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Abstract

In this thesis, we consider the forms of non-equilibrium phenomena that can arise in
atoms or polar molecules trapped in a deep optical lattice and coupled by dipolar
internal degrees of freedom. We specifically focus on only two internal states, which
results in the systems studied behaving as spin—1/2 models with long-range interactions.

We first study a closed system with both static and resonant near-field dipole
interactions under an external drive. By studying the uniform mean-field dynamics of
the system, we find the dynamics are given by Rabi oscillations, with a bifurcation
in the dynamics as a function of drive strength between small scale and large scale
oscillations. Analysing the stability of these oscillations to small fluctuations reveals
that interactions tend to cause the oscillations to decohere. However, we find parameter
regimes where coherent oscillations can persist for high enough intensity drive.

We then consider the effects of an environment on the non-equilibrium dynamics
of the near-field dipole model. We find that within the mean-field approximation, an
environment causes the system to relax to many novel steady state spin configura-
tions, such as spin density waves, antiferromagnetism and long-time oscillations, as
well as bistabilities between these phases. To assess the validity of the mean-field
approximation, we compare our mean-field results to small quantum systems. We
carry out a similar analysis on a system with far-field dipole interactions, where it is
necessary to introduce nonlocal dissipation, which results in several decay modes into
the environment. These decay modes lead to instabilities of many of the steady state
phases that occurred in the near-field dipole system, leading to the emergence of more
spin density wave and oscillatory phases.

Finally, we examine the dynamics on the approach to steady state in a dissipative
dipolar system by studying Rydberg atoms coupled to a photonic crystal waveguide,
which mediates an effective dipole-dipole interaction between the atoms. We find
that if two excitations exist in the system, then bound states can form, with nonlocal
dissipation resulting in a momentum dependent decay rate of the bound states and

also greater freedom in engineering the bound state energy dispersion.
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Chapter 1
Introduction

When atoms and molecules are cooled to low temperatures, their thermal energy
becomes comparable to the energy scales of inter-particle interactions and quantum
mechanical kinetic energy. The equivalence of these energy scales results in a significant
interplay of these effects, leading to the emergence of new physical phenomena. The
last few decades have seen major progress in observing these new phenomena in dilute
cold gases, which have been cooled to near zero Kelvin. The first breakthrough was
achieved by Chu, Cohen-Tannoudji and Phillips, who were awarded the 1997 Nobel
prize [4] for engineering methods to cool and trap atoms using lasers and magnetic
fields. These methods resulted in the production of optical molasses, gases of Sodium
atoms at micro-Kelvin temperatures, which had greatly reduced velocities. The second
breakthrough was by Ketterle, Cornell and Wieman with further cooling of gases by
using a magneto-optical trap and evaporative cooling. This led to the achievement of
nano-Kelvin temperatures and the realisation of the Bose Einstein condensate, a new
phase of matter that is strongly characterised by quantum mechanical properties. For
this result, Ketterle, Cornell and Wieman were awarded the 2001 Nobel prize [5]. Since
these discoveries, the ability to readily produce ultracold atomic gases and molecules
has opened up a new and exciting avenue to explore the effects of quantum mechanics
and inter-particle interactions, and the discovery and realisation of other new exotic

phenomena.

1.1 Quantum Simulation of Spin Systems

One of the most exciting aspects of ultracold atomic gases is the emerging field of

quantum simulation. When theoretically modelling a quantum system, the biggest
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obstacle one faces is the curse of dimensionality, where the dimension of a Hilbert space
grows exponentially with the system size. Take, for example, N two-level systems, for
which the Hilbert space dimension grows as 2V. Classical computers can only currently
simulate of the order N ~ 30 two-level systems and in order to simulate N on the order
of hundreds, you would need more atoms than are currently in the entire universe. The
idea of a quantum simulator, suggested by Feynman [6], is to circumvent this issue by
directly simulating the quantum dynamics in experiment and observing the outcome.
While there are currently many theoretical ways to approximate the behaviour of large
quantum systems, without direct simulation of the dynamics, it is difficult to tell what
approximations are valid and when.

When building a quantum simulator, one usually wants to have the relevant particles
studied to be subjected to periodic arrays, either to model crystalline materials or to
exploit coherence effects. To do this, one can illuminate the particles with lasers, which

results in a potential of the form [7]
1 2
V(r)=—-d.E= —iﬁ(yE(t,rﬂ Vs (1.1)

where 3 is the polarisability of the particle being illuminated, d is the dipole moment
and E is the electric field from the laser. The angled brackets on the electric field
represent temporal averaging. If counter-propagating lasers are used, the electric field

is given by E = Egsin(k - r) and the potential takes the form

BB

vir) = -25

sin?(k - r). (1.2)

The particles now experience a periodic potential, known as an optical lattice. Optical
lattices are an extremely versatile tool. By using different arrangements of lasers, it
is possible to form a multitude of different lattice geometries such as 1D chains, 2D
square and hexagonal lattices, as well as Kagome lattices, which can be used to study
frustration effects, and also quasicrystal geometries [8]. By shaking the optical lattice,
it is also possible to generate synthetic gauge fields [9] which can be used as a way to
study the effects on magnetism on neutral particles. The high freedom and versatility
of ultracold particles in optical lattices can be used to simulate a variety of real-world
crystalline models and novel quantum phenomena [7, 10, 11].

In this thesis, we will be concerned with the quantum simulation of spin-1/2 systems,

where each lattice site only contains two degrees of freedom. The following sections will
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explain how these spin-1/2 systems can be realised, in ultracold gases and also other

experimental settings, by exploiting either motional or internal degrees of freedom.

1.1.1 Motional Degrees of Freedom

When particles lie in an optical lattice, the dynamics of the particles depend on the
depth of the lattice potential, which is given by 3|Eq|?/2, in relation to the recoil
energy, h%|k|?/2m, where m is the mass of the particle. For sufficiently shallow lattices,
we have B|Eg|?/2 ~ h?|k|?/2m and it is possible for particles to quantum mechanically
tunnel between different sites. To describe the behaviour of particles in the lattice, we
consider the Hubbard model,

Uy .

Pl

N
Hywp = — Zzh algazo+alaa ZZ
[

N
o — 1) +> Upiusfu,, (1.3)
o (i,l) l

where &;ro

and @, are either bosonic or fermionic operators, which create and destroy
a particle on site [ respectively. The operator 7, = dzg&l,g counts the number of
particles on site [ [10, 12| and the index o indicates the spin of the particle, with
o =1,}. The first term in Eq. (1.3) is the kinetic energy of the particles hopping
through the lattice, where the parameter h, is the spin dependent hopping potential,
which depends on the tunnelling strength between two adjacent sites. The second
and third terms in Eq. (1.3) are onsite interaction terms, with strengths U, and Uy,
respectively, which gives an energy cost for multiple occupation of a site. If the optical
lattice is shallow, then h, > U,,U;; and so the particles are delocalised throughout
the lattice rather than constrained on any site.

If the potential of the optical lattice is large however, such that S|Eg*/2 >
h?|k|?/2m, then h, is small and tunnelling between sites is suppressed. In this case,
hs < U,, U, and so the system will lie in a Mott Insulator state where, on average,
there is a single particle per site, with double occupation being unfavourable for
U,, Uy > 0. When this is the case, particles can still hop between sites, but only
through swapping place with a nearby neighbour. For a spin-1/2 particle, particle
motion coupled with the spin degree of freedom leads to a superexchange mechanism,

that gives rise to an effective spin interaction of the following form [13]

N
1= Z Jo20707 + Juy (6767 + 6767) (1.4)
(i.0)
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where the (.) brackets indicate summation over nearest-neighbours only and the spin
operators are defined as 67 = 1)) (1] — [4o) (|, 67 = —i|T) (] + i) (1] and
af = 1) (|l + ) (Tu]. This is the XXZ model, and is just one example of how
a spin-1/2 model can be engineered in cold atom gases. The parameters J,, =
(h2 4+ h})/2U;, and Jo, = hyhy /Uy, for fermions. This reduces to the well known
Heisenberg model [14, 15] when hy = h;. For bosons, the parameters are given by
Sz = (W + h7) /20Uy, — B3 /Uy — B} /U, and Juy = —hyhy /Uy [13, 16].

We can also obtain spin Hamiltonians of the form in Eq. (1.4) when considering
the Hubbard model, Eq. (1.3), with spinless (o takes only one value and U;; = 0)
fermions in a 1D optical lattice, when there are fewer fermions than lattice sites. Each
site behaves as a spin-1/2 system, but with the spin degrees of freedom corresponding
to a site being occupied (|1;)) or unoccupied (|{;)) rather than an internal spin degree
of freedom as before. The Hubbard model, Eq. (1.3), can then be mapped to a spin
system by applying the Jordan Wigner transformation [14]

67 =2f1f—1, 67 = fie ™ Lma™m 5t = flm Dmam, (1.5)

where fl are fermionic operators.

The same is also true for few spinless bosons in an optical lattice of any dimension
when U, — oo, which then means double occupation of a site is essentially forbidden,
with (b])2 = 0. We can then obtain a spin system by applying the following mapping
to Eq. (1.3)

657 = 2bbi —1, 67 =b;, o7 =0, (1.6)
where b; are bosonic operators. Bosonic excitations with (ZA)I )2 = 0 are known as

Hardcore bosons. Finally, spin models can also be achieved with spinless bosons in
tilted optical lattices [17, 18].

1.1.2 Internal Degrees of Freedom

As well as through motional degrees of freedom, spin models arise naturally when
particles interact purely through their internal degrees of freedom, such as electronic
or hyperfine energy levels. Typically, the internal energy levels of particles interact
through exchange of photons which couple to the dipole moment of the internal energy

transition. In situations where the time scales set by the interactions are much faster
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than the motional degrees of freedom, we can safely ignore any motional effects and
treat the particles as if they are at fixed positions. For example, such a set up is possible
in ultracold gases when the lattice potential is so large that h, =~ 0 and no particle
hopping can occur. When only two internal states are relevant for the inter-particle
interactions, the dynamics again map to spin-1/2 system, although including more
internal states allows higher spin models to be achieved.

Through appropriate choice of the internal degrees of freedom, it is possible to tune
a variety of spin interactions. As in the previous section, we will primarily focus on

generic spin models of the type

7 K2

N N N N
H = N67+> N6T+> AV + Y Ji6767 + Ji6767 + Jy6167, (1.7)
7 7 7 2,0

where the quantities A™¥* are set by external drives and the interactions J*¥* are set
by the coupling of dipole moments between the two-level systems. The spin operators

are now defined by the two energy levels involved,

o7 = ler) {ed| = |an) (aul ,

6 = ler) (anl
o, = lgu (el (1.8)

AT _ A— A+
o, =0, +0,

AY _ cA— PN
O-l —ZO’Z —ZO'l 9

where |e;) is the excited energy level and |g;) is the groundstate energy level of a
particle on site [. Throughout this thesis, the appearance of the Pauli operators will
occur often and will always obey these definitions unless stated otherwise. Also note
that throughout this thesis, we will work with the convention that A = 1.

For cold gases, spin systems can be implemented with the internal triplet states of
alkaline-earth atoms such as Sr [19-21], or rotational energy levels of polar molecules
such as KRb [22-24]. It is also possible to construct spin models with the electronic
energy levels of Rydberg atoms, atoms which have their outermost electron excited to
very high quantum numbers, inheriting very strong dipole moments as a consequence
[25-30]. Engineering spin interactions through trapped particle degrees of freedom
is also possible in a variety of different systems other than ultracold gases [31]. It
is possible to engineer Hamiltonians of the form in Eq. (1.7) through trapped ions,

where ions can be constrained using microtraps and then laser cooled [32, 33] and also
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through coupled cavities, where atoms are trapped inside cavities which can be then
arranged in periodic arrays [34, 35]. Further implementations are superconducting
circuits, where the two-level system is formed of energy levels of an LC circuit with a
Josephson junction [36, 37] and nuclear spins in Nitrogen vacancy (NV) centres [38—40].
Spin systems with motional degrees of freedom are also possible in other systems such
as in arrays of quantum dots, where electrons are confined to discrete energy levels in
semiconductor wells and form spin interactions via superexchange [41, 42].

While we have discussed both motional and internal degrees of freedom to construct
spin models, we will only consider fixed particles interacting through their energy levels
by dipole interactions from now on. The experimental focus will be on cold atoms and
molecules, but the references in this chapter demonstrate that many of the models we

consider in this thesis can be implemented in a variety of different ways.

1.2 Non-Equilibrium Phenomena

One major interest in quantum simulation is studying systems consisting of a macro-
scopic number of degrees of freedom, which can present interesting forms of collective
behaviour, notably the existence of different phases of matter at thermal equilibrium.
Much work is currently focused on macroscopic quantum systems in far-from-equilibrium
settings [10] which are now possible to study experimentally in ultracold atomic gases
[43, 44]. In closed quantum systems (systems that do not interact with an external
environment), it is expected that interactions will lead to a redistribution of energy
among all degrees of freedom, resulting in thermalisation at long times. This allows
the system to be described in terms of only a few key macroscopic quantities rather
than having to know the full details of the underlying microscopic dynamics. The
thermalisation of quantum systems is usually expected due to the eigenstate thermali-
sation hypothesis, which postulates that the eigenstates of generic quantum systems
inherently contain a thermal state and this thermal state is eventually revealed in
the long-time limit under standard unitary evolution [45]. However, it is known that
thermalisation of a quantum system need not always occur. Instead, there can be
regimes of synchronization, where coherent dynamics persist, many-body localization,
where quantum states are prevented from thermalisation due to disorder in the system,
or prethermalisation, where the system appears to thermalise in the long-time limit,

before undergoing further dynamics and reaching true thermal equilibrium at a later
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time [46-49]. Determining under what conditions a system does not thermalise and the
form of non-equilibrium phenomena that can exist is an active area of current research.

Interactions between atoms and molecules are crucial for thermalisation phenomena.
For example, given a system of isolated two-level systems under an external drive,
there is no mechanism for energy to be transferred between degrees of freedom and so
we expect the system to not thermalise and instead for the two-level system to undergo
persistent Rabi oscillations. However, interactions between the two-level systems leads
to (local) energy shifts of the resonance frequency. Consequently, when driven out
of equilibrium, the interactions are expected to lead to dephasing of collective Rabi
oscillation [50-56] causing observables to relax to some (non-equilibrium) steady state
values. In some systems, even with the presence of interactions, a system will not
thermalise due to there being as many conserved quantities as degrees of freedom. Such
systems are known as integrable [57].

As well as through interactions, far-from-equilibrium behaviour also naturally
arises when systems are subject to noise from an external environment, which causes
decoherence of quantum effects. This can lead to new phases of matter not found
in isolated systems and also alter phase transitions that occur in closed systems.
Simulating and studying the steady state behaviour of open quantum systems is a very
active area of research [58-60], as exploiting the presence of an environment is useful,
especially in experiments involving optical transitions where environmental effects are
hard to remove. We will give a proper introduction to open quantum systems and the
effects of an environment in the next chapter.

Finally, in addition to looking at the long-time dynamics and steady states of a
system, it is also interesting to study transient non-equilibrium phenomena by studying
the dynamics and decay of excitations within a system. With strongly coupled two-level
quantum systems, it is possible to explore fundamental issues in the quantum dynamics
of many-body systems subject to strong interparticle interactions [61-63]. An example
we will look into is that of magnon dynamics, including magnon bound states, where

two excitations in a quantum system can bind together and travel as a single unit.

1.3 Dipole Interactions

As mentioned earlier, interactions between fixed particles typically occur due to their
dipole moments. We will therefore be focusing on dipole-dipole interactions between

two-level systems in this thesis. This is one of the simplest physical realisations which
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explores the far-from-equilibrium dynamics of many interacting quantum degrees of
freedom. Dipole interactions can be long-ranged and dissipative, and arise naturally
in many systems, such as ultracold polar molecules, polarisable ultracold atoms and
Rydberg atoms. The range and form of the dipole interactions depends on the
wavelength of the energy level transition between the internal states chosen. We shall
look at both the case of near-field dipole interactions, which are short-ranged, and also
far-field dipole interactions, which are long-ranged and dissipative. The different forms
of the dipole interactions can have large differences on the resultant non-equilibrium

phenomena.

1.3.1 Near-field Dipole Interactions

When the two-level transition wavelength is large compared to the distance between the
particles, then the interactions between the internal states are described by a near-field

dipole interaction of the form

Hpp=3"214;-d - ,
Dip erg,l ! -z (1.9)
il

where r; = r; —r;, with r; being the position vector of a dipole on site i, ry; = |ry], az is
the dipole moment operator on site ¢ and Jy = 1/4me, for electric dipoles or Jy = po/4m
for magnetic dipoles. The spatial profile of the near-field dipole interactions is 1/r3,
which means the boundary of the system will be important in 3D, but not important
in 2D or 1D systems. Near-field dipole interactions occur when the wavelength of
the two-level transition is typically in the microwave regime, which is common when
working with rotational levels in polar molecules, such as KRb or with highly excited
electronic states in Rydberg atoms. Both polar molecules and Rydberg atoms typically
have both exchange and static dipole interactions. For the case of two energy levels,
we can choose the quantisation of the dipole along the z axis [64] and then have the
static dipole terms, dy = (g|d*|g), di = (e|d?|e), and also the transfer dipole term,
@ = |{g|d?|e)| = |{e]d?]|g) ]|, transforming the Hamiltonian in Eq. (1.9) into the

following spin Hamiltonian

N 9 0o 0 9
J, dy —do)* ., .. e i —ds, ., .. dy +d
HDip:Z;)(( ! 1 0) 667+ ¢ (667 +6,6,) + O(Ui+al)+7( ! 1 o) )
il il
o
(1.10)
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We can see here how the static dipole moment results in an Ising interaction while the
exchange dipole moment results in an XY interaction. This type of Hamiltonian will
appear in Chapters 3 and 4.

Many experiments have already been performed to realise isolated dipole coupled
spin systems, where Rydberg atoms [65-68] have been used to realise XY models and
Ising like models, as well as allow storage and read out of photons. There is also
considerable progress using polar molecules to realise quantum magnetism [22, 23, 69—
71]. There are numerous novel theoretical predictions for the behaviour of near-field
dipole coupled spins. These include work showing how the 1/r3 nature of dipole
interactions can stabilise Bose Einstein condensates against fluctuations and disorder
[72], as well as lead to interesting topological properties of the groundstate of the
Hamiltonian [64] and the role of dipole interactions in spin ice [73]. There are also

many studies on the role of near-field dipole interactions in magnetic materials [74].

1.3.2 Far-Field Dipole Interactions

When the two-level transition wavelength is comparable to or smaller than the distance
between the particles, the interactions between the internal states are then described

by a far-field dipole interaction of the form

g e 3 ~ a ; a T 1
HDip —— K Zezﬁril{ ldz . dl N ( 7 rzl)( 1 rzl)‘|
l

deg 4 2 KTl

T
i1 (1.11)

i |f§lz ) al _ 3(dl . I‘@;ll(dl . I‘z’l)] <</€:'l)2 o (K:ﬁg) },

where k = 27w /)4, with \; being the wavelength of the dipole transition. In this

regime, the spatial profile of the dipole interaction is long-ranged, with 1/r and 1/72
terms as well as the 1/73 form from the near-field case. The long-range nature of
the interaction can have significant effects on the quantum system, especially the 1/r
terms, which means the boundary of the system is important even in one dimensional
systems. The interaction has real and imaginary parts, where the imaginary parts of
the field correspond to loss into the environment and will play an important part of
the dynamics. Note that in the limit x — 0, we regain the near-field dipole interaction
in Eq. (1.9) as expected.

Far-field dipole interactions occur in polarisable atoms, rather than polar molecules

and Rydberg atoms. For these systems, the wavelength of transition is in the optical



10 Introduction

regime. We also lose the static dipole moment, as atoms have weak or non-existent
permanent dipole moments. The interaction of an electromagnetic wave with a medium
formed from an array of polarisable particles is a recurring problem in physics. If these
particles are two-level quantum systems driven close to resonance, then collective effects
can arise due to the strong resonant dipole-dipole interactions provided the average
interparticle spacing is smaller than the dipolar transition wavelength. These collective
effects give significant deviations in the behaviour of the medium compared to one
formed of non-interacting scatterers. Key differences include the emergence of Lamb
shifts, where interactions modify the two-level transition energies [75, 76], and the
formation of superradiant and subradiant modes, where the dipole-dipole interactions
enhance or suppress decay of excitations [77, 78]. Understanding how these collective
effects alter the response of a medium is still an ongoing topic of research.

Because the transition wavelength is in the optical regime, dipole interactions of
the form in Eq. (1.11) are very important in understanding how light scatters through
cold disordered atomic gas clouds due to the large scale collective effects that can
arise. Much work has already been carried out on theoretically understanding light
scattering through cold atom gases [79-84], with some of these effects being realised
experimentally [85-88]. Most work focuses on the low light intensity limit, where
interactions between excitations is negligible and the full quantum model simplifies
to a problem of classical scatterers. In these models, the collective effects can be
exploited, especially when the atoms are arranged periodically on a lattice [89]. This
can lead to effects such as electromagnetically induced transparency interferences
[90, 91], long-time excitation storage in subradiant modes [92] and enhanced optical

cross sections [93].

1.4 Outline of Thesis

The outline of this thesis is as follows. In Chapter 2, we introduce the theory of open
quantum systems, when the atoms interact with a common environment, which will
be required for later chapters on dissipative systems. In Chapter 3, we study a closed
system of two-level systems with near-field static and exchange dipole interactions
under an external drive, finding regimes of collective Rabi oscillations despite the
presence of interactions. In Chapter 4, we look at the same near-field dipole system
from Chapter 3, but now coupled to an environment, which induces local dissipation

and causes the excitations to decay. We find the presence of an environment leads to a
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range of new non-equilibrium phenomena. Then in Chapter 5, we focus on far-field
dipole interactions, which introduces nonlocal dissipation to the system and changes
the non-equilibrium phases that arise due to the coupling of several decay modes into
the environment. In Chapter 6, we study the dynamics of excitations in dipole coupled
systems on the approach to the steady state, looking at two-excitation bound states
and how the presence of nonlocal dissipation effects their dynamics. Finally, in Chapter

7, we draw conclusions and also outline future work.






Chapter 2

Open Quantum Systems

2.1 Introduction

In nearly all experimental settings, a system cannot be perfectly isolated from its
environment. Instead, interactions can cause decay of excitations and dephasing of
the system and, in many cases, can have significant impact on the resultant dynamics
and phases. In this chapter, we introduce how to handle the effects of an environment
by using the theory of open quantum systems [94], which will be important in later

chapters.

