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Summary 

THESIS TITLE:  
Environmental stimuli shape adaptive immunity by enhancing T helper cell 
differentiation and the germinal centre response 
 
NAME: Marisa Stebegg 

Immune cells have evolved to respond to external danger signals and to incorporate information 

about environmental cues to adapt their differentiation and effector function. Because of this, it is 

important that immune cells are studied in the context of their surroundings. In this thesis, I 

investigated the roles of environmental endoplasmic reticulum (ER) stress, the gut microbiome and 

ageing on adaptive immunity. Immune cells have been shown to integrate inflammatory signalling 

with the ER stress response pathway. This response is triggered by a variety of environmental 

stresses such as low nutrient availability, hypoxia and mechanical stress. I found that the ER stress 

response acts as a potent driver of T helper 17 (Th17) cell differentiation resulting in Th17 cells 

with a pathogenic gene expression signature. This suggests a link between ER stress-inducing 

conditions such as low nutrient availability, and the pathology of Th17 cell-mediated autoimmune 

diseases. Another physiological scenario in which the immune microenvironment changes is during 

ageing. Ageing-related changes of the gut microbiome have recently been linked to increased frailty 

and systemic inflammation. This change in microbial composition with age occurs in parallel with 

a decline in function of the gut immune system, however it is not clear if there is a causal link 

between the two. Here, I establish that the defective germinal centre (GC) reaction in Peyer’s 

patches in the small intestine of aged mice can be rescued by co-housing of adult and aged mice, 

and via faecal transfers from adult into aged mice. This demonstrates that the poor GC reaction in 

aged animals is not irreversible, and that it is possible to improve immune responses in older 

individuals by replenishing the gut microbiome. To determine whether GC responses can also be 

improved in peripheral lymph nodes, we investigated the role of defective helper T cell priming in 

aged mice. We observed that the age-associated defect in the GC reaction is partly due to impaired 

T cell priming by dendritic cells (DCs). By boosting type I interferon signalling in DCs at the time 

of immunisation, I was able to improve T cell priming and GC formation in aged mice. This 

demonstrates that not only the gut microbiome, but also DCs are exciting targets to improve GC 

responses in ageing and highlights the importance of environmental stimuli in shaping adaptive 

immunity.  
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 INTRODUCTION  
1.1 The immune system 
The human body is constantly exposed to a wide variety of viruses, bacteria, fungi and parasites, 

many of which are pathogens that can cause disease, while others are commensals that live in and 

on us without causing any harm. The host immune system consists of many different cells which 

have evolved to recognise and control these microorganisms (Chaplin 2010). The different types of 

immune cells can be broadly subdivided into belonging to one of two main arms of the immune 

system: the evolutionary-ancient innate immune system and the adaptive immune system, which is 

only present in vertebrates (Figure 1.1). Innate immune cells encompass dendritic cells (DCs), 

macrophages, mast cells and granulocytes, all of which are important early responders to infections 

and help to instruct adaptive immune responses. The adaptive immune system comprises T and B 

cells, both of which mount highly specific immune responses and can generate immune memory. 

Innate lymphoid cells, including natural killer (NK) cells, are a specialised immune cell subset at 

the interface between the innate and adaptive immune system. They can be seen as the innate 

counterpart to T cells, as they arise from the same progenitor cells as T cells, but do not express 

adaptive immune receptors.  

In order to recognise self from non-self, immune cells rely on two main types of surface receptors. 

The first type of receptors is found on cells of the innate immune system, whose limited set of germ-

line encoded pattern recognition receptors (PRRs) recognises molecular patterns shared between a 

wide range of microorganisms (Janeway & Medzhitov 2002). These receptors help innate immune 

cells to act as quick responders to pathogenic infections. The second type of receptors is found on 

adaptive immune cells. These receptors are assembled from a combination of different gene 

segments into a huge combinatorial variety of receptors, each of which recognises a unique feature 

termed antigen (Bonilla & Oettgen 2010). The human body was estimated to contain more than 

1012 adaptive immune cells, which can carry any one of more than 1014 potential different receptors, 

thus forming a huge antigen receptor repertoire to recognise almost any invading pathogen (Alberts 

et al. 2002a; 2002b). Once antigen receptors on adaptive immune cells bind to their cognate antigens, 

and receive appropriate co-stimulatory signals, these cells are activated to clonally expand, then 

differentiate into effector or memory cells (Cantrell 2015). Memory cells persist in the body for 

long periods of time and mount quick and potent immune responses when they re-encounter the 
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same antigen. As a result, the adaptive immune system does not only generate specific immune 

responses, but it also provides long-lasting immune protection against re-infections. This thesis will 

specifically focus on primary T cell-dependent immune responses. 

 
Figure 1.1: Schematic representation of immune cell development. Self-renewing long-term 
haematopoietic stem cells (LT-HSCs) in the bone marrow give rise to progenitor cells which 
differentiate to generate all types of immune cells. First, short-term haematopoietic stem cells (ST-
HSCs) are formed, which generate multipotent progenitor (MPP) cells. These differentiate into 
common myeloid progenitors (CMP) or common lymphocyte progenitor (CLP) cells. CMP cells 
give rise to the innate immune arm by developing into granulocyte-macrophage progenitors (GMP), 
which differentiate into granulocytes, monocytes and dendritic cells (DCs). CLP cells, on the other 
hand, give rise to all adaptive immune cells, such as B cells, T cells, natural killer (NK) cells as 
well as some DC subsets. This image was adapted and republished with the permission of the 
American Society of Hematology from Blank & Karlsson 2015 (Blank & Karlsson 2015); 
permission conveyed through Copyright Clearance Center, Inc. 

1.2 Interactions between the immune system and its 
microenvironment 

The immune system has evolved to respond to environmental stimuli, to recognise and protect the 

body from insults and infections. As a result, immune cells are highly responsive to changes in their 

microenvironment. Adaptive immune cells in particular need to integrate soluble signals from their 

environment with signals they receive from innate immune cells which act as antigen-presenting 

cells (APCs) (Mueller & Coles 2014). For their optimal activation, adaptive immune cells need to 

Figure 1: Schematic representation of haematopoiesis. Self-renewing long-term
haematopoietic stem cells (LT-HSCs) give rise to progenitor cells which differentiate
to give rise to all types of immune cells. First, short-term haematopoietic stem cells
(ST-HSCs) are formed, which generate multipotent progenitor (MPP) cells. These
differentiate into common myeloid progenitors (CMP) or common lymphocyte
progenitor (CLP) cells. CMP cells give rise to the innate immune arm by developing
into granulocyte-macrophage progenitors (GMP), which differentiate into
granulocytes, monocytes and dendritic cells. CLP cells, on the other hand, give rise
to all adaptive immune cells, such as B cells, T cells, natural killer (NK) cells as well
as some DC subsets. Image adapted from Ulrika Blank and Stefan Karlsson 2015
[4].

CLP
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bind their cognate antigen while receiving co-stimulatory signals from APCs. Typically, these 

interactions between innate immune cells and adaptive immune cells are facilitated within 

secondary lymphoid organs (SLOs). 

1.3 Secondary lymphoid organs (SLOs)  
SLOs bring immune cells of the innate and adaptive immune system in close proximity, to facilitate 

the interaction of rare antigen-specific T or B cells with antigen-bearing APCs to trigger the 

initiation of adaptive immune responses (McComb et al. 2013). After their development from 

haematopoietic stem cells in the bone marrow (Figure 1.1) (Blank & Karlsson 2015), cells of both 

the innate and adaptive immune system recirculate through the blood, the lymphatic systems and 

the SLOs, which comprise the spleen, lymph nodes (LNs) and Peyer’s patches (PPs). All SLOs 

develop during embryogenesis, and are characterised by their distinctive physical organisation of 

immune cells into different zones (Matsuno et al. 2010; Ruddle & Akirav 2009). This spatial 

segregation is achieved by chemokines, soluble signalling molecules which attract cells by binding 

to chemokine receptors on the cell surface. This induces chemotaxis, the directed migration of cells 

towards the chemokine source. In the T cell area, T cells co-localise with fibroblastic reticular cells 

(FRCs), which secrete the C-C motif chemokine ligands CCL19 and CCL21. These attract C-C 

motif chemokine receptor 7 (CCR7)-expressing T and DCs to the T cell zone. In all SLOs except 

the spleen, the T cell area also contains high endothelial venules (HEV), specialised capillaries 

which allow T cells to enter SLOs from the blood stream (Matsuno et al. 2010). The B cell follicle 

is clustered around C-X-C motif chemokine ligand 13 (CXCR13)-expressing follicular dendritic 

cells (FDCs), a chemokine which is recognised by C-X-C motif chemokine receptor 5 (CXCR5) on 

the surface of B cells (Chang & Turley 2015). This distinct architecture sets SLOs apart from other 

less-organised lymphoid tissues, such as mucosa-associated lymphoid tissues (MALT) (Matsuno et 

al. 2010). The main function of SLOs is to collect antigens from the peripheral sites and bring them 

into contact with recirculating T and B cells. SLOs are highly interconnected with the lymphatic 

and vascular circulatory systems (Matsuno et al. 2010), allowing for the constant entry (and efflux) 

of T cells, B cells, and antigen-carrying APCs through the blood or lymphatic vessels. Afferent 

lymphatic vessels also drain free antigen from peripheral tissues (Ruddle & Akirav 2009). This 

optimises the chances of antigen to come into contact with cells of the adaptive immune system for 

the generation of antigen-specific immunity. 
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1.3.1 Lymph nodes (LNs)  
LNs are encapsulated SLOs which collect antigens from the peripheral lymphatic system (Figure 

1.2) (Stebegg, Kumar, Silva-Cayetano et al. 2018). Each LN drains antigens from a specific part of 

the body (Ruddle & Akirav 2009): inguinal LNs, for instance, drain antigen from the skin in the 

lower half of the body, while mesenteric LNs are the gut-draining LNs. LNs are covered in a capsule, 

which surrounds the subcapsular sinus (SCS) (Ruddle & Akirav 2009). Underneath the SCS, the 

outer cortex contains B cell follicles with FDCs, while the inner para-cortex harbours the T cell 

zone and FRCs. The medulla in the centre of the LN contains a mix of immune cells, including DCs, 

macrophages and plasma cells, and serves as exit point from immune cells into the efferent 

lymphatics (Ruddle & Akirav 2009). For immune cells to exit the lymph node, they need to 

upregulate their sphingosine-1-phosphate (S1P) receptor (S1PR1). This receptor directs migration 

towards the chemokine S1P, whose concentration is high in the blood and lymphatics, but low in 

LNs (Chang & Turley 2015). This allows for the constant efflux and influx of adaptive immune 

cells into LNs, where they are exposed to antigens imported via the lymph. This makes LNs a highly 

effective induction site for adaptive immune responses against peripheral infections. 

1.3.2 The spleen 
The spleen drains antigens from the blood, and has three main compartments (Matsuno et al. 2010): 

the white pulp, the red pulp and the in-between marginal zone (MZ). All three compartments are 

formed around central blood arteries which branch off the trabecular artery. These arteries are 

embedded into the while pulp, which can be subdivided into the B cell follicle and the peri-arterial 

lymphoid sheath (PALS), corresponding to the T cell zone. This PALS is encompassed by the MZ, 

which contains specialised MZ B cells and MZ macrophages (Ruddle & Akirav 2009). The blood 

empties from the central arteries into the red pulp, which surrounds the MZ and helps to filter 

damaged cells from the blood, before it re-enters the blood stream via the splenic sinuses. Because 

of this specialised structure, the spleen is the optimal induction site for immune responses against 

blood-borne antigens.  
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Figure 1.2: Schematic depiction of the specialised secondary lymphoid organ (SLO) 
architecture of lymph nodes (LNs). LNs can be subdivided into different regions: the T cell zone 
and B cell follicles. In the T cell zone, fibroblastic reticular cells (FRCs) generate a CCL19 and 
CCL21 gradient which attracts T cells and dendritic cells (DCs) from the blood stream via high 
endothelial venules (HEVs). Follicular dendritic cells (FDCs) in the B cell zone, in contrast, 
generate a CXCL13 gradient that attracts and retains B cells. Upon infection or immunisation, 
antigen drains into the LN via afferent lymphatic vessels into the subcapsular sinus (SCS) to trigger 
the activation of lymphocytes. Immune cells exit the LN via the medullary region in the centre of 
the LN. This image was created and kindly provided by Alyssa Silva-Cayetano (Stebegg, Kumar, 
Silva-Cayetano et al. 2018). 

1.3.3 Peyer’s patches (PPs)  
PPs are non-encapsulated lymphoid tissues associated with the wall of the small intestine (Matsuno 

et al. 2010). This is a single epithelial layer which forms the body’s largest mucosal surface. In 

mice, it covers an area of almost 1.5m2, which is a hundred times larger than their skin surface 

(Casteleyn et al. 2010). The intestinal epithelium is essential for the digestion and absorption of 

nutrients as well as the protection against enteric pathogens. It is subdivided into two major 

segments: the small intestine and the large intestine. The large intestine consists of the colon and 

terminates in the rectum (Mowat & Agace 2014). While it has little digestive functions, it is crucial 

for the reabsorption of water and ultimately the excretion of indigestible food components. PPs are 

Figure 7: Schematic depiction of the specialised secondary lymphoid organ
(SLO) architecture in lymph nodes (LNs). LNs can be subdivided into different
regions: the T cell zone and B cell follicles. In the T cell zone, fibroblastic reticular
cells (FRCs) generate a CCL19 and CCL21 gradient which attracts T cells and
dendritic cells (DCs) from the blood stream via high endothelial venules (HEVs).
Follicular dendritic cells (FDCs) in the B cell zone, in contrast, generate a CXCL13
gradient that attracts and retains B cells. Upon infection or immunisation, antigen
drains into the LN via afferent lymphatic vessels into the subcapsular sinus (SCS) to
trigger the activation of lymphocytes. Immune cells exit the LN via the medullary
region in the centre of the LN. This image was created by Alyssa Silva-Cayetano
(Stebegg, Cayetano, Kumar et al. 2018, [78]).
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only found in the small intestine, which in mice is subdivided into the duodenum close to the 

stomach, the jejunum and the ileum leading up to the caecum. Its main functions are the digestion 

of food and the absorption of nutrients (Mowat & Agace 2014). In mice, 6–12 PPs are interspersed 

along the whole length of the small intestine, while the human intestine contains 100–200 PPs 

(Reboldi & Cyster 2016).  

PPs are unique SLOs in that they are neither encapsulated nor linked with afferent lymphatics 

(Reboldi & Cyster 2016). Instead, PPs take up antigens directly from the gut lumen via the follicle-

associated epithelium (FAE) and its underlying subepithelial dome (SED). PPs consist of varying 

numbers of B cell follicles intersperse with T cell zones. Immune cells enter PPs via HEVs and exit 

to the gut-draining mesenteric LN via efferent lymphatics. Due to their distinct anatomical location 

close to the intestinal lumen, they are continuously exposed to antigen stimulation from the gut 

microbiota, a complex mix of bacteria, fungi, viruses and protozoa which populates the whole 

intestine (Reboldi & Cyster 2016). As a result, PPs differ from LNs and the spleen in their immune 

functions: they are important to mount antigen-specific immune responses against intestinal 

pathogens and toxins, and have also been proposed to help control the composition of the gut 

microbiota (Macpherson et al. 2008).  

1.3.3.1 Cross-talk of PPs with the gut microbiome 

It is estimated that the human body is populated by ~3.8 ´ 1013 bacterial cells (Sender et al. 2016). 

Of all organs, the intestine contains by far the highest concentration of commensal bacteria. While 

the concentration of dietary antigens decreases along the small intestine, the amount of commensal 

microorganisms increases, peaking in the large intestine (Moens & Veldhoen 2012). Studies of gut 

microbial diversity were long hampered by the lack of culture conditions for many gut bacteria. 

16S rDNA sequencing technology now enables the identification of commensal bacterial species 

composition without the need for prior in vitro cultures (Jovel et al. 2016). The 16S rDNA gene 

encodes the RNA-component of the ribosomal 16S subunit, which is characterised by alternating 

highly-conserved and hypervariable regions. While the conserved regions only differ between high-

level phylogenetic taxa, the hypervariable regions can be used to estimate evolutionary relations 

down to the species level (Rosselli et al. 2016). As a result, 16S rDNA sequencing can be used to 

computationally infer taxonomic identifications of a mix of bacteria. 16S rDNA sequencing 

revealed that, similar to humans, the murine gut core microbiome consists of two main phyla: 

Firmicutes (especially the Lachnospiraceae, Ruminococcaceae and Lactobacillaceae families) and 

Bacteriodetes (mainly Porphyromonadaceae and Rikenellaceae). In addition, Proteobacteria, 

Actinobacteria, Deferribacteres and Verrucomicrobia are also present in most mouse strains 
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(Clavel et al. 2016; Kostic et al. 2013). These commensal bacteria take on many functions: they 

help with the digestion of certain nutrients (e.g. by fermenting complex carbohydrates that the host’s 

digestive enzymes cannot process (Mowat & Agace 2014)), maintain epithelial barrier integrity, 

influence host metabolism and support the development and priming of the immune system (Moens 

& Veldhoen 2012). A disruption of these functions, e.g. by a change in the composition of the gut 

microbiota, is termed dysbiosis and has many negative implications for the host (Clavel et al. 2016). 

Therefore, maintenance of balanced cross-talk between the host and its microbiome is crucial to 

sustain health. PPs play an important part in this cross-talk by providing immune protection against 

intestinal pathogens and have been suggested to control the composition of the gut microbiota by 

producing commensal-specific IgA antibodies (Macpherson et al. 2008).  

1.4 T-dependent immune responses 
T cells are crucial for cell-mediated adaptive immunity. They integrate information from their 

environment, e.g. cytokines or antigen presented by other immune cells, to either directly or 

indirectly fight infections in an antigen-specific manner. T cells can be broadly subdivided into 

CD4, CD8, γδT and natural killer T (NKT) cells: CD4 T cells and γδT cells secrete large amounts 

of effector cytokines to instruct immune responses by other immune cells. CD8 T cells can directly 

remove infected or damaged host cells, and NKT cells can do both (Pennock et al. 2013).  

For T cell activation, peptide antigens need to be presented to T cells by APCs. In addition to 

recognising antigen, T cells require co-stimulatory signals to be activated. These are delivered when 

co-stimulatory receptors on T cells bind co-stimulatory ligands on APCs (Pennock et al. 2013). 

Antigen-mediated stimulation of T cells is achieved by peptide-loaded major histocompatibility 

complex class I (MHC-I) and class II (MHC-II) molecules on APCs. These peptide-MHC-I and -II 

complexes interact with the T cell receptor (TCR) and co-receptors on the surface of T cells (Blum 

et al. 2013).  

CD8 T cells express cluster of differentiation (CD) 8 co-receptors, which bind to MHC-I molecules. 

MHC-I classically presents intracellular antigens, which are digested in the cytoplasm and loaded 

onto MHC-I molecules in the endoplasmic reticulum (ER). MHC-II molecules, on the other hand, 

are bound by CD4 co-receptors on CD4 T cells and present peptides which are generated from 

phagocytosed antigens in lysosomes (Blum et al. 2013). Correspondingly, CD8 T cells recognise 

intracellular antigens, e.g. virus-derived peptides or tumour-associated antigens, and are specialised 

on the removal of virus-infected cell as well as damaged or mutated tumour cells (Zhang & Bevan 
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2011). CD4 T cells, known as helper T (Th) cells, predominantly recognise extracellular antigens 

and secrete effector cytokines to instruct immune responses.  

γδ T cells can express both CD4 and CD8 co-receptors. They are a rare T cell subset which already 

acquires its effector functions in the thymus (Vantourout & Hayday 2013). This allows γδ T cells 

to initiate rapid immune responses against non-peptide antigens such as phospholipids and 

alkylamines at epithelial barrier sites where many γδ T cells reside (Chien et al. 2014; Vantourout 

& Hayday 2013). NKT cells recognise lipid antigens presented on CD1, a MHC-like molecule 

(Bennstein 2017), in a CD4- and CD8-independent manner. Similar to CD4 T cells, they produce 

large amounts of cytokines such as IFN-g, IL-4 and IL-13, and they can additionally act as cytotoxic 

T cells (Balato et al. 2009). This thesis focuses on CD4 T cell-dependent immune responses, 

especially the role of CD4 T cells as drivers of autoimmune disease and instructors of B cell 

responses. 

1.4.1 CD4 T cells 
CD4+ αβ T cells are subdivided into different CD4 T cell subsets, each characterised by the 

expression of a master transcription factor and subset-specific signature cytokines. These determine 

the distinct effector functions of each Th cell subset (Gagliani & Huber 2017; Pennock et al. 2013). 

The first Th cells subsets to be described were Th1 and Th2 cells (Mosmann et al. 1986), but now 

also Th9 cells, Th17 cells, regulatory T (Treg) cells, T follicular helper (Tfh) and T follicular 

regulatory (Tfr) cells are well-established CD4 T cell subsets (Caza & Landas 2015).  

1.4.1.1 Th1, Th2 and Th9 cells 

Th1 cells form under the influence of IL-12 and are characterised by their expression of the T-box 

transcription factor T-bet. They are crucial mediators of cellular immunity against intracellular 

pathogens by secreting IFN-γ (Gagliani & Huber 2017). Th2 cells are essential to control 

extracellular parasitic infections. GATA Binding Protein 3 (GATA3)-expressing Th2 cells 

differentiate in response to IL-4 and produce the signature cytokines IL-4, IL-5 and IL-13 

(Luckheeram et al. 2012). Th9 cells were first described as a subset of Th2 cells, but are now 

considered to be a distinct Th cell subset. They are generated when exposed to a combination of IL-

4 and transforming growth factor (TGF)-β (Veldhoen et al. 2008b). This triggers the expression of 

their master transcription factor interferon regulatory factor (IRF4) and IL-9, the Th9 signature 

cytokine (Adamu et al. 2017; Dardalhon et al. 2008; Veldhoen et al. 2008b). While Th1, Th2 and 

Th9 cells mount important immune responses against pathogens, Th1 cells have also been 

implicated in the pathology of autoimmune disease, while imbalances in Th2 and Th9 cells have 
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been associated with allergies (Valenta et al. 2009). Thus, it is important that Th1, Th2 and Th9 

responses are kept in check. 

1.4.1.2 Treg cells  

Treg cells were first described in 1995 (Sakaguchi et al. 1995). They are characterised by expression 

of the forkhead box protein 3 (Foxp3) and high levels of CD25 on their cell surface (Fontenot et al. 

2003; Hori et al. 2003; Khattri et al. 2003). These cells can either arise in the thymus – so-called 

thymic Treg (tTreg) cells – or be generated de novo from naïve CD4 T cells in the periphery under 

the influence of IL-2 and TGF-β. The latter are termed peripheral Tregs (pTregs) (Gagliani & Huber 

2017). Treg cells exert important immunosuppressive functions by producing the anti-inflammatory 

cytokines IL-10 and TGF-β. They also express co-stimulatory inhibitors, such as cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4), which inhibits T cell responses in a cell contact-

dependent manner (Gagliani & Huber 2017). Mice and humans lacking Treg cells suffer from a 

severe autoinflammatory disorder, demonstrating the important role of Treg cells for regulating 

immune responses (Bennett et al. 2001; Brunkow et al. 2001; Wildin et al. 2001).  

1.4.1.3 Th17 cells 

Th17 cells are most abundant at epithelial barrier sites where they provide immune protection 

against extracellular bacteria and fungi (Weaver et al. 2013). Th17 cell differentiation is classically 

driven by the combined actions of IL-6 and TGF-β (Harris et al. 2007; Mangan et al. 2006; 

Veldhoen et al. 2006a). This induces the Signal transducer and activator of transcription (STAT)3-

dependent expression of the Th17 lineage-specific markers RORγt and RORα, transcription factors 

of the retinoic acid receptor-related orphan receptors (ROR) family (Caza & Landas 2015; 

McGeachy et al. 2007; Veldhoen et al. 2006a). Th17 cell differentiation also depends on the aryl 

hydrocarbon receptor (AhR) and hypoxia-inducible factor 1 alpha (HIF1a) (Dang et al. 2011; 

Veldhoen et al. 2008a). Th17 cells produce high levels of the pro-inflammatory cytokines IL-22, 

IL-17A and IL-17F which attract neutrophils and stimulate a wide range of other immune cells to 

secrete pro-inflammatory cytokines and chemokines. IL-17A and IL-17F also induce the secretion 

of antimicrobial peptides at epithelial barrier sites (Korn et al. 2009). Thus, Th17 cells provide an 

important functional link between the adaptive and innate immune system. They have also been 

suggested to both promote and inhibit cancer growth depending on the type of cancer (Bailey et al. 

2014; Muranski et al. 2008; Wang et al. 2009; Wu et al. 2009). More importantly, Th17 cells were 

found to be key mediators of many autoimmune diseases where they are often enriched at sites of 

inflammation (Maddur et al. 2012). Amongst others, they have been directly implicated in the 
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immunopathology of rheumatoid arthritis, psoriasis, and multiple sclerosis (MS), an autoimmune 

disorder associated with axon demyelination in the central nervous system and progressive 

neurological deterioration (Bedoya et al. 2013; Jadidi-Niaragh & Mirshafiey 2011). Work from 

both in vitro and in vivo experiments revealed that Th17 cell pathogenicity is linked with their 

propensity to adopt a Th1-like cell phenotype and produce the inflammatory cytokines GM-CSF 

and IFNg under the influence of IL-23 (El-Behi et al. 2011; Ghoreschi et al. 2010; Hirota et al. 

2011; Jain et al. 2016; McGeachy et al. 2007). In addition to IL-23-driven Th17 cell pathology, 

other environmental factors, such as high salt concentrations or the presence of different AhR 

ligands, have also been shown to influence Th cell differentiation and pathogenicity (Quintana et 

al. 2008; Veldhoen et al. 2008a; Wu et al. 2013). In this report, a novel role for the endoplasmic 

reticulum (ER) stress response as a driver of pathogenic Th17 cell differentiation is described, 

highlighting the strong impact of another environmental stimulus on the generation of Th17 cells 

with pathogenic versus protective properties.  

1.4.1.4 Tfh and Tfr cells  

Both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells are found in lymphoid structures 

called germinal centres (GCs). Here Tfh cells provide B cell help via direct T-B cell contacts and 

the production of IL-21 for the generation of highly-specific antibody responses, while Tfr cells 

have suppressive functions. Both cell types express the master-transcription factors Bcl6 (B cell 

CLL/Lymphoma 6) as well as high levels of PD-1 (programmed cell death protein 1) and CXCR5. 

Tfr cells additionally express Foxp3, the master regulator of regulatory T cells (Linterman et al. 

2011; Vinuesa et al. 2016). The role of Tfh and Tfr cells in regulating the GC response will be 

discussed in more detail in section 1.3.2.4. 

1.4.2 CD4 T cell development 
CD4 T cells are generated in the thymus from T cell progenitors arising from haematopoietic stem 

cells in the bone marrow (Koch & Radtke 2011). Bone marrow is the soft tissue in the cavities of 

bones, which forms an essential survival niche for haematopoietic stem cells (Gurkan & Akkus 

2008). The niche is shaped by a stroma formed of reticular cells and mesenchymal stem cells. Here, 

haematopoietic stem cells differentiate into common lymphoid progenitor (CLP) cells, which, 

amongst others, give rise to T cell progenitors. These cells leave the bone marrow and migrate 

towards the thymus (Koch & Radtke 2011). The thymus is a primary lymphoid organ located 

between the heart and the sternum (Pearse 2006). Its two lobes can be subdivided into an outer 

lymphocyte-rich cortex and the inner medulla, a tight stromal network of thymic epithelial cells 
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(Ciofani & Zúñiga-Pflücker 2007). T cell development takes place in both these regions. The 

generation of T cells is most effective during childhood when the thymus is largest, before thymic 

atrophy is initiated during puberty (Palmer 2013).  

Bone marrow-derived T cell progenitor cells arrive in the thymic cortex, where Notch-1 signalling 

commits them to the T cell differentiation pathway (Ciofani & Zúñiga-Pflücker 2007). In the 

subcapsular zone of the cortex, they undergo somatic rearrangements of their TCR genes to generate 

receptors with a large variety of unique specificities (Koch & Radtke 2011). TCRs are dimers, 

which can be formed either of a combination of a TCRα and β chain, or γ and δ chains (Krangel 

2009). Depending on which TCR chain is successfully recombined first, a small subset of cells 

commits to the γδ T cell lineage, while the majority of cells will enter the αβ T cell fate via a process 

called β-selection (Koch & Radtke 2011). After recombination of their TCRβ chain, these αβ T cell 

precursors then enter the double-positive stage by upregulating both their CD4 and CD8 co-

receptors and move on to the medulla, where they recombine their TCRα chain. The completed αβ 

TCR interacts with self-peptide-MHC complexes on thymic stromal cells, e.g. thymic epithelial 

cells and DCs in the medulla (Ciofani & Zúñiga-Pflücker 2007). Double-positive T cells with 

intermediate affinity for these MHC-self-antigen complexes receive positive survival signals and 

finally commit to single-positive CD4 or CD8 T cell lineages (Koch & Radtke 2011).  

To prevent the generation of self-reactive T cells, cells with high affinity for self-antigens are then 

eliminated by negative selection. Some of the self-reactive T cells can alternatively develop into 

tTreg cells by the combined action of TCR and IL-2 signalling (Hsieh et al. 2012). All surviving 

cells, including non-self-reactive and tTreg cells, upregulate S1PR1 which allows them to leave the 

thymus as mature CD4 or CD8 T cells and seed SLOs and peripheral tissues (Koch & Radtke 2011).  

1.4.2.1 Somatic recombination of the TCR 

Somatic recombination of the TCR genes during T cell development is crucial for the generation of 

antigen-specific adaptive immunity. The germline TCR gene locus encodes arrays of V (variable), 

D (diversity) and J (joining) genes, which need to be spliced together to form one TCR chain in a 

process called somatic recombination (Figure 1.3) (Krangel 2009). The near-to-random 

combination of V, D and J segments of each TCR chains can theoretically generate more than 

1 ´ 106 unique TCRs, with varying affinities for different antigens (Bonilla & Oettgen 2010; 

Glusman et al. 2001).  

Somatic recombination is driven by the recombinase-activating genes 1 (RAG1) and 2 (RAG2), 

which are part of the V(D)J recombinase complex (Bonilla & Oettgen 2010). This complex binds 
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recombination signal sequences at the borders of V, D and J segments. Here it cleaves the DNA, 

giving rise to hairpin structures. Then Artemis acts as an endonuclease to generate 5’ and 3’ 

overhangs at the DNA break sites. The overhangs from one J and one D segment are joined by DNA 

repair enzymes, before the J-D segment is linked with one of the V segments by a similar process 

(Bassing et al. 2002). This process of non-homologous end-joining is imperfect and can lead to the 

addition or removal of bases at the ligation site. In addition, the terminal deoxyribonucleotidyl 

transferase (TDT) enzyme actively adds a random sequence of 1-5 nucleotides to the ligation site, 

resulting in so-called junctional diversity of the recombined TCR. This further increases the number 

of receptors theoretically generated from the germline locus to 1015 (Davis & Bjorkman 1988), but 

can also result in the generation of abrogated or non-functional TCRs. Only T cell precursors which 

express fully-functional TCR proteins on their surface can receive positive survival signals and 

differentiate into mature T cells (Koch & Radtke 2011). 

Figure 1.3: Schematic representation of somatic TCRβ chain rearrangements. The TCRβ 
chain is generated by V(D)J recombination of its germline DNA. First, one J segment is joint with 
a D segment during DJ-recombination, then this gene segment is linked with a V gene and its 
leading peptide during V(D)J recombination. The recombined variable region contains 
complementary-determining regions (CDRs), such as CDR3, which are part of the antigen-binding 
domains of the TCR. The final TCRβ chain is formed by transcriptional splicing of its mRNA 
transcript. This image was taken from Migalska et al. 2018, licenced under CC BY 4.0 © 2018 
(Migalska et al. 2018). 

Figure 3: Schematic representation of somatic TCRβ chain rearrangements.
The TCRβ chain is generated by VDJ recombination of its germline DNA. First, one J
segment is joint with a D segment during DJ-recombination, then this gene segment
is linked with a V gene and its leading peptide during VDJ recombination. The
recombined variable region contains complementary-determining regions (CDRs),
such as CDR3, which are part of the antigen-binding domains of the TCR. The final
TCRβ chain, as depicted on the right, is formed by transcriptional splicing of its
mRNA transcript. This image was modified from Migalska et al. 2018 [24].

V       D       J         C
germline DNA
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1.4.3 CD4 T cell activation 
CD4 T cells leave the thymus as naïve cells which recirculate through the body via the blood and 

SLOs. To fulfil their immune functions, these naïve cells need to be activated by professional APCs. 

As described above, this is dependent on peptide-MHC-mediated triggering of the TCR combined 

with additional stimulation of the T cell via co-stimulatory receptors (Pennock et al. 2013). This 

initiates the clonal expansion of T cells. Cytokines further direct CD4 T cell differentiation into 

distinct effector phenotypes, by inducing the expression of subset-specific master transcription 

factors (Bonilla & Oettgen 2010).  

1.4.3.1 T cell activation by dendritic cells (DCs) 

DCs are the main APC for the initiation of CD4 T cell-dependent immune responses (Segura 2016). 

Generally, DCs are classified into resident DCs, which reside in SLOs, and migratory DCs which 

circulate between tissues. These are further subdivided into conventional DCs (cDCs), 

plasmacytoid DCs (pDCs), Langerhans cells and monocyte-derived DCs based on their functions 

(Segura 2016) (Table 1.1; Figure 1.4).  

Activated DCs provide all three signals required for T cell activation and differentiation: signal one 

is provided when DCs take up antigen, internalise it and present peptide-MHC-II complexes to CD4 

T cells (Webb & Linterman 2017). Upon activation of PPRs on the surface of DCs by PAMPs, DCs 

also provide signal two by upregulating the expression of co-stimulatory molecules on their surface 

(Krishnaswamy et al. 2018). PAMP-dependent activation also triggers signal three – the production 

of the cytokines which drive Th cell subset-specific differentiation (Krishnaswamy et al. 2018; 

Webb & Linterman 2017). 

Co-stimulation is essential to trigger T cell activation (Pennock et al. 2013). Signalling via the TCR 

alone induces T cell anergy, a state of hypo-responsiveness to further TCR stimulation. Only if a T 

cell receives simultaneous stimulation via its TCR and its co-stimulatory receptors, it will become 

fully activated. As co-stimulatory ligands on DCs are only upregulated in the presence of foreign 

antigens or inflammation, this helps to prevent activation of the adaptive immune system in the 

absence of an infection (Pennock et al. 2013). The primary co-stimulatory receptor on T cells is 

CD28 (Harding et al. 1992), but other immunoglobulin superfamily and tumour necrosis factor 

(TNF) receptor superfamily (TNFRSF) members, such as CD40, CD27, OX-40, 41BB, can also act 

as co-stimulatory receptors. When they interact with their ligands on activated DCs (CD80/CD86, 

CD40 ligand (CD40L), CD70, OX-40L and 41BBL respectively), these receptors promote T cell 

survival and proliferation (Chen & Flies 2013).  
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Table 1.1: Overview of dendritic cell (DC) subsets. DCs can be subdivided into several subsets, 
depending on their origin and functions. Plasmacytoid DCs (pDCs) and classical DCs (cDC) arise 
from a common DC progenitor, while Langerhans cells and monocyte-derived DCs are generated 
from embryonic monocytes and monocytes in infected tissue, respectively. Characterisation of the 
different DC subsets by marker genes is not trivial - this table lists a selection of subset-specific 
marker genes as used in this report and cited literature.  

Upon T cell activation, the TCR and all its co-stimulatory molecules are clustered at the 

immunological synapse, which is formed at the interface of DC-T cell contact. This clustering 

facilitates the recruitment of signalling kinases such as Src protein tyrosine kinases to the TCR 

(Figure 1.5) (Cantrell 2015; Ghosh 2004). These first phosphorylate immunoreceptor tyrosine-

based activation motifs (ITAMs) on CD3 proteins, then ZAP-70 (zeta chain of TCR-associated 

protein kinase 70) is recruited to these ITAM sites and activates a cascade of downstream 

phosphorylation events. This results in the activation of phospholipase Cγ1 (PLCγ1) which converts 

phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers diacylglycerol (DAG) and 

inositol trisphosphate (IP3) (Matthews & Cantrell 2009). While DAG activates the protein kinase C 

q (PKCq) and the MAPK/Erk pathways to promote NF-κB (nuclear factor 'kappa-light-chain-

enhancer' of activated B-cells) signalling, IP3 triggers the release of Ca2+ from the endoplasmic 

reticulum (ER) which leads to the activation of the transcription factor NFAT (nuclear factor of 

activated T cells) (Cantrell 2015). Co-stimulatory molecules further enhances these signalling 

pathways and also activate PI3 kinase (PI3K), which promotes Akt and PKCq activities (Chen & 

DC subset Selected marker genes 

(by Guilliams et al. 2016) 

Origin Functions 

pDC B220+PDCA-1+ common DC 
progenitor 

Production of type I interferons, 
e.g. during viral infections 
(Swiecki & Colonna 2015) 

cDC1 Batf3+Xcr1+CD8aa+/- 
CD103+/- 

common DC 
progenitor 

Cross-presentation of 
phagocytosed antigen to CD8 T 
cells via MHC-I (Merad et al. 
2013) 

cDC2 Irf4+CD172α+CD11b+/- common DC 
progenitor 

CD4 T cell activation via MHC-
II (Krishnaswamy et al. 2018) 

Langerhans 
cells 

Langerin+CD24+ embryonic 
monocytes 

Modulation of T cell responses 
in the skin (Doebel et al. 2017) 

Monocyte-
derived DCs 

Ly6chighCD64high generated from 
monocytes in 
infected tissue 

Diverse functions, including 
CD4 T cell activation, cross-
priming of CD8 T cells and 
direct anti-microbial activities 
(Domínguez & Ardavín 2010) 
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Flies 2013). Combined, these signalling cascades enhance T cell proliferation and survival. This is 

accompanied by dramatic changes in T cell metabolism, associated with an increase in the uptake 

of nutrients and switching from oxidative phosphorylation to aerobic glycolysis. This allows 

activated T cells to generate enough biomass for clonal expansion and to produce large amounts of 

effector cytokines (Michalek & Rathmell 2010). 

 

Figure 1.4: Schematic representation of dendritic cell (DC) differentiation. DCs can be 
subdivided based on their ontogeny and localisation (resident versus migratory). Monocyte-
macrophage DC progenitors (MDPs) give rise to monocytes and common DC progenitors (CDPs). 
Monocytes do not only generate macrophages, but also develop into myeloid DCs and Langerhans 
cells, which also arise from embryonic precursors. CDPs, in turn, differentiate into plasmacytoid 
DCs (pDCs) and pre-conventional DCs (pre-cDCs). Interferon regulatory factor 4 (IRF4) 
expression in pre-cDCs drives differentiation into cDC2s, whereas the expression of the basic 
leucine zipper ATF-like transcription factor 3 (BATF3) leads to the development of cDC1s. On the 
right, cell surface markers for the identification of the different DC subsets are listed. Image 
modified from Krishnaswamy et al. 2018, licenced under CC BY 4.0 © 2018 (Krishnaswamy et al. 
2018). 

