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Abstract – A spin-imbalanced Fermi gas with an attractive contact interaction forms a super-
conducting state whose underlying components are superpositions of Cooper pairs that share
minority-spin fermions. This superconducting state includes correlations between all available
fermions, making it energetically favorable to the Fulde–Ferrell–Larkin–Ovchinnikov supercon-
ducting state. The ratio of the number of up- and down-spin fermions in the instability is set by
the ratio of the up- and down-spin density of states in momentum at the Fermi surfaces, to fully
utilize the accessible fermions. We present analytical and complementary Diffusion Monte Carlo
results for the state.

For over a century, the phenomenon of superconductiv-
ity has captured the attention of theorists, who have pro-
vided fundamental revelations about its underlying prin-
ciples. Bardeen, Cooper, and Schrieffer (BCS) [1, 2] gave
seminal insights into the mechanism of superconductiv-
ity in systems with spin-balanced Fermi surfaces, showing
that superconductivity may be understood as the collec-
tive behavior of coherent Cooper pairs of fermions. Fulde,
Ferrell, Larkin, and Ovchinnikov (FFLO) [3, 4] extended
this result, demonstrating that even in systems with spin-
imbalanced Fermi surfaces Cooper pairs may still form
the basis of a superconducting state. However, in spin-
imbalanced systems, the density of states in momentum at
the Fermi surface of the majority-spin fermions is greater
than that of the minority-spin fermions, so the number of
Cooper pairs that can exist is limited by the number of
minority-spin fermions at their Fermi surface. This leaves
many of the majority-spin fermions unpaired and so un-
correlated, wasting their potential for contributing corre-
lation energy to the system.

In a few-fermion context, an instability [5] containing
more majority than minority-spin fermions maximizes the
binding energy captured in spin-imbalanced systems by
taking advantage of the correlations between all avail-
able momentum states. Such an instability involves non-
exclusive pairing between several majority-spin fermions
and one minority-spin fermion in an ensemble that we call
a communal state. An example state is shown in Fig. 1,
with three majority- (up-)spin fermions each paired with
the same minority- (down-)spin fermion. This inspires us

to merge Cooper pairs that share a minority-spin fermion
to construct a communal superconducting state that corre-
lates all available momentum states on the Fermi surfaces.
We show that this superconducting state with fermions
shared between pairs is energetically favorable over the
exclusive Cooper pair-based FFLO superconductivity in
spin-imbalanced systems.

Current experimental developments enable the study
of exotic superconducting phases in solid-state spin-
imbalanced Fermi gases [6–10], and spin-orbit coupling
may give rise to inhomogeneous superconductivity [11,12];
but no single experiment has provided unambiguous evi-
dence for the existence of FFLO superconductivity, leav-
ing the true nature of the ground state an open question.
However, the recent development of uniform trapping po-
tentials for ultracold atomic gases [13] promises unparal-
leled experimental accuracy, presenting an ideal opportu-
nity to revisit the structure of the superconducting ground
state of spin-imbalanced Fermi gases.

In this Letter we examine the ratio of number of
majority- to minority-spin fermions in communal states
underlying the superconducting state of a spin-imbalanced
Fermi gas, compare the energetics of communal super-
conductivity favorably to that of FFLO superconductiv-
ity, and present analytical and complementary Diffusion
Monte Carlo results for the state. We also discuss unique
experimental consequences of the proposed communal su-
perconductor.

To explore communal superconductivity we examine
a two-spin fermionic system with an attractive contact
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Fig. 1: (Color online) Idealized representation of the spin-
imbalanced system showing Fermi surfaces for the down- (light
blue circle) and up-spin (light red arc) species, with occupiable
momentum states extending over a momentum scale set by the
Debye frequency, forming annuli. The intensity of color in the
annuli indicate the approximate extent of the superconducting
correlations. Also shown are the momenta of (N↑,N↓) = (3, 1)
up- and down-spin fermions with corresponding q-vectors qσi.
The angular spread of the up-spin fermion momenta is exag-
gerated for clarity.

interaction. The quantum partition function, Z =∫
D(ψ, ψ̄)e−S[ψ,ψ̄], depends on the BCS action

