26
1.13	+/+	219	204	1,434	360	2,217	21.36
1.13	+/+	218	236	1,477	326	2,257	22.69
1.13	+/+	216	218	1,383	346	2,163	22.62
1.13	taf4b-1/+	230	188	1,383	345	2,146	21.87
1.13	taf4b-1/+	259	229	1,541	345	2,374	23.26
1.13	taf4b-1/+	229	229	1,481	379	2,318	22.23
1.13	taf4b-1/+	223	211	1,491	314	2,239	21.75
1.13	taf4b-1/+	260	232	1,522	371	2,385	23.36
1.13	taf4b-1/+	215	220	1,426	347	2,208	22.16
1.13	taf4b-1	192	183	1,476	353	2,204	18.78
1.13	taf4b-1	205	201	1,412	379	2,197	20.60
1.13	taf4b-1	173	181	1,452	353	2,159	18.02
1.13	taf4b-1	215	192	1,509	398	2,314	19.49
1.13	taf4b-1	198	208	1,440	359	2,205	20.52
1.13	taf4b-1	196	163	1,470	363	2,192	18.00
1.13	taf4b-1	193	179	1,435	360	2,167	18.96
2.2	+/+	175	166	1,062	272	1,675	23.00
2.2	+/+	217	212	1,529	357	2,315	20.67
2.2	+/+	182	223	1,265	305	1,975	23.20
2.2	+/+	213	215	1,539	377	2,344	20.32
2.2	+/+	206	247	1,578	383	2,414	20.96
2.2	+/+	241	217	1,529	334	2,321	22.20
2.2	taf4b-1/+	187	195	1,271	298	1,951	22.00

2.2	taf4b-1/+	240	219	1,540	349	2,348	21.96
2.2	taf4b-1/+	244	209	1,517	346	2,316	21.97
2.2	taf4b-1/+	213	240	1,521	339	2,313	22.01
2.2	taf4b-1/+	138	132	989	240	1,499	20.02
2.2	taf4b-1/+	194	210	1,457	317	2,178	20.69
2.2	taf4b-1/+	217	221	1,552	390	2,380	20.51
2.2	taf4b-1	196	176	1,282	311	1,965	21.17
2.2	taf4b-1	162	167	1,205	334	1,868	19.52
2.2	taf4b-1	137	147	1,195	311	1,790	17.38
2.2	taf4b-1	176	137	1,331	356	2,000	17.11
2.2	taf4b-1	199	202	1,459	379	2,239	19.89
2.2	taf4b-1	184	207	1,495	371	2,257	19.16
2.2	taf4b-1	226	197	1,566	384	2,373	19.78
2.2	taf4b-1	211	192	1,517	360	2,280	19.60
2.2	taf4b-1	192	195	1,560	378	2,325	18.32
3.15	+/+	252	256	1,488	329	2,325	24.97
3.15	+/+	202	166	1,239	288	1,895	21.79
3.15	+/+	239	247	1,485	347	2,318	23.80
3.15	+/+	243	222	1,497	373	2,335	22.43
3.15	+/+	242	190	1,334	357	2,123	22.99
3.15	+/+	230	183	1,409	341	2,163	21.38
3.15	+/+	163	155	995	228	1,541	23.37
3.15	+/+	227	211	1,387	307	2,132	23.25
3.15	taf4b-1/+	223	222	1,560	363	2,368	21.00
3.15	taf4b-1/+	196	201	1,460	381	2,238	19.67
3.15	taf4b-1/+	237	241	1,561	383	2,422	22.20
3.15	taf4b-1/+	208	181	1,389	370	2,148	20.14
3.15	taf4b-1	159	173	1,580	391	2,303	15.64
3.15	taf4b-1	199	191	1,536	382	2,308	18.63
3.15	taf4b-1	187	180	1,265	312	1,944	21.11
3.15	taf4b-1	198	196	1,567	387	2,348	18.49
3.15	taf4b-1	195	182	1,562	402	2,341	17.66
5.1	+/+	186	233	1,501	390	2,310	20.17
5.1	+/+	206	207	1,517	358	2,288	20.06
5.1	+/+	201	167	1,397	354	2,119	19.21
5.1	+/+	223	245	1,477	366	2,311	22.87
5.1	+/+	89	77	626	165	957	19.19
5.1	+/+	192	193	1,458	364	2,207	19.31
5.1	+/+	202	204	1,421	347	2,174	20.85
5.1	taf4b-1/+	140	144	1,213	308	1,805	17.22
5.1	taf4b-1/+	196	192	1,549	367	2,304	18.56
5.1	tat4b-1/+	206	1/0	1,548	399	2,323	17.76
5.1	tat4b-1/+	193	213	1,420	336	2,162	20.98
5.1	tat4b-1/+	166	187	1,338	326	2,017	19.38
5.1	tat4b-1/+	210	185	1,441	372	2,208	19.86
5.1	tat4b-1/+	167	169	1,278	353	1,967	18.86
5.1	tat4b-1/+	180	168	1,408	402	2,158	17.69