 

Figure 2: Schematic representation of dendritic cell (DC) differentiation. DCs
can be subdivided based on their ontogeny and localisation (resident versus
migratory). Monocyte-macrophage DC progenitors (MDPs) give rise to monocytes
and common DC progenitors (CDPs). Monocytes do not only generate
macrophages, but also develop into myeloid DCs and Langerhans cells, which also
arise from embryonic precursors. CDPs, in turn, differentiate into plasmacytoid DCs
(pDCs) and pre-conventional DCs (pre-cDCs). Interferon regulatory factor 4 (IRF4)
expression in pre-cDCs drives differentiation into cDC2s, whereas the expression of
the basic leucine zipper ATF-like transcription factor 3 (BATF3) leads to the
development of cDC1s. On the right, cell surface markers for the identification of the
different DC subsets are listed. Image modified from Krishnaswamy et al. 2018 [14].
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Inhibitory co-receptors prevent T cell activation-induced changes by dampening the signalling 

pathways downstream of the TCR and co-stimulatory receptors. CTLA-4 and PD-1 are the most 

prominent inhibitory receptor and restrict T cell activation in several ways (Pennock et al. 2013): 

similar to CD28, CTLA-4 binds to CD80 and CD86, but with higher affinity than CD28, physically 

preventing CD80/CD86-CD28 interactions. CTLA-4 can also transcytose CD80/CD86, removing 

them from the surface of DCs and thereby limiting CD28 co-stimulation (Buchbinder & Desai 

2016). CTLA-4 and PD-1 can also recruit intracellular phosphatases, which dampen TCR 

downstream signalling by dephosphorylating and inactivating important signalling nodes, such as 

PLCγ1 and PKCq (Chen & Flies 2013).  

Figure 1.5: Schematic illustration of the T cell receptor (TCR) signalling network. When the 
TCR on CD4 T cells recognises antigen in the context of CD4 and CD28 co-stimulation, 
downstream signalling is initiated to mediate T cell activation. During this process, ZAP70 (zeta 
chain of TCR-associated protein kinase 70) is recruited to the membrane to activate the 
phospholipase C γ1 (PLCγ1). PLCγ1 converts phosphatidylinositol 4,5-bisphosphate (PIP2) into 
diacylglycerol (DAG) and inositol trisphosphate (IP3). While DAG activates the protein kinase C 
delta (PKCq) and the MAPK/Erk pathways to promote NF-κB signalling, IP3 initiates the release 
of Ca2+ from the endoplasmic reticulum (ER), resulting in the activation of the transcription factor 
NFAT (nuclear factor of activated T cells). Illustration reproduced courtesy of Cell Signaling 
Technology, Inc. (www.cellsignal.com) (Ghosh 2004).  
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This demonstrates that CD4 T cells have evolved to integrate many signals from their environment 

to adapt their functions. As described above, they require antigen-presentation and co-stimulation 

from DCs to be activated. Cytokines produced by these APCs can further drive their differentiation 

into different effector T cell subsets. In a cell-contact dependent manner and by producing distinct 

cytokines themselves, they then instruct immune responses by other immune cells to generate 

context-specific immune responses. While this is crucial to mount antigen-specific immune 

responses, dysregulated T cell responses have also been associated with chronic inflammatory and 

autoimmune diseases. Therefore, it is crucial to improve our understanding of how environmental 

changes impact CD4 T cell-dependent immune responses.  

1.5 B cells 
Upon activation, B cells can either terminally differentiate into plasma cells, which produce large 

amounts of antigen-specific antibodies, the secreted form of their antigen receptor - the B cell 

receptor (BCR) - , or differentiate into IL-10-producing, immunosuppressive B regulatory cells, 

which are important for immunological tolerance (Lu et al. 2017; Rosser & Mauri 2015). This 

report will mainly focus on B cell-mediated antibody responses which are dependent on plasma cell 

differentiation initiated by activated CD4 T cells in a process called T cell help, or in a T-

independent manner. The resulting antibodies are secreted at mucosal surfaces or circulate the body 

in the blood stream to provide immune protection by directly neutralising pathogens or marking 

them for removal by other immune cell types (Lu et al. 2017).  

1.5.1 B cell subsets  
B cells development takes place in the foetal liver and in the bone marrow, giving rise to two B cell 

subsets: B-1 and B-2 cells (LeBien & Tedder 2008). B-1 cells are solely derived from the foetal 

liver early during development and are retained in the host thereafter through self-renewal 

(Baumgarth 2011). These cells are rare in SLOs and mainly populate the peritoneal and pleural 

cavities as well as mucosal surfaces such as the intestine. They express a restricted BCR repertoire 

which is polyreactive. Even in the absence of an antigenic stimulus, these are secreted as natural 

antibodies of the IgM and IgA isotypes to help protect the body from invading bacteria, e.g. upon 

intestinal lesions (Fagarasan et al. 2010). Conversely, B-2 cells can be derived from both the foetal 

liver and the bone marrow. They seed SLOs as naïve follicular B cells or MZ B cells (Figure 1.6) 

(LeBien & Tedder 2008). MZ B cells are a specialised B cell subset in the spleen. Similar to B-1 

cells, they recognise T-independent carbohydrate and phospholipid antigens to produce IgM 

antibodies early during an immune response, but can also response to protein antigen in a T-
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dependent manner (Hoffman et al. 2016; Phan et al. 2005; Song & Cerny 2003). Naïve B cells 

reside in B cell follicles and are best characterised for raising T cell-dependent antibody responses. 

They express both IgM and IgD BCR isotypes on their surface and are constantly replenished from 

the bone marrow. Upon activation, they expand clonally and can differentiate into either memory 

B cells or plasma cells that secrete large amounts of antibodies (LeBien & Tedder 2008).  

1.5.2 B cell development  
In the bone marrow, B-2 cells are generated from CLPs which first give rise to proB cells (Hardy 

& Hayakawa 2001; LeBien & Tedder 2008; Yam-Puc et al. 2018). proB cells are the earliest stage 

of B cell development. They express the E2A transcription factor, the B cell marker B220 and 

paired box 5 (Pax-5), a master regulator of B cell development. Upon downregulation of E2A, they 

differentiate into preB cells, which undergo somatic rearrangements of their antigen receptor 

(Hardy & Hayakawa 2001). Immature B cells, which have successfully recombined their BCR, can 

then leave the bone marrow and seed SLOs in the periphery (Figures 1.6 & 1.7) (LeBien & Tedder 

2008). 

Figure 1.6: Schematic depiction of B cell development. Common lymphoid progenitor (CLP) 
cells give rise to proB and preB cells in the bone marrow. After successful V(D)J recombination of 
their B cell receptor (BCR), IgM-expressing immature B cells leave the bone marrow and migrate 
to secondary lymphoid organs (SLOs) like the spleen. Here, transitional B cells differentiate into 
marginal zone B cells or follicular B cells, which express both IgM and IgD BCRs on their surface. 
Upon activation, both B cell subtypes can differentiate into memory B cells and short-lived plasma 
cells in a germinal centre (GC)-independent fashion. Follicular B cells can migrate to the B cell 
follicle and seed GCs. During the GC response, GC B cells clonally expand and hypermutate their 
BCR which, after selection, can lead to enhanced antigen affinity. B cells exiting the GC reaction 
generate memory B cells and long-lived plasma cells which secrete high-affinity antibodies. Image 
modified from Yam-Puc et al. 2018, licenced by F1000 Research under CC BY © 2018 (Yam-Puc 
et al. 2018). 

 

Figure 6: Schematic depiction of B cell development. Common lymphoid
progenitor (CLP) cells give rise to proB and preB cells in the bone marrow. After
successful VDJ recombination of their B cell receptor (BCR), IgM-expressing
immature B cells leave the bone marrow and migrate to secondary lymphoid organs
(SLOs) like the spleen. Here, transitional B cells differentiate into follicular B cells,
which express both IgM and IgD BCRs on their surface. Alternatively, they form
marginal zone B cells, which can secrete antibodies in a T cell-independent manner.
When follicular B cells are activated by cognate antigen in the context of T cell help,
they either form germinal centres (GCs) or differentiate into memory B cells and
short-lived plasma cells in an extrafollicular response. During the GC response, GC
B cells clonally expand and hypermutate their BCR for enhanced antigen affinity. B
cells exiting the GC reaction form long-lived plasma and memory B cells which
secrete high-affinity antibodies. Image modified from Yam-Puc et al. 2018 [65].

v
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1.5.2.1 V(D)J recombination of the BCR 

B cell development is tightly linked with the rearrangement of their antigen receptor genes. The 

BCR, also known as immunoglobulin, consists of two heavy and two light chains (Lu et al. 2017). 

Both chains are subdivided into a constant and variable region: the constant region remains constant 

during B cell development, but can be subject to class switch recombination (CSR) upon B cell 

activation. The variable region encodes the region of the BCR that binds antigen. The final BCR 

configuration is generated by rearrangements of various gene segments during B cell development 

(Lu et al. 2017). Immunoglobulin rearrangements are very similar to V(D)J recombination of the 

TCR in T cells (described in section 1.4.2.1). Each heavy and light chain is encoded by a large gene 

locus which contains several V, D and J genes (Schroeder & Cavacini 2010). During B cell 

development, RAG-1 and RAG-2 generate double-strand breaks at the immunoglobulin locus to 

first join one of the J genes with a D gene. The D-J pair is then recombined with a V gene to form 

a complete immunoglobulin chain. Somatic rearrangements occur independently for the light and 

heavy chains, which are then combined to form a functional BCR, resulting in the theoretical 

combinatorial diversity of almost 2 ´ 106 different immunoglobulins (Janeway et al. 2001; Johnston 

et al. 2006; Schroeder & Cavacini 2010; Ye 2004). In addition, a random number of nucleotides 

can be lost or gained during the DNA repair process at D-J and V-DJ ligation sites, further 

increasing BCR diversity by junctional diversification (Janeway et al. 2001).  

V(D)J recombination of the immunoglobulin heavy chain takes place in proB cells (Figure 1.7) 

(González et al. 2007; LeBien & Tedder 2008). Random mutations during V(D)J recombination 

can lead to the expression of a truncated or misfolded heavy chain. Only if the recombined heavy 

chain is functional, it can associate with a so-called surrogate light chain formed of λ5 and VpreB. 

The resulting complex is termed pre B cell receptor (pre-BCR), which, similar to the BCR, 

assembles with the accessory proteins Igα and Igβ (Hardy & Hayakawa 2001). Assembly and 

signalling downstream of the pre-BCR are required to advance B cell development. This is an 

important safety test, to make sure that only B cells with a functional heavy chain go on to 

differentiate into preB cells and rearrange their light chain locus. Formation of the pre-BCR stops 

V(D)J recombination by the downregulation of RAG1 and RAG2 (Schroeder & Cavacini 2010). 

proB cells then divide a few times, before they turn into preB cells, which reactivate RAG1 and 

RAG2 to rearrange their BCR light chain (Naradikian et al. 2014). B cell development in the bone 

marrow is completed, when, after successful VJ recombination of the light chain locus, a mature 

BCR is expressed on the surface of the immature B cell. These cells carry a functional BCR of the 

IgM isotype on their surface.  
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75 % of immature bone marrow B cells bind to self-antigens (Wardemann et al. 2003), however to 

limit autoimmunity, cells carrying these BCRs are eliminated from the B cell pool via two 

mechanisms: cell death or receptor editing (Naradikian et al. 2014). The latter is dependent on the 

reactivation of RAG1 and RAG2 expression for another round of light chain rearrangements to 

modify the antigen-specificity of the BCR. Despite this control mechanism, some self-reactive B 

cells manage to exit from the bone marrow via the blood stream. In the periphery, negative selection 

of these cells continues by exclusion of these cells from the B cell follicle, anergy, developmental 

arrest or lack of T cell help (Manjarrez-Orduño et al. 2009). Together, these tolerance mechanisms 

protect the body from auto-reactive B cells, which are generated as a by-product of BCR 

diversification by V(D)J recombination.  

 
Figure 1.7: Schematic illustration of V(D)J rearrangements and class switch recombination 
(CSR) of the heavy chain of the B cell receptor (BCR). During B cell development, the BCR 
germline locus undergoes V(D)J recombination. This gives rise to a mature BCR, which is 
expressed as IgM on the surface of mature B cells. Upon antigen-dependent activation of B cells 
CSR can occur, leading to expression of a new immunoglobulin isotype such as IgA. During the 
germinal centre (GC) response, somatic hypermutation (SHM) of the V(D)J locus can additionally 
take place. Circles depicted next to constant regions of the heavy chain locus (CH) represent switch 
regions. Dotted lines on V, D, and J segments represent hypermutated genes after SHM. This image 
was modified and republished with the permission of the American Society of Hematology from 
González et al. 2007 (González et al. 2007); permission conveyed through Copyright Clearance 
Center, Inc. 

1.5.3 B cell activation 
B cells are activated when they recognise their cognate antigen via their BCR. BCRs can either bind 

soluble antigen or antigen presented on the surface of FDCs, macrophages and DCs (Batista & 

Figure 7: Schematic illustration of VDJ rearrangements and class switch
recombination (CSR) of the heavy chain of the B cell receptor (BCR). During B
cell development, the BCR germline locus undergoes VDJ recombination. This gives
rise to a mature BCR, which is expressed as IgM on the surface of mature B cells.
Upon antigen-dependent activation of B cells CSR can occur, leading to expression
of a new immunoglobulin isotype such as IgA. During the germinal centre (GC)
response, somatic hypermutation (SHM) of the VDJ locus can additionally take
place. Circles depicted next to constant regions of the heavy chain locus (CH)
represent switch regions. Dotted lines on V, D, and J segments represent
hypermutated genes after SHM. Image modified from David González et al. 2007
[67].

CSRSHM in GCs 
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Harwood 2009). Antigen recognition leads to the upregulation of CCR7 on the surface on B cells, 

which allows them to migrate from the B cell follicle towards FRC-derived chemokines CCL19 

and CCL21 in the T cell zone (Okada et al. 2005). At the T-B border between the T cell zone and 

the B cell follicle, B cells present antigen to T cells. This interaction provides B cells with survival 

and co-stimulatory signals. T cell-dependent signals induce the expansion of B cells (Chan et al. 

2009) whose progeny can then either migrate to the B cell follicle and seed the GC response or 

enter an extrafollicular response. The latter leads to their differentiation into memory B cells or 

short-lived plasma cells, which secrete the first wave of antibodies essential for the early response 

against infections while the GC reaction is established (MacLennan et al. 2003). 

1.5.4 Class-switch recombination 
Upon B cell activation, the immunoglobulin heavy chain can undergo somatic recombination of its 

immunoglobulin constant region in a process called class-switch recombination (CSR) (Figure 1.7) 

(Schroeder & Cavacini 2010). In the mouse, eight constant regions are found in the heavy chain 

locus downstream of the V(D)J region (Shimizu et al. 1982). Each constant region contains an 

upstream switch region, which can be recombined with any switch region of the other constant 

regions during CSR (Schroeder & Cavacini 2010). The class switching process is mediated by 

activation-induced cytidine deaminase (AID), an enzyme which initiates CSR at switch sites by 

deaminating cytosines (Stavnezer & Schrader 2014). Enzymes of the base excision repair (BER) 

and mismatch repair (MMR) pathways are then recruited to the mutated sites, where they induce 

DNA double-strand breaks (DSBs). These breaks are subsequently recombined by non-homologous 

end-joining (NHEJ), adding a new constant region to the 3’ end of the heavy chain locus (Stavnezer 

& Schrader 2014). Like this, different isotypes, or antibody classes distinguished only by their C-

terminal region, can be generated in addition to the initial IgM and IgD isotypes: IgA, IgE, IgG1, 

IgG2, IgG3, - and IgG4 in humans only (Schroeder & Cavacini 2010). These constant regions do 

not interact with antigen, but modulate the effector functions of the secreted antibody: neutralisation 

of target antigens, activation of immune cells by binding to antibody isotype-specific Fc receptors 

(FcRs), or activation of the complement system by binding to C1q (Hoffman et al. 2016). Antibody 

isotypes determine the predominant antibody effector function. IgA, for instance, is important to 

neutralise antigens at mucosal surfaces, while IgE activates mast cells by binding to their IgE-

specific FcR (Schroeder & Cavacini 2010). Thus, somatic rearrangements modulate not only 

antigen specificity of the BCR, but also its effector functions.  
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1.6 Germinal centre (GC) responses 
GCs are where antigen-specific B cells somatically mutate the variable region of their antigen 

receptor to improve BCR affinity in an antigen-specific manner (Figure 1.8) (Stebegg, Kumar, 

Silva-Cayetano et al. 2018). They then form memory B cells and long-lived plasma cells that secrete 

antibodies with high antigen-binding affinity (Vinuesa et al. 2016). Alternatively, B cells can also 

form antibody secreting plasma and memory B cells in a GC-independent manner, but these cells 

usually display lower affinity because of the lack of somatic hypermutation (SHM) at extrafollicular 

sites (Bortnick & Allman 2013; MacLennan et al. 2003).  

For a GC reaction to be initiated, B cells need to recognise their cognate antigen via their BCR and 

to interact with antigen-activated T cells at the T-B border (Okada et al. 2005). Activated B cells 

then migrate back into the B cell follicle and form GC B cells (Pereira et al. 2009). GC B cells first 

expand clonally as centroblasts in the dark zone (DZ) of the germinal centre. Centroblasts express 

the proliferation marker Ki67 and are retained in their niche by expressing CXCR4, which is 

attracted to the chemokine CXCL12 secreted by CXCL12-expressing reticular cells (CRCs) in the 

DZ (Allen et al. 2004). Here, centroblasts undergo SHM of their antigen receptor gene (Bannard et 

al. 2013). SHM is mediated by AID, the same enzyme that catalyses CSR. During SHM, the repair 

of AID-induced U:G mismatches results in point mutations of the BCR gene (Peled et al. 2008). 

This can have several outcomes: SHM can disrupt the BCR structure or generate BCRs either with 

improved antigen affinity or novel antigen-specificity. This can lead to the unintentional emergence 

of auto-reactive B cell clones with the potential to cause autoimmune diseases if they are not 

appropriately censored in the GC. 

To make sure that SHM in the GC response only gives rise to B cells with improved affinity to 

foreign antigen, they require, for their survival, positive selection signals from Tfh cells and FDCs 

in the light zone (LZ) (Mesin et al. 2016). To get access to FDCs and T cells, centroblasts need to 

differentiate into centrocytes which upregulate CXCR5 (Allen et al. 2004). CXCR5 is the receptor 

for CXCL13, a chemokine produced by FDCs in the LZ. Here, centrocytes test their BCR by taking 

up antigen from the surface of FDCs and presenting it to Tfh cells (Suzuki et al. 2009). These cells 

provide positive selection for B cells with high antigen affinity. B cells with high affinity for antigen 

take up more antigen from FDCs, and are therefore able to present more peptide-MHC-II complexes 

to Tfh cells and form longer-lasting T-B cell interactions (Gitlin et al. 2014; Shulman et al. 2014). 

As a result, they outcompete lower affinity B cell clones by receiving stronger survival signals. 

Besides Tfh cells, GCs also contain Foxp3+ Tfr cells, which dampen the GC response and prevent 

the expansion of auto-reactive B cells (Vanderleyden et al. 2014).  
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Together these selection mechanisms culminate in the generation of long-lived antibody-producing 

plasma and memory B cells with improved antigen affinity. These cells provide specific immune 

protection, not only to the primary infection, but also to reinfections for up to several decades 

(Mesin et al. 2016; Takemori et al. 2014).  

Figure 1.8: Schematic representation of the germinal centre (GC) response. GCs are 
specialised structures formed in B cell follicles upon infection or immunisation. They consist of 
two compartments: the dark zone (DZ) and light zone (LZ). The DZ is where B cells form 
centroblasts which expand clonally and undergo somatic hypermutation (SHM) to enhance their 
antigen affinity. This compartment is shaped by CXCL12-producing reticular cells (CRCs), which 
attract and retain the CXCR4-expressing centroblasts. When centroblasts upregulate CXCR5 and 
differentiate into centrocytes, they migrate towards follicular dendritic cells (FDCs) in the LZ, 
which express the CXCR5-ligand CXCR13. Here, centrocytes capture antigens from the surface of 
FDCs and present them to T follicular helper (Tfh) cells for B cell selection. Only centrocytes with 
high antigen affinity receive vital survival signals from Tfh cells and can exit the GC as long-lived 
plasma or memory B cells. T follicular regulatory (Tfr) cells dampen the GC response to prevent 
the emergence of autoreactive B cell clones. This image was created and kindly provided by Alyssa 
Silva-Cayetano (Stebegg, Kumar, Silva-Cayetano et al. 2018).  

 

1.6.1 Tfh cells  
Tfh cells are required for the initiation of the GC response, as shown in Bcl6fl/flCd4cre/+ mice, which 

lack Tfh cells and cannot form GCs (Hollister et al. 2013). Tfh cells are generated when naïve CD4 

T cells in SLOs are primed by antigen-presenting DCs. The resulting Tfh cell precursors (pre-Tfh 

cells) upregulate Bcl6, CXCR5 and Epstein-Barr virus-induced gene 2 (EBI2), while 

Figure 8: Schematic representation of the germinal centre (GC) response. GCs
are specialised structures formed in B cell follicles upon infection or immunisation.
They consist of two segments: the dark zone (DZ) and light zone (LZ). The DZ is
where B cells form centroblasts which expand clonally and undergo somatic
hypermutation (SHM) to enhance their antigen affinity. This compartment is shaped
by CXCL12-producing reticular cells (CRCs), which attract and retain the CXCR4-
expressing centroblasts. When centroblasts upregulate CXCR5 and differentiate into
centrocytes, they migrate towards follicular dendritic cells (FDCs) in the LZ, which
express the CXCR5-ligand CXCR13. Here, centrocytes capture antigens from the
surface of FDCs and present them to T follicular helper cells for B cell selection. Only
centrocytes with high antigen affinity receive vital survival signals from T follicular
helper (Tfh) cells and can exit the GC as long-lived plasma or memory B cells. T
follicular regulatory (Tfr) cells dampen the GC response to prevent the emergence of
autoreactive B cell clones. This image was created by Alyssa Silva-Cayetano
(Stebegg, Cayetano, Kumar et al. 2018, [78]).
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downregulating CCR7 (Li et al. 2016; Webb & Linterman 2017). This leads to the migration of 

pre-Tfh cells to the T-B border, where concentrations of the CXCR5-ligand CXCL13 are higher. 

Even if several DC subtypes have been shown to activate T cells and induce their migration to the 

T-B border, here migratory cDC2s seem to be the dominant Tfh-priming DC subset, especially 

under conditions of low antigen availability (Krishnaswamy et al. 2017; 2018).  

As described above, CD4 T cells require three signals to be activated and differentiate into Tfh cells 

(Krishnaswamy et al. 2018): antigen-specific interactions of their TCR with peptide-MHC-II on 

DCs, co-stimulation and signals from cytokines. Activated cDC2s provide all three signals: signal 

one is provided when DCs take up antigen, internalise it and present peptide-MHC-II complexes to 

T cells (Webb & Linterman 2017). Upon activation of PRRs on the surface of DCs by PAMPs, they 

also provide signal two by upregulating the expression of CD40L, OX40L, the inducible T cell 

costimulatory ligand (ICOSL), CD80 and CD86, all of which interact with co-stimulatory receptors 

on the surface of T cells to enhance TCR signalling and boost Tfh differentiation (Krishnaswamy 

et al. 2018). PAMP-dependent activation also triggers signal three – the production of the cytokines 

such as IL-6, an important driver of Tfh cell differentiation (Eddahri et al. 2009; Webb & Linterman 

2017). In addition, PAMPs induce the production of type I interferons (IFNs) by DCs. Type I IFN, 

which comprise several a and b IFNs, is an enhancer of Tfh cell differentiation (Cucak et al. 2009). 

Type I IFNs were proposed to act on Tfh cells by enhancing the DC-dependent production of IL-6 

and IL-27 cytokines known to favour Tfh cell differentiation (Batten et al. 2010; Cucak et al. 2009; 

Gringhuis et al. 2014). IFNAR signalling can also promote the secretion of IL-1β by DCs, which 

enhances the expression of Bcl6, CXCR5 and the inducible T cell co-stimulator (ICOS) by Tfh cells 

(Barbet et al. 2018). Taken together, this demonstrates that cDC2 cells are potent inducers of Tfh 

cell differentiation at the T-B border and are therefore crucial to initiate GC responses.  

At the T-B border, SLAM-associated protein (SAP)-dependent interactions between antigen-

activated T and B cells are further required to enable full Tfh cell differentiation (Qi et al. 2008). 

Mature Tfh cells are characterised by their expression of the transcription factor Bcl6 and the 

chemokine receptor CXCR5 which facilitates follicular homing (Victora & Nussenzweig 2012). 

Tfh cells also express high levels of the co-stimulatory molecules CD40L, PD-1 and ICOS (Webb 

& Linterman 2017). These molecules are important mediators of GC B-Tfh interactions, as GC B 

cells express their interacting partners CD40 and ICOSL (Vinuesa et al. 2016). CD40-CD40L 

interactions are crucial for GC formation, as CD40L on Tfh cells provide important survival signals 

to GC B cells (Casamayor-Palleja et al. 1996; Foy et al. 1993; Takahashi et al. 1998). Tfh cells also 

secrete IL-21 and IL-4 cytokines to regulate GC B cell selection. IL-21 enhances Bcl6 expression 

in GC B cells (Linterman et al. 2010), while IL-4 was shown to support GC B cell selection as well 
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as CSR (Cunningham et al. 2004). Competition of B cells for these factors is crucial to ensure that 

only B cells with high antigen affinity exit the GC reaction. 

The random mutation process during SHM can lead to the emergence of auto-reactive B cell clones 

with the potential to cause autoimmune diseases. Therefore, the ongoing GC reaction needs to be 

tightly regulated. An excess number of Tfh cells in the GC leads to impaired B cell selection and 

the emergence of self-reactive B cell clones which ultimately cause autoimmunity (Linterman et al. 

2009; Vinuesa et al. 2005). 

1.6.2 Tfr cells  
Tfr cells are negative regulators of the GC response. They have been reported to restrain the 

production of antibodies, while favouring the emergence of antigen-specific B cell clones (Stebegg, 

Kumar, Silva-Cayetano et al. 2018). Tfr cells derive from Foxp3+ precursors and share phenotypic 

characteristics of Tfh cells, including expression of Bcl6 and CXCR5 (Aloulou et al. 2016). Similar 

to Tfh cells, Tfr cell differentiation seems to follow a multi-step, Bcl6-dependent differentiation 

process which relies on both antigen presentation from DCs and interactions with activated B cells 

(Stebegg, Kumar, Silva-Cayetano et al. 2018). Upon immunisation, Tfr cells are recruited into the 

GC, where they regulate the GC response via CTLA4-mediated suppression (Sage et al. 2014; Wing 

et al. 2014) and by impairing GC B and Tfh cell metabolism, causing the downregulation of 

important GC B cell effector molecules such as AID (Sage et al. 2016). This negative regulation by 

Tfr cells is important to control GC size (Linterman et al. 2011; Wollenberg et al. 2011) and to 

prevent the emergence of auto-reactive B cells (Fu et al. 2018). 

1.6.3 Specialised GCs in PPs  
In PPs, specialised GC responses give rise to IgA antibodies (Figure 1.9) (Kawamoto et al. 2014; 

Reboldi & Cyster 2016; Stebegg, Kumar, Silva-Cayetano et al. 2018). Like other GCs, B cells 

within PP GCs undergo SHM of the Ig locus, followed by selection of B cells bearing BCRs that 

bind antigen with high affinity. One key difference to peripheral LNs is that in PPs CSR to the IgA 

isotype occurs (Craig & Cebra 1971). In AID-deficient animals that lack CSR and SHM, there is 

aberrant expansion of anaerobic gut commensals and extensive immune hyperplasia (Fagarasan et 

al. 2002; Suzuki et al. 2004). Patients with selective IgA deficiency also exhibit changes in their 

gut microbiome, associated with increased Th17-cell associated inflammation (Fadlallah et al. 

2018). This demonstrates the key role that IgA antibody responses play in the control of the gut 

microbiota.  
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IgA antibodies exist as dimers and are secreted at all mucosal surfaces. In the gut, IgA is secreted 

into the gut lumen by M cells, specialised epithelial cells above the SED of PPs. Once in the gut, 

IgAs bind to a wide range of commensal bacteria and alter the composition of the microbiota 

through a variety of mechanisms (Macpherson et al. 2012). These include blocking interactions of 

bacteria with the host, trapping antigens in the intestinal mucus or interfering with the invasive 

properties of pathogens (Macpherson et al. 2012). In addition, IgA antibodies assist with the 

controlled intestinal uptake of bacterial antigens to boost local antigen-specific gut immune 

responses (Pabst 2012; Rey et al. 2004).  

Figure 1.9: Depiction of Peyer’s patches (PPs) and their role in producing commensal-specific 
IgA antibodies. On the left, a confocal immunofluorescence image of a murine PP is shown. Blue 
Ki67+ GC B cells demarcate the PP germinal centre (GC). CD3+ T cells are shown in green, 
follicular IgD+ B cells in orange and Foxp3+ cells in pink. On the right, a schematic illustration of 
a PP is shown. The GC reaction in PPs, which is controlled by T follicular helper (Tfh) and T 
follicular regulatory (Tfr) cells, generates plasma and memory B cells which secrete somatically 
hypermutated IgA antibodies. These antibodies are secreted into the intestinal lumen, where they 
bind to the surface of a wide range of commensal bacteria, helping to control the composition of 
the gut microbiota. The gut microbiota in turn induces the generation of Foxp3+ T regulatory cells 
and the production of IgA antibodies by B cells in gut lining. This figure was reprinted from 
Kawamoto et al. 2014 with permission from Elsevier © 2014 Elsevier Inc. (Kawamoto et al. 2014). 

 

It is not clear whether this is mediated by IgA antibodies generated in a GC-dependent or -

independent fashion. Evidence suggesting that functional IgA antibodies can be generated 

independently of GCs comes from studies in which mice lack either T-dependent immune responses 

(CD28-deficient mice and CD40-deficient mice) or Tfh cells (Bcl6fl/flCd4cre/+). All these animals 

have high IgA antibody titres, and Bcl6fl/flCd4cre/+ mice were also shown to have near-to-normal 

levels of bacterial IgA-coating, and relatively normal composition of the microbiota (Bergqvist et 

al. 2006; Bunker et al. 2015; Gärdby et al. 2003). However, SHM of IgA antibodies mainly occurs 

in GCs and analysis of mice that express a variant of AID that can facilitate CSR, but not SHM, 

Figure 9: Depiction of Peyer’s patches (PPs) and their role in producing
commensal-specific IgA antibodies. On the left, a confocal immunofluorescence
image of a murine PP is shown. The PP was excised, fixed in periodate-lysine-
paraformaldehyde (PLP), dehydrated in sucrose and mounted in OCT medium,
before 10!m section were cut and stained with anti-CD3 (green), anti-IgD (orange),
anti-Ki67 (blue) and anti-Foxp3 (pink) antibodies and imaged on a Zeiss780
microscope. Blue Ki67+ GC B cells demarcate the PP germinal centre (GC). On the
right, a schematic illustration of a PP is shown. The GC reaction in PPs, which is
controlled by T follicular helper (Tfh) and T follicular regulatory (Tfr) cells, generates
plasma and memory B cells which secrete somatically hypermutated IgA antibodies.
These antibodies are secreted into the intestinal lumen, where they bind to the
surface of a wide range of commensal bacteria, helping to control the composition of
the gut microbiota. The gut microbiota in turn induces the generation of Foxp3+ T
regulatory cells and the production of IgA antibodies by B cells in gut lining. This
image was modified from Kawamoto et al. 2014 [126].



 1.Introduction: Germinal centre (GC) responses 

 
27 

revealed that this strain exhibited aberrant expansion of commensal bacteria and increased bacterial 

translocation into mesenteric LNs (Wei et al. 2011). This suggests that GC responses in the PP play 

a role in the maintenance of microbial homeostasis. 

1.6.3.1 Immune regulation of GCs in PPs by Tfh and Tfr cells 

Given the distinct architecture and location of PPs, their regulatory mechanisms are unique from 

those in other SLOs. Most importantly, Tfh and Tfr cells in PPs are responsive to modulation by 

the gut microbiota. The ensuing plasticity in T cell regulation allows PP GCs to respond adequately 

to intestinal infections or changes in the gut microbiota (Stebegg, Kumar, Silva-Cayetano et al. 

2018). 

PPs provide a unique environment for Tfh cell differentiation, where the “rules” established for Tfh 

cell development are frequently broken. Exclusively in the gut, Tfh cells can derive from RORγt+ 

Th17 cells (Hirota et al. 2013) and Foxp3+ Treg cells (Tsuji et al. 2009). The precise mechanism 

for this is unclear, but it may be driven by stimuli from the microbiota, as microbial sensing plays 

an important role for Tfh differentiation in the gut. Microbial ATP was shown to control Tfh cell 

differentiation in PPs via interactions with the ATP-gated ionotropic P2X7 receptor (Proietti et al. 

2014). Moreover, the Th17 cell-promoting segmented filamentous bacteria (SFB) were shown to 

drive the differentiation of PP Tfh cells (Fei Teng et al. 2016). The egress of these “unusual” PP 

Tfh cells into systemic sites can have dire consequences for health, as they were reported to 

exacerbate auto-antibody responses in arthritis (Fei Teng et al. 2016). This demonstrates the ability 

of intestinal Tfh cells to integrate multiple signals from the gut microbiota for their development, 

with implications not only for gut, but also systemic immunity. Therefore, control of Tfh cell 

development, and their maintained residence in the gut is critical for organismal health (Stebegg, 

Kumar, Silva-Cayetano et al. 2018). 

Similar to Tfh cells, PP Tfr cells have gut-specific features. In PP GCs, the Tfh/Tfr ratio is increased 

compared to peripheral GCs (Kato et al. 2014), making PP GCs resemble the early stages of a GC 

reaction. This has been proposed to enable the expansion of low affinity B cell clones early in the 

response (Ramiscal & Vinuesa 2013) and is consistent with the proposal of Reboldi et al. (Reboldi 

& Cyster 2016), who suggested that GCs in PPs resemble early GCs in order to favour the quick 

generation of diverse low-affinity antibodies in response to microbial antigens. Interestingly, gene 

expression profiling of Tfr cells from PPs and LNs revealed that PP Tfr cells, unlike LN Tfh cells, 

express the helper cytokine IL-4 (Georgiev et al. 2018). This could point to a different, potentially 

less suppressive, role of Tfr cells within PPs. 
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As discussed above, Tfr cells are considered to be negative regulators of the GC response, but the 

data about their functionality in PPs is not clear. STAT3-deficient mice, which lack Tfr cells but 

have PP Tfh cells, have no observable changes in PP GC size or IgA production in the gut (Wu et 

al. 2016). However, in an adoptive transfer model Kawamoto et al. implicated Tfr cells in the 

regulation of IgA-mediated control of the gut microbiome: the supplementation of T cell-deficient 

hosts with Treg cells increased IgA production and induced dramatic changes in the composition 

of the microbiota (Kawamoto et al. 2014). This is consistent with the observation that depletion of 

Treg cells results in a drop in IgA levels (Cong et al. 2009). Together, this suggests that both Tfr 

functionality as well as the Tfh/Tfr ratio in PPs are adjusted to allow for optimal control of the gut 

microbiota, although further work is required to precisely define the role of Tfr cells in PPs. 

1.6.3.2 Immune regulation of GCs in PPs by the gut microbiota 

The gut microbiota is a crucial, but often underappreciated, regulator of the GC response in the gut 

as well as of the systemic immune system (Stebegg, Kumar, Silva-Cayetano et al. 2018). Germ-

free mice, which lack any form of bacterial colonization, exhibit evident deficits in the maturation 

of their gut-associated lymphoid tissues, including PPs and mesenteric LNs. Their PPs are small 

and produce limited amounts of IgA antibodies (Round & Mazmanian 2009). In addition, these 

mice are more susceptible to enteric infections and their systemic immune response to infections is 

also stunted (Fagundes et al. 2012; Khosravi et al. 2014). This demonstrates a strong dependency 

of the immune system on the microbiota. There is evidence that some bacteria and their products 

directly affect the GC response in PPs. Transfer of a diverse microbiota into wild-type mice 

increases GC B cell numbers as well as bacterial IgA-coating (Kawamoto et al. 2014). Bacterial 

products can also directly act on immune cells in the PP: microbial ATP controls Tfh cell 

differentiation (Proietti et al. 2014) and short-chain fatty acids, a diverse group of bacterial 

metabolites, were shown to boost plasma cell differentiation and intestinal antibody production in 

PPs (Kim et al. 2016; Wu et al. 2017). This demonstrates the strong impact of the microbiota on 

the GC response. Thus, the interplay of the immune system with the microbiota cannot be neglected 

when studying the regulation of intestinal GCs. 

To test if ageing affected this cross-talk, we investigated whether age-associated changes in the 

composition of the murine gut microbiota were linked with changes in PP GCs of aged mice. 

Intriguingly, faecal microbiota transplantation from adult into aged mice reversed an ageing-related 

defects of the GC reaction in PPs. These data confirm that the gut microbiota has a strong impact 

on GCs in PPs and that an age-associated decline in the GC response can be reversed by changes in 

its microenvironment.  
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1.6.4 The GC response in ageing 
A very successful medical intervention for the prevention of infectious diseases is vaccination, 

which generates long-lived humoral immunity by triggering GC responses and extrafollicular 

responses in the absence of an infection. The efficacy of vaccination is reduced in older people, 

possibly due to an age-associated impairment of the GC reaction (Aberle et al. 2013; Gustafson et 

al. 2018; Linterman 2014). Ageing is a complex process, broadly defined as the age-dependent 

deterioration of the biological functions of an organism with time. This is associated with a plethora 

of age-associated defects (López-Otín et al. 2013): on a molecular level, there is age-related 

telomere shortening, the accumulation of genetic mutations, epigenetic changes, accumulation of 

defective mitochondria and of unfolded proteins due to alterations in the ER stress response (Brown 

& Naidoo 2012; López-Otín et al. 2013). On the cellular level, the communication between cells is 

affected and there is a reduction in tissue regeneration, associated with the accumulation of 

senescent cells which secrete large amounts of pro-inflammatory cytokines, a phenotype known as 

the senescence-associated secretory phenotype (Linterman 2014; López-Otín et al. 2013; Tchkonia 

et al. 2013).  

Similar to other cells, the functions of immune cells are negatively affected by age both in a cell-

intrinsic and -extrinsic manner, but the relative contribution of these effects is still unclear 

(Nikolich-Žugich 2018). The continued exposure to antigen over time leads to an age-related 

increase of antigen-experienced memory cells, while the pool of naïve immune cells, which can 

respond to novel antigen, progressively shrinks with advancing age (Nikolich-Žugich 2018). This 

is associated with an increased susceptibility to infections, a significant cause of death in old age 

(Kline & Bowdish 2016). 

In mice, advancing age is correlated with a decline in GC size. This is associated with the reduced 

formation of high-affinity plasma cells, a reduction in SHM and serum antibody levels (Eaton et al. 

2004; Kosco et al. 1989; Kraft et al. 1987; Linterman 2014; van Dijk-Härd et al. 1997; Yang et al. 

1996). Interestingly, ageing seems to affect GCs in PPs differently from GCs in the spleen and LNs. 

Several studies reported on reduced antigen-specific antibody responses in the gut of both BALB/c 

and C57BL/6 mice (Kato et al. 2003; Kawanishi & Kiely 1989; Koga et al. 2000), but this was not 

correlated with a decrease in the overall amount of secreted IgA in the intestine (Senda et al. 1988; 

Thoreux et al. 2000). Also, while there is progressive loss of GC B cells in murine PPs during 

ageing (González-Fernández et al. 1994), several paper reported on increasing numbers of 

somatically mutated antibodies in the PPs of aged mice. This is in contrast to the reduced SHM 

observed in LNs (Banerjee et al. 2002) and is probably due to successive accumulation of mutations 
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in memory B cells in the gut over the life time of the mouse (Banerjee et al. 2002; González-

Fernández et al. 1994; Rogerson et al. 2003). 

Age-associated defects in the output of the GC response are linked with changes in T cells, B cells 

as well as the GC microenvironment (Figure 1.10) (Gustafson et al. 2018; Linterman 2014; 

Nikolich-Žugich 2018). Yang et al. used adoptive transfers of aged B cells into young hosts to 

demonstrate that B cells from aged mice are fully capable of forming GCs in a young environment, 

but their rate of SHM is reduced (Yang et al. 1996). In contrast, adoptive transfers of T cells from 

aged animals into a young environment, resulted in the formation of smaller GCs with reduced 

antibody output (Eaton et al. 2004). This suggests that, while B cells from aged mice are impaired 

in SHM, the age-associated decline in the magnitude of the GC response is mainly driven by defects 

in the T cell compartment. Increasing the naïve T cell output from the thymus, however, is not 

sufficient to rescue the ageing GC phenotype (Lefebvre et al. 2012). What is more, young T cells 

transferred into aged hosts prior to immunisation form fewer Tfh cells than in young hosts, 

suggesting that T cell priming by DCs is impaired in old age (Lefebvre et al. 2012).  