S[ψ, ψ̄] =
∑
ω,k,σ

ψ̄k,σ(−iω + ξk,σ)ψk,σ

− g
∑

ω,k,k′,q

ψ̄k,↑ψ̄q−k,↓ψq−k′,↓ψk′,↑,

where ψk,σ and ψ̄k,σ are a fermion field and its Grassmann
conjugate, for momentum k and spin species σ ∈ {↑, ↓},
ξk,σ ≡ εk,σ − µσ where εk,σ and µσ are the species-
dependent dispersion and chemical potential respectively,
g > 0 is the strength of the attractive contact interaction,
and ω is a fermionic Matsubara frequency. In this expres-
sion the momenta q, referred to henceforth as q-vectors,
give the net momenta of coupled fermions. Our strategy is
to build on the original BCS and FFLO theories that are
directly applicable to the solid state, and so here adopt a
Debye frequency cutoff on the sums over k, however simi-
lar results are obtained in cold atom gases provided proper
regularization is carried out.

We perform a Hubbard-Stratonovich decoupling in the
Cooper channel, using a concise matrix formalism to ex-

press the action as

S[ψ,ψ̄,∆,∆∗] =
∑
ω,k

(
ψ̄↑
ψ↓

)T
(
G−1
↑ −∆

−∆† G−1
↓

)(
ψ↑
ψ̄↓

)

+
∑
ω

Tr
(
∆†∆

)
g

, (1)

where the vectors ψσ = (ψ(qσ1+ςσk),σ,ψ(qσ2+ςσk),σ, . . .)T,
with ς↑ = +1 and ς↓ = −1, the Grassman con-
jugates ψ̄σ are similar, the matrices G−1

σ =
diag(G−1

(qσ1+ςσk),σ,G−1
(qσ2+ςσk),σ, . . .), for G−1

p,σ =

−iω + ςσξp,σ, and

∆ =

∆q↑1+q↓1 ∆q↑1+q↓2 · · ·
∆q↑2+q↓1 ∆q↑2+q↓2 · · ·

...
...

. . .

 ,

where the qσi run over all the q-vectors of species σ.
We label the number of fermions in the underlying in-
stability, and hence the number of q-vectors, per species
by Nσ: therefore the G−1

σ are Nσ × Nσ matrices and
∆ is an N↓ × N↑ matrix. We shall find that in spin-
imbalanced systems N↑ 6= N↓, so that ∆ is rectangular
rather than square, and different numbers of fermions from
each species are involved in the underlying instability. In
the system represented by Fig. 1, where there are three
up-spin and one down-spin fermions involved in the under-
lying instability, ∆ would be a 1×3 matrix. We focus our
analysis on the Cooper channel as recent work [14] shows
that in the BCS limit, screening [15] and pairing mech-
anisms decouple so the reduction in critical temperature
due to particle-hole interactions for both our communal
state and for FFLO will be the same. We note for com-
pleteness that decoupling through the magnetic channel
was also considered but had no consequence.

The elements of the ∆ matrix gap the dispersion. For
the Fulde–Ferrell (FF) state [3] (also referred to as single-
plane-wave superconductivity) ∆ has only a single entry,
and for crystalline FFLO superconductivity it is diagonal,
see [16–18] and references therein. The non-diagonal form
here allows communal superconductivity, as in common
with the few-fermion analysis [5] multiple majority-spin
fermions share a minority-spin fermion. We focus on su-
perconductivity where the sharing majority-spin fermions
have nearly aligned q-vectors, comparable to the FF state.
For simplicity of analysis we assume that none of the
q↑i+q↓j pairs of q-vectors in ∆ are degenerate. Following
Ref. [5] the qσi vectors are taken to be not equal to each
other so that each ψp,σ appears only once in Eq. (1). This
corresponds to assigning states on the Fermi surfaces into
non-overlapping communal states of equal angular width.