2.2 Master Equation Derivation

When a system interacts with an environment, it is useful to consider the system of
interest and the environment together as one large isolated system. Then, one separates
the system Hamiltonian into a bath Hamiltonian, Hp, containing all unwanted degrees
of freedom, the system Hamiltonian, Hg, containing all the degrees of freedom of

interest, and the interaction between the two, H 1, such that
H=Hg+ Hy + H,. (2.1)

To describe the dynamics of the system, it is convenient to work with the density
matrix, defined as p(t) = |1(t)) ((t)|, where |1(t)) is the wavefunction of the system.
The density matrix has the property Tr{p(¢)} = 1 due to unitarity, and any observable

of the system is given by (O) = Tr{ﬁ(t)é}, where O is some generic operator. The
dynamics of the full system (system, bath and interaction) still obey the Schrodinger
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equation. Therefore, the density matrix of the full system obeys

dp(t A A oA
’Z;t) = —i [H; + Hs + Hp, p(t)] . (2.2)
We wish to focus on the dynamics of just the system and its interaction with the
environment, rather than trying to simulate the full system dynamics, which is generally
impossible. Therefore, to proceed, we will need to develop an effective model of the
environmental degrees of freedom. To do this, we first write Eq. (2.2) in the interaction
picture by applying the unitary transform U(t, 0) = exp(—z’t(ﬁs + ]:IB)) to Eq. (2.2),
which gives

dR(t) 1y g

! [ ] ; (2.3)
where the interaction picture density matrix is given by R(t) = et(Hs+Hz) j(t)e~it(Hs+Hz)
and the interaction picture Hamiltonian defined by H;(t) = e(Hs+H8) ff e~ it(Hs+Hz)
We now integrate Eq. (2.3) to obtain an expression for R(t) and then substitute this
expression back into Eq. (2.3). By tracing out the environmental degrees of freedom,

we define the reduced density matrix, Rg(t) = Trg{R(t)}, which obeys

deSt(t) o /Ot ds T { [H1(t), [A1(s), R(s)]] } . (2.4)

assuming that Trp {[]f[ 1(t), I%(O)]} = 0 so there is no constant of integration. The
dynamics of the reduced density matrix still depend on full density matrix R(f).
Therefore, to simplify the dynamics, we follow the steps taken in Ref. [94]. Firstly, we
apply the Born approximation, which involves assuming that the coupling between the
system and the environment is weak, so that changes in the system have only a small
effect on the environment. This allows us to write R(t) ~ Rg(t) ® Rp. Furthermore,
we have to assume that the environment has no memory effects, known as the Markov
approximation, which means the dynamics of the density matrix do not depend on its
previous state. This allows us to replace }%(s) with R(t) in the integral equation, Eq.
(2.4) and, with a subsequent relabelling of s — ¢ — s, change the upper limit of the

integral to infinity. With these approximations, we can now write Eq. (2.4) as

dei(t) - _ /Ooo ds'Trp {[ﬁ[(t), [[:]I(t —5), }?S(t) ® }A%BH} . (2.5)
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To simplify the dynamics further, we now apply the Secular approximation, which
first involves rewriting the interaction Hamiltonian in the basis of system Hamiltonian
eigenstates. In the Schrodinger picture, the interaction Hamiltonian can be written in

the following form

=Y Aso B, (2.6)

where A, and B, are arbitrary Hermitian operators, where A, acts on the system and

B, acts on the environment. We now introduce the operators

Ayw)y= Y Ti(e)ALTI(), (2.7)

where € and € are eigenvalues of the system and f[(e) is a projector onto the eigen-
vector(s) of the eigenvalue €. The sum is over a finite bandwidth where the differ-
ence between energies satisfies € — ¢ = w. The operators A(w) obey the relations
[Hg, Ag(w)] = —wAq(w) and [Hg, Al (w)] = wAl(w). They also obey a complete-
ness relation Y, A,(w) = 3, Al (w) = A, which allows us to write the interaction

Hamiltonian as

Hy =3 Aa(w) ® Ba =3 Ag(w)' ® Bl (2.8)

In the interaction picture, the interaction Hamiltonian is then given by

Hi(t) =Y e ™ Ay (w) @ Bo(t) = Y e Ay (w)f @ Ba ()1, (2.9)

where B, (t) = 5! B e~ 5! Inserting the interaction Hamiltonian into Eq. (2.5)

gives
dﬁs(t) oo A ~ A . . . .
= —/0 Trg {Hy(t - 5)Rs(t) ® RpH(t) — Hi(0) Hi(t — 5)Rs(t) © Ry} + hec.

=33 NG p(w) [Ag(w) Re(t) Al (o) — AL (W) Ap(w) Rs(t)] + hoc,

ww' af

where h.c. denotes the hermitian conjugate. The quantities G,p are defined as

Goslw) = /0 T Trg {BL(6)By(t — )Ry} ds. (2.11)
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The terms of w # W’ in the sum of Eq. (2.10) can be ignored if they oscillate much faster
than the inverse of the relaxation time of the system, 7z. Therefore, we only include
the terms with w = «’ in the sum. Finally, splitting the function Gos = ['n3/2 + iS45

into real and imaginary parts gives

dﬁst(t) =—i [Hs+ > SapAl(w)Ag(w), ps(t)
w of
LYY F;B(g Ag(w)ps(t) Al (w) — At () Ag(w)ps(t) — ps(t) Al (w) As(w)),

w aﬁ

(2.12)

where we have moved back to the Schrodinger picture. This is the master equation which
describes the dynamics of the reduced density matrix of the system. The expression
in the commutators represents unitary evolution under the Hamiltonian whilst the
second term is the loss terms from interaction with the environment. In general, for
the Markovian approximation to be valid, we require the reservoir correlation functions
in Eq. (2.12) to decay much faster than the relaxation time 7g. If the environment
density matrix jp is a stationary state of the bath i.e. [Hg, pp] = 0, then the quantities

Gp are independent of ¢, which will be assumed in future chapters.

2.3 Adjoint Equation

As for closed system quantum dynamics, it is sometimes useful to consider the evolution
of the system from the perspective of the Heisenberg picture, looking at the dynamics
of the operators rather than the density matrix. To do this, let us take the master
equation, Eq. (2.12) and rewrite it using the Liouvillian superoperator £, which acts

on an operator, O, as follows

ﬁ@ = —1 I’AIS + Z Z Sagﬁl(w)ﬁg(w), O
. @ of (2.13)
+3°3 57 (245)0AL (w) ~ {AL(w)d5(w), O})
w af
where the curly brackets denote the anti-commutator. The master equation, Eq.
(2.12), can be written as dp(t)/dt = ﬁﬁ(t). By introducing the propagator V(t, ty) =

T, exp ( ftto ﬁdt), the dynamical evolution of the open quantum system can be written
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as

ps(t) = V(t,to)ps(to), (2.14)
where time ordering has been applied to V(t, to), denoted by T',. Any observable in
the open quantum system is given by Trg {OV(t, to) ﬁg(to)} which can be rewritten
as Trg {VT(t, to)éﬁg(to)}. This motivates the introduction of the Heisenberg operator
as Op(t) = Vit t)O where Vi(t ty) = T exp (ftto ﬁTdt), and T, denotes anti-
chronological time ordering. The equation of motion for the Heisenberg operator is

now given as
A0y (1)
dt

= VT(t, 1) LTO. (2.15)

If the Liouvillian superoperator is time independent, then ‘A/T(t, to) and L1 commute.
This means Eq. (2.15) can be written as dOy(t)/dt = L£TOp(t), which can be fully

expanded to give the adjoint master equation,

) _ 3 [1,04(0)] + X3 127 (241 @)00 (1) As(w) — (AL As(w). On(1))).

w aﬂ

(2.16)

The adjoint master equation can be more convenient to study than the master equation

in determining the dynamics of observables.

2.4 Single Two-Level System in an Electromagnetic

Environment

In order to demonstrate some key properties of dissipative systems, we will now study a
simple model of a two-level system interacting with an electromagnetic bath. This will
form the basis for future chapters when considering several two-level systems interacting
with each other and an electromagnetic environment. The system Hamiltonian is given
by

Hs = %a (2.17)

where wy is the frequency of the two-level transition, and the bath Hamiltonian is given

by harmonic oscillators for each mode of the electromagnetic field,

Hy =33 wial(k)a,(k), (2.18)

k v=12
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where k is the wavevector of the mode, wy = c|k| is the frequency of the mode and a,,
al, are the bosonic annihilation and creation operators of a mode with a polarisation

indexed by v. The interaction Hamiltonian is given by

A

H =—-dE, (2.19)

where d is the dipole operator of the two-level system. The operator E is the electric

field, given by

E=iY Y [ e, (k) (a,(k) —al (k). (2.20)

k v=1,2 Veo

where V' is the volume of space within which the radiation field is quantised and e, (k) is
the transverse polarisation unit vector. Given our system Hamiltonian, we can see that
the eigenvectors of the system are simply |g) and |e). The interaction Hamiltonian is
already in the form of Eq. (2.6), so we can write down the operators A, (wg) as Aq(wy) =
(e] d, |g) 6~ where « labels the Cartesian components, x, y and z. The functions G,z
are defined by the electric field and given by Gas = [°(Eq(t)Es(t — s))e™0sds. For a
bath at zero temperature, we can evaluate the integral in G, (full details are given in
[94]) to obtain Gup(wo) = das(I'(wo)/2 + iS(wp)) where

wold]* _ £|df?

r = = 2.21
(o) 3rceg 3mey ( )

where k = 27/)g, with Ay being the wavelength of the two-level transition. This
definition of I" will appear in future chapters. We ignore the form of S(wp) as this just
results in a energy shift of the two-level system and can therefore be absorbed into the

definition of wy. The final master equation is given by
(26~ p(t) 6T — 6767 p(t) — p(t)oT67). (2.22)

Note here that p(t) is the system density matrix, but we have dropped the S subscript.
Unless stated otherwise, we will adopt this convention for the rest of the thesis. We will
also adopt the same convention for traces, which will now always be over the system
degrees of freedom.

We can also add additional terms to our system Hamiltonian without changing the
dissipation. Primarily, we will be concerned with driving the two-level transition with

an external field, E = ee™*! + €*e™!, with € being the polarisation of the drive. This
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external field will also couple to the dipole moment to give a new term of the form

A Q
HDrive = §&m7 (223)

where €2 = 2e - d*. Note that we have made the rotating wave approximation in Eq.
(2.23), which also shifts the energy of the system Hamiltonian so that wy — A in Eq.
(2.17) where A = w — wy.

To study the dynamics of the driven dissipative two-level system in more detail, we

can derive the equations of motion for the spin by taking the trace S°(t) = 1 Tr{6”p(t)}

where 5 = x,y, z, which gives

510 _ Ly Ssu,
dsy(t) T y é () — N

= =58 + 5T - QS (), 22
dS*(t)

e -T (; + Sz(t)> + QSY(1).

These equations are known as the optical Bloch equations. In Fig. 2.1, we plot

some example dynamics of the optical Bloch equations for an initial condition of
(5%, 8Y,5%) =(0,0,1/2) with I'/Q2 = 0 and I'/Q2 = 0.5.

0.4F

0.2F

mS?

02l N/ N/ N_/ m 5

-0.4r

0 5 10 15 200 5 10 15 20

tQ tQ

Figure 2.1 Plot of the optical Bloch equations for I'/Q? = 0 (left) and I'/Q2 = 0.5 (right) with
A/Q = —0.5. The presence of an environment drives the dynamics to a steady state at long times,
whereas in a closed system, the dynamics would continuously oscillate due to the external drive.
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The dynamics of the optical Bloch equations give examples of important changes
due to the presence of an environment. For no dissipation, the system undergoes
persistent Rabi oscillations, unless the initial condition is a steady state of the dynamics.
However, introducing an environment causes the system to decay and results in the
spin components always approaching a steady state, no matter how strong the drive
or detuning. At low drive (2 ~ 0), this steady state is simply the groundstate of
the system Hamiltonian, with (S*,SY, S%) = (0,0, —1/2). However, at high drive, the
solution is given by a mixed state with vanishing spin magnitude [95]. In later chapters,
we will find examples of where we can recover oscillations even with dissipation when

we include interactions between spin systems.

2.5 Superoperator Formalism

Finally, before moving to other chapters, it is worth discussing another convenient way
to write the master Eq. (2.12). We mentioned in the discussion of the Adjoint master
equation how the the Lindblad dynamics described by Eq. (2.12) can be written as a
propagator acting on the density matrix. By working in a higher dimensional Hilbert
space, we can rewrite this as a matrix equation by writing the density matrix in the
superoperator formalism. This involves promoting the density matrix to a vector in
Hilbert space of dimension 4" and then the Lindblad master equation can be rewritten

as a linear matrix equation of the form

dps(t)
dt

= [,ps(t). (2.25)

The 4V x 4V matrix £ always has at least one zero eigenvalue, with the corresponding
eigenvector being the steady state density matrix. All eigenvalues have zero or negative
real part provided the master equation gives decay and the eigenvalues also come in
complex conjugate pairs due to the Hermitian nature of pg(t). In this form the time
evolution is given by pg(t) = exp(Lt)pg(0) which can be expanded in the eigenvalues
of L to give

4N 1
ps(t) = > ce™'R;, (2.26)
=0

where ¢; = L;.pg(0) and L; and R; are the left and right eigenvectors of £ which are

distinct as L is non-Hermitian.



2.5 Superoperator Formalism 21

Again, if we look at a single two-level system coupled to an electromagnetic field,

we find the Liouvillian in superoperator form is given by

T —10 12 0
—iQ L _2A 0 Q
c=| e (2.27)
10 0 5 — 2 —if)
r 12 —10 0

There is a zero eigenvalue as expected, with the remaining eigenvalues, A, given by

solutions to the cubic
AN+ 8TA? + (517 4 4A27 4+ 407) A+ T® 4+ ATA? 4 2702 = 0. (2.28)

Using Descartes’ rule sign we can explicitly see that all the eigenvalues must be negative
or complex as there are no sign changes between coefficients and all coefficients are
positive. More importantly, we can also see that there is never another zero eigenvalue,
meaning there is only ever one steady state solution to the optical Bloch equations
dynamics. Cases where there are two long-time steady states are referred to as
bistabilities. An interesting quantity to study is the eigenvalue with the smallest real
part which determines the approach to the steady state solution. In Fig. 2.2, we plot
the smallest real part of the eigenvalues of the Liouvillian, also known as Liouvillian

spectral gap.
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-0.55

-0.60

-0.65

Figure 2.2 Spectral gap of the Liouvillian for a single dissipative two-level system as a function of
Rabi drive and detuning. We see the gap never decreases below 0.5I" in magnitude, so there is only

ever one steady state to the dynamics.

We see the gap never closes, and reaches a minimum of 0.5I', so no bistability exists
in a single spin coupled to an environment. In later chapters, we will look at examples
where interacting spins have a gap smaller than 0.5I" for certain 2 and A, indicating
that the gap could possibly close for large systems and that there could be more than

one steady state.



Chapter 3

Stable collective dynamics of
two-level systems coupled by dipole

interactions

3.1 Introduction

In this chapter, we consider a closed system of a large number of two-level systems
which are coupled by near-field dipole interactions and subjected to an external drive.
After preparing the system out of equilibrium, we seek to find when collective coherent
behaviour occurs, as a function of the strength of the external drive and also dependence
on the form of the dipole-coupling (modified by the geometry, by the orientation of
the dipoles, and by the relative strength of the static and transition dipole moments).
Whereas the interactions give rise to chaotic behaviour and possible thermalisation in
many cases, we show that there are parameter regimes where this no longer occurs
and the system undergoes stable collective Rabi oscillations. By showing that stable
collective oscillations can occur under an external drive, our work is complementary
to that of Ref. [72] which considered the dynamics of non-equilibrium dipole-coupled
two-level systems in a Ramsay sequence where the dynamics occur in the absence of
any drive field.

This chapter is organised as follows. In Section 3.2 we define the model we study.
We describe the resulting dynamical evolution in Section 3.3 as a function of the
strength of the Rabi coupling. We focus first on a collective spin picture, §3.3.1, before
proceeding to analyse when this collective picture breaks down, §3.3.2. In §3.3.3,
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we study the high Rabi coupling limit analytically and show that in certain regimes
collective Rabi oscillations are stable. The overall results are discussed in Section 3.4

and the conclusions are summarized in Section 3.5.

3.2 Model

We study the dynamics of N two-level systems coupled by dipole interactions in a
uniform external driving field, where N is large. As mentioned in Chapter 1, such
a system can be realised with atoms or polar molecules, held at fixed positions in
an optical lattice, with the two levels being two internal energy levels between which
there is a non-zero (magnetic or electric) dipole matrix element (e.g. these could be
two rotational levels of a polar molecule). Representing each two-level system by a
S = 1/2 spin, and working in the rotating wave approximation such that the drive

field is time-independent, leads to the Hamiltonian

N
> 67+

i

H =

Nl

Ji
T

4r3

N
[cos aG767 +sina (6¢67 + 6767)] (3.1)
il il
l

i

where € is the Rabi coupling. We shall consider the positions of the two-level systems
to be in 1D or 2D arrays, as specified by the couplings J;;. Here, J; = Jya3(1 —
3 cos? ¢y sin? O©), where a is the lattice spacing, © represents the angle between the
dipole orientation and the z axis, and ¢; is the angle between dipoles in the z — y
plane (see Fig. 3.1). The parameter Jy is given by Jy = 1/4mey. For polar molecules,
© can be tuned by application of a d.c. electric field along which the dipoles align [64].
The parameter « relates the relative strength of the Ising and XY dipole interactions
and can take values between —7 to m. We focus only on the range 0 < a < 7 as
values below zero simply corresponds to a change in the sign of Jy and give the same
results. The value of a depends on the choice of internal states and external fields,
with cos a = (dy — dy)?, where dy = (g| d? |g) is the dipole moment of the groundstate,
and d; = {e| d* |e) is the dipole moment of the excited state. We also have sin o = ¢3,
where ¢; = | (9] d*|e) | = | (e| d*|g) | is the exchange dipole moment [64]. One example
of such a realisable set up involves the rotational states of polar molecules, the two
levels being the ro-vibrational groundstate (J = 0) and one of the rotationally excited
states (J = 1,m; = 0). However, other states could also be chosen [22]. The dynamics

of the system with no driving has already been studied [96-98]. The full model we
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consider has been touched upon in [99], but that work does not consider the driven
steady states that we identify here. Eq. (3.1) can also be mapped to a hardcore boson
model [100].

We assume that all the two-level systems are initially in the groundstate, corre-
sponding to all the spins lying along (5%, 5Y,5%) = (0,0,—1/2). This initial state
is not an eigenstate of Hamiltonian (3.1) and so the subsequent evolution involves
far-from-equilibrium dynamics. Since we consider a macroscopic number of dipoles,
an exact description of the dynamics is impossible. We make the approximation that
the system behaves classically and quantum fluctuations are negligible. We expect
this approximation to be valid in regimes where the two-level systems remain largely
coherent — that is, with only long-range variations of the spin, such that there is a well-
defined local spin and the system can be viewed as having slowly-varying ferromagnetic
order. Indeed, we shall show that such situations of stable long-range coherence arise

in certain parameter regimes.

£ /\ ~~~~~~
//\ 7 - y
///\/ 1) ' Q \

/\/ _ '
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{44
/ W
X ~7
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Figure 3.1 A sketch of the considered geometry, with dipoles oriented at an angle © to a 2D lattice
under an applied external field, E. ¢ is the 2D polar angle between dipoles.

3.3 Dynamical Evolution

In order to investigate the collective dynamics induced by Eq. (3.1), we solve numerically
the Heisenberg equations of motion. For an exact quantum system, the number of
equations of motion scales as 2% where N is the number of spins, making the problem
intractable for large systems. However, in the classical approximation, we can ignore
quantum correlations by factorizing (5¢57) &~ (S@)(S/), where 57 = 267 and 3 takes
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the values x, y or z. The number of equations of motion then scales linearly with

system size, and are given by

dsz ol Jz N Jz
L =2sina Y —sleSf’ —2cosa Y —;SfSly,
dt i) i i) Tl
dsy al Jz N Jz
L= QSf —2sina Y TUSEST 4 2cosa Y 0 SEST, (3.2)
di i) i i) i
dS? N,
dtl = QS +2sina Y T (SYSE — SPSE),

i) Tl

where Siﬂ = (S’f ). We impose periodic boundary conditions, which in the large N limit
approximate a system with open boundary conditions very well for 1D and 2D, as the
boundary effects become negligible. This would not be the case in 3D (which we do not
consider here), for which the choice of boundary remains important for the dynamics
owing to the dipolar interactions.

Solving Eqgs. (3.2) we find that the spins behave collectively if all prepared in the
same initial state. We can therefore simplify the equations of motion and study the

collective dynamics in more detail, before analysing the stability under perturbations.

3.3.1 Collective Dynamics

Treating the spins as a uniform collective spin, we set Sf = S% in Egs. (3.2), and

obtain a new set of equations valid on each lattice site

ds”

o = 26575,
dSY
= 08 — 26,557, (3.3)
dt
dS*
= Q9Y
dt ’

with €y = (sin @ — cos a) Zf\;o Jio which is a measure of the dipole interaction strength,
depending on the dipole tilt, underlying lattice and dimensionality. Fig. 3.2 shows the
spin dynamics for the specific case of @ = 7/2 and with the dipoles perpendicular to the
lattice (© = 0). We plot the orbit for an initial condition of (5%, SY,S*) = (0,0, —1/2)
in red (dashed line), and that for an initial condition of (5%, S¥,5%) = (0,0,+1/2) in
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Figure 3.2 Bifurcation Dynamics (a) - Small oscillations at low Rabi coupling. (b) - Before the
critical Rabi coupling at Q = 0.9(€;/2). The two orbits for the spin up/down initial condition
form teardrop shapes and start to meet at the origin which corresponds to the stationary state
(8*%,5Y,5%) = (1/2,0,0). (c) - Orbit at the critical Rabi coupling, Q = €,/2. The spin up and spin
down orbits meet at the origin and form Homoclinic orbits. This change in dynamics is a Homoclinic
Bifurcation. (d) - Past the critical Rabi coupling, € = 1.1(&/2). The two orbits have now merged
and explore each other’s phase space. As the frequency increases, the orbit becomes a circle centred
about the origin. (e) - Rabi Oscillations at high Rabi coupling.

blue (solid line). The equations of motion conserve total spin, so, for clarity, the orbits
can be projected down from the Bloch sphere onto the S* — SY plane.

At low Rabi coupling, Fig. 3.2 (a), the orbits are small oscillations about the
stationary states given by (5%, SY,S*) = (—Q/2€0, 0,+£5y/1— (Q/%O)Q). As the Rabi
coupling increases, the orbit radius grows in size and the stationary state moves closer
to the origin. At high Rabi coupling, Fig. 3.2 (e), the orbits have merged to give full
Rabi oscillations about the stationary state (5%, SY,S%) = (1/2,0,0). This behaviour
can be derived from the collective equations of motion, Eqs. (3.3), as € becomes much
smaller than € or zero in the special cases of dipole geometry or o = 7/4.

Fig. 3.2 (b), (¢) and (d) show the dynamics at intermediate Rabi couplings. At
a critical coupling, Q2 = €/2, there is a bifurcation in the dynamics, indicative of a
sharp transition in the form of the expected time evolution of the system. We can
study this bifurcation more clearly by writing S* = \/ S2 — (SY)2 + (5%)? and defining
new variables = 1/26,5%/Q and y = 1/26,5Y. This allows us to rewrite the S* and

SY equations of motion, Egs. (3.3), as

dx
dt

d € N
d—i = —0? (1 — 0) x — Q2.