5.1	taf4b-1/+	189	189	1,395	338	2,111	19.88
5.1	taf4b-1	132	145	1,587	449	2,313	12.79
5.1	taf4b-1	140	139	1,425	388	2,092	14.37
5.1	taf4b-1	158	129	1,547	407	2,241	13.75
5.1	taf4b-1	172	147	1,485	399	2,203	15.72
5.1	taf4b-1	147	148	1,513	391	2,199	14.46
5.1	taf4b-1	123	106	954	258	1,441	17.41
5.2	+/+	95	87	956	249	1,387	14.12
5.2	+/+	171	143	1,405	390	2,109	16.20
5.2	+/+	154	162	1,408	390	2,114	16.27
5.2	+/+	134	148	1,512	369	2,163	14.02
5.2	+/+	125	128	1,313	358	1,924	14.15
5.2	+/+	146	166	1,617	457	2,386	14.07
5.2	+/+	148	167	1,549	409	2,273	14.98
5.2	+/+	151	119	1,406	395	2,071	14.02
5.2	+/+	130	125	1,461	411	2,127	12.81
5.2	+/+	144	161	1,522	426	2,253	14.60
5.2	taf4b-1/+	135	147	1,462	409	2,153	14.09
5.2	taf4b-1/+	153	130	1,464	387	2,134	14.28
5.2	taf4b-1/+	161	156	1,472	427	2,216	15.51
5.2	taf4b-1/+	155	162	1,602	418	2,337	14.64
5.2	taf4b-1/+	127	94	1,121	298	1,640	14.53
5.2	taf4b-1/+	127	125	1,381	390	2,023	13.35
5.2	taf4b-1/+	142	167	1,535	450	2,294	14.52
5.2	taf4b-1/+	174	143	1,517	408	2,242	15.31
5.2	taf4b-1/+	153	145	1,670	443	2,411	13.24
5.2	taf4b-1/+	144	130	1,631	464	2,369	12.33
5.2	taf4b-1/+	160	142	1,577	409	2,288	14.21
5.2	taf4b-1	132	122	1,525	419	2,198	12.31
5.2	taf4b-1	103	102	1,398	411	2,014	10.76
5.2	taf4b-1	117	124	1,555	390	2,186	11.71
5.2	taf4b-1	119	99	1,206	357	1,781	13.10
5.2	taf4b-1	119	115	1,578	428	2,240	11.06
5.2	taf4b-1	124	133	1,472	354	2,083	13.21
5.1	+/+	114	117	775	184	1,190	21.78
5.1	+/+	192	220	1,474	366	2,252	20.37
5.1	+/+	190	197	1,508	369	2,264	18.87
5.1	+/+	171	157	1,294	376	1,998	18.04
5.1	+/+	213	172	1,389	349	2,123	20.17
5.1	+/+	206	158	1,478	390	2,232	17.91
5.1	+/+	205	193	1,376	342	2,116	21.02
5.1	taf4b-1/+	201	200	1,617	390	2,408	18.33
5.1	taf4b-1/+	213	195	1,509	369	2,286	19.81
5.1	taf4b-1/+	198	206	1,461	378	2,243	20.01
5.1	taf4b-1/+	99	99	781	219	1,198	18.18
5.1	taf4b-1/+	189	187	1,457	343	2,176	19.10
5.1	taf4b-1/+	201	225	1,582	384	2,392	19.76