With this expression for the action, working in the
mean-field approximation, we can carry out a Ginzburg-
Landau expansion of the regularized thermodynamic po-
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tential to obtain

Ω = T
∑
ω,k

∞∑
n=1

1

n
Tr
(
G↑∆G↓∆†

)n
+

Tr
(
∆†∆

)
g

,

where T is the temperature. To make progress with this
expression, we symmetrize the coupling amplitudes, ∆q =
∆. Near the second-order transition to the normal state
we may neglect high-order terms in ∆ and truncate the
expression for the thermodynamic potential to

Ω = α∆2 +
1

2
β∆4 + . . . ,

where

α =
∑
q↑,q↓

1

g
+ T

∑
ω,k

Gq↑+k,↑Gq↓−k,↓

 ,

β =
∑

q↑1,q↓1,
q↑2 q↓2

J(q↑1, q↓1, q↑2, q↓2), (2)

with

J(q1, q2, q3, q4)= T
∑
ω,k

Gq1+k,↑Gq2−k,↓Gq3+k,↑Gq4−k,↓.

(3)

To evaluate these expressions, we specialize to the case
of small Debye frequency, found for many conventional
superconductors [19–21]. In this limit, the vectors qσi
are expected to be approximately parallel to maximise
the number of contributing occupiable momentum states.
Approximately parallel but unequal qσi vectors provide a
natural tiling of the Fermi surfaces into non-overlapping
communal states. This enables us to factorize out combi-
natorial factors, giving

α = N↑N↓

(
1

g
+ T

∑
ω,k

Gq+k,↑Gq−k,↓

)
,

β = N↑N↓
[
J0 + (N↑ − 1)J↑ + (N↓ − 1)J↓

+ (N↑ − 1)(N↓ − 1)J↑↓
]
, (4)

where J0 = J(q, q, q, q), J↑ = J(q + δq↑, q, q− δq↑, q),
J↓ = J(q, q + δq↓, q, q− δq↓), and J↑↓ = J(q + δq↑, q +
δq↓, q − δq↑, q − δq↓). Here q is taken to represent the
average q-vector for the fermions, symmetrized between
species, and δqσ is half the average separation between q-
vectors for species σ, which in the small Debye frequency
limit is orthogonal to the vector q. We follow the pre-
scription of Ref. [5] that the angular widths of the re-
gions of Fermi surface involved in the communal super-
conducting state are the same between species, so the arc
lengths δqσ are proportional to the Fermi momenta and
|δq↑|/|δq↓| = k↑F/k↓F, where kσF is the Fermi momentum
of species σ. For a free dispersion J↑↓ may be evaluated
at zero temperature as

J↑↓ =
NdQ2

(Q4 − k2
⊥(δq↑ + δq↓)2)(Q4 − k2

⊥(δq↑ − δq↓)2)
,

(5)

where Nd is a dimension d ∈ {2, 3} dependent normaliza-
tion factor, Q2 ≡ 2kFkD + 1

2 |δq↑|
2 + 1

2 |δq↓|
2 + k2

D + k2
⊥,

kF = (k↑F + k↓F)/2 is the average Fermi momentum, kD

is the Debye frequency and k⊥ is the average extent of k
in the direction perpendicular to q such that the fermions
are within the Debye frequency of the Fermi energy. Sim-
ilar expressions for J↑, J↓ and J0 can be found by taking
δq↓ = 0, δq↑ = 0, or both. For kD � kF, k⊥ ∼

√
kFkD

and Eq. (5) confirms that for a single instability β ≥ 0 for
realistic values of the qi [17], justifying the truncation in
Eq. (2).

To identify the optimal ratio of number of fermions
involved in the communal superconductor, we express
Eq. (2) as a function of N↑/N↓ and N↑N↓, and then per-
form a saddle point analysis to optimize Ω with respect
to N↑/N↓, N↑N↓, and ∆ simultaneously. We note from
Ref. [5] that singly-excited state fluctuations in N↑/N↓
have a linear energy dependence, so we focus on this sad-
dle point analysis. This gives the expected ratio of number
of fermions involved in the underlying instability as

N↑
N↓

=
J↑↓ − J↓
J↑↓ − J↑

=

(
|δq↑|
|δq↓|

)2

=

(
ν↑
ν↓

)2/(d−1)

, (6)

where the second equality was obtained from Eq. (5) and
νσ is the density of states in momentum at the Fermi sur-
face of species σ.