(3.4)
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The Hamiltonian of the system can also be recast as

H = ;92 (1 - 26092) % + ine})x + ;yQ. (3.5)
The collective equations of motion are now seen to be the equations of motion of
a particle in a quartic potential well, which is also an undamped, unforced Duffing
oscillator [101]. The potential energy forms a double well, with the spin initial conditions
(5%, 5Y,5%) = (0,0,+£1/2) sitting in one well each. At the bifurcation point, the two
orbits hit the top of their respective potential wells and then move beyond them.
Therefore, the Homoclinic orbit that arises at the critical frequency is also a separatrix
between two different forms of orbits, those inside the double potential well and those
outside. We can calculate the value of Rabi coupling at the bifurcation point by equating
the energy of the orbit with that of the stationary state (S*, S¥,S*) = (1/2,0,0), which
gives the bifurcation coupling of Q = €,/2 found in the dynamics. In summary, within
the assumption of a uniform collective spin, the dynamics undergo a transition from
small constrained orbits dominated by the dipole interaction at low Rabi coupling, to
full Rabi oscillations at large Rabi coupling. The boundary between these two regimes

is given by a bifurcation in the dynamics.

3.3.2 Stability to Non-Uniform Modulations

Having established the collective behaviour of the system, it is important to analyse
the stability of the collective motion under small perturbations. To quantify this,
we linearise the individual spin equations of motion, Egs. (3.2), about the collective
motion by setting S; = S.,; + 0S; where S; is the spin vector on lattice site .. We then
use the periodicity of the system to Fourier transform the linearised equations and
put them into matrix form ddSy/dt = Ax(t)dSx where the matrix Ay () contains the
collective solutions and is therefore periodic. This means that our matrix equation
is now a Floquet equation. We can write the solutions to this equation as a matrix
that obeys dX(t)/dt = Ax(t)X(t) which allows us to define the Monodromy matrix
B = X(T'). The Monodromy matrix propagates the solutions forward by one period
such that X(t + T') = X(¢)B. After n periods, we have X(t + nT) = X(¢)B" and so
any individual eigenstate of B obeys x;(t + nT") = p'x,(t), with p; an eigenvalue of B,
which we refer to as a Floquet multiplier. More details on Floquet matrix theory are

given in Appendix A. We calculate the full spectrum of Floquet multipliers and plot
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the largest as a function of Rabi coupling, where any multiplier with magnitude greater
than unity represents an instability in the orbit as it leads to exponential growth of
fluctuations.

In our analysis of the dynamics of the collective spin of §3.3.1, the tilt of the dipoles,
O, and anisotropy, «, acted only to rescale the parameter €. However, in analysing
stability to non-uniform spin-states, both © and « can have significant effects. We
therefore study three distinct geometries which are representative of all cases. The
first is where all the dipoles are perpendicular to the lattice, © = 0, giving an isotropic
environment at each site. The second is where the dipoles lie in the lattice with
© = 7/2. Finally, we consider the dipoles at the so called ‘Magic Angle’ for which
the average dipole interaction vanishes. For 1D, this angle occurs at sin> © = 1/3 and
for 2D occurs at sin? © = 2/3. We analyse the stability for each of the three dipole

arrangements for specific cases of 0 < o < 7.

Isotropic

The first case we consider is the isotropic dipole arrangement, © = 0. Fig. 3.3 shows
the largest Floquet multiplier for specific values of a between 0 and 7 in the 1D
system. We find that for all values of «, the initial instability behaviour is the same.
At low coupling, the multiplier is near unity, but increases in size as a function of
Rabi coupling. Stability is expected at zero coupling given that the initial state is an
eigenstate of the Hamiltonian. As the Rabi coupling approaches the bifurcation value,
the collective dynamics becomes increasingly unstable, reaching maximum values at
the bifurcation point. Increasing the Rabi coupling further, past the bifurcation point,
the multiplier decreases in value indicating a suppression of the instability. Therefore,
we find that, in general, the collective picture is unstable and the only places where it
may persist are high Rabi couplings. Our numerics show that in the high Rabi coupling
region, stability depends on the value of a. For 7/4 < o < 77 /8, our numerics show
the Floquet multiplier never reaches unity except for o = 37 /4, meaning the collective
Rabi oscillations always break apart. However, for 0 < o < 7/4, the multiplier tends
to unity again and collective motion persists. Later, we will quantify analytically the
high Rabi coupling behaviour and derive the regime of stability.

Moving away from the high Rabi coupling region, we find that for 0 < o < /4,
the multiplier is close to unity for a Rabi coupling that is comparable to, but still
greater than, the dipole interaction. We also note the presence of oscillations in the

multiplier value which are robust to changes in system size and geometry. These
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oscillations and the stability down to relatively low values of the Rabi coupling stability
are unexplained, but do not affect our conclusions in the high Rabi coupling regime.
Across the a range, the bifurcation point is seen to move closer to zero Rabi
coupling as we move « from 0 through to w/4. At a = 7/4 there is complete stability
for all values of the Rabi coupling. This can be understood as a consequence of
the conservation of total spin which occurs as the Hamiltonian becomes an isotropic

Heisenberg Hamiltonian.
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Figure 3.3 Plots of the largest Floquet multiplier for the 1D system. The multiplier is plotted as a
function of Rabi coupling. The bifurcation line is shown in red. For each plot, the system is unstable
for low Rabi coupling across the bifurcation point. However, for a < 7/4, the multipliers are in

general smaller than for @ > 7/4 and also the curves return to unity at high Rabi coupling.

In Fig. 3.4, we plot the largest Floquet multiplier for the 2D system for the same «
values. The qualitative results are the same as the 1D system, with the only difference
being stability for the case o = 77 /8 in 2D at high Rabi coupling. Overall, in both 1D
and 2D, we find stability of the collective state can only be obtained either at high
Rabi coupling, zero Rabi coupling, or when o« = w/4. Small perturbations otherwise

broaden the bifurcation peak in the collective dynamics.

In Plane

We now consider the case where the dipoles lie along the lattice, © = 7/2. For the 1D
case, there is no change in stability due to the fact that tilting the dipoles only changes
the relative sign of the interaction. Therefore, the results of the stability analysis will
mirror that for the 1D isotropic case. For 2D however, the tilting of dipoles creates
anisotropy in the dipole interaction and will have different effects. Fig. 3.5 shows the

Floquet multiplier results. The same broad instability behaviour about the bifurcation
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Figure 3.4 Plots of the largest Floquet multiplier for the 2D isotropic system, with the bifurcation
line shown in red. The multiplier is plotted as a function of Rabi coupling. The results are similar to

those in 1D, but with stability arising for o = 77/8 at high Rabi coupling.

coupling is seen, but in contrast to the isotropic case, the only situation where stable

orbits occur at high Rabi coupling is when o = 7/4.

Magic Angle

Finally, we consider the case where the dipoles are oriented at the magic angle which
leads to an average zero dipole interaction. For 1D, the dipole interaction cancels
entirely and so stable Rabi oscillations are seen across the entire Rabi coupling range
for all v values. For 2D, the dipole interaction only cancels on average and so instability
can still arise from fluctuations. We find that at low Rabi coupling, fluctuations give
rise to large instabilities, but at large Rabi coupling, the system becomes stable again
for 0 < a < 37/4 and remains unstable for 37/4 < o < m. Because of the average
dipole cancellation, the time period of the collective state depends purely on the Rabi
coupling and there is no longer a bifurcation or critical coupling. In Fig. 3.6 we show
the Floquet multiplier results for & = 57/8, @ = 37/4 and a = 77 /8. Any oscillatory

behaviour in the Floquet multiplier at low coupling is a finite size effect.

3.3.3 Analytical Analysis at High Rabi Coupling

Our numerical Floquet analysis showed that collective behaviour was only stable in
the high Rabi coupling limit under certain ranges of a and with certain tilt angles of
the dipoles. Here, we analytically compute when the collective picture is stable in the

high Rabi coupling limit and compare to our numerical results. To do this, we move
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Figure 3.5 Plots of the largest Floquet multiplier for a 2D lattice for an in plane geometry. The
multiplier is plotted as a function of Rabi coupling. The bifurcation line is shown in red. For each plot,
we see the system is unstable for low Rabi coupling across the bifurcation point, but also unstable at

high Rabi couplings in contrast to the isotropic case.
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Figure 3.6 Plots of the largest Floquet multiplier for a 2D system at the magic angle, sin? © = 2/3.
The multiplier is plotted as a function of Rabi coupling. The system is stable at high Rabi coupling
for 0 < o < 3w/4, and unstable for 3n/4 < a < 7.

to a frame rotating at the Rabi frequency, obtaining a time-dependent Hamiltonian
with no Rabi term to which we apply a Magnus expansion, as outlined in Ref. [102],
in powers of Jy/Q. We start with the time dependent Hamiltonian we obtain from

applying the unitary transform U = exp {29/2 >N 63”} to Eq. (3.1). Splitting into time
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independent and dependent parts gives

N .
A A N J; iwap  SIDO cosa .,
Hyot = Hyar + V(1) = Z ﬁ (sm a6; o] + 5 al67 50 Ul)
il il
i#l
+Z : (COSO‘;S““O‘) (cos(208) (6767 — 696Y) + 2sin(204)6%67)  (3.6)
Tzl

z;él

+ Z (67 cos(Qt) + Y sin(Qt))

where we have introduced a detuning term to our original Hamiltonian, Eq. (3.1), with
A; = wp; — w, where w is the applied field frequency, and wy; the two-level transition

frequency on site .. We now write the potential in terms of Fourier components

~ A
=Y S 6 o),
l

N Jialcosa —sinaw) ... o TR (3.7)
pe2 — 3 Jal = ) (5267 — 661 F 2i8%67)

j7l J

J#

Following [102], we can now make the following unitary transform, U = exp [zf( (t)},
to move to a rotating frame that removes the time dependent parts. This gives the

effective Hamiltonian

. oA s Hetk®)
Hog = eXO A (1)e O 4 iTe_ZK(t). (3.8)
t

We can expand K and H in powers of 1/Q and, by comparing powers, obtain the

following



34 Stable collective dynamics of two-level systems coupled by dipole interactions

where h.c. denotes the Hermitian conjugate. The effective high frequency Hamiltonian

is simply given by the time independent Hamiltonian, ﬁsmt, which is explicitly given as

N .
. sina +cosa ., . e
Z = [sm a6lo) + — (676] +6767)|, (3.10)
7,1 z

75

while the the next term in the expansion is given by

N 1 X cosa —sina S JiJw
H ==Y A%* + : 6767 + 6767)67. 3.11
1 Q; iYi 320 szrzrzl(z k i k) l ( )
i#l
k£l

The Kick operator to first order is given by

K(t) === > A; (67 sin(Qt) — 67 cos(Qt)) +
(3.12)

1 X — si
3 Ji (“5 ) (sin(208) (6757 — 6767) — 2cos(200)5767).

We now study the stability of persistent Rabi oscillations by performing a spin wave
analysis [14] of the effective Hamiltonian about the S collective state. We apply
a spin wave analysis, where, for a generic spin magnitude S, we have the following
transformations

5’1 al (25 — ala;)'/? ~ vV2Sal,
(28 — ala;) ' a; ~ V/2Sa;, (3.13)
S —

)

A

Z
z
7

Q)
<L —
Q>

iy

where &I and a; are the bosonic creation and annihilation operators on site ¢ respectively.
Applying these transformations for S = 1/2 and introducing the Fourier transform,

a; = Y g &qeiq'” / VN , transforms the Hamiltonian into the following form
H =" Aq (afaq+ ' qa_q) + Bq (aha' g + a_qiq) + O(@5), (3.14)
q

where Aq = (cosa + 3sina)eq/8 — (cosa + sina)ep/4 and By = (sina — cos a)eq /8.

Note that in Eq. (3.14) we have ignored any constant terms. The quantity e is the



3.3 Dynamical Evolution 35

dipole dispersion relation defined by

IR;[3

N
€q = Z Joa®(1 — 3 cos? pg, sin? O©) (3.15)

where ¢g is the angle between the position vector, R;, and the x axis. To obtain the

spectrum of excitations about the collective S* state, we apply the following Bogoliubov

transform
(iq = cosh O + sinh 04, (3.16)
af, = cosh 6], + sinh 04_q, (3.17)
tanh 20 = —— (sina — cosa)eq , (3.18)
2(sina + cosa)eg — (3sina + cos a)eq
which diagonalises the Hamiltonian to give
H =" Eqdldq + O(dy), (3.19)
q

where we have again ignored any constant terms. The spin-wave excitation spectrum

is given by

Eq = f\/(eq — €p)(sin o + cos ) ((2eq — €o) sin v — €g cos ). (3.20)

By studying when the excitation spectrum becomes imaginary, we can find when Rabi
oscillations are unstable. Also note that as the momentum tends to zero, the excitation
spectrum also tends to zero. This is consistent with the presence of a Goldstone boson,
related to the continuous symmetry of the Hamiltonian under rotations around S*.
Before examining the excitation spectrum for each of the three geometries, we
establish the low momentum limit of the dipole dispersion, Eq. (3.15), which is
important in determining the stability of Rabi oscillations. In 1D, ¢g = 0 and so we

can expand Eq. (3.15) directly to obtain the following low momentum behaviour

€g = (1 — 3sin? @) (e(()lD) — Joa’q® + O(q4)> : (3.21)
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where e(()lD) ~ 2.4Jy. In 2D, due to the angle ¢r, we need to separate the dipole

dispersion into different angular components

3 3
€q = €q (1 —5 sin? @) —5 sin? © ( + e( 2)> (3.22)
where R )
Zq i+imoRr
= Jya? . 3.23
0a Z ‘R |3 ( )

i
For a large number of spins, the spectrum is conveniently found via Ewald summation
[64, 103]. This involves rewriting the dispersion in terms of Bessel functions of the first

kind, which on expansion give

3
€q = e(()QD) (1 —3 sin @)
3
+ 27.Jplqla (—1 +3 sin® © — sin® © cos 2w> (3.24)
3

+ Jo|q|?a® (1 ~3 sin® © — 7sin” © cos Qw) ,
where 1 ~ 0.23 is a numerical constant. Here, eé ~ 9.Jy and v is the angle between
the q vector and the ¢, axis. The key difference between 1D and 2D is the presence
of the linear term in momentum. Given the low momentum expansion of the dipole

interactions, we can now study the stability of Rabi oscillations for the different

geometries.

Isotropic

For the isotropic case, stability is predominantly determined by low momentum fluc-
tuations. Applying the low momentum expansions in the excitation spectrum gives
E, = \/e(()m) cos(2a)(2mJylqla) in 2D and Ey = \/e(()lD) cos(2a)(Jpq?a?) for 1D. We find
that stability depends only on the value of a. For 0 < o < 7/4, the spectrum is real and

therefore we have stable Rabi oscillations. However, for /4 < a < 37/4, the spectrum
becomes imaginary and Rabi oscillations become unstable. Both these outcomes agree
with the numerical analysis. We can see here that o = 7/4 and o = 37/4 result in
zero excitation spectrum. When 37/4 < «, the spectrum becomes imaginary as high
momentum fluctuations cause instabilities instead of low momentum ones, but this is
the only region where this occurs. The spectrum is real again when 77/8 < av in 1D
and 2.506 < « in 2D.
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To compare our analytical results to our numerical results further, we can calculate
the decay rate of the collective state in the unstable regions. From the spectrum of the
S* state, the time scale of decay is derived from the momentum that causes maximum
instability i.e. gives the largest imaginary component. When 7/4 < o < 3w/4, this
maximum decay occurs when €4 = (3sina + cos a)ep/(4 sin ), which gives an energy

and corresponding decay time of

co(sina — cosav) [sina + cosa
Im(E)=1/7 = 2
m(E) =1/7 44/2 sina (3.25)

where we have assumed the expectation value of the spins decays as exp(iEt). However,

when 37/4 < a < 7, there are still decay modes in certain cases, and these occur for
q = m. The Floquet multipliers relate to the decay of the initial state in the following
way

x(t+nT) = p"x(1), (3.26)

where x(t) is a vector of the classical solutions and the Floquet multiplier sets the
growth rate of fluctuations/decay of the collective orbit. Given an initial state x(t), we

can relate these two time scales by

x(t+nT)\ ~nT
log <x(t)> = nlog(p) = — (3.27)

where 7 = 1/Im[E]. Therefore,

) T
7= lim . (3.28)
20 log(p)
Fig. 3.7 shows the decay times for different values of « for the 1D isotropic case plotted
with the theoretical curves from our analytic results. The blue (darker) curve is the
decay time from Eq. (3.25) and the orange (lighter) curve from Eq. (3.20) at ¢ = 7.

The agreement is excellent.
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Figure 3.7 Decay times for the 1D Floquet system. The blue (darker) curve is the analytic curve for
decay from Eq. (3.25), the orange (lighter) curve is the excitation spectrum evaluated at ¢ = 7 and
the points are the Floquet multipliers for 2 = 50¢p. The numerically computed Floquet multipliers
are very close to the analytic curve.

In Plane

As we mentioned before in the Floquet analysis, §3.3.2, there is no change in the
stability of the 1D dipole system when the dipoles lie in the lattice plane, as the
head-head interactions simply becomes head-tail interactions, which leads to a change
in sign of Jy. We can see this directly from the low momentum expansion Eq. (3.21).
However, in 2D, there is now both head-head and head-tail interactions which gives an
anisotropy to the dipole interaction. The 2D low momentum expansion, Eq. (3.24),
has a negative quadratic dispersion along one direction, and positive linear dispersion
along another, due to the cos 2y term. This means that the excitation spectrum Eq.
(3.20) is unstable at both low and high momenta for all values of «, as along certain
directions the spectrum is imaginary. This again agrees with our numerical results
which showed instability at high Rabi coupling for all values of a except o = 7/4 and
a = 3r/4.

As for the isotropic case, we can compute decay times to compare analytics and
numerics. These are plotted in Fig. 3.8 for the 2D system. Although not plotted here
the 1D curve is identical to that from the isotropic case. We see that the 2D data fits

the theoretical curve well.
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Figure 3.8 Decay times for the 2D system with dipoles in plane. The blue (darker) curve is the
analytic curve from the a decay and the orange (lighter) curve from numerical analysis of Eq. (3.20).
The points are the Floquet multipliers evaluated at 2 = 50¢g. The numerically computed Floquet

multipliers match the analytic curve very well.

Magic Angle

Lastly, we consider the case where the dipoles lie at the magic angle. For 1D, the
dipole interaction disappears completely, so €, = 0 for all momenta and there are no
effects of spin-wave fluctuations at any Rabi coupling. For 2D, whilst ¢y = 0, the dipole

interaction only cancels along certain directions. The fluctuation spectrum becomes

Ey = eq\/2 sin a(sin a 4 cos ). (3.29)

The average cancellation of the dipole interaction allows us to pull the dipole dispersion
out of the square root. Now the stability of this spectrum depends purely on the
relative strengths of the Ising and XY terms in the Hamiltonian and becomes unstable

if 3m/4 < oo <, as seen in our numerical results.

Higher Order Corrections

In our spin wave analysis, we have only focused on the leading term in the Magnus
expansion, finding it gives excellent agreement with our numerical results at high Rabi
coupling. We expect that terms of order 1/ (see Eq. (3.11)) or higher in the Magnus
expansion will also capture lower Rabi coupling behaviour under spin wave analysis,
but have the additional complication of the kick operator. Study of the effective

Hamiltonian by itself at higher orders results in a conservation of total S* which is
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not physical at lower Rabi coupling and so the kick operator (which violates total S
conservation) must be included to capture the full system dynamics. However, this has
no influence on our results, which are at zeroth order, as the leading term of the kick

operator is of order 1/4).

3.4 Discussion

We have established the form of the collective dynamics of the system and the regimes
and geometries under which the coherent collective dynamics of all two-level systems
are stable against non-uniform modulations. We find in both 1D and 2D that stability
occurs across the entire Rabi coupling range for v = /4 and otherwise stability occurs
only at high Rabi coupling under certain conditions and dimensionality. In this high
Rabi coupling limit, one can determine stability of the collective picture from the
spectrum of spin waves of the effective Hamiltonian, Eq. (3.20). We use this to plot
a phase diagram of the system in the high Rabi coupling regime as a function of tilt
angle © and the relative strengths of the Ising and XY interaction, . These phase
diagrams are shown in Fig. 3.9 and Fig. 3.10 for the 1D and 2D system respectively.

Summarising the key features of the phase diagrams, we find that for the isotropic
geometry, sin®© = 0, only the regions 0 < a < 7/4, a = 37/4 or a, < a < 7 leads
to stable Rabi oscillations in 1D and 2D. For 7/4 < a < 3w/4, instabilities arise
from low momentum fluctuations whilst for 37/4 < o < «., instabilities arise from
high momentum fluctuations. The cut off angle «a. is the value of a beyond which
high momentum fluctuations cannot cause instability and we find these values take
aP) = 77/8 and a?P) = 2.506 for 1D and 2D respectively. Increasing the tilt of the
dipoles, we find these conditions of stability do not change in 1D where tilting the
dipoles only scales the interaction strength, except at the magic angle where the dipole
interactions cancel exactly. However, in 2D, the collective picture becomes unstable
for all o past a certain value of sin? ©, when the anisotropy in the dipole dispersion
becomes large enough to destabilise the excitation spectrum. We also find that a(?P)
depends on the tilt angle. Once the tilt reaches the magic angle, the average dipole
interaction cancels and we again obtain stability across all values of a except in the
range 37/4 < o < w for 2D.

The existence of stable collective Rabi oscillations over a range of Rabi couplings at
the magic angle is surprising in 2D, given that small scale fluctuations still exist and

otherwise destabilise the collective picture at tilt angles above and below the critical



3.4 Discussion 41

1
L)

2 © < @
o 3B 74 o
sm@%,ﬂ c 8

1 (0)) ) (0]

3

O 1 1

o F & ¥ oaow

Qa

Figure 3.9 Phase diagram at high Rabi coupling in 1D. The blue (lined) regions represent stability
and the orange (plain) regions represent instability. The o = 7/4 line is stable across all tilt angles
due to the Heisenberg symmetry. The magic angle line at sin? © = 1/3 is stable across the entire
a range and occurs due to the cancellation of the entire dipole interaction. There is a region of

instability between 37/4 < a < 77/8 due to high momentum fluctuations.
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Figure 3.10 Phase diagram at high Rabi coupling in 2D. The blue (lined) regions represent stability
and the orange (plain) regions represent instability. As for 1D, the a = 7/4 line is stable across all
tilt angles due to the Heisenberg symmetry. The magic angle line at sin? © = 2/3 is stable up to
« = 3w /4. Unlike in 1D, the anisotropy in the dipole interaction causes instability as the dipoles are
tilted for 0 < o < /4.
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line. It would be interesting to see how this depends on the underlying geometry and
why the fluctuations can behave in such a way that stability is retained. In all other
cases, the collective picture breaks apart after a finite time set by the value of the
Floquet multiplier, with quickest decay of the collective dynamics occurring at the
bifurcation coupling. By studying the time evolution of the system in the unstable
regions via numerical simulations, we find that chaotic dynamics dominate and possible
thermal states form. For example, at low Rabi coupling when 0 < a < 7/4, we find
there is an average steady state of spins lying in the zz plane. This result is similar to
those of exact diagonalization results in a system with Van der Waals interactions [56].

Our results in this section rely on two important approximations. One approxima-
tion is the truncation of the Magnus expansion to lowest order. This neglects terms of
order J2/, so our results should hold at least up to time scales of ¢ ~ Q/J3. While
our results could persist much longer than this, the full Magnus expansion is expected
to break down on time scales that are exponentially long in €/.Jy, which sets an upper
limit for the lifetime of stable oscillations before the system becomes ergodic and
heats to infinite temperature [104]. The other approximation is to treat the effective
Hamiltonian Eq. (3.10) within the classical approximation. Exact diagonalization of
the effective Hamiltonian shows that for small systems (up to N = 12), the classical
approximation breaks down due to spin squeezing [105], where quantum fluctuations
of the collective spin grow in the zy plane. Consequently the classical approximation
is only valid up to times of order t ~ 2v/N /€o. Thus, for any finite systems the Rabi
oscillations will dephase for all a.