DCs from aged host have a defect in phagocytosis and express lower levels of co-stimulatory 

molecules (Agrawal et al. 2007),(Moretto et al. 2008). In addition, Tfh-mediated B cell help was 

also shown to be impaired in advanced age. Sage et al. observed higher numbers of Tfh in aged 

mice compared to young mice, but these cells seem to be less able to provide B cell help (Sage et 

al. 2015). B cell help from memory Tfh cells during recall responses is also impaired in aged 

individuals (Yu et al. 2012). This is linked with the reduced expression of the important co-

stimulatory molecules ICOS and CD40L on the surface of aged T cells, combined with increased 

levels of co-inhibitory PD-1 (Sage et al. 2015). What is more, Sage et al. observed a relative 

increase of suppressive Tfr cells over Tfh cells in the LNs of aged mice (Sage et al. 2015). Like Tfh 

cells, aged Tfr cells expressed increased levels of PD-1 and lower levels of ICOS and Foxp3, but 

this did not affect their suppressive capacities. Thus, reduced GC responses are linked with reduced 

B cell help from Tfh cells in the context of increased suppression by Tfr cells (Sage et al. 2015). 

There are many efforts to enhance GC responses in aged individuals to improve immune responses 

to infections and vaccinations in the ageing population. Modifications of the vaccine adjuvant 

(Frech et al. 2005) or administration of increased antigen doses (Remarque et al. 1993) were shown 

to improve vaccination responses in older subjects. This suggests that the age-related defect in the 

GC response is not irreversible, and can be targeted therapeutically to improve immune protection 

in older individuals. 
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Our study investigated whether T cell priming by DCs in aged individuals could be improved to 

enhance GC responses. This led to the discovery of a novel link between reduced co-stimulation by 

cDC2s in aged mice with defective IFN signalling in the same cells. By enhancing type I IFN 

signalling at the site of immunisation, we were able to restore CD80 and CD86 expression levels 

on cDC2s and improved the formation of Tfh cells in aged animals. This confirms that age-

associated defects in the GC response are not irreversible and that DCs are a potent target to improve 

vaccine responses in the ageing population. 

 
Figure 1.10: Schematic overview of age-associated changes in the germinal centre (GC) 
response. Upon infection or immunisation, naïve CD4 T cells (Na) are recruited from the blood 
into secondary lymphoid organs (SLOs), where they interact with antigen-presenting dendritic cells 
(DCs). Here, DCs prime naïve CD4 T cells to differentiate into pre T follicular helper (Tfh; pTFH) 
cells which migrate towards the B-cell follicle. These pre-Tfh cells interact with activated B cells 
to differentiate into mature Tfh (TFH) cells which migrate into the GC. Interactions between Tfh 
cells and GC B cells during the GC response facilitate the generation of long-lived high affinity 
antigen-producing plasma cells as well as the release of Tfh cells (*TFH) from the SLOs back into 
the blood. The GC response is negatively controlled by T follicular regulatory (Tfr; TFR) cells. 
During ageing, the GC response is affected in many ways: firstly, fewer naïve CD4 T cells are 
available to seed the GC. Secondly, Tfh cell priming by DCs and B cells is impaired and there is a 
relative increase in inhibitory Tfr cells. Thirdly, Tfh cells recruited from the circulation during recall 
responses seem to have a reduced capacity for B cells help in aged individuals. Together, this results 
in the reduced production of antigen-specific antibodies. This image was taken from Gustafson et 
al. 2018, © 2018 (Gustafson et al. 2018). 

Figure 11: Schematic overview of age-associated changes in the germinal
centre (GC) response. Upon infection of immunisation, naïve CD4 T cells (Na) are
recruited from the blood into secondary lymphoid organs (SLOs), where they interact
with antigen-presenting dendritic cells (DCs). Here, DCs prime naïve CD4 T cells to
differentiate into pre T follicular helper (Tfh; pTFH) cells which migrate towards the B-
cell follicle. These preTfh cells interact with activated B cells to differentiate into
mature Tfh (TFH) cells which migrate into the GC. Interactions between Tfh cells and
GC B cells during the GC response facilitate the generation of long-lived high affinity
antigen-producing plasma cells as well as the release of memory Tfh cells (*TFH)
from the SLOs back into the blood. The GC response is negatively controlled by T
follicular regulatory (Tfr; TFR) cells. During ageing, the GC response is affected in
many ways: Firstly, fewer naïve CD4 T cells are available to seed the GC. Secondly,
Tfh cell priming by DCs and B cells is impaired and there is a relative increase in
inhibitory Tfr cells. Thirdly, memory Tfh cells in aged individuals seem to have a
reduced capacity for B cells help during recall responses. Together, this results in the
reduced production of antigen-specific antibodies. Image modified from Gustafson et
al. 2018 [176].
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1.7 The immune system and the endoplasmic reticulum 
(ER) stress response pathway 

Immune cell differentiation and effector functions can be influenced by environmental cues such as 

local metabolite availability (Kominsky et al. 2010), salt concentrations (Kleinewietfeld et al. 2013; 

Wu et al. 2013) and low oxygen pressure (McNamee et al. 2013). All of these conditions are potent 

inducers of the ER stress response pathway and often occur at sites of active immune responses, 

e.g. sites of inflammation or in GCs. This results in a strong association between immune cell 

function and the ER stress response (Bettigole & Glimcher 2015).  

1.7.1 The ER stress response 
The ER is a large organelle integrating many essential cellular functions: this is where lipids and 

proteins are synthesised and folded and where intracellular Ca2+ is stored (Bettigole & Glimcher 

2015). These functions are closely interlinked, with perturbations in one adversely affecting the 

others, triggering a powerful stress response known as the unfolded protein response (UPR) or ER 

stress response (Bettigole & Glimcher 2015). The ER stress response is initiated upon protein 

misfolding and intersects with many other stress or inflammatory signalling pathways (Hotamisligil 

2010). It consists of three individual branches which act in a coordinated manner and depend on the 

activation of three different ER transmembrane effector proteins: inositol requiring enzyme 1 

(IRE1), PKR-like ER kinase (PERK), and the activating transcription factor-6 (ATF-6) (see Figure 

1.11) (So 2018; Todd et al. 2008).  

Under steady-state conditions, IRE1, PERK and ATF-6 all interact closely with the ER-resident 

HSP70-type chaperone BiP (also known as Hspa5 or GRP78) which inhibits their activation. BiP 

has high affinity for unfolded proteins, so when unfolded proteins accumulate in the ER, BiP is 

titrated away from IRE1, PERK and ATF-6, allowing the full UPR to ensue (Bettigole & Glimcher 

2015). The IRE1 signalling axis is the most evolutionary conserved of all ER stress response 

pathways, leading to the expression of the transcription factor X-box binding protein 1(XBP1), 

which induces many ER stress-mediated gene expression changes (Bettigole & Glimcher 2015). 

PERK, when activated, induces phosphorylation of the eukaryotic translation-initiation factor 2 

(EIF2). Phosphorylated EIF2 loses its activity as initiator of mRNA translation, thereby arresting 

most mRNA translation. At the same time, EIF2 phosphorylation results in increased expression 

levels of the transcription factor ATF-4 which binds to UPR-regulated elements (UPREs) in the 

promoter-region of ER stress-associated genes (Todd et al. 2008). ATF-6 is usually retained in the 

ER membrane, but upon ER stress, its cytoplasmic ATF-6 fragment is released to act as a 
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transcription factor (see Figure 1.11). Together, these three pathways induce global changes in gene 

expression, protein translation, protein folding and degradation.  

1.7.2 The impact of ER stress on immune responses 
Historically, the UPR has been studied as a stress response to protein misfolding, but it also 

modulates immune cell development and inflammatory signalling (So 2018). Iwakoshi et al. 

demonstrated that Xbp-1 expression is important for the development and survival of pDCs and 

cDCs (Iwakoshi et al. 2007). In plasma cells, antibody production is dependent on the expression 

of the ER stress-induced transcription factor Xbp-1 (Shaffer et al. 2004). Studies on T cells revealed 

that antigenic stimulation of the TCR induces ER stress. The ensuing ER stress response is 

important to shape T cell effector functions, e.g. by enhancing Th2 cell differentiation or increasing 

the production of pro-inflammatory cytokines such as IFN-g and TNF-a (Kamimura & Bevan 2008; 

Scheu et al. 2006; Thaxton et al. 2017; Wheeler et al. 2008). Likewise, the ER stress response 

enhances the secretion of pro-inflammatory cytokines, such as IL-23, IL-6, TNF-a and type I IFNs, 

by both DCs and macrophages (Bettigole & Glimcher 2015; Hu et al. 2011; Martinon et al. 2010; 

Smith et al. 2008). This could be mediated by NF-κB signalling, as all 3 UPR branches induce NF-

κB activation either by reducing the translation or causing the degradation of the NF-κB repressor 

IκB (Garg et al. 2012). This allows NF-κB to translocate into the nucleus, where it drives the 

expression of many pro-inflammatory cytokines and other immune-modulatory proteins.  

Taken together, this demonstrates that there is a strong bidirectional cross-talk between the immune 

system and the ER stress response. This allows immune cells to quickly adapt their effector 

functions to changes in their local microenvironment, such as shifts in nutrient availability or local 

oxygen levels.  

Sites of inflammation in many autoimmune disorders are often characterised by low oxygen and 

nutrient availability – conditions that trigger ER stress responses (Morito & Nagata 2012; Zhang & 

Kaufman 2008). These sites also often contain pathogenic Th17 cells (Tesmer et al. 2008). This 

raises the question, whether the ER stress response could be a driver of Th17 cell differentiation 

and pathogenicity? In this thesis, I demonstrate that ER stress drives the generation of Th17 cells, 

whose gene expression signature strongly resembles previously-described Th17 cells with a highly 

pathogenic gene signature (Lee et al. 2012). 
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Figure 1.11: Schematic overview of the ER stress response. The ER stress response consists of 
three individual branches which depend on the activation of three different ER transmembrane 
proteins: inositol requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and the activating 
transcription factor-6 (ATF-6). Together, these proteins induce global changes in gene expression 
and protein homeostasis. Under steady-state conditions, the ER-resident chaperone BiP inhibits 
their activation. When misfolded proteins accumulate in the ER, BiP is titrated away from IRE1, 
PERK and ATF-6, allowing the unfolded protein response (UPR) to ensue. Activated IRE1 
catalyses an unconventional splicing reaction of Xbp1 which yields the highly active transcription 
factor XBP1S. Activated PERK phosphorylates the eukaryotic translation-initiation factor 2 (EIF2), 
which consequently loses its activity as initiator of mRNA translation, thereby arresting most 
mRNA translation. EIF2 phosphorylation also results in increased expression levels of the 
transcription factor ATF-4 which binds to UPR-regulated elements (UPREs) in the promoter-region 
of ER stress-associated genes. Once BiP releases ATF-6, this transcription factor translocates into 
the nucleus, where it activates gene transcription at ER-stress response elements (ERSEs). This 
image was reprinted from Todd et al. 2008 with permission from Springer Nature © 2008 (Todd et 
al. 2008). 

  

Figure 10: Schematic overview of the ER stress response pathway. The ER
stress response consists of three individual branches which depend on the activation

of three different ER transmembrane proteins: inositol requiring enzyme 1 (IRE1),

PKR-like ER kinase (PERK), and the activating transcription factor-6 (ATF-6).

Together, these proteins induce global changes in gene expression and protein

homeostasis. Under steady-state conditions, the ER-resident chaperone BiP inhibits

their activation. When misfolded proteins accumulate in the ER, however, BiP is

titrated away from IRE1, PERK and ATF-6, allowing the unfolded protein response

(UPR) to unfold. Activated IRE1 catalyses an unconventional splicing reaction of

Xbp1 which yields the highly active transcription factor XBP1S. Activated PERK
phosphorylates the eukaryotic translation-initiation factor 2 (EIF2), which

consequently loses its activity as initiator of mRNA translation, thereby arresting most

mRNA translation. EIF2 phosphorylation also results in increased expression levels

of the transcription factor ATF-4 which binds to UPR-regulated elements (UPREs) in

the promoter-region of ER stress-associated genes. Once BiP releases ATF-6, this

transcription factor translocates into the nucleus, where it activates gene

transcription at ER-stress response elements (ERSEs).The image was modified from

Todd et al. 2008 [157].
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1.8 Aim & Objectives 
During an ongoing immune response, immune cells incorporate information about their 

microenvironment to adapt their differentiation pathways and effector functions accordingly. This 

is achieved by the integration of inflammatory signalling with the ER stress response pathway, 

which is triggered by a variety of environmental stresses such as low nutrient availability, hypoxia 

and mechanical stress (Bettigole & Glimcher 2015). The first part of this report focusses on how 

Th17 cell differentiation and pathogenicity is affected by ER stress. I demonstrate that ER stress 

drives the generation of Th17 cells with a pathogenic gene signature even in the absence of TGFb. 

As a result, these cells cause Th17 cell-associated symptoms in experimental-autoimmune 

encephalitis (EAE) experiments, a mouse model of multiple sclerosis (MS). This suggests a 

potential link between ER stress and Th17 cell-mediated autoimmune pathology.  

In the second part of this thesis, I investigated whether age-associated defects in the GC response 

could be linked with changes in its microenvironment. PPs always contain active GCs due to 

constant stimulation from the gut microbiota. These GCs are an important source of IgA antibodies, 

which have been suggested to help control the composition of the gut microbiome (Macpherson et 

al. 2012). I observed reduced GC B cells in the PPs of aged mice, which were correlated with 

distinct age-associated changes in the composition of their gut microbiota. Faecal microbiota 

transplantation from adult into aged mice was able to reverse these ageing-related defects. These 

data reveal that the gut microbiota is a potent stimulator of GCs in PPs and that the age-dependent 

decline in the GC response can be reversed by changes in the microbiota.  

Whether the microbiota boosts the GC reactions by acting directly on adaptive immune cells or on 

other cells in their environment, such as APCs, is not clear. There is strong evidence that the 

defective GC reaction in peripheral LNs of aged animals is partly due to impaired T cell priming 

by DCs (Linterman 2014). We observed impaired T cell priming in aged mice, which was correlated 

with reduced type I interferon signalling in cDC2 cells upon immunisation. By boosting type I 

interferon signalling in DCs at the time of immunisation, Tfh cell differentiation in peripheral LNs 

of aged mice was enhanced. This shows that not only the gut microbiota, but also DCs can be 

targeted to improve GC responses in aged mice and highlights the importance of environmental 

stimuli in shaping adaptive immunity
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 MATERIAL AND METHODS 
 Animal work 

All mice listed in Table 2.1 were bred and maintained in the Babraham Institute Biological Support 

Unit (BSU), where BALB/c and C57BL/6Babr mice were also aged. No primary pathogens or 

additional agents listed in the FELASA recommendations (FELASA working group et al. 2014) 

were detected during health monitoring surveys of the stock holding rooms. Ambient temperature 

was ~19-21˚C and relative humidity 52 %. Lighting was provided on a 12 hour light: 12 hour dark 

cycle including 15 minute ‘dawn’ and ‘dusk’ periods of subdued lighting. After weaning, mice were 

transferred to individually ventilated cages with 1-5 mice per cage. Mice were fed CRM (P) VP diet 

(Special Diet Services) ad libitum and received seeds (e.g. sunflower, millet) at the time of cage-

cleaning as part of their environmental enrichment. All mouse experimentation was approved by 

the Babraham Institute Animal Welfare and Ethical Review Body. Animal husbandry and 

experimentation complied with existing European Union and United Kingdom Home Office 

legislation and local standards. Young mice were 6-14 weeks old, and aged C57BL/6 and BALB/c 

mice 90-105 weeks old at the time of starting an experiment. All experimental mice were housed 

in the same room. To control for changes in the microbiome due to circadian rhythm, faecal 

microbiota transplantation (FMT) and faecal pellet collections were always performed at 10am and 

3pm, respectively. Due to limited availability of aged male BALB/c mice, all BALB/c experiments 

were conducted with females. For all other strains, experiments were conducted with both male and 

female mice.  

 Co-housing of adult and aged mice 
2-3 adult females were consolidated with 2-3 aged females per cage, with a maximum of five mice 

per cage. After 30-40 days of co-housing, Peyer’s patches (PPs), mesenteric lymph nodes (mLNs) 

and faecal bacteria were harvested for flow cytometric analysis. Blood samples were obtained by 

cardiac puncture and spun at 13,000 rpm for 15 minutes at room temperature. The serum 

supernatants were collected and stored at -20˚C for enzyme-linked immunosorbent assays (ELISAs). 

Faecal supernatants from the contents of the colon and ileum were weighed and incubated for 10 

minutes on ice in 12-14 µl sterile-filtered phosphate-buffered saline (PBS) per mg of faeces (70-

85 mg/ml faecal input). The samples were then vortexed for 1 minute and spun at 500 g at 4˚C for 
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5 minutes to pellet bigger particles. 80-100 µl of the supernatant containing faecal bacteria was 

transferred to a fresh tube, topped up with PBS to reach a total volume of 1 ml and spun at 10,000 g 

at 4˚C for 5 minutes to pellet bacteria. The supernatants containing free IgA (at a final concentration 

of 5-8.5 mg/ml faecal input) were harvested and stored at -20˚C, while bacterial pellets were stained 

for flow cytometry as described below. Faecal pellets were collected from all mice before co-

housing and at the end of the experiment and stored at -80˚C for 16S rDNA sequencing.  

Name Strain ID Source Ref. 
C57BL/6 C57BL/6Babr JAX/BBU*  
BALB/c BALB/c Charles Rivers/BBU*  
Il17acre Il17atm1.1(icre)Stck B. Stockinger (Hirota et al. 2011) 
Rosastop-YFP Gt(ROSA)26Sortm1(EYFP)Cos JAX (Srinivas et al. 2001) 
Rosastop-tdRFP Gt(ROSA)26Sortm1Hjf JAX (Luche et al. 2007) 
Ragcre Rag1tm1(cre)Thr JAX/ BBU* (McCormack et al. 2003) 
Xbp1fl Xbp1tm2Glm  L. Glimcher/A. Kaser (Hetz et al. 2008) 
2D2 TCR Tg(Tcra2D2)1Kuch JAX (Bettelli et al. 2003) 
Cd4cre Tg(Cd4-cre)1Cwi JAX (Lee et al. 2001) 
Bcl6fl Bcl6tm1.1Dent A. Dent (Hollister et al. 2013) 
Ifnar1ko Ifnar1tm2a(EUCOMM)Wtsi U. Kalinke (Skarnes et al. 2011) 
Ifnar1cre Ifnar1tm1Uka U. Kalinke (Le Bon et al. 2006) 
Cd11ccre B6.Cg-Tg(Itgax-cre)1-1Reiz/J R. Roychoudhuri (Caton et al. 2007) 
OTII TCR (TCR)OT2 K. Okkenhaug (Barnden et al. 1998) 
TCR7 TCR Tg(TcraBO4H9.1)7Aog A. O’Garra (Neighbors et al. 2006) 
UbiquitinGFP Tg(UBC-GFP)30Scha/J M. Turner (Schaefer et al. 2001) 
H2+/- B6.129S2-H2dlAb1-Ea/J A. Liston (Madsen et al. 1999) 

Table 2.1: List of mouse strains. *BBU=Babraham Breeding Unit 

 Faecal microbiota transplantation (FMT) 
FMT was achieved by oral gavage of faecal slurry. For this, recipient mice were starved for 2 hours 

prior to FMT. The faecal slurry was obtained by pooling faecal pellets from up to 14 donor mice. 

The pellets were weighed and resuspended by vortexing at full speed for 1 minute in 1 ml PBS per 

300 mg of faeces. After pelleting larger particles by centrifugation at 500 g for 5 minutes, the 

supernatant was collected as faecal slurry for FMT. Each recipient mouse received 150µl of faecal 

slurry by oral gavage no more than 1 hour after the initial collection of faecal pellets from donor 

mice. The remaining slurry was stored at -80oC for 16S rDNA sequencing. Following FMT, the 

cages of recipient mice were replenished with dirty bedding and fresh faecal pellets from donor 

mice once and twice a week respectively. Faecal pellets for 16S rDNA sequencing were collected 

the day before FMT and at the end of the experiment, and were stored at -80˚C for DNA extraction. 
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Three weeks after FMT, PPs, mLNs and faecal bacteria were harvested for flow cytometric analysis, 

while bloods and faecal supernatants from the ileum and colon were collected for ELISAs. Blood 

samples were obtained by cardiac puncture and spun at 13,000 rpm for 15 minutes at room 

temperature. The serum supernatants were collected and stored at -20˚C for ELISAs. Faecal 

supernatants from the contents of the colon and ileum were weighed and incubated for 10 minutes 

on ice in 12-14 µl sterile-filtered PBS per mg of faeces (70-85 mg/ml faecal input). The samples 

were then vortexed for 1 minute and spun at 500 g at 4˚C for 5 minutes to pellet bigger particles. 

80-100 µl of the supernatant containing faecal bacteria was transferred to a fresh tube, topped up 

with PBS to reach a total volume of 1 ml and spun at 10,000 g at 4˚C for 5 minutes to pellet bacteria. 

The supernatant containing free IgA (at a final concentration of 5-8.5 mg/ml faecal input) was 

harvested and stored at -20˚C, while the bacterial pellet was stained for flow cytometry as described 

below. 

 Oral immunisations  
For oral immunisations mice were starved for 2 hours prior to administration of antigen. They were 

then orally gavaged with 200 µl PBS containing 37.5 µg/ml cholera toxin (CTx, Sigma #C8052) 

plus 37.5 µg/ml NP-CTx or, in the case of Bcl6fl/flCd4cre/+ mice and their littermate controls, 

50 µg/ml CTx plus 5mg/ml ovalbumin (Albumin from chicken egg white, Sigma #SLBQ9036V). 

NP-CTx was generated in-house as described below. Oral immunisations were performed three 

times on day 0, 7, and 14. Control groups were gavaged with PBS only. On day 21, PPs, mLNs, 

blood and faecal contents were harvested. In cases where oral immunisations were combined with 

FMT, oral immunisations with NP-CTx/CTx were conducted on day 2, day 8 and day 15 after FMT 

before mice were harvested on day 22. PPs, mLNs and faecal bacteria were harvested for flow 

cytometric analysis, while bloods and faecal supernatants from the ileum and colon were collected 

for ELISAs. Blood samples were obtained by cardiac puncture and spun at 13,000 rpm for 15 

minutes at room temperature. The serum supernatants were collected and stored at -20˚C for 

ELISAs. Faecal contents from the colon and ileum were weighed and incubated for 10 minutes on 

ice in 5 ml sterile-filtered PBS per g of faeces (200 mg/ml faecal input). The samples were then 

vortexed for 1 minute and spun at 10,000 g at 4˚C for 10 minutes to pellet bacteria and debris. The 

supernatant containing free IgA was harvested and stored at -20˚C. 

 Subcutaneous immunisations  
Mice were immunized with NP-KLH (4-Hydroxy-3-nitrophenylacetyl-Keyhole Limpet 

Hemocyanin), NP-1W1K, OVA (ovalbumin) or HEL (Hen Egg Lysozyme) in Alum or Ea-GFP in 
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Incomplete Freund Adjuvant (IFA). IFA (#F5506) and HEL (Lysozyme from chicken egg white, 

#62970) and OVA (Albumin from chicken egg white; #A5503) were purchased from Sigma-

Aldrich, Imject Alum (#77161) was purchased from Thermo Fisher Scientific and NP-KLH was 

purchased from Biosearch Technologies (#N-5060-25). Ea-GFP fusion protein was produced in-

house by Wim Pierson from XL-1 blue E.coli carrying the pTRCHis-Eα-GFP vector as described 

by Rush and Brewer (Rush & Brewer 2010). NP-1W1K was generated from NP-e-Aminocaproyl-

OSu (Biosearch Technologies, #N-1021-100), which was conjugated to Streptavidin by Jonathan 

Clark from the Babraham Institute Biological Chemistry facility, and biotinylated 1W1K peptide 

(custom-made by Cambridge Research Biochemicals “biotin-GSGEA-W-GALANKA-V-DKA-

acid”). These compounds were conjugated at a 1:6 ratio of NP-SA to 1W1K-biotin in 400 µl PBS 

for 1 hour at room temperature. Unbound peptide was then removed by two consecutive rounds of 

dialysis using Centriprep® centrifugal filters with an Ultracel® 10K membrane (Sigma #4304) by 

spinning at 13,000 rpm for 6 minutes at room temperature. NP-1W1K was freshly conjugated for 

each experiment. Purified NP-1W1K, NP-KLH, OVA and HEL were first diluted in PBS, then the 

same volume of Alum was added dropwise to the solution while shaking until a final concentration 

of 50 µg/ml HEL, 500 µg/ml OVA, 500 µg/ml NP-KLH or 330-500 µg/ml NP-1W1K was reached. 

After 30 minutes of vortexing, 100 µl of the emulsion were injected subcutaneously (s.c.) into the 

hind flanks of recipient mice. 1 mg/ml Ea-GFP was emulsified in IFA by trituration through a 20 g 

needle. 200 µl of this emulsion were injected subcutaneously into the hind flanks of recipient mice. 

Mice were euthanised at different time points after immunisation, as indicated in the main text or 

figure legends, when bloods and draining inguinal LNs were collected. Blood samples were 

obtained by cardiac puncture and spun at 13,000 rpm for 15 minutes at room temperature. The 

serum supernatants were collected and stored at -20˚C for ELISAs. 

In some cases, mice were treated with IFNAR1 blocking antibodies (BioXCell #BE0241), CTLA4-

Ig (Orencia® Abatacept) or Aldara cream containing 5 % imiquimod (MEDA Pharma) prior to, or 

at the time of immunisation. IFNAR1 blocking was achieved by intraperitoneal injection of 0.75 mg 

of anti-IFNAR1 blocking antibody or the appropriate isotype control (BioXCell #BE0083) in 200 µl 

PBS 20 hours before immunisation with Ea-GFP. To block CD28 co-stimulation, 500 µg of 

Abatacept were injected intraperitoneally right before immunisations with HEL in Alum. For 

Aldara treatment, mice were shaved on their backs 2-3 days before subcutaneous immunisations 

into their hind flanks. Directly after immunisation, 50-125 mg of Aldara were applied topically to 

the shaved backs of the anaesthetised animals. The cream was left to absorb for five minutes before 

the mice were returned to their cages. Aldara-treated and untreated control mice were housed in 

separate cages to avoid cross-contamination by grooming. 
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 NP-CTx conjugation and quality control 
NP-CTx was generated by conjugating NP-e-Aminocaproyl-OSu (Biosearch Technologies #N-

1021-100) with CTx (Sigma #C8052) following a protocol adapted from N. Lycke by A. Iseppon 

and B. Stockinger (Bergqvist et al. 2013). First, 2 mg/ml CTx was dialyzed in distilled water for 

two days at 4˚C in a Slide-A-Lyzer Dialysis Cassette (0.5-3 ml size with a 10K cut-off; Thermo 

Fisher Scientific #66380) before mixing it with an equal volume of 0.1 M NaHCO3 and 20 

equivalents of 10 mg/ml NP-eA-OSu per mole CTx. The mixture was incubated overnight at 4˚C 

during constant rotation and then transferred into a fresh Slide-A-Lyzer dialysis cassette. The 

mixture was dialyzed twice against 0.05 M NaHCO3 followed by PBS. The final protein 

concentration was determined using a BCA assay (Thermo Fisher Scientific #23227). 0.5 mg/ml 

aliquots of NP-CTx were stored at -80˚C until use. 

 

The NP-CTx conjugation ratio was assessed by ELISA. For this, ELISA plates (Thermo Fisher 

Scientific 96F Maxisorp #456537) were coated with 2.5 µg/ml NP-CTx or NP conjugated to bovine 

serum albumin (BSA) in varying conjugation ratios (NP(2)-BSA, NP(7)-BSA and NP(20)-BSA; 

Biosearch Technologies #N-5050L-H) and incubated at 4˚C overnight. The next day, plates were 

washed 4 times in 0.05 % Tween 20 (Sigma #P1379) in PBS wash buffer and blocked with 

1 % BSA in PBS for 1 hour at room temperature. After an additional wash step, serum from a NP-

KLH-immunised mouse was loaded onto the plates at a starting dilution of 1:200 in 1 % BSA/PBS. 

This initial dilution was titrated down the plate at a 1:4 ratio. The plates were incubated for 2 hours 

at room temperature and after another wash step, the plates were incubated with 50 µl of polyclonal 

goat anti-mouse IgG1 HRP-conjugated antibodies (Abcam #ab97240; diluted 1:10,000 in PBS) for 

2 hours at room temperature. After a last wash step the plates were developed with 100 µl/well 

TMB (3, 3', 5, 5' – Tetramethylbenzidine; Biolegend #421101) for up to 20 minutes, when the 

reaction was stopped with 50 µl/well 0.5 M H2SO4. A PHERAstar FS microplate reader (BMG 

Labtech) was used to measure absorbance at 450 nm. Absorbance values from serially diluted 

samples were plotted and values which fell into the linear range of the curve were selected to 

calculate endpoint titres. The NP-CTx conjugation ratio was approximated by comparing its 

endpoint titre with the endpoint titre of NP-BSA at its different conjugation ratios.  

 Experimental autoimmune encephalitis (EAE) 
Direct EAE experiments were conducted by Marc Veldhoen and Verena Brucklacher-Waldert, who 

induced direct EAE by subcutaneous immunisations with 250 µl myelin oligodendrocyte 

glycoprotein (MOG) 35-55 peptide (ProImmune Ltd.) emulsified in Complete Freund’s Adjuvant 
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(CFA; IFA (Sigma # F5506) supplemented with 250 µl mycobacterium tuberculosis extract H37Ra 

(Difco #231141)). The animals also received intraperitoneal injections with 200 ng pertussis toxin 

(List Biological Laboratories #181) on days 0 and 2. Tauroursodeoxycholic acid (TUDCA) 

treatments were started the day prior to MOG/CFA immunisation with a 500 mg/kg dose and were 

followed with daily intraperitoneal administration at 250 mg/kg. For adoptive-transfer EAE 

experiments, 2D2 MOG-specific TCR transgenic animals were injected subcutaneously with 

250 µg MOG35–55 peptide emulsified in CFA. The animals showed no clinical signs of EAE until 

day 9, when draining lymph nodes and spleens were harvested. Single cell suspensions were re-

stimulated over a period of 4 days with 20 µg/ml MOG35–55 peptide in complete IMDM (Iscove's 

Modified Dulbecco's Media (=IMDM, Sigma #I3390) supplemented with 2 mM L-glutamine, 

100 U/ml penicillin, 100 µg/ml streptomycin, 200 µM 2-mercaptoethanol, and 5 % foetal bovine 

serum (FBS)) at 37˚C in a 7 % CO2 atmosphere. Some cultures were treated with either a 

combination of 25 ng/ml IL-6, 0.4 ng/ml TGFβ and 4 µg/ml anti–IFN-γ antibodies (conventional 

“IL6/TGFβ” Th17 condition) or 25 ng/ml IL-6 plus 2 µM cyclopiazonic acid (=CPA in “IL6/CPA” 

condition). Table 2.2 contains more information about the compounds used. On day 4, cultured 

cells were collected and washed in PBS. 1.5 ´ 107 of these MOG-reactivated cells were injected 

into sub-lethally irradiated C57BL/6 mice (exposed to 450 rad γ-irradiation) by intravenous 

injection. Classical clinical signs of EAE were assessed blindly and according to the following 

scores: 0, no signs of disease; 1, flaccid tail; 2, impaired righting reflex and/or gait; 3, partial hind 

limb paralysis; 4, total hind limb paralysis; and 5, total hind limb paralysis with partial forelimb 

paralysis. Mice were humanely killed when they started to score 5, lost more than 20 % of their 

initial weight or displayed symptoms of atypical EAE such as head tilting and ataxia. 

 T helper cell cultures 
For T cell differentiation in vitro, brachial, axial, inguinal and mesenteric LNs as well as spleens 

were isolated and processed into single cell suspensions by mashing through 70 µm filters. Viable 

lymphocytes were then separated from the remaining cells in Lympholyte-M Cell Separation 

medium (Cedarlane #CL5030) during a 15 minute centrifugation step at 1250 g. Naive CD4+ 

CD62L+ T cells were obtained using Milteny’s CD4+CD62L+ T Cell Isolation Kit II (#130-093-

227) following the manufacturer’s instructions. Cells were cultured in IMDM (Sigma #I3390) 

supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 200 µM 2-

mercaptoethanol, and 5 % FBS. Th17, Th1 and Treg cells were differentiated in 24-well or 96-well 

plates coated with 2 µg/ml anti-CD3 and 2 or 5 µg/ml anti-CD28.  
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For conventional Th17 cell differentiation, T cells were cultured in the presence of 25 ng/ml IL-6, 

0.4 ng/ml TGFβ and 4 µg/ml anti–IFN-γ antibodies. 3 ng/ml IL-12 was used to drive Th1 cell 

differentiation. Treg cells were obtained from a combined treatment of 5 ng/ml TGFβ with 5 µg/ml 

anti–IFN-γ antibodies. To modulate the ER stress response in culture, cells were treated with: 0.5-

10 µM CPA, 1-10 µM of the pyruvate analogue BrPA (3-bromopyruvate) or 500 µM of the general 

ER-stress inhibitor TUDCA. 10 µg/ml anti-TGFβ antibodies were used to block the activity of 

endogenous TGFβ in FBS in complete cell culture medium. Compounds are listed in Table 2.2. 

Cytokines Supplier (#Catalogue number) Final concentration 
Recombinant human IL-6 PeproTech #AF-200-06 25 ng/ml 
Recombinant murine IL-12 PeproTech #210-12 

 
3 ng/ml 

Recombinant human TGFβ1 PeproTech #100-21 0.4 – 5 ng/ml 
 

ER-stress modulators 

  
CPA Sigma # C1530 0.5 – 10 µM 
TUDCA Sigma #T0266 0.05 – 2 mM 
BrPA Sigma #16490 1.0 – 10 µM 
   
Neutralising antibodies   
anti-IFN-γ BioXCell Clone XMG1.2 4 – 5 µg/ml 
anti-TGFβ BioXCell Clone 1D11.16.8 10 µg/ml 
anti-CD3 BioXCell Clone 145-2C11 2 µg/ml 
anti-CD28 BioXCell Clone 37.51 2 – 5 µg/ml 

Table 2.2: Cytokines, ER stress modulators and antibodies used for cell culture. 

 Adoptive T cell transfers 
To perform adoptive HEL- or OVA-specific T cell transfers, total lymphocytes were isolated from 

the spleen and peripheral LNs (brachial, axial, superficial cervical, inguinal and mesenteric LNs) 

of TCR7 or OTII transgenic mice, respectively. These mice also expressed ubiquitinGFP+ and/or 

CD45.1+. All cells were stained with CellTrace™ Violet Cell Proliferation Kit (Invitrogen 

#C34557; 1:1000 in PBS) for 15 minutes at 37˚C, followed by two washes with PBS containing 

2 %FBS at 1800 rpm for 5 minutes at 4˚C. The percentage of TCR-transgenic CD4+ CellTrace+ T 

cells was determined by flow cytometry, detecting TCR7 T cells using anti-TCRVb3 antibodies 

and OTII T cells with anti-TCRVa2 antibodies. An equivalent of 1-5 ´ 106 TCR7+ T cells or 5 ´ 105 

OTII T cells was transferred intravenously into C57BL/6, H2+/- or Ifnar1-/- recipient mice in 100 µl 

2 % FBS/PBS. The mice were subsequently immunized subcutaneously into their hind flanks with 

100 µl of 5 µg HEL or 50 µg OVA in Alum. Where indicated, mice were pre-treated 
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intraperitoneally with 500 µg CTLA4-Ig (Orencia® Abatacept) in 100 µl PBS at the time of T cell 

transfer to block CD86 and CD80 co-stimulation. After 2.5 days, the inguinal LNs of each recipient 

mouse were harvested and pooled. They were mashed through 70 µm filters to obtain single cells 

which were then stained for flow cytometry. Antibodies used are listed in Table 2.3. 

 Flow cytometry and Fluorescence-activated cell sorting 
(FACS)  

 Flow cytometry and FACS of in vitro differentiated T helper 
cells 

To assess cytokine production and transcription factor protein levels of in vitro differentiated T 

helper cells, cells were stimulated for 3 hours with 500 g/ml PdBU (Phorbol 12,13-dibutyrate), 

500 ng/ml ionomycin and 10 µg/ml brefeldin A (all from Sigma). Cells were stained with anti-CD4 

and anti-CD25 antibodies and a fixable viability dye (Molecular Probes’ LIVE/DEAD® Fixable 

Near-IR Dead Cell Stain #L10119), followed by fixation using the eBioscience IC Fixation Buffer 

(#00-8222-49). T cells were stained with fluorochrome-coupled anti–IL-17A or anti–IFN-γ 

antibodies. The eBioscience Foxp3/Transcription Factor Staining Buffer set (#00-5323-00) was 

used for intranuclear Foxp3 stains. Total samples were acquired on a LSRFortessa 5 (BD 

Biosciences) to determine absolute cell numbers. FACS was used to sort in vitro-differentiated 

Th17 cells obtained from Rosastop-tdRFPIl17aCre or Rosastop-eYFPIl17aCre mice. After 3 days of culture 

in 24-well plates, T cells were washed once with PBS and stained with APC-coupled anti-CD4 

antibodies and DAPI (4,6-diamidino-2-phenylindole, Molecular Probes #D1306) as a live/dead 

stain. CD4+ DAPI- cells were sorted according to their fluorescent protein (FP) expression levels 

on a BD FACSAria. FP- and FP+ T cells were collected in FBS-coated 15 ml falcon tubes, washed 

in PBS, pelleted and stored at -80˚C for RT-qPCR. Samples for RNA sequencing were stored in 

40 µl RNAlater at -80˚C. Single stained splenocytes served as compensation controls. Data were 

analysed using FlowJo v10 software (Tree Star). Antibodies are listed in Table 2.3. 

 Flow cytometry of PPs and LNs 
A single cell suspension from dissected PPs and LNs was generated by pressing the tissues through 

a 70 µm mesh in 2 %FBS in PBS. Cell numbers and viability were determined using a CASY TT 

Cell Counter (Roche). 1-3 ´ 106 cells were transferred to 96 well plates for subsequent antibody 

staining. To stain for 1W1K-specific CD4 T cells, cell suspensions were first pre-treated with 

Dasatinib (BioVision #1568-100, 1:20,000 in DMEM (Dulbecco’s modified eagle medium, Gibco 
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#41965-039) containing 10 % FBS, 100 U/ml penicillin and 100 µg/ml streptomycin) for 10 

minutes at 37˚C. Then, a PE-conjugated MHC class II tetramer containing the 1W1K peptide (NIH 

Tetramer core facility; PE-coupled “I-A(b) EAWGALANKAVDKA”) was added to each sample 

at a final concentration of 1:100 and incubated for 2 hours at room temperature. Cells were stained 

with LIVE/DEAD® Fixable Blue Dead Cell Stain (Invitrogen #L23105; diluted 1:1000 in PBS) 

and incubated with FcR block for 15 minutes (anti-mouse CD16/32; eBioscience #14-0161-82). 

Surface antibody stains and staining for NP-specific B cells with NP(30)-PE (Biosearch 

Technologies #N-5070-1) were performed for 1 hour at 4˚C in 100 µl Brilliant Stain Buffer (BD 

Biosciences #563794). For intranuclear staining, cells were fixed with the eBioscience 

Foxp3/Transcription Factor Staining Buffer (#00-5323-00). Antibody staining with anti-Foxp3, 

anti-Ki67 and anti-Bcl6 antibodies was performed for 1-2 hours at 4˚C in 1´ Permeabilization 

buffer (eBioscience #00-8333-56). Samples were acquired on a LSRFortessa (BD Biosciences) with 

stained UltraComp eBeads™ Compensation Beads (Invitrogen #01-2222-41) as compensation 

controls. Flow cytometry data were analysed using FlowJo v10 software (Tree Star). The antibodies 

used are listed in Table 2.3. 

