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1. Introduction 

Europe has made significant progress in the creation of a single electricity market. Successive 

electricity directives5 in 1996, 2003 and 2009 have shifted the electricity supply sector from 

dominance by national monopolies towards a European market dominated by competing pan-

European companies whose business models have continued to change dramatically over the 

past few years.6 

One early result of the reforms was a reduction in government intervention in the generation 

investment decisions of companies. This led to widespread market entry and market-driven 

investment in fossil-fuel based power plants. Over time, industrial and commercial retail tariffs 

have been almost completely deregulated in most European countries, while many residential 

customers have shifted to non-regulated tariffs. Wholesale and retail electricity prices moved 

in line with fossil fuel prices which were the dominant component of wholesale electricity 

costs. 

However renewable energy directives in 2001 and 20097 significantly influenced investment 

in electricity generation. While the 1990s and early 2000s could be unusually characterised by 

reliance on the wholesale market to finance new generation investment (see Helm, 2002; 

Pollitt, 2012), since 2002, there has been a significant rise in the share of renewable electricity 

investment in Europe. This, combined with slow growth in electricity demand, has meant that 

by 2017 almost all new investment in electricity generation was in the form of subsidised 

renewables (IEA, 2018). For example, in 2017, the combined global investment in wind and 

solar PV stood at ca. $230 bn. This exceeded the investment in distribution (ca. $220 bn), 

                                                           
5 Directives 96/92/EC, 03/54/EC and 09/72/EC. 
6 See Pollitt (2019) for a detailed review of progress in the single electricity market. 
7 Namely, the renewable electricity directive (2001/77/EC) and the renewable energy directive (2009/28/EC). 
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transmission (ca. $80 bn), and conventional thermal generation technologies8 ($140 bn) (IEA, 

2018). 

Nevertheless, renewables subsidies (per MWh) have begun to shrink and the EU’s climate 

targets for 2030 now place emissions reductions at the forefront of action, with no new binding 

renewables targets at the national level9. Ambitious climate targets would imply a further step 

up in the share of renewables in net annual electricity production to at least 55%10 (E3MLab 

& IIASA, 2016), which combined with nuclear power, means fossil fuels will only hold a 

residual role in electricity supply by 2030. 

The current market design supported conventional generation technologies from 1990 until 

around 2010 with lower relative capital costs and higher short-run cost than variable renewable 

energy (VRE) generation. VRE technologies are characterised by high fixed costs incurred up 

front and stable annual running costs which do not vary much with output. While the fixed 

annual running costs of VRE can be considerable, the instantaneous short run marginal cost of 

a MWh of electricity produced from intermittent renewables is virtually zero.11 

Near zero marginal cost of VRE gives rise to a “merit-order” effect, depressing average 

wholesale prices and load factors of conventional generators and, hence reducing their 

revenues. Further, due to the nature of subsidies such as feed-in-tariffs (FiTs) there is a 

corresponding economic incentive to generate electricity whenever wind/solar resources are 

                                                           
8 coal, gas, oil, and nuclear 
9 See https://ec.europa.eu/clima/policies/strategies/2030_en for the EU’s 2030 energy and climate targets. 
10 Based on modelling by E3MLab & IIASA for the 2016 Impact Assessment work of the European Commission (EC). In 
particular, the 55% figure is based on EUCO3030, which is the most RES ambitious policy scenario modelled for the EC. 
This scenario envisages 30% of RES share in final energy demand, 30% improvement in energy efficiency and 40% 
reduction in GHG emissions. Note, however, that the final targets for RES of 32% and for energy efficiency of 32.5% was 
approved by all EU institutions (the Commission, the Parliament and the Council) and came into force on 24 December 2018 
(https://ec.europa.eu/info/news/new-renewables-energy-efficiency-and-governance-legislation-comes-force-24-december-
2018-2018-dec-21_en). 
11 This situation is not the same as those where electricity markets with high starting levels of hydro-electricity were 
‘successfully’ liberalised (e.g. Norway, Chile and New Zealand). These systems have been characterised by high peak 
electricity prices due to hydro shortages, low initial amounts of fossil fuel capacity and public financing of the bulk of the 
renewable capacity. 
 

https://ec.europa.eu/clima/policies/strategies/2030_en
https://ec.europa.eu/info/news/new-renewables-energy-efficiency-and-governance-legislation-comes-force-24-december-2018-2018-dec-21_en
https://ec.europa.eu/info/news/new-renewables-energy-efficiency-and-governance-legislation-comes-force-24-december-2018-2018-dec-21_en
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available to get guaranteed revenue. Thus, hourly electricity prices can be zero or even 

negative, reflecting the fact that FiTs are paid regardless of market prices or the capability of 

the grid to absorb renewable generation. For example, recently, there were many trading 

periods when several markets in the Central Western Europe area12 encountered negative 

hourly prices (DG ENERGY, 2018)13. 

The emergence of a system heavily dependent on upfront capital investment14 might motivate 

a redesign of the current set of markets based around fossil fuel-based electricity. Thus, an 

important question that this paper seeks to address is whether, in the presence of the merit order 

effect, wholesale energy-only prices can serve as a long-term investment signal for electricity 

generation technologies (conventional and VRE). For example, looking at the 2015 – 

September 2018 power prices in Northwest Europe suggest that might not be the case: average 

wholesale prices covered 71% - 92% of a CCGT’s short-run marginal cost in that period. Power 

prices were not enough to cover fixed OPEX and certainly not the fixed OPEX and CAPEX of 

new CCGTs. This is a problem If CCGTs are required for system adequacy. If this is the case, 

the “missing money” does exist within the prevailing structure of costs and power price 

dynamics. 

On the other hand, VRE currently suffer from three market failures: the under-pricing of 

carbon15, the need to price the learning externality where future VRE costs are reduced by each 

MW of VRE installed16, and the failure of financial markets to properly price capital for long 

run investment (Grubb et al., 2008). These market failures are the main reason governments 

                                                           
12 The area consists of Austria, Belgium, France, Germany, the Netherlands and Switzerland. 
13 In total, the first quarter of 2018 saw 70 hours of negative prices in Germany and 8 hours of negative prices in France and 
Belgium. Markets in the Czech Republic and Denmark, which are also integrated with the German market, saw 25 and 32 
hours of negative hourly prices respectively 
14 E.g., in intermittent renewable generation, energy storage and reinforced networks 
15 Technically, the failure to price carbon is a regulatory failure rather than a failure of electricity market design 
16 The argument for the existence of a learning benefit in subsidised roll out of renewables is strong as illustrated by 
Newbery (2017) 
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have had to subsidise VRE. However, rapid cost reductions in solar and wind power suggest 

that a world where governments no longer have to subsidise renewables may be close at hand17 

(see Newbery et al., 2018; Lang, 2018). Thus, the prospect of wind and solar being self-

financed through wholesale energy-only prices may be possible provided their costs fall 

sufficiently and/or wholesale prices (which can be driven by fossil fuel and carbon prices) are 

high enough. 

Therefore, the objective of this paper is twofold: (i) to quantify the impact of VRE on merit 

order (merit order effect) and the trade-offs between merit order effect of VRE and fossil fuel 

and carbon prices effect, and (ii) to quantify the impact of higher VRE on ‘investability’ in 

electricity generation under the current market design. As a proxy for the current market design, 

we take “wholesale energy-only prices” i.e., energy-only market design. 