Finally, we comment on how our results relate to experiment. In our analysis, we
have implemented periodic boundary conditions as a convenient way of studying the
thermodynamic limit. From numerical simulations of the dynamics of systems with
open boundary conditions in 1D and 2D, we find that the collective oscillation can
break down more easily for small systems with open boundary conditions than for
periodic boundary conditions. However, these finite size effects become insignificant
at the high Rabi couplings for which we predict collective behaviour and our analytic
analysis becomes valid. Indeed, the analytic results at high Rabi coupling are readily
performed also for open boundary conditions, and lead to the same conclusions and
same phase diagrams. Therefore, we expect our results to hold in systems that are
large, but still well below the thermodynamic limit.

Furthermore, in Fig. 3.7 and Fig. 3.8, we have calculated the dephasing time of

our system which we now compare to other experimental time scales. If we consider a
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system of KRb molecules with Jy/h = 52Hz, where h is Planck’s constant, then this
gives a decay time of around 2s (for a = 7/2). This is much lower than the lifetime of
the molecules (up to 25s) [53] so the breakdown of Rabi oscillations should be evident
in experiment. Similarly, for Rydberg atoms under resonant exchange (a = 7/2), we
find dephasing time scales of 25us and Rydberg lifetimes of up to 100us in the absence
of motional dephasing [65], so again, we expect our results to be observable.

Lastly, we briefly studied the numerics of non-unity filling fraction and detuning
which can arise in experimental set up. We first consider non-unity filling disorder,
where each site is randomly occupied or unoccupied with an occupation probability
of 0.75. The decay time is calculated for each configuration and averaged over 100

different configurations. Results are shown in Fig. 3.11.
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Figure 3.11 Decay times of a 1D system where each site has an occupation probability of 0.75. We
find that filling disorder can cause decay in the region a. < a < 7 which is stable at unity filling, but
with long decay times. Otherwise, filling disorder causes no other instabilities.

We find that the same stability /instability transition as for the homogeneous system,
except in the range a. < a < m which becomes unstable, but with large decay times.
Therefore, in this range, we expect breakdown of the Rabi oscillations will occur, but
otherwise our results should hold in the presence of filling disorder. We find that at
high Rabi coupling, any effects from filling disorder do not appear to be significant for
0 < a < a,. Inhomogeneity did seem to cause decay for o, < a < m where before the
system was stable, but with large decay times. Therefore, experimentally, the Rabi
oscillations will eventually breakdown in this region.

We also calculate the decay time for small random detunings that are Gaussian
distributed about zero with a standard deviation W = 0.1.Jy, and once again average

over 100 configurations. The decay times are shown in Fig. 3.12.
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Figure 3.12 Decay times of a 1D system with small random detunings that are Gaussian distributed
about zero with a standard deviation of W = 0.1Jy. We find the detuning disorder does not cause

further instabilities compared to the ordered system.

We find no change in stability across the entire range of «. This agrees with our
Magnus expansion, where detuning appears as a 1/ term and so should be negligible
at high enough Rabi coupling. Non-unity filling, however, appears even at zeroth order
in the Magnus expansion as it modifies the dipole coupling J;. In both disorder studies,
we have looked at a low level of disorder. We expect that at strong enough disorder,

more instabilities will arise and Rabi oscillations will break down for all a.

3.5 Conclusions

We have studied a system of interacting dipoles with both an Ising and XY dipole
interaction terms under external driving in both 1D and 2D. After preparing all
the spins in an ideal S* state, we found that collective behaviour occurred, with
Rabi oscillations at high Rabi coupling, small oscillations at low Rabi coupling and
a bifurcation in the dynamics at a critical value of coupling. Using Floquet analysis,
we have found that the collective picture is unstable for most values of Rabi coupling.
However, we did find stable collective behaviour at high coupling under certain regimes,
either when the dipoles are oriented at the magic angle or when the Ising interaction

dominates over the XY interaction.



Chapter 4

Phases of driven two-level systems

with local dissipation

4.1 Introduction

In this chapter, we now examine how dissipation alters the dynamics of a dipole
coupled quantum system. Whereas dissipative processes have been viewed as an issue
in experiment, recent work has shown that the interplay between an external drive
and dissipation can produce exotic non-equilibrium phases such as spin density waves,
persistent oscillations and phase bistabilities within spin-1/2 systems [106-109] and
also higher spin systems [110] or systems with mixtures of atomic species [111].

In order to capture the steady state phases in a macroscopically large system,
it is common to employ a mean-field approximation, where correlations between
sites are ignored. While the use of the mean-field approximation is well understood
in equilibrium phenomena, a key question that still remains is the validity of the
mean-field approximation for dissipative systems. For thermal gases, the mean-field
approximation becomes valid as quantum fluctuations become negligible [112, 113].
However, for cold systems, this is not necessarily the case. There have already been
many studies into the true phases and transitions for the driven dissipative systems,
using variational methods [114], Keldysh methods [115], cluster mean-field [116-118],
Monte Carlo [119] and also t-DMRG [120] and other Matrix Product Operator methods
(121, 122]. These studies have shown that first order transitions in the mean-field
approximation can become second order when quantum fluctuations are included,
and that bistabilities can be lost [114, 115, 117, 121, 122]. They have also shown
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that the emergence of certain phases, such as antiferromagnetism phases or long-time
oscillations may not occur in low dimensional spin-1/2 systems [115, 116, 118, 119].

Despite the disagreements between mean-field and exact numerics of quantum
systems, the mean-field approximation can still serve as an indicator of features that
emerge in the full quantum system. For example, it has been shown that regions of
mean-field bistability for the Ising model correspond to long spatial correlations in the
full quantum model [123]. Also, while it has been shown that true bistability cannot
occur for finite sized quantum systems [124], the bistable nature of the mean-field
solutions is evident in quantum trajectories of the system [125-127] and also results in
a decrease in the spectral gap of the Liouvillian [108]. Therefore, it is interesting to
ask to what degree the mean-field imprints itself on the dynamics and phases of the
full quantum system.

In this chapter, we study a driven-dissipative XXZ model with a tunable ratio
between the XY and Ising near-field dipole interactions, which was studied in Chapter
3, as a function of detuning and external drive. We calculate the non-equilibrium phase
diagram at mean-field level, finding many phases such as antiferromagnetism, spin
density waves, persistent oscillations and bistabilities. We then analyse small quantum
systems and carry out an in-depth comparison to the mean-field phase diagram. As
for similar previous studies, while we do not find the same phase diagram for the full
quantum system, we do find strong signatures of the mean-field in the spin fluctuations
which relate to bistabilities and spatial phases that arise in the mean-field results.

The rest of this chapter is organised as follows. In Section 4.2, we describe the
model. Then in Section 4.3, we derive the mean-field phase diagram as a function
of parameters. In Section 4.4, we then look at the full quantum model. Finally, we

discuss the results in Section 4.5 before drawing conclusions in Section 4.6.

4.2 Model

The system consists of a large number, N, of two-level systems coupled by dipole
interactions in 1D under a uniform external driving field, which is detuned from
resonance, and interacting with an electromagnetic environment which causes decay.

Under the Born and Markov approximations, the dynamics of the system are then
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Figure 4.1 A schematic of a 1D array of atoms or polar molecules under an external drive. The
electric field, shown by the green arrow, is oriented at an angle © to the z axis and controls the
orientation of the dipoles. The lattice spacing is denoted by a.

described by the following master equation

dﬁélvt(t) =—i[H, pn(t)] + g Z 267 pv(t)et = {otor v}, (A1)

where the single atom decay rate, I, is defined in Eq. (2.21). Provided I' > 0, then Eq.
(4.1) describes decay of the excited state, driven by the operators ;. The Hamiltonian
is given by

w\‘;)

g: — [cosad?6] + sina (6767 + 6767)], (4.2)
where the detuning is given by A = w — wy, where w is the drive frequency and wq the
two-level transition frequency, and the drive strength is set by the Rabi coupling 2. The
dipole-dipole interaction is given as in the previous chapter by J = Jya®(1 — 3sin? ©)
where a is the lattice spacing [96] and where we have set ¢; = 0 as we will only look
at 1D geometries (see Fig. 4.1). Also, as in the previous chapter, the angle © is the
orientation of the dipoles, with © = 7/2 corresponding to the dipoles lying along the
atomic chain. For the remainder of the chapter, we will work with © = 7/2. Other
values of © will result in a sign change and scaling of the interaction in 1D, but will not
lead to significant changes in the types of phases that appear in our system, only in
the size of the regions as a function of A and Q. We will also work with Jya®/T' = —5

throughout this chapter.



48 Phases of driven two-level systems with local dissipation

In order to find the long-time steady state of Eq. (4.1), we make a Gutzwiller
mean-field approximation which involves taking pn(t) = ®p;(t), where p;(t) is a density
matrix on site 7, and effectively ignoring correlations between spins. Then, by taking

the trace of Eq. (4.1) over all the sites except a given site [, we obtain the equations of

motion as
d x N N
S _ ISP — AS! +2sina ) igSfo/ —2cosa Y %SfSly,
dt i) " i) "l
dSly Y z T . a J Z QT al J z QT
o = DSy — QS; + ASF —2sina r—gSl SF4+2cosa Y r—gSi Sy, (4.3)
i) il i) il
dSlZ z Y : al J Y Qx Y Qx
= D(Sf+1/2) +QS} +2sina > —(S7SF — S7S7),

i) i

where S/ (t) = %Tr{&lﬂﬁ]v(t)} are the spin expectation values, which have their time
argument suppressed in Egs. (4.3). We can see that in the limit I' — 0 and with

A = 0, we recover the mean-field equations in Eqs. (3.2).

4.3 Mean-Field Phase Diagram

We compute the mean-field phase diagram by finding the steady states to Eqs. (4.3)
within a bipartite sublattice ansatz, where we split the lattice into two sublattices, A
and B. Depending on the parameters, Eqs. (4.3) can result in up to three uniform
solutions and three sets of antiferromagnetic solutions. To determine the final phases
that exist in the system, we perform linear stability analysis of the resultant solutions.
To confirm the sublattice results, we evolve Egs. (4.3) in time until the long-time limit
(up to tI' = 1000 for a system size of N = 100 with periodic boundary conditions
(PBCs)) and also find the resultant phases in regimes where the sublattice ansatz
breaks down. For our dynamical simulations, we use either an initial condition of
(8*%,8Y,58%*) = (0,0,—1/2) or, if examining phase instability, the steady state that
becomes unstable as the initial condition.

In Fig. 4.2, we show a collection of phase diagrams as a function of A and €2 for
select values of « in the range 0 < a < 7. Note that for 7 < a < 27, we will obtain
the same phases as for 0 < a < 7 but with the phase diagram reflected about A =0
due to the sign change in the interaction term. This is also true if the dipoles are tilted

out of plane (© = 0), although the interaction strength is then scaled by a factor of



4.3 Mean-Field Phase Diagram 49

==

U,/U, SDW  0SC/U,

U U

Figure 4.2 Mean-field phase diagrams as a function of Rabi coupling and detuning, for values of
0 < a < m. We find the emergence of four key phases: uniform phases, antiferromagnetic phases,
spin density wave phases and oscillatory phases. We also find examples of where these phases can be
bistable with one another which means both phases can coexist within the corresponding parameter
regime, and which phase the system ends up in depends on the initial conditions. These regions are
denoted with double labelling e.g. AFM/U;.

1/2. Therefore, it is sufficient to consider the range 0 < av < 7 to cover all phases that
can occur in the 1D system.

From our phase diagrams, we can see some general features that occur for all or
almost all o values. Specifically, we can classify four key phases that emerge in the
system. Firstly, for all a;, there are the spatially uniform phases, which are shown by
the white regions in the phase diagrams. At low Rabi drive, the uniform phase has a
high spin magnitude and the spins lie in or close to the state (S*,SY,5%) = (0,0, —1/2).
We define this uniform phase as the U; phase. At high drive, the spin magnitude
decreases and the spins lie close to the mixed state, which we denote as the U, phase.
As mentioned in Chapter 2, both of these uniform phases occur for any spin half
system even without interactions as they are just general solutions to the optical Bloch
equations and are solutions of the full quantum system [95] in the limit of low/high
Rabi coupling respectively. For all «, the U; phase smoothly crosses over into the Us

phase for most parameter ranges. However, for a # 7/4, when the drive and detuning
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are comparable to the interaction strength (Vi5/T" & —5), regimes of bistability between
the U; and U, exist, which lead to sharp transitions between the two phases. Regions
of bistability are denoted by the dark blue regions in the phase diagram and which
phase the system ends up in within this region depends on the initial conditions. Note
that for « = 7/4, we have a Heisenberg Hamiltonian which conserves total spin, and
so the uniform phases are the only phases that occur and there is no bistability. The
behaviour of the uniform phases is analogous to a liquid-gas phase diagram where the
U, phase can be considered the high density liquid phase and the U, phase as low
density gaseous phase. The first order transition at |A/T'| < 1 and smooth crossover
at |A/T'| > 1 are then similar to the liquid-gas transitions where detuning and Rabi
coupling take the role of pressure and temperature respectively.

It is also the case that when the drive and detuning are comparable to the interac-
tions, for all  # 7 /4, the uniform phases can become unstable to fluctuations, breaking
translational invariance and giving rise to non-trivial phases. In the red regions, the
uniform phase becomes unstable to fluctuations with a wavevector of ga = 7 and a
stable set of antiferromagnetic solutions exist. This results in the emergence of a canted
antiferromagnetic (AFM) solution, with the nature of the AFM phases depending on
the o value. When the Ising term dominates (0 < o < 7/4 and 37/4 < a < 7), the
AFM solution has the largest deviation between the S* components. However, when
the XY interaction dominates, the AFM solution has the strongest deviation in the
SY components. As well as instabilities to ga = 7, the uniform phases can become
unstable to ga < 7 which results in the emergence of a spin density wave (SDW) phase,
provided no other stable phase exists. In the SDW phase, shown by the green regions,
the spin orientation varies periodically through the lattice with a period set by the
instability wavevector, qa. The final key phase to emerge are long-time oscillations
(OSC), where the effects of the drive dominate over the effects from dissipation. We
find all oscillations emerge from the instability of the AFM phase, which undergoes a
Hopf bifurcation, and inherit an AFM nature. The oscillations are shown by the light
red regions.

In several regions of the phase diagrams, multiple solutions to Eqgs. (4.3) coexist,
which can lead to bistabilities. In the yellow regions, a stable uniform solution and
stable set of AFM solutions exist, which results in AFM/U; bistability. Similarly, in
the light yellow regions, there is an OSC phase which is also bistable to the U; phase.
However, we do find that sometimes the oscillations become unstable and so only the

uniform phase exists. We have not marked these regions on the phase diagram. In the
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light blue regions, both the U; phase and U, phase exist, but one becomes unstable to
fluctuations. When simulating the dynamics in these regions, we find only the stable
uniform solution exists i.e. there is no U;/SDW phase bistability. Similarly, in the
orange regions, there exist both a uniform phase and an antiferromagnetic phase, but
the uniform phase is unstable. We find when simulating the dynamics in this region
that only the AFM phase exists, although the AFM phase is frustrated, with the
amount of frustration depending on the initial conditions. Likewise, in the light orange
regions, there is an OSC phase and an unstable uniform phase. We find only the OSC
phase exists, and again that there are frustration effects. As one final note on the
phase diagrams, we find that there are no SDW instabilities for a = 0. Therefore, it
seems that SDW instabilities are inherently related to the XY interaction.

Our phase diagram for @ = 7/2 is similar to a pure XY model with nearest-
neighbour coupling studied in Ref. [108]. Similarly, our results for o = 0 are similar to

a nearest-neighbour Ising model studied in Ref. [107].

4.4 Quantum Phase Diagram

Having calculated the phase diagram at mean-field level, we now examine how it
compares to the phase diagram of the full quantum system to test the validity of the
mean-field approximation. To do this, we look at steady states of small quantum
systems with N = 8 spins and PBCs by finding the zero eigenvalue of the Liouvillian
(See Chapter 2). At very low Rabi coupling, we expect the mean-field approximation
to capture the full quantum model because the system lies close to the steady state of
Eq. (4.1), given by p., = |0) (0], where |0) = [T |g;). The spin components are nearly
conserved due to the Hamiltonian and 3 S? ~ —N/2. Therefore, single excitations
can then be viewed classically due to the large effective spin, allowing the system to be
mapped to coupled oscillators. However, for higher Rabi coupling where the interesting
phases emerge, quantum effects will be more significant. Mean-field theory is expected
to be valid for a higher effective co-ordination number where quantum fluctuations
can cancel on average. Therefore our results in 1D are most susceptible to quantum
fluctuations. Despite the small system size, we can see some distinct features emerge
for the quantum system that reflect the mean-field phases.

We first examine the spin expectation values on each site for a direct comparison
to the mean-field results. We find that for the quantum system, the expectation values

on each site are uniform, with little to no spatial variation. However, this is likely due
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to the small system size and use of PBCs, and that spatial variation in the expectation
values would arise for larger quantum systems. If we compare the quantum expectation
values to the mean-field expectation values from our phase diagrams in regions where
stable uniform phases exist, we find there is good agreement at strong Rabi drive and
detuning. This is true for all «, especially for a« = 7/4, where the expectation values
agree exactly for all detuning and Rabi drive. For a # 7/4, the difference between
the expectation values becomes larger when the drive and detuning are comparable to
interactions, particularly in regions where there is U; /U, bistability. This is because
we find no bistability in the small quantum systems, but a smooth crossover between
the U; and U, phases. Therefore the quantum expectation values will eventually differ
from either choice of the U; or Us mean-field solution.

Despite the fact the expectation values seem only to show a single uniform phase,
the connected correlators between sites give insight into spatial structure of the
fluctuations about the expectation values and possible non-uniform phases that may
arise in larger quantum systems. In Fig. 4.3 (1-a), we plot the connected correlator,
(8287), = (5287) — (82)(57), between a site i and its nearest-neighbour for o = 0. We
find that the connected correlator changes sign between nearest-neighbour sites in the
region where where AFM solutions exist in the mean-field, but maintains the same
sign when in the uniform region. The insets (1-b) and (1-c) show examples of how the
connected correlator varies across the lattice sites for a choice of A and €2 in the AFM
region and in the uniform region, shown by the red and blue circles respectively. We
can see how both connected correlators lose long-range order quickly, but maintain an
alternating sign in the AFM region, whilst being persistently positive in the uniform
region. We find similar results when we plot the (5¥SY). connected correlator for
a = /2. The choice of connected correlator is based on the spin component with the
strongest deviation from the spatially uniform phase in the mean-field analysis.

While the expectation values and connected correlators give some correspondence
to the mean-field picture, we find that within the bistable regions, there is a much
stronger signature of the mean-field results given by the index of dispersion (IOD). In
regions of bistability, studies [108, 125, 126, 128] have found examples of bimodality in
the expectation value distributions when using Quantum Monte Carlo wavefunction
methods [129]. This bimodality arises due to the double well nature of the system
when there are two stable mean-field solutions. A bimodal distribution means that
the IOD, a measure of a distribution’s variance normalised by its mean, will peak in

regions of bistability. For our phase diagram, bistability brings the greatest change in
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Figure 4.3 Examples of connected correlators for the quantum system. (1-a) - The (5753), connected
correlator for a« = 0. We can see the connected correlator becomes negative for nearest-neighbour
sites when in the mean-field AFM region. The insets (1-b) and (1-¢) show examples of how the
connected correlator varies across sites for the red and blue circle respectively. We see that in both
cases, long-range order is lost, but the changes of sign are as expected. (2-a) - The (5’{’ S’g )e connected
correlator for o = 7/2. Again, we can see that the connected correlator changes sign between
nearest-neighbours when in the mean-field AFM region. The insets (2-b) and (2-c) show examples of

how the connected correlator varies across sites for the red and blue squares respectively.
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Figure 4.4 Index of dispersion (IOD) of the number of excitations, ($%) + 1/2. We see there is an
increase in the IOD in regions of bistability, before a quick decrease to 1/2 when entering the region of
the Uy phase. The black contours show the regions of our mean-field phase diagram where bistability

exists.

S# values between the two mean-field phases, so we look the index of dispersion of the
excitations in the system, give by (S%) 4+ 1/2. With this choice of observable, the IOD

is given by

N((SE8p) - <§f><5”f>)'

OD = —
T G 2)

(4.4)

In the limit of zero Rabi drive, when (S7) = —1/2, we have IOD = 1, whereas in the
limit of high Rabi drive, when (57) ~ 0, we have IOD = 1/2. In between these two
limits, the IOD will either decrease or, when there is a bimodality in the distribution,
increase above unity. In Fig. 4.4, we plot the IOD as a function of drive and detuning,
marking the areas of mean-field bistability with the black contours. We can see from
our figures that the agreement between the fluctuation region and the bistability region
is very good for all a values, suggesting that the large peak in the IOD is indeed due to
the double well structure of the mean-field solution appearing in the quantum steady
state. The results for a = /2 have been shown before in [108], but the results for

other o are new.
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Figure 4.5 Real part of the spectral gap of the Liouvillian. We see that there is a decrease in real
part within the regime of bistability for all «, indicating that the spectral gap could close in the limit

of large enough quantum systems.

Another signature of bistability should also be evident in spectral gap of the
Liouvillian. In systems with true bistability, the spectral gap should close so the system
has two steady states. However, for small quantum systems, it is known that the gap
will remain finite [124]. Despite this, bistability may occur in very large quantum
systems, and if this is to be the case, then we expect the gap to decrease in the region
of bistability even for small systems. In Fig. 4.5, we compute [130] and plot the real
part of the spectral gap for a system of size N = 6. We see there is indeed a decrease
in the gap size in the bistability region, with the magnitude of the real part of the
eigenvalue dropping below 0.5I", which is the spectral gap for a non-interacting system,
as found in Chapter 2.

To measure the spectral gap in experiment, one could look at two-time correlators,
whose decay depends specifically on the gap in the long-time limit. For two operators,

A and B , the two-time correlator is given by

(A(t+7)B(t)) = Tr{AeTHDEBj(¢)}

) e . - (4.5)
— T{BH(0)} Tr{Aps} + 3 7 Tr{L.Bp(t)} TH{AR,),

=1
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where in the last line, we have inserted the density matrix expansion given in Chapter
2 in Eq. (2.26), but rewritten in operator form in the original 2% Hilbert space and

with the initial condition Bp(t). If we allow ¢t — oo, then Eq. (4.5) simplifies to

Jim (At +7)B(t))
4N 1

= Tr{Apss} Tr{Bpss} + > Tr{L;Bps.} Tr{AR}eM" (4.6)
=1

~ Tr{Apss} Te{Bpss} + Tr{LBps} Tr{ AR }eNT,

where in the last line, we have assumed that 7 is large and that Ay is well separated from
the rest of the Liouvillian spectrum. This shows how the two-time correlator will decay
exponentially with a decay time set by the spectral gap. Therefore, if the spectral gap
does decrease in a given parameter regime, we should find that any two-time correlator
will have a much longer decay than in regions where the spectral gap is large. In Fig.
4.6, we plot the real part of the second spectral gap of the Liouvillian to see if the first
spectral gap is well separated from the spectral bulk. We find for a dominant Ising
interaction, there is a separation inside the bistable regime, so measuring the gap from
the connected correlator decay should be possible. For a dominant XY interaction, the
gap from the bulk is quite small and therefore measuring the gap from the two-time

correlator will be harder.