 Flow cytometry of faecal bacteria 
To assess IgA-coating of faecal bacteria, we adapted a protocol described previously by Sidonia 

Fagarasan and Mikako Maruya (Kawamoto et al. 2014). Briefly, faecal contents from the ileum and 

colon were collected and weighed, then incubated for 10 minutes on ice in 12 µl sterile-filtered PBS 

per mg of faeces. The samples were vortexed at full speed for 1 minute and spun at 500 g at 4˚C for 

5 minutes to pellet bigger particles. The supernatant containing faecal bacteria was transferred to a 

fresh tube, washed in PBS and spun at 10,000 g at 4˚C for 5 minutes to pellet bacteria. Blocking 

was achieved in 2 % BSA in PBS for 15 minutes, followed by antibody staining of IgA-coated 

bacteria with anti-IgA and anti-Igk antibodies in 2 % BSA/PBS for 45 minutes on ice. After a wash 

step in PBS, bacteria were fixed in 4 % paraformaldehyde (PFA) for 6 hours or overnight at 4˚C. 

Then, samples were stained with DAPI (Invitrogen #D1306; 1:1000 in a staining buffer containing 

0.01 % Tween and 1 mM EDTA) for 30 minutes and AF594-coupled wheat germ agglutinin 

(=WGA; Invitrogen #W11262; 1:100 in 3M KCl solution) for 5 minutes. The samples were 

acquired at 5000 events/sec on a LSRFortessa 5 (BD Biosciences) with the side scatter (SSC) 

threshold set to 200. Single stains served as compensation controls. The antibodies used are listed 

in Table 2.3. 
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 Flow cytometry and FACS of dendritic cells  
For DC analysis, iLNs were harvested and incubated with 10 mg/ml Collagenase D (Roche 

#11088866001), and 30 U/ml DNase I (Roche #04716728001) in plain RPMI medium (Gibco 

#11875093) for 15-30 minutes at 37˚C, followed by gentle pipetting to disrupt the tissue. Cells were 

washed with PBS containing 2 % FBS, before cell numbers were determined using a CASY TT 

Cell Counter (Roche). All isolated cells were subsequently stained for flow cytometry or FACS. 

After a wash in PBS, they were stained with LIVE/DEAD® Fixable Blue Dead Cell Stain 

(Invitrogen #L23105; diluted 1:1000 in PBS) on ice for 10 minutes. After a second wash, they were 

blocked with FcR block (anti-mouse CD16/32; eBioscience #14-0161-82) for 10-15 minutes at 4˚C. 

Surface antibody stains were performed for 45-60 minutes at 4˚C in Brilliant Stain Buffer (BD 

Biosciences #563794). Samples were acquired on a LSRFortessa 5 (BD Biosciences) with stained 

UltraComp eBeads™ Compensation Beads (Invitrogen #01-2222-41) serving as compensation 

controls. Flow data were analysed using FlowJo v10 software (Tree Star). The antibodies used are 

listed in Table 2.3. 

FACS was performed with a BD FACSAria (BD Biosciences). For RT-qPCR, 800-4000 GFP+ 

CD11b+ cDC2 cells from total draining LNs were sorted into PCR tubes containing 20 µl of RLT 

lysis buffer supplied with the RNeasy Micro Kit (Qiagen #74004). For RNA sequencing, Danika 

Hill and Alexandre Bignon sorted 800 cells into PCR tubes containing 8.5 µl of 1´ lysis buffer 

provided with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech # 634890). 
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Antibody Supplier (Clone) Dilution 
AF647-coupled anti-mouse Foxp3  Biolegend (MF-14) 1:250 
AF647-coupled anti-mouse IL-17A Biolegend (TC11-18H10.1) 1:500 
PE-coupled anti-mouse IL-4 Biolegend (11B11) 1:200 
PB-coupled anti-mouse IFN-γ Biolegend (XMG1.2) 1:500 
APC-coupled anti-mouse CD4 Biolegend (GK1.5) 1:1000 
PE-coupled anti-mouse CD25 Biolegend (PC61) 1:200 
PE-coupled anti-mouse IL-10 Biolegend (JES5-16E3) 1:200 
PE/PE-Cy7-coupled anti-mouse Bcl6  BD Biosciences (K112-91) 1:100 
PE-Cy7-coupled anti-mouse CD95  BD Biosciences (Jo2) 1:200 
BV605-coupled anti-mouse IgG1  BD Biosciences (A85-1) 1:100 
PE-Cy7/BUV395-coupled anti-mouse CD3  BD Biosciences (145-2C11) 1:300 
PE-Cy7/BUV395-coupled anti-mouse CD19  BD Biosciences (1D3) 1:200-300 
PE-Cy7/BUV395-coupled anti-mouse B220  BD Biosciences (RA3-6B2) 1:300 
AF647-coupled anti-mouse CD64  BD Biosciences (X54-5/71) 1:200 
PE-Cf594-coupled anti-mouse CD11b  BD Biosciences (M1/70) 1:200 
BV786-coupled anti-mouse CD103  BD Biosciences (M290) 1:200 
PE/BV510-coupled anti-mouse CD86  BD Biosciences (GL1) 1:300 
APC-AF780-coupled anti-mouse PD1  eBioscience (J43) 1:200 
APC/Foxp3-coupled anti-mouse Foxp3  eBioscience (FJK-16S) 1:100-1:200 
AF488/AF700-coupled anti-mouse Ki67  eBioscience (SolA15) 1:100 
Biotin-coupled anti-mouse Gr1  eBioscience (RB6-8C5) 1:200 
eF450-coupled anti-mouse CD38  eBioscience (90) 1:400 
PerCp-Cy5.5-coupled anti-mouse CD172a  eBioscience (P84) 1:200 
eF450-coupled anti-mouse CD24  eBioscience (M1/69) 1:500 
APC-AF870-coupled anti-mouse CD11c  eBioscience (N418) 1:200 
PE-Cy5/APC-coupled anti-mouse CD80  eBioscience (16-10A1) 1:300 
PerCp-Cy5.5-coupled anti-mouse CD45.2  eBioscience (104) 1:200 
AF700-coupled anti-mouse MHC-II  eBioscience (M5/114.12.2) 1:400 
BV421-coupled anti-mouse CXCR5  Biolegend (L138D7) 1:100 
V500/PE/BV605-coupled anti-mouse CD4 Biolegend (RM4-5) 1:400-1:800 
BV510/BV785-coupled anti-mouse B220  Biolegend (RA3-6B2) 1:200-1:400 
PerCp-Cy5.5-coupled anti-mouse CD44  Biolegend (IM7) 1:200 
AF488-coupled anti-mouse GL7  Biolegend (GL7) 1:100 
BV605-coupled anti-mouse F4/80  Biolegend (BM8) 1:200 
BV650-coupled anti-mouse XCR1 BV650  Biolegend (ZET) 1:200 
PE-Cy7-coupled anti-mouse CD40 Biolegend (3/23) 1:300 
AF700-coupled anti-mouse CD45.1 Biolegend (A20) 1:200 
AF674/FITC-coupled anti-mouse IgA Southern Biotech (1040-02/-31) 1:100 
PerCp-Cy5.5-coupled anti-mouse PDCA-1  Biolegend (927) 1:100 
PE/Cy7/APC-Cy-7-coupled anti-mouse Igk  BD Biosciences (187.1) 1:100 
PE-coupled anti-mouse TCR Vb3 BD Biosciences (KJ25) 1:100 
APC-coupled anti-mouse TCR Va2 eBioscience (B20.1) 1:100 
APC/PE/BV421/BV510-coupled Streptavidin  Biolegend, eBioscience 1:600 
Biotin-coupled anti-mouse Ea 52-68 peptide  eBioscience (eBioY-Ae) 1:200 
NP(30)-PE  Biosearch Tech. (N-5070-1) 1:200 
PE-coupled 1W1K-IAb tetramer NIH Tetramer core facility 1:100 

Table 2.3: Antibodies and conjugated probes used for flow cytometry and FACS 
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 Confocal imaging of germinal centres 
Draining inguinal LNs or PPs were fixed in periodate-lysine-paraformaldehyde (PLP) containing 

1 % (v/v) PFA (Sigma #P6148), 0.075 M L-Lysine (Sigma #L5501), 0.37 M Na3PO4 (pH 7.4) 

(Sigma #342483) and 0.01 M NaIO4 (Sigma #210048), for 4 hours at 4˚C. After fixation, the 

samples were dehydrated in 30 % sucrose (Sigma #S0389) overnight, embedded in Optimum 

Cutting Temperature (OCT) medium (VWR #25608-930) on dry ice and stored at -80˚C. The frozen 

tissues were cut into 10 µm sections using a cryostat (Leica Biosystems) at -20˚C and again stored 

at -80 °C. For antibody stains, the slides were first air-dried and then hydrated in 0.5 % Tween 20 

in PBS (PBS-T). Slides were blocked in 200 µl blocking buffer (PBS containing 2 % BSA and 10 % 

goat serum), then permeabilised with 200 µl PBS containing 2 % Triton X (Sigma #X100). After 

three wash steps in PBS-T, the slides were incubated with 200 µl of a primary antibody mix in PBS-

T containing 1 % BSA at 4˚C overnight. Sections were stained with eF450-conjugated rat anti-

mouse Foxp3 (clone FJK16S, Thermo Fisher Scientific; 1:50), hamster anti-mouse CD3ε (clone 

500A2, Thermo Fisher Scientific; 1:200), rabbit anti-mouse Ki67 (#15580, Abcam; 1:100) and 

AF647-conjugated rat anti-mouse IgD (clone 11-26c.2a, Biolegend; 1:100). The next day, the slides 

were washed in PBS-T three times, then they were incubated with secondary antibodies in 200 µl 

PBS-T containing 2 % goat serum for 2 hours at room temperature. The secondary antibodies used 

were AF568-conjugated goat anti-hamster IgG (#A-21112, Life Technologies; 1:500) and AF488-

conjugated goat anti-rabbit (#150077, Abcam; 1:400). Hydromount mounting medium (National 

diagnostics #HS-106) was used to mount slides and coverslips were gently placed on top of the 

slides to avoid the formation of air bubbles. Slides were dried overnight for the mounting medium 

to set. Images were acquired using a Zeiss 780 microscope using 10´, 20´ and 40´ objectives. 

Image analysis was performed using ImageJ.  

 Enzyme-linked immunosorbent assay (ELISA)  

 Quantitation of antigen-specific immunoglobulins 
ELISA plates (Thermo Fisher Scientific 96F Maxisorp #456537) were coated overnight at 4˚C with 

10 µg/ml NP20-BSA (Biosearch Technologies #N-5050H-100), 2.5 µg/ml NP2-BSA (Biosearch 

Technologies #N-5050L-100) or 1 µg/ml CTx in PBS. The next day, plates were washed 4 times in 

wash buffer containing 0.05 % Tween 20 in PBS and blocked with 1 % BSA in PBS for 1 hour at 

room temperature. After an additional wash step, sera or free IgA-containing ileal supernatants from 

oral immunisation experiments were loaded onto the plates. The starting dilution for sera was 1:100-

200 in 1 % BSA/PBS, ileal supernatants were loaded at 10-20 mg/ml faecal input (1:5-10 dilution 
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of frozen supernatants) in 1 % BSA/PBS. This initial dilution was titrated down the plate at a 1:4 

ratio. The pooled serum/ileal supernatants of previously immunised mice served as positive controls, 

the serum/ileal supernatant of unimmunized mice as negative controls on each ELISA plate. The 

plates were incubated for 2 hours at room temperature and after another wash step the plates were 

incubated with 50 µl of polyclonal goat anti-mouse IgG1 HRP-conjugated antibodies (Abcam 

#ab97240; 1:10,000 in PBS) or polyclonal goat anti-mouse IgA HRP-conjugated antibodies (Bethyl 

#A90-103P; 1:25,000 in PBS) for 2 hours at room temperature. After a last wash step, the plates 

were developed with 100 µl/well TMB (Biolegend #421101) for up to 20 minutes, when the 

reaction was stopped with 50 µl/well 0.5M H2SO4. A PHERAstar FS microplate reader (BMG 

Labtech) was used to measure absorption at 450 nm. Absorbance values from serially diluted 

samples were plotted and values which fell into the linear range of the curve were selected to 

calculate endpoint titres. 

 Quantitation of total free IgA 
ELISA plates (Thermo Fisher Scientific 96F Maxisorp #456537) were coated overnight at 4˚C with 

1 µg/ml goat anti-mouse IgA (Bethyl Mouse IgA ELISA Quantitation Set #E90-103). The next day, 

plates were washed 4 times in wash buffer containing 0.05 % Tween 20 in PBS and blocked with 

1 % BSA in PBS for 1 hour at room temperature. After an additional wash step, free IgA-containing 

faecal supernatants were loaded onto the plates in duplicates. The starting concentration was 0.1-

0.5 mg/ml for ileal supernatants and 5-8.5 mg/ml for colonic supernatants. The plates were 

incubated for 2 hours at room temperature. After another wash step, the plates were incubated with 

50 µl of polyclonal goat anti-mouse IgA HRP-conjugated antibodies (Bethyl #A90-103P) for 2 

hours at room temperature. After a final wash step, the plates were developed with 100 µl/well 

TMB (Biolegend #421101) for up to 20 minutes, when the reaction was stopped with 50 µl/well 

0.5 M H2SO4. A PHERAstar FS microplate reader (BMG Labtech) was used to measure absorbance 

at 450 nm. A standard dilution of mouse reference serum (Bethyl Mouse IgA ELISA Quantitation 

Set #E90-103) was used for the quantitation of free IgA in faecal supernatants using a 4-parameter-

fitted curve within the MARS data analysis software (BMG Labtech).  
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 Real-Time qPCR (RT-qPCR) 

 RNA isolation & cDNA synthesis from in vitro differentiated 
T cells and ex vivo cells 

RNA isolation from in vitro differentiated Th17 cells and ex vivo isolated cells was performed using 

Qiagen’s RNeasy Mini or Micro Kit (#74104 and #74004) following the manufacturer’s 

instructions. Homogenisation of the samples achieved by vortexing for 1 minute or by using 

QIAshredders (Qiagen #79654). RNA concentrations obtained from the RNA isolation were 

measured using the NanoDrop system (Thermo Fisher Scientific). RNA samples were used for 

cDNA synthesis right away or stored at -80˚C. cDNA was synthesised from 100-1000 ng RNA 

using a combination of oligo-dT and random primers using Qiagen’s cDNA synthesis kit containing 

Quantitect Reverse Transcriptase (#205311) following the manufacturer’s instructions. cDNA 

samples were diluted 1:10 in DNase-free water for RT-qPCR and stored at -20˚C. 

 RNA isolation from lymph nodes 
RNA isolation from whole inguinal LNs was achieved using Tri Reagent (Invitrogen #AM9738). 

Inguinal LNs were stored in RNAlater (Sigma #R0901) at -20˚C until RNA isolation, when they 

were transferred into 1 ml TRI Reagent and homogenised using a bounce homogeniser at full speed 

for 40 seconds. RNA precipitation in isopropanol was performed for 1 hour on ice to maximise 

RNA yields. An additional ethanol wash step was included in the protocol to improve RNA purity. 

RNA concentrations were determined using the NanoDrop system (Thermo Fisher Scientific). RNA 

samples were stored at -80°C until use.  

 RT-qPCR of in vitro differentiated T helper cells 
RT-qPCR of cultured cells was performed using Life Technologies’ TaqMan Gene Expression 

Assays (#4331182) combined with a TaqMan Universal PCR Master Mix (Applied Biosystems 

#4304437). PCR protocols and TaqMan Gene Expression Assays used are listed in Tables 2.4 and 

2.5. All RT-qPCR reactions were assembled from 1 µl of a TaqMan Gene Expression Assay, 10 µl 

of the universal PCR master mix as well as 1 µl of PCR-grade water. 12 µl of the mix was 

transferred to each well of a PCR 96-well plate (Bio-Rad #MLL9601), then 8 µl of template cDNA, 

equivalent to 10-20ng input RNA per reaction, was added to the wells in duplicates. All plates were 

run on a BioRad CFX96 Real-Time System. Only duplicates with a standard deviation lower than 

0.5 were considered for down-stream analysis.  
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The 2-ΔΔCt -method - also known as comparative CT method - was applied for relative quantification 

of mRNA levels. Using this 2-ΔΔCt -method, the data are presented as the fold change in expression 

normalised to an internal control gene, relative to a control sample called calibrator (Livak & 

Schmittgen 2001). Expression levels were normalised to Hprt which was found to be stably 

expressed under all tested experimental conditions. When Th17 cells were sorted according to their 

FP expression, the FP--fractions of c-Th17 cells were used as calibrators. Cq values were exported 

from the CFX Manager software (Bio-rad) and calculations were performed in Microsoft Excel. 

GraphPad Prism 6 was used to create graphics and perform statistical analysis.  

RT-qPCR programme for TaqMan Universal PCR Master Mix 

Step 1 50°C 2 min 

Step 2 95°C 10 min 

Step 3 95°C 15 sec 

Step 4 60°C 1 min 

         repeat Steps 3 & 4 40-45 times 

RT-qPCR programme for TaqMan™ RNA-to-CT™ 1-Step Kit 

RT-qPCR program for TaqMan RNA-to-CT 1-Step Kit Step 1 48°C 15 min 

Step 2 95°C 10 min 
Step 3 95°C 15 sec 

Step 4 60°C 1 min 

         repeat Steps 3 & 4 48 times 

Table 2.4: Overview of the RT-qPCR programmes. 

 One-step RT-qPCR of LNs and ex vivo isolated cells 
RT-qPCR was performed directly on RNA using Thermo Fisher Scientific’s TaqMan™ RNA-to-

CT™ 1-Step Kit (#4392656) combined with TaqMan Gene Expression Assays. The PCR protocol 

and TaqMan Gene Expression Assays used are listed in Tables 2.4 and 2.5. All RT-qPCR reactions 

were assembled in PCR 384-well plates (Bio-Rad #HSP3805), adding 2 µl of template RNA (10-

20ng RNA per reaction) to 8 µl of a master mix containing the appropriate TaqMan Gene 

Expression Assay in duplicates or triplicates. All plates were run on a BioRad CFX384 Real-Time 

System. Only duplicates/triplicates with a standard deviation lower than 0.5 were considered for 

down-stream analysis. The 2-ΔΔCt-method was applied for relative quantification of mRNA levels. 

Expression levels were normalised to Hprt or Gapdh which were found to be stably expressed under 

all experimental conditions. Samples from young, unimmunised or immunised mice were used as 
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calibrators. As above, Cq values were exported from the CFX Manager software (Bio-rad) and 

calculations were performed in Microsoft Excel. GraphPad Prism 6 was used to create graphics and 

perform statistical analysis. 

TaqMan Gene Expression Assays (Thermo Fisher Scientific #4331182) 
Ahr Mm00478930 m1 
Hif1a Mm00468869_m1 
Hprt Mm03024075_m1 
IFNg Mm99999071 m1 
Il10 Mm00439614 m1 
Il17a Mm00439618 m1 
Il17f Mm00521423 m1 
Rora Mm00443103 m1 
Rorc Mm01261019 g1 
Tbx21 Mm00450960 m1 
Tnf Mm00443260 g1 
Mx1 Mm00487796_m1 
Ifit1 Mm00515153_m1 
Gapdh Mm99999915_g1 
Ifnb1 Mm00439552_s1  

Table 2.5: Overview of TaqMan Gene Expression Assays used for RT-qPCR. 

 RNA sequencing  

 Th17 cells: RNA library preparation and sequencing 
Samples for RNA sequencing were obtained from FACS sorts of 5 different experiments. RNA 

isolation was performed using Qiagen’s RNeasy Mini Plus Kit (#74104) following the 

manufacturer’s instructions, using Qiagen’s QIAshredders (#79654) to homogenise the samples. 

The RNA Integrity Number (RIN) was determined by the Babraham Sequencing facility using 

Agilent Bioanalyser RNA Pico Chips (#5067-1513). The RNA content was determined on a 

NanoDrop spectrometer and ranged from 0.9 – 11.1 µg RNA per sample. Two samples per 

experiment were chosen for sequencing based on their RIN (Table 2.6).  

An input of 250 ng RNA per sample was used for the subsequent generation of non-directional 

RNA libraries using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina (#E7530S), 

following the manufacturer’s instructions. Succeeding an rRNA depletion step performed with the 

NEBNext® rRNA Depletion Kit (#E6310), we fragmented the RNA for 15 minutes at 94°C to 

obtain RNA fragments about 200 bp in size. After adapter ligation, we used NEBNext Multiplex 
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Oligos for Illumina (Set 1, NEB #E7335) to generate barcoded samples for multiplexing. PCR 

library enrichment was performed for 13 cycles. The quality of RNA libraries was assessed on 

Agilent Bioanalyser High Sensitivity DNA Chips (#5067-4626; Table 2.6 “% 200-1000 bp” and 

“RIN”). Library quantification was achieved using the KAPA Library Quantification Kits for NGS 

(#KK4824). All samples were pooled onto one NextSeq 500 sequencing lane and sequenced as 

75 bp paired-end (PE) reads. This resulted in a total of more than 800 million reads, corresponding 

to 50 million reads per sample. 

 Th17 cells: RNA sequencing data analysis 
The NextSeq 500 sequencer used the NextSeq Control Software 2.0.2. and Real Time Analysis 

software 2.4.11 for primary on-machine analysis, creating three *.bcl-output files: two files 

containing the PE reads and a separate files containing the barcode reads. These files were converted 

to *.fastq files with the Bcl2fastq2 software. FastQC was used for the initial assessment of read 

quality. Then, the barcodes were merged with the forward read using the bash command “paste” to 

concatenate the *.fastq files line by line. The resulting *.fastq file was imported into Qiagen’s 

Genomics Workbench 9.5.2 (GxWB) together with the reverse read as PE data. The “Demultiplex” 

tool was used to split the reads according to their barcode sequence, followed by the removal of the 

6 bp barcode and a 1 bp linker from the sequence. This gave rise to 8 separate read files, each of 

which contained 8-13 % of the total reads. Next, the demultiplexed reads were subjected to an 

adaptor and quality trimming step of reads which did not meet the quality limit of 0.05 and/or 

contained more than two ambiguous nucleotides. In addition, NEBNext adaptor sequences at the 3’ 

ends were trimmed off. In the process, a total of 12 million reads were trimmed. After trimming, 

FastQC quality control was used to confirm the absence of adaptor contaminations from all reads. 

Demultiplexed raw reads are publicly available on ArrayExpress: E-MTAB-5692. 

As a next step, all remaining 799 million reads were mapped to a reference genome using Qiagen’s 

Biomedical Workbench 3.5.2 (BmWB). For this purpose, the “RNA-Seq Analysis” tool of the 

Advanced RNA-Seq Plugin was used. We used the mouse reference data library “GRCm38.p4” 

provided by the Genome Reference Consortium and mapped our reads against both the gene and 

mRNA tracks (Ashburner et al. 2000; The Gene Ontology Consortium 2019). In addition, we 

mapped them against inter-genic regions, applying the following alignment score: Mismatch cost = 

2, Insertion cost = 3, Deletion cost = 3, Length fraction = 0.8, Similarity fraction = 0.8. The 

maximum number of hits per read was set to 10 and expression values were expressed as the number 

of total counts for downstream analysis. The expectation-maximization estimation algorithm was 

enabled to improve the estimation of expression levels in cases where reads map equally well to 
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several reference genes or transcripts. The quality of read mapping was assessed by inspecting the 

mapping report and the graphical output of the BmWB genome browser view. PE read distances 

were about 150 bp in average. 76.72 % of reads mapped to the reference in pairs, with a total of 

65 % uniquely mapping to a specific reference sequence. 7.71 % of reads could not be mapped to 

the reference sequence, indicating a high overall mapping efficiency. 2.64 % of PE reads mapped 

to intergenic regions, indicating limited genomic DNA contamination.  

Exp 

ID 

Barcode  Name Mouse ID Gender Age 

 

(weeks

) 

Treatment RIN % 200-1000 bp 
Exp 2 Index 3 TGF 1 IL-17ACre RosaRFP 1 Male 9 IL-6+TGFβ 10 99 
Exp 2 Index 4 CPA 1 IL-6+CPA 10 98 
Exp 3 Index 5 TGF 2 IL-17ACre RosaRFP 2 Male 20 IL-6+TGFβ 10 99 

Exp 3 Index 6 CPA 2 IL-6+CPA 9.6 99 

Exp 4 Index 7 TGF 3 IL-17ACre RosaRFP 3 Male 18 IL-6+TGFβ 10 97 

Exp 4 Index 8 CPA 3 IL-6+CPA 9.3 90 

Exp 5 Index 9 TGF 4 IL-17ACre RosaRFP 4 Male 22 IL-6+TGFβ 10 93 

Exp 5 Index 12 CPA 4 IL-6+CPA 10 99 

Table 2.6: Metadata table of RNA sequencing libraries used for sequencing. This table shows 
the metadata used for RNA sequencing data analysis. This includes the Experiment ID 
corresponding to each samples as well as sample names, RINs and the proportion of library 
fragments falling into the 200-1000 bp range as determined by the Agilent Bioanalyser. In addition, 
multiplexing barcodes associated with each sample are displayed. The table also includes 
information about mice such as their ID, gender and age in weeks. 

Following the read mapping, inter-sample variation was assessed by principal component analysis 

(PCA) and box plot representations of each sample’s expression level distribution using the 

“Quality Control” tool of the BmWB’s “Advanced RNA-seq” plugin. Then differential gene 

expression (DGE) analysis was performed. The BmWB’s “Differential Expression for RNA-Seq” 

tool was supplied with the metadata listed in Table 2.6 and set to compare all group pairs using the 

Wald test (Chen et al. 2011). Heat maps were calculated based on Euclidean distance and complete 

linkage, forming hierarchical trees by joining clusters of genes if the distance between the furthest 

genes in the clusters is smallest. Only genes with a minimal total count of 10 were included. The 

heat maps were set to display the 20 top hits. A gene expression browser listing all gene or transcript 

expression values as well as gene ontology annotations was created using MGI’s Mus musculus 

gene ontology annotations “gene_association.mgi.gz” supplied online by the Gene Ontology 

Consortium (Ashburner et al. 2000; The Gene Ontology Consortium 2019). For functional analysis, 

we used the BmWB’s “Ingenuity Pathway Analysis (IPA)” plugin. This software tool uses its richly 

annotated Ingenuity Knowledge Base to query the significance of sequencing data in the context of 

biological systems, predicting affected signalling pathways, regulatory networks as well as disease 

functions (QIAGEN Inc. 2016). To probe our data, we uploaded different subsets of our DGE data 
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to IPA using the settings described in Table 2.7. Briefly, only features with a FDR p-value ≤ 0.05 

and a fold change of ≥ 1.0 or 1.5 were uploaded to IPA. In addition, features with a maximum group 

mean (MGM = maximum of the average reads per kilobase per million mapped reads) ≤ 3 or 10 

were excluded from the analysis. In case of duplicates, only the entry with the maximal exponential 

log ratio was taken into account. IPA application preferences were changed to consider only 

molecules and/or relationships from mouse with a high confidence, either based on prediction or 

experimental observations. To restrict the analysis to networks and diseases relevant to T cell 

biology, the analysis was repeated with the settings changed to consider only genes and 

relationships related to murine T cells. The IPA results from all different settings were analysed and 

compared using the installed Ingenuity IPA version 28820210. Only pathways and networks 

consistently scoring high in all analyses are discussed in this report. 

 Abs. Fold Change (≥) FDR p-value (≤) MGM (≥) No. of uploaded genes 
Set 0 1.0 0.05 3 3550 
Set 1 1.5 0.05 3 1407 
Set 2 1.0 0.05 10 1796 
Set 3 1.5 0.05 10 724 

Table 2.7: Subsets of differentially-expressed genes uploaded to IPA. Different subsets of our 
DGE data were created for IPA by adjusting the minimally-required absolute fold change and 
maximal group mean (MGM) values (all of which were obtained from the BmWB’s DGE analysis). 
This resulted in gene sets of different sizes. Sets are ranked according to their statistical stringency. 

 cDC2 cells: RNA library preparation and sequencing 
Samples for RNA sequencing were obtained from 16 mice in one FACS sort performed by 

Alexandre Bignon. cDNA was prepared by Danika Hill from sorted cells using the SMART-Seq 

v4 Ultra Low Input RNA Kit for Sequencing (Clontech # 634890) on the day of the sort following 

the manufacturer’s protocol. cDNA enrichment was performed for 13 cycles. cDNA quality was 

assessed on Agilent Bioanalyser High Sensitivity DNA Chips (#5067-4626). 400 pg of cDNA per 

sample were used as input by Danika Hill for the preparation of sequencing libraries with the 

Illumina Nextera XT kit (#FC-131-1096) following the manufacturer’s instructions. The quality of 

the libraries was again assessed using Agilent Bioanalyser High Sensitivity DNA Chips (#5067-

4626). Library quantification was achieved using the Qubit dsDNA High Sensitivity Assay Kit 

(Invitrogen #Q32854) on a Qubit 4 Fluorometer (Invitrogen). Six samples from young mice and six 

samples from aged mice passed all quality controls, were pooled onto two HiSeq sequencing lanes 

and sequenced as 100 bp single-end reads. 
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 cDC2 cells: RNA sequencing data analysis 
RNA sequencing analysis was performed in SeqMonk by Edward Carr, Michelle Linterman and 

Christel Krueger using the SeqMonk software package (Babraham Institute, 

https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/) after trimming (Trim Galore 

v0.4.2) and alignment of reads to the reference mouse genome GRCm38 using HISAT2 (Kim et al. 

2015a) Reads were quantitated over exons and library size was standardized to 1 million reads, and 

then read counts were log2 transformed. Differentially expressed genes were determined by 

DESeq2 analysis using raw counts (adjusted p-value cut-off p ≤ 0.05) (Love et al. 2014). Principal 

component analysis was performed using 1000 genes with the largest variances, after normalisation 

for batch effects with RUVSeq (Risso et al. 2014). 

Pathway enrichment analysis was performed by Christel Krueger who filtered a publicly available 

list of gene sets for categories containing less than 20 or more than 500 genes (Bader Lab 

EM_Genesets, Mouse_GO_AllPathways_with_GO_iea_December_24_2014_symbol.gmt.txt) 

(Merico et al. 2010). Remaining gene sets were tested for differential expression between young 

and aged samples using Seqmonk Subgroup Statistics (t-test, p<0.05, average absolute z-score > 

0.5, multiple testing correction). Genes in the Responsiveness to IFN-I pathway: Stat1, Aim2, 

Pyhin1, Ifi204, Ifi203, Ifi202b, Ifi205, Gbp3, Gbp2, Ifnb1, Gbp6, Htra2, Ndufa13, Trex1, Pnpt1, 

Tgtp1, Irf1, Igtp, Ddx41, Irg1, Tmem173, Gm4951, Iigp1, Ifit3, Ifit1. Principal component analysis 

was performed using the most variable genes.  

 16S rDNA sequencing of faecal bacteria 

 DNA isolation  
Bacterial DNA isolation from faecal matter was performed using the QIAamp PowerFecal DNA 

Kit (Qiagen #12830-50) following the manufacturer’s instructions. First, samples were 

homogenised by bead beating using a FastPrep24 (MP Biomedicals) machine at 5 m/s for 50 sec. 

Total genomic DNA was captured on a silica membrane and the QIAmp Inhibitor Removal 

Technology was used to remove common substances that can interfere with downstream 

applications. In the final step, purified DNA was eluted in 70 µl of Solution C6. DNA 

concentrations were determined using the Qubit dsDNA High Sensitivity Assay Kit (Invitrogen 

#Q32854) on a Qubit 4 Fluorometer (Invitrogen). 
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 16S rDNA sequencing library preparation and sequencing 
High-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene 

was performed by the Beijing Genomics Institute (ageing studies) or Eurofins (Bcl6fl/flCd4cre/+ 

analysis) on an Illumina MiSeq platform. The resulting sequencing reads were supplied as 

demultiplexed fasta files for downstream analysis.  

At Eurofins, the V3-V4 region was PCR-amplified using universal primers that contained the 

adapter overhang nucleotide sequences for forward (TACGGGAGGCAGCAG) and reverse 

primers (CCAGGGTATCTAATCC). DNA was used at a concentration of 1-10 ng/ml. Amplicons 

were purified using AMPure XP beads (Beckman Coulter) and set up for index PCR with Nextera 

XT index primers (Illumina). The indexed samples were purified using AMPure XP 

beads (Beckman Coulter) and quantified using the Fragment Analyzer Standard Sensitivity NGS 

Fragment Analysis Kit (Advanced Analytical). Equal quantities from each sample were pooled. The 

pooled library was quantified using the Agilent DNA 7500 Kit (Agilent), and sequenced using v3 

chemistry (2x300 bp paired-end reads, Illumina).  

At the Beijing Genomics Institute, DNA integrity was assessed by agarose gel electrophoresis. After 

DNA quantification by Qubit Fluorometer, 30 ng DNA per sample were utilised to PCR-amplify 

the V3-V4 region using 341F forward (ACTCCTACGGGAGGCAGCAG) and 806R reverse fusion 

primers (GGACTACHVGGGTWTCTAAT). The PCR products were purified using Agencourt 

AMPure XP beads (Beckman Coulter) for library validation using an Agilent 2100 bioanalyzer 

instrument (Agilent DNA 1000 Reagents). All libraries passed the quality control and were 

sequenced on an Illumina MiSeq Platform using the MiSeq reagent kit (2x300 bp paired-end reads, 

Illumina). The demultiplexed raw reads are available on ArrayExpress upon request: E-MTAB-

7750. 

 16S rDNA sequencing data analysis 
16S rDNA sequencing analysis was performed using QIIME2 (Caporaso et al. 2010). Successfully 

merged reads were quality filtered in QIIME2 using default settings. Sequences were clustered into 

operational taxonomic units (OTUs) based on similarity to the annotated bacterial sequences 

provided by Silva (v132 SSU; https://www.arb-silva.de/ (Quast et al. 2012); 99 % sequence 

similarity cut-off). For this, classifiers were trained in QIIME2 based on the Silva database and the 

V3-V4 primers used for library preparation. Taxa bar plots were generated using QIIME2. 

Statistical analysis was performed with the Calypso software (v8.48-84; cgenome.net/calypso/ 

(Zakrzewski et al. 2017)) applying default parameters. Cumulative-sum scaling (CSS) was applied, 
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followed by log2 transformation to account for the non-normal distribution of taxonomic counts 

data. Calypso was also used to generate Bray-Curtis Principal Coordinates Analysis (PCoA) based 

on OTUs and KRONA plots (Ondov et al. 2011). Bacterial families whose abundance was 

statistically significantly different between groups were determined in Calypso by ANOVA, using 

FDR adjusted p-values ≤ 0.05 as the cut-off. Venn Diagrams were generated using the Metachart 

App (https://www.meta-chart.com/venn#/display). 

 Statistics 
All experiments were repeated at least two times with 4-10 mice per group. Differences between 

experimental groups, as determined by flow cytometry, were assessed using the non-parametric 

Mann–Whitney or Kruskal-Wallis test (with Dunn’s multiple testing correction) within the Prism 6 

software (GraphPad). P-values ≤ 0.05 were considered statistically significant. Statistical 

differences between bacterial families based on 16S rDNA sequencing data were determined by 

ANOVA, using FDR adjusted p-values ≤ 0.05 as the cut-off. Statistical differences in gene 

expression based on RNA sequencing were determined by BmWB’s DEG or DESeq2, with FDR 

p-values ≤ 0.05, fold changes ≥ 1.5 and, for Th17 cell RNA sequencing, MGM ≥ 3 as cut-offs. 

Statistical differences of clinical EAE scores between groups was performed using group 

comparisons by Mann-Whitney tests of the area under the curve (AUC) calculated for each mouse 

within the Prism 6 software (GraphPad) as suggested by Fleming et al. (Fleming et al. 2005). 

Significant differences between atypical EAE symptoms were assessed by Mantle-Cox tests in 

Prism 6 (GraphPad). 
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 ER STRESS SUPPORTS TGFb-
INDEPENDENT T HELPER 17 
DIFFERENTIATION  
 Abstract 

T helper 17 (Th17) cells are important for immune protection at epithelial barrier sites, but they 

have also been implicated in the pathology of many autoimmune disorders. Sites of inflammation 

in autoimmune diseases are often characterised by low metabolite availability and/or hypoxia - 

conditions which are potent inducers of the endoplasmic reticulum (ER) stress response. Classically, 

Th17 cell differentiation has been thought to depend upon IL-6 and TGFβ. In this study, I 

demonstrate that sustained ER stress can drive mouse Th17 cell differentiation even in the absence 

of TGFβ. ER stress-generated Th17 cells exhibit increased Th1-associated features, express many 

genes associated with Th17 cell-mediated pathogenicity and cause atypical symptoms of 

experimental autoimmune encephalitis (EAE), a Th17 cell-mediated autoimmune disease, in vivo. 

The data presented here link the ER stress response with Th17 cell-mediated immune pathologies, 

which may inform the development of new therapies against autoimmune disorders. 

 Background 
Th17 cells are a distinct T helper cell subset, which is most abundant at epithelial barrier sites, 

where they provide immunity against extracellular bacteria and fungi (Weaver et al. 2013). This is 

mediated by their production of IL-17A and IL-17F, pro-inflammatory cytokines which help to 

attract other immune cells to sites of infection. While they are crucial for immune protection, Th17 

cells can also be involved in pathology (Stockinger & Omenetti 2017) and autoimmune diseases 

(Maddur et al. 2012). They are enriched at sites of inflammation and have been directly implicated 

in the immunopathology of rheumatoid arthritis, psoriasis, and multiple sclerosis (MS), an 

autoimmune disorder associated with axon demyelination in the central nervous system followed 

by progressive neurological deterioration (Bedoya et al. 2013; Jadidi-Niaragh & Mirshafiey 2011; 

Sie et al. 2014).  



 3.ER stress supports TGF-independent T helper 17 differentiation: Background 

 
60 

In mice, Th17 cell differentiation from naïve CD4 T cells is well characterised to be driven by IL-

6 and TGFβ (Mangan et al. 2006; McGeachy et al. 2007; Veldhoen et al. 2006a). These cytokines 

induce the STAT3-mediated expression of the Th17 lineage-specific transcription factors RORγt 

and RORα of the retinoic acid receptor-related orphan receptors (ROR) family, as well as the 

activation of the transcription factors aryl hydrocarbon receptor (AhR), hypoxia-inducible factor 1 

alpha (HIF1a), basic leucine zipper (bZIP) transcription factor ATF-like (BATF) and the interferon 

regulatory factor 4 (IRF4) (Brüstle et al. 2007; Dang et al. 2011; Huber et al. 2008; Schraml et al. 

2009; Veldhoen et al. 2008a). While cytokines are important to guide immune cell differentiation, 

other environmental cues such as low local metabolite availability (Kominsky et al. 2010), high salt 

concentrations (Kleinewietfeld et al. 2013; Wu et al. 2013) and hypoxia (McNamee et al. 2013) 

can also influence Th cell differentiation. These conditions are potent inducers of the ER stress 

response pathway and often occur at sites of active immune responses and inflammation. These 

observations suggest that immune cell function and the ER stress response are functionally 

associated (Bettigole & Glimcher 2015).  