A very high penetration of VRE may pose challenges for the theory of electricity markets due 

to their variable and ‘zero marginal cost’ nature (following Rifkin, 2014). The question of 

whether the current market design can accommodate large shares of VRE without radical 

changes is at the heart of the current policy and academic debates. This question of the future 

of market design that addresses the policy trilemma – sustainability, security of supply and 

affordability – is important not only for electricity and climate policies but also has implications 

for competition policy. 

The rest of this paper proceeds as follows: Section 2 provides a literature review. Here, we 

focus on both the theoretical literature that goes back to basics in electricity market design as 

well as on empirical modelling literature that quantifies the impact of VRE on electricity 

                                                           
17 Recent subsidy-free offshore wind auction results for future projects in Germany and the Netherlands are examples of the 
potential fall in renewable costs to the extent that they could be self-financed through future energy-only energy prices. 
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markets. Then, Section 3 presents our research methodology and discusses scenarios developed 

for the analysis. Section 4 presents main findings and Section 5 offers a conclusion. 

2. Literature review 

2.1. “Energy only” market and peak load pricing 

In the prevailing electricity market design, spot prices are determined by the marginal cost of 

the most expensive operating power plant. These just cover plants’ running (marginal) costs 

but not their capital costs. Stoft (2002) suggests that under peak load pricing all operating 

power plants may be able to cover their capacity costs using scarcity rents in a long-run 

equilibrium as well as inframarginal rents. The scarcity price rise in this situation is only limited 

by the marginal cost of demand side response or the value of loss load (VoLL). Such an 

electricity market is referred to as an “energy only” market (EOM). 

Security of supply (instant balancing of supply and demand) is supplied by the system operator 

(SO) through acquisition of a range of ancillary and balancing services. Newbery (2016) noted 

that capacity adequacy18 could, in principle, be delivered by competitive EOMs and that this 

has been envisioned by the Target Electricity Model (TEM), part of the EU Third Package. 

The EOM design faces some challenges even in the absence of VRE. Most electricity 

consumers cannot respond to short-term wholesale price movements and selective curtailment 

of customers appears difficult. Thus, the market may not clear in times of scarcity, as demand 

is not elastic enough (Joskow and Tirole, 2007). In addition, the social and political 

acceptability of scarcity prices may be low. This is exacerbated by the possibility of the exertion 

of market power by incumbents which can be difficult to distinguish from a true scarcity 

situation. This leads to a root cause of the “missing money” problem: the imposing of price 

                                                           
18 sufficient long-term generation capacity 
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caps in wholesale electricity markets (Hogan, 2005). These dampen price rises and limit the 

potential for market power abuse. 

Wholesale prices are uncertain as result of these considerations. Hence, investors may not able 

to recoup their capital costs through scarcity rents. The “missing money” problem may still be 

prevalent in the absence of explicit price caps: investors may expect that under stress and 

scarcity events, wholesale prices may be capped by regulators or by technical interventions by 

system operators (Neuhoff et al., 2016). 

2.2. “Energy only” market, missing money and reserve “markets” 

To address these shortcomings, Hogan (2005) proposed to price scarce reserve at the 

opportunity cost of energy through a regulated operating reserve demand curve (ORDC). This 

serves to improve reliability, and hence incentivise investment because better scarcity pricing 

would contribute to long term resource adequacy (Hogan, 2018). In effect, scarcity pricing 

relies on a few very high price hours every few years to finance peak capacity. 

Joskow (2007) insisted that the missing money problem is often a result of other market 

imperfections instead of price caps, concluding that a forward capacity market19 is needed to 

ensure resource adequacy. If markets were not subject to policy and regulatory interventions, 

resource adequacy could be delivered by profit-motivated generation investment. Thus, for 

Joskow (2007) it is not just about price caps but also about policy and regulatory uncertainties 

more generally. However, absent policy and regulatory uncertainties, investors would need 

confidence in receiving adequate revenue from energy and ancillary services markets 

(Newbery, 2016), which is rarely the case as these ancillary services are sometime inadequately 

remunerated and poorly defined.  

                                                           
19 which contract capacity availability, for example, one to four years ahead. 
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Newbery (2018) noted that the need for long-term capacity markets is due to a lack of liquidity 

in forward “energy-only” markets that would otherwise allow market participants to hedge 

against long-term political and regulatory uncertainty. 

However, according to Hogan (2018), capacity markets do not create the correct incentives to 

respond to short-run scarcity conditions (Hogan, 2018). This can lead to lower security of 

supply, which may be due to lack of high enough penalties for non-delivery. This highlights 

that there is inevitably a need for high prices (in the form of positive or negative payments) to 

incentivise delivery in real time when supply is scarce. 

Bidwell (2005) considered that instead of capacity markets, retailers should contract for 

reliability options with generators, where generators agree to provide reliability at fixed prices 

during stress events and effectively forego price spike revenues. This addresses the market 

manipulation problem which may arise in capacity markets. 

Hogan argues (2005, 2018) that a short run ORDC renders a longer run capacity market 

obsolete. However, this is premised on the ORDC market being a predictable source of funding 

over a multi-year period. 

2.3. VRE and the need for a market re-design 

The currently prevailing electricity market design in Europe has evolved naturally to support 

the operation of, and investment in, fossil fuel power generation technologies. The missing 

money problem has been limited to the issues of robustness of demand-side management 

(market clearing under scarcity conditions), the possibility of market power exertion at peak 

demand periods by conventional generators and resultant regulatory interventions in the form 

of price caps and/or technical interventions by SOs.  

However, with the rise of VRE, the missing money problem may be exacerbated. VRE can be 

seen as completely price-inelastic negative demand (due to zero marginal cost) and thus it 
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intensifies price volatility and demand fluctuations (Cramton et al. 2013). This exposes fossil 

fuel generators to volatile income streams in the energy-only and ancillary markets. With the 

rise of VRE, the attractiveness of investments in conventional generation capacity reduces due 

to the “merit order” effect of VRE (see Section 2.4 below). This is because new fossil fuel 

investments no longer start off as base load investments with maximum load factors, as they 

did in the past. 

Thus, as VRE penetration increases, the capability of the current EOM to provide adequate 

long-run price signals to guide investment decisions in generation capacity must be considered. 

This increase leads to a need for flexible reserve capacity to meet the unpredictable nature of 

VRE generation. Hence, the discussion around “energy only” with better scarcity pricing such 

as ORDC has been renewed in the context of supporting higher VRE as well as arguing that 

the existing EOM can – with appropriate ancillary service markets - accommodate a large 

amount of zero-marginal cost VRE (Hogan, 2018). 

2.4. Quantitative analyses and modelling: impact of VRE on electricity systems 

The impact of high share of VRE on electricity systems is well researched in the empirical and 

economic modelling literature. Here, we only focus on the impact of VRE on wholesale prices 

and empirical modelling of electricity markets with high VRE. The survey here is not meant to 

be exhaustive but to merely show the well-established empirical finding that higher VRE 

production leads to lower wholesale prices. 