In the case of cold atoms in the absence of a Debye fre-
quency, regularization of the divergent momentum sum-
mation in α can be done by using scattering theory to
replace the weak interaction coupling parameter g with
a formal expression involving the scattering length and
another summation with the same UV divergence char-
acteristics, resulting in a convergent expression [22]. The
momentum summation in β, and indeed in all higher terms
of the expansion of Ω, do not exhibit UV divergences, as
can be seen in how the expression for J↑↓ in Eq. (5) is
finite for any value of kD, indicating that the high k con-
tributions to the summation are not dominant. Indeed,
provided the interaction is weak, the optimal placement
of the q are unchanged and since the dominant contribu-
tions to the J come from around the Fermi surface, the
result of Eq. (6) remains unchanged, that is making the
shift from solid-state to ultracold atoms does not change
any of the significant physics.

This result confirms that the superconducting state
is indeed communal, with pairs sharing minority-spin
fermions to take advantage of all available correlations
in spin-imbalanced systems. Eq. (6) also aligns with our
heuristic expectation that the instability involves more
fermions of the species with the larger density of states in
momentum at its Fermi surface, as was also found in the
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few-fermion case [5]. For spin-balanced systems, ν↑ = ν↓
and so N↑/N↓ = 1, recovering the BCS theory result,
whilst in the polaron limit of a single minority-spin impu-
rity in a full Fermi sea of majority-spin fermions, the single
minority-spin fermion couples with all the majority-spin
fermions at their Fermi surface, in agreement with results
from the literature [23–25].

Our conclusions do not contradict the well-known result
that FFLO superconductivity is the ground state in one
dimension, obtained separately by density matrix renor-
malization group [26] and time-evolving block decimation
methods [27]. In a one-dimensional system ν↑ = ν↓ re-
gardless of the spin-imbalance, removing our initial phys-
ical motivation for communal pairing. Furthermore, in
one dimension δqσ cannot be orthogonal to q, and so if
one attempts to form a communal state, it necessarily in-
volves fermions of a particular spin species with different
energies, invalidating the symmetrization of the gap am-
plitudes ∆q so there is no evidence that communal pairing
can be energetically favourable to the FFLO state found
in previous studies of one-dimensional systems.

The same optimization procedure that gave Eq. (6) for
N↑/N↓ also provides an expression for N↑N↓, as

N↑N↓ =
(J0 − J↑ − J↓ + J↑↓)

2

(J↑↓ − J↑) (J↑↓ − J↓)
. (7)

For reasonable values of the |δqσ| and |q| in spin-
imbalanced systems this expression gives values of
N↑N↓ > 1, confirming that the communal superconduc-
tor is indeed made up of multiple fermions of at least one
spin species. Excessively high N↑N↓ is energetically pe-
nalized by the highest term in the expansion of the ther-
modynamic potential, which goes as (N↑N↓∆

2)n, and so
we expect communal superconductivity to have both Nσ
being reasonably small integers. In the spin-balanced limit
Eq. (7) collapses to the BCS result N↑N↓ = 1.

The analysis may be adapted to the number conserv-
ing canonical ensemble by constructing the Helmholtz free
energy F = Ω + µ↑n↑ + µ↓n↓, where nσ = −∂Ω/∂µσ
is the total particle number of spin species σ, so F =
(1 − µ↑∂/∂µ↑ − µ↓∂/∂µ↓)Ω. As the chemical potential
only appears in the propagator, it suffices to note that
∂Gk,σ/∂µν = ςσG2

k,σδσ,ν and so the net result on N↑N↓
and N↑/N↓ of moving from the grand canonical ensemble
to the canonical ensemble is to shift the functions J as

J →J − T
∑
ω,k

Gq1+k,↑Gq2−k,↓Gq3+k,↑Gq4−k,↓

× (µ↑(Gq1+k,↑ + Gq3+k,↑)− µ↓(Gq2−k,↓ + Gq4−k,↓)),

leading to the same conclusions as in the grand canonical
ensemble, namely that in the canonical ensemble the su-
perconducting state is indeed communal with N↑N↓ > 1
and N↑/N↓ = (ν↑/ν↓)

(2/(d−1)).
Now that we have shown that the communal supercon-

ductor is energetically favourable over single-plane-wave

FFLO superconductivity in a spin-imbalanced Fermi gas,
we need to confirm that we have not compromised the sta-
bility of the superconducting state. We validate this by
examining the phase boundaries between the communal
superconductor and three competitor phases.