The ER stress response, also known as unfolded protein response (UPR), is an essential cellular 

response to tissue stress and pathogen infection, but chronic ER stress can also contribute to the 

pathology of inflammatory diseases (Bettigole & Glimcher 2015). The ER stress response was 

found to be highly active in active lesions of MS patients (Mháille et al. 2008) as well as in EAE, 

the mouse model of this disease, and to promote astrocyte-dependent inflammation and pathology 

(Deslauriers et al. 2011; Meares et al. 2014; Mháille et al. 2008). EAE can be induced directly by 

immunisation with myelin oligodendrocyte glycoprotein (MOG) or by adoptive-transfers of MOG-

specific T cells into wild-type mice (Stromnes & Goverman 2006a; 2006b). This leads to Th17 cell-

mediated damage of the myelin sheath around neurons and brain inflammation, resulting in 

progressive neuronal loss typically manifesting itself in ascending paralysis (Cua et al. 2003; 

Rostami & Ciric 2013; Stromnes & Goverman 2006a). Excessive brain inflammation caused by 

pathogenic Th17 cells additionally triggers atypical forms of EAE characterised by a variety of 

other clinical symptoms, such as ataxia and unilateral paralysis (Domingues et al. 2010; Stromnes 

et al. 2008). Lin et al. demonstrated that the Protein Kinase RNA-like Endoplasmic Reticulum 

Kinase (PERK)-mediated ER stress response can be both protective or detrimental in EAE 

experiments, depending on the time of its activation (Lin et al. 2006; 2007). Furthermore, Kim et 

al. associated aggravated LPS-induced lung injury in mice treated with the ER stress-inducer 

Thapsigargin with increased levels of IL-17 (Kim et al. 2015b). These data suggest a link between 

ER stress and Th17-mediated pathology. 
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We hypothesised a potential role of ER stress in autoimmune disorders by driving Th17 cell 

differentiation and pathogenicity. To test this hypothesis, we treated murine CD4 T cells with IL-6 

and the sarcoplasmic reticulum Calcium-ATPase (SERCA) inhibitor cyclopiazonic acid (CPA), 

which induces a strong ER stress response (Mason et al. 1991). This resulted in the robust 

generation of Th17 cells even in the absence of TGFβ. To determine whether these ER stress-

generated Th17 cells (e-Th17 cells) differ in their pathogenic potential from conventional Th17 (c-

Th17) cells generated by a combined treatment with IL-6 and TGFβ, I generated RNA sequencing 

data from sorted e- and c-Th17 cells. RNA sequencing analysis revealed that e-Th17 cells exhibit a 

unique gene expression profile characterised by a pronounced increase in “pathogenicity-associated” 

genes (Lee et al. 2012). This was linked with a high potential of these cells to trigger Th17 cell-

mediated pathology in adoptive-transfer EAE experiments. This suggests that e-Th17 cells may 

play a role in the pathology associated with Th17-mediated autoimmune diseases. 

 Results  

 ER stress increases Th17 cell differentiation  
To determine the impact of ER stress on the differentiation of different T helper subsets, I purified 

naïve CD4+ T cells by magnetic cell separation (MACS) from the spleens of C57BL/6 mice and in 

vitro differentiated them into Th17, Th1 and Treg cells in the presence of increasing concentrations 

of two ER stress inducers: the SERCA inhibitor CPA (Figure 3.1A-C) and the pyruvate analogue 

3-bromopyruvate (BrPA) (Figure 3.1D-F) (Ganapathy-Kanniappan et al. 2010; Mason et al. 1991). 

Both compounds specifically enhanced Th17 cell differentiation, with some negative effects on the 

differentiation of Th1 and Treg cells at high concentrations (Figure 3.1A-F). This reveals a general 

role for the ER stress response as a specific enhancer of in vitro Th17 cell differentiation. 

 

To further characterise the impact of ER stress on Th17 cell differentiation, we generated Th17 

cells with IL-6 and α-IFNg antibodies in the additional presence or absence of CPA and/or TGFβ 

(Figure 3.2A). As expected, a combined treatment of naïve CD4 T cells with IL-6 and TGFβ 

induced conventional Th17 (“c-Th17”) cell differentiation. The addition of the ER stress inducer 

CPA clearly increased Th17 cell differentiation efficiency by two-fold, albeit this was not detected 

as significant by the Kruskal-Wallis test due to the limitation of sample ranking. Even in the absence 

of TGFβ, a mix of CPA with IL-6 only (“e-Th17”) induced Th17 cells in a dose-dependent manner 

(Figure 3.2A, C). To exclude an effect of endogenous TGFβ present in foetal bovine serum (FBS) 

(Oida & Weiner 2010)) on e-Th17 cell differentiation, “IL-6+CPA+α-TGFβ” samples were 

additionally treated with anti-TGFβ neutralising antibodies. This reduced the proportion of Th17 
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cells formed in vitro, confirming that, while TGFβ is not essential for Th17 cell differentiation, it 

enhances the generation of these cells under both conventional and ER stress conditions (Figure 

3.2A). This demonstrates that ER stress induces the generation of Th17 cells even in the absence of 

an exogenous source of TGFβ.  

 

   

 
Figure 3.1: ER stress enhances the differentiation efficiency of Th17 cells, but not Th1 or Treg 
cells. Naïve CD4+CD62L+ T cells were isolated from the spleens of C57BL/6 mice and 
differentiated into Th17, Th1 and Treg cells. Cells were co-cultured with indicated concentrations 
of the ER stress inducers CPA or BrPa for three days. On day 3, cells were stimulated for 3 hours 
with 500 g/ml PdBU, 500 ng/ml ionomycin and 10 µg/ml brefeldin A, then the percentage of 
IL17A+ cells (=Th17; A, D), IFN-γ+ cells (=Th1; B, E), and Foxp3+ cells (=Treg; C, F) was 
determined by flow cytometry. Data were collected in 2-3 independent experiments performed for 
biological duplicates or triplicates (n=4-6). Bar heights correspond to mean percentages with error 
bars representing standard deviations. Dots represent the proportion of IL-17A+/ IFN-γ+/Foxp3+ 
cells generated from individual mice. P-values are based on Kruskal-Wallis tests without multiple 
testing in GraphPad Prism 6. 

CPA titration experiments revealed a CPA dose-dependent increase in Th17 cell numbers up to a 

concentration of 2 µM CPA, where cell numbers plateaued in the presence or absence of TGFβ 

(Figure 3.1A, Figure 3.2B, C). In these experiments, in vitro Th17 cell differentiation efficiency 

was positively correlated with the duration of CPA treatment (Figure 3.2D, E): the number of IL-

17A+ Th17 cells increased with prolonged exposure to CPA. This demonstrates that extended 

periods of CPA treatment are required for enhanced Th17 cell differentiation. The UPR inhibitor 

TUDCA (tauroursodeoxycholic acid) reduced the frequency of Th17 cells formed in vitro under 

conventional Th17 cell culture conditions (“IL-6+TGFβ”) (Figure 3.2A) (Xie et al. 2002). This 

suggests that the ER stress response is an integral part of the Th17 cell differentiation pathway, 

even in the absence of a dedicated ER stress inducer. 

0 0.1 0.5 1 2 5
0

25

50

75

100

CPA [µM]

%
 IF

N
γ+

 c
el

ls
 

0.1872

0 0.1 0.5 1 2 5
0

25

50

75

100

CPA [µM]

%
 F

ox
p3

+  
ce

lls
 

0.0762

0 0.1 0.5 1 2 5
0

25

50

75

100

CPA [µM]

%
 IL

17
A

+  
ce

lls
 

<0.0001

0 1 5
0

10

20

30

40

50

BrPa [µM]

%
 IF

N
γ+

 c
el

ls

<0.0001

0 1 5
0

20

40

60

80

100

BrPa [µM]

%
 F

ox
p3

+  
ce

lls
 

0.0611

0 1 5 10
0

20

40

60

BrPa [µM]

%
 IL

17
A

+  
ce

lls

0.0497

A. B. C. 

D. E. F. 



 3.ER stress supports TGF-independent T helper 17 differentiation: Results 

 
63 

To characterise ER stress-generated Th17 (e-Th17) cells more thoroughly, I purified in vitro-

generated Th17 cells to analyse their gene expression profile by RT-qPCR (Figure 3.3). I generated 

Th17 cells from Rosastop-tdRFPIl17acre or Rosastop-eYFPIl17acre reporter mice (both of which will from 

now on be referred to as “Il17aFP” mice), which fate-map IL-17A-expressing cells by their 

fluorescent protein (FP) expression, and sorted them into FP- and FP+ fractions by fluorescence-

activated cell sorting (FACS) (gating strategy shown in Figure 3.3). This allowed us to compare the 

gene expression profiles of c-Th17 and e-Th17 cells by RT-qPCR, with the “non-Th17 cell” FP- 

fraction as an internal control. It is important to note that the FP+ fraction also includes a fraction 

of FP+IL-17A- ex-Th17 cells (Figure 3.3A-C). RT-qPCR revealed that the Th17 lineage-specific 

markers Rora, Rorc, Il17a and Il17f were expressed in the FP+ fraction of all tested conditions 

(Figure 3.4A-D). RT-qPCR of e-Th17 cells generated in the presence of TGFβ blocking antibodies 

showed that, although fewer Th17 cells are formed under these conditions (Figure 3.2A, Figure 

3.3C), the cells formed in the complete absence of TGFβ are bona fide Th17 cells which express 

all Th17 cell lineage markers (Figure 3.4A-D). This confirms that ER stress drives the formation of 

Th17 cells which express the relevant transcripts associated with this subset, even in the absence of 

TGFβ. 

The FP- fraction also expressed some of the Th17 lineage markers. This may be due to the presence 

of early Th17 cells in the FP- fraction, which already express RORgt and IL-17A, but do not yet 

express the FP (Figure 3.3A-C). Consistent with this hypothesis, fewer FP-expressing cells were 

detected by flow cytometry than IL-17A+ cells as determined by intracellular antibody staining 

(Figure 3.4E, F). This points towards the presence of a population of Th17 cells which express IL-

17A but not the FP, consistent with observations by Hirota et al., who also observed early 

commitment of Th17 cells to IL-17A production without FP expression upon PdBu/Ionomycin 

treatment using the same mice (Hirota et al. 2011).  
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Figure 3.2: CPA enhances Th17 cell differentiation. (A-E) Naïve CD4+ CD62L+ T cells were 
MACS-purified from the spleens of Rosastop-tdRFPIl17aCre or Rosastop-eYFPIl17aCre reporter mice and 
differentiated into Th17 cells in the presence of TGFβ (“IL-6+TGFβ”; A-B, D-E) and/or 2 µM CPA 
(“IL-6+TGF+CPA” and “IL-6+CPA”; “IL-6 only”). In A, some cells were additionally treated with 
10 µg/ml anti-TGFβ blocking antibodies (“IL-6+CPA+aTGF”) or 0.5 mM TUDCA to block the 
UPR (“IL-6+TUDCA”). On day three, cells were stimulated for 3 hours with 500 g/ml PdBU, 
500 ng/ml ionomycin and 10 µg/ml brefeldin A, then the percentage of IL-17A+ cells was 
determined by flow cytometry. (B, C) In CPA titration experiments, cells were cultured with 0.5-
10 µM CPA. Data in A-C were collected in 4-6 experiments performed for biological duplicates or 
triplicates (n=9-12). (D) For CPA time-courses, 2 µM CPA was added to the cultures 0 h, 4 h, 24 h 
or 48 h after cell culture set-up. (E) For washout experiments, cells were treated with 2 µM CPA at 
the start of the cell culture. At 2 h, 4 h, 24 h or 48 h CPA-containing media was removed and 
replaced by standard differentiation medium. Data were collected from 2 (time-course) or 6 
(washout) experiments performed with biological duplicates or triplicates (n = 5-12). Bar heights 
correspond to mean percentages with error bars representing standard deviations. Dots represent 
the proportion of IL-17A+ cells observed in individual samples. P-values are based on Kruskal-
Wallis tests (in A with Dunn’s correction for multiple testing) in GraphPad Prism 6. 
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Figure 3.3: Gating strategy for sorting FP+ and FP- T cells from Il17aFP reporter mice. Naïve 
CD4+ CD62L+ T cells were isolated from the spleens of Il17aFP reporter mice and differentiated 
into c-Th17 cells (“IL-6+TGFb”; A) and e-Th17 cells (“IL-6+CPA”, B). Alternatively, they were 
treated with a combination of IL-6, CPA and α-TGFβ antibodies (“IL-6+CPA+αTGFb”; C). On 
day three, cells were optionally stimulated for 3 hours with 500 g/ml PdBU, 500 ng/ml ionomycin 
and 10 µg/ml brefeldin A for intracellular IL-17A staining, then cells were stained for flow 
cytometry and sorted into FP- (populations left of horizontal gate) and FP+ (populations right of 
horizontal gate) fractions as shown above. (A-C) Representative flow plots for Th17 cells generated 
in vitro by treatment with IL-6+TGFb, IL-6+CPA or IL-6+CPA+ αTGFb.   

A. 

C. 

B. 
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Figure 3.4: ER stress induces the expression of Th17 cell-associated genes in the absence of 
TGFβ. (A-D) Naïve CD4+ CD62L+ T cells were isolated from the spleens of Il17aFP reporter mice 
and differentiated into c-Th17 cells (“IL-6+TGFβ”) and e-Th17 cells (“IL-6+CPA”). Alternatively, 
they were treated with a combination of IL-6, CPA and α-TGFβ antibodies (“IL-6+CPA+αTGF”). 
On day three, cells were sorted into FP- (“-“) and FP+ (“+”) fractions for RT-qPCR. Data were 
collected as biological duplicates in 2-7 independent experiments (n = 4-14). (A-D) RT-qPCR 
analysis of Th17 cell-associated gene expression in sorted cells. Dots represent relative gene 
expression levels of individual samples normalised to Hprt and relative to the c-Th17 FP- fraction 
as determined by the 2-ΔΔCt method. Bar heights correspond to mean expression level with error bars 
representing standard deviations. P-values are based on Kruskal-Wallis tests with Dunn’s multiple 
comparison corrections in GraphPad Prism 6. (E, F) Cells were cultured with a combination of IL-
6, TGFβ and different concentration of CPA. The proportion of Th17 cells was assessed by flow 
cytometry after 3 hours of stimulation with 500 g/ml PdBU, 500 ng/ml ionomycin and 10 µg/ml 
brefeldin A, based on intracellular antibody staining for IL-17A (E) or their YFP expression (F) in 
4 independent experimental repeats for biological duplicates (n = 8).  
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 Increased expression of Th1 cell-associated genes in ER 
stress-generated Th17 cells  

Next, I generated transcriptomic data from sorted c- and e-Th17 cells to investigate global gene 

expression differences between these cells. Principal component analysis and data clustering based 

on Euclidian distances revealed separate clustering of c-Th17 and e-Th17 cells, thus confirming 

global differences between these treatment groups (Figure 3.5A, B). Statistical comparison of e-

Th17 and c-Th17 cells by differential gene expression (DGE) analysis in Qiagen’s Biomedical 

Workbench (BmWB) generated a list of 3301 differentially-expressed genes with a false discovery 

rate (FDR) p-value ≤ 0.05 and absolute fold change ≥ 1.5. Many of these genes were involved in T 

cell development, activation and functions (Table 3.1). Notably, DGE revealed that the expression 

of Tbx21 and Ifng, lineage marker genes associated with the T helper 1 (Th1) cell subset, was 

significantly upregulated in e-Th17 cells (Table 3.1, Figure 3.6A). The canonical Th17 transcripts 

Il17f and Ahr were reduced in e-Th17 cells, as was the expression of the anti-inflammatory cytokine 

Il10. These findings were confirmed by RT-qPCR (Figure 3.6B-H) and suggest there may be an 

increased Th17-to-Th1 plasticity of e-Th17 cells (Figure 3.6G, H). ex-Th17 Th1 cells have been 

described as potent drivers of EAE pathology, providing a potential link between ER stress and 

Th17 cell pathogenicity (Hirota et al. 2011; Stockinger & Omenetti 2017). The transcriptional 

signature of e-Th17 cells, characterised by high expression levels of Tbx21 and low levels of Ahr 

and Il10, also highly resembles the pathogenic Th17 cell signature proposed by Lee et al (Lee et al. 

2012). e-Th17 cells also express increased levels of secreted phosphoprotein 1 (Spp1), which has 

been implicated in the pathology of EAE (Chabas et al. 2001; Hur et al. 2007). This indicates that 

ER stress-generated Th17 cells exhibit increased EAE pathogenicity compared to c-Th17 cells. 
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Figure 3.5: CPA treatment induces global gene expression changes in Th17 cells. (A) Principal 
component analysis reveals clustering of samples according to their respective treatment. c-Th17 
(TGF) samples are coloured in green, CPA-treated e-Th17 cells in blue. Samples obtained from the 
same experiment share the same node shape. (B) This hierachical tree was generated using Qiagen’s 
BmWB based on Euclidean distances and complete linkage, by joining clusters of genes if the 
distance between the furthest genes in the clusters is smallest. Only genes with a total count of 10 of 
greater were taken into account.  

  

A. 

B. 
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Rank Symbol Entrez Gene Name Fold Change Log2 FC 
1 NKG7 natural killer cell granule protein 7 304.10 8.24 
2 GLP1R glucagon-like peptide-1 receptor 291.25 8.19 
3 SIGLEC-F sialic acid binding Ig like lectin 8 278.59 8.12 
4 ARL4D ADP ribosylation factor like GTPase 4D 170.20 7.41 
5 NRGN neurogranin 142.83 7.16 
6 MPZL2 myelin protein zero like 2 81.67 6.35 
7 GPRIN2 G protein regulated inducer of neurite outgrowth 2 70.50 6.14 
8 AJUBA ajuba LIM protein 49.32 5.62 
9 IFNG Interferon gamma 45.27 5.50 

10 TBX21 T-box protein 21 43.48 5.44 
22 SPP1 secreted phosphoprotein 1 17.37 4.12 
12 IL-22 interleukin 22 -19.44 -4.28 

9 CRISPLD2 cysteine rich secretory protein 2 -34.27 -5.10 
8 TNFRSF8 TNF receptor superfamily member 8 -34.50 -5.11 
7 TIMP1 TIMP metallopeptidase inhibitor 1 -37.19 -5.22 
6 GCNT2 N-acetyllactosaminide beta-1,6-N-

acetylglucosaminyl-transferase 
-47.33 -5.56 

5 DNTT DNA nucleotidylexotransferase -49.41 -5.63 
4 Ctla2a cytotoxic T lymph-associated protein 2 α -75.49 -6.24 
3 Ctla2b cytotoxic T lymph-associated protein 2 β -101.38 -6.66 
2 IL-24 interleukin 24 -474.82 -8.89 
1 Ly6a  lymphocyte antigen 6 complex, locus A -490.2 -8.94 

Table 3.1: Top differentially-expressed genes between c-Th17 and e-Th17 cells. The list was 
obtained from a gene expression (DGE) analysis between treatment groups (CPA versus TGF) 
while controlling for variation between experimental repeats. It contains the top differentially-
expressed genes with false-discovery rate (FDR) p-values ≤ 0.05 and maximal group means 
(MGMs) ≥ 3. The false-discovery rate (FDR) p-value accounts for the increased false-discovery 
rate in multiple testing, while the maximum group mean (MGM) describes the maximum average 
group RPKM (Reads Per Kilobase per Million mapped reads) values among all samples of a 
treatment group. Genes are ranked by their fold change, with rank 1 having the highest fold change, 
i.e. the highest or lowest expression in e-Th17 cells compared to c-Th17 cells. Genes upregulated 
in e-Th17 cells are marked in red, downregulated genes are highlighted in blue. 
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Gene RNA-seq 
 MGM Fold change FDR p-value 
Ifng 3.3 45.27 0.00 
Tbx21 21.8 43.48 0.00 
Rorc 33.7 1.45 2.94E-08 
Tnf 28.6 1.37 1.29E-05 
Hif1a 152.5 1.15 0.15 
Il17f 485.8 -1.92 0.00 
Ahr 18.1 -2.84 1.57E-13 
Il10 14.6 -5.94 0.00 

 

 

 
Figure 3.6: Distinct Th17 and Th1 cell type-specific mRNA expression by e-Th17 cells. (A) 
Table showing the fold change in gene expression of canonical Th17 and Th1 cell-associated genes 
as measured by DGE analysis of e-Th17 cells compared to c-Th17 cells. The false-discovery rate 
(FDR) p-value accounts for the increased false-discovery rate in multiple testing, while the 
maximum group mean (MGM) describes the maximum average group RPKM (Reads Per Kilobase 
per Million mapped reads) values among all samples of a treatment group. (B-H) Naïve CD4+ 
CD62L+ T cells were isolated from the spleens of Il17aFP reporter mice and differentiated into c-
Th17 cells (IL-6+TGFβ) and e-Th17 cells (IL-6+CPA). Alternatively, they were treated with a 
combination of IL-6, CPA and TGFβ (“e-Th17 + TGF”). On day three, cells were sorted into FP- 
and FP+ fractions and the FP+ factions were subsequently analysed by RT-qPCR for Il17f, Rorc, 
Ahr, Hif1a or Il10 (C). Data were collected in 2-7 independent experiments performed for biological 
duplicates (n = 5-14). Dots represent gene expression levels of biological replicates normalised to 
Hprt and relative to the c-Th17 FP- fraction as determined by the 2-ΔΔCt-method. Bar heights 
correspond to the mean expression level with error bars representing the standard deviation. P-
values are based on Mann-Whitney (B-F) or Kruskal-Wallis tests with Dunn’s multiple comparison 
corrections (G, H) calculated in GraphPad Prism v6. 
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 Potential effects of ER stress on T cell receptor signalling in 
Th17 cells  

Ingenuity Pathway Analysis (IPA; QIAGEN Inc. 2016) confirmed activation of the UPR in e-Th17 

cells (Table 3.2) and revealed the reduced expression of EIF2 signalling pathway genes in e-Th17 

cells, which is indicative of ER stress-induced translational repression by PERK. Another pathway 

identified as being underrepresented in e-Th17 cells compared to c-Th17 cells was mTOR 

signalling, a pathway often linked with ER stress (Appenzeller-Herzog & Hall 2012; Malhotra & 

Kaufman 2011). This confirms that the SERCA inhibitor CPA is indeed an inducer of the ER stress 

response. 

IPA also confirmed differences in the expression of T cell differentiation-associated genes between 

e-Th17 and c-Th17 cells and revealed changes in gene expression associated with TCR-dependent 

T cell activation (Table 3.2, Figure 3.7, Figure 3.8): the genes encoding the TCR signalling-

associated transmembrane receptors Cd3, Cd28 and Cd4 and the downstream signalling proteins 

Zap70, Fyn and Lck were found to be upregulated in e-Th17 compared to c-Th17 cells. This was 

associated with the increased expression of genes encoding Erk, Nfatc1 and Nfatc3 in these cells, 

while the expression of Nfat2c was decreased (Figure 3.8). This suggests that CPA treatment affects 

the signalling events downstream of the TCR, with possible implications for T cell activation and 

differentiation. Further experiments are required to determine whether this is due to downstream 

effects of the ER stress response or more directly caused by a CPA-induced increase in intracellular 

calcium signalling. 
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Table 3.2: The top canonical IPA pathways are linked with ER stress or T cell differentiation 
and activation. This table lists the top IPA canonical pathways correlated with e-Th17 cell gene 
expression (abs. fold change ≥ 1.0, MGM ≥ 10). The pathways are ranked according to their IPA 
overlap p-values (shown as log-transformed values), which describe the correlation of the gene set 
with individual pathways. z-scores indicate whether the genes involved in a pathway are activated 
(z score > 0; orange), inhibited (z score < 0; blue) or neutral (z score ~ 0; grey). The top pathways 
can be loosely divided into two groups: ER stress-linked (upper section) as well as T cell 
differentiation and activation pathways (lower section). 

  
  

Rank ER stress-linked Pathways -log(p-value) z score 
1 EIF2 Signalling 57.6 -5.528 
3 mTOR Signalling 22.7 -1 
7 Mitochondrial Dysfunction 9.38 0 
26 Unfolded protein response 6.1 0 
2 Regulation of eIF4 and p70S6K Signalling 28.4 1.604 

 T cell differentiation/activation Pathways   
4 T Cell Receptor Signalling 10.6 0 
5 Regulation of IL-2 in Activated and Anergic T Cells 10.5 0 
6 T Helper Cell Differentiation 10 0 
10 Phospholipase C Signalling 7.63 0.209 
8 Role of NFAT in Regulation of the Immune Response 8.02 1.859 
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Figure 3.7: CPA treatment affects T cell differentiation. This graphical representation of the 
IPA “T cell differentiation” pathway depicts genes involved in Th subset differentiation and identity. 
The expression status of all involved genes in e-Th17 versus c-Th17 cells is colour-coded 
(upregulation=red; downregulation=green).  
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Figure 3.8: CPA treatment affects T cell activation. This graphical representation of the IPA “T 
cell receptor signalling” pathway shows the main genes involved in TCR signalling. The expression 
status of all involved genes in e-Th17 versus c-Th17 cells is colour-coded (upregulation=red; 
downregulation=green).  

 ER stress promotes EAE pathology 
Downstream effects analysis (DEA) by IPA revealed that the gene expression pattern of e-Th17 

cells was closely linked with several Th17-linked autoimmune disease pathways: DEA associated 

e-Th17 cells with systemic autoimmune syndrome (z score=1.45; log-transformed IPA overlap p-

value=25), rheumatoid arthritis (z score=1.8; p=6.5) and EAE (z score=1.56; p=17.6).  
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To test whether these IPA predictions were correct, the impact of ER stress on Th17 cell-mediated 

EAE pathology in vivo was determined. For this, Verena Brucklacher-Waldert and Marc Veldhoen 

induced direct EAE in C57BL/6 mice by immunising them with myelin oligodendrocyte 

glycoprotein (MOG) in complete Freund’s adjuvant (CFA). This triggers an immune response 

towards myelin, resulting in progressive neuronal loss and paralysis (Stromnes & Goverman 2006b). 

Daily dosing of MOG-immunised mice with the ER stress inhibitor TUDCA significantly delayed 

the onset of EAE compared to controls, strengthening the link between ER stress and EAE 

pathology (Figure 3.9A).  

To determine whether TUDCA delayed the onset of EAE by blocking the ER stress response in T 

cells or other cell types, we made use of Xbp1fl/flRag1cre/+ mice. These mice delete Xbp1 specifically 

from lymphocytes. The conditional excision of Xbp1, and its downstream ER stress response 

pathway, in lymphocytes again delayed the onset of EAE and reduced clinical EAE scores 

compared to wild-type and Xbp1fl/flRag1+/+ control mice (Figure 3.9B). This confirms that blockade 

of the ER stress response pathway in lymphocytes can ameliorate EAE pathology. 

 

 

 

 
Figure 3.9: Blockade of the ER stress response ameliorates EAE disease severity. (A) Clinical 
scores of EAE induced by administration of MOG/CFA and daily dosing of PBS (Ctrl; closed 
circles) or 250 mg/kg TUDCA (open circles). P-values were calculated based on a Mann-Whitney 
test comparing the area under the curve (AUC) of each mouse as suggested by Fleming et al. 
(Fleming et al. 2005). (B) Clinical EAE scores from control C57BL/6 (closed circles), 
Xbp1fl/flRag1+/+ (open squares), and Xbp1fl/flRag1cre/+ (open circles) mice upon administration of 
MOG/CFA. P-values were calculated based on a Kruskal-Wallis test with Dunn’s multiple testing 
correction comparing the AUC of Xbp1fl/flRag1cre/+ mice with the AUC of Xbp1fl/flRag1+/+ controls. 
Lines represent the mean, error bars the standard deviation of pooled data from 3 experiments with 
n = 19 mice per group (A) or two experiment with a total of n = 7-8 mice per group (B). The data 
depicted here were generated by Verena Brucklacher-Waldert and Marc Veldhoen. 
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Figure 3.10: e-Th17 cells induce atypical symptoms in adoptive-transfer EAE experiments. 
(A) Schematic overview of the adoptive-transfer EAE protocol. (B, C) Adoptive-transfer EAE was 
induced by injecting mice with MOG-re-stimulated cell populations, which were isolated from 
MOG-immunised 2D2 mice and exposed to different Th17 cell differentiation conditions in vitro 
for 4 days. EAE progression was monitored over 22 days. Data were obtained from two experiments 
with a total of n = 9 mice per group. (B) Mean clinical EAE scores of mice injected with ER stress-
generated e-Th17 (CPA) or c-Th17 (Ctrl) cells. Mean group scores of the “IL-6+CPA” treatment 
group are shown as open circles, the “IL-6+TGFβ” group as closed circles, error bars represent the 
standard deviation. P-values were calculated in GraphPad Prism6 and are based on Mann-Whitney 
tests comparing the area under the curve (AUC) of each mouse in the two different groups as 
suggested by Fleming et al. (Fleming et al. 2005). (C) Percentage of mice who developed atypical 
EAE symptoms during adoptive-transfer EAE experiments. The “CPA” treatment group is shown 
as open circles, the “Ctrl” group as closed circles. The lines represent the mean, error bars represent 
the standard deviation. The p-value is based on a Mantel-Cox curve comparison calculated in 
GraphPad Prism6. I performed the pilot experiment for this data set, but both repeats shown here 
were performed by Marc Veldhoen. 
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To further study the link between ER stress and T cell-mediated pathology of EAE, Marc Veldhoen 

and I conducted adoptive-transfer EAE experiments (Figure 3.10A). For this, we isolated total cells 

from the LNs and spleens of MOG-immunised 2D2 mice, whose T cells carry a transgenic TCR 

that is specific for a peptide of the MOG protein. These cells were expanded in vitro in the presence 

of MOG and a combination of either IL-6 plus TGFβ to generate c-Th17 cells, or a combination of 

IL-6 and CPA to promote the formation of e-Th17 cells. After four days, these cells were injected 

into sub-lethally irradiated C57BL/6 mice. These mice developed clinical signs of adoptive-transfer 

EAE within 8-18 days. While the “IL-6+TGFβ” group started showing clinical signs of EAE 

pathology on days 8-12 after T cell transfer, “IL-6+CPA” mice showed a delayed and reduced onset 

of classical EAE (Figure 3.10B). In contrast, they developed symptoms of atypical EAE such as 

ataxia (Figure 3.10C). This is indicative of Th17 cell-mediated brain inflammation as described by 

Stromnes et al (Stromnes et al. 2008). Taken together, these data provide evidence for a link 

between ER stress and EAE pathology and suggest that TUDCA, an FDA-approved drug, could 

potentially be used for the treatment of MS patients. 

 Discussion  
It was long thought that the generation of Th17 cells requires a combination of both IL-6 and TGFβ 

signalling (Mangan et al. 2006; Veldhoen et al. 2006a). However, Ghoreschi et al. reported on the 

formation of Th17 cells in the absence of TGFβ when cultured with a combination of IL-6, IL-1b 

and IL-23 (Ghoreschi et al. 2010). The data presented here demonstrate that TGFβ-independent 

generation of Th17 cells can also occur in the presence of IL-6 and the ER stress inducers CPA and 

BrPA. This ER stress-generated Th17 cell population has a distinct gene expression profile, 

characterised by increased Th1 cell-associated gene expression and the expression of genes 

correlated with inflammation and autoimmune diseases such as rheumatoid arthritis and EAE. In 

line with this, we found that e-Th17 cells evoked Th17 cell-linked, atypical pathology in adoptive-

transfer EAE experiments.  

This study challenges the original theory that TGFβ is required for the formation of Th17 cells. 

TGFβ is thought to facilitate Th17 cell differentiation by relieving the SOCS3-dependent inhibition 

of STAT3 and repressing STAT4 and GATA3 expression (Das et al. 2009; Qin et al. 2009). 

Accordingly, mice with a dominant negative mutation in the TGFβ receptor II have reduced 

proportions of Th17 cells in their lamina propria and are protected from EAE (Ghoreschi et al. 

2010; Qin et al. 2009; Veldhoen et al. 2006b). Ghoreschi et al. have recently described the TGFβ-

independent generation of pathogenic Th17 cells under the influence of IL-6, IL-1β and IL-23 

(Ghoreschi et al. 2010), however, and we have now established that a similar Th17 cell population 
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can be obtained under ER stress conditions in vitro. There is a high correlation between the gene 

expression changes we observed between c- and e-Th17 cells and the differentially expressed genes 

described by Ghoreschi et al. (Ghoreschi et al. 2010). Ghoreschi et al. compared microarray data 

from conventional Th17 cells (treated with IL-6 + IL-1β + TGFβ) with data obtained Th17 cells 

generated without TGFβ (Ghoreschi et al. 2010). Both in their, as well as in our transcriptomics 

data, the absence of TGFβ was correlated with the reduced expression of Il10 and Ahr and increased 

expression levels of Tbx21. This indicates that, while TGFβ is not required for the generation of 

Th17 cells, it is important to shape the gene expression profile of Th17 cells. As a result, Th17 cells 

generated in the absence of TGFβ express higher levels of classical Th1 cell marker genes which 

has been linked with increased pathogenicity in autoimmune diseases (Lee et al. 2012). 

In contrast to Ghoreschi et al.’s data, our transcriptomics data additionally revealed the CPA-

associated upregulation of many genes associated with TCR signalling. Similar to CPA treatment, 

T cell activation culminates in the release of Ca2+ from the ER and drives NFAT-dependent 

transcription programmes, but can also induce the UPR (Feske 2007; Leitenberg & Bottomly 1999; 

Pino et al. 2008). Thus, the ER stress response and T helper cell activation are potentially closely 

associated. We cannot rule out, however, that the proposed ER stress-mediated effect on TCR 

signalling is caused by CPA-induced changes in calcium signalling rather than downstream effects 

of the UPR. 

We observed potent Th17 cell differentiation not only under the influence of CPA, but also of the 

ER stress inducer BrPA. This indicates that CPA-driven Th17 cell differentiation is not due to CPA-

specific effects on calcium signalling or unknown off-target effects, but that the generation of Th17 

cells is promoted by a variety of conditions inducing ER stress. It would be interesting to perform 

RNA sequencing on Th17 cells differentiated under other stress conditions to further elucidate the 

molecular basis for stress-mediated Th17 cell differentiation. 

Downstream analysis of our RNA sequencing data predicted an elevated potential of e-Th17 to 

cause pathology of EAE and arthritis. In accordance with this, mice dosed with the ER stress 

inhibitor TUDCA during active EAE induction exhibit a delayed onset of disease. As described 

above, e-Th17 cells have a lot in common with the Th17 cells generated by Ghoreschi et al., which 

were also differentiated in the absence of TGFβ and were highly pathogenic in adoptive-transfer 

EAE experiments (Ghoreschi et al. 2010). Instead in our adoptive-transfer EAE model, mice 

injected with CPA-treated cells showed a delayed onset of classical disease symptoms. This could 

be linked with the increased expression of IFN-γ by e-Th17 cells, as IFN-γ-induced ER stress can 

have protective functions during EAE induction (Lin et al. 2007). While disease onset triggered by 
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e-Th17 cells was delayed, we did observe the emergence of atypical EAE symptoms in mice 

injected with CPA-treated cells. These symptoms had previously been associated with Th17 cell-

mediated brain inflammation (Domingues et al. 2010; Stromnes et al. 2008). Further studies are 

required to confirm whether this phenotype is linked with an ER stress-related increase in Th17 cell 

numbers, or maybe an increase in Th17-to-Th1 plasticity of e-Th17 cells. It is important to note that 

in our adoptive-transfer EAE experiments, we injected recipient mice with a complex population 

of cells, all of which respond to ER stress and have the potential to influence disease progression. 

Unfortunately, MACS-sorted MOG-re-stimulated CD4 T cells did not induce adoptive-transfer 

EAE in our hands. Thus, it is not possible to rule out that non-Th17 cells are involved in directing 

EAE disease progression in this experimental system.  

Nevertheless, our study provides compelling evidence for the ER stress response as a strong driver 

of Th17 cell differentiation into Th17 cells with a pathogenic gene expression signature. In 

adoptive-transfer EAE studies, these cells evoke atypical symptoms linked with Th17 cell-mediated 

brain inflammation. Thus, ER stress clearly affects the onset and progression of EAE. We do not 

yet fully understand the ER stress-mediated effect on e-Th17 cell pathogenicity, however. 

Additional T cell transfer and tracking studies could help to further dissect the plasticity, migration 

and pathogenic potential of e-Th17 cells. This would improve our understanding of the behaviour 

of ER stress-generated Th17 cells in vivo and could strengthen the novel link between ER stress 

and the pathology of Th17 cell-mediated autoimmune diseases proposed in this study. 

Note: 

This project was published in 2017 as part of a publication in Cell Reports: Brucklacher-Waldert 

V, Ferreira C, Stebegg M, Fesneau O, Innocentin S, Marie JC, Veldhoen M. 2017. Cellular Stress 

in the Context of an Inflammatory Environment Supports TGF-β-Independent T Helper-17 

Differentiation, Cell Reports 19(11), 2357-2370 (Brucklacher-Waldert et al. 2017). No follow-up 

studies were performed, as I took on a new project in Michelle Linterman’s group in January 2017. 

This was in consequence of Marc Veldhoen’s move to Lisbon during the 1st year of my PhD and 

my wish to stay in Cambridge
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 HETEROCHRONIC FAECAL 
TRANSPLANTATION BOOSTS THE GUT 
GERMINAL CENTRE REACTION 
 Abstract  

Ageing is a complex multifactorial process associated with a plethora of disorders which contribute 

to significant morbidity worldwide. One of the organs significantly affected by age is the gut. Age-

dependent changes of the gut-associated microbiome have been linked to increased frailty and 

systemic inflammation. This change in microbial composition with age occurs in parallel with a 

decline in function of the gut immune system, however it is not clear if there is a causal link between 

the two. Here, we establish that the defective germinal centre (GC) reaction in Peyer’s patches (PPs) 

of aged mice can be rescued by co-housing of adult and aged mice, and via faecal transfers from 

younger adults into aged mice. This demonstrates that the poor GC reaction in aged animals is not 

irreversible, and that it is possible to enhance this response in older individuals by replenishing the 

gut microbiome.  

 Background 
One of the major achievements of human endeavour is the extension of lifespan through 

improvements in medical care, nutrition, sanitation and access to clean water. The consequent 

upward demographic shift in human age creates a challenge for medical science: how to enable 

people to age in good health. One of the organs that is significantly affected by age is the 

gastrointestinal tract and the gut-associated microbiome. The gut microbiota comprises hundreds 

of different commensal bacterial species, as well as fungi, protozoa and viruses. These commensal 

microorganisms are essential for health, affecting the functions of multiple bodily systems, such as 

host metabolism, brain functions and the immune response (Wang et al. 2017). Older individuals 

have age-related alterations in gut microbial composition (Buford 2017; Claesson et al. 2011; 2012; 

Maffei et al. 2017), which have been associated with increased frailty (Claesson et al. 2012; Maffei 

et al. 2017), reduced cognitive performance (Cattaneo et al. 2017) and an increased susceptibility 

to intestinal disorders (Kolling et al. 2012).  
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What drives these age-associated changes in the gut microflora remains unknown. The microbiome 

is shaped by many factors including host genetics, early life events, diet, and the gut immune system 

(Belkaid & Hand 2014; Kurilshikov et al. 2017; Power et al. 2014). While some of these factors 

remain relatively constant throughout life, the function of the immune system is known to 

deteriorate with age (Nikolich-Žugich 2018). This prompts the hypothesis that dysbiosis of the 

intestinal microbiome in older individuals may be driven by altered cross-talk between the host 

immune system and the microbiota. The gut immune system can regulate the composition of the 

microbiome by the production of IgA antibodies that coat commensal bacteria (Macpherson et al. 

2018). Gut IgAs bind to a wide variety of bacteria in the gut lumen and alter the composition of the 

microbiome through several mechanisms, e.g. by blocking antigen interactions of gut microbes with 

the host, or trapping bacteria in the intestinal mucus (Macpherson et al. 2012). Animals that lack 

IgA production have aberrant expansion of anaerobic gut commensals and extensive immune 

hyperplasia (Fagarasan et al. 2002; Suzuki et al. 2004). In line with this, patients with selective IgA 

deficiency have an altered composition of the gut microbiome, associated with increased Th17 cell-

associated inflammation (Fadlallah et al. 2018) and an increased susceptibility to recurrent 

infections, celiac disease and autoimmunity (Cunningham-Rundles 2001). This demonstrates an 

important role of IgA for gut health. 