In this regard, both Würzburg et al. (2013) and Bublitz et al. (2017) provide excellent surveys 

of the literature on price impacts of renewable generation. For example, Würzburg et al. (2013) 

surveying 20 research papers found price impact of -0.24 €/MWh to -9.90 €/MWh for each 

additional GWh of renewable energy produced. The range depends on methods (e.g., statistical 

and econometric analysis or simulation modelling), geographical scope (e.g., most of studies 
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they surveyed focused on Germany), and time period (e.g., whether this is a single year, multi-

year time series or simulation of counterfactual or future impacts). Similarly, Bublitz et al. 

(2017) surveyed 9 publications (some of which were also mentioned in Würzburg et al. (2013)) 

and found that the merit-order effect ranges from -0.55 €/MWh to -15 €/MWh, again, 

depending on modelling assumptions, RES technology (e.g., wind, solar, biomass, etc.), 

location (e.g., Germany, Spain, Ireland) and methodology. 

Thus, the merit-order effect of VRE is well-documented empirically. Also, the joint impact of 

fossil fuel input prices and VRE production on wholesale prices is also well-researched. Bublitz 

et al. (2017) modelling results suggest that carbon and coal prices caused electricity prices to 

decline (2011-2015) in Europe and that VRE contributed only to a small part of that decline 

(Bublitz et al., 2017). Paraschiv et al. (2014) found that wholesale prices are negatively 

correlated to the proportion of renewable generation in the mix, while the prices are positively 

correlated to the performance and price of coal, oil and gas plants. Wiser et al. (2017) found 

that negative prices in the US concentrated in areas with significant VRE or nuclear generation, 

as well as during periods of lower total system load. However, it was deduced that declining 

natural gas prices were the dominant cause of declining average annual wholesale prices from 

2008 – 2016. They found that bar a few specific instances, there has been little or no 

relationship between VRE penetration and recent closure of thermal power plants. 

However, it is worth noting that there is rather limited empirical research on the rate of changes 

in wholesale prices as the result of more VRE production. For example, Kyritsis et al. (2017) 

found that the reduction rates of wholesale prices remained relatively constant with respect to 

market penetration of VRE. Further, the empirical literature mentioned earlier only focuses on 

day-ahead market price impact whereas, for example, Gianfreda et al. (2018) found that while 

day-ahead prices are likely to decline as VRE production increases, the effects on balancing 
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market prices (intra-day energy prices which reward adjustments near real time) are more 

ambiguous. 

Lastly, the importance of distributional impact of VRE cannot be underestimated for good 

energy policy design. For example, Cludius et al. (2014) found that in Germany some energy-

intensive industries are benefiting from lower wholesale electricity prices whilst being largely 

exempted from contributing to the costs of funding VRE deployment. Further, the uptake of 

VRE might have a negative distributional impact if, for example, network tariff charges are 

inappropriately designed for a system with high share of VRE production. For example, 

Küfeoğlu and Pollitt (2019) showed that as PV penetration increases in the GB electricity 

market, the distribution tariffs increase for all customers regardless of whether someone owns 

a PV or not. This is due to the GB’s current network charges calculation structure, which largely 

depends on a volume-based charge. 

While the impact of VRE on electricity systems is well researched in the empirical literature 

several authors have also looked at the operation of an electricity market with a very high share 

of VRE using applied economic modelling. For example, Riesz et al. (2016) concluded that 

existing energy-only market mechanisms could potentially operate effectively under complete 

VRE penetration (100%) provided there is a derivative contracts market that allows generators 

to hedge increased market risks. In addition, there would need to be either an increase in the 

market price cap20, or demand side participation allowing customers to select a level of 

reliability at an associated cost. 

Bhagwat et al. (2016) analysed the effectiveness of strategic reserves in the presence of a 

growing VRE mix, concluding that with no VRE, strategic reserves increase the cost of 

electricity for consumers. But, with a large amount of VRE they stabilise investment in thermal 

                                                           
20 from $13,500/MWh to $60,000 – 80,000/MWh in Australia’s NEM. 
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generation and hence reduce the cost to the consumer while the effectiveness of the reserves at 

maintaining generation adequacy decreases. 

Focusing on ERCOT (in Texas), Levin and Botterund (2015) analysed and modelled three 

market policies: ORDC, Fixed Reserve Scarcity Prices (FRSP) and fixed capacity payments 

(CP). They found that optimal expansion plans are comparable between the ORDC and FRSP 

implementations, while CP may lead to excess capacity. Under FRSP there are more frequent 

reserve scarcity events, while prices under ORDC tend to be smoother. For all policies average 

wholesale prices decrease with increasing wind penetration. 

Papavasiliou and Smeers (2017) found that ORDC could provide flexible electricity generation 

in the Belgian market that were not viable given historical energy and ancillary services prices. 

They concluded that it is important to have an efficient short-term market (such as provided by 

the ORDC) for sending the right signal on scarcity of capacity, which could make the capacity 

market redundant. 

3. Methodology and scenarios 

The survey of literature suggest that a well-designed energy-only electricity market can 

accommodate high share of non-dispatchable VRE. In practice, this would require political 

commitments not to intervene to allow scarcity prices to approach VoLL (or very high energy-

only prices and liquid and “bankable” ancillary services markets). As Europe moves towards 

decarbonization of its power sector this implies a rather high share of VRE in the electricity 

system by 2030. We are not aware of any empirical and modelling research exploring whether 

a new market design for electricity in Europe would be required by 2030 in line with those 

policy objectives. The empirical literature on the effects of VRE on wholesale electricity prices 

suggest that increasing levels of VRE have a negative impact on average prices and thus could 
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potentially undermine the role of energy-only prices in guiding long-term investments in 

generation. 

Thus, our research aims to close this gap in the literature by quantifying the impact of higher 

VRE on wholesale prices and volatility of those prices in interconnected power markets of 

Europe. We model several scenarios which are in line with EU’s 2030 objectives to see if 

wholesale energy-only prices would support investments in conventional and VRE generation. 

By doing so we also contribute to the recent debate on “subsidy-free” offshore wind auction 

results in leading power markets in Europe. 

3.1. Pan-European electricity dispatch model 

For this research, we employ our own economic dispatch model and calibrate it to simulate the 

interconnected power markets of North Western Europe (for details see the Supplementary 

material). The model simulates European power markets at hourly resolution and at plant level. 

Its objective is to minimise total costs (fuel and carbon costs and variable OPEX) of meeting 

hourly demand, while respecting many techno-economic constraints of power plants such as 

ramping constraints and operating reserve constraints (spinning up and down reserve 

requirement). We assume completely inelastic demand curves, but we price country-specific 

VoLL in the model (CEPA, 2018). Thus, as the supply margin reduces, possibly violating the 

operating reserve constraints and the system demand constraint, the wholesale prices would 

approach VoLL. The model also endogenously optimises the operations of hydro pumped 

storage units. Thus, it optimises operational decisions – such as dispatch, pumping and 

discharge – and does not look at investment and divestment decisions explicitly. For this 

research, we have modelled coal, gas and oil-fired power stations, while assuming all other 

technologies to be exogenous. These other technologies are onshore and offshore wind, solar 

PV, biomass, hydro run-of-river, nuclear and other (e.g. geothermal) generation technologies. 
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The model was calibrated to 2015 data to simulate SEM (in Ireland), Great Britain (GB), France 

(FR), Belgium (BE), the Netherlands (NL), Switzerland (CH), Germany (DE), Austria (AT), 

Italy (IT), Denmark (DK), Norway (NO) and Sweden (SE). Italy, Denmark, Norway and 

Sweden were subsequently divided into their respective bidding zones21. In total, 25 market 

bidding zones were modelled explicitly, considering their interconnection capacity. Hence, the 

model assumes efficient coupling of these market zones. 