5.1	taf4b-1/+	185	191	1,515	342	2,233	18.56	
5.1	taf4b-1/+	209	198	1,479	366	2,252	20.09	
5.1	taf4b-1	194	184	1,524	371	2,273	18.31	
5.1	taf4b-1	189	181	1,537	374	2,281	17.81	
5.1	taf4b-1	172	202	1,502	380	2,256	18.24	
5.1	taf4b-1	193	153	1,516	423	2,285	16.50	
5.1	taf4b-1	195	168	1,467	365	2,195	18.19	
5.1	taf4b-1	208	161	1,434	340	2,143	19.03	
5.1	taf4b-1	189	165	1,486	376	2,216	17.51	
5.1	taf4b-1	182	164	1,405	343	2,094	18.18	
5.18	+/+	116	118	1,586	427	2,247	11.02	
5.18	+/+	106	107	1,566	472	2,251	9.96	
5.18	+/+	91	105	1,535	423	2,154	9.56	
5.18	+/+	105	127	1,556	453	2,241	10.95	
5.18	+/+	109	92	1,595	483	2,279	9.25	
5.18	taf4b-1/+	104	103	1,561	463	2,231	9.75	
5.18	taf4b-1/+	86	116	1,557	428	2,187	9.71	
5.18	taf4b-1/+	128	103	1,561	449	2,241	10.90	
5.18	taf4b-1/+	98	108	1,448	443	2,097	10.36	
5.18	taf4b-1/+	97	82	1,529	437	2,145	8.73	
5.18	taf4b-1/+	107	115	1,492	413	2,127	11.05	
5.18	taf4b-1/+	114	96	1,549	479	2,238	9.87	
5.18	taf4b-1/+	93	109	1,497	429	2,128	9.99	
5.18	taf4b-1	128	111	1,634	463	2,336	10.82	
5.18	taf4b-1	91	90	1,579	468	2,228	8.48	
5.18	taf4b-1	99	76	1,636	467	2,278	8.00	
5.18	taf4b-1	83	82	1,562	525	2,252	7.62	
5.18	taf4b-1	100	74	1,563	459	2,196	8.27	
5.18	taf4b-1	93	86	1,534	463	2,176	8.60	
5.18	taf4b-1	70	97	1,588	453	2,208	7.87	

G) Col/Bur and	taf4b-1/Bur F	hybrids.	Related to	o Figure 4.
----------------	---------------	----------	------------	-------------

FTL	Genotype	Green alone	Red alone	Both	None	Total	сМ
420	Col/Bur	124	122	1,334	368	1,948	13.55
420	Col/Bur	113	128	1,316	334	1,891	13.68
420	Col/Bur	124	121	1,313	343	1,901	13.85
420	Col/Bur	132	136	1,429	342	2,039	14.14
420	Col/Bur	128	149	1,401	363	2,041	14.64
420	Col/Bur	130	160	1,366	352	2,008	15.67
420	Col/Bur	119	173	1,348	306	1,946	16.34
420	Col/Bur	135	165	1,321	319	1,940	16.89
420	<i>taf4b-1/</i> Bur	81	85	1,453	404	2,023	8.57
420	<i>taf4b-1</i> /Bur	82	104	1,479	412	2,077	9.40
420	<i>taf4b-1</i> /Bur	88	95	1,392	376	1,951	9.87
420	<i>taf4b-1</i> /Bur	95	99	1,445	376	2,015	10.14
420	<i>taf4b-1</i> /Bur	100	101	1,507	377	2,085	10.16
420	<i>taf4b-1</i> /Bur	94	99	1,351	343	1,887	10.81
420	<i>taf4b-1/</i> Bur	86	124	1,462	371	2,043	10.87
420	<i>taf4b-1</i> /Bur	100	140	1,550	375	2,165	11.78