With increasing spin-imbalance, BCS superconductiv-
ity becomes unstable against FFLO superconductivity at
the Chandrasekhar-Clogston limit [28,29]. Although com-
munal superconductivity is energetically favourable over
FFLO superconductivity, BCS superconductivity still has
a large density-of-states advantage over communal su-
perconductivity, and to a first approximation the phase
boundary between BCS superconductivity and communal
superconductivity will remain at the same Chandrasekhar-
Clogston value.

The phase boundary between communal superconduc-
tivity and the normal state will also remain the same as
between single-plane-wave FFLO superconductivity and
the normal state. In both cases the second-order phase
transition occurs when α = 0, and this condition is iden-
tical between FFLO and communal superconductivity, up
to an irrelevant multiplicative factor of N↑N↓ in Eq. (4),
and so the phase boundary is also identical.

Stability against phase separation can be expressed as
the positive-definiteness of the total particle number sus-
ceptibility matrix [30, 31]. This condition includes the
possibility of separation into two superconducting phases,
with ratios of number of fermions differing from that pre-
dicted in Eq. (6), and may be expanded following Eq. (2),
to leading order in ∆ giving

α
∂2α

∂q2
> 2

(
∂α

∂q

)2

.

This is the same as the equivalent expression for FFLO
superconductivity, up to a factor of (N↑N↓)

2 that cancels
between the two sides of the inequality. This indicates
that the line of stability against phase separation is the
same for communal superconductivity as for FFLO super-
conductivity to leading order.

Although the discussion above focuses on nearly aligned
q-vectors, comparable to the FF state, it is known that the
Larkin–Ovchinnikov (LO) state [4] built from two plane-
waves can be energetically favorable to single-plane-wave
superconductivity. Therefore, we now follow the prescrip-
tion of Larkin and Ovchinnikov and consider a communal
superconducting state out of two instabilities on opposite
sides of the Fermi surfaces. The only differences in the
theory of communal superconductivity for one and two
instabilities are a multiplicative factor of 2 in Eq. (2) and
additional terms in the expression for β in Eq. (4). Sim-
ilarly to the single instability case the optimal instability
contains more up- than down-spin fermions, and so the
communal superconducting state is also energetically fa-
vorable over the LO state.

We supplement the preceding analysis with numerical
evidence obtained from a quantum Monte Carlo study of
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Fig. 2: (Color online) Left: Plot of condensate fraction in mo-
mentum space in units of 1/2

√
3πrs. The positions of expected

peaks corresponding to a communal state (rsq = 1/
√

3π),
FFLO pairing (rsq = 1/2π), and BCS pairing (rsq = 0) are
shown with green stars, black triangles and a magenta circle
respectively. Communal type peaks are prominent with no ob-
vious FFLO peaks and a mild BCS peak. The k-space grid
is drawn in black. Right: Diagrams of pairing orbitals in the
communal and FFLO phases. The colored points indicate the
filled Fermi areas of the down-spin (blue) and up-spin (red)
species in the non-interacting limit. The colored clouds indi-
cate which states contribute to the instabilities with intensity
indicating the strength of contribution. Black lines indicate a
possible pairing arrangement.

a finite spin-imbalanced 2D homogeneous fermion gas with
attractive interactions using the casino program [32]. To
minimize finite size effects [33, 34], we place the fermions
in a rhomboidal box with vertex angle 60◦ so that the dis-
cretized momentum points form a triangular lattice. This
allows for the densest tiling of discrete momentum points
in 2D giving the closest to circular Fermi surfaces. We set
up a system of 61 spin-up and 19 spin-down fermions and
work in atomic units with the average inter-fermion sepa-
ration rs = 1. Such particle numbers are consistent with
those used in other DMC studies [35, 36], giving us confi-
dence that the results obtained should be at least qualita-
tively related to the analytics done in the thermodynamic
limit. We note for completeness that qualitatively simi-
lar results were obtained for systems with both a smaller
and larger number of fermions, and in systems on a square
simulation cell.

As the Fermi surfaces form hexagons and have a 2:1 ra-
tio of fermions, we expect a (N↑,N↓) = (2, 1) instability.
An ultratransferable pseudopotential [37] with scattering
length a = 6.5991 and zero effective range was introduced
so that the BCS coherence length of an equivalent spin-
balanced system was approximately equal to the simula-
tion cell size. We note here for completeness that while
such a pseudopotential is indeed meant to emulate the
scattering properties of a contact interaction, it neverthe-
less has a finite extent in space that introduces a natural

momentum cutoff. The UTP therefore does not have infi-
nite range in momentum space and so the assumption of
small Debye frequency used in the analytical derivation is
applicable to the simulation.