3.2.Scenarios and assumptions 

We model electricity markets in a near-future time frame, recognising the reality that it takes 

time to change electricity markets, especially at the level of the whole EU single electricity 

market. We are motivated by the sort of electricity market that might be necessary by 2030 but 

recognise that this market will itself be decided in 2025, based on the electricity market 

conditions that might have emerged by then. 

To meet our research objective, the following scenarios have been developed and modelled 

(see Table 1 for details): 

1. Baseline – assumes same level of wind (both onshore and offshore) and solar PV 

capacity as in 2015 but that commodity prices will increase to the expected level in 

2025. 

2. Scenario A – increase of 50% of wind (both onshore and offshore) and solar PV 

capacity relative to 2015 for all markets considered in the model.22 

3. Scenario B – increase of 100% of wind (both onshore and offshore) and solar PV 

capacity relative to 2015 for all markets in the model. 

                                                           
21 IT-N (north), IT-CN (centre north), IT-CS (centre south), IT-S (south), IT-SA (Sardinia), IT-SI (Sicily), DK1, DK2, NO1, 
NO2, NO3, NO4, NO5, SE1, SE2, SE3, SE4. See ENTSO-E transparency platform - https://transparency.entsoe.eu/ 
22 This is a near-term target (which has already been reached in some of the countries we consider here, such as GB) 
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4. Scenario C – as in scenario B but assumes higher fossil fuel prices than the projected 

prices for 2025. We “bring forward” the commodity prices projected by IEA (2018) for 

2040 to the year 2025, thus assuming a situation whereby commodity markets could 

become tighter sooner. 

5. Scenario D – as in scenario C but assumes higher carbon cost on top of higher fossil 

fuel prices. 

6. Scenario E – as in scenario B but assumes “unlimited” interconnection capacity 

between all the market zones in the model. 

7. Scenario F – same as in Scenario B but closing unprofitable dispatchable plants. 

By comparing Scenario A and B with the Baseline scenario, we quantify the impact of 

additional VRE capacity on wholesale power prices (the merit order effect) and their 

volatilities. By looking at the differences between Scenario C (D) and B we quantify the impact 

of higher generation cost (fuel and carbon) on power prices; in particular, will increase in 

generation cost cancel out the merit order effect? The interactions between the merit order 

effect and the generation cost effect are very specific to the local market context, as these 

depend on the generation mix of each market as well as their interconnection level. 

Table 1: Input parameters and assumptions for modelled scenarios. 

Scenarios 
VRE 

capacity Fossil fuel 
capacity 

Interconnection 
capacity 

Fossil fuel prices 
(€/MWh) 

Carbon 
cost, 

€/tCO2 wind solar Gas Coal Oil 
Baseline 2015 level 2015 2015 23.9 9.8 40.2 25 

Scenario A 50% > 
baseline 2015 2015 23.9 9.8 40.2 25 

Scenario B 100% > 
baseline 2015 2015 23.9 9.8 40.2 25 

Scenario C 100% > 
baseline 2015 2015 29 10.3 51.1 25 

Scenario D 100% > 
baseline 2015 2015 29 10.3 51.1 57 
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Scenario E 100% > 
baseline 2015 unlimited 23.9 9.8 40.2 25 

Scenario F 100% > 
baseline 

closure based on 
“missing money” 2015 23.9 9.8 40.2 25 

Source: fossil fuel prices are from IEA’s (2018) New Policies Scenario; all costs and prices 
are in 2017 Euro 

The merit order effect also depends on existing interconnection between considered market 

zones. Comparing Scenario E with B, we would expect wholesale prices to stabilise (less 

volatility) under high VRE share because of potential negative co-variances in supply and 

demand across large distances in Europe. 

A large increase in VRE capacity (Scenario B) may negatively impact the profitability of 

conventional generation. Thus, an optimal capacity expansion problem, given exogenous 

(large) increase in VRE, could mean substantially lower optimal conventional generation and 

effects on equilibrium wholesale prices. We examine this issue in our Scenario F. 

Finally, we assume that generation from biomass, hydro run-of-river and other (e.g. 

geothermal) technologies as well as electricity demand stay at the level of 2015. As for nuclear 

generation, we assume that only Germany will completely phase-out nuclear by 2025 while 

nuclear generation in other countries in the model are fixed to 2015 level. Under the most 

ambitious VRE (and energy efficiency) impact assessment scenario (‘EUCO3030’) done by 

E3MLab and IIASA (2016) for the Commission, the EU28 electricity demand is expected to 

increase by 3.5% by 2030 relative to the 2015 level. Also, under the ECO3030 policy scenario 

the role of biomass, hydro, geothermal and other RES remain largely unchanged (i.e., their 

shares in total generation is the same23 as in 2015, see E3MLab and IIASA, (2016)). Hence, 

the Commission expects that wind and solar generation will play a central role in fulfilling the 

30% RES target. 

                                                           
23 Except for biomass, for which the projection from the EUCO3030 scenario shows a marginal increase from 
6% in 2015 to 9% in 2030 in EU’s generation mix (E3MLab and IIASA, 2016). 
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3.2.1. VRE scenarios 

Capros et al. (2018) modelled two core policy scenarios24 used in European Commission’s 

official Impact Assessment (IA) of its 2030 policy package “Clean Energy for All Europeans”. 

They model EU’s optimal generation mix needed to achieve a 27% contribution from RES to 

total energy demand. They have also modelled several sensitivities, one of which is a 30% 

contribution from RES to total energy demand (‘EUCO3030’). Table 2 compares our VRE 

scenarios (A and B) with the EU’s IA policy scenarios and sensitivities.  

Table 2: Modelled Wind and Solar Penetration (Scenario A and B) vs European 
Commission’s Impact Assessment (IA) scenarios 
 Wind share in demand Solar share in demand 
 Scenario 

A 
Scenario 

B 
EU* IA 

27% 
RES 

EU IA 
30% 
RES 

Scenario 
A 

Scenario 
B 

EU IA 
27% 
RES 

EU IA 
30% 
RES 

2015 11% 11% 9% 9% 4% 4% 3% 3% 
2030 18% 26% 20% 24% 6% 9% 9% 10% 

Note: * EU’s 2030 climate & energy target is for the entire EU while we model just the 25 
zones mentioned in section 3.1. this will lead to a small difference in starting penetration. 
Source: EU IA scenarios are based on Capros et. al. (2018) and E3MLab&IIASA (2016). 
 
From Table 2 it can be inferred that if scenario A was applied across the entire EU until 2030 

it would not be sufficient to reach the 2030 policy goals for either wind or solar generation. For 

scenario B on the other hand, the desired 2030 wind capacity would be reached by 2025 while 

the annual solar capacity additions would only need to increase by 12% which would be 

achievable. We should note that the final targets for RES of 32% was approved by all EU 

institutions (the Commission, the Parliament and the Council) and came into force in December 

2018.25 Thus, the final target is just 2% higher than the IA scenario of 30% RES and hence our 

Scenario B is in line with the most recent EU’s 2030 RES policy objectives. 