In the gastrointestinal tract, IgA antibodies are either produced by short-lived plasma cells in the 

lamina propria or from plasma cells that derive from GC reactions in PPs (Bunker & Bendelac 

2018; Ost & Round 2018). In the lamina propria, plasma cells can be generated with or without T 

cell help, and typically secrete IgA antibodies that are encoded by germline immunoglobulin genes. 

In GCs, B cells proliferate and undergo somatic mutation of their immunoglobulin genes. GC B 

cells, which are able to bind antigen with improved affinity after somatic mutation, receive positive 

selection signals from T follicular helper (Tfh) cells and follicular dendritic cells (FDCs) that 

facilitate their differentiation into long-lived antibody secreting plasma cells that secrete high-

affinity IgA (Bunker & Bendelac 2018; Mesin et al. 2016; Ost & Round 2018). Negative regulation 

of the GC reaction is mediated by suppressive T follicular regulatory (Tfr) cells that limit the output 

of the GC (Vanderleyden et al. 2014). Deregulation of Tfh or Tfr cell-mediated control or the 

absence of somatic hypermutation in GC B cells results in changes in the gut IgA repertoire which 

alter the composition of the gut microbiome (Kawamoto et al. 2012; 2014; Wei et al. 2011). This 

suggests that GC-derived IgA antibodies can regulate the commensal microbiome.  

The studies described above have established the existence of a relationship between GC reactions 

and the microbiome and indicate clearly that the microbiome is causally influenced by the GC 

reaction. In the case of the gut-associated defects seen with advancing age in the GC reaction and 
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gut microbiota, however, the direction of causation is unclear. Here we report that the defective GC 

reaction in aged mice could be reversed by co-housing with younger animals or by direct faecal 

transplantation from adult donors. This demonstrates that the age-dependent defect in the gut GC 

reaction is not irreversible, but can be corrected by appropriate external stimuli.  

 Results  

 The GC reaction is diminished in aged PPs  
To assess the impact of ageing on PPs, we compared the GC reaction at this site in 22-month-old 

“aged” mice with 3-month-old “adult” C57BL/6 and BALB/c mice by flow cytometry (gating 

strategy in Figure 4.1). Aged mice of both strains showed a reduction in frequency and number of 

Bcl6+Ki67+B220+ GC B cells (Figure 4.2A-E). This was specific to the PPs, as there was no 

reduction in the proportion of GC B cells in the gut-draining mesenteric lymph nodes (LNs) in the 

same mice (Figure 4.3A-E). GC size depends on interactions with T cells: GC B cells receive 

positive signals from Tfh cells, while Tfr cells negatively regulate the response. The frequency of 

Tfh cells was not affected by age in the PPs (Figure 4.2F-J) in either strain, demonstrating that a 

reduction of Tfh cell number is not the cause of the diminished GC reaction in the PPs of aged mice. 

In mesenteric LNs, there was an increase in the number and frequency of Tfh cells in aged mice 

(Figure 4.3F-J). In the PPs of 22-month-old mice, Tfr cell frequency was not changed in BALB/c 

mice (Figure 4.2K-M) and was slightly decreased in C57BL/6 mice (Figure 4.2N, O), indicating 

that an increase in the proportion of Tfr cells does not contribute to the decreased magnitude of the 

GC reaction in the PPs of aged mice. There was an increase in Tfr cell numbers in mesenteric LNs 

from aged mice in both strains, consistent with previous observations (Sage et al. 2015) (Figure 

4.3K-O). These data show that there is a decrease in the magnitude of the GC reaction in the PPs 

of aged mice, but that this is not obviously linked with age-associated changes in follicular T cell 

subset composition.  
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Figure 4.1: Gating strategy for germinal centre (GC) cell populations in Peyer’s patches (PPs) 
or mesenteric lymph nodes (LNs). GC cell populations in PPs and mesenteric LNs were assessed 
by flow cytometry. IgA+ B cells were defined as live IgA+B220+CD4- cells, GC B cells as live 
Bcl6+Ki67+B220+ cells. T follicular helper (Tfh) cells were defined as live CXCR5hiPD-1hiFoxp3-

CD4+ cells and T follicular regulatory (Tfr) cells as live CXCR5hiPD-1hiFoxp3+CD4+ cells. 
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Figure 4.2: Germinal centre B cells are reduced in the Peyer’s patches of aged BALB/c and 
C57BL/6 mice. Flow cytometric analysis of germinal centre (GC) cell populations in the Peyer’s 
patches (PPs) of adult (3-month-old; 3mo) and aged (22-month-old; 22mo) BALB/c and C57BL/6 
mice. (A-C) Representative flow cytometric plots (A) and quantitation of B220+Ki67+Bcl6+ GC B 
cells (B, C) in the PPs of 3-month-old and 22-month-old BALB/c mice. (D, E) Quantitation of 
B220+Ki67+Bcl6+ GC B cell percentage (D) and number (E) in C57BL/6 mice. (F-H) 
Representative flow plots (F) and quantitation of CD4+Foxp3-CXCR5+PD-1+ Tfh cells (G, H) in 
the PPs of BALB/c mice. (I, J) Quantitation of Tfh cell percentages (I) and numbers (J) in C57BL/6 
mice. (K-M) Representative flow plots (K) and quantitation of CD4+Foxp3+CXCR5+PD-1+ Tfr 
cells (L, M) in BALB/c mice. (N, O) Quantitation of Tfr cell percentages (N) and numbers (O) in 
C57BL/6 mice. Bar graphs show the combined results of 3-6 independent experiments which were 
performed with female BALB/c mice and both male and female C57BL/6 mice with a total of 
n = 11-49 mice per group. Bar height corresponds to the mean, and each circle represents one 
biological replicate. P-values were determined using the Mann-Whitney test in GraphPad Prism6.  
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Figure 4.3: Germinal centre B cells are not reduced in the mesenteric lymph nodes (LNs) of 
aged BALB/c and C57BL/6 mice. Flow cytometric analysis of germinal centre (GC) cell 
populations in the mesenteric LNs of adult (3-month-old; 3mo) and aged (22-month-old; 22mo) 
BALBc and C57BL/6 mice. (A-C) Representative flow cytometric plots (A) and quantitation of 
B220+Ki67+Bcl6+ GC B cells (B, C) in the mesenteric LNs of 3-month-old and 22-month-old 
BALB/c mice. (D, E) Quantitation of B220+Ki67+Bcl6+ GC B cell percentage (D) and number (E) 
in C57BL/6 mice. (F-H) Representative flow plots (F) and quantitation of CD4+Foxp3-

CXCR5+PD-1+ Tfh cells (G, H) in BALB/c mice. (I, J) Quantitation of Tfh cell percentages (I) and 
numbers (J) in C57BL/6 mice. (K-M) Representative flow plots (K) and quantitation of 
CD4+Foxp3+CXCR5+PD-1+ Tfr cells (L, M) in BALB/c mice. (N, O) Quantitation of Tfr cell 
percentages (N) and numbers (O) in C57BL/6 mice. Bar graphs show the combined results of 3-6 
independent repeats which were performed with female BALB/c mice and both male and female 
C57BL/6 mice with a total of 10-41 mice per group. Bar height corresponds to the mean, and each 
circle represents one biological replicate. P-values were determined using the Mann-Whitney test 
in GraphPad Prism6.  
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 The composition of the gut microbiome changes with age 
It is known that the output of the GC reaction can influence the composition of the gut microbiome 

(Ost & Round 2018). Therefore, we sought to understand whether the age-dependent change in the 

GC reaction of PPs was linked with changes in the microbiota. For this, I assessed the bacterial gut 

microbiome in C57BL/6 and BALB/c mice by 16S rDNA sequencing of DNA extracted from faecal 

pellets from 22-month-old “aged” and 3-month-old “adult” mice. Principal Coordinates Analysis 

(PCoA) showed that age impacts the composition of the microbiome and demonstrated that inter-

individual variation of the microbiome increases in aged animals (Figure 4.4A, B; Figure 4.5A). In 

BALB/c mice, six classified bacterial families were reduced in aged mice, whilst two bacterial 

families increased in abundance with age (Figure 4.4C). This corresponded to reduced gut microbial 

diversity in aged BALB/c compared to adult mice (Figure 4.4D). Interestingly, Bacteroides 

acidifaciens and Lactobacillus gasseri, both of which have been shown to induce intestinal IgA 

production, were not detected in aged BALB/c mice (Table 4.1) (Sakai et al. 2014; Yanagibashi et 

al. 2013). Aged C57BL/6 males had increased bacterial diversity (Figure 4.4E), which was 

associated with the increased abundance of seven bacterial families in these mice (Figure 4.4F). 

Bacterial diversity was not changed in aged C57BL/6 females while two bacterial families were 

significantly decreased (Figure 4.5B, C). The abundance of Bacteroides acidifaciens and 

Lactobacillus gasseri was not affected in either female or male C57BL/6 aged mice (Table 4.1), 

suggesting that the age-associated immunological phenotype is not caused by a reduction of these 

particular species. Both aged BALB/c mice and C57BL/6 males had an expansion of Firmicutes at 

the expense of Bacteroidetes at the phylum level (Figure 4.4G, H; Figure 4.6). This analysis shows 

that the composition of the gut microbiome changes with age in mice and that these age-dependent 

changes are also shaped by the sex and genetics of the host.  
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Figure 4.4: The gut microbiome changes during ageing. 16S rDNA sequencing data were 
generated from faecal pellets collected from adult (3-month-old; 3mo) and aged (21-month-old; 
21mo) BALB/c females and C57BL/6 males. (A, B) Bray-Curtis PCoA and (D, E) bacterial 
diversities (measured by Shannon index) of samples collected from 3-month-old and 21-month-old 
BALB/c mice (A, D) and C57BL/6 mice (B, E). The p-value was based on ANOVA tests. (C, F) 
Depiction of bacterial families whose abundance was significantly different between 3-month-old 
and 21-month-old BALB/c (C) and C57BL/6 (F) mice as determined by ANOVA analysis after 
cumulative-sum scaling (CSS). (G, H) Krona plots depicting the phylogenetic composition of the 
gut microbiome in 3-month-old (top) and 21-month-old (bottom) BALB/c (G) and C57BL/6 (H) 
mice. The percentages shown are averages of the samples in each age group. Samples were collected 
in 2 independent experiments for BALB/c mice and 3 independent experiments for C57BL/6 mice 
with a total of n = 5-14 mice per group. P-values are based on ANOVA tests *FDR ≤ 0.05, **FDR 
≤ 0.01, ***FDR ≤ 0.001. This figure was published in Nature Communications (Stebegg et al. 
2019). 
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Figure 4.5: Age-associated changes of the gut microbiome in female C57BL/6 mice. 16S rDNA 
sequencing data were generated from faecal pellets collected from five adult (3-month-old; 3mo) 
and five aged (21-month-old; 21mo) female C57BL/6 mice. (A) Bray-Curtis PCoA of samples 
collected from female C57BL/6 mice. (B) Shannon diversities of samples collected from female 
C57BL/6 mice. The p-value was generated from an ANOVA test. (C) Depiction of bacterial 
families whose abundance was significantly different between adult and aged female C57BL/6 mice 
as determined by ANOVA analysis after cumulative-sum scaling (CSS). *FDR ≤ 0.05, 
**FDR ≤ 0.01, ***FDR ≤ 0.001. (D) Krona plots depicting the phylogenetic composition of the gut 
microbiome in 3-month-old (left) and 21-month-old (right) C57BL/6 females. The percentages 
shown are averages of the samples in each age group. This figure was adapted from Stebegg et al. 
(Stebegg et al. 2019). 
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Figure 4.6: Age-associated changes in the taxa composition of the gut microbiome in C57BL/6 
and BALB/c mice. 16S rDNA sequencing data were generated from faecal pellets collected from 
adult and aged female BALB/c mice as well as male and female C57BL/6 mice. Taxa plots of 
bacterial phyla (A), orders (B) and families (C) detected in faecal samples from adult (3month-old) 
and aged (21-22month-old) BALB/c and C57BL/6 mice generated in QIIME2 with a total of n = 5-
10 mice per group. In (B) and (C) only the 15 most abundant bacterial orders/families are listed in 
the legend. This figure was adapted from Stebegg et al. (Stebegg et al. 2019). 
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BALB/c mice: Aged (21mo) vs Adult (3mo) 

Females 
Taxa (Species level) FDR  F  21mo 3mo 

mean 
Bacteroides_Bacteroides_caecimuris <1E-20 5600 0 7.43 

Bacteroides_Bacteroides_acidifaciens <1E-20 2400 0 9.23 

Prevotellaceae_UCG001_uncultured_bacterium <1E-20 2400 0 9.01 

Rikenellaceae_RC9_gut_group_uncultured_organism <1E-20 2300 0 8.06 

Alistipes_uncultured_bacterium <1E-20 1900 0 9.34 

Anaeroplasma_uncultured_bacterium 4.8E-09 110 8.27 0 

Parabacteroides_Parabacteroides_goldsteinii_CL02T12C30 9.1E-07 58 8.78 3.69 

Lactobacillus_Lactobacillus_gasseri 2.0E-05 39 0 5.92 

Lachnospiraceae_UCG001_uncultured_Clostridiales_bact. 0.0011 20 0 3.86 

Turicibacter_Turicibacter_sp._LA61 0.0053 15 5 0.37 

C57BL/6 mice: Aged (21mo) vs Adult (3mo) 

Males 
Bacteroides_Bacteroides_caecimuris 0.058 16 7.12 2.83 
Parabacteroides_Parabacteroides_goldsteinii_CL02T12C30 0.11 11 4.81 0.98 

Parasutterella_uncultured_organism 0.11 9.8 2.38 7.2 

unclassified_bacterium_uncultured_bacterium 0.11 9.6 12.82 13.77 

Bilophila_uncultured_bacterium 0.14 8.2 5.3 2.11 

Rikenellaceae_RC9_gut_group_uncultured_organism 0.14 7.6 6.09 2.61 

unclassified_uncultured_bacterium 0.15 7.2 8.11 5.17 

Mucispirillum_Mucispirillum_schaedleri_ASF457 0.15 6.9 4.49 0 

Lactobacillus_Lactobacillus_gasseri 0.16 6.4 5.27 9.57 

Lachnospiraceae_FCS020_group_mouse_gut_metagenome 0.18 5.9 3.91 0 

C57BL/6 mice: Aged (21mo) vs Adult (3mo) 

Females 
Parasutterella_Burkholderiales_bacterium_YL45 0.016 7.98 0 8.46 
Odoribacter_uncultured_bacterium 1 6.24 0 7.88 

Bacteroidales_Bacteroidales_bacterium 1 8.99 10.09 9.02 

unclassified_bacterium_uncultured_bacterium 1 12.6 13.51 12.69 

Ruminococcaceae_UCG014_uncultured_bacterium 1 2.56 7.19 0 

Parasutterella_uncultured_organism 1 0 2.93 0 

Lachnospiraceae_UCG006_uncultured_bacterium 1 0 4.46 0 

Ruminiclostridium_5_Ruminiclostridium_sp._KB18 1 3.26 0 3.84 

Ruminococcaceae_UCG010_uncultured_organism 1 2.92 0 3.61 

Turicibacter_Turicibacter_sp._LA61 1 7.15 2.5 8.52 

Table 4.1: Age-related changes on the species level in the gut microbiome of BALB/c and 
C57BL/6 mice. Top 9 species with the lowest false-discovery rate (FDR) p-value detected by 16S 
rDNA sequencing in 3-month-old compared to 23-month-old BALB/c and C57BL/6 mice. 
Significant changes in the abundance of bacterial species between adult and aged mice were 
determined by ANOVA analysis after cumulative-sum scaling (CSS). FDR-adjusted p-values and 
F value were calculated for each species. The table also lists the mean abundance of each species 
after CSS. This table was adapted from Stebegg et al (Stebegg et al. 2019). 
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 Co-housing rescues the reduced PP GC reaction in aged mice  
In our initial experiments, adult and aged mice were housed separately from each other, sharing 

cages with their respective littermates. Knowing that the gut microbiome can vary between cages 

(Goodrich et al. 2014) and that co-housed mice exchange faecal bacteria by coprophagy 

(Hildebrand et al. 2013), I decided to repeat these experiments, using 3-month-old adult and 21-

month-old aged mice that were housed in the same cage for 30-40 days. To our surprise, the age-

associated reduction of GC B cells in PPs of BALB/c mice was lost upon co-housing (Figure 4.7A, 

B). This correction of the GC reaction was accompanied by an increase in Tfh cells but Tfr cell 

numbers were unchanged (Figure 4.7C-F). This demonstrates that the age-dependent deficit in the 

magnitude of PP GCs is reversible.  

To determine whether changes in the GC reaction upon co-housing were driven by the transfer of 

faecal microbiota between mice, bacterial 16S rDNA sequencing was performed on faecal pellets 

collected before and after co-housing. PCoA revealed that the microbiome of aged mice was more 

similar to that of 3-month-old adult mice after co-housing, while the microbiome of adult BALB/c 

mice was not significantly changed (Figure 4.7G). Co-housing also increased bacterial Shannon 

diversity in aged mice to levels similar to those in adult mice (Figure 4.7H). This was associated 

with the detection of bacterial species and families which were not identified in samples from aged 

mice prior to co-housing (Figure 4.7I, J), including the species Bacteroides acidifaciens and 

Lactobacillus gasseri (Table 4.2). This rescue of the diminished PP GC reaction in BALB/c mice 

was replicated in 22-month-old C57BL/6 mice upon co-housing with 3-month-old adult mice 

(Figure 4.8A-F). In C57BL/6 mice, co-housing led to reciprocal microbiota transfer between adult 

and aged mice, perhaps because there is no age-associated reduction in bacterial diversity in 

C57BL/6 mice (Figure 4.8G, H). Co-housing was associated with a trend for increased bacterial 

diversity in mice of both ages, although this was not significantly different (Figure 4.8H). Taken 

together, these data suggest that the poor PP GC reaction in aged mice can be rescued by the 

acquisition of the microbiota from younger animals. The rescue of the GC reaction in aged mice 

occurred independently of genetic background, and there was no overlap between the bacterial 

families significantly changed by age or co-housing between BALB/c and C57BL/6 mice (Figure 

4.7J, Figure 4.8I, Table 4.2). This suggests that the co-housing-dependent increase of PP GC B cells 

in aged mice is not driven by a specific bacterial family, but is a response to a comprehensive change 

in the gut microbiome. 
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Figure 4.7: Co-housing boosts the germinal centre response in the Peyer’s patches of aged 
BALB/c mice. Adult and aged female BALB/c mice were co-housed for 30-40 days, then Peyer’s 
patch (PP) germinal centre (GC) cell populations were analysed by flow cytometry. The percentage 
and number of B220+Ki67+Bcl6+ GC B cells (A, B), CD4+Foxp3-CXCR5+PD-1+ Tfh cells (C, D) 
and CD4+Foxp3+CXCR5+PD-1+ Tfr cells (E, F) in Peyer’s patches. (G-J) 16S rDNA sequencing 
data were generated from faecal pellets collected from 5 adult and 5 aged BALB/c mice at the start 
and end of co-housing (n=5 mice per group). Samples were clustered by Bray-Curtis PCoA (G) and 
bacterial diversities were measured by the Shannon index (H). The overall p-value was based on 
ANOVA tests. (I) Venn diagrams showing the numbers of shared and unique bacterial species 
detected in both age groups of mice before co-housing and after co-housing. (J) Depiction of 
bacterial families whose abundance was significantly different between co-housed BALB/c mice 
as determined by ANOVA analysis after cumulative-sum scaling (CSS). *FD ≤ 0.05, **FDR ≤ 0.01, 
***FDR ≤ 0.001. Families previously found to be significantly decreased in aged versus adult 
BALB/c mice before co-housing are marked in grey. In (A-F) bar plots show the combined results 
of 2 independent experiments with a total of n = 17-18 mice per group. Bar height corresponds to 
the mean, and each circle represents one biological replicate. P-values were determined using the 
Mann-Whitney test in GraphPad Prism6. This figure was published in Nature Communications 
(Stebegg et al. 2019). 
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Figure 4.8: Co-housing boosts the germinal centre response in the Peyer’s patches of aged 
C57BL/6 mice. (A-F) Adult and aged female C57BL/6 mice were co-housed for 30-40 days, then 
Peyer’s patch (PP) germinal centre (GC) cell populations were analysed. The percentage and 
number of B220+Ki67+Bcl6+ GC B cells (A, B), CD4+Foxp3-CXCR5+PD-1+ Tfh cells (C, D) and 
CD4+Foxp3+CXCR5+PD-1+ Tfr cells (E, F) in Peyer’s patches as quantified by flow cytometry. 
16S rDNA sequencing data were generated from faecal pellets collected from 5 adult 3-month-old 
and 5 aged C57BL/6 mice before (start) and after (end) co-housing. Bray-Curtis PCoA (G) and 
Shannon diversities (H) of samples collected from adult and aged C57BL/6 mice. The overall p-
value was based on ANOVA testing. (I) Depiction of bacterial families whose abundance was 
significantly different between co-housed C57BL/6 mice as determined by ANOVA analysis after 
cumulative-sum scaling (CSS). *FDR≤ 0.05, **FDR ≤ 0.01, ***FDR ≤ 0.001. In (A-F) bar plots 
show the combined results of 2 independent experiments with a total of n = 25-30 mice per group. 
Bar height corresponds to the mean, each circle represents one biological replicate. P-values were 
determined using the Mann-Whitney test in GraphPad Prism6. This figure was published in Nature 
Communications (Stebegg et al. 2019). 
 

 



  

BALB/c: Cohousing group comparison P-value (Tukey’s test) Mean Abundance 
Taxa (Species) FDR  F  23mo start- 

23mo end 
3mo start- 
23mo end 

3mo start- 
23mo start 

3mo start- 
3mo end 

23mo 
start 

23mo 
end 

3m
o 

sta
rt 

3mo end 

Alistipes_uncultured_bacterium 1.60E-13 410 3.30E-14 1 3.20E-14 0.43 0 9.6 9.6

5 

9.13 

Prevotellaceae_UCG001_uncultured_bacterium 2.70E-12 260 1.20E-12 0.97 9.10E-13 0.98 0 9.07 9.2

5 

9.42 

Bacteroides_Bacteroides_acidifaciens 1.80E-10 140 3.70E-11 0.82 8.00E-11 1 0 10.07 9.5

7 

9.48 

Lactobacillus_Lactobacillus_gasseri 0.00012 21 0.000012 0.0039 0.034 0.029 0 10.01 4.2

6 

8.62 

Bacteroides_Bacteroides_caecimuris 0.00064 16 0.00016 0.99 0.000097 0.49 0 7.25 7.5

7 

5.75 

Anaeroplasma_uncultured_bacterium 0.001 14 0.14 0.0091 0.000095 0.49 9.47 5.85 0 2.28 

Lachnospiraceae_UCG001_uncultured_bacterium 0.0018 12 0.0085 0.29 0.00022 0.88 8.1 2.66 0 1.08 

Rikenellaceae_RC9_gut_group_uncultured_organis

m 

0.0025 11 0.025 0.087 0.00015 0.022 0 4.68 8.4

2 

3.64 

GCA900066575_uncultured_bacterium 0.014 7.8 0.12 0.00097 0.11 0.12 3.73 0 7.5

1 

3.77 

C57BL/6: Cohousing group comparison         
Parasutterella_Burkholderiales_bacterium_YL45 6.2E-08 78 0.53 1 1.1E-08 0.44 2.4E-09 1.4E-08 7.9

8 

7.16 

Ruminococcaceae_UCG014_uncultured_bacterium 0.006 12 0.24 0.94 0.00023 0.51 0.012 6.9E-04 2.5

6 

0 

Parasutterella_uncultured_organism 0.087 5.8 1 1 0.017 1 0.017 0.017 0 0 

unclassified_bacterium_uncultured_bacterium 0.087 5.8 0.62 0.65 0.005 1 0.057 0.052 12.

6 

12.2 

Lachnospiraceae_UCG006_uncultured_bacterium 0.087 5.8 0.012 0.047 0.86 0.9 0.055 0.19 0 5.7 

Odoribacter_uncultured_bacterium 0.087 5.7 0.99 0.74 0.0095 0.9 0.018 0.07 6.2

4 

6.83 

Mucispirillum_Mucispirillum_schaedleri_ASF457 0.18 4.5 0.29 0.88 0.11 0.085 0.94 0.028 2.3

8 

5.81 

Ruminiclostridium_5_Ruminiclostridium_sp._KB18 0.31 3.6 0.91 0.16 0.047 0.44 0.16 0.9 3.2

6 

4.23 

Bacteroidales_uncultured _Bacteroidales_bacterium 0.44 2.9 0.72 0.54 0.46 0.11 0.089 1 8.9

9 

9.44 

Table 4.2: Co-housing leads to species-level changes in the gut microbiome of BALB/c and C57BL/6 mice. 3-month-old and 23-month-old BALB/c and 
C57BL/6 mice were co-housed for 30-40 days, then the gut microbiome was analysed by 16S rDNA sequencing. The table generated in Calypso lists the overall 
false discovery rate (FDR)-adjusted p-values and F value for the top 9 species with the lowest FDR value. Tukey’s tests were used to calculate p-values for 
group-to-group comparisons. The table also lists the mean abundance for each species in each group after cumulative-sum scaling (CSS). This table was adapted 
from Stebegg et al. (Stebegg et al. 2019). 
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 Heterochronic FMT boosts the GC in PPs 
To investigate whether the induction of the GC reaction during co-housing was solely dependent 

on direct transmission of gut microbiota, I conducted faecal microbiota transplantation (FMT) 

experiments in which recipient mice were given a suspension of faecal pellets from donor mice by 

oral gavage. The cages were also supplemented with fresh faecal pellets and dirty bedding from 

donor mice for three weeks (Figure 4.9A, H). First, I gavaged 22-month-old C57BL/6 mice with 

faecal pellets from 3-month-old adult mice (Figure 4.9A). Twenty-three days after this treatment, 

there was an increase in GC B cell numbers in aged mice (Figure 4.9B, C). I also observed a trend 

towards increased Tfh cells in aged mice (Figure 4.9D, E) and a significant increase in their Tfr cell 

numbers (Figure 4.9F, G). To determine whether the boost in the GC reaction by FMT is exclusive 

to aged mice, 3-month-old C57BL/6 mice were gavaged with faecal pellets from 22-month-old 

adult mice (Figure 4.9H). For this experiment C57BL/6 mice were used because I had evidence of 

reciprocal microbial transfer between adult and aged mice of this strain during co-housing: this 

result indicated that the gut microbiome of both adult and aged C57BL/6 mice is receptive to 

microbial transfer and presented us with a tool to assess whether the transfer of a new microbiome 

generally enhances the GC reaction irrespective of age, or if it constitutes a unique feature in aged 

mice. FMT of younger adult mice with faecal pellets from aged mice led to an increase in GC B as 

well as Tfh cells, while Tfr cell numbers were not affected (Figure 4.9I-N). This demonstrates that 

the GC reaction in PPs is highly sensitive to changes in the gut microbiome irrespective of age. 

Furthermore, the boost of the PP GC reaction appears to be independent of the transfer of a specific 

bacterial family or species, since FMT enhanced the response in both adult and aged recipients.  

To determine whether FMT can rescue the PP GC reaction in aged mice of another strain, we 

performed FMT experiments in 22-month-old BALB/c mice (experimental set-up as in Figure 

4.9A). GC B and Tfh cells had significantly expanded in 22-month-old mice 23 days after FMT 

compared to PBS-treated control mice (Figure 4.10A-D), but Tfr cells were not changed by FMT 

treatment (Figure 4.10E, F). Bacterial 16S rDNA sequencing confirmed the successful 

establishment of an “adult” microbiome in 22-month-old mice by FMT (Figure 4.10G), with a slight 

increase in gut microbial diversity in aged mice receiving FMT (Figure 4.10H). This included the 

presence of bacterial species that were originally not detected in aged mice (Figure 4.10I). Thus, 

microbial transfer is sufficient to restore the defective GC reaction in aged mice. Our data 

demonstrate that, even though the GCs in PPs diminish during ageing, this age-associated 

phenotype is not cell-intrinsic and can be rescued by stimulation from the gut microbiome.  
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Figure 4.9: Faecal microbiota transplantation (FMT) boosts the germinal centre (GC) 
response in Peyer’s patches irrespective of age. (A-G) 21-month-old C57BL/6 males were 
gavaged with faecal pellets from adult, 3-month-old mice. (A) Experimental outline of FMT where 
aged C57BL/6 males were given a suspension of faecal pellets from adult C57BL/6 donor mice by 
oral gavage. The cages of recipient mice were supplemented with fresh faecal pellets and dirty 
bedding from these donor mice once a week. The percentage and number of B220+Ki67+Bcl6+ GC 
B cells (B, C), CD4+Foxp3-CXCR5+PD-1+ Tfh cells (D, E) and CD4+Foxp3+CXCR5+PD-1+ Tfr 
cells (F, G) in Peyer’s patches as quantified by flow cytometry. (H-N) 3-month-old C57BL/6 males 
were gavaged with faecal pellets from aged 21-month-old mice. (H) Experimental outline of FMT 
where adult C57BL/6 males were gavaged with faecal pellets from aged mice. The percentage and 
number of GC B (I, J), Tfh (K, L) and Tfr (M, N) cells were quantified by flow cytometry. Bar 
height corresponds to the mean, each circle represents one biological replicate. Bar plots show the 
combined results of 2 independent experiments with a total of n = 10-15 mice per group. P-values 
were determined using the Mann-Whitney test in GraphPad Prism6. This figure was published in 
Nature Communications (Stebegg et al. 2019). 
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Figure 4.10: Faecal microbiota transplantation (FMT) boosts the germinal centre (GC) 
response in the Peyer’s patches of aged BALB/c mice. 21-month-old BALB/c mice were given 
a suspension of faecal pellets taken from 3-month-old mice by oral gavage. The cages of aged 
recipients were supplemented with fresh faecal pellets and dirty bedding from these donors once a 
week. (A-F) Bar plots show the combined results of 2 independent experiments. The percentage 
and number of B220+Ki67+Bcl6+ GC B cells (A, B), CD4+Foxp3-CXCR5+PD-1+ Tfh cells (C, D) 
and CD4+Foxp3+CXCR5+PD-1+ Tfr cells (E, F) in Peyer’s patches as quantified by flow cytometry. 
Bar height corresponds to the mean, each circle represents one biological replicate. Bar plots show 
the combined results of 2 independent experiments with a total of n = 9-10 mice per group. P-values 
were determined using the Mann-Whitney test in GraphPad Prism6. (G-I) 16S rDNA sequencing 
data were generated from faecal pellets collected from 5 adult donor mice and 5 aged BALB/c mice 
before and after FMT. (G) Bray-Curtis PCoA of FMT samples. (H) Shannon diversities with an 
overall p-value generated from ANOVA tests. (I) Venn diagrams showing the numbers of shared 
and unique bacterial species detected in adult donor mice and aged mice before FMT (start; left) or 
after FMT (end; right). This figure was published in Nature Communications (Stebegg et al. 2019). 
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 Cross-strain FMT does not enhance the GC 
The boost of the GC reaction by heterochronic faecal transplantation in both adult and aged mice 

suggests that alterations in the microbiome can enhance the GC reaction in PPs. To determine 

whether this occurs independently of an age mismatch between the donor and the recipient, I 

performed FMT from 3-month-old BALB/c mice into 3-month-old C57BL/6 mice (experimental 

set-up as in Figure 4.9A). This approach was chosen as there are differences in the microbiome 

between these two strains (Figure 4.11A), and adult BALB/c mice have a higher bacterial diversity 

than C57BL/6 mice (Figure 4.11B). Twenty-three days after FMT, there was no increase in the 

percentage or number of GC B cells, Tfh cells or Tfr cells in C57BL/6 mice that received FMT 

compared to the PBS-treated controls (Figure 4.11C-H). This suggests that the GC reaction in PPs 

responds specifically to heterochronic faecal transplantation. 

 

 
Figure 4.11: Faecal microbiota transplantation (FMT) between adult mice of different strains 
does not affect the germinal centre (GC) response in Peyer’s patches. (A, B) 16S rDNA 
sequencing data generated from faecal pellets collected from adult 3-month-old C57BL/6 and 
BALB/c mice. (A) Bray-Curtis PCoA comparing samples from 3-month-old BALB/c and C57BL/6 
mice. (B) Shannon diversities, with a p-value based on ANOVA tests. (C-H) Three-month-old 
C57BL/6 mice were given a suspension of faecal pellets taken from 3-month-old BALB/c mice by 
oral gavage to achieve FMT. In addition, the cages of C57BL/6 recipients were supplemented with 
fresh faecal pellets and dirty bedding from BALB/c mice once a week. Control mice were gavaged 
with PBS. The percentage and number of B220+Ki67+Bcl6+ GC B cells (C, D), CD4+Foxp3-

CXCR5+PD-1+ Tfh cells (E, F) and CD4+Foxp3+CXCR5+PD-1+ Tfr cells (G, H) in Peyer’s patches 
as quantified by flow cytometry. Bar plots show the combined results of two experiments with a 
total of n = 14-15 mice per group. Bar height corresponds to the mean, each circle represents one 
biological replicate. P-values were determined using the Mann-Whitney test in GraphPad Prism6. 
This figure was published in Nature Communications (Stebegg et al. 2019). 
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 IgA-mediated control of the microbiome is not affected by 
ageing or FMT 

Our data indicated that the composition of the gut microbiome has a dominant effect on the immune 

response in PPs. The question remained whether a diminished GC response in PPs would also affect 

the gut microbiome? PPs have been reported to control the gut microbiome by giving rise to plasma 

and memory B cells secreting IgA antibodies that bind to commensals with high affinity, but IgAs 

can also be produced in the lamina propria in a GC-independent manner (Reboldi & Cyster 2016). 

The reduction of GC B cells I observed in aged mice was not associated with reduced levels of 

commensal IgA-coating in the ileum or colon of BALB/c of C57BL/6 mice (Figure 4.12A-G). Both 

cohousing and FMT boosted the GC response, still there was no change in the levels of bacterial 

IgA-coating (Figure 4.12H-K, Figure 4.13J-M). FMT did not affect the levels of PP-resident IgA+ 

B cells or free intestinal IgA in both mouse strain either (Figure 4.13A-I). This suggests that IgA-

mediated control of the gut microbiome is not affected by changes in the GC response in aged mice 

and made us question whether GC-derived IgA antibodies are indeed a major contributor to the 

control of the commensal microbiota.  
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Figure 4.12: IgA-coating of faecal bacteria is not affected by ageing or cohousing. (A-G) 
Bacterial IgA-coating was assessed in adult (3-month-old; 3mo) and aged (22-month-old; 22mo) 
mice. (A) Gating strategy for IgA-coated bacteria. (B, C) Representative flow cytometric plots of 
IgA-coated faecal bacteria isolated from the ileum (B) and colon (C) of BALB/c mice. (D-G) 
Quantitation of IgA-coating of bacteria in faecal contents isolated from the ileum (D, E) and colon 
(F, G) of adult and aged BALB/c (D, F) and C57BL/6 (E, G) mice. Bar plots show the combined 
results of 2-4 independent experiments with a total of n = 11-16 mice per group. (H-K) Bacterial 
IgA-coating was assessed in adult (3-4-month-old; 3mo/4mo) and aged (22-month-old; 22mo) mice 
after co-housing for 40 days. Quantitation of IgA-coating of bacteria in faecal contents isolated 
from the ileum (H, I) and colon (J, K) of cohoused BALB/c (H, J) and C57BL/6 (I, K) mice. Bar 
plots show the combined results of 2-4 independent experiments with a total of n = 19-30 mice per 
group. Bar height corresponds to the mean, and each circle represents one biological replicate. P-
values were determined using the Mann-Whitney test in GraphPad Prism6. This figure was adapted 
from Stebegg et al. (Stebegg et al. 2019). 
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Figure 4.13: Faecal microbiota transplantation (FMT) does not affect gut IgA responses. 21-
month-old mice were given a suspension of faecal pellets taken from 3-month-old mice by oral 
gavage. The cages of these aged recipients were supplemented with fresh faecal pellets and dirty 
bedding from adult donors once a week. A control group received PBS by oral gavage. After 3 
weeks, intestinal IgA levels were assessed in adult donor mice (4mo), aged control mice 
(23mo+PBS) and aged mice receiving FMT (23mo+FMT). (A) Representative flow cytometric 
plots for IgA+ B cells (CD4-B220+IgA+) cells in the Peyer’s patches (PPs) of adult (3-month-old; 
3mo) and aged (22-month-old; 22mo) BALB/c mice. (B-E) Quantitation of IgA+ B cells in 
percentage (B, D) and cell numbers (C, E) in BALB/c (B, C) and C57BL/6 (D, E) mice by flow 
cytometry. (F-I) Quantitation of free IgA in faecal contents isolated from the ileum (F, H) and colon 
(G, I) of BALB/c (F, G) and C57BL/6 (H, I) mice by ELISA. (J-M) Quantitation of IgA-coating 
of bacteria in faecal contents isolated from the ileum (J, L) and colon (K, M) of BALB/c (J, K) 
and C57BL/6 (L, M) mice. Bar plots show the combined results of two independent experiments 
with a total of n = 8-16 mice per group. Bar height corresponds to the mean, and each dot represents 
one biological replicate. P-values were determined using the Kruskal-Wallis test with Dunn’s 
multiple testing correction in GraphPad Prism6. This figure was published in Nature 
Communications (Stebegg et al. 2019). 
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 Reduction of PP GCs has a minimal impact on the gut 
microbiome  

Previous studies described normal levels of intestinal IgA and commensal IgA-coating in T cell-

deficient mice, suggesting that commensal-specific IgA can be produced in a GC-independent 

manner (Bergqvist et al. 2006; Bunker et al. 2015; Gärdby et al. 2003). To test this, I compared the 

microbiomes of Bcl6fl/flCd4cre/+ mice, which do not form GCs due to a failure of Tfh cell 

differentiation, with their Bcl6fl/flCd4+/+ littermates that were housed in the same cages (Hollister et 

al. 2013). PPs from Bcl6fl/flCd4cre/+ mice completely lacked Tfh and Tfr cells and had very few GC 

B cells (Figure 4.14A-F). This was associated with a significant reduction of IgA+ B cells in their 

PPs (Figure 4.14G-H). However, this did not affect commensal IgA-coating in the ileum (Figure 

4.14I), suggesting that gut bacteria are primarily coated by IgA antibodies derived from the lamina 

propria. Unexpectedly, IgA-coating in the colon, where no PPs can be found, was increased in 

Bcl6fl/flCd4cre/+ mice (Figure 4.14J), possibly due to augmented IgA production in the lamina 

propria compensating for the loss of GC-derived IgA antibodies. 