Following previous work [38], we employ a Slater-
Jastrow trial wavefunction of the form ΨT =
e−J(r↑,r↓) det[φ(si,j)]. The pairing orbital is

φ(si,j) =

4∑
l=1

al cos(kl · si,j)

+ Θ(N↓ − i)(1− s
rs

)3Θ(1− s
rs

)

2∑
m=0

bmr
m,

where si,j ≡ r↑,i − Θ(N↓ − i)r↓,j , s ≡ |si,j |, rσ,i is the
position vector of the i−th fermion of spin species σ, kl is
the lth shortest reciprocal-space vector, Θ is the Heaviside
step function, and the {al}, {bm} are optimisable param-
eters. The Jastrow factor is given by

J(r↑, r↓) =
∑
i,j

[∑
k

ukr
k−1
i,j (1− ri,j/rs)3Θ(1− ri,j/rs)

+
∑
m

pm cos(Gm · ri,j) + ν terms
]

where rσ denotes the set of position vectors for all fermions
of spin species σ, ri,j ≡ r↑,i − r↓,j , r ≡ |ri,j |, the Gm

are reciprocal-space vectors through which anisotropy may
be introduced, and the {uk}, {pm} are optimisable pa-
rameters. J(r↑, r↓) is thus a function of all opposite-spin
fermion separations containing a short range isotropic u
term, anisotropic p terms [39] and a ν term [40] that
reflects the simulation cell symmetry and whose form is
omitted for brevity. While the trial wavefunction was orig-
inally used to capture pairing between electrons and holes
in a bilayer, it nevertheless has three attractive proper-
ties that warrant usage in this context; namely that it is
a pairing wavefunction and that it deforms continuously
into the accepted form for a balanced superconductor and
the non-interacting state. Furthermore, the nodal surface
can vary and be optimized through the bm parameters.

The trial wavefunction was optimised using Varia-
tional Monte Carlo [41] then equilibrated using Diffusion
Monte Carlo before the condensate fraction in momentum
space [42] was accumulated. In casino, the condensate

fraction is defined as fq ≡
∑

k(〈c†k,↑c
†
q−k,↓cq−k,↓ck,↑〉 −

nk,↑nq−k,↓), where c†k,σ(ck,σ) is the creation (annihilation)
operator for a fermion of momentum k and spin σ and
nk,σ ≡ 〈c†k,σck,σ〉 is the momentum density. The results
display strong anisotropy of the condensate fraction at
rsq = 1/

√
3π, regardless of whether in the Jastrow fac-

tor the pm are selected to permit anisotropy, constrained
to ensure isotropy, or set to zero. The state observed is
therefore not an artefect of (an)isotropy of the trial wave-
function, consistent with the communal state being the
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robust ground state. Furthermore, we confirm the shar-
ing of minority-spin fermions between pairs by noting that
the anisotropy is consistent with the pairing scheme shown
in the upper right of Fig. 2; the black lines indicate the
up-down pairs present in a single (N↑,N↓) = (2, 1) insta-
bility which when combined with its time-reversed partner
gives 4 pairing momenta, corresponding to 4 peaks in the
condensate fraction.

The lack of a strong condensate fraction at rsq = 1/2π
indicates that the FFLO phase is not the major contrib-
utor to the ground state. Finally we note for complete-
ness that while there appears to be a BCS contribution to
the condensate fraction, the uncertainty in the condensate
fraction at rsq = 0 was twice as large as at other points
and so that peak is half as significant as the others. Simi-
lar results were seen in systems with a 3:1 and 4:1 ratio at
the Fermi surface, affirming the pairing result for N↑/N↓,
and for systems with the same 2:1 ratio at the Fermi sur-
faces but different total numbers of fermions, namely 19
spin-up and 7 spin-down fermions, and 127 spin-up and
37 spin-down fermions. The results obtained for systems
with different numbers of fermions give us confidence that
the observed state is not an artefact of finite size effects.