                                                           
24 The differences between the two core policy scenarios (EUCO27 and EUCO30) is the energy efficiency target: in 
EUCO27 the target is 27% while in EUCO30 it is 30%; all climate and renewables targets in those two core scenarios are 
similar: 27% RES share and at least 40% cuts in greenhouse gas emissions. 
25 see https://ec.europa.eu/info/news/new-renewables-energy-efficiency-and-governance-legislation-comes-force-24-
december-2018-2018-dec-21_en 
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3.2.2. Fossil fuel and carbon prices 

We use IEA’s New Policies Scenario (NPS) for our analysis. IEA assumes that NPS includes 

policies and targets announced by government to achieve climate targets. IEA also produces 

two other scenarios – Sustainable Development Scenario (SDS) and Current Policies Scenario 

(CPS). The differences in fossil fuel price projections for 2025 under these three scenarios are 

not drastically different: for crude oil, the range is 84% (SDS) to 115% (CPS) relative to the 

NPS crude oil prices; for natural gas, the range is 96% (SDS) to 101% (CPS), while for steam 

coal, the range is 86% (SDS) to 105% (CPS). We consider that using NPS is valid because: (i) 

our scenarios cover a broad range of fossil fuel and carbon prices, (ii) we are more interested 

in relative impact of costs on prices rather than focusing on predictions of global future energy 

and climate policies as such. 

In some European markets (e.g. Germany) coal power plants may use bituminous coal or lignite 

coal; the coal price in Table 1 is for bituminous coal26. For lignite, we assume a constant price 

(for all scenarios considered) of €16.5/tonne, which is an average price (and energy content27) 

of lignite in Germany (Booz & Co, 2012). 

One can also see from Table 1 that the price differential between coal and gas widens in favour 

of coal, especially considering indigenously produced low cost lignite in Europe. Thus, it 

would require a relatively high carbon price to support phase-out of inefficient coal-fired 

generation as well as incentivising investments in low-carbon generation technologies. Indeed, 

the EU 2030 policy package stipulates a binding target – at least 40% reduction in CO2 

emissions by 2030 relative to the 1990 level. The EU relies on its emissions trading system 

(ETS) to deliver a carbon price consistent with these decarbonization objectives. The EC 

(2014) impact assessment suggests that ETS price in the reference scenario should be 53 €/tCO2 

                                                           
26 IEA assumes coal’s energy content of 6000 kcal/kg (IEA, 2018) 
27 average energy content of lignite is 2305 kcal/kg (Booz & Co, 2012) 
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to achieve 40% reduction in CO2 emissions. Our carbon price scenario of 25 €/tCO2 is the ETS 

price as of end of December 2018.28 But our 57 €/tCO2 carbon price scenario (D) is equivalent 

to the price projected under the EU’s reference scenario (with adjustment to inflation as 53 

€/tCO2 is likely the 2013/14 prices whereas our modelling uses 2017 prices). 

3.2.3. VRE and further market interconnection 

A key challenge with VRE is its volatility. Table 3 and Table 4 show correlations between 

different countries in Europe for wind and solar generation respectively. Thus, solar generation 

is relatively highly correlated across Europe, while high correlation of wind generation is more 

geographically concentrated. This gives rise to the question of whether higher interconnection 

between markets would reduce volatility in a world with increased renewables by exploiting 

potential negative co-variances in supply and demand conditions across a larger area. 

The benefits of interconnection considering high share of VRE has been examined before. For 

example, Newbery et. al. (2016) looked at the benefit of coupling interconnectors to increase 

the efficiency of trading day-ahead, intra-day and balancing services across borders. Further, 

Green et al. (2016) found that if countries focused on renewables most suited to their own 

endowments and expanded international trade (i.e., having more electricity interconnection), 

system costs could reduce by 5% (€15bn per year). 

Roques et. al. (2010) also found that correlation between wind output decreases with distance 

between two wind sources concluding that geographic diversification of wind farms can 

smooth out fluctuations in wind power generation and reduce the associated system balancing 

and reliability costs. Annan-Phan and Roques (2018) investigated how the effects of VRE is 

affected by market expansion across France and Germany. They found that added wind 

production lowers prices and increases volatility both locally and across borders. It was 

                                                           
28 Note that the average EU ETS price in March 2019 is ca. 22 €/tCO2 (see https://sandbag.org.uk/carbon-price-viewer/) 

https://sandbag.org.uk/carbon-price-viewer/
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concluded however that increased interconnection would decrease price volatility in both 

countries as the benefit of a larger market outweighs local VRE volatility. 

Thus, in order to investigate the performance of the European market under increase in VRE, 

we consider another scenario E, in which interconnection capacities are considered infinite. 

Table 3: Correlation of wind generation (hourly resolution under normal weather condition). 
 

GB_T GB_D SEM AT BE DE FR IT NL PT 
GB_T 1          
GB_D .968 1         
SEM .941 .980 1        
AT .779 .850 .860 1       
BE .906 .966 .976 .848 1      
DE .914 .967 .964 .892 .981 1     
FR .915 .950 .968 .826 .969 .960 1    
IT .754 .781 .800 .851 .783 .829 .846 1   
NL .912 .960 .966 .793 .968 .958 .969 .759 1 

 

PT .904 .831 .816 .641 .756 .750 .794 .646 .748 1 
Note: all correlations are significant at the 0.01 level; “GB_T” means GB transmission level 
connected wind while GB_D - means GB Distribution level connected wind. 
Source: own calculations based on data from Thomson Reuters Eikon Terminal 
 
Table 4: Correlation of solar PV generation (hourly resolution under normal weather 
condition). 
 

GB FR DE NL BE IT ES CZ RO GR 
GB 1          
FR .992 1         
DE .964 .965 1        
NL .988 .988 .981 1       
BE .993 .986 .983 .994 1      
IT .947 .970 .977 .965 .955 1     
ES .969 .989 .937 .965 .956 .968 1    
CZ .928 .940 .989 .959 .955 .980 .917 1   
RO .971 .985 .980 .982 .973 .992 .979 .971 1 

 

GR .882 .916 .946 .918 .900 .981 .924 .967 .959 1 
Note: all correlations are significant at the 0.01 level 
Source: own calculations based on data from Thomson Reuters Eikon Terminal 
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3.2.4. VRE and potential overcapacity in the generation 

In equilibrium, an increase in VRE capacity could mean closure of some dispatchable plants, 

if the impact on their profitability is substantial. Below is a summary of our methodology to 

address this issue (for details see Supplementary material): 

1. We first calculate operating profit29 for each dispatchable plant (that has at least been 

dispatched once in 2025); 

2. then, we rank all the plants according to their profitability with the most profitable one 

first to the least profitable last; 

3. based on this profitability ranking, we then calculate cumulative capacity; 

4. finally, we plot the residual demand curve for a peak demand hour, also considering 

operating reserve (spinning up) requirement for that hour and divest all plants that lie 

to the right of the residual demand curve (RD3), because they are unprofitable and do 

not contribute to system security30 (see Figure 1). 