Col size Bur size Chr Name Sequence (5'-3') (bp) (bp) 1-529-F TTCCGGTTAAATGAAAATCCTC 300 155 1 ACTGACAGATGGAGAGACAAGAGTT 1-529-R 1-1771-F CAATCAAGCGAGGAGCAACA 1 453 340 TTCCGAGTACGCATTGCTCA 1-1771-R 1-4797-F CATGTGATAGATGTGATTCCATGTT 256 1 182 TGGTCACCTTGTTACAATAATACAATC 1-4797-R TGTGTTTGAATGTGAAGATAACGA 1-6315-F 1 474 330 GCACGAGGTTAAATGCATGG 1-6315-R 1-7823-F CAACATTTTCACTTTATTTCTCATCC 1 250 185 GCAAATCTTTGTTCCATAAATTCAC 1-7823-R 1-7963-F CCGATGAAGGTTCCGAATAA 535 311 1 TCAGCGACGTTCGTGAAATA 1-7963-R 1-8097-F CGCGTAATGGGTAAGGCTAT 239 1 191 GCATGGCGTAAAACTCGCTAT 1-8097-R GGAACCTTCCATGCATGACT 1-8547-F 1 270 185 1-8547-R CCTGAATATAAACCCACAAAATGA ACACACAGAGCATCGTGGAT 1-8685-F 246 176 1 1-8685-R CTGTTTTCATCCGTGGAGGT 1-9019-F TTAAATTTCTTCGTAATTCGTATGGTT 250 188 1 1-9019-R TTTTTGATTATTTTTGTGGGTCAA 1-9568-F CTTCTGCAATCAGCATCAGC 293 203 1 1-9568-R TCCATTTCAATATGCGCAAC TGTCACTTCTCGGTGTTTGG 1-9807-F 595 350 1 GTGCTTTGGTCCACATTTGA 1-9807-R 1-10655-F TTGTGGTCCCTGGCTAATCA 230 176 1 1-10655-R CAGTGACGAATTCCAAAACGA TCCTTGGATTCTGGTTGTTTG 1-11282-F 340 224 1 TCGTGCCACACATAAATAGGA 1-11282-R 1-11965-F CTATAAGCCCAGTAGATTGCTTCC 323 1 472 1-11965-R TTGTCAAGTATCGCGTCTGTG 1-12444-F GCTTTGGACCTCTTTTGGTG 239 191 1 AGCGACCAAATGATTCAACC 1-12444-R 1-13178-F ACGTTGTTCTCGTTGCACAG 282 210 1 1-13178-R TGTGATGGACTTCCCCTTACTT 1-14122-F GCTAGCAGTCGAGTATTCTGTCGAG 239 190 1 CGTGTCCCACCATCATCAC 1-14122-R 1-16161-F AAAGTGGGTGGCAGGATAGTT 208 166 1 AAGGCTATCACTATTTGTCCAAAAC 1-16161-R 1-18237-F AAAAAGCCGAATTGGGTTGG 621 343 1 1-18237-R CAATATACTGTGCCTTTCGTGTCT 1-18570-F CGTACAGTGTTTCGTGTTCCA 162 128 1

Col/Bur SSLP genotyping oligonucleotides. Related to Figures 1 and 2.

1-18570-R	TCTCCTTTTGGCTTCTGATGA	102	120	'
1-19556-F	ATTTCGTTTTTGTCAAACCACTT	000		
1-19556-R	TTGCATAGGACAAGAAAAATGTG	206	144	1
1-19918-F	TCACGTTCTGTTGTCCCGTA	400	075	
1-19918-R	TCGAAATGCAGATTTCTCTTCC	402	275	1
1-20158-F	CCAAGAGCTCGTTCATGGTAT	240	400	4
1-20158-R	GGCACAAGAAGCGTTTTCTC	246	193	1
1-21236-F	CAATGAGCCCTCTACGCTCT	470	240	4
1-21236-R	AAGCCCATCATATCCCAACA	476	340	1
1-25036-F	GAGTTGGACCCAACGAACAC	074	100	4
1-25036-R	CGCACATCCGCATATTAGTG	271	193	I
1-30355-F	TGGTTAATCTAAAGCCCAATAAAAG	259	201	4
1-30355-R	TGCGATTGAATAGTGGAGGTAG	250	201	I
2-132-F	TCCAATGGGCCACAAATTAAC	220	160	2
2-132-R	TTTGTGCTTTGATTACTGCAAGTG	229	105	Z
2-2346-F	GGCAAATTTGGTTGGCTCTC	247	261	2
2-2346-R	TGTTTTGTGCTATTTGTGTCAACC	547	201	Z
2-6789-F	GCGTTTTGTATCATCAAAGGTTCC	110	82	2
2-6789-R	CGCAATTTCTCGAACTTCCTTT	112	02	2
2-14407-F	CCTATGTGTCAAGAGAGATTTCCA	271	108	2
2-14407-R	AGCGTTTCTCTACTTTTAATGATTGAT	211	130	2
2-18444-F	CAAGAGGGAAACACAATTAATGC	303	210	2
2-18444-R	CCCATCTCCATACACTACAAACC	505	210	2
3-1031-F	ATGCCTTGGTTTCAATTTGG	<i>4</i> 19	345	З
3-1031-R	TACCCGCTCCTTGACAGTTT	415	0-0	0
3-4049-F	GCAAATAGGAATCAGAAGTTGGA	275	236	З
3-4049-R	TTTAAAAAGGCCTCCGCTTT	210	200	0
3-8495-F	AACGAAAAAGGGGGAATATGAA	177	132	З
3-8495-R	GGGCTTTAAAAAGCAAAAGCA		102	0
3-10695-F	GAGGGATGCAAGGAGGATCA	161	122	З
3-10695-R	TTCATCACATCAACGCTCCAA	101	122	0
3-17088-F	GCTCTTGAGGTTTTAGGGTTGTT	560	360	З
3-17088-R	TGCGTTCGCATGATTCAAAA	000	000	0
3-21008-F	CCGACGTTGTGTTTCTATTTCC	211	174	3
3-21008-R	TGAGGGAACAAGGACCTAACCA	211	17-4	0
4-1782-F	TGGTTGATTTCACTTGATTTTGA	147	114	4
4-1782-R	CTTCCCATCACGACTTCTCTCT	177	117	т
4-6445-F	GCCCGATATGTGATGTGAAA	209	166	4
4-6445-R	TTTGGCAGTTTTTGCTGTCA	200	100	•
4-10599-F	TGGGTACATCTTAAAGGGTGGA	559	369	4
4-10599-R	ATCGAGCAACACTGACCACA	000	000	•
4-15631-F	CGTGATGGAACACATCAACAT	476	326	4
4-15631-R	ACAACATCGAAGGTTGAGCA		020	•
4-18510-F	TGACGGCAGATTCAGAGAGA	215	157	4
4-18510-R	AGGGAGGACGAAGAATGAGG	210	.01	•

