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Abstract

The formation of macroscopic biofilaments from monomeric peptides is a process central
to both normal and disease biology, and a very active area of research. An example of
particular significance is the formation of amyloid plaques from normally soluble proteins
in several neurodegenerative conditions including Alzheimer’s disease. Traditionally, at-
tention has focused on the proliferation of macroscopic quantities of biofilaments, and
experimentalists have relied on bulk measurements to quantify this. By contrast, the
initiation of the aggregation reaction has been comparatively understudied, despite the
involvement of oligomeric intermediates that are considered to be the key pathogenic
agents in many amyloidogenic diseases. This is due in large part to the key quantities
measured in bulk experiments being insensitive to the details of the initiation step, and
to the difficulties faced until recently in detecting comparatively rare oligomeric species.
In this thesis I describe a number of theoretical approaches towards filling this crucial
gap in our knowledge. These approaches fall into 3 main themes: modelling the early
stages of bulk aggregation kinetics in greater detail; developing general kinetic theories
of filament formation via initial oligomeric intermediates; and investigating heterogeneity
within oligomer populations using equilibrium statistical mechanical modelling. In several
instances I have already been able to apply these theories to experimental results, further-
ing our practical understanding of these processes in vitro. A final chapter is devoted to
a highly general and insightful theoretical method for developing analytical solutions for
the kinetics of a wide range of self-assembly phenomena. Although not focused on early
events in amyloid aggregation, it is already finding application in this field, as in many
others.
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Chapter 1

List of Publications

Below are listed in reverse chronological order my 15 completed manuscripts, 11 of which
have been published or accepted for publication in scientific journals. The remainder
have either been submitted or are expected to be submitted before my viva. For brevity
I neglect the 4 remaining manuscripts that are likely to be submitted by this date but on
which I am not first author.

“Amyloid oligomer classification using chemical kinetics”
A. J. Dear, T. C. T. Michaels, G. Meisl, A. Saric, M. Kjaergaard, and T. P. J. Knowles
Manuscript under preparation for submission to Nat. Struct. Mol. Biol.
This manuscript is reproduced in Chapter 6; its Supplementary Information is included
as Appendix D.

“Statistical mechanics of globular oligomer formation”
A. J. Dear, A. Saric, T. C. T. Michaels, and T. P. J. Knowles
Manuscript under preparation for submission to Biophys. J.
This manuscript is reproduced in Chapter 9; its Supplementary Information is included
as Appendix G.

“Renormalization group for protein filament formation”
T. C. T. Michaels*, A. J. Dear*, and T. P. J. Knowles
Manuscript submitted to Phys. Rev. Lett.
(*these authors contributed equally to this work)
This manuscript is reproduced in Chapter 10.

“Quantifying co-oligomer formation by alpha-synuclein”
M. Iljina*, A. J. Dear*, G. A. Garcia, S. De, P. Flagmeier, D. R. Whiten, T. C. T.
Michaels, D. Frenkel, C. M. Dobson, T. P. J. Knowles, and D. Klenerman
Manuscript under review at ACS Nano.
(*these authors contributed equally to this work)
This manuscript is reproduced in abbreviated form in Chapter 8; some Supplementary
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Information sections are included in Appendix F.

“Oligomer diversity during the aggregation of the repeat region of tau”
M. Kjaergaard*, A. J. Dear*, F. Kundel, S. Qamar, G. Meisl, T. P. J. Knowles, and D.
Klenerman
In press, ACS Chem. Neurosci.
(*these authors contributed equally to this work)

“Stochastic calculus of protein filament formation under spatial confinement”
T. C. T. Michaels, A. J. Dear, and T. P. J. Knowles
New J. Phys. 20, 055007

“Direct observation of oligomerization by single molecule fluorescence reveals a multistep
aggregation mechanism for the yeast prion protein Ure2”
J. Yang*, A. J. Dear*, T. C. T. Michaels, C. M. Dobson, T. P. J. Knowles, Si Wu, and
S. Perrett
J. Am. Chem. Soc. 140, 2493-2503 (2018).
(*these authors contributed equally to this work)
The material I was primarily responsible for is reproduced in Chapter 5; Supplementary
Information sections for which I was primarily responsible are included in Appendix C.