 
Figure 1: An example of profitability of conventional plants in Germany. 
Note: “RD1-3” = residual demand for three peak demand hours. 
                                                           
29 The profit of a plant is defined here as wholesale price times generation less fuel and carbon costs as well as variable and 
fixed OPEX. 
30 being understood here narrowly as meeting peak hour demand plus spinning up reserve requirement for that 
peak hour 
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4. Modelling Results 

We first present the results (see Table 5) of the merit order effect, the role of generation cost 

and interconnection in driving power prices and hence long-term investment signals in a 2025 

electricity system (Section 4.1). Since the model only looks at operational decisions, we have 

attempted to address the question of potential overcapacity as VRE capacity increases in 

Section 4.2. Lastly, in Section 4.3 we bring all our modelling results to further analyse if and 

under what conditions/scenarios our projected power prices serve as a long-term investment 

signal for both conventional and VRE generation taking Germany as an example31. 

Table 5: Modelled wholesale prices (€/MWh). 
  BE DE FR** IT IT-N* GB 

Baseline 

Price 50.12 49.68 49.79 50.91 51.16 50.07 
coefficient 
variation 

11% 9% 12% 9% 9% 9% 

Scenario A 

Price 49.02 48.23 48.37 49.77 50.23 49.11 
coefficient 
variation 

12% 11% 14% 11% 10% 10% 

Scenario B 

Price 47.90 46.34 46.42 47.05 49.00 48.21 
coefficient 
variation 

13% 15% 18% 22% 13% 11% 

Scenario C 

Price 49.95 47.97 48.28 50.70 52.91 50.40 
coefficient 
variation 

15% 17% 22% 22% 16% 14% 

Scenario D 

Price 73.20 71.63 71.40 70.98 72.88 73.36 
coefficient 
variation 

6% 9% 14% 14% 7% 4% 

Scenario E 

Price 47.45 47.40 47.43 47.44 47.47 47.46 
coefficient 
variation 

13% 13% 13% 13% 13% 12% 

Scenario F 

Price 57.42 54.86 55.55 53.28 56.24 75.95 
coefficient 
variation 

23% 26% 26% 25% 22% 61% 

Note: prices (in 2017 Euro) are average for the entire year; * IT-N stands for Italy North 
region (a separate bidding zone in Italy) representing more than half of Italy’s annual 
electricity demand; ** excludes three hours of very high prices due to insufficient operating 
reserve capacity under high VRE scenarios. 

                                                           
31 but our modelling results could be applied to other markets 
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4.1. “Merit order”, generation cost and interconnection under high VRE 

The results (Table 5) show that the magnitude of the merit order effect is different for markets 

considered. For Belgium, Germany, France and Great Britain the effect of more VRE is rather 

modest – a reduction in the average annual wholesale price of between 1.9 - 4 €/MWh when 

wind and solar capacity are doubled (Scenario B vs Baseline). 

However, the effect is relatively more pronounced for Italy: the merit order effect is ca. 5.7 

€/MWh reduction in average annual price (Scenario B vs Baseline). This is because in some of 

IT’s bidding zones the share of VRE will be very high relative to respective demand in those 

regions increasing power price volatilities and curtailments (more “0” price hours in 2025). 

That said, the merit order effect for IT-N is comparable to those obtained for other markets. 

Thus, treating Italy as a single bidding zone may produce a comparable merit order effect to 

other markets (e.g. GB or BE), but that would ignore the effect of the increase in VRE on 

balancing cost (e.g. either via increased re-dispatch cost due to internal constraints, or else via 

increased transmission expansion cost). 

As for the impact on price volatility, more VRE also means higher price volatility. Price 

volatility increases from 2 p.p. (Belgium and GB) to 22 p.p. (for Italy as a whole) implying 

higher financing costs and potentially higher fixed price contracts and hence retail prices. 

Further, the impact of more VRE in France and Italy is more ‘pronounced’ in that every 

additional percentage point increase in VRE causes average power prices to decline by more 

than in countries such as Germany and Great Britain (Figure 3). 
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Figure 2: Relative impact of VRE on wholesale power prices. 
 

The reason for this difference is due to the shape of conventional supply curves (see Figure 3). 

As VRE capacity is increased, the maximum and minimum residual demand shift to the left. 

Potential drops in wholesale price are hence contained within these shaded areas. In Germany, 

the supply curve is relatively flat compared to France, meaning that an increase in VRE 

(reducing residual demand) is likely to have a smaller effect on wholesale prices. 

 
Figure 3: The supply and residual demand curves for Germany and France in the baseline 
scenario. 



25 
 

As for fossil fuel price effects, higher commodity prices (Scenario C) increase average annual 

prices by around 5% (or ca. 2.5 €/MWh) relative to prices in Scenario B. Italy seems to be an 

exception, again, as commodity prices have a higher impact on annual average prices there – 

the increase is ca. 8% (3.4 €/MWh) relative to Scenario B. The supply curve for Italy is very 

steep in the relevant region (where peak demand will likely intersect with the supply curve), 

thus the peaking plants could be inefficient gas and/or diesel generators. 

It is worth noting that higher commodity prices cancel the merit order effect in Italy and GB, 

as annual prices in the high commodity price scenario are now back to the level of prices 

observed in the baseline scenario. Moreover, the Italy North bidding zone has an average 

annual price exceeding the average price under the baseline scenario (52.91 €/MWh vs 51.16 

€/MWh) – fossil fuel price effect is more pronounced than the merit order effect of VRE in that 

bidding region. 

In Germany, France and Belgium, average prices under high commodity prices are still below 

the average prices under the baseline, indicating a stronger merit order effect of VRE than the 

higher fossil fuel price effect there. 

Further, high carbon price (57 €/tCO2) dramatically increases annual average wholesale power 

prices in all markets. On average, across all our markets, power prices increase by 52% relative 

to annual average price in Scenario B, with Italy North seeing an increase of 49% and Germany 

of 55%. It is worth noting also that price volatility reduces under high carbon price scenario 

(D). 

Our results underline the importance of developing further interconnection between European 

power markets to enable more VRE. More interconnections stabilise wholesale prices: there is 

complete convergence between key markets in Europe both in terms of price level but also the 
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price variations are reduced significantly. Thus, further interconnections may help reduce risks 

in hence financing cost for both conventional and VRE technologies. 

4.2.Impact of more VRE on “missing money” of conventional plants and system 

overcapacity 

More VRE on the system depressess wholesale prices and affects running hours of dispatchable 

plants. Figure 4 shows total profit of conventional plants by fuel types in Germany under all 

scenarios.  

 
Figure 4: The size of the "Missing Money" problem under various modelled scenarios in 
Germany. 

As we put more VRE on the system (Scenarios A and B), the size of the “missing money” 

problem increases – under Scenario B the total profit32 of all existing conventional plants that 

we model for Germany is ca. -820 €mn/year. One can also see that higher fossil fuel prices 

(Scenario C) indeed help to imrpove overall profitability, but this still remain largely negative. 

                                                           
32 Note that operating profit does not consider plant cycling costs such as start-up and shut down as we do not 
model star up and shut down decisions. Hence, plant profitability shown here might represent an upper bound of 
real profitability.  
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It is worth mentioning that coal lignite plants are profitable in all scenarios but with higher 

carbon cost the aggregate profitability of lignite plants reduced dramaticaly. Lastly, with 

unlimited interconnecion capacity, the economics of existing coventional plants improves, but 

rather marginally. 