4.5 Discussion

We have studied the mean-field phase diagram of an driven-dissipative XXZ model
with tunable XY and Ising interaction, finding that the interplay between drive and
dissipation leads to four key types of non-equilibrium phases, specifically uniform
phases, AFM phases, SDW phases and OSC phases as well as bistabilities between
these phases. As discussed in Ref. [106], such a system could be readily implemented
with Rydberg atoms or trapped ions, where decay can be controlled by optical pumping.
Such systems are also realisable in coupled cavities [108, 131, 132].

The in-depth study of the full quantum system for a small number of spins revealed
that the expectation values of the small quantum system agree well with the mean-
field uniform phases at strong Rabi drive and detuning, but do not agree as well
when the drive and detuning are comparable to the interaction strength. The biggest

difference between the mean-field and quantum results is the small quantum system
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Figure 4.6 Difference between the spectral gap and the next eigenvalue in the spectrum. We see
for a dominant Ising interaction, there is an increase in separation which indicates the spectral gap
could be measured from the decay of connected correlators. For an XY dominated interaction, the
difference between the real part of the eigenvalues is much smaller and so measuring the gap from the

connected correlator will be harder.

does not exhibit any bistabilities, OSC, AFM or SDW phases. However, analysis of
the connected correlator shows how fluctuations about these expectation values give
signatures of the non-spatially uniform mean-field phases and indicate the possibility
of agreement between the mean-field and quantum results for large systems. A much
stronger correspondence between the mean-field and quantum results is found when
studying the IOD, where we have shown there is good agreement between the region
where the IOD of excitations in the system peaks and mean-field bistability. The
regular occurrence of this feature in other studies suggests it is a general result for
spin-1/2 systems. It would be interesting to see if this is a general feature in any open
quantum system exhibiting bistability in its mean-field results. We also showed there
was a good agreement between the bistability region and a decreased spectral gap
in the Liouvillian, which should be observable by a decrease in the decay times of
two-time correlators.

Many of our results here agree with similar studies with nearest-neighbour inter-
actions, both at the mean-field and quantum level, indicating that the power-law
nature of the interactions have little effect on the resultant phases. Given this and
the fact that the system is 1D, modelling the system with t-DMRG methods [133]
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to achieve larger system sizes should be achievable. It would be interesting to see if
the quantum fluctuations grow stronger in larger systems and lead to the breaking of
spatial uniformity we have seen in our analysis, resulting in a phase diagram closer to
our mean-field results. It would also be interesting to study how the IOD peak grows
with system size. If the mean-field is expected to become increasingly correct with
larger system sizes, then the IOD should drop to zero as the connected correlators
in Eq. (4.4) become zero. However, the mean-field is unlikely to become valid for
a 1D system, so the behaviour of the IOD is unclear for larger systems. Looking
at how the IOD behaves in higher dimensionalities would also be interesting as we
expect the mean-field approximation to get increasingly better for higher dimensions.
Finally, carrying out finite-size scaling of the Liouvillian gap may indicate if the gap
will eventually close in large enough quantum systems and if the separation of the bulk

increases.

4.6 Conclusions

We have studied the mean-field phase diagram of a driven-dissipative XXZ model with
a tunable Ising to XY interaction. We found the emergence of four key types of phase:
uniform phases, spin density wave phases, antiferromagnetism and oscillatory phases
as well as phase bistabilities. We characterised how the nature of these phases change
with changes in the Ising to XY ratio. We then analyse the phases of the corresponding
quantum system for small numbers of spins and found that the mean-field results
correspond to key features in the quantum phase diagram. We found a strong agreement
between peaks in the normalised variance of the S* expectation values and decrease in
the Liouvillian gap to the regions of mean-field bistability and also agreements between

connected correlators and spatially varying phases in the mean-field phase diagram.



Chapter 5

Phases of driven two-level systems

with nonlocal dissipation

5.1 Introduction

In the last chapter, we saw how the presence of an environment significantly changed
the steady state properties of a quantum system with dipole interactions, and gave rise
to new non-equilibrium phenomena. In this chapter, we now focus on a system
of polarisable atoms, which lack the static dipole interaction given by the Ising
interaction, but have far-field dipole interactions which are long-ranged and dissipative.
Of particular interest is the dissipative nature of the far-field dipole interactions,
which give rise to nonlocal dissipation, where the decay of one atom is coupled to its
neighbours. This leads to several decay modes of the system into the environment. As
mentioned in Chapter 1, far-field dipole interactions are a common physical problem
when the transitions of the two-level systems are in the optical regime. Therefore,
understanding the role of far-field interactions is highly applicable to problems of
light-scattering through polarisable media, and can lead to useful applications when
the atoms in placed in ordered arrays, such as optical mirrors [93] and excitation
storage [92]. It is also important in understanding scattering and light propagation in
meta-materials [134] and photonic waveguides [135].

Most work on light scattering focuses on the low light intensity limit, where
interactions between excitations are negligible and the mean-field approximation for
the dissipative system is valid. However, much less work has been done beyond low
intensities, and has been largely limited to small system sizes [126, 136-138]. As seen

in the last chapter, at moderate to high intensity drive, these spin systems show novel
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phases such as phase bistabilities, antiferromagnetism (AFM), spin density waves
(SDW) and even oscillations (OSC) where the spins persistently oscillate despite the
presence of dissipation [106, 107].

Here, we study the properties of a driven cold atomic ensemble beyond the regime
of low intensity by again employing a numerical mean-field analysis of a large number
of two-level systems on a lattice. We establish the open system phase diagram in a 1D
geometry and find examples of bistabilities, OSC phases, SDW phases and AFM phases.
We also explain how these phases arise due to interactions and the presence of nonlocal
dissipation which causes superradiant and subradiant decay, finding key differences in
the long-time phases between a system with local and nonlocal dissipation.

This chapter is organised as follows. In Section 5.2 we set up our model. In
Section 5.3, we establish the mean field phase diagram with quantum checks in
Section 5.4. Finally, in Section 5.5 we discuss our results and possible experimental

realisations before drawing conclusions in Section 5.6.

5.2 Model

We consider a large number, N, of two-level systems fixed in position in a deep 1D
optical lattice to form a 1D array. The two-level systems are illuminated with a
uniform plane wave and coupled to one another by resonant dipole-dipole interactions.
The system is also coupled to the electromagnetic field in free space, which acts as a
Markovian environment and allows the dipoles to decay. The resultant Master equation
is given by [139, 140]

dpy (1)
dt

N
=—1 ﬁsys—FZV%z&;r&z_aﬁN(t) +Z;
i '

(5.1)

where the square brackets represent a commutator, curly brackets represent the anti-
commutator. The on-site Hamiltonian is given by ]:Isys =Q25N6r — A2 N6z,
where A = w — wy is the detuning from the two-level transition energy, wg, and
() = 2d.E is the Rabi coupling determined by the dipole moment vector d and the
electric field vector, E, of an external drive. We consider an experimental set up where
the wavevector of the drive, k, is perpendicular to the lattice and the electric field

parallel to the lattice so that E = Ey&e Y. The dipole interactions and decay terms
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Figure 5.1 A schematic of a 1D array of atoms under external drive. The electric field, shown by
the purple arrow, is oriented parallel to the x axis and controls the orientation of the dipoles shown in
red. The lattice spacing is denoted by a. The boxed image shows the microscopic picture of two-level
systems interacting via photon exchange and dissipation, where the external drive controls the value
of the Rabi coupling, 2.

are then given by

Vi =

g sin KTy n COS KTy
2\ (kry)? (kry)?

COS KT; sin Kr;
Dy =30 (— L+ l) ,

(kra)? — (kra)?

(5.2)

where the single atom decay rate, I', is defined in Eq. (2.21). Note that I';; = T" so
there is local as well as nonlocal dissipation in the system.

The parameter ka = 2wa/)\g, as mentioned in Chapter 1, is the ratio of the two-level
transition wavelength, Ao, to the lattice spacing a, and is important in determining
the nature of the interactions and loss. If we consider ka ~ 0, with a fixed, then the
system becomes closed, with the interactions reducing to the near-field dipole model of
Chapters 3 and 4. If we instead consider ka ~ 0, with x fixed, then the interaction
strength diverges and dissipation becomes all-to-all with I';; = I'. In the opposite limit
where ka 2 27, the interactions become negligible and the dissipation becomes local

(however, we will later find that ka < 1.2 to observe interesting results). Throughout
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the rest of this chapter, we work with xka = 0.7 which is well within these limits and
allows us to see the effects of nonlocal interactions and dissipation.
Making the Gutzwiller mean-field approximation, py ~ ®p; and taking the trace

of Eq. (5.1) over all the sites except a given site [ gives the equations of motion as

i(2]) i)
dSly P Y € z al z QX al z2 QY
W _ — ESI + ASZ - QSZ + 2 Z ‘/ilSl SZ + Z FilSl Sz 5
i) i)
dSf al al
L= T(S}+1/2) — 3 TalSTST + SYS!) + 0S) —2 3 Va(SIST — SYSY)
i(#l) i(#l)
(5.3)
where S/ (t) = %Tr{&f pn(t)} are the spin expectation values which have their time

argument suppressed in Egs. (5.3).

5.3 Mean-Field Phase Diagram

We can classify the steady states of Egs. (5.3) and plot a phase diagram as a function of
detuning and Rabi coupling. The phase diagram is shown in Fig. 5.2. To calculate the
phase diagram, we perform the same steps as in Chapter 4, by finding and analysing
the linear stability of all the uniform and antiferromagnetic solutions of Egs. (5.3)
within a bipartite sublattice ansatz. This determines most boundaries in the phase
diagram as well as regions of bistability.

We support the stability analysis by time evolving the full dynamics of Eqs. (5.3)
to the long-time limit (up to tI' = 350) to confirm the uniform and antiferromagnetic
phases and also to determine the resultant phase when the uniform or antiferromagnetic
phases become unstable. This allows us to define the boundaries between SDW and OSC
phases and to check that the wavevector causing instability of the uniform solutions, ¢,
has the same periodicity as the SDW phases that emerge in the full dynamics. Finally,
whenever the instability wavevector is of the form qa = 27/n, where n is a integer
with 1 < n <10, we also simulate the dynamics in a sublattice ansatz, which involves
reducing Eqgs. (5.3) to n sites which repeat periodically throughout the full lattice.
For the time evolution, we simulate system sizes of up to 200 spins with periodic
boundary conditions and use an initial condition of (S*,SY,S*) = (0,0, —1/2), which
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S-OSC/AFM

10

Figure 5.2 Steady state phase diagram of the system at long times. We find a variety of phases,
including AFM, SDW, and OSC. Regions with two labelled phases represent bistability between
those two phases. Thin lines represent second order transitions and thick lines enclose regions of
bistability within which a first order transition will occur as Rabi coupling is increased. The dashed
line represents an arbitrary crossover between the U; and Uy phases at S* = —1/4, such that we call
the region with S* < —1/4 the U; phase and that with —1/4 < S% < 0 the U, phase.

is most experimentally relevant as it represents all the atoms in the their groundstate.
Throughout the text, (S*,SY,5%) = (0,0, —1/2) will also define our use of the term
‘groundstate’. We do, however, consider other initial conditions in certain regimes to
check for bistability.

Our analysis shows that many different long-time phases occur in the system. As
expected, we find again the occurrence of spatially uniform phases. At low Rabi coupling,
for all detuning values, the system lies close to the groundstate with S* — —1/2 as
Q/T" — 0, which we denote as the U; phase. At high Rabi coupling, the system lies in
a state with a small value of S* where S* — 0 as /I > 1. We denote this as the
U, phase. At |A/T| > 1, the U; phase smoothly crosses over into the U; phase as
the Rabi coupling is increased. However, when |A/T'| < 1 we find phase a sharp first
order transition between the U; and U, phases, which occurs within a region of U;-U,

bistability. In Fig. 5.2, for |A/T’'| > 1, we define an arbitrary crossover between the
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Figure 5.3 Examples of the spin dynamics for A/T" = 1.75 for a series of sites 4, i + 1, i + 2 etc. in
the 1D chain. The value, S = 1/(5%)2 + (5¥)2 + (5%)2, is the spin magnitude. At low Rabi coupling,

there is a spatially uniform U; phase where the spins lie close to the groundstate. As the Rabi coupling

increases, a SDW phase with ga = 27/4 develops, then an oscillatory phase and then an AFM phase.
Finally, at high Rabi coupling we have the U, phase where the spins lie in a mixed state and the spin

magnitude decreases.

U, and U phases by the condition S* = —1/4, so one can consider the U; phase to
be defined as S* < —1/4 and the U, phase as —1/4 < S* < 0. When the magnitudes
of detuning and Rabi coupling are comparable to the interaction between nearest
neighbour sites (|Vi2/I'| = 5.32), we also find additional non-trivial phases, which we
now discuss in more detail.

Negative Detuning - For A/T" < 0, the uniform phase becomes unstable to per-
turbations with wavevectors in the range 0 < ga < w. This breaks the translational
invariance of the system, and results in the formation of Spin Density Wave (SDW)
phases, where the spin orientation smoothly changes across the lattice with a period
set by the instability wavevector [see Fig. 5.3 (b)]. The magnitude of the instability
wavevector, and hence period of the SDW, varies with detuning and Rabi coupling,
moving from minimal values of around 27 /10 at strong negative detuning to larger

values of around 27 /4 near zero detuning. As well as the U;-Us bistability mentioned
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earlier, we find SDW-U, bistability, where a first order transition will occur between
the SDW and U, phases. Where this transition occurs and what phase the system
ends up in within the bistability region depends on the initial conditions.

Within certain ranges of detuning and Rabi coupling, the SDW phase can develop
into an oscillatory (S-OSC) phase which persists into the long-time limit and breaks
both spatial symmetry and time-translational symmetry. We found the occurrence of
persistent oscillations in the last chapter and also noted that they have been reported
in similar studies [106-108]. In contrast to the studies in [106-108] and the last chapter,
however, we find that the oscillations here are noisy and appear chaotic, which indicates
they are unstable to perturbations. We also find that while the SDW and U, can
be bistable, no such bistability appears to exist between the S-OSC and U,, which
is possibly a consequence of the unstable nature of the oscillations. Because no such
bistability exists, there is an immediate first order transition between the S-OSC and
the U, phase as Rabi coupling is increased.

Positive Detuning - For A/T" > 0, we again find the U; phase becomes unstable to
perturbations, forming a SDW. However, whereas for negative detuning the U; phase
only became unstable to one or two perturbations at a time, now the U; phase becomes
unstable to a range of wavevectors as Rabi coupling is increased. The wavevector that
causes the largest instability (indicated by the largest positive eigenvalue in the linear
stability analysis) determines the period of the resultant SDW. The wavevectors still
vary with detuning and Rabi coupling, but are larger than for negative detuning, with
values in the range 27/3 < qa < m. At qa = m, the SDW becomes a canted AFM
phase. We find that in certain regimes, there are additional AFM phases that can be
bistable with the SDW phase.

As for negative detuning, we find another oscillatory phase develops across a large
range of Rabi coupling and detuning. At low Rabi coupling, noisy oscillations emerge
from the SDW, forming an S-OSC phase, whilst at high Rabi coupling, the oscillations
have a clear antiferromagnetic order (denoted A-OSC). At intermediate values of Rabi
coupling, the oscillations take on a frustrated antiferromagnetic order due to the mixing
of SDW and AFM solutions. This is also accompanied by regions of SDW-(A-OSC)
bistability or small regions of (S-OSC)-(A-OSC) bistability. We do not show the
boundaries between these regions but instead denote this mixture of phases as M-OSC
for mixed oscillation. The boundary of the M-OSC region is defined by where the
AFM phase becomes unstable or where the SDW phase disappears.
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Oscillations for positive detuning with an antiferromagnetic nature were observed
in the last chapter and other similar models with local dissipation [108], including a
frustrated AFM phase which seems related to our M-OSC phase. However, the S-OSC
region appears to be new and also our results show a much larger region of AFM
oscillation, with oscillations that contain many beat frequencies. Fig. 5.3 (c) shows an
example of the AFM oscillation.

In Fig. 5.4, we show examples of most of the phase transitions occurring within
the phase diagram by simulating the full dynamics in the same parameter range as in
Fig. 5.3. To study the phase transitions, we calculate the order parameter

1 N

i

o =

where S; = (SF,57,57)/S, S = \/(Sf)z—l— (SY)+(57)> and S = XV S;/N is the

average spin. We also calculate the order parameter

7= A}T zij/OT(si(tf) S,(ty + )%, (5.5)

where 7 = 200/I" and ¢; = 700/I", which is well into the long-time limit. The order
parameter o takes non zero values when the phase breaks translational symmetry
such as in the SDW phase and T takes non zero values when the phase breaks time-
translational symmetry such as in the OSC phase.

We see from Fig. 5.4 that the SDW phase emerges via a second order transition
from the U; phase and then becomes unstable via another second order transition
to form an S-OSC phase. The S-OSC phase then undergoes a first order transition
to the A-OSC phase within the M-OSC region, leading to a sharp jump in ¢ and a
discontinuity in 7. As the Rabi coupling increases, the frustration in the A-OSC phase
decreases which leads to an increase in the temporal order parameter. Eventually, the
OSC phase transitions to the AFM phase, which then disappears via another second
order transition to the U; phase. Note that the order parameters shown here won’t
show a transition crossing into the M-OSC region because the M-OSC boundary is
determined by when the AFM solution becomes unstable as determined by the linear

stability analysis.
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Figure 5.4 Evolution of the order parameters o and T, given by Eqgs. (5.4) and (5.5) respectively, as
a function of Rabi coupling for A/T' = 1.75. The SDW phase emerges via a second order transition
from the U; phase at Q/T" = 2.8. (Note the jagged structure at low Rabi coupling is a finite size
effect, owing to competing SDW wave vectors.) The SDW then forms into an S-OSC phase and later
undergoes a first order transition at /T" = 6.6 to the A-OSC phase within the M-OSC region. As
the Rabi coupling is increased, the system moves to the AFM phase, where a further second order
transition occurs between the AFM and Us phase at 2/T' = 12.4. The dashed lines indicate the
crossings into the SDW, SDW/AFM, OSC, AFM and U regions respectively.

Explanation of Features

Many aspects of the phase diagram presented here are found also for the case of
a = 7 /2 for the near-field dipole model in Chapter 4 and also for a nearest neighbour
XY model with local dissipation, studied in Ref. [108]. However, there are also clear
differences that arise due to the long range interactions and nonlocal dissipation. In
particular, we find larger regimes of uniform phase instability at low Rabi coupling,
which leads to a greater emergence of spin density waves. To understand this difference
more, we study the stability of the uniform phases for systems with local and nonlocal
dissipation.

To determine the uniform phases in the systems with local and nonlocal dissipation,

we solve the equations of motion, Eqs. (5.3), for the uniform picture, such that Sf = 98,
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which allows us to obtain the following cubic polynomial

() s

+4 <€F(40) + v (0)® + 206y (0) — m(O)) (& (5.6)

FQ
+ <2A2 +5+ O + 426y (0) — FEF<O)> S*
+ A% 4 1?%/4 =0,

where €,(0) = Zgéo Vio = —124T" and e (0) = Z{\;&O I'p = 2.9I". The discriminant
of a cubic given by ax?® + bx? + cx + d is b*c? — dac® — 4b3d — 27a*d? + 18abed. By
substituting in for a, b, ¢ and d, we can determine the number of real roots, and hence
steady state solutions, of Eq. (5.6). If the discriminant is greater than zero, there are
three solutions, while if it is less than zero, there is only one solution. Using this, we
can easily find the region of multiple uniform solutions and how the area of this region
changes as a function of lattice spacing. To look at the solutions for local dissipation
only, we set er(0) = 0 in Eq. (5.6). Once we have obtained the uniform solutions, we
check their stability to linear perturbations by linearising Eqgs. (5.3) about the uniform
steady state, which gives us the matrix equation Eq. (5.7). Once again, to look at
local dissipation only, we set er(0) = 0 in Eq. (5.7).

Fig. 5.5 shows the instability of the uniform state for a system with local and
nonlocal dissipation with the black line showing the region where three uniform solutions
exist. Within this region, we show the instability of only one uniform solution (the
U, phase) as one solution is always stable (the U, phase) and the other unnamed
phase is always unstable to perturbations with wavevector ga = 0. We see that both
systems share similarities, such as the region of multiple uniform solutions occurring
at negative detuning and the same overall shape of the instability-Us; crossover. The
asymmetry of the phase diagram structure across the detuning range is due to the
interactions, which results in a mean-field shift of the two-level transition energy. Both
bistability and smallest increase in Rabi coupling needed to move from U; to U, occurs
when the detuning begins to compensate for the energy shift from the interactions,
bringing the drive back on resonance again. This is perhaps easiest to see from Egs.
(5.3), where in the uniform picture dS*/¥/dt ~ 4(A + 25%¢,(0))SY/#. Considering
that —1/2 < §% < 0, we see resonance occurs when A/I' < 0. Specifically for the
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Figure 5.5 Plot of the instability wavevector of the uniform solution for systems with (a) local
dissipation and (b) nonlocal dissipation. The colour represents the magnitude of the wavevector as a
multiple of 7 and the black line encloses the region where multiple uniform solutions exist. We can
clearly see that the system with nonlocal dissipation has a larger range of instability than the system
with local dissipation at lower Rabi coupling. Note that the ‘finned’ structure at low Rabi coupling is

a finite size effect.

S# = —1/4 contour in the phase diagram, resonance occurs at A/I" = —6.2 which is
approximately where the lowest Rabi coupling is needed to cross the contour.

In both systems, we find also that SDW and AFM phases can form, with a similar
arrangement of instability wavevectors for positive and negative detuning. However,
for the system with nonlocal dissipation, the SDW/AFM regions are larger and extend
to lower Rabi coupling. To explain this, we elaborate on the linear stability analysis of
the uniform phases. By linearising Eqs. (5.3) about a uniform steady state, we find

the resultant matrix equation to be given by

] 557 - Q+flg) gl 0.5%
|98 =|-Q+h -T@/2 A ||ss7]. (5.7)
557 I ~A(gq) -T(qg)/2) \ss®

where f(g) = —S¥(ex(0) + er(q)) — 25%(ev(q) — ev(0)), h = S¥er(0) + 257y (0),
g(q) = =S%(er(q) + er(0)) — 25Y(ey (0) — ev(q)) and I = —25Y%,(0) + S®er(0). The
functions ey (q) = X% Vio exp(igri) and er(q) = v Tio exp(igrio) are the dispersion
relations, with €y(0)/I' = —12.4 and €r(0)/T" = 2.9 for our system, and ¢ being the
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Figure 5.6 Effective damping and detuning of the S%/¥ fluctuations for different values of S%. While
modification of the detuning by interactions occurs for any system with interactions, the modification
of the decay rate is a consequence of nonlocal dissipation. We see that the effective damping quickly
becomes subradiant for higher values of ga, but eventually becomes equal to the onsite decay as S*

increases.

momentum fluctuation. Note that the ¢ used here is the same ¢ used to classify the
SDW phases earlier in the text.