“Dynamics of Heteromolecular Filament Formation”
A. J. Dear, T. C. T. Michaels, and T. P. J. Knowles
J. Chem. Phys. 145, 175101 (2016).
This manuscript is reproduced in abbreviated form in Chapter 4 and in Appendix B.

“Scaling and dimensionality in the chemical kinetics of protein filament formation”
T. C. T. Michaels, A. J. Dear, and T. P. J. Knowles
International Reviews in Physical Chemistry, 35:4, 679 (2016).

“Fluctuations in the Kinetics of Linear Protein Self-Assembly”
T. C. T. Michaels, A. J. Dear, J. B. Kirkegaard, K. L. Saar, D. A. Weitz, and T. P. J.
Knowles
Phys. Rev. Lett. 116, 258103 (2016).
The majority of this manuscript is reproduced in Chapter 3; Supplementary Information
sections for which I was primarily responsible are included in Appendix A.

“Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms”
M. Iljina*, G. A. Garcia*, A. J. Dear*, J. Flint*, P. Narayan, T. C. T. Michaels, C. M.
Dobson, D. Frenkel, T. P. J. Knowles and D. Klenerman
Sci. Rep. 6, 28658 (2016).
(*these authors contributed equally to this work)
This manuscript is reproduced in abbreviated form in Chapter 7; Supplementary Infor-
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mation sections for which I was primarily responsible are included in Appendix E.

“Electrostatically-guided inhibition of Curli amyloid nucleation by the CsgC-like family
of chaperones”
J. D. Taylor, W. J. Hawthorne, J. Lo, A. J. Dear, N. Jain, G. Meisl, M. Andreasen,
C. Fletcher, M. Koch, N. Darvill, N. Scull, A. Escalera-Maurer, L. Sefer, R. Wenman, S.
Lambert, J. Jean, Y. Xu, B. Turner, S. G. Kazarian, M. R. Chapman, D. Bubeck, A. de
Simone, T. P. J. Knowles and S. J. Matthews
Sci. Rep. 6, 24656 (2016).

“Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease
genetically related mutants”
Laura Tosatto* , M. H. Horrocks*, A. J. Dear, T. P. J. Knowles, M. D. Serra, N. Cre-
mades, C. M. Dobson and D. Klenerman
Sci. Rep. 5, 16696 (2015).
(*these authors contributed equally to this work)

“Fast Flow Microfluidics and Single-Molecule Fluorescence for the Rapid Characterization
of alpha-synuclein Oligomers”
M. H. Horrocks, L. Tosatto, A. J. Dear, G. A. Garcia, M. Iljina, N. Cremades, M. D.
Serra, T. P. J. Knowles, C. M. Dobson, and D. Klenerman
Anal. Chem. 87, 8818 (2015).

“Effect of disorder on condensation in the lattice gas model on a random graph”
T. P. Handford, A. J. Dear, F. J. Pérez-Reche, and S. N. Taraskin
Phys. Rev. E 90, 012144 (2014).
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Chapter 2

Introduction

2.1 Background

Proteins are diverse biological macromolecules with a common fundamental architecture
but widely varying structures and properties, and are responsible for much of the func-
tionality underlying living organisms. They consist of one or more covalently bonded
chains of amino acids, that fold into specific three-dimensional structures in aqueous so-
lution. Their conformation or structure is closely connected to their function; failure to
fold into the “correct” structure for which they were designed is responsible for a range of
pathologies [1–5]. A notable example is the aggregation of misfolded proteins into linear
noncovalently bonded polymers known as amyloid fibrils [6, 7]. The amyloid form is in
fact often the most thermodynamically stable peptide state even under physiological con-
ditions, and thus many different proteins have a tendency to form these structures [8, 9].
Although the kinetic barrier to the initial formation of amyloid is high, once formed
the fibrils proliferate rapidly. This uncontrolled proliferation is closely linked to several
important diseases, such as Alzheimer’s disease and type II diabetes [10–12].