16S rDNA sequencing revealed only minor differences in microbial composition of the ileum and 

colon of Bcl6fl/flCd4cre/+ and their co-housed Bcl6fl/flCd4+/+ littermates (Figure 4.14K-Q). PCA of all 

16S rDNA sequencing samples indicated that the source organ was the biggest driver of variation 

(Figure 4.14K). Separate analysis of the samples from the ileum and colon did not reveal clustering 

of samples by genotype (Figure 4.14L, M), and no differences in bacterial diversity between 

genotype groups was observed (Figure 4.14N, O). In our experiments, gender had a stronger effect 

on clustering in the PCA plots than the lack of GCs (Figure 4.14L, M). This indicates that GC-

derived IgA is not required for the regulation of overall gut microbial composition. However, 

Deltaproteobacteria and Bacteroidia were significantly underrepresented in the ileum of 

Bcl6fl/flCd4cre/+ mice at the class level (Figure 4.14P). On the genus level, only one bacterial taxa 

was found to be significantly affected by the lack of GCs: Candidatus Arthromitus, a group of 

segmented filamentous bacteria (SFB) (Figure 4.14P) (Snel et al. 1995). This was also different 

between genotypes in the colon (Figure 4.14Q). Thus, the increase in bacterial IgA-coating 

observed in the colon of Bcl6fl/flCd4cre/+ mice does not result in global restructuring of the gut 

microbiome. Instead, the lack of GCs in PPs affects one species of SFBs. These data suggest that 

GC-derived IgA antibodies play a minor role in the control of the commensal microbiome. The 

microbiome, by contrast, is a potent regulator of the GC response in PPs.  
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Figure 4.14: Bcl6fl/flCd4cre/+ mice have reduced germinal centre (GC) responses but a near-to-
normal gut microbiome. (A-J) Characterisation of GC cell populations in the Peyer’s patches 
(PPs) and IgA-coating of faecal bacteria in Bcl6fl/flCd4cre/+ mice and their littermate controls. The 
percentage and number of B220+Ki67+Bcl6+ GC B cells (A, B), CD4+Foxp3-CXCR5+PD-1+ Tfh 
cells (C, D) and CD4+Foxp3+CXCR5+PD-1+ Tfr cells (E, F) in Peyer’s patches (PPs) as quantified 
by flow cytometry. (G, H) Quantitation of IgA+ B cell percentages (G) and numbers (H) in the PPs 
of Bcl6fl/flCd4cre/+ mice. Quantitation of IgA-coating of bacteria in faecal contents isolated from the 
ileum (I) and colon (J). Bar plots show the combined results of 2 independent experimental repeats 
with a total of n = 7-13 mice and each circle represents one biological replicate. Bar height 
corresponds to the mean, error bars to SD. P-values were determined using the Mann-Whitney test 
in GraphPad Prism6. (K-Q) 16S rDNA sequencing data were generated from the faecal contents of 
the colon and ileum collected from five Cd4cre/+ Bcl6fl/fl mice and 5 littermate controls in two 
independent experiments. All samples (K), or samples from the ileum (L) or colon (M) were 
clustered by Bray-Curtis PCoA. (N, O) Alpha diversities (measured by the Shannon index) of 
samples collected from the ileum (N) or colon (O) of Bcl6fl/flCd4cre/+ and Bcl6fl/flCd4+/+ mice. P-
values are based on ANOVA tests. (P, Q) Depiction of bacterial clades whose abundance was found 
to be significantly different between genotypes in the ileum (P) and colon (Q) as determined by 
ANOVA analysis. *…FDR ≤ 0.05, **…FDR ≤ 0.01. 
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 FMT does not enhance PP GC responses to cholera toxin 
Even though GC-derived IgA antibodies might not be required to regulate commensal bacteria, they 

were shown to provide protection against intestinal pathogens (Hashizume et al. 2008) and oral 

tolerance (Fujihashi et al. 2001). To confirm a role of the GC response in PPs in the immune 

response to foreign antigen, I performed a pilot experiment, immunising Bcl6fl/flCd4cre/+ mice and 

their Bcl6fl/flCd4+/+ littermate controls with ovalbumin (OVA) in combination with cholera toxin 

(CTx), a strong mucosal immunogen, three times over the course of three weeks. PPs from CTx-

treated Bcl6fl/flCd4cre/+ mice again had very few GC B cells, a decrease in the proportion of PP-

resident IgA+ B cells and a striking reduction in IgG1+ B cells (Figure 4.15A-F). This was associated 

with the complete loss of OVA- and CTx-specific antibody responses in the serum and in the ileum, 

indicating that the GC response in PPs is indeed essential for mucosal antibody responses against 

foreign antigens (Figure 4.15G-J).  

Kato et al. have previously linked the reduction of oral tolerance in aged mice with ageing-related 

changes in their PPs (Kato et al. 2003). Thus, the increase of intestinal infections in older individuals 

could be linked with an age-associated defect in their Peyer’s patches (Kolling et al. 2012). To 

determine whether FMT can boost the immune response to foreign antigen in aged mice, I 

immunised 23-month-old C57BL/6 mice with CTx coupled to the hapten NP (NP-CTx) by oral 

gavage three times at weekly intervals, either with or without prior FMT from 3-month-old donors. 

Assessment of mucosal antibody responses in the faecal contents of the ileum showed that there 

was no difference in anti-CTx and anti-NP IgA titres between mice that received FMT and PBS 

controls (Figure 4.16A, B). Further, there was no difference in the titre of high-affinity anti-NP2 

IgA or in the ratio of NP2/NP20 binding antibodies (Figure 4.16C, D), a measure of affinity 

maturation. Consistent with this, serum anti-CTx and anti-NP IgG1 antibody titres and affinity were 

not influenced by FMT in aged mice (Figure 4.16E-H). Assessment of the GC reaction in the PPs 

of these animals showed that immunisation with NP-CTx alone was sufficient to boost the GC 

response in 23-month-old animals independently of FMT, with no changes in Tfh or Tfr cell number 

(Figure 4.16I-N). This shows that FMT cannot enhance GC responses to immunisations with 

foreign antigen, but suggests the GC response in the PPs of aged mice can be induced by different 

immunological stimuli, such as microbial transfers or the strong immunogen CTx.  
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Figure 4.15: Tfh cells in Peyer’s patches (PPs) are required for antibody responses to foreign 
antigen. Bcl6fl/flCd4cre/+ mice and their Bcl6fl/flCd4+/+ littermate controls were immunised with 
1 mg OVA plus 50 µg CTx once a week for three weeks, then OVA- and CTx-specific antibody 
responses were assessed. (A-F) Quantitation of the percentage and number of B220+Ki67+Bcl6+ 

GC B cells (A, B), IgA+ B cells (C, D) and IgG1+ B cells (E, F) in Peyer’s patches (PPs) by flow 
cytometry. (G-I) OVA-specific (G) and CTx-specific (H) IgG1 as well as CTx-specific IgA levels 
were assessed in the serum by ELISAs. (J) CTx-specific IgA levels in faecal contents from the 
ileum were assessed by ELISA. No OVA-specific IgA antibodies could be detected in either 
Bcl6fl/flCd4cre/+ mice or Bcl6fl/flCd4+/+ littermate controls. Bar plots show the results of one 
experiment with n = 5 mice per group. Bar height corresponds to the mean, and each circle 
represents one biological replicate. P-values were determined using Mann-Whitney tests in 
GraphPad Prism6.  
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Figure 4.16: Faecal microbiota transplantation (FMT) does not enhance NP-CTx-specific 
immune responses in the gut. 21-month-old C57BL/6 mice received FMT or PBS by oral gavage 
as described above, followed by three oral immunisations with NP-CTx once a week. After three 
weeks, NP-CTx-specific antibody levels were analysed in PBS-gavaged, NP-CTx-immunised 23-
months-old C57BL/6 mice (CTx) compared to aged mice receiving FMT plus NP-CTx (FMT+CTx). 
Peyer’s patch (PP) germinal centre (GC) responses in these mice were compared to naïve, 23-
month-old C57BL/6 mice (Ctrl). (A-D) Antigen-specific IgA levels against CTx (A) and NP (B-D) 
in faecal contents from the ileum were assessed by ELISA. NP20-specific IgA (B), high-affinity 
NP2-specific IgA (C) and the ratio of NP2-to-NP20-specific IgA antibodies (D) were used as a 
measure for affinity maturation. (E-H) Antigen-specific IgG1 levels against CTx (E) and NP (F-
H) in the serum were assessed by ELISAs for CTx-specific IgG1 (E), NP20-specific IgG1 (F), 
high-affinity NP2-specific IgG1 (G) and the ratio of NP2-to-NP20-specific IgG1 antibodies (H). 
(I-N) The percentage and number of B220+Ki67+Bcl6+ GC B cells (I, J), CD4+Foxp3-CXCR5+PD-
1+ Tfh cells (K, L) and CD4+Foxp3+CXCR5+PD-1+ Tfr cells (M, N) in PPs were quantified by flow 
cytometry. Bar plots show the combined results of two independent experiments with a total of 
n = 10-13 mice per group. Bar height corresponds to the mean, and each circle represents one 
biological replicate. P-values were determined using Mann-Whitney tests (A-H) or the Kruskal-
Wallis test with Dunn’s multiple testing correction (I-N) in GraphPad Prism6. This figure was 
published in Nature Communications (Stebegg et al. 2019). 
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 Discussion  
The composition of the commensal gut flora changes with age. This linked with an increase in age-

associated morbidities such as frailty (Claesson et al. 2012; Maffei et al. 2017) and intestinal 

disorders (Biagi et al. 2010), but the cause of this shift in the gut microbial composition is unknown. 

Here we sought to determine whether there is a causal link between age-dependent changes in the 

microbiome and the defective GC reaction in PPs of aged mice. I show that the diminished GC 

reaction in the PPs of aged mice can be rescued by co-housing with younger animals, as well as by 

transplantation of faecal microbiota from adult mice. These data demonstrate that the defective GC 

response in aged mice is not a cell-intrinsic feature of the ageing immune system and can be restored 

by replenishment of the microbiome or stimulation with CTx.  

The ageing-related decline in the GC response in LNs has been linked to a decrease in the functions 

of multiple cell types, including antigen-presenting cells (APCs), T and B cells (Linterman 2014). 

However, it is not clear whether these age-associated defects are predominantly caused by 

accumulation of immune cell-intrinsic defects, or reduced stimulation of immune cells via their 

microenvironment (Weng 2006). Our data suggest that, in the PPs of aged mice, the capacity of GC 

B cells to respond to antigen is not impaired in a cell-intrinsic manner, but that they can respond to 

stimulation from the gut microbiota. Interestingly, the GC reaction in PPs was more strongly 

boosted following FMT than by co-housing. If the increase in magnitude of the GC response in 

aged mice is transient, this discrepancy could be explained by the duration of the different 

experiments, as we assessed the PPs GC reaction 23-days after FMT, and 30-40 days after the start 

of cohousing. The observation that not only microbial transfer, but also the potent mucosal 

immunogen CTx can stimulate the GC response in older animals indicates that the expansion of the 

GC reaction by FMT is not due to reactivation of commensal-specific memory B cells that persist 

in aged mice after their microbiome changes. Rather it suggests that strong immunogens, or potent 

adjuvants, can induce GC responses in the PPs of aged mice.  

Despite smaller GCs in the PPs of aged mice, the levels of commensal IgA-coating are comparable 

between older mice and younger animals, indicating that sufficient IgA is produced by a 

compensatory mechanism. IgA antibodies can be generated in a T cell-independent fashion in the 

lamina propria or in a GC-dependent fashion in PPs (Pabst 2012). Elegant studies conducted by 

Fagarasan and co-workers suggested that GC-dependent IgA antibodies are essential for the 

maintenance of microbial homeostasis. They used mice lacking either Tfh- or Tfr-dependent control 

of their GCs (Kawamoto et al. 2012; 2014) or somatic hypermutation in GC B cells (Wei et al. 

2011) to show that disruptions of the GC response in PPs leads to changes in the gut IgA repertoire 
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and in the gut microbial composition of these mice. What is more, Kubinak et al. suggested that 

Tfh cells in PPs are required to control the composition of the mucosa-resident gut microbiota in 

particular (Kubinak et al. 2015). However, other studies have shown that mice lacking T cell-

dependent immune responses (CD28-deficient mice (Gärdby et al. 2003) and CD40-deficient 

mice(Bergqvist et al. 2006)) or Tfh cells (Bcl6fl/flCd4cre/+ (Bunker et al. 2015)) have high IgA 

antibody titres, near-to-normal levels of bacterial IgA-coating, and relatively normal microbial 

composition, despite the lack of a GC response. This suggests that GC-independent IgA is sufficient 

to control the gut microbiota. To investigate the role of the GC in controlling the microbiota, I 

studied mice that lack Tfh cells and therefore do not have a good GC response. I found that only 

the abundance of one species, a type of SFB, was altered in these mice, indicating that the GC is 

not required to control gut microbial homeostasis. This is consistent with the findings of Bunker et 

al., who reported that IgA-coating of SFBs is T cell-dependent (Bunker et al. 2015). This indicates 

that GC-derived IgA antibodies only regulate a small subset of bacteria and that changes in the gut 

microbiome during ageing are not likely driven by the reduced PP GC response of aged mice.  

It is well established that the gut microbiome is affected by ageing, but there is no consensus on 

how exactly the gut microbiome changes with age. This is probably due to the high variability 

detected in microbiomes from different geographical locations in both mice and humans (Ericsson 

et al. 2015; Mueller et al. 2006; Rausch et al. 2016). Several studies on the human microbiome 

reported of reduced bacterial diversity in aged individuals (Biagi et al. 2010; Maffei et al. 2017) 

and Claesson et al. observed larger inter-individual variability in older individuals compared to 

young controls (Claesson et al. 2011). Our study reports the same general trends – increased inter-

individual variability of both aged BALB/c and C57BL/6 mice, and a reduced bacterial diversity in 

aged BALB/c mice. The differences in the microbiome observed between strains of mice and 

between the sexes of the same strain, all of which were aged in the same animal facility under the 

same environmental conditions, indicate that interactions between age, sex and genetics play a role 

in shaping age-associated alterations of the gut microbiome.  

The change in gut microbial composition with age has been linked with many age-associated 

disorders (Fransen et al. 2017; Shin et al. 2018). Transfer of an aged microbiome into germ-free 

mice causes systemic inflammation (Fransen et al. 2017; Thevaranjan et al. 2017), suggesting that 

the aged microbiome itself may contribute to so-called inflammaging. Our results indicate that 

replenishing the microbiome of aged mice with that of a younger animal can boost the local GC 

reaction, which may have implications for the overall health of the organism. Consistent with this 

hypothesis, remodelling of the gut microbiome in Drosophila melanogaster has been shown to 

increase lifespan (Obata et al. 2018; Westfall et al. 2018). Similarly, middle-aged killifish colonised 
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with a young microbiome were found to live longer than untreated fish (Smith et al. 2017) and 

bacterial-derived indoles were shown to increase the lifespan of mice (Sonowal et al. 2017). These 

data suggest that there is a direct link between the phenotypes associated with ageing and age-

associated changes in the gut microbiome. Previous studies showed that supplementation of older 

humans or mice with pre- and probiotics results in changes of gut microbial composition and can 

improve gut immunity in older individuals (Kaburagi et al. 2007; Landete et al. 2017). Further, the 

transfer of a young microbiome into aged mice increases protection against C. difficile infection 

(Shin et al. 2018), indicating that the microbiota of young animals can functionally boost intestinal 

immune protection. This makes the gut microbiome a possible target for the treatment of a range of 

age-associated symptoms. FMT (Gupta et al. 2016), probiotics (Landete et al. 2017), co-habitation 

(Song et al. 2013) and diet (Clements & R. Carding 2018) all have an impact on the composition 

of the gut microbiome and could prove to be innovative interventions to facilitate healthy ageing.  

 

Note: 

An adaption of this chapter was published in Nature Communications: Stebegg M, Silva-Cayetano 

A, Innocentin S, Jenkins TP, Cantacessi C, Gilbert C, Linterman MA. 2019. Heterochronic faecal 

transplantation boosts gut germinal centres in aged mice, Nature Communications. 10(1), 2443 

(Stebegg et al. 2019).  
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 TYPE I INTERFERON SIGNALLING 
BOOSTS T FOLLICULAR HELPER CELL 
DIFFERENTIATION IN AGED MICE  
 Abstract 

Most vaccinations prevent infectious diseases by generating long-lasting humoral immunity. In 

older people, the efficacy of vaccinations is reduced, possibly due to an age-associated deterioration 

of vaccine-specific germinal centre (GC) responses. GCs are structures that form in secondary 

lymphoid organs (SLOs) such as lymph nodes (LNs). Here, antigen-specific B cells somatically 

mutate their antigen receptor in a process known as somatic hypermutation which, when coupled 

to affinity-based selection, can improve the affinity of the B cell receptor (BCR) for antigen. Within 

GCs, antigen-activated B cells interact with a specialised population of CD4 T cells, T follicular 

helper (Tfh) cells, whose differentiation is initiated by priming by dendritic cells (DCs). Previous 

studies by others have indicated that the impaired formation of GCs in aged mice is linked with 

defective T cell priming. Here, I demonstrate that T cell priming in aged animals is impaired due to 

defective interferon (IFN) signalling in type 2 conventional DCs (cDC2s). By enhancing type I IFN 

signalling at immunisation sites using the TLR7-agonist imiquimod, I was able to restore 

CD80/CD86 expression levels on cDC2s and improve the formation of Tfh cells in aged animals. 

This demonstrates that age-associated defects in the Tfh cell response are not irreversible and that 

DCs are a potential target to improve vaccine responses in the ageing population. 

 Background 
Vaccinations are one of the most successful medical interventions for preventing infectious diseases, 

greatly contributing to the global extension of life expectancy in the 20th century. Most vaccines on 

the market provide protection by generating long-lived humoral immunity that derives from the GC 

responses as well as extrafollicular responses in the absence of an infection. Unfortunately, 

vaccinations are less effective in older people, which has been proposed to be driven by an age-

associated impairment of their GC response (Aberle et al. 2013; Gustafson et al. 2018; Linterman 

2014). GCs are specialised microstructures which form in SLOs such as LNs upon infection or 

vaccination. Here, antigen-specific GC B cells somatically hypermutate the genes encoding their 
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BCR, and this mutational process, coupled with subsequent affinity-based selection, results in the 

emergence of plasma cells and memory B cells that bind antigen with improved affinity (Stebegg, 

Kumar, Silva-Cayetano et al. 2018). Only B cells with high affinity for foreign antigen receive 

survival signals from Tfh cells and follicular dendritic cells (FDCs) in GCs, preventing the survival 

of B cells with self-reactive or non-functional antigen receptors from this random mutation process 

(Mesin et al. 2016). 

Tfh cells are generated in SLOs by priming by antigen-presenting cells (APCs). APCs provide three 

signals to drive the differentiation of Tfh cells (Krishnaswamy et al. 2018): signal one is provided 

when APCs take up antigen, internalise it and present peptide-MHC-II complexes to T cells (Webb 

& Linterman 2017). Upon activation of pattern recognition receptors (PRRs) on APCs by pathogen-

associated molecular patterns (PAMPs), they also provide signal two by upregulating their 

expression of co-stimulatory ligands such CD80 and CD86 which interact with CD28, a co-

stimulatory receptor on the surface of T cells which, when bound by its ligands, enhances T cell 

receptor (TCR) signalling and boosts Tfh cell differentiation (Krishnaswamy et al. 2018). PAMP-

dependent activation also triggers signal three – the production of cytokines implicated in Tfh cell 

priming such as IL-6, IL-12 and IL-27 (Eddahri et al. 2009; Webb & Linterman 2017). Several DC 

subtypes have been shown to activate T cells and to induce their migration to the T-B border, but 

migratory cDC2s have been proposed as the dominant Tfh cell-priming DC subset (Krishnaswamy 

et al. 2017; 2018). cDC2s have been shown to produce IL-6 and IL-27, cytokines known to favour 

Tfh cell differentiation in a type I IFN-dependent manner (Batten et al. 2010; Cucak et al. 2009; 

Gringhuis et al. 2014). Thus, cDC2 cells are potent inducers of Tfh cell differentiation and 

important to initiate GC responses.  

Ageing is correlated with reductions in GC magnitude, somatic hypermutation (SHM) and high-

affinity serum antibodies (Eaton et al. 2004; Kosco et al. 1989; Kraft et al. 1987; Linterman 2014; 

van Dijk-Härd et al. 1997; Yang et al. 1996). These defects in the output of the GC response have 

been linked with defects in the T cell compartment (Gustafson et al. 2018; Linterman 2014; 

Nikolich-Žugich 2018). Adoptive transfers of T cells from aged mice into young animals results in 

the formation of smaller GCs with reduced antibody output (Eaton et al. 2004). Increasing the naïve 

T cell output from the thymus, however, is not sufficient to rescue the ageing GC phenotype 

(Lefebvre et al. 2012). T cells from adult mice transferred into aged hosts prior to immunisation 

also form fewer Tfh cells than in adult hosts. This suggests that in addition to age-associated T-cell 

intrinsic defects, the aged microenvironment, which includes APCs, is also impaired in old age 

(Lefebvre et al. 2012).  
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In aged subjects, T cell priming by DCs has been reported to be impaired, linked with the reduced 

phagocytosis and migration of DCs in aged subjects (Agrawal et al. 2007). Furthermore, reduced 

expression of the costimulatory molecules CD80 and CD86, as well as MHC-II, on DCs has been 

observed in aged mice before and after infection (Moretto et al. 2008). This impairs the potential 

of these DCs for activating T cells via MHC-II-dependent antigen presentation. CD4 T cells from 

aged mice were also shown to be less responsive to IL-6 stimulation by DCs (Brahmakshatriya et 

al. 2017). Together, these data indicate that reduced T cell priming by DCs drives at least some of 

the age-associated defects in the GC response. What causes these defects is still unknown. 

Our study investigated whether T cell priming by DCs could be improved to enhance GC responses. 

The results presented here show that impaired T cell priming in aged animals is associated with 

reduced expression levels of the co-stimulatory ligands CD80 and CD86 on migratory cDC2s. This 

is linked with defective type I IFN signalling in the same cells. By enhancing type I IFN signalling 

at immunisation sites, I was able to restore CD80 and CD86 expression levels on cDC2s. This 

enhanced the formation of antigen-specific Tfh cells in aged animals and demonstrates a link 

between impaired T cell priming in aged animals and reduced type I IFN signalling in cDC2s. This 

reveals that age-associated defects in Tfh cell priming are not irreversible and that cDC2s could be 

a target to improve vaccination efficacy in older individuals. 

 Results 

 GC responses are impaired in aged mice 
The GC responses in aged, 22-24-month-old C57BL/6 mice after vaccination were compared to 

those in 2-3-month-old adult mice after subcutaneous immunisation with NP-1W1K in Alum. The 

use of a 1W1K peptide-conjugate allowed us to track antigen-specific T cell responses by flow 

cytometry using 1W1K-loaded MHC-II tetramers. In aged mice, there was a reduction in the 

proportion and number of Ki67+Bcl6+B220+ GC B cells compared to adult mice 7 days after 

immunisation (gating strategy in Figure 5.1; Figure 5.2A-B). This was associated with a reduction 

in GC size as observed by confocal fluorescence microscopy on day 14 after immunisation (Figure 

5.2C) and accompanied by reduced numbers of both total CXCR5hiPD-1hiFoxp3-CD4+ Tfh cells 

and antigen-specific Tfh cells in aged mice, as determined by 1W1K-coupled tetramer stains 

(Figure 5.2D-G). This confirms that GC responses in aged C57BL/6 mice are reduced in magnitude, 

which is associated with a defect in the Tfh cell compartment. 
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Figure 5.1: Gating strategy for germinal centre (GC) cell populations. 2-3-month-old adult and 
22-24-month-old aged C57BL/6 mice were immunised subcutaneously with NP-1W1K in Alum. 
Their draining inguinal LNs were analysed by flow cytometry 7 days later. GC B cells were defined 
as Bcl6+Ki67+B220+ cells, T follicular helper (Tfh) cells as CXCR5hiPD-1hiFoxp3-CD4+ cells and 
antigen-specific Tfh cells as 1W1K-I-Ab+CXCR5hiPD-1hiFoxp3-CD4+ cells. 
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Figure 5.2: Germinal centre (GC) responses are impaired in aged mice. 2-month-old adult and 
23-month-old aged C57BL/6 mice were subcutaneously immunised mice with NP-1W1K (A, B, 
D-F) or NP-KLH (C) in Alum. Their draining inguinal LNs were analysed 7 days later by flow 
cytometry (A, B, D-F) or after 14 days by confocal imaging (C). (A, B) Representative flow 
cytometric plots (A) and quantitation (B) of B220+Ki67+Bcl6+ GC B cells. (C) Confocal images 
generated by Ine Vanderleyden of draining LNs from 2-month-old and 23-month-old mice, taken 
14 days after subcutaneous immunisation with NP-KLH. 10 µm LN sections were stained with anti-
IgD (orange), anti-CD3 (green), anti-Ki67 (blue) and anti-Foxp3 (pink) antibodies. (D-G) 
Representative flow cytometric plots (D, E) and quantitation (F, G) of CXCR5hiPD-1hiFoxp3-CD4+ 
T follicular helper (Tfh) cells (D, F) and antigen-specific 1W1K-I-Ab+ Tfh cells (E, G). Bar graphs 
show the results of one of two independent experiments performed by Alexandre Bignon. Bar 
height corresponds to the mean, and each circle represents one biological replicate. P-values were 
determined using the Mann-Whitney test in GraphPad Prism6.  
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 Impaired T cell priming in aged animals 
To test whether the reduced number of Tfh cells in aged mice was caused by a defect in early APC-

dependent T cell activation and/or Tfh cell differentiation, TCRVb3+CD45.1+ cells that are specific 

for a peptide of Hen Egg Lysozyme (HEL) were taken from 3-month-old adult TCR7 mice, 

CellTrace-labelled and then adoptively transferred into either adult or aged hosts. Three days after 

subcutaneous immunisation with HEL in Alum ~ 80 % of all CD45.1+CD4+ T cells had undergone 

one or more cell division in adult hosts (gating strategy in Figure 5.3A-B; Figure 5.3C-D). In aged 

hosts, fewer TCR7 T cells had entered the cell cycle (Figure 5.3C-D). Once T cells had entered the 

cell cycle, expression of the T cell co-stimulatory receptor ICOS was comparable between T cells 

in hosts of different ages (Figure 5.3E). This indicates that the aged microenvironment results in 

impaired T cell priming, and prompts the hypothesis that this impaired priming may underpin 

reduced antigen-specific Tfh cell numbers in aged mice.  

Several DC subtypes, including LN-resident and type 1 conventional DCs (cDC1s), type 2 

conventional DCs (cDC2s) and skin-resident Langerhans cells, have been implicated in T cell 

priming. Of these, migratory cDC2 subset have been suggested as the dominant Tfh-priming DC 

subset (Krishnaswamy et al. 2017; 2018), although the route of immunisation or infection 

influences which DC subtype plays the dominant role in Tfh cell priming . To test which cell type 

is the main APC in the draining LN in our experimental set-up, mice were immunised 

subcutaneously with Ea-coupled GFP in Incomplete Freund’s Adjuvant (IFA) (Itano et al. 2003). 

This allowed us to track which cells had taken up antigen (GFP+) and which cells were presenting 

a Ea-derived peptide on MHC-II using the Y-ae antibody (Itano et al. 2003). One day following 

subcutaneous immunisation in adult mice, the majority of GFP+ APCs were migratory CD11b+ 

cDC2s (gating strategy based on Guilliams et al. 2016) in Figure 5.4A; Figure 5.4B). The number 

of antigen-bearing GFP+ CD11b+ cDC2s were reduced in the draining LNs of aged compared to 

adult mice (Figure 5.4C). Of the cDC2 cells that had taken up antigen, there was less presentation 

of peptide-MHC-II in aged mice even though levels of total MHC-II expression on the cell surface 

was unchanged (Figure 5.4D, H, I). Expression of the costimulatory ligands CD86, CD80 and the 

receptor CD40 was reduced on the surface of GFP+ CD11b+ cDC2s from aged mice (Figure 5.4E-

G, J-L). This observation is consistent with previous reports on reduced co-stimulation by DCs from 

aged mice and suggests a link between impaired T cell priming in draining LNs of aged mice and 

defects in the CD11b+ cDC2 subset (Moretto et al. 2008). 
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Figure 5.3: T cell proliferation is impaired in aged hosts. (A) 3-5 ´ 106 CellTrace violet (CTV)-
labelled Hen Egg Lysozyme (HEL)-specific TCRVb3+CD4+ cells from TCR7 mice were adoptively 
transferred into recipient mice by intravenous injections followed by subcutaneous immunisations 
with HEL in Alum. (B) On day three, cell proliferation was assessed by flow cytometry as defined 
by the serial dilution of CellTrace median fluorescence intensity (MFI) with each division. 
Transferred cells were defined by CD4 expression and the CD45.1 or CD45.2 congenic markers. 
(C-E) CellTrace-labelled HEL-specific (CTV+TCRVb3+CD4+) TCR7 cells were adoptively 
transferred into 2-3month-old and 22-24-month-old C57BL/6 recipients, which were subsequently 
immunised with HEL in Alum subcutaneously in the hind flank. Three days after immunisation, 
proliferation of CD45.1+CD4+ T cells was analysed by flow cytometry. (C) Representative flow 
cytometric plot of divided CD45.1+CD4+ cells in 2-3-month-old (white) and 22-24-month-old 
(grey) C57BL/6 recipients. (D-E) Quantitation of the proportion of divided CTV+CD45.1+CD4+ 
cells (D) and their ICOS expression (E) in 2-3-month-old and 22-24-month-old C57BL/6 recipients. 
Bar graphs show the results of one of two independent experiments performed by Alexandre Bignon. 
Bar height corresponds to the mean, and each circle represents one biological replicate. P-values 
were determined using the Mann-Whitney test in GraphPad Prism6. Only p-values ≤ 0.05 are 
shown. 
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Figure 5.4: cDC2s from aged mice have an impaired activation phenotype. 2-3-month-old mice 
were immunised subcutaneously with Ea-GFP in IFA. Antigen-bearing GFP+ and antigen-
presenting Y-Ae+ dendritic cells (DCs) in draining inguinal lymph nodes (LNs) were analysed 24 
hours after immunisation. (A) Gating strategy for DC subsets. All antigen-carrying DCs were 
defined as GFP+CD11chiMHC-IIhiLineage-(CD3-B220-CD19-)CD64-F4/80- events. Type 1 
conventional DCs (cDC1s) were defined as Xcr1+CD172a- DCs and were subdivided into CD103+ 
and CD103- cDC1s. Langerhans cells were defined as CD24+CD172a+Xcr1- DCs. Type 2 
conventional DCs (cDC2s) were defined as CD24-CD172a+Xcr1- DCs and were subdivided into 
CD11b+ and CD11b- cDC2s. (B) Quantitation of GFP+ cells from different DC subsets in the 
draining LNs of 2-3-month-old mice. (C) Quantitation of GFP+CD11b+ cDC2s in the draining LNs 
of 2-3-month-old and 22-24-month-old mice 24 hours after immunisation with Ea-GFP in IFA. (D-
G) Representative histograms for median fluorescence intensity (MFI) levels of Y-Ae (D), CD40 
(E), CD80 (F) and CD86 (G) on the surface of GFP+ CD11b+ cDC2s from 2-month-old and 23-
month-old mice. (H-L) Quantitation of median fluorescence intensity (MFI) levels of Y-Ae (H), I-
Ab (C57BL/6 MHC-II) (I), CD40 (J), CD80 (K) and CD86 (L) on the surface of GFP+CD11b+ 
cDC2s in adult and aged mice. Bar graphs show the results of one of two independent experiments 
performed by Alexandre Bignon. Bar height corresponds to the mean, and each circle represents 
one biological replicate. P-values were determined using the Mann-Whitney test in GraphPad 
Prism6. 
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 Interferon signalling is reduced in cDC2 cells from aged mice 
To test a possible link between impaired T cell priming and reduced antigen presentation by cDC2s 

in aged mice, we utilised H2+/- mice that carry only one allele encoding MHC-II. cDC2s from H2+/- 

mice present less antigen on their surface 24 hours after immunisation with Ea-GFP in IFA than 

cDC2s from H2+/+ control mice (Figure 5.5A), which recapitulates the phenotype observed in aged 

mice (Figure 5.4H). Despite reduced antigen-presentation, T cell proliferation of CellTrace-labelled 

TCR7 T cells adoptively transferred into HEL-immunised H2+/- and H2+/+ hosts was comparable 

(Figure 5.5B, C). This indicates that reduced early T cell priming in aged mice is not due to reduced 

antigen presentation. To assess whether impaired T cell priming in aged mice was instead caused 

by reduced CD80/CD86 co-stimulation by cDC2s, I performed adoptive T cell transfers into 2-

month-old C57BL/6 mice treated intraperitoneally with 500µg Abatacept, an FDA-approved 

CTLA4-IgG1 fusion protein which binds to CD80/86 with high affinity and blocks CD28 co-

stimulation. Abatacept completely blocked CD45.1+CD4+ T cell proliferation, confirming a strong 

dependency of T cell priming on CD80/CD86 co-stimulation (Figure 5.5D, E) (Platt et al. 2010). 

This suggests a possible link between the age-associated reduction in CD80/CD86 expression on 

cDC2s and reduced T cell priming in aged mice.  

Next, we decided to investigate the underlying cause for age-associated changes in cDC2s. For this, 

Alexandre Bignon and Danika Hill generated RNA sequencing data from sorted GFP+ CD11b+ 

cDC2s isolated from 2-month-old and 23-month-old mice 24 hours after immunisation with Ea-

GFP in IFA (gating strategy shown in Figure 5.4A). RNA sequencing analysis by Christel Krueger 

revealed 700 genes that were differentially expressed between cDC2s from young and aged mice. 

Principal component analysis demonstrated distinct clustering of samples from 2-month-old 

compared to 23-month-old mice (Figure 5.6A). Pathway enrichment analysis revealed that the 

cellular response to IFNb, a pathway which had previously been linked with DC-dependent T cell 

priming, was one of the cellular pathways most affected by age (Figure 5.6B) (Cucak et al. 2009). 

Of the genes that make up the “cellular response to IFNb” signature, the average expression of most 

genes was reduced in cDC2s from aged mice in the RNA sequencing data set (Figure 5.6C). I 

confirmed that Ifnb1 was expressed early after Ea-GFP in IFA immunisation in the draining LN by 

RT-qPCR, peaking 6 hours after immunisation in adult mice (Figure 5.6D). This early wave of 

Ifnb1 was followed by induction of the interferon-inducible myxovirus resistance gene Mx1, a 

canonical type I interferon-stimulated gene (ISG), which peaked at 14-24 hours after immunisation 

(Figure 5.6E). RT-qPCR of GFP+ CD11b+ cDC2 cells sorted from an independent cohort confirmed 

reduced Mx1 mRNA levels in cDC2 from 23-month-old mice compared to 3-month-old mice, 

demonstrating that type I IFN signalling is reduced in cDC2s of aged mice 24 hours after Ea-GFP 
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in IFA immunisation (Figure 5.6F). This reduction in ISG expression in aged mice could be 

recapitulated in whole LNs mRNA (Figure 5.6G), suggesting that the age-associated reduction in 

type I IFN signalling is not specific to cDC2s in aged mice.  

Cucak et al. have previously reported that type I IFN signalling in DCs is essential for Tfh cell 

priming and type I IFNs have been shown to enhance protective immune responses upon influenza 

vaccination in mice (Cucak et al. 2009; Proietti et al. 2002). The type I IFN family of proteins is 

comprised of up to 20 members which are divided into IFNα and IFNβ subtypes (Rauch et al. 2013). 

IFNβ can be produced by almost all cell types when their PRRs are exposed to PAMPs, while IFNα 

is predominantly produced by immune cells such as plasmacytoid dendritic cells (pDCs) (Ivashkiv 

& Donlin 2014). Both forms of type I IFNs bind the interferon alpha receptor (IFNαR), a 

heterodimeric complex of IFNAR1 and IFNAR2 chains. The intracellular domain of this receptor 

is associated with JAK1 and Tyk2 kinases which phosphorylate STAT1 and STAT2 molecules 

upon IFN-induced activation. These form part of the transcriptional complex ISGF3 (interferon-

stimulated gene factor 3) which regulates the expression of several hundred interferon-stimulated 

genes (ISGs), including Mx1 and Ifit1 (Interferon-induced protein with tetratricopeptide repeats 1) 

(Hoffmann et al. 2015). In DCs, type I IFN signalling has been shown to enhance the expression of 

the co-stimulatory molecules CD80 and CD86 as well as the Tfh cell differentiation-inducing 

cytokine IL-6 (Hassanzadeh-Kiabi et al. 2017; Luft et al. 1998). Hence, we hypothesised that 

reduced type I IFN signalling in cDC2s of aged mice could be linked with defective T cell priming 

and impaired GC responses in these mice. 
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Figure 5.5: T cell priming is abrogated upon blockade of CD80/86 co-stimulation. (A-C) 
CellTrace violet (CTV)-labelled HEL-specific TCRVb3+CD45.1+CD4+ cells were adoptively 
transferred into H2+/+ and H2+/- mice, followed by subcutaneous immunisations with HEL in Alum. 
On day 3, proliferation of CD45.1+CD4+ T cells was analysed by flow cytometry. These 
experiments were performed by Michelle Linterman. (A) Quantitation of Ea-peptide presentation 
on CD11b+ cDC2s as determined by Y-Ae surface staining. (B-C) Representative flow cytometric 
plot (B) and quantitation (C) of divided CTV+CD45.1+CD4+ cells in H2+/- and H2+/+ recipients. (D-
E) CellTrace(CTV)-labelled HEL-specific TCRVb3+CD45.1+CD4+ cells were adoptively 
transferred into C57BL/6 mice, directly followed by subcutaneous immunisations with HEL in 
Alum and intraperitoneal injections with 500 µg Abatacept or PBS. On day 3, proliferation of 
CD45.1+CD4+ T cells was analysed by flow cytometry. Representative flow cytometric plot (D) 
and quantitation (E) of divided CTV+CD45.1+CD4+ cells in mice treated with Abatacept or PBS. 
Bar graphs show the results of one of two independent experiments. Bar height corresponds to the 
mean, and each circle represents one biological replicate. P-values were determined using the 
Mann-Whitney test in GraphPad Prism6. Only significant p-values ≤ 0.05 are shown. 
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Figure 5.6: Reduced type I interferon (IFN) signalling in cDC2s from aged mice. (A-C) RNA 
sequencing data were generated by Danika Hill and Alexandre Bignon from sorted GFP+ CD11b+ 
cDC2s isolated from 2-month-old and 23-month-old C57BL/6 mice 24 hours after subcutaneous 
immunisation with Ea-GFP in IFA. (A) Principal component analysis of the most variable genes in 
samples from young 2-month-old (blue) and aged 23-month-old (pink) mice. (B) Cellular pathways 
significantly affected by age as determined by Christel Krueger by Pathway Enrichment Analysis. 
(C) Average RPKM (read per kilobase million) expression of IFNβ-responsive genes in GFP+ 
CD11b+ cDC2s as determined by RNA sequencing. (D-E) Ifnb1 (D) and Mx1 (E) mRNA expression 
in whole LN mRNA taken 0, 6, 14 and 24 hours after subcutaneous immunisation of 2-month-old 
mice with Ea-GFP in IFA (F-G) 2-month-old and 23-month-old C57BL/6 mice were 
subcutaneously immunised with Ea-GFP in IFA. 24 hours later, Mx1 mRNA levels were 
determined in sorted GFP+ CD11b+ cDC2s (F) or extracts of whole draining LNs (G) by RT-qPCR. 
Bar graphs show the results of one of two independent experiments (D, E) or the combined results 
of two experiments (F, G). Bar height corresponds to the mean, and each circle represents one 
biological replicate. P-values were determined using the Mann-Whitney test in GraphPad Prism6. 
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 Lack of type I IFN signalling in DCs is linked with impaired 
Tfh cell formation  

To test this hypothesis, I first examined whether a loss of type I IFN signalling recapitulates the 

phenotype of cDC2s from aged mice. Adult C57BL/6 mice were treated with an anti-IFNAR1 

blocking antibody followed by subcutaneous immunisation with Ea-GFP in IFA 20 hours later. 

One day after immunisation, blockade of type I IFN signalling did not affect antigen presentation 

or CD40 expression by GFP+ CD11b+ cDC2s (gating strategy shown in Figure 5.7; Figure 5.8A, 

B), but the expression of the co-stimulatory ligands CD80 and CD86 was significantly reduced 

(Figure 5.8C, D). This indicates that a blockade of type I IFN signalling can partly recapitulate the 

ageing cDC2 phenotype.  

To determine whether loss of IFNaR signalling also impacts T cell priming, I adoptively transferred 

IFNaR-sufficient HEL-specific TCR7 into Ifnar1-/- or WT control mice immunised with HEL in 

Alum. Fewer T cells entered the cell cycle in Ifnar1-/- hosts (Figure 5.8E, F), recapitulating the 

defect in T cell priming seen in aged mice. When this experiment was repeated using ovalbumin 

(OVA)-specific OTII cells transferred into recipient mice immunised with OVA in Alum, the same 

effect was seen (Figure 5.8G, H). To test whether Tfh cell formation after immunisation is also 

affected in mice lacking type I IFN signalling only in DCs, Ifnar1fl/fCd11ccre/+ mice, and their 

Ifnar1fl/flCd11c+/+ littermate controls were inoculated subcutaneously with NP-1W1K in Alum. 