5-6680-F	GCAGAACCCAGAAACAGCAC	283	206	5
5-6680-R	TTGCCCAAACCCAGATCTAA	205	200	5
5-10048-F	TCTTCAGAACTAGTCTTGGTTTTGC	508	303	5
5-10048-R	GATATGACGGGTTTGGATCG	500	505	5
5-19994-F	TCTAAACCGAACTAAACCGTGAA	160	100	5
5-19994-R	CAAACCAAAACCTACTTTTTCCAA	103	103	5
5-23287-F	GAGATGTTGAGAAGCAGAGGAAA	204	151	5
5-23287-R	TGGCGTGAAATACTGAAGCAA	204	101	5
5-26907-F	TGTGGATCTTTATGACGTGTGC	270	200	5
5-26907-R	ACCATCTACTTCCATTCAAATAACG	210	200	5

CAPS and dCAPS genotyping oligonucleotides. Related to Figure 2.

Name	Sequence (5'-3')	Col size (bp)	Bur size (bp)	Chr
c1-8036-F	CTCCAAAGTAGGGCAAAACG	110 55	170	4
c1-8036-R	CCCTAGAACCGCTAACACCA	116, 55	173	I
c1-8622-F	ACTCCTCATCCGTTCCACAC	112 00	201	4
c1-8622-R	TCGATTTGCGGGATTAATGT	113, 00	201	I
c1-9197-F	TGCTTCTGCTGCTACCTTGA	447 04	100	4
c1-9197-R	GAAGATTCCGGCTTCCTTTC	117, 01	190	I
c1-9608-F	TTCTGGTGTGGGAAACAGAAC	212 20	250	4
c1-9608-R	TCATGACTGGAGGAGAGTATGC	212, 30	200	I
c1-9630-F	AAATTCATTTCCCCCAAATAAAA	100.00	407	4
c1-9630-R	GAGAAGATTCAGCTCCGAGAAA	108, 89	197	1
c1-9645-F	GCAACTCGTAAACATACCCTGA	0.40	004 47	4
c1-9645-R	TGGCTGGTTTGTGAAAGATG	248	201, 47	1
c1-9660-F	GACCCCACTGCTTTTGACAT	100 11	004	4
c1-9660-R	AAATTTAATGCGCCAAGGAA	190, 41	231	1
c1-10013-F	CATGTGACTTGGGTGGTGTC	100	400 50	4
c1-10013-R	TGTGGGAGGGATGGAAGATA	192	133, 59	1
c1-10401-F	TGTTGGCGCATAAAAGTGAA	105 01	040	4
c1-10401-R	GTTGTGTTGGCCTTCTCGAT	125, 91	210	1
d1-9634-F	AAACCTCTCTTTAGGAGCAGTGTATGTAGC	400.00	400	4
d1-9634-R	AACGATCACGTTTAAAGTTGCTAAAACTG	100, 30	130	1
d1-9653-F	AAATTAACGATCTCATATTGTAGGGATA	107 01	400	4
d1-9653-R	GATATTATAATAAATCCGATGTATGAGAAAG	107, 31	138	1
d- <i>taf4b-1</i> -F	CGATCGTTCTTTTAGGACCAGAATCTGAT	400	100.00	4
d- <i>taf4b-1-</i> R	CTCAGGGTATGTTTACGAGTTGCTACAC	138	109, 29	T