We note for completeness that the condensate fraction
was also gathered for pairs of the same spin species in
an attempt to simultaneously search for induced p-wave
superfluidity [43], however the values of intra-spin con-
densate fraction were more than 10 orders of magnitude
smaller than those for the inter-spin condensate fraction
and were indistinguishable from zero at all pair momenta.

Having seen that communal superconductivity is ener-
getically favorable over FFLO superconductivity, we now
consider its possible experimental consequences. We focus
on two effects where the communal nature of the underly-
ing instability should be directly observable.

Multiple phase transitions: With increasing spin-
imbalance, that is increasing ν↑/ν↓, Eq. (6) predicts that
the ratio N↑/N↓ should increase. Starting from the BCS
state with ν↑/ν↓ = 1 the system should progress through
several communal superconducting phases with increasing
values of N↑/N↓, where both Nσ are reasonably small in-
tegers, giving a series of different superconducting states.
Each transition is expected to be second order, and so the
communal superconducting phase would be characterized
by a series of singularities in the heat capacity and the
compressibility, which is directly observable in ultracold
atomic gases [44], as the spin-imbalance is changed. No
such phase transitions are expected for the FFLO phase
at fixed temperature.

Superconducting order parameter: In real space
the order parameter will exhibit a beat pattern due to the
interference between similar q-vectors, which could allow
the identification of the particular q-vectors in the super-
conductor. The order parameter and its spread in mo-
mentum could be determined in an ultracold atomic gas
experiment through density-density correlations measured
from time-of-flight experiments [45]. This can be seen in

Fig. 2 where alongside the clear peaks, the condensate
fraction is generally nonzero for momenta rsq ≤ 1/

√
3π

and only falls to zero on the border of the region shown.
In contrast, FFLO and crystalline FFLO theories predict
sharp peaks in the condensate fraction, as in spin-balanced
BCS theory, at fixed magnitude of the pairing momenta.

Andreev reflection: The elementary excitations
above the proposed ground state are predicted to be well-
described by the few fermion analysis [5]. This should
have novel consequences especially concerning Andreev re-
flection experiments as the strong correlations between a
group of fermions held in a communal state should re-
sult in multiple retroreflected holes for a single incident
fermion, in sharp contrast to the single hole per fermion
expected in normal FFLO theory.

Beyond these experimental signatures, communal su-
perconductivity also introduces the notion that the build-
ing block of a superconductor may involve the sharing of
fermions between Cooper pairs. In particular, there can
be fluctuations in the number of fermions in the under-
lying instability, which could lead to the renormalization
of the properties of a spin-balanced superconductor. The
analysis is also generalizable to systems with multiple un-
derlying instabilities, more akin to crystalline FFLO su-
perconductivity [16], and we use that system as a guide
for the likely modifications when communal superconduc-
tivity is built from several instabilities.

We have introduced the idea of a communal supercon-
ductor, whose underlying instability is composed of mul-
tiple pairs with shared fermions, to enable the use of
all available inter-fermion correlations. We have shown
that communal superconductivity is energetically favor-
able over FFLO superconductivity in spin-imbalanced
Fermi gases, both analytically and with complementary
DMC results, and that a communal superconductor has
clear experimental signatures.

∗ ∗ ∗

Data used for this Letter are available online [46]. The
authors thank Adam Nahum, Johannes Hofmann, Jo-
hannes Knolle, Jens Paaske, Robin Reuvers, and Victor
Jouffrey for useful discussions, and acknowledge the fi-
nancial support of the NUS, the EPSRC, and the Royal
Society.

REFERENCES

[1] J. Bardeen, L.N. Cooper, and J.R. Schrieffer,
Phys. Rev. 106, 162 (1957).

[2] J. Bardeen, L.N. Cooper, and J.R. Schrieffer,
Phys. Rev. 108, 1175 (1957).

[3] P. Fulde and R.A. Ferrell, Phys. Rev. 135, A550 (1964).
[4] A.I. Larkin, Y.N. Ovchinnikov, Sov. Phys. JETP 20, 762

(1965).
[5] T.M. Whitehead and G.J. Conduit, Phys. Rev. B 97,

014502 (2018).

p-6



Communal pairing in spin-imbalanced Fermi gases

[6] A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, and
J.L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003).
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