Fewer Tfh cells formed in Cd11ccre/+Ifnar1fl/fl mice seven days after immunisation compared to their 

littermates (Figure 5.8I, J). This shows that the lack of type I IFN signalling can mimic age-

associated defects both in T cell priming and their subsequent differentiation into Tfh cells. This 

could be due to reduced CD28-dependent T cell co-stimulation, as both ageing as well as IFNAR1 

blockade were associated with reduced expression levels of CD80 and CD86, the costimulatory 

ligands for CD28, on antigen-presenting cDC2s. 

Reduced type I IFN signalling in DCs could be driven to two factors: decreased levels of type I 

IFNs in their microenvironment or a reduction in the IFN responsiveness of DCs in aged animals. 

As described above, I observed that Mx1 mRNA levels were not only reduced in sorted cDC2 cells, 

but also in whole LN extracts of immunised mice. This suggests a reduced production of type I 

IFNs in the draining LNs of aged mice. Upon infection, pDCs quickly produce large amounts of 

type I IFN in the LNs of both humans and mice, and this response has been reported to be impaired 

in aged mice and humans (Agrawal 2013; Agrawal et al. 2017; Panda et al. 2010; Sridharan et al. 

2011; Stout-Delgado et al. 2008). I observed reduced proportions and numbers of pDCs in the LNs 

of aged 23-month-old mice compared to adult controls both at the steady-state and 24 hours after 
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immunisation with Ea-GFP in IFA (Figure 5.9A-D). This suggests that the reduction in type I IFN 

signalling in cDC2s is due to a loss of IFN-producing pDCs in the LNs of aged mice. 

 

 
Figure 5.7: Gating strategy for the quantitation of GFP+ CD11b+ cDC2s and plasmacytoid 
dendritic cells (pDCs). Mice were immunised subcutaneously with Ea-GFP in Alum. 24 hours 
later, pDCs and antigen-bearing GFP+ CD11b+ cDC2s were analysed by flow cytometry or - in the 
case of cDC2s - sorted for RT-qPCR. GFP+ CD11b+ cDC2s were defined as live CD11b+CD24-

GFP+CD11chiMHC-IIhiLineage-(CD3-CD19-) events. pDCs were defined as live CD317(=PDCA-
1)+CD11c+CD11b-B220+ events. 
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Figure 5.8: Lack of type I interferon (IFN) signalling in DCs impairs Tfh cell differentiation. 
(A-D) Flow cytometric analysis of CD11b+ cDC2s isolated from mice intraperitoneally injected 
with anti-IFNAR1 blocking or isotype control antibodies 20 hours prior to subcutaneous 
immunisation with Ea-GFP in IFA. (A) Quantitation of Ea-peptide presentation on GFP+ CD11b+ 
cDC2s as determined by Y-Ae stains 24 hours after immunisation with Ea-GFP in IFA. (B-D) 
Quantitation of median fluorescence intensity (MFI) levels of CD40, CD80 and CD86 on the 
surface of GFP+ CD11b+ cDC2s in mice treated with anti-IFNAR1 blocking or isotype control 
antibodies. (E-F) CellTrace(CTV)-labelled Hen Egg Lysozyme (HEL)-specific 
TCRVb3+CD45.1+CD4+ cells from TCR7 mice were adoptively transferred into Ifnar1-/- and 
control mice, which were subsequently immunised with HEL in Alum. On day three, proliferation 
of CD45.1+CD4+ T cells was analysed by flow cytometry. (E-F) Representative flow cytometric 
plot (E) and quantitation (F) of divided CTV+CD45.1+CD4+ cells. (G-H) CellTrace(CTV)-labelled 
ovalbumin (OVA)-specific TCRVa2+CD45.1+CD4+ cells from OTII mice were adoptively 
transferred into Ifnar1-/- and control mice, which were subsequently immunised with OVA in Alum. 
On day three, proliferation of CD45.1+CD4+ T cells was analysed by flow cytometry. (G-H) 
Representative flow cytometric plot (G) and quantitation (H) of divided CTV+CD45.1+CD4+ cells. 
(I-J) Flow cytometric analysis of CXCR5hiPD-1hiFoxp3-CD4+ T follicular helper (Tfh) cells 
isolated from Ifnar1fl/flCd11ccre/+ or Ifnar1fl/flCd11c+/+ control mice 7 days after immunisation with 
NP-1W1K in Alum. Quantitation of Tfh cell numbers (I) and proportion of CD4+ T cells (J) on day 
7. Bar graphs show the results of one (E-H) or one of two (A-D, I-J) independent experiments. Bar 
height corresponds to the mean, and each circle represents one biological replicate. P-values were 
determined using the Mann-Whitney test in GraphPad Prism6. 
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Figure 5.9: Numbers of plasmacytoid DCs (pDCs) are reduced in the lymph nodes (LNs) of 
aged mice. (A-B) Flow cytometric quantitation of the proportion (A) and number (B) of pDCs in 
the inguinal LNs of unimmunised 2-month-old and 23-month-old C57BL/6 mice. (C-D) Flow 
cytometric quantitation of the proportion (C) and number (D) of pDCs in the inguinal LNs of 2-
month-old and 23-month-old C57BL/6 mice 24 hours after immunisation with Ea-GFP in IFA. Bar 
graphs show the results of one of three independent experiments. Bar height corresponds to the 
mean, and each circle represents one biological replicate. P-values were determined using the 
Mann-Whitney test in GraphPad Prism6. 

 

 Imiquimod-induced type I IFN signalling rejuvenates cDC2s 
in aged mice 

Next, I investigated whether artificially boosting the production of type I IFN could rejuvenate the 

cDC2 phenotype in aged mice. For this, 23-month-old C57BL/6 mice were topically administered 

Aldara, a cream containing 5 % of the TLR7-agonist imiquimod, a strong inducer of type I IFN 

responses (Moore et al. 2001; Reiter et al. 1994). This cream was applied on top of the injection 

sites directly after subcutaneous immunisations with Ea-GFP in IFA (experimental set-up shown 

in Figure 5.10A). 24 hours later, I observed increased expression of the ISGs Ifit1 and Mx1 in sorted 

GFP+ CD11b+ cDC2s isolated from imiquimod-treated 23-month-old mice compared to aged 

controls that were immunised but did not receive imiquimod (Figure 5.10B, C). This was associated 

with an increase in the proportions and total numbers of both total and GFP-positive CD11b+ cDC2s 

in draining LNs (Figure 5.10D-G). Further, these cells expressed higher levels of CD80 and CD86, 

while antigen-presentation and CD40 expression was not affected (Figure 5.10H-O). This 

demonstrates that promoting type I IFN signalling in DCs can rescue the age-dependent co-

stimulatory defects observed in cDC2s from aged mice. This mirrors the results from IFNAR1 

blocking experiments, where blockade of type I IFN signalling in cDC2s resulted in reduced 

expression levels of CD80 and CD86, while antigen-presentation and CD40 expression were not 

affected. This shows that the topical application of imiquimod onto immunisation sites induces type 

I IFN signalling and potently enhances the activation and recruitment of cDC2s into the draining 

LNs of aged mice.  
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Figure 5.10: Imiquimod rejuvenates cDC2s in aged mice. (A) Schematic representation of the 
experimental set-up. 23-month-old mice were subcutaneously immunised with Ea-GFP in IFA. 
Half of the mice were topically treated with imiquimod cream on top of their immunisation sites. 
24 hours later, GFP+ CD11b+ cDC2 cells were sorted by FACS for RT-qPCR (B-C) or analysed by 
flow cytometry (D-K). (B-C) Ifit1 (B) and Mx1 (C) mRNA expression in sorted GFP+ CD11b+ 
cDC2s were analysed by RT-qPCR. (D-G) Flow cytometric quantitation of the proportions (D, F) 
and numbers (E, G) of total (D, E) and GFP+ (F, G) CD11b+ cDC2 cells. (H-K) Representative 
histograms for median fluorescence intensity (MFI) levels of Y-Ae (H), CD40 (I), CD80 (J) and 
CD86 (K) on the surface of GFP+ CD11b+ cDC2s in 23-month-old mice with or without imiquimod 
treatment compared to 2-month-old control mice. (L-O) Quantitation of MFI levels of Y-Ae (L), 
CD40 (M), CD80 (N) and CD86 (O) on the surface of GFP+ CD11b+ cDC2s in 23-month-old mice 
with or without imiquimod treatment. Bar graphs show the results of one of two independent 
experiments. Bar height corresponds to the mean, and each circle represents one biological replicate. 
P-values were determined using the Mann-Whitney test in GraphPad Prism6. The mouse artwork 
was kindly provided by Alice Denton. 
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 Imiquimod enhances Tfh cell priming in aged mice 
These findings raised the question of whether imiquimod treatment could ultimately boost the 

defective Tfh cell responses in aged animals. To test this, I analysed GC responses on day 7 in 23-

month-old mice which were, or were not, treated topically with imiquimod after subcutaneous 

immunisation with NP-1W1K in Alum (experimental set-up shown in Figure 5.11A). In these 

experiments, imiquimod potently induced the expansion of both total and antigen-specific Tfh cell 

numbers (Figure 5.11B-E). This was linked with a small, but significant, increase in the number of 

GC B cells in imiquimod-treated mice compared to aged control mice (Figure 5.11F-G). Together, 

these results show that restoration of type I IFN signalling in aged mice after vaccination rescues 

defective Tfh cell differentiation, likely due to improved T cell activation by cDC2s with adequate 

levels of type I IFN signalling, but is not sufficient to completely rejuvenate GC B cells responses.  
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Figure 5.11: Imiquimod boosts antigen-specific Tfh cell differentiation in aged mice. (A) 
Schematic representation of the experimental set-up. 23-month-old mice were subcutaneously 
immunised with NP-1W1K in Alum. Half of the mice were topically treated with imiquimod cream 
on top of their immunisation sites. 7 days later, draining LNs were analysed by flow cytometry. (B-
E) Representative flow cytometric plots (B, D) and quantitation (C, E) of CXCR5hiPD-1hiCD4+ T 
follicular helper (Tfh) cells (B, C) as well as antigen-specific 1W1K-I-Ab+ Tfh cells (D, E). (F-G) 
Representative flow cytometric plots (F) and quantitation (G) of B220+Ki67+Bcl6+ GC B cells. Bar 
graphs show the combined results of three independent experiments. Bar height corresponds to the 
mean, and each circle represents one biological replicate. P-values were determined using the 
Mann-Whitney test in GraphPad Prism6. The mouse artwork was kindly provided by Alice Denton. 
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 Discussion  
Vaccination responses in older individuals are reduced, at least in part due to age-associated defects 

in the GC response and the subsequent reduction in the generation of high-affinity antigen-specific 

antibodies (Gustafson et al. 2018; Linterman 2014). A potent GC response is dependent on the 

formation of Tfh cells for Tfh cell-mediated B cell help (Vinuesa et al. 2016). Here, we show that 

the development of antigen-specific Tfh cells is impaired in aged mice, and that this is associated 

with an altered phenotype of cDC2s, the main antigen-presenting cell type in the LN after 

subcutaneous protein immunisation. RNA-sequencing of cDC2s from aged mice revealed a 

defective type I IFN response, resulting in the reduced expression of the co-stimulatory ligands 

CD80 and CD86. Based on this finding, we decided to treat aged mice with the type I IFN-inducing 

TLR7 agonist imiquimod, to increase levels of IFN signalling in cDC2s. This ultimately increased 

formation of Tfh and GC B cells in aged mice upon immunisation. Taken together, this highlights 

cDC2s as an exciting therapeutic target for the improvement of vaccine efficacy in the ageing 

population, potentially by using imiquimod or other adjuvants that promote of type I IFN signalling. 

Recently, type I IFNs have emerged as potent vaccine adjuvants (Bracci et al. 2008; Proietti et al. 

2002). They were found to boost humoral antibody responses in mice by exerting direct effects on 

B cells (Le Bon et al. 2006), as well as T cells (Le Bon et al. 2006; Nakayamada et al. 2014; Riteau 

et al. 2016) and DC cells (Cucak et al. 2009; Le Bon et al. 2001). In DCs, type I IFN was shown to 

promote the expression of co-stimulatory molecules and pro-inflammatory cytokines (Moretto et 

al. 2008). Signalling downstream of IFNaR additionally promotes the secretion of IL-6 and IL-1β 

by DCs, which were shown to enhance the expression of Bcl6, CXCR5 and ICOS by Tfh cells 

(Barbet et al. 2018; Cucak et al. 2009). Taken together, these studies demonstrate a clear link 

between type I IFN signalling in DCs and their potential for T cell priming. Here, we describe a 

link between defective T cell priming in aged mice and reduced type I IFN signalling in cDC2s. 

Consistent with data from Moretto et al., we observed reduced expression levels of the co-

stimulatory ligands CD80 and CD86 on DCs from aged mice (Moretto et al. 2008). Moretto et al. 

have shown that IL-15 treatment can rescue the expression of CD86 on DCs from one-year-old 

mice (Moretto et al. 2008). I found that imiquimod-boosted type I IFN signalling can also potently 

increase CD80 and CD86 expression on cDC2s in aged mice. This is associated with the improved 

generation of antigen-specific Tfh cells in these mice, providing novel mechanistic insights into the 

drivers of age-associated defects in GCs. 

Several strategies are currently being used to enhance the GC response of aged individuals to 

infections and vaccinations. Modifications of the vaccine adjuvant (Frech et al. 2005) or 
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administration of increased antigen doses (Remarque et al. 1993) can improve vaccination 

responses in older subjects. Hung et al. have previously shown that topical imiquimod treatment at 

the time of vaccination potently enhances immune responses to influenza vaccination in both young 

and older individuals (Hung et al. 2014; 2016). This is exciting, as it suggests - together with the 

data presented here - that the age-related defect in the GC response is not irreversible, and can be 

targeted therapeutically to improve immune protection in older individuals. Our study provides 

novel mechanistic insights into how imiquimod might enhance vaccination responses in vivo. In 

mice, the beneficial effect of imiquimod has previously been linked with direct effects of imiquimod 

on B cells in vitro as well as improved IL-6 cytokine production by and CD80/CD86 expression on 

DCs in young mice (Fehres et al. 2014; Li et al. 2018; Thomsen et al. 2004). My data confirm that 

imiquimod boosts GC responses in aged animals by enhancing cDC2-dependent T cell priming and 

Tfh cell differentiation. This highlights cDC2s as an important target for improved vaccination 

strategies in older individuals and suggests possible applications for imiquimod in promoting 

vaccine responses in the ageing population. 

 

Note: 

This project was started by Alexandre Bignon, who generated all data depicted in Figures 5.1, 5.2, 

5.3, 5.4, 5.6A-C. He performed initial GC and DC phenotyping experiments, generated the DC 

RNA sequencing data together with Danika Hill, Edward Carr, Michelle Linterman and Christel 

Krueger and also started validating the RNA sequencing results. When he left the lab, I followed 

up on the role of type I IFN signalling in cDC2s from aged mice and performed all imiquimod 

experiments under the supervision of Michelle Linterman (Figures 5.5D-E, 5.6D-G, 5.7, 5.8, 5.9, 

5.10, 5.11).
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 DISCUSSION 
The immune system has evolved to respond to its environment, to sense tissue damage, infections 

and changes in normal homeostasis. As a result, immune cells and their functions are dynamically 

regulated by changes in their microenvironment. In this thesis, I demonstrate that stress and ageing 

have key roles in CD4 T cell differentiation and in the formation of the GC response. My results 

further demonstrate that changes in the environment are able to stimulate the aged immune system 

and can be used to potentiate immune responses in older individuals. 

 ER stress: a novel driver of Th17 cell pathogenicity? 
In this thesis, a link between ER stress and Th17 cell differentiation and pathogenicity is described. 

This could provide an explanation why Th17 cells have been implicated in both protective and 

pathogenic immunity: while they are crucial for barrier immunity, they have also been implicated 

in the pathogenesis of autoimmune disease, such as rheumatoid arthritis and multiple sclerosis 

(Stockinger & Omenetti 2017). Work from both in vitro and in vivo settings identified that Th17 

cell pathogenicity is linked with their propensity to adopt a Th1-like cell phenotype and produce 

GM-CSF and IFNg under the influence of IL-23 (El-Behi et al. 2011; Ghoreschi et al. 2010; Hirota 

et al. 2011; Jain et al. 2016; McGeachy et al. 2007). After the initial implication of IL-23 in Th17-

driven pathology, it has become clear that other environmental factors, such as high salt 

concentrations or the presence of different AhR ligands, can also influence Th cell differentiation 

and pathogenicity (Quintana et al. 2008; Veldhoen et al. 2008a; Wu et al. 2013). The data presented 

here reveal that the ER stress-inducer CPA drives the generation of Th17 cells with a pathogenic 

gene expression signature. This suggests that ER stress, a common feature of inflammatory sites, 

could be a driver of Th17 cell pathogenicity in autoimmune disorders. To test whether there is a 

broad role for stress in the differentiation of pathogenic Th17 cells, it would be interesting to 

investigate whether other stress conditions, such as BrPA or nutrient deprivation, can also induce 

the formation of pathogenic Th17 cells. To determine whether my findings have implications for 

human autoimmune diseases, it would be important to determine whether there is a link between 

stress and Th17 cell-driven pathology in humans.  

The ER stress response was found to be highly active in inflammatory lesions of MS patients 

(Mháille et al. 2008) as well as in EAE, where it was described to promote inflammation and 
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pathology (Deslauriers et al. 2011; Meares et al. 2014; Mháille et al. 2008). This prompts the 

hypothesis that ER stress in the CNS promotes EAE pathology by driving the local generation of 

pathogenic Th17 cells. ER stress is induced by inflammation, and, when triggered, enhances the 

secretion of pro-inflammatory cytokines such as IL-23, IL-6, TNF-a and type I IFNs (Bettigole & 

Glimcher 2015; Hu et al. 2011; Martinon et al. 2010; Smith et al. 2008), creating a feed-forward-

loop in which the inflammatory microenvironment might potentiate the development of 

autoimmune disorders (Sprenkle et al. 2017). In our adoptive-transfer EAE experiments, ER stress-

generated Th17 cells caused the delayed onset of typical EAE clinical symptoms, but triggered 

atypical symptoms of Th17-mediated brain inflammation. This could point to an increased 

pathogenic potential of ER stress-generated Th17 cells in the brain in vivo. To test this, e-Th17 cells 

need to be characterised further: ER stress-induced changes in Th17-to-Th1 plasticity, a common 

feature of EAE as measured by the IFNg production of ex-Th17 cells (Hirota et al. 2011), could be 

tested in vivo using adoptive transfers of Rosastop-tdRFPIl17aCre cells. In these experiments, it would 

also be important to study the potential of e-Th17 cells to infiltrate the CNS, a hallmark of EAE 

pathology (Rostami & Ciric 2013). Furthermore, it would be interesting to assess the pathogenic 

potential of e-Th17 cells in other Th17-cell mediated diseases. To determine whether e-Th17 cells 

have a broad role in Th17-driven pathology, arthritis or Helicobacter pylori-induced inflammation 

could be induced and studied in Xbp1fl/flCd4cre/+ mice, which lack Xbp1-mediated ER stress 

responses in T cells. These experiments would further test the hypothesis that there is a link between 

Th17 cell-mediated disorders and ER stress. 

Another open question is whether physiological levels of ER stress can drive Th17 cell 

differentiation in vivo? We observed the delayed onset of EAE symptoms in TUDCA-treated or 

Xbp1fl/flRag1cre/+ mice with repressed ER stress responses, suggesting that suppression of ER stress 

response pathways lessens EAE pathology in vivo. To determine whether ER stress drives EAE by 

directly acting on T cells, these experiments could be repeated using Xbp1fl/flCd4cre/+ or 

Xbp1fl/flIl17acre/+ mice that lack an ER stress response in all T cells or Th17 cells specifically, or by 

inducing adoptive-transfer EAE using MOG-specific T cells from 2D2 mice with a specific deletion 

in Xbp1. ER stress levels in T cells could be measured in different disease settings using the Xbp1-

luciferase mouse model generated by Spiotto et al. (Spiotto et al. 2010), to test whether the 

generation of pathogenic Th17 cells is indeed associated with ER stress conditions in vivo. Together, 

these experiments would build on the work presented here to further understand the contribution of 

ER stress to in vivo pathogenesis. 

Elevated ER stress responses are a common feature of neuroinflammation and other inflammatory 

disorders (Sprenkle et al. 2017). In this study, treatment of mice with the ER stress inhibitor 
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TUDCA delayed the onset of EAE in mice suggesting that this FDA-approved drug could be used 

to slow disease progression in MS patients. However, there are concerns about the potential side-

effects of ER stress inhibitors when systemically administered to patients, as the ER stress response 

is an essential pathway important for normal homeostasis in all cells (Hetz et al. 2013). Instead of 

targeting the ER stress response pathway, our data suggest that therapeutic efforts could also more 

directly target ER stress-generated Th17 cells. The gene signature of ER stress-generated Th17 cells 

reported here, together with the pathogenic Th17 cell gene signature proposed by Lee et al. (Lee et 

al. 2012), might help to guide the development of novel therapies which specifically target 

pathogenic Th17 cells at sites of inflammation without affecting protective Th17 cells at barrier 

sites.  

 The GC response in ageing 
Ageing results in a plethora of biological changes which can influence immune cells in a cell-

intrinsic manner and in a cell-extrinsic way by changes in their microenvironment (López-Otín et 

al. 2013; Nikolich-Žugich 2018). The relative contribution of these effects to age-associated 

immune defects is difficult to disentangle, though. On a molecular level, all human cells experience 

age-related telomere shortening, the accumulation of genetic mutations, epigenetic changes, 

defective mitochondria and an increased burden of unfolded proteins which is associated with 

alterations in the ER stress response and protein degradation (Brown & Naidoo 2012; López-Otín 

et al. 2013). On the cellular level, ageing affects the communication between cells, tissue 

regeneration is reduced and senescent cells, that secrete pro-inflammatory mediators, accumulate 

over time (Linterman 2014; López-Otín et al. 2013; Tchkonia et al. 2013). In lymphocytes 

specifically, the reduced production of lymphoid precursors in the bone marrow and the prolonged 

exposure to antigens over the life-time additionally leads to an age-related increase in memory cells 

and a reduction in the pool of naïve T and B cells (Nikolich-Žugich 2018). The GC response has 

also been described to be impaired in aged mice and humans, resulting in the reduced formation of 

high-affinity plasma cells and serum antibody levels (Eaton et al. 2004; Kosco et al. 1989; Kraft et 

al. 1987; Linterman 2014; van Dijk-Härd et al. 1997; Yang et al. 1996). This is associated with an 

increased susceptibility to infections and decreased vaccination efficacy in older individuals 

(Linterman 2014).  

GCs are complex structures consisting of multiple cell types including stromal cells, GC B cells, 

Tfh cells and Tfr cells. Age-associated defects in the output of the GC response have been linked 

with changes in all of these cell types (Gustafson et al. 2018; Linterman 2014; Nikolich-Žugich 

2018). This makes it difficult to dissect the contributions of ageing-related changes in individual 
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cell types to changes in the GC output. What is more, ageing seems to affect GCs in PPs differently 

from GCs in the spleen and LNs. In this thesis, I describe distinct age-associated changes in 

environmental stimuli which shape GC responses in the PPs and draining LNs of aged mice: the 

gut microbiome and type I IFN signalling, respectively.  

 Cross-talk between the gut microbiome and GC responses in 
the PPs of aged mice 

 Ageing differentially affects GC responses in PPs and LNs  

PPs are unique SLOs in that they take up antigens directly from the gut lumen and always contain 

GCs due to constant antigenic stimulation from the gut microbiota and exposure to food antigens 

(Kawamoto et al. 2014; Reboldi & Cyster 2016; Stebegg, Kumar, Silva-Cayetano et al. 2018). PPs 

are also differently affected by ageing compared to other lymphoid tissues: like LNs, PPs show an 

age-associated reduction in the proportion of GC B cells, however there is an increase in somatically 

mutated antibodies in the gut of aged mice, while in LNs SHM is reduced with advancing age 

(Banerjee et al. 2002; González-Fernández et al. 1994). What is more, both BALB/c and C57BL/6 

mice exhibit reduced antigen-specific antibody responses in the gut (Kato et al. 2003; Kawanishi 

& Kiely 1989; Koga et al. 2000), but the levels of total secreted IgA in the intestine are not 

negatively affected (Senda et al. 1988; Thoreux et al. 2000). The data presented here confirm that 

the GC response in the PPs of aged mice is diminished, but that they age differently from GCs in 

mLNs and other peripheral LNs, where not only GC B cells, but also Tfh and Tfr cell numbers are 

affected by age. This demonstrates the unique effect of ageing on PPs compared to other SLOs. 

Unlike peripheral lymphoid tissues, the gut is constantly exposed to antigenic stimulation from the 

commensal microbiome. There are also specialised mechanisms of immune regulation in GCs in 

PPs, potentially to favour the generation of a highly diverse IgA pool in response to the constant 

exposure to microbial antigens (Reboldi & Cyster 2016; Stebegg, Kumar, Silva-Cayetano et al. 

2018).	This has been linked with unique properties of DCs, Tfh cells and Tfr cells in PPs compared 

to LNs (Stebegg, Kumar, Silva-Cayetano et al. 2018), which may impact how ageing affects these 

cell types and the PP GC response.	

 The IgA-mediated control of the gut microbiome is largely GC 
independent 

Fagarasan and co-workers have implicated IgA antibodies produced in a GC-dependent manner in 

PPs in the control of gut microbial homeostasis (Kawamoto et al. 2012; 2014; Wei et al. 2011). 

There is conflicting evidence, however, from mice lacking either T-dependent immune responses 



 6.Discussion: The GC response in ageing 

 
137 

(CD28-deficient mice (Gärdby et al. 2003) and CD40-deficient mice (Bergqvist et al. 2006)) or Tfh 

cells (Bcl6fl/flCd4cre/+ (Bunker et al. 2015)). These animals, all of which lack functional GC 

responses, have high mucosal IgA antibody titres and near-to-normal levels of bacterial IgA-coating 

were reported in Bcl6fl/flCd4cre/+ mice, suggesting that GC-independent IgA is the main regulator of 

the gut microbiome. Despite smaller GCs in the PPs of aged mice, I did not observe any defects in 

the total levels of mucosal IgA or commensal IgA-coating in older mice. This suggests that 

sufficient IgA is produced by a compensatory mechanism in a GC-independent manner and that 

changes in the gut microbiome during ageing are not likely driven by the reduced PP GC response 

of aged mice.  

To test this hypothesis and rule out a role of the GC in controlling the gut microbiota, we studied 

Bcl6fl/flCd4cre/+ mice that lack Tfh cells and therefore do not have good GC responses. I found that 

only the abundance of one species, a type of SFB, was affected in the gut of these mice, indicating 

that PP GCs are not required to control the composition of the gut microbiome as a whole, but may 

have a role in controlling particular bacterial species. This addresses a controversial topic in the 

field and suggests that GCs contribute little to the overall IgA-mediated control of the gut 

microbiota. I hypothesise that current discrepancies in the literature could be linked with disparities 

in the composition of the gut microbiome in different animal facilities. Several mouse disease 

phenotypes have been shown to be affected by the presence or absence of SFB in the gut and my 

16S rDNA sequencing data suggest that these bacteria are amongst the few whose abundance is 

regulated by GC-dependent IgA antibodies (Ericsson et al. 2015; Ivanov et al. 2009; Lee et al. 

2011; Wu et al. 2010). Thus, changes in the PP GC response are expected to have a more 

pronounced effect in animals carrying SFB than in animals lacking this taxa. Bcl6fl/flCd4cre/+ mice 

housed at the Babraham Institute harbour only low levels of SFBs and do not exhibit changes in 

their gut microbiome compared to littermate controls, while SFBs constitute a large proportion of 

the gut commensals detected in mice used by Fagarasan and co-workers, which experience large 

differences in their gut microbiota composition upon changes in GC-dependent IgA production 

(Kawamoto et al. 2014; Suzuki et al. 2004). These differences could explain how the GC-dependent 

control of only a very limited set of bacterial taxa can have global effects on gut microbial 

composition in some mice. This also highlights that vendor- and facility-specific differences in the 

composition of the gut microbiome cannot be neglected when studying the cross-talk between the 

gut microbiome and the gut immune system.  
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 No obvious effects of FMT on antigen-specific GC responses in the 
PPs of aged mice 

Even though the importance of GC-derived IgA antibodies for controlling the gut microbiome is 

under debate, they have a clear role in the protection against intestinal pathogens (Hashizume et al. 

2008) and oral tolerance (Fujihashi et al. 2001). Kato et al. linked impaired oral tolerance in aged 

mice with impaired PP GCs (Kato et al. 2003), associated with defective M cell maturation in the 

PPs of aged mice (Kobayashi et al. 2013). Thus, the increase in intestinal infections in the elderly 

could be linked with an age-associated defect in their Peyer’s patches (Kolling et al. 2012). In this 

thesis, I describe an age-associated reduction in PP GC B cells, which is reverted by the acquisition 

of the microbiome of a younger animal. This demonstrates that the poor GC reaction in aged animals 

is not irreversible, and can be boosted by changes in the gut microbiome.  

Shin et al. demonstrated that the microbial transfer of a young microbiome into aged hosts increases 

protection against C. difficile infections in these mice (Shin et al. 2018). Also in humans, FMT has 

proven to be an effective treatment against C. difficile infections in both young and older individuals 

(Friedman-Korn et al. 2018; Mamo et al. 2018). Two mechanisms for how FMT enhances 

protection against C. difficile infections have been proposed: the induction of protective mucosal 

immune responses or restoration of microbiota-dependent protection (Khoruts & Sadowsky 2016). 

In the experiments reported here, FMT did not improve local or systemic immune responses to NP-

CTx in aged mice, suggesting that FMT does not enhance immune responses to this antigen under 

the conditions used. Before completely excluding any beneficial effects of FMT on antigen-specific 

PP GC responses, however, some open questions should be addressed: is the effect of FMT and co-

housing on the composition of the gut microbiome transient or stable? Similarly, is the boost in GC 

B cells in the PPs of aged mice upon microbial transfer transient or stable? Prolonged co-housing 

experiments and an extension of the observation period after FMT could help to answer these 

questions. Maybe FMT could enhance antigen-specific immune responses if NP-CTx 

immunisations are performed at a later time point, when the gut microbiome and the effects of FMT 

on the PP GC reaction have stabilised? 

Another unanswered question is whether microbial transfers boost the PP GC reaction by antigenic 

stimulation, by acting as an adjuvant for existing GCs, or a combination of the two. Both FMT and 

the administration of the strong immunogen CTx were found to boost GC B cell numbers in the 

PPs of aged mice. This indicates that the expansion of the GC reaction by FMT is not due to 

reactivation of commensal-specific memory B cells. Rather, it suggests that both FMT and CTx 

boost PP GC reactions in an antigen- or adjuvant-like manner. Sequencing analysis of the B cell 

repertoires in aged mice which received FMT and PBS-treated control mice could help to 
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distinguish between these two mechanisms. If FMT acted as an adjuvant, this should lead to the 

numerical expansion of pre-existing GC B cell clones, while antigenic stimulation would result in 

the emergence of new clones, which would potentially be shared amongst FMT recipients. 

Answering the questions above could help to reveal or refute any potential beneficial effects of 

FMT on antigen-specific GC responses in the gut.  

 Rejuvenation of the gut microbiome as a potential intervention to 
improve healthy ageing 

Age-associated changes in the composition of the gut microbiome have been linked with increased 

frailty and systemic inflammation (Claesson et al. 2012; Fransen et al. 2017; Maffei et al. 2017). 

Germ-free mice were found to live longer than their SPF counterparts (Thevaranjan et al. 2017) and 

short-lived Killifish colonised with a young microbiome were found to live longer than untreated 

fish (Smith et al. 2017). The supplementation of older individuals and aged mice with pre- and 

probiotics was also found to improve gut immunity in the elderly (Kaburagi et al. 2007; Landete et 

al. 2017). This suggests a direct effect of the rejuvenation of the gut microbiome in aged individuals 

on intestinal health as well as lifespan.  

We were able to demonstrate that cohousing is very effective in altering the composition of the 

microbiome of aged mice and that one single FMT, even without previous antibiotic treatment, is 

sufficient to achieve the same effect. This raises the question whether FMT from young donors or 

cohabitation with young individuals could also improve healthspan in older individuals? FMT is 

already in routine use for the treatment of C. difficile infections in aged patients in the UK (NICE 

guidelines, 2014). A long-term follow-up study of patients who received FMT from a younger 

donor as a successful treatment of their C. difficile infection could reveal potential beneficial effects 

of FMT on other age-associated disorders. These studies might also uncover associations of any 

FMT-associated health benefits with the transfer of certain bacterial species. However, I detected 

no conservation of the bacterial species transferred from adult into aged mice during co-housing or 

FMT between C57BL/6 and BALB/c mice. This could indicate that rejuvenation of the gut 

microbiome exerts its effects by reintroducing bacterial functions shared between taxa, such as the 

generation of short-chain fatty acids or other bacterial metabolites, or by the simple transfer of 

antigen back into aged mice, rather than the transfer of specific bacterial species with immunogenic 

properties. Metagenomics studies could reveal such shared bacterial functions, which are missing 

in the gut microbiome of aged animals and are replenished by microbial transfers from adult mice 

(Alves et al. 2018).  
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Cohabitation has also been described to have strong effects on both the gut microbiome and the 

cellular composition of the immune system, with people living together sharing more bacterial 

species and having more similar immunoprofiles than individuals from different households (Carr 

et al. 2016; Song et al. 2013). What is more, Claesson et al. observed a significant decrease in gut 

bacterial diversity in aged individuals living in long-stay care compared to community dwellers and 

this was associated with increased age-associated frailty (Claesson et al. 2012). This suggests a 

possible link between environmental factors, gut microbiota composition and the immune system 

not only in mice and fish, but also in humans. In addition to cohabitation and FMT (Gupta et al. 

2016), probiotics (Landete et al. 2017) and diet (Clements & R. Carding 2018) also have a strong 

impact on the composition of the gut microbiome. Separately or in combination, they could prove 

to be effective interventions to promote intestinal health and healthy ageing.  

 T cell priming in aged mice is improved by enhanced type I 
IFN signalling in cDC2s 

Immune responses of older individuals to infections or vaccinations are reduced, at least in part due 

to defects in the GC response and a subsequent reduction in the generation of antigen-specific 

antibodies (Gustafson et al. 2018; Linterman 2014). This is associated with increased infection-

related morbidity and mortality in the elderly (Linterman 2014) and creates a burden for public 

healthcare in ageing societies (WHO 2011). Therefore, there are many efforts to enhance GC-

dependent vaccination responses in older individuals, e.g. to influenza vaccinations. Injections of 

increased antigen doses (Remarque et al. 1993) and modifications of the vaccine adjuvant (Frech 

et al. 2005) were found to improve vaccination responses in older subjects. Recently, type I IFNs 

have also emerged as potent vaccine adjuvants (Bracci et al. 2008; Proietti et al. 2002). The TLR7-

agonist imiquimod induces the production of type I IFNs in vivo and potently enhances influenza 

vaccine responses in older individuals (Hung et al. 2014; 2016). This demonstrates that age-related 

defects in vaccine responses are not irreversible, and can be targeted therapeutically to improve 

immune protection in older individuals. Our study provides novel mechanistic insights into how 

imiquimod might enhance vaccination responses in vivo.  

 The age-associated reduction of the GC response is linked with 
defects in several GC cell types 

By boosting type I IFN signalling in DCs at the time of immunisation using imiquimod, Tfh cell 

differentiation was improved in aged mice. This restoration of Tfh cell responses corresponded to 

a significant, but small, increase in the formation of GC B cells, indicating that impaired GC 
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responses in aged mice are only partly driven by a reduction in Tfh cells, and are also linked with 

age-associated defects in other GC components (Linterman 2014). B cells from aged mice, when 

transferred into young hosts, were found to have reduced rates of SHM, but were otherwise fully 

capable of forming GCs in a young environment (Yang et al. 1996). This suggests that the impaired 

expansion of GC B cells in aged mice is primarily due to B cell-extrinsic defects. Sage et al. reported 

on reduced B cell help by Tfh cells in aged mice, which was not linked with a reduction in Tfh cells, 

but with the reduced expression of the important co-stimulatory molecules ICOS and CD40L on 

the surface of aged T cells, combined with increased levels of co-inhibitory PD-1 (Sage et al. 2015). 

Also in humans, B cell help from memory Tfh cells during recall responses was found to be 

impaired (Yu et al. 2012). In this thesis, I demonstrated that administration of imiquimod at the 

time of immunisation potently enhances the generation of Tfh cells in aged mice, but I didn’t test 

the ability of these Tfh cells to provide B cell help. B cell co-cultures with Tfh cells as well as flow 

cytometric analysis of CD40, ICOS, IL-21 and IL-4 expression by Tfh cells after immunisation 

with or without imiquimod could reveal potential beneficial effects of imiquimod not only on Tfh 

cell formation, but also Tfh cell-dependent B cell help.  

In addition to defects in the T cell (and DC) compartment, FDCs in aged mice form smaller 

networks and retain fewer antigen-immune complexes 24 hours after immunisation compared to 

adult mice (Turner & Mabbott 2017). Sage et al. also reported on an increase of suppressive Tfr 

cells in the LNs of aged BALB/c mice (Sage et al. 2015), which we confirmed in our lab. Taken 

together, this suggests that the defect in GC B cell expansion observed in aged mice is not only 

linked with a defect in T cell priming, but possibly also with reduced B cell help from Tfh cells, 

reduced antigen retention on FDCs and increased suppression by Tfr cells. Thus, in addition to 

imiquimod, further therapeutic routes targeting FDCs, Tfr cells and Tfh cell-mediated B cell help 

need to be explored for full restoration of GC B cell formation and antibody production in aged 

mice.  

 Imiquimod: a potential vaccine adjuvant in humans 

In humans the topical application of imiquimod on injection sites can potently enhance antibody 

production in response to vaccination (Hung et al. 2014; 2016). This suggests that in humans, 

imiquimod might be sufficient to not only boost T cell priming but also B cell responses. So, does 

imiquimod act via a similar mechanism in both mice and humans? Using human skin explants, 

Fehres et al. demonstrated that imiquimod also enhances migration and CD80/86 expression of 

human DCs from young donors (Fehres et al. 2014). To confirm that this action mode of imiquimod 

is retained in older individuals, in vitro experiments with DCs isolated from the blood or skin 
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biopsies of older compared to younger individuals are required. Circulating peripheral blood Tfh 

cells can be used as biomarker for Tfh cell responses in SLOs and could be analysed by flow 

cytometry to assess the effect of imiquimod treatment on Tfh cell differentiation and overall GC 

responses in vivo (Heit et al. 2017; Linterman & Hill 2016). What is more, fine needle aspirates of 

lymph nodes coupled with flow cytometry have recently emerged as a promising method to 

quantitatively monitor germinal centre activity in primates and humans where lymph nodes are not 

easily obtained (Havenar-Daughton et al. 2016; Silowash et al. 2016). These fine needle aspirates 

could provide additional insights into the effect of imiquimod on DCs, Tfh cell formation and GC 

B cell responses in aged humans in vivo. This could help the design of novel type I IFN-based 

adjuvants or other DC-targeted adjuvants with enhanced efficacy in the elderly, based on the novel 

link between defective type I IFN signalling in DCs with age-associated defects in the GC response 

reported in this thesis.  

In conclusion, the work reported here revealed that adaptive immunity is strongly influenced by 

environmental changes. Both cellular stress as well as ageing have previously been reported to exert 

global effects on immune cell functions (Bettigole & Glimcher 2015; Montecino-Rodriguez et al. 

2013). The data presented here reveal a previously unknown role for the ER stress response in 

inducing Th17 differentiation, potentially associated with Th17 cell pathogenicity in autoimmune 

disorders. The studies of GC responses in aged mice presented here further revealed that not only 

the gut microbiome, but also DCs are exciting targets to improve GC responses in ageing. Taken 

together, this demonstrates that environmental stimuli shape adaptive immunity by enhancing T 

helper cell differentiation and the germinal centre response. 
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