Additional oligonucleotides. Related to Figures 2 and 5.

Name	Sequence (5'-3')	Experiment
AT1G27695_ <i>Bam</i> HI_F	AAAAAAGGATCCCTGAAGACTCCGGAAGCAGT	
AT1G27695_Smal_R	TTTTTTCCCGGGTGATTGCAGTGGTAGTTGCAG	

AT1G27700_ <i>Eco</i> RV_F	AAAAAAGATATCTCAAATGCTTCTTCTTCCTAGC	
AT1G27700_ <i>Apa</i> I_R	TTTTTTGGGCCCTGCAAATGTTGCTGTTCGT	Cloning of
AT1G27710_Xba1_F	AAAAAATCTAGATGCTTTAGCAGATTCAGATGGA	rQTL1a
AT1G27710_ <i>Ec</i> oRV_R	TTTTTTGATATCTTCTGTTGCTGGTTATTCTTGTG	candidate
AT1G27720_ <i>Xba</i> I_F	AAAAAATCTAGATGCTTTAGCAGATTCAGATGGA	genes
AT1G27720_ <i>Apa</i> I_R	TTTTTTGGGCCCGCACTGGACAAAGGGTAAGC	
AT1G27730_S <i>ma</i> 1_F	AAAAAACCCGGGTTCGGTAACTGGGCTTGTTC	
AT1G27730_ <i>Apa</i> I_R	TTTTTTGGGCCCTGAAGAGTGGACCCAAACATT	
SALK_025468_LP	CTCTGCAGTGGAATTTTCTGC	Constanting
SALK_025468_RP	CCCAAAGAACTCATCCTTTCC	taf4h-2
SALK_BP	ATTTTGCCGATTTCGGAAC	
TAF4B_F1	TCTGATTCGAGATATTGAAGGAAGT	
TAF4B_R1	ACAGTCTTTTCCACCCAAGGA	
TAF4B_F2	TGGTGGTACACAATTTGGGAAG	
TAF4B_R2	CATCTGAGGCTCCTTTTCCA	
TAF4_F	TCTGGTACTGGTGGTCGAAG	KI-FCK
TAF4_R	CTCTCTTTCGAGGACCGCAA	
GAPC_RTF	CGAGAAAGCTGCTACCTACGAT	
GAPC_RTR	GTTGTCGTACCATGACACCAAT	

Coordinates (bp)	
528,997	
1,771,064	
4,796,903	
6,315,210	
7,822,623	
7,963,346	
8,097,721	
8,546,722	
8,686,154	
9,018,718	
9,567,731	
9,806,927	
10,655,860	
11,282,116	
11,964,554	
12,444,277	
13,177,859	
14,122,817	
16,161,636	

18,237,140

18 560 811

10,003,011

19,555,786

19,917,692

20,158,440

21,236,506

25,035,796

30,354,927

132,652

2,346,993

6,789,815

14,406,955

18,443,819

1,031,549

4,049,059

8,495,131

10,695,968

17,088,210

21,008,127

1,782,446

6,445,150

10,599,330

15,631,355

18,510,483

6,680,077

10,048,066

19,994,907

23,287,613

26,907,352

Coordinates (bp)	Enzyme
8,036,376	<i>Eco</i> RI
8,622,092	Sacl
9,196,642	Xhol
9,607,633	Psil
9,629,971	Mfel
9,644,742	<i>Eco</i> RV
9,659,666	Xhol
10,012,987	Xhol
10,401,022	<i>Eco</i> RV
9,634,487	Alul
9,652,842	<i>Hin</i> dIII
9,644,611	Mbol