From Eq. (5.7), we see that the interactions modify the detuning, resulting in
A(q) = A + 25%y(q). We also see that whilst the nonlocal dissipation alters the
off-diagonal elements of the matrix, the crucial difference is the fluctuations in S*/¥
have an effective damping, I'(¢)/2 = T'/2 — S%ep(q). This effective damping is a
direct consequence of the nonlocal dissipation and cannot occur in a system with local
dissipation, where the S*/¥ fluctuations would always experience a fixed decay rate of
I'/2.

In Fig. 5.6, we plot I'(¢) and A(q) as functions of wavevector, ¢, for different values
of S*. Focusing on I'(q), we see that it quickly drops to minimal values for qa > 27 /10,
which means the S*/¥ fluctuations experience a subradiant decay rate. By having a
reduced dissipation, fluctuations can grow at much lower Rabi coupling compared to
the local dissipation model, resulting in instabilities and the formation of SDW phases.
The fact that high momentum fluctuations are subradiant can be understood as a
result of destructive interference between the dipoles, which begin to oscillate out of
phase, inhibiting photon emission and therefore trapping excitations in the system. As
the Rabi coupling is increased, S* will decrease in value and f(q) eventually tends to
['. This results in the similarity between the local and nonlocal dissipation instability

plots at higher Rabi coupling, as the effects of nonlocal dissipation become negligible.
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Examining the characteristic polynomial from the matrix in Eq. (5.7) gives more
insight into the phase diagram structure. We find that stability of the uniform solution
is determined by the sign of the expression

I [T(q)

Ao =5 [QF +QQ—h+ f(q) —Ig(q) - f(q)h] +

Alq) [Al@)T = QI + 9(q)) + g(a)h — 1f(q)] -

(5.8)

To show this, let us write the characteristic polynomial of the matrix in Eq. (5.7)
explicitly as AsA3 + A\? + A\ + Ag. We can formulate the Routh array of the
characteristic polynomial and determine stability of the uniform solutions from the
polynomial coefficients, without explicitly having to solve the cubic [141]. The Routh

array is given by

As Ay
A Ao
A2A11;2A0 As 0
A 0

For stability, Ay, A1Ay — AgAs and Ag all need to be greater than zero for the
solution to be stable. If any of the coefficients change sign, then the solution becomes
unstable. Also, if A;jA; — ApAsz changes sign, then the system undergoes a Hopf
bifurcation as we have a row of zeroes with no sign change on either side of the row.
We find numerically this does not happen for the uniform solution, so does not need
to be considered further. From the matrix equation, Eq. (5.7), we can calculate the

values Ay to Az which are given by

Ay =1,
Ay =T +T(q),
Ay _o) (M) +2F> +QQ—h+ f(q)
2 2
B (5.9)

+A(q)* = Ig(q) — f(@)h,
Ao =g [T a0 -t ) - 1900) - Sl +

Alq) [AlgT = QI + g(q)) + g(9)h — T£(q)] .
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We find that Ay and A;As — Ag are always greater than zero, so stability is given by
Ag only.

Having established that the stability of the uniform solution is given by A, we
look at Eq. (5.8) in more detail. We see that the expression in the first set of
brackets is multiplied by f(q). If f(q) ~ 0, this means the sign of Ay, and hence the
stability of the uniform solution, is determined by the sign of A(q) and the expression
A(Q)T — QU + g(q)) + g(q)h — I f(q). By looking at the dispersion ey (q) plotted in
Fig. 5.6, we can see that the sign of A(q) depends on the value of the detuning and
the momentum wavevector. If the detuning is positive, then only wavevectors between
om/4 < qa < m can cause A(q) < 0 and hence instabilities, whereas if the detuning
is negative, then only wavevectors with 0 < ga < 27/4 can cause instabilities. This
therefore explains the ordering of spin density waves for negative and positive detuning.

We also found the emergence of two OSC phases in our phase diagram, one for
A/T > 0 and one for A/T" < 0. As mentioned earlier, aspects of the OSC phase
for A/T" > 0 were seen in the near-field dipole model with local dissipation, whereas
the OSC phase for A/I" < 0, which occurs on the SDW-U, boundary, is new and
a consequence of nonlocal dissipation. We would intuitively expect oscillations to
occur on the boundaries between two phases with different spin orientations where the
orientation of the spins is susceptible to change direction [106] and so can be easily
driven. Therefore, this new OSC phase is linked to the emergence of the SDW phases
at negative detuning.

The oscillations within this phase appear to be noisy and chaotic. We study the
emergence and dynamics of the oscillations in more detail by employing a sublattice
ansatz. Analysing the stability of the sublattice solution, we determine that the
oscillations arise from Hopf bifurcations [142] in the SDW phase, which lead to stable
limit cycles. Checking the stability of these limit cycles using classical Floquet analysis,
we find that they become unstable to perturbations with wavevectors not allowed in
the sublattice system. Whilst the underlying cause of this is unclear in detail, one can
imagine that if one were to drive and populate several highly subradiant modes, then
the system would behave as a closed driven XY model with dipole couplings which we
showed to have unstable noisy oscillations in Chapter 3.

We now focus on the OSC phases for A/T" > 0, again employing a sublattice
ansatz and Floquet analysis. We find at low Rabi coupling, the SDW phase can
become unstable, giving rise to oscillations that are mostly noisy and chaotic, just
as for the OSC phase at A/T" < 0. However, there are additional AFM phases for
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positive detuning that can be bistable with the SDW and S-OSC phases and these
AFM solutions also become unstable as the Rabi coupling is increased. This gives rise
to the M-OSC phase where both forms of oscillation can mix or the SDW and A-OSC
phases mix. There are also regimes of SDW-(A-OSC) bistability and (S-OSC)-(A-OSC)
bistability. As the wavevector of the SDW tends to 7 with increasing Rabi coupling,
eventually only the A-OSC phase exists. Therefore we find that nonlocal dissipation
gives rise to two components for the OSC phase; firstly, the emergence of an S-OSC
phase which does not occur in the system with local dissipation and secondly a region

of an A-OSC phase which is much larger than in the system with local dissipation.

5.4 Beyond Mean Field

We have employed a mean-field approximation to compute the long-time steady state
phases of our system. As discussed in the last chapter, we do not expect the mean-field
approximation to hold for small quantum systems beyond low Rabi drive as quantum
fluctuations become significant. This is especially true in 1D as the coordination
number between lattice sites is low, although long-range interactions help increase the
effective co-ordination number. However, we have shown that despite this, mean-field
theory can still capture some aspects of the full quantum system. We now discuss these
features to assess how much of the mean-field is captured by small quantum systems.

In regimes where mean-field theory predicts bistability, we still expect a unique
steady state in the full quantum system with far-field dipole interactions [124] and a
smooth crossover between the U; and U, phases [121] rather than a sharp transition.
Looking at the index of dispersion, as defined in Eq. (4.4), we look for signatures of
mean-field bistability. Fig. 5.7 shows a plot of the IOD for a system of N = 10 spins
with periodic boundary conditions. We find a peak in the IOD near the onset of both
bistability regions. Similar results have been seen in [126] for the uniform bistability
region. We also calculate the connected correlator, (S7S/). = (S/S}) — (SY)(S}), for
N = 10 spins on a chain with periodic boundary conditions. The choice of the SY
components is because they show the strongest spin deviation in the mean-field picture,
similar to the near-field model. In Fig. 5.8, we plot (S7.S5). across the entire phase
diagram, although the same results hold for any spin in the chain due to translational
symmetry. Our results show that the correlations lose long range order, but take an
antiferromagnetic nature for A/I" > 0. For A/T" < 0, spins become more positively

correlated with their nearest neighbours in the region where the uniform phase persists,
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Figure 5.7 10D for N = 10 spins with periodic boundary conditions. The IOD peaks at the onset of
bistability.
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Figure 5.8 (a) Connected correlator (S7SY). as a function of Rabi coupling and detuning for N = 10
spins on a chain with periodic boundary conditions. We see the correlation is negative for A/T" > 0
and positive for A/T" < 0. The black lines show the mean-field phase diagram boundaries. The insets
(b) and (c) show examples of (SYSY). along the spin chain at the points indicated by the red and

blue circles in (a) respectively.
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which agrees with the mean-field phase diagram. Therefore our quantum checks indicate
that aspects of the mean-field theory still persist in smaller quantum systems as was

the case in Chapter 4.

5.5 Discussion

We have explored the phase diagram of an ensemble of two-level systems under an
external drive and with resonant far-field dipole-dipole interactions. We have found
the emergence of SDW, AFM and OSC phases and phase bistabilities, and determined
how the formation of these phases relates to nonlocal dissipation. To realise such a
system experimentally, Sr atoms can be used, with the two-level transition between
the 3P and 3D;(m = 0) levels [21]. This transition has a transition wavelength of
A = 2.6pm and would require a lattice spacing of a = 289.6nm to achieve ka = 0.7.
Other lattice spacings and atomic species may be used, as we expect many of our
results to extend to nearby values of ka. We do find however, that beyond a certain
lattice spacing, the interaction between spins becomes insignificant. A good indicator
of where this cut off occurs can be determined by looking at the region of multiple
uniform solutions, enclosed by the black line in Fig. 5.5. In Fig. 5.9, we plot how the
area of this region changes as a function of ka. We find that as xa increases, the area
decreases and eventually disappears at ka ~ 1.2. Beyond this limit, we expect only
uniform phases to exist.

In our simulations, we evolved the system to times of tI' = 350 or greater to reach
the steady state. It may be the case that some phases we find are metastable with
a very long decay time. Furthermore, the majority of our simulations were carried
out for an initial condition of all the spins in the groundstate, though we did use
other initial conditions to examine regions of bistability. We believe our analysis
accounts for the majority of phases that exist in the system, but there may be other
bistable/multistable phases not captured in our phase diagram that can occur for other
initial conditions. Finally, we have only considered 1D systems under uniform driving.
It would be interesting to see what features change in higher dimensions, different
geometries and under non-uniform driving given the presence of nonlocal dissipation.
While our quantum results indicated some aspects of the mean-field theory should be
observable, it would also be of interest to study the full quantum system in more detail

and quantify where the mean-field theory approximation may fail.
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Figure 5.9 Area of the multiple uniform solution region (shown enclosed by the black line in Fig.
5.5) as a function of lattice spacing. For ka > 1.2, the area is nearly zero and we expect only uniform
phases to exist beyond this limit. It should be noted that at low lattice spacing, the interaction
strength diverges, causing the area of multiple uniform solutions to artificially peak and then decrease
to zero within any fixed range of A/T and ©/T". We emphasise this by showing two curves for the
ranges —A,, /T <A/T <A,,/T and 0 < Q/T <Q,,/T. At higher ka the curves overlap so the cutoff
doesn’t affect our results. The grey line shows the choice of lattice spacing of ka = 0.7 used in this

study.

5.6 Conclusions

We have studied the mean-field nonlinear dynamics of a 1D chain of two-level systems
coupled with dipole-dipole interactions and nonlocal dissipation being driven by an
external field. We determined the phases that form in the long-time limit such as
antiferromagnetism, spin density waves, oscillations and phase bistabilities. We found
that nonlocal dissipation plays a key role in the emergence of these phases by coupling
fluctuations in the system to different decay modes and causing a greater formation of
spin density and oscillatory phases. We also found that some of the mean-field features

persist in the full quantum regime.



Chapter 6

Dissipative Bound States

6.1 Introduction

Up until now, we have been focused on the long-time steady state of open quantum
systems. However, in the last chapter, we saw how nonlocal dissipation resulted in a
range of decay rates for a system into the environment. Some of these decay rates were
quite small and so reaching the steady state would take a large amount of time. As
such, it is also an interesting question to consider the dynamics on the approach to the
steady state and find which excitations decay slowest. Furthermore, the dynamics of
strongly coupled spin-1/2 systems can be used to explore fundamental issues in the
quantum dynamics of many-body systems subject to strong inter-particle interactions.

A famous example of a strong-interaction phenomenon in quantum spins systems
is provided by magnon bound states, first proposed by Bethe [143] more than 80 years
ago. In this work, it was shown that magnon bound states could form in 1D spin-1/2
Heisenberg chain with nearest-neighbour interactions, lowering their energy compared
to free magnons in the system. Subsequent work then extended this result to higher
dimensions, anisotropic spin chains and arbitrary spin including solitons [144-147] and
spin chains with long-range interactions [148-151]. Furthermore, magnon bound states
have been studied in systems with frustration [152], topological structure [153, 154] and
in Floquet systems [155, 156]. They have also recently been observed experimentally
[63] and shown to have an important role in magnetisation switching [157], transport
[158, 159] and to have interesting effects on entanglement entropy [160].

One key aspect in all of these studies is that the system is closed and so the question
of bound state decay rates is not considered. However, if the system is coupled to an

external environment, then the excitations will eventually decay and so it is natural
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to ask how long lived these excitations can be. For a system with local dissipation,
the decay rate of both free excitations and bound states will be given by m times the
local decay rate [161] where m is the number of excitations. However, for systems
involving radiative decay, the dissipation typically becomes nonlocal, where a range of
decay rates to the environment exist, which are either superradiant (greater than the
local decay rate) or subradiant (smaller than the local decay rate). In these scenarios,
the relative decay rates of the free excitations and bound states becomes unclear. For
example, is it possible for the decay rate of the bound states to be smaller than that of
the free magnons?

In this chapter, we address the question of bound state decay rates in systems
with nonlocal dissipation. We look at three models with a nearest-neighbour Ising
interaction, which is crucial for the bound states to form, and different forms of XY
interaction and nonlocal dissipation. The first two models are a nearest-neighbour and
next-nearest-neighbour XY interaction for which we can obtain analytical results. The
final model is an experimentally achievable setting in which to observe our results with
Rydberg dressed atoms coupled to a photonic crystal waveguide.

The layout of this chapter is as follows. In Section 6.2, we derive the equations
needed to obtain the energy and decay rate of the free excitations and bound states. In
Section 6.3, we show that in general the decay rate of the bound state lies within the
two-magnon decay rate continuum. Then in Section 6.4, we obtain the energies and
decay rates for the three models. In Section 6.5 we discuss our results and experimental

implementation before drawing conclusions in Section 6.6.

6.2 Model

We consider a macroscopic number, N, of two-level systems fixed in position on a
1D optical lattice with spacing, a, and periodic boundary conditions. The atoms
interact with an electromagnetic field which acts as an environment for the system.
We assume the Markovian and Born approximations, which are valid provided the
coupling between the system and environment is weak. These allow us to describe the
system using a master equation approach. We will later discuss the validity of this
approximation in relation to our results. The resultant master equation is given by
. N
PO~ —ila ]+ S (o7 a0ar ~ {otor.s0)). 1)

il
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We require that the eigenvalues of the matrix I';; are all greater than or equal to zero,
in order for Eq. (6.1) to describe decay of the excited state, driven by the operators
&; . Then the steady state density matrix is given by pss = |0) (0| where |0) = [TV |g;).
The Hamiltonian is given by

J.
2

R N N N
H=NAY 67+ Vadl oy + 5 > 6767 (6.2)
i i, i
#

Note that we will assume translational invariance for our system, such that V;; and I';
depend only on the relative distance, r; — r;, where r; is the coordinate of site labelled
i. The Hamiltonian in Eq. (6.2) conserves the number of excitations in the system
whilst the dissipator allows the excitations to decay. We can therefore talk about the
dynamics of few-magnon excitations. To compute the energies and decay rates of one-
and two-magnon excitations in our system, we employ a Green’s function method.
We first start with the single magnon Green’s function, defined as G(i,j;t) =
Tr{67 ()5, (0)p(0)}O(t) = (0|67 (t)57 (0) |0) O(t), where O(t) is the Heaviside step
function. We choose the initial condition, p(0), to be the pure state |0) (0|. The single
magnon Green’s function obeys the following equation
dG(;’tj;t) — 50 (t) = (—m = g + 4¢Jz> Gi, jit) — z§N: (V,,j = zeW) Gi, p; t),
PFJ
(6.3)

where [I' = I';; is the onsite decay, which is the same for each site due to the translational
invariance of the system. Fourier transforming Eq. (6.3) gives the spectrum of the

single magnon states from the poles of

G(k,w) =limi(w — E(k) + i€) !, (6.4)
where
ir X ,
E(k)=—4J, + A — 5+ > (2Vig — iLyg) cos(kl), (6.5)
=1

is the single magnon dispersion, with the real part corresponding to the energy and

the magnitude of the imaginary part corresponding to the decay rate.
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For two magnons, we consider the following Green’s function, G(i,7,l,m;t) =
Tr{6; ()65 (t)6,°6,%p(0)}O(t), which obeys the equation

dG i? .7 la m; 3

(—2iA + 8iJ, — T — 4i .0 111) G4, 7,1, m; 1)
N N 6.6
p#l pFEmM

N
+ QZfslm Z meG(Zaj7p7m7 t)’

pFm

where J,; = Vj; —il'y;/2. This equation can be rewritten as a matrix equation and par-
tially Fourier transformed with G (r, 7', Q, () = S p_p e IR [ G (i, 5,1, m; t)eS dt,
where we have defined the relative coordinates, r = r; — r;, v’ = r; — 1, and also the
centre of mass coordinates R = (r; +7;)/2, and R’ = (r,+7y,)/2, to give (see Appendix
B)

N

G(r,r',Q,Q) =T(r,r",Q,Qh(r) = 3_K(r,r",Q.Q)G(". 1, Q. (), (6.7)

,r,//

with
K(rr:Q.¢) = %QEBZ % X |4i.J, cos(q) — 2i (V(r) _ ZT(;)> COS(QW}] :
D Q.0) = — oy S eostar)

N qeEBZ C - S(q7 Q)
(6.8)

The momenta ¢ and @ in Eq. (6.7) and Eq. (6.8) are the difference and sum of
momenta, defined by ¢ = (k; — k2)/2 and @Q = ki + ko, where k; and ko are the
momenta of the individual magnons. The momenta ¢ are summed over the Brillouin
zone denoted by BZ. The function in the denominator of Eq. (6.8), S(q, @), is the

dispersion of two free magnons, given by

S(q,Q) = E(Q/2+q) + E(Q/2—q)

N
= —8J, +2A — il + ) (4Vjo — 2ilo) cos(jQa/2) cos(jqa),

Jj=1

(6.9)
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which determines the poles of T'(r, 7, @Q, (), whilst the two-magnon bound states are

given by solutions to the determinant equation
det [6,n + K(r,7",Q,¢)] = 0. (6.10)

Because of the nearest-neighbour Ising coupling, this determinant equation can be

simplified to

1 8J.cos’(ga) 1 S(q', Q) +x
(1 quBzg_S(QaQ)) (1+qungzg_S(q,>Q))

LS 5 oSO+, (6:-11)
wacnz €= 5, Q)][C—5(¢,Q)]
where x = 8., — 2A +I'. In the limit N — oo, we can rewrite Eq. (6.11) as
€+ | 259 - e QR + 16 | ~o. (6.12)
where -~
In(C.Q) = | %;ﬁ. (6.13)

In Section 6.4, we shall find the energies and decay rates of the bound states by
solving Eq. (6.12) (or Eq. (6.11) where appropriate) for three specific forms of the XY
interaction and nonlocal dissipation: a nearest-neighbour model, next-nearest-neighbour
model and a photonic crystal waveguide model. Note that ( = —x = —8J, + 2A — T
is always a solution to Eq. (6.12). However, this solution always lies within the
two-magnon energy continuum. In general, we will dismiss any solutions that lie inside
the two-magnon energy continuum where the bound state is no longer well defined
because it can scatter into the continuum states and become a resonance. While it
is possible to have bound states that exist in the scattering continuum [162], these
usually occur when the system has certain symmetries that protect the state, which

we are not aware of existing in our models.

6.3 General Decay Rates of Bound States

We first show that in general, for any model with nonlocal dissipation of the form

given in the master equation, Eq. (5.1), the decay rate of the bound state always lies
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within the maximal and minimal decay rates of two-free magnons, which we refer to
as the two-magnon decay rate continuum. This means the bound state cannot decay
more quickly or slowly than its constituent parts. To show this, we consider Eq. (6.1)
rewritten in diagonal form

dfz(? = =i [ p0)] + Zk: (275 o) JE = { T a(t) ) (6.14)

Here, Jj, is a decay operator for mode k, given by Jk =k SN k67, where ¥ is the
i" component of the k" eigenvector of I';/2 and 7, is the corresponding eigenvalue.
For a periodic or large enough system, the eigenvector components are given by
¢ = e /\/N. To determine the decay rate of the bound state, we focus on the
initial dynamics of the |@Q) (Q| component of the density matrix, by computing the
time evolution of pg(t) = (Q| 4(t) |Q), with pg(0) = 1 such that 5(0) = |Q) (Q|. The

wavefunction |@Q) is the wavefunction of a bound state with momentum @, given by
N .
= S aofallr - )25 5 o), (6.15)

where fo(r) is some localised function that determines the spatial decay of the
bound state, with r = |r; — 7|, and ag is a normalisation constant given by ag =
1/ (2N >0 | fQ(r)]2). Note that we have assumed that the bound state is uniquely
determined by its momentum. Indeed in future sections, we only find one bound state
solution to Eq. (6.12) (and Eq. (6.11)) for each momentum value ). In general, it is
possible for more than one bound state solution to exist for a given () value, which
results in an additional label on fg(r) in Eq. (6.15) to distinguish between the different
bound states that have the same momentum. However, our results in this section will
still hold even if this is the case. The equation of motion for a pure bound state density
matrix at short initial times is given by

dp;gt(t) ~ =2 8ulagF(Q/2 = k)P pal), (6.16)
k

where pg(t) = (Q] (1) Q) and

F(Q/2—k) = folr)e™ @2, (6.17)

r#0
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is the Fourier transform of the localised function. At later times, there can be the
population of coherences between the bound state and scattering states, which we have
neglected. We can see that the bound state density matrix has a decay rate of 47,
where Yo = 3. 27| F(Q/2 — k)|, which is the weighted sum of all single magnon
decay rates. Note that 7q, is equivalent to the decay rate we will obtain from our
Green’s function method.

For local dissipation where v, = v =1I'/2, the sum over k in 4 can be completed
to give

> 2lagF(Q/2 - k)|* =1, (6.18)

and so the decay rate of the bound state wavefunction (which is half the decay rate of
the pure density matrix) is 2y as expected. For nonlocal dissipation, in order to have a
bound state decay rate that exists below the two-magnon decay rate continuum, we

would need
o = Y. 2laF(Q/2 = k)I* < Yin, (6.19)
k

where Yy, is the smallest decay rate for a single magnon. However, using Eq. (6.18),

we can rewrite this condition as
Z 2(Vk — Ymin) | F(Q/2 — K)|* < 0. (6.20)

Both |agF(Q/2—k)|* and 7j, —Ymin are always positive, which means this condition can
never be fulfilled. The lowest decay rate that could possibly be achieved for the bound
state is the lowest decay rate that can be achieved for two free magnons, although
this may not always obey the bound state equation. The same argument applies for
showing that the bound state cannot have a decay rate above the two-magnon decay

rate continuum, such that
3200 ~ ma)aF(@/2 = K > 0, (6.21)

where Y.y is the largest decay rate in the system. Again |agF(Q/2 — k)|? > 0, but
Vi — Ymax < 0, so this condition can not be satisfied and the bound state decay rate

must always lie within the two-magnon decay rate continuum.
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6.4 Results

6.4.1 Nearest-Neighbour Model

Having shown in general that the decay rate of the bound state always lies within the
two-magnon decay rate continuum, we now look at three specific models for dissipative
bound states. The first model we consider is one in which all interactions and the
nonlocal dissipation are nearest-neighbour (NN). The energies and decay rates of the

one and two free magnon states are given by

Re[E(k)] = —4J, + A + 2Vj5 cos(ka),

r
[ Im[E(k)]| = 5 + 1z cos(ka), (6.22)

Re[S(q, Q)] = —8J, + 2A + 4Vj5 cos(Qa/2) cos(qa),
| Im[S(q, Q)]| =T + 2I'15 cos(Qa/2) cos(qa).
We now solve Eq. (6.12) for the bound state solution. We can evaluate the integrals

as defined in Eq. (6.13) using contour integration. Substituting z = €%, the integral

transforms into

In(t, Q) (6.23)

-4 (e+27)m  de
Coom S w22 — ((+ )z + v 2

where we have defined v = (2Vj5 — il'12) cos(Qa/2). The integral has a pole of order m
at z = 0 and simple poles at zx = (( + x)/2v £ \/((C + x)/2v)? — 1. The two poles

only coincide at |z| = 1, so the case of double poles can be ignored for the derivation.