Removing all unprofitable plants (see Section 3.2.3) will impact the merit order and hence the 

equilibrium wholesale prices. Figure 5 shows the supply curve before and after decomissioning 

of all unprofitable plants: the most unprofitable plants are in the lower flat part of the original 

marginal cost curve. They are indeed in the region where peak demand occurs and hence, they 

also set prices. Removing these plants from the system will alter the cost curve  – peak demand 

hours are now being met by higher cost plants and the peak hour prices could increase 

significantly compared to the system with overcapacity. 

 
Figure 5: Marginal cost curves before and after decommissioning of all unprofitable plants in 
Germany (Scenario B). 
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Applying this analysis for all other markets for Scenario B results in 90.4 GW of conventional 

capacity being decommissioned, which is 43% of the total capacity of conventional power 

plants that we model (Table 6).33 

Table 6: Installed capacity (MW) by technology before (Scenario B) and after (Scenario F) 
decommissioning. 

 DE FR GB 
Technology B F B F B F 

Coal 58783 33843 5798 500 20223 759 
Gas CCGT 8080 7370 4690 0 21604 5888 
Gas GT 4309 4309 3274 2389 2475 2475 
Gas ST 5269 5269 1036 0 1623 303 
Gas CT 1419 1419 634 0 983 983 
Oil GT 1820 1820 1649 1649 1237 1237 
Oil ST 1193 1193 4821 4821 464 464 
Oil CT 447 447 705 705 856 856 
Oil CC 229 229 0 0 0 0 
Total 81549 55899 22607 10064 49465 12965 

Note: GT – gas turbine; ST – steam turbine; CT – combustion turbine; in addition, NL and 
SEM decommission one 2196 MW bituminous coal plant and one 638 MW CCGT plant 
respectively. 

Thus, we remove those decommissioned plants and we re-ran our model for Scenario B (which 

we called Scenario F). As expected, removing unprofitable plants from the power system will 

shift respective merit orders and hence power prices – average prices are now amongst the 

highest in all scenarios considered (exception being very high fossil fuel and carbon price, 

Scenario D). One can also see that with increased wholesale power prices due to much tighter 

capacity margins34, price volatilities have also increased substantially. In fact, volatilities are 

the highest in all our scenarios. 

                                                           
33 Note that we only model coal, gas and oil-fired power generation while other technologies and their 2015 actual 
generation are assumed to be exogenous and constant in the model. 
34 we have divested all unprofitable plants such that the remaining capacity is just enough to cover peak demand and the 
required operating reserve margin 
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4.3. The economics of investing in conventional generation and VRE 

The power prices arising from all considered scenarios seem to no longer serve as a good long-

run investment signal to bring new CCGT capacity on line. Of all scenarios analysed, it is only 

under relatively high fossil fuel and carbon prices (Scenario D) or when there is no overcapacity 

(Scenario F) there are improvements in operations of existing CCGTs as their running hours 

are relatively high compared to other scenarios and compared to the actual 2015-2018 capacity 

factors (Table 7). Under all other scenarios, neither investment in new CCGTs nor the operation 

of existing ones seems viable via participation in the energy market alone: profit considering 

CAPEX is negative. Apart from Scenario F, the inframarginal rent is almost zero implying that 

CCGTs are setting prices most of the time due to load duration curve being less peaky as VRE 

production increases; only in Scenario F, where we divest unprofitable plants, peaking plants 

are less efficient gas turbines (GTs) and hence CCGTs earn inframarginal rent. Our modelling 

does not include strategic behaviour when CCGTs (or GTs) can set prices above SRMC to 

recover their ongoing fixed cost. 

Table 7: Economics of investing in a 450 MW CCGT plant in Germany: actual market data 
for 2015-18 and for 2025 under all simulated scenarios. 

  
  Baseline 

Scenarios Actual market data 
A B C D E F 2015 2016 2017 2018* 

MAX power 
prices 

71.7 62.0 60.1 63.1 91.4 72.7 244.0 99.8 105.0 163.5 98.2 

Average power 
prices 

44.2 48.2 46.3 48.0 71.6 47.4 53.1 31.8 29.0 34.2 41.7 

MIN power 
prices 

34.4 36.7 -89.6 -89.6 -63.4 34.5 -89.6 -79.9 -130.1 -83.1 -76.0 

Instances of 
negative prices 

0 0 6 6 6 0 6 98 98 149 110 

Natural gas 
price** 

23.0 23.0 23.0 28.0 28.0 23.9 23.0 21.1 15.7 17.3 25.3 

Carbon 
price*** 

24.7 24.7 24.7 24.7 57.5 24.7 24.7 7.5 5.0 5.5 20.5 

Short-run 
marginal cost of 
a CCGT 

54.1 54.1 54.1 63.1 73.8 55.7 54.1 44.9 34.2 37.3 56.8 

N hours prices ≥ 
SRMC 

13 379 179 5 3235 1 3172 1276 701 1404 2859 

Implied 
capacity factor 

0% 4% 2% 0% 37% 0% 36% 15% 8% 16% 33% 



30 
 

  
Inframarginal 
rent 

0.0 0.0 0.0 0.0 1.1 0.0 14.2 4.0 3.0 9.0 14.0 

Profit -40.1 -40.1 -40.1 -40.1 -39.0 -40.1 -25.9 -45.2 -46.0 -39.7 -35.2 
Note: hourly power prices in €/MWh-e, gas prices in  €/MWh-th, Carbon prices in €/tCO2, 
Short-run marginal cost of a CCGT in €/MWh-e, inframarginal rent and profit in € mn/year; 
* data until Sept-2018; ** for 2015-2018 this is annual average TTF gas prices; *** for 
2015-2018 this is annual average EU ETS prices apart from 2018 where the price is average 
Sept-2018 EU ETS price; power prices for Scenarios A-F are in 2017 Euro. 

Note, that when we remove all unprofitable plants (Scenario F) then the wholesale electricity 

prices are very high, making some of the removed plants profitable, had they stayed in the 

market. Indeed, some existing CCGTs might be profitable as their running hours and 

profitability are improved under Scenario F (Table 7). That is, the ‘optimal’ marginal cost (MC) 

curve for Scenario F should be somewhere between the two MC curves shown in Figure 5. If 

some plants could be profitable staying in the market, then we will have lower wholesale 

electricity prices than the prices under Scenario F. This will reinforce our conclusion that with 

further penetration of VRE wholesale prices may no longer serve as a long-run investment 

signal for conventional generating capacity (CCGT, for example) or indeed serve to retain a 

large fraction of the existing dispatchable capacity. 

As for VRE technologies, it is important to distinguish between wholesale power prices that a 

dispatchable plant can get and the revenues that a “subsidy-free” wind and solar generator 

could get, solely based on wholesale prices. Within a day, wind and solar capacity factors and 

price profiles will have different effects on captured prices for onshore, offshore and solar PV, 

due to their inherently different resource base. Solar generation seems to peak at a time when 

power prices could also peak; thereby creating the so-called “cannibalisation” effect (more 

solar PV means less revenue due to the depressing price effect at peak times when solar PV 

generates electricity). Wind resources and especially offshore wind is more reliable in this 

sense – within a day, capacity factors are rather stable. There may also be a strong seasonal 
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effect as European power prices (on average) are lower in the summer than in the winter, thus 

favouring wind and penalising solar relative to conventional plants.35 

Table 8 shows “captured” average prices for three VRE generation technologies – onshore 

wind, offshore wind and solar PV – taking Germany and Italy as an example. Captured prices 

by a VRE technology are its total revenue over the course of the year (2025), from wholesale 

energy only prices divided by total generation over the same period. Thus, this captured price 

depends on hourly generation profiles and achieved capacity factors for onshore, offshore wind 

and solar PV. 