Much progress has been made in uncovering the molecular mechanisms behind the
proliferation of fibrils associated with some of these diseases in recent years, by applying
analytical kinetic models to bulk time-dependent measurements of fibril concentrations
[13–16]. However, there has been only limited insight into the processes responsible for
the initiation of the aggregation reaction. This is in large part because the proliferation of
macroscopic quantities of fibrils is fairly insensitive to the precise nature of these processes
[16, 17]. The complex reaction pathways by which new fibrils are formed have typically
been abstracted into a single “primary nucleation” step for the purposes of bulk kinetic
modelling [18–21]. It has become clear however, that these pathways often involve diverse
oligomeric intermediates. Moreover, it has become clear in recent years that in fact
oligomeric species formed at very low concentrations in the early stages of amyloid fibril
formation, and not the fibrils themselves, are toxic to cells, and are now believed to be the
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key pathogenic agent in neurodegenerative and other amyloidogenic diseases [8, 22–24].

With the advent of single-molecule experimental techniques [25, 26], it has recently
become feasible to measure oligomer concentrations quantitatively. The opportunity has
therefore arisen to explicitly model these low-concentration oligomeric species directly,
to gain insight into their role and nature in a variety of amyloidogenic systems. Some
early work has been carried out in this field; however, the analytical models developed
to date have been either insufficiently generalizable, being tailored to a very specific
system [27,28], or too coarse grained for simple mechanistic interpretation [29].

The main focus of my PhD has been to explore the initiation of aggregation, by
developing and applying theoretical methods that can determine the underlying reaction
pathways. I have helped develop techniques to study primary nucleation with far greater
accuracy than hitherto possible; and I have developed a range of analytical kinetic and
thermodynamic models of oligomer formation, using them to interpret experimental data
from diverse biologically relevant amyloid aggregation reactions. This approach has led
to a range of new insights into the kinetics and thermodynamics of amyloid oligomers.

2.2 Theoretical methods

Much of the work detailed in this dissertation involves developing and solving kinetic
equations for the modelling of self-assembly processes, or the spontaneous formation of
complex structures from simple components. Several chapters generalize and extend pre-
vious theoretical results obtained for the kinetics of simple linear self assembly; hence, to
aid understanding of subsequent chapters, a brief overview of the basic methods used in
obtaining these original results is presented here [21,30].

Kinetic equations based on the principle of mass action, originally developed to model
small-molecule chemical reactions, have since been used to model a huge range of growth
processes outside the remit of traditional chemistry. Such processes include crystal nucle-
ation & growth [31], polymerisation [32], disease epidemics [33], population dynamics [34],
and microbial growth [35], amongst countless others. The first application of such equa-
tions to protein polymerisation was performed by Oosawa et al [18] over 50 years ago. In
the past decade especially, there has been a significant increase in interest in the kinetic
modelling of protein self-assembly, driven by advances in our understanding of the fun-
damental role of protein aggregation in neurodegenerative diseases. The overview in this
section focuses on the theoretical methods developed in this decade for solving such rate
equations.

24



Figure 2.1: (a) A schematic representation of a typical kinetic curve for amyloid growth. Simi-
larly to crystallisation, filamentous growth may begin with the formation and growth of nuclei
during the lag phase. There is then a rapid phase of growth ending in a plateau. (b) An overview
of the basic microscopic events involved in the growth of linear protein filaments. Figure adapted
from [36].

2.2.1 Full master equations

An aggregation reaction involves many fibrils of different lengths; for a complete descrip-
tion of the system one would track the time evolution of the full length distribution of
filaments [37–42]. The quantities that are tracked are the concentrations of the species
of different lengths f(t, j), which are held to be deterministic. Their time evolution is
governed by the so-called mean-field master equation, which accounts explicitly for every
process that can occur in the system, under the assumptions of molecular chaos and ther-
modynamically large system size. Master equation approaches are versatile and have also
been used for modelling the growth kinetics of virus capsids and other closed spherical
polymers [43–45], as well as the assembly of non-amyloidogenic protein filaments [18]. In
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the case of filamentous growth, the master equation has the following form: [30]

∂f(t, j)
∂t

=2k+f(t, j − 1)− 2k+m(t)f(t, j)

+ 2kofff(t, j + 1)− 2kofff(t, j)