Evaluating the integrals gives

+1
I(t,Q) = _\/(C+x)2 —

1 (C+x) +1
hh@) == - QUX VC+ )2 — a2 (6.24)
ntQ) - -0 (07 =+l

v 412 \/(C +y)?— A2
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where the £1 sign depends on whether z, or z_ lie in the contour. Substituting these

solutions into the bound state equation, Eq. (6.12), we obtain the equation

+1 (€+x) 2J.
o <2JZ o 1) + 2= 0, (6.25)

which gives the solution ¢ + x = 4 + v?/(4J,). This gives the following bound state

solution

(2Vip — ZT12)2

=—4 —
(@) J, +2A — il + 17

cos?*(Qa/2), (6.26)

which can be written in terms of the energy and decay rate as

4V3 — T2
—ER 0?(Qay2)

cos*(Qa/2).

Re[C(Q)] = —4J. + 2A +
‘/IQFIQ

z

(6.27)

[Im[¢(Q)]] =T+

These expressions first appeared in Ref. [163], although we analyse them in more detail
here. For the expressions in Eqgs. (6.27), there are limits to the parameters we can
choose for the solutions to satisfy the bound state equation, Eq. (6.12). However,
provided we choose Vis and I'13 such that the energy term in Eq. (6.27) lies below
the two-magnon energy continuum, then we find the bound state equation is always
satisfied. We also have to impose I'/2 > |I'j5| in order for the dissipator to always give
decay.

Comparing the bound state solution Eq. (6.27) to the free magnon dispersions in
Eq. (6.22), we see the energy and decay rate of the bound state depend on a mixture of
the interaction and dissipation. The presence of nonlocal dissipation creates a negative
shift in energy compared to the XY interaction, which means that the bound state
energy is shifted further from the two-magnon energy continuum than in a closed
system. This is important as the effects of nonlocal dissipation will not only cause the
bound state to decay, but will alter its dynamics travelling through the lattice meaning
that even if the bound state has a very small decay rate, it is not sufficient to ignore
environmental effects. Furthermore, due to nonlocal dissipation, there is more freedom
to engineer the bound state energy and decay than in a closed system. For example,
the bound state energy band can be made entirely flat by choosing Vo = I'15/2. Also,

by choosing Vi5 = 0 such that there is no XY interaction, the bound state experiences
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only local dissipation, with a decay rate of I', whereas the one and two free magnons
still experience nonlocal dissipation. Finally, looking at Eq. (6.27) in the limit where
Vio, I'1s < J,, we can see the effects of the XY interaction and nonlocal dissipation
become negligible, with the energy of the bound state tending to —4.J, and the decay
rate tending to I' which would be expected for an Ising model with local dissipation.

The relative signs of the XY interaction, nonlocal dissipation and Ising interaction
allow the bound state decay rate to be tuned such that it is either entirely subradiant
or superradiant, with the most super- or subradiant decay at (Qa = 0 and a decay rate
of I' at the band edge, Qa = £x. To find how subradiant or superradiant it is possible
to make the bound state, we extremise the decay rate of the bound state with respect
to the parameters V5 and I'y5 for a fixed value of J,, while still obeying the constraint
that the bound state energy must lie below the two-magnon energy continuum. We
also maintain a fixed decay rate I' (otherwise there is always a trivial minimal decay
rate with I' = T';5 = 0). We find the extremal decay rates occur when I'y = £2.J, and
Vi = £J, (where the signs can be chosen independently), and so the corresponding

energies and decay rates are given by

Re[((Q)] = —4J. + 24,

(6.28)
| Im[¢(Q)]] =T F 2J. cos*(Qa/2),

where the negative sign gives the maximal (minimal) decay rate and the positive sign
gives the minimal (maximal) decay rate for J, < 0 (J, > 0). The largest values for
['12 and Vi3 occur when the bound state makes contact with the energy continuum
at Qa = 0. In Fig. 6.1, we show the minimal decay rate solution for J, < 0 and
I' = 2|T"j5]. The bound state solution is shown by the red band, while the other bands
represent the free magnon states, which form a continuum in the thermodynamic
limit. We will therefore refer to the energy curves of the free-magnon states as the two-
magnon energy continuum and the corresponding decay rate curves as the two-magnon
decay rate continuum. Note that the shading used on the free magnon bands gives a
correspondence between the energy of the band and its associated decay rate i.e. the
light bands at low energy in the top plot of Fig. 6.1 have a decay rate given by the
light bands in the lower plot of Fig. 6.1. This convention will be used throughout the
chapter. The bound state decay rate lies in the two-magnon decay rate continuum as
expected and is smaller than half the free magnon decay rates at Qa = w and 2/3 of

the continuum at QQa = 0, with the lowest energy bands of the two-magnon continuum
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Figure 6.1 Energy (top) and decay rate (bottom) of the bound state for a NN system for J, < 0

and I' = 2|T";2|. The bound state solution is shown in red whilst the shaded region represents the

two-magnon continuum. The parameters used are I'15/|J.| = —2 and Vi5/|J.| = —1 which give the

smallest possible decay rate for the bound state while keeping the energy separate from the continuum.
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having the smallest decay rates. For the maximal decay rate solution, the results are
similar to Fig. 6.1, but the decay rates reverse, with the lowest energy bands having
the highest decay rates and the bound state solution having a larger decay rate than

most of the two-magnon decay rate continuum.

6.4.2 Next-Nearest-NNeighbour Model

The NN model studied in the previous section demonstrated many features of dissipative
bound states, but also missed some qualitative features of bound states with longer
range hopping. We therefore consider a model where the XY interaction and nonlocal
dissipation are both next-nearest-neighbour (NNN), finding that the inclusion of
additional site interactions produces important differences in the properties of the
bound state compared to a NN model. The one and two free magnon energies and

decay rates are given by

Re[E(k)] = — 4J, + A 4 2Vi5 cos(ka) + 2Vi3 cos(2ka),
r
| Im[E(k)]| =5 + I'y2 cos(ka) + I'y5 cos(2ka),

Re[S(q, Q)] = — 8J, + 2A + 4Vi5 cos(Qa/2) cos(qa) + 4Vi3 cos(Qa) cos(2qga),

| Im[S(g, Q)]| =T + 2T'15 cos(Qa/2) cos(ga) + 2T'13 cos(Qa) cos(2qa).
(6.29)

To derive the analytic expression for the next-nearest-neighbour bound state solution,
we use the substitution z = €7 to transform the integral in Eq. (6.13) into the following

contour integral

S YL R
2m J &2t + vz — (C+ x)22 + vz + €270

In(t,Q) = (6.30)
where £ = (2Vj3 — il'13) cos(Qa) and v = (2Vig — iI'15) cos(Qa/2). The quartic in the
denominator is palindromic, which means the solutions obey a quadratic in (z + 1/z).
Therefore, if z is a solution to the quartic, then so too is 1/z, and this immediately
indicates that only two of the four roots can exist inside the contour. We also find that

the residue of the roots 1/z and z only differ by a sign. The integrals in Eq. (6.30)
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can therefore be evaluated to give

0(t.Q) = Z(Fy+ ).
1(t.Q) = S (AP + P, (631)
B(t.Q) = L+ B + B F).
where
Fijp=+ !

B3 — 4(Brje — Bapt)’

2
e R

The sign of I/, depends on whether the root z; /5 or its inverse lies inside the contour.

(6.32)

Substituting the integral solutions into the bound state equation, Eq. (6.12), gives

1 1 2J.(B1 — B2)?

AYET eran (0:33)
We can now solve Eq. (6.33) to obtain the bound state solution. Before doing
so, we note that there is also the possibility of a double root in Eq. (6.30) when
¢+ x = 2 + v?/(4€). In this case, the denominator of the integrals in Eq. (6.13)
can be simplified to (4 cos(q) — v)?/(4€). We can then evaluate the NNN integrals
without using contour integration, but find these solutions do not obey the bound state
solution.

The bound state solution that obeys Eq. (6.33) is given by

T3, cos*(Qa/2)
J.

C(Q) = —8J, + 2A — il + 4Jy3cos(Qa) +

N J?, cos?(Qa/2)J13 cos(Qa) N 8.J?2
2J2 2J, + Jiz cos(Qa)’

(6.34)
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where Jjo = Vis — il'12/2 and Jy3 = Vig — il'13/2. Writing in terms of the energy and

decay rate gives

Vg -T%,
Rel0(@)) = =8+ 28 + =5 cos™(Qa/2)
4V2 —T2) — 2137
VsV = M) = 2MwsleVis o) cos?(0a/2)

8.J2
16J%(4J, + 2Vi3 cos(Qa))
(47, 4+ 2Vi3 cos(Qa))? + (T'13 cos(Qa))?’

+ 4Vi3 cos(Qa) +

VoL (6.35)
I Tm[C(Q)]] =T 4+ 222 cos?(Qa/2) + 2I'y3 cos(Qa)
n Dy3(4V35 — 2%62?]; 8Vi3[M2Via cos(Qa) cos®(Qa/2)
16J§F13 cos(Qa)

(4, + 2Vi3cos(Qa))? + (T3 cos(Qa))?’

As for the NN model, there is a constraint on the values of the dissipative couplings
to ensure the magnons always decay, which is I'/2 > |I'y5 + I'13|. Likewise, we have
to choose parameters that satisfy the bound state condition Eq. (6.12), finding again
that provided the energy of the bound state lies below the continuum, then Eq. (6.12)
is satisfied. Our NNN bound state solution is the same as that found in Ref. [151] but
with a complex XY interaction. This is also true of our NN result in Eq. (6.27), which
can be obtained by taking the bound state result in Ref. [144] with a complex XY
interaction.

The inclusion of an additional site in the XY interaction and nonlocal dissipation
results in a more complex bound state solution than in the NN model. Looking at
the terms in Eq. (6.35) in more detail, we see that the NN solution in Eq. (6.27)
can be recovered by letting Vi3, ['13 = 0, and that now we have additional terms due
to two-site hopping processes and a term that mixes the NN and NNN parameters.
Because of the new magnon hopping terms, the decay rate of the bound state is no
longer fixed to be I at Qa = £m as was the case for NN interactions, and the smallest
and largest decay rates do not have to occur at (Qa = 0 anymore. Therefore the
inclusion of NNN interactions allows more freedom in choosing at what momenta @)
the bound state can have its highest or smallest decay rate. However, we can now no
longer engineer an entirely flat energy band due to the presence of both cos(Qa/2) and

cos(Qa) terms (unless trivially the NNN couplings are set to zero). Looking at the
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limit of Vi3, 13, Vig, 12 < J,, we find Eq. (6.35) simplifies to

Re[((Q)]| ~ —4J, + 2A 4 2V33 cos(Qa), (6.36)

| Im[C(Q)]| = T + I'13 cos(Qa).

We find that there is now always a contribution to the decay rate from the NNN
interactions, that means even tightly confined bound states still experience the effects
of nonlocal dissipation, which was not the case for the NN model. We can also see
that the smallest decay rate will occur at Qa = 0 (Qa = £7) and largest decay rate at
Qa =47 (Qa =0) for I';3 < 0 ('3 > 0).

We now extremise the NNN bound state decay rate for a fixed I" with respect to the
parameters Vg, Vi3, I'1o and I'y3 to find the smallest and largest decay rates the bound
state can have while its energy remains separate from the two-magnon energy continuum.
Due to the complexity of Eqgs. (6.35), we solve this numerically, finding that the solution
with minimal (maximal) decay rate occurs when Vis = £1.135J,, Vi3 = —0.293.J,,
['1o = +1.926J, and I'13 = 0.578.J,, and the maximal (minimal) solution occurs when
Vig = F1.135J,, Vi3 = —0.293J,, 'l = £1.926J, and I'y3 = —0.578J, for J, < 0
(J, > 0), where in both cases, we are free to choose the positive or negative sign. The
largest values of all parameters occur when the bound state energy makes contact with
the two-magnon energy continuum at QQa = 0, as was the case for the NN interactions.
In Fig. 6.2, we show the minimal solution with J, < 0 and I' = 2|(I';2+1"13)|. Again, we
find the decay rate of the bound state lies within the two-magnon decay rate continuum,
with the bound state having a smaller decay rate than 30% of the continuum at Qa = =
and up to 70% of the continuum at Qa = 0. We should note there is a second minimal
(maximal) decay rate solution with parameters Vis = I'13 = 0, I'13 = +0.402.J, and
Vi3 = —0.827J, and maximal (minimal) solution for Vio =I';5 = 0, I'13 = —0.402.J,
and Vi3 = —0.827J, for J, < 0 (J, > 0). However, we have not shown this solution as

it is more unphysical due to the absence of the NN terms.

6.4.3 Photonic Crystal Waveguide Model

We now study one final model, which should be an experimentally realisable set-up to
study dissipative bound states. We consider Rydberg dressed two-level atoms that are
coupled to a photonic crystal waveguide (PCW). Systems of two-level atoms where
one state is a Rydberg state or Rydberg dressed are already well studied as realisable

quantum simulators [26-30]. Likewise, PCWs are also gaining attention as a method
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Figure 6.2 Energy (top) and decay rate (bottom) of the bound state for a NNN system with
I' = 2|(T'12 + T'13)| and J, < 0.The bound state solution is shown by the red curve whilst the
shaded curves represent the two free magnon solutions. The parameters used are Vi5/|J,| = 1.135,
Vis/|J.| = 0.293, T'15/|J.| = 1.926 and T';3/|J,| = —0.578, which give the smallest possible decay rate
for the bound state while keeping the energy separate from the continuum.
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for quantum simulation and quantum information processing due to the high tunability
of the interactions between coupled quantum emitters [164-168]. For atoms coupled
to a PCW, photons emitted from the atoms can propagate to other atoms along the
chain, which mediates an effective XY interaction and nonlocal dissipation. With a
system Hamiltonian, I:Isys => (wwg — 277 — 2J cos k) dltdk + 32 Weg07, the interaction

between the atoms and the PCW in the interaction picture is given by [169]

= QZ “"PgtE (i, t) + 6{6_iwegtET(xi, t)), (6.37)

where F (z,t) = 3, eFe™wsti, /\/N is the electric field operator, g is the coupling of
the atoms to the PCW, w,, is the transition energy of the two-level system, and wy,
the photon mode frequency, with a loss rate 7.. By tracing out the photonic modes,
ay, and assuming the Born and Markov approximations as outlined in Chapter 2, we
can obtain a master equation of the form in Eq. (6.1). The dissipation couplings are
given by I'; = 2Re[A;;] and the XY interaction given by V;; = Im[A;;], where A;; is of

the form
Aiji=yg / (x;,t x],t — T))@megTdT
nyelK\ml (6.38)
21 (8/(20) +ine/(4))F

The parameter J,, = g?/J is the coupling of the atoms to the PCW, J is an energy
scale determining the PCW bandwidth, and K,,a = 7 — arccos (6/(2J) + i7./(4J)) =
kwga + ik yga is the PCW wavevector. The PCW wavevector depends on the detuning,
0 = (Wey — Wuy), of the atomic transition frequency, w,,, from the photon mode
frequency, wy,, and also the loss rate of photons from the PCW, ~,. If |0/J| < 2, then
the photon lies within the bandwidth and can propagate along the PCW with a group
velocity given by v = |\/4J2 — (6 +iv./2)?|. However, if |§/J| > 2, then the photon
cannot propagate and instead exponentially decays along the PCW.

In order for bound states to form, we also need an Ising interaction. This can be
engineered by dressing [26] either the excited state, |e) or ground state, |g), of an atom
with a Rydberg state |r), giving a new state |€) = |e) + 5 |r) where § = (4/2A, set by
the drive (4 and detuning A, that couple |e) to |r). The atoms then interact with an
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[sing interaction of the form

Uo

Ui - 5
"1+ (s — il /RS

(6.39)

where Uy = h(j/8A% and R, is some cut off length to the interaction. For small R,
this is a good approximation to a NN Ising interaction. The sign and magnitude of
Uy can be fixed by the laser detuning and it is also possible to add additional XY

interactions between the atoms which gives more freedom in tuning V;; separately from
r

ij-
For the PCW system, the one and two free magnon energies and decay rates are

given by

Re[E(k)] = —4J. + A+ f(k) + f(—F),

[T ER))| = 5 + o(k) + g(—),

Re[S(q,@)] = 8L +2A+ f(Q/2+q) + f(Q/2—q) + f(=Q/2+ q) + f(-Q/2 — q),

[ Im[S(q,Q)]| =T +9(Q/2+q) +9(Q/2 — q¢) + 9(=Q/2+ q) + 9(—Q/2 — q),
(6.40)

where A = V11/2 4 §/2 + 0444, With d,qq4 being an additional detuning to those from

the waveguide, and

i) = (P ln ) Vol £ 7)),

efwg® 4 e Fwg® — 2 cos((kyy + k)a)
I'[cos((kwg + k)a) — e 9% — Vg sin((kwy + k)a)
erwg® 4 e~Fwa® — 2 cos((kyy + k)a)

(6.41)

g(k) = (

For the rest of this section, we will choose the additional detuning, d,4q such that
A = 0 and so we can ignore the contributions to energy from the onsite term, V4; and
detuning from the waveguide mode §. We will also work with J, < 0.

In Fig. 6.3, we plot the energy and decay rate of the single magnon dispersion for
Ye/J =2,6/J =0and J,,/|J.| =3. If |§/J] < 2 and ~./J is small, then about the
points k = £k,,, the decay rate is well modelled by two Lorentzians with a width of
4sinh(kyga/2) and maximum value of I'/[4 tanh(k,4a/2)]. Similarly, the energy of the
magnon is well described by the derivative of a Lorentzian with width 4 sinh(r,4a/2)
and maximal (minimal) values given by £I"/[8 sinh(k4a/2)]. As 7./ J decreases (and so

Kwg — 0), the energies of the magnons and decay rates about k = %k, diverge within
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Figure 6.3 Energy and decay rate of a single magnon for the PCW system with v./J =2,6/J =0
and Jy,/|J.| = 3. The energy is shown by the red (solid) line and the decay rate by the purple
(dashed) line. The largest decay rates occur when k = +k,,4, shown by the grey lines.

the photonic bandwidth (|6/J| < 2). However, outside the bandwidth (|0/.J] > 2), the
energy of the magnon is bounded and its decay rate drops to zero as . — 0, leaving
the system effectively closed. The single magnon dispersions can be thought of as
the hybridisation of a photon propagating through the waveguide with a dispersion
Wk = Wyy — 2J cos(k) and momentum k, and a single atom with energy we,.

We now look at the bound state solutions in the PCW and discuss their properties.
The bound state condition, Eq. (6.12), is too complex to be solved analytically, so we
instead tackle the problem numerically for finite sized systems by solving Eq. (6.11).
In Fig. 6.4, we plot some typical solutions of Eq. (6.11) for a system size of N = 99,
with 7./J = 2, Juy/|J.| = 3 and for §/J = (—3,—1.5,0,1.5,3). We see that bound
state decay rate lies within the two-magnon decay rate continuum as expected, and is
smaller than the decay rate of the lowest energy bands of the continuum for 6/J < —2,
but larger than the decay rate of the lowest energy bands of the continuum for 6/J > 2.
For intermediate detunings, whether the bound state decay rate is smaller or larger
than the decay rate of the lowest energy bands depends on the momentum of the
bound state. As for the NNN model, we find the minimal and maximal decay rate of
the bound state is no longer constrained to occur at Qa = 0 and that the decay rate at
(QQa = 7 is not given by I' as a consequence of the long-range interactions. If x,, is

large enough, then the bound state solutions are well modelled by the NNN analytics
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Figure 6.4 Examples of the two-magnon bound states that can form in the PCW model for a system
size of N = 99 with parameters v./J = 2, J,,/|J.| =3 and §/J = (-3, —1.5,0,1.5,3). The top panels
show the energy of the bound state and the lower panels show the decay rate. The red line represents
the bound state solution and the shaded region represents the continuum of two-magnon states. We
find that the bound state energy lies below the two-magnon energy continuum and the decay rate
of the bound state always lies within the two-magnon decay rate continuum. When 6/J < —2, the
bound state decay rate is always lower than that of the lowest energy bands whilst if §/.J > 2, then
the decay rate of the bound state is larger than the lowest energy bands. Note that for §/J = 0, the
decay rates of the lowest energy bands are obscured by the highest energy bands as they share the
same decay rate. We also show the NNN bound state result from Eq. (6.35) with the dashed orange

line. We see the NNN result agrees well with the waveguide results when x,4a is large.

due to the exponential decay of the PCW interaction. This can be seen by the close
agreement between the NNN and PCW bound state solutions when 6/J = 43, which
gives the largest k,4. For intermediate detunings, the agreement is not as good, but
can be made increasingly better for larger v./.J.

In Fig. 6.5, we plot the momentum for which the bound state has the smallest
decay rate as a function of 6/J and ~./J. We find that there is a transition between
the bound state having the smallest decay rate at Qa = 0 when |§/J| < 1.4 to Qa =7
when |§/J| > 1.4. This transition can be explained by looking at the weak XY limit of
the NNN bound state solutions given by Eq. (6.36). In the weak limit, we find that
the momentum where the decay rate of the bound state is smallest transitions from
Qa = 0 to Qa = ™ when I'13 changes sign. We show when I'13 = 0 in Fig. 6.5 by the
red dashed lines, and find it agrees well with the transition in the PCW, with I';3 < 0
when |§/J| > 1.4. The transition moves to larger values of |0/J| as v./J increases,
and also becomes sharper as the NNN solution becomes a better approximation to the
PCW results.

Finally, we discuss how the bound state formation depends on 6/J and ~./J. Fig.