Table 8: "Captured" prices by wind and solar in Germany and Italy (€/MWh). 

 DE IT 

 

Onshore 
wind 

Offshore 
wind 

Solar 
PV 

Average 
wholesale 

price 

Onshore 
wind Solar PV 

Average 
wholesale 

price 
Baseline 44.17 44.67 43.86 49.68 45.24 45.29 50.68 
Scenario A 47.87 48.86 46.39 48.23 48.96 46.76 49.32 
Scenario B 45.48 47.39 42.59 46.34 43.19 33.43 45.01 
Scenario C 46.95 49.32 43.66 47.97 46.57 36.50 48.40 
Scenario D 70.76 72.67 67.64 71.63 67.13 57.39 69.00 
Scenario E 46.91 47.19 44.35 47.40 47.31 44.72 47.44 

Source: calculations based on our modelling results; prices are in 2017 Euro 
The results suggest that offshore wind can consistently achieve prices above the average 

wholesale prices (but this is rather marginal). Onshore wind captured prices are quite close to 

the actual annual average prices whereas solar, as one would expect, achieves lower prices than 

the actual wholesale prices. What is striking, but perhaps not surprising, is that more wind and 

solar capacity means lower captured prices for solar PV: doubling of wind and solar capacity 

(Scenario B) means a drop of ca. 1.3 €/MWh from average captured prices by solar PV, 

whereas the captured power prices by wind (onshore and offshore) increased. Similarly, an 

                                                           
35 See DG ENERGY (2018). 
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increase in commodity prices (Scenario C and D) helps wind generation, especially offshore, 

more than it helps solar PV. 

Finally, we look at the potential economics of “subsidy-free” wind and solar PV investment, 

taking Germany as an example. Figure 7 plots the required reduction in CAPEX for all three 

VRE technologies assuming a 10% return on investment (ROI) and a 20-year payback period. 

For onshore wind to be “subsidy-free”, we would expect the CAPEX to fall by 50-70% from 

the existing (IEA, 2017) level by 2025, depending on the scenarios analysed. For offshore, by 

35-60%; for solar PV, by 56%-72%. For example, a high fossil fuel and carbon price market 

condition (Scenario D) CAPEX for offshore wind would just need to go down by 35% for the 

technology to breakeven, using energy-only wholesale power prices alone. Recent offshore 

wind auction results suggest that this is possible, but challenging. 

To put this required reduction in CAPEX in a historical context: according to IRENA (2018), 

onshore wind costs dropped by approximately 25%, or 561,000 €/MW between 2008 and 2017. 

Offshore wind costs have remained quite volatile, and peaked around 2016; while solar PV 

costs in Europe have dropped by 83% from 2010-2017, although this is not linear. There has 

been a linear drop of about 168,000 €/MW between 2015 and 2017. 

We should point out that the presented calculations (Figure 7) are rather simplistic in the sense 

that we have not taken into account such important aspects as technical degradation of wind 

turbines and fixed and variable OPEX, which could be rather substantial, at least for wind 

technologies. This means that our estimation of breakeven CAPEX reduction is a lower bound 

and, for example, considering fixed running OPEX would further deteriorate the “subsidy-free” 

economics of VRE investments. 
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Figure 6: Reduction in CAPEX needed to breakeven for “subsidy-free” VRE under all 
scenarios in Germany; reference CAPEX are taken from (IEA, 2017); breakeven CAPEX is 
based on our modelling results for respective scenarios. 

5. Conclusions 

All in all, with our modelling, we quantified: (1) the merit order effect of VRE, (2) the impact 

of fossil fuel and carbon prices on wholesale power prices, (3) the role of further 

interconnection between European market zones under high VRE production, and (4) the 

potential problem of overcapacity when VRE capacity is significantly increased. It seems that 

carbon prices and overcapacity (or tighter supply/demand market condition) have the most 

influence on power prices. By contrast, the other three factors (the merit order effect, fossil fuel 

prices and improved interconnections) have relatively modest impacts on average power prices. 

We found that wholesale power prices may no longer serve as a long-run investment signal for 

conventional generating capacity (CCGT, for example) in conditions where conventional 

generation will not be required to produce base-load electricity but will be required for system 

adequacy. Even at a very high level of commodity prices, our results show no clear prospects 
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for new capacity addition. However, there could be an improvement in profitability of existing 

CCGTs under a high fossil fuel price and high carbon price scenario. With further penetration 

of VRE, our results show the negative impact on profitability of CCGTs, exacerbating their 

missing money problem further. 

If wind and solar are to be self-financing by 2025 under the current European electricity market 

design, they would need to be operating in circumstances which combine much lower capital 

cost and/or much higher fossil fuel and carbon prices. In the absence of these favourable 

conditions for VRE, long term subsidy mechanisms in the form of auctions would need to 

continue in order to meet European renewable electricity targets.  

However, we do find that wind, particularly offshore, is likely to suffer less from the 

cannibalisation of its market than solar. This is because wind output is better able to capture 

the average annual wholesale price of electricity.  

A move away from feed-in-tariffs for wind and solar to market prices will also expose 

generators to increased price volatility, which would raise their investors’ target rates of return. 

The question of the need for a fundamental market redesign to let the market guide generation 

investments in both renewables and conventional generation investment would seem to remain. 

Our modelling results also show the importance of further interconnection between markets in 

Europe – which may be very expensive/difficult to achieve – as this allows near complete 

convergence of power prices (both baseload and peak prices) and more importantly stabilises 

these prices (reducing volatility) and hence reduces potentially higher market risks due to more 

VRE. However, increased interconnection does not change the picture we paint on the 

‘financeability’ of subsidy-free VRE and fossil fuel investments via energy-only markets by 

2025. 
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If there was to be sufficient closures of fossil fuel power plants, in response to low profitability, 

that would make a difference to market prices but would put more pressure on ancillary services 

markets to support adequate amounts of generation for system stability. Many of the currently 

existing fossil fuel plants would still be required to provide adequacy and other services to the 

system in the presence of much higher penetration of VRE. By contrast, a significant rise in 

carbon prices would improve the ability of a low carbon electricity system to be self-financing. 

Raising carbon prices thus remains a good policy for promoting unsubsidised low carbon 

generation within the current market design. 

Thus, interventions to create capacity markets or sharpen ancillary services markets payments 

can help address the problems of the current market design by creating the incentives for the 

optimal addition and retention of power plants to the system. However, these mechanisms are 

problematic to design, and investments supported by them will likely have higher costs of 

capital, given the volatile and difficult to predict income streams that they give rise to. This is 

because ancillary services markets are subject to fundamentally different governance 

arrangements relative to energy markets, making them expensive to rely on as a source of long-

run funding for generation investment.  
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