+ 2k−
∞∑

i=j+1
f(t, i)− (j − 1)k−f(t, j)

+ knm(t)ncδj,nc + k2m(t)n2
∞∑
i=nc

if(t, i)δj,n2 (2.1)

dm(t)
dt

=− d

dt

 ∞∑
j=nc

jf(t, j)
 , (2.2)

where k+ is the rate constant for filament elongation by monomer addition, koff is its
inverse (filament shortening by loss of the terminal monomeric subunit), kn is the rate
constant for new filament formation by free association of solution-phase monomer (pri-
mary nucleation), and nc is the reaction order of primary nucleation with respect to
monomer (see Fig. 2.1). The master equation also takes into account optional “secondary
processes”, by which new filament nuclei are generated from existing filaments, and are
often important in amyloid filament assembly. These include filament fragmentation [46]
(rate constant k−), and monomer-dependent secondary nucleation at the surface of ex-
isting filaments [19, 20, 47] (rate constant k2; reaction order with respect to monomer
n2). Note we neglect fibril association, which is the inverse of fragmentation, as this is
considered unimportant in many protein polymers, due to spatial constraints [30,48,49].

2.2.2 Moment equations

The full master equations are hard to solve, and the length distribution is anyway not the
most directly experimentally accessible quantity. For these reasons, previous theoretical
work has focused on simpler quantities, namely the 0th- and 1st-order moments of the
distribution, or the number and mass concentration of polymers [14, 21, 30, 50]. These
are given by the formulae P (t) = ∑

j f(t, j) and M(t) = ∑
j jf(t, j), and, applying these

contractions to the master equations, one arrives at the following expression for the 0th

moment

dP

dt
=k−[M(t)− (2nc − 1)P (t)]

+ k2m(t)n2M(t) + knm(t)nc , (2.3)
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where we have neglected the contribution from kofff(t, nc).
The equation for the 1st moment is given by

dM

dt
=2[m(t)k+ − koff − k−nc(nc − 1)/2]P (t)

+ n2k2m(t)n2M(t) + ncknm(t)nc (2.4)

The last two terms are typically very small relative to the elongation term.
Note that it is not strictly necessary to start with the full master equations in order to
derive these expressions.

2.2.3 Fixed-point scheme

The moment equations themselves are in general analytically intractable, so our aim
becomes to find an accurate approximation scheme instead. We first recast equations
(2.3) and (2.4) as integral equations. They can be represented as

~x(t) = A [~x(t)] , (2.5)

where ~x(t) = [P (t),M(t)] and A is the integral operator. The fixed point ~x∗(t) of this
operator is the point in the space of possible values for the moments that is returned
unchanged upon application of the operator. The fixed point is therefore precisely the
solution to eqs (2.3) and (2.4).
The contraction mapping principle [51] now guarantees that these integral equations can
be solved iteratively

~x∗(t) = lim
N→∞

AN [~x0(t)] , (2.6)

for starting values of the moments ~x0(t) sufficiently close to the final solution [30,36]. Note
this principle is taken advantage of by numerical methods for the solution of equations,
such as Newton’s method. Each iteration then gives rise to a solution that is more
accurate, and that approaches the true solution more closely.
This method requires initial input of a reasonably accurate trial solution; and the speed
of convergence of the iterative scheme depends upon the accuracy of the initial guess.
An effective choice has been found from investigating the linearised versions of equations
(2.3) and (2.4).

2.2.4 Linearised moment equations

If we assume that not too much time has elapsed such that monomers have not been
significantly depleted from solution, the monomer concentrations on the RHS of equations
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(2.3) and (2.4) can be held constant at their initial values, giving the early-time equations

dP

dt
= [k− + k2m

n2
tot]M(t) + knm

nc
tot (2.7)

dM

dt
= 2k+mtotP (t), (2.8)

neglecting terms insignificant at early time.
These are linear 1st-order ODEs and thus can be straightforwardly solved [21,30], yielding
a solution valid in the limit t. This proves to be a good trial solution for the fixed
point scheme, such that upon application of the fixed point operator we obtain, after
just 1 iteration, a good approximation to the full time-course behaviour of the