6.6 shows where the bound state rejoins the two-magnon energy continuum as a
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Figure 6.5 (a) Momentum at which the smallest decay rate of the bound state occurs for a system
size of N =99 with J,,/|J.| = 1.5. We see there is a clear transition between the smallest decay rate
occurring at Qa = m when [6/J| 2 1.4, and Qa = 0 for |§/J| < 1.4. The red dashed lines show when
I'13 changes sign which explains the transition as described in the main text. The black region shows
where the bound state solution starts to merge with the two-magnon continuum. (b) Magnitude of
the smallest decay rate. We see that when the crossover in momentum occurs when I'y3 = 0, the

decay rate increases, but decreases again as I'13 becomes larger.
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Figure 6.6 Diagram of when the bound state can form for the PCW model for a system size of
N =99 with Jg,/|J.| = 1.5 (dashed line) and J,,/|J.| = 3 (solid line). Between the ¢ axis and the
bound state line, the bound state energy starts to join the two-magnon energy continuum for some
or all momenta, ). Outside this region, the bound state energy lies separate from the two-magnon
energy continuum for all momenta ). We see that the bound state can not remain separate from
the two-magnon energy continuum at low 7./J near the band edge or inside the bandwidth, but can

remain separate from the two-magnon energy continuum everywhere else.

function of 6/J and ~v./.J. We find there is a region inside the bandwidth that extends
along the 7./J axis where the bound state joins the continuum and that, as J,,/|.J.|
increases, this region also increases in size. The reason the bound state starts to rejoin
the continuum for small +./.J inside the bandwith is due to the diverging strength
of the single magnon energy around k = +k,,,. For increasingly large systems, more
momentum modes around these points are allowed and so the energy range of the
two-magnon continuum grows until the bound state is absorbed. However, outside the
bandwidth and in the small 7./J limit, the bound state energy can remain separate
from the two-magnon energy continuum for any value of J,,/|.J.|, provided §/J is
large enough. This is because the two-magnon energy continuum is now bounded as
ve/J — 0 and so bound states can remain separate from the continuum. As mentioned

in our discussion of the single magnon dispersion, the imaginary part of the PCW
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interaction, Eq. (6.38), becomes negligible in this limit, and so the system becomes
closed, with the decay rate of the bound state dropping to zero. When ~,./J becomes
large, or when |0/J] > 2, the XY interaction becomes increasingly shorter ranged
due to the exponential decay, until eventually it is negligible compared to the Ising
interaction. In this limit, the bound state is well separated from the two-magnon
energy continuum with the bound state energy tending to —4.J, and the decay rate
tending to I'.

Our analysis of a PCW has shown how many features of dissipative bound states
can be obtained for a single photonic mode and how, for large x4a, the PCW is well
described by the NNN analytics. For a single mode, it is not possible to obtain the NN
results, no matter how large k,4a is. To see why this is the case, we look at the NNN
bound state solution in Eq. (6.34). We can see that for an exponentially decaying
function, Ji3 ~ J2/J,, which means that there is always a NNN contribution to the
bound state solution that is of the order of the NN parts, so the NNN contribution
cannot be ignored. However, it could be possible to engineer more exotic XY interactions
by combining many modes or coupling to more than one waveguide. This could also be
done in parallel with different Rydberg dressing schemes or allowing other interactions,

such as dipole interactions, to occur between atoms.

6.5 Discussion

We have shown that two-magnon bound states can generally form in dissipative spin
chains with XY and Ising interactions. We find the inclusion of nonlocal dissipation
not only gives the bound state a momentum dependent decay rate, but also alters
the bound state energy compared to a closed system or system with local dissipation.
Nonlocal dissipation also allows for a greater degree of freedom in engineering the
energy and decay rate of the bound state. We have shown that the decay rate of the
bound state cannot be smaller or larger than its constituent free magnons. Nevertheless,
it is still possible to achieve bound states that have a decay rate much lower than a
large proportion of the two-magnon decay rate continuum.

We now discuss the experimental set-up of the PCW model in more detail. The
PCW can be realised with an alligator waveguide [166, 167], with high tunability over
the allowed modes and loss processes. By choosing an appropriate Rydberg dressing
scheme for either the ground or excited state of the two-level transition coupled to the

PCW, it should be possible to engineer suitable Ising-like interactions with NN or even
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beyond NN range. We note that the waveguide can modify the interaction between
the Rydberg atoms [170]. Typically, the effect of the waveguide will make the Rydberg
interactions shorter ranged than in free space which means the nearest-neighbour Ising
interaction will still hold. However, even if the Ising interaction has a spatial extent
beyond NN, we expect many of our results will be qualitatively the same.

When studying the bound states, one has to be careful not to violate the Markovian
approximation. For the Markovian approximation to be valid, it is required that the
time for a photon to travel down a PCW, (N —1)a/v, where v = |\/4J2 — (0 +1i7./2)?|
is the PCW group velocity, is much smaller than the time for the atoms to decay,
1/T'=1/(2Re[A;;]) [169]. Substituting in A;; from Eq. (6.38) gives the condition

Re [\/1 - (0/(2]) + iv./(4.))?] N (N —1)a
Jay |\JAT2 = (8 +ine/2)?]

(6.42)

which is satisfied provided the coupling of the atoms to the waveguide is weak and also
that the detuning is away from the band edge at 6 = +2J when ~./J is small. The
expression Eq. (6.42) also shows that the system needs to be finite to not violate the
Markovian approximation. However, we have checked and found that there are bound
state solutions with similar properties to those in the main text for finite size systems
with open boundary conditions. Therefore, it should be possible to observe many of
our bound states results for large enough finite sized systems with open boundary
conditions or periodic boundary conditions.

Finally, measurement of the bound state decay rate and energy should be possible
by observing the emission when the bound state decays. Following the steps outlined
in Ref. [163], the emission properties of the bound state are given by the correlator
g(t,r) = (E’(_)(t, T)E(+)<t, r)) which can be calculated from the electric field, E(_)(t, r).
For decay of a pure bound state, p(0) = |Q) (Q|, the correlator g(¢,r) is given by

g(t,’l") —470tr
W = %:4\04QF(Q/2 —k)[? [%_k,Ag sin(8) /€ et

(6.43)

Tr+Q —2yxt 47t
+ = J sin c\€ TRt — eT IR y
24, e )
where t, =t — r/c, Ak = Re[E(k)], AY = Re[¢(Q)] — Re[E(k)], n = w2,/ (4megc) and
W(r) =d/r —r(d.r)/r® is the far-field dipole emission profile. Note we have neglected

any coherences between the bound state and scattering states which may occur at later
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times. There are two contributions to the emission of the bound state; one from the
decay of the bound state to a single magnon with momentum £, and one from the decay
of a single magnon to the ground state. The delta functions determine the emission
angle 3 for each of these decay processes in terms of the momentum and energy of
the bound state and single magnons, where (3 is defined from the perpendicular axis
from the spin chain. The total emission is then a sum over all these processes. The
quantity |agF(Q/2 — k)|* that determined the decay rate of the bound state also plays
a crucial role in the angular dependence of the emission, which was noted in [163]. By
examining the spatial and temporal emission of the bound state, it should be possible
to determine its energy and decay rate for a given momentum Q).

In future work, it would be interesting to extend our results to m magnon-bound
states and to see how the decay rates of different magnon sectors compare to one
another. Given our proof that the two-magnon bound state decay rate must lie within
the continuum of decay rates, it seems likely that this would also be true for m magnon
states, and possibly also true for magnon states with larger spin and in systems of
higher dimension. It would also be interesting to study different forms of dissipators
and find systems where the bound state can have a decay rate that lies outside the

two-magnon continuum.

6.6 Conclusions

We have studied the energies and decay rates of one and two free magnons and two-
magnon bound states in an XXZ model with nonlocal dissipation. We have proved that
in general the decay rate of the bound state must lie within the decay rate continuum
of two free magnons. We have then examined three examples of dissipative bound
states in more detail, first looking at two forms of the XY interaction and nonlocal
dissipation analytically; a nearest-neighbour model and next-nearest-neighbour model.
We have found that the inclusion of nonlocal dissipation leads to momentum dependent
decay rates and changes in the energy of the bound state compared to a closed system
or a system with local dissipation. The nonlocal dissipation also allows a higher degree
of tunability in the energies and decay rates of the bound states. Finally, in our
third example, we have numerically studied an experimentally realisable model to
observe dissipative bound states using Rydberg dressed atoms coupled to a photonic

crystal waveguide. This model demonstrated many key features of our simpler models
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and could also be used to obtain our next-nearest-neighbour results within certain

parameter regimes.



Chapter 7
Summary

In this thesis, we have studied a variety of novel non-equilibrium phenomena that can
be found in driven two-level systems when coupled via near-field and far-field dipole
interactions. In Chapter 3, we studied a system with near-field dipole interactions
with both static and exchange nature under external drive, extending the results
found in the undriven system [72]. We found that the non-equilibrium dynamics
were oscillations which exhibited a bifurcation between dipole-dominated and Rabi-
dominated oscillations. Despite the presence of dipole interactions which usually cause
the oscillations to decohere, it was possible to still find regimes of collective behaviour
when strongly driving the system for certain tilts of the dipoles and ratios of the Ising
to XY dipole interaction.

In Chapter 4, we examined how the inclusion of dissipation fundamentally changed
the dynamics of the system compared to Chapter 3. We found the inclusion of dissipa-
tion allowed more exotic forms of non-equilibrium phases such as antiferromagnetism,
spin density waves, persistent oscillations and bistabilities within the mean-field ap-
proximation, and how these varied with the tuning of the Ising to XY interaction.
We also compared small quantum systems and the mean-field phase diagram, finding
key signatures of the mean-field through connected correlators and the distribution of
expectation values. While these features had been touched upon in other mean-field
studies, our results suggest these are generic features of dissipative spin systems. In
Chapter 5, we studied the full resonant dipole-dipole interaction. We found the non-
equilibrium phases that can arise with far-field dipole coupling beyond low intensity
drive, which had not been identified before. We then explained how nonlocal dissipation
was important in the formation of these non-equilibrium phases. As in Chapter 4,

there was an emergence of many exotic phases, such as oscillations, bistabilities and
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spin density waves and we also found that nonlocal dissipation causes the formation of
more spin density waves and oscillations than in systems with local dissipation. We
attributed this to the fact that the long-range dipole interactions allow the dipoles to
oscillate out of phase and trap more photons in the system. Similarly to Chapter 4, we
also found signatures of the mean-field in the full quantum picture.

Finally, in Chapter 6, we studied the dynamics of an open quantum system on
approach to the steady state in a system with nonlocal dissipation and also static and
exchange dipole moments. We focused on the dynamics of a two-magnon bound state,
which now had a decay rate that depended on its momentum because of the nonlocal
dissipation, and examined how it decays compared to two free magnons in the system.
We proved that the bound state could not have a decay rate larger or smaller than the
maximal or minimal decay rate of two free magnons for any arbitrary XY interaction
and nonlocal dissipation. We then characterised the decay rates of the single magnons
and bound states for a nearest-neighbour, next-nearest-neighbour and photonic crystal

waveguide model.

7.1 Outlook

The biggest question raised in this thesis is the validity of the mean-field approximation.
For Chapter 3 and the study of the closed system, we expect the mean-field to be
accurate because of the highly classical nature of the non-equilibrium state that
emerges at high drive. However, for the dissipative dynamics in Chapters 4 and 5,
the applicability of the mean-field approximation is unclear. While it is expected
to be valid for systems with high coordination number, such as systems with high
spatial dimension or with all-to-all interactions, little is known about the validity of
the mean-field approximation for power law interactions. We have shown that, in small
quantum systems, some signatures of the mean-field can be found, such as the index
of dispersion corresponding to regions of bistability. However, understanding in what
regimes the mean-field approximation can be used will require much further work. As
discussed at the end of Chapter 4, near-field dipole terms in the open quantum system
seem to give results similar to that of a nearest-neighbour interaction. Therefore, given
the fact the system is 1D, it may be possible to study this system using t-DMRG
methods [133] to study larger systems and gain a better understanding of how strong

these mean-field signatures become with larger system size. However, for the far-field
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dipole system in Chapter 5, the long-range nature of the interactions makes these
methods more difficult to implement and so others will have to be employed.

Understanding the validity of mean-field in the far-field dipole systems is of particular
importance as there are currently many experimental efforts exploring the effects of
dipole interactions in cold gas clouds [171, 172]. Experiments are still working on the
low intensity limit, but are starting to move beyond this regime [173] and examine
the effects of multiple excitations in disordered cold gases. Of particular interest is
whether or not bistability can occur in these experiments and what signatures of this
can be measured. By using the mean-field approximation, it should be possible to make
clear predictions of what experimentalists may be able to measure, and simultaneously
evaluate the applicability of mean-field by corroborating with experiment, which will
be a natural extension of the work in Chapter 5.

Another route of further work would be to expand on the results of dissipative
bound states in Chapter 6. While we proved that the decay rate of the bound states
must lie within the two-magnon decay rate continuum, the possibility to study other
forms of nonlocal dissipation and determine if they can result in a bound state with
a higher or lower decay rate than the continuum would be interesting. Furthermore,
we have only studied a nearest-neighbour Ising interaction and looked at a 1D system.
Looking into longer-ranged Ising interactions and higher dimensions could lead to
multiple bound states with even more exotic properties.

For all the chapters on open quantum systems, we have assumed both the Markov
and Born approximations. However, there has been recent growing interest in relaxing
these assumptions and studying non-markovian effects [174]. How these effects alter
steady state phase diagrams or decay of excitations is largely unexplored. For all
chapters, it is natural to ask how the key findings generalise to the inclusion of more
energy levels, which results in larger spin systems. It would also be interesting to
understand the effects of altering the underlying lattice geometry, where certain lattices,
such as Kagome and triangular, lead to frustration effects between spins [175]. Finally,
as briefly considered at the end of Chapter 3, it would also be useful to understand
how the key findings of this thesis are altered by non-unity filling of the lattice and
disorder due to small motional effects. These effects will be important for possible

future experimental implementation.






Appendix A

Floquet Theory

Below we prove the key results from Floquet theory and how they relate to the stability

of the system. For any Floquet equation, we can write the solutions in matrix form

dX

— =A(H)X Al

X _A0x. (A1)
with X(0) = I, where I is the indentity matrix. For any non-singular matrix X(¢), we
can find another matrix Y (¢) = X(¢)B that is also a solution to the equations where

B is some constant matrix

= A()X(t)B (A.2)
— A()Y(1).

We can also show that X (¢ + nT'), where n is an integer, is a solution to Eq. (A.1)
provided A(t) is periodic such that A(t +nT) = A(t). We therefore have

X'(t+nT) = At +nT)X(t +nT)

(A.3)
= A()X(t + nT).

We can now define the matrix Y (¢) = X(t +nT)X(nT)™!, which is immediately a
solution to Eq. (A.1) because of our previous results. If Y(¢) and X(¢) are both
solutions to Eq. (A.1), then because the solutions are unique, it must be the case that
Y(t) = X(t) and so X(t + nT) = X(t)X(nT). As an additional result, if we set t =T,
we can show that X(nT') = X(T')". Therefore, X(t +nT) = X(¢)X(T")" and motivates
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the definition of the constant matrix
B =X(T). (A.4)

This is the Monodromy matrix whose eigenvalues give the Floquet multipliers, p;. Each
multiplier can be written as the exponent of a Floquet value. However, these values
are not unique due to the addition of 272 in the exponent.

We can show the multipliers relate to the stability of the orbits as follow. Let b; be
an eigenvector of B, with Bb, = p;b;, and let x(t); = X(¢)b;. Then we have

Therefore, after time T', the solution to the Floquet equation becomes scaled by the

multiplier. If we let time run for nT" times, we find
x(t +nT) = px(t). (A.6)

We can see then that if the multiplier is greater than one, the solution will diverge
exponentially in time. If the multiplier is unity, the solution is periodic and if the
multiplier is less than unity, the solution decays. i.e. the fluctuations die down.

Therefore, the original solution is only stable if all multipliers are less than unity.



Appendix B

Deriving the Bound State

Determinant Equation

Below, we outline the steps to obtain the bound state equation in Eq. (6.11). For
an open quantum system, provided the Liouvillian operator is time independent, any

Heisenberg operator, A m(t) will obey the adjoint master equation, given by [94]

dAH t A N Fz aAd A A~ AdtaA— A
dt( ) _ i[H, Ay (1)) + Zl 7’ (261 Au(t)o; — {6/ 67, An(t)}). (B.1)

condition p(0) = |0) (0], will obey
dAg(t)

(0 —4
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where B = B 1 (0) which is equivalent to the Schrodinger picture operator. For the
two-magnon Green’s function, G(i, j, 1, m;t) = (0| 5; (t)6; (t)5,76;, |0) ©(t), this gives

dG(i, j,l,m;t)
N N
2N + 40 Y Upn +40Y Uy — T = 8iUpy, | G(i, 5,1, m;t)
a#£m a#l

(B.3)

N N
- ZZ JplG(iaj7p7 m; t) —1 Z meG(’i,j,p, l; t)
p#l pFm

N
+ 206im Y JomG (i, j, p,mit),

pFm

where J,; = V,; —il',/2. In order to solve Eq. (B.3), it will be useful to view it as a
matrix equation [176] given by (L + 6 L)G = ph, where the matrices are defined as

L, m,p,v;t —t) =i0(t — t")0pmIp + 10(t — t')0prJpm+

8(t —t")0p0um ( d/ + 2N — 44 Z U — 41 Z Ua + F)

dt aFm al
SL(L,m,p, vyt —t') = —i0(t — t')OpmOimJu (B.4)
—i0(t — t")0u0m Iy + 8i0(t — ') p10umUpp,
h(i, J,p,v) = dipju(l — dy;)
p(l,m,p, vt —t') = 0(t — ') (3p10um + pm0ut),

)

To solve Eq. (B.3), we now follow the same steps taken by Wortis [144] by introducing
the function I'(4,j,l,m;t) = G(i,l;t)G(j,m;t) + G(i,m;t)G(j,1;t), where G(j,1;1t)
is the single magnon Green’s function. We find that T'(i, 7,1, m;t) obeys Eq. (B.3)
without the last two terms and no 1 — J;; term. Viewed in terms of matrices, this
means LI = p and so we can write £ = uI'"!. This allows Eq. (B.3) to be rewritten

as
(i, j,a,b; t)h(z‘ j) — G, 4, a, b t)

_/ ZZFlmabtéﬁ(lmp,vt t)G(i,j,p, v t') (B.5)

pv Im

—/ ZKabp,vt tG(i,7,p,v;t'),
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where in the last line we have defined

K(a,b,p,v;t) = 8ilUpyI'(p,v,a,b;t)

(B.6)
- i(Jpv/Q) (F(U7 v, a, b; t) + F(pvp7 a, b; t)) :

In order to obtain the bound state solutions, we now need to partially Fourier transform

Eq. (B.5). The Fourier transform of I'(¢, 7, a, b; t) is given by
(i, j,a,b;Q) = / (i, j, a, b; t)edt. (B.7)

By using the definition of T'(7, j, a, b; ) and the Fourier transform of the single magnon

Green’s function, this can be written as

etk1riatikerjp + etkiriptikerja
Db ) = 3 Z( >><

k1€BZ ko€BZ N

dwy d
/ / / G(k1,w1)G kg, wy)e 1 —w2)lqy—— W
o 2m

(B.8)

where r;, = r; — r,. We now rewrite the momentum sums using the sum and difference
of momenta, @ = k; + ky and ¢ = (k1 — k2)/2, and also the sum and difference of
coordinates R = (r; +rj)/2, r =r; —rj and R' = (r, +14)/2, 7' = r, — 1. Once we

evaluate the frequency integrals, we then obtain

/ 2i cos(qr) cos(qr’)
(i, 7,a,b; Q) QB —
QGZBZ N quBZ Q- S(‘L Q)
= Y I Q,0),

QeBZ

(B.9)

where S(q, Q) is the two free magnon dispersion, defined in Eq. (6.9) in the main text.

Similarly, we can Fourier transform and rewrite K (I, m,p,q;t) as

' ;- cos(qr”)
K(a,b,p,v;Q) = > QUE-FIS —
QeBZ q€BZ NQ 5(¢,Q)

<82’U(r’) cos(qr') — 2i (V('r’) _ @F(Ql)> Cos(Qr'/2)> (B.10)
= > fCEEIRG Q).

QeBZ
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where R” = (r, +r,)/2 and " = r, — r,. Transforming Eq. (B.5) by inserting the

results of Eq. (B.9) and Eq. (B.10) gives

N/ dt Z elQU-R) o th[ (r,r',Q,)—

QeBz (B.11)
L(r,r,Q,Q)h +ZK7"T”QQ) (T',T",Q,Q)}zo.
This equation is obeyed provided we set the integrand to zero such that
N
Oy + K (r' 1", Q, Q)} G(r,r",Q,0)
2 B2

=T(r, 7", Q,Q)h(r).

The bound state solutions are found when the determinant of the matrix d&,/,.» +
K@, r" Q,0) is singular, which means G(r,r”, @, ) cannot be written as the sum of

two free magnon solutions. The bound state solutions are therefore solutions to

COS((]T) cos(qr’")

det | 8,1, — quZB:z BU(r S@Q) (B.13)
< coS(QT,/Q) cos(gr’) | _ |
qujZ 2V (r') — il (1")] swa | 7"

If the Ising interaction is nearest-neighbour such that Uy = J,0;,41/2, we can simplify

the determinant in Eq. (B.13) to obtain Eq. (6.11) in the main text.
To simplify the determinant, we first define the Ising and XY matrices,

cos(qr) cos(qr')o, 1

27— 8 5

N &5z =50 (B.14)
XYy = A, By,
where
4 - 4 cos(qr)
- N - 5Q) (B.15)
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This allows us to rewrite the determinant condition, Eq. (B.13), as

det(I+ ZZ + XY)

BiA+Z7Z11+1 ByAy o By Ay
Bi1As+ 77y ByAs+1 . . By As
B{Ay + Z 7N, ByAy . . ByAN+1 (Blﬁ)
A+ 5 A A
Ag+ 282 Ayt g .. Ay
- . . .o . Bl..BN.
Ay + 25 Av . . Avt £

The determinant can be simplified by subtracting the last column from all the other

columns, C; — Cy, Cy — Cy;,...Cy_1 — Cy, giving

1 0. . 0 ByA
0 1
(ZZ1y + 1) '
.0
0 01 .
—H ByAn +1
By A (B.17)
Z Zy 1 0 0
7 Zg 0 1
+(=1)7 (BnA1) o ,
ZZnap 0 . .0 1
ZZw -5 -8 . . -B=

where we partially Laplace expand the determinant. For the first determinant, we
can swap the first and last column, C; <> Cy and then swap the first and last row,
Ry < Ry. In the second determinant, we can carry out the row-swap operation,
Ry < Ryn_q, followed by Ry_1 <> Ry_2, Ry o <> Ry_3 etc. until the last row
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becomes the first row. This then gives

ByAy+1 -2 . -Ber B
B As 1 0 0
0
(ZZ11 4+ 1)
By_1AN_
By A, 0 0 1
(B.18)
Bn_
ZZo 1 0 0
0
— (ByAy) :
ZZn-an .0
ZZn-1y O 0 1

which are the determinants of arrowhead matrices, where an arrowhead matrix is a

matrix of the form

a bQ bg R bN
(&) dz 0o . . 0
0 ds . . .
G-| 3 : (B.19)
CN 0 dN

Using the Sherman-Morrison-Woodbury formula, we can evaluate the determinant of

the arrowhead matrix by rewriting Eq. (B.19) as

det(G) = det(A + CB")
(B.20)
= det(I + B"ATVC)det(A),
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where
a 0 0 0
0 dy 0 0
A=10 0 ,
0 0 . . . dy (B.21)
b .
(bbb
1 0 0 0
cl — C1 C2 C3 CN
1 0 0 0
Using this gives a determinant of
N opelXN
det(G) = [a - Zz ] 11 4 (B.22)
i=2 7] =2

Substituting the values of a, b;, ¢; and d; for the two arrowhead matrices in Eq. (B.18),

we obtain the determinant equation
N
i=1

Once we plug in the definitions of ZZ and XY into Eq. (B.23), we obtain Eq. (6.11)

in the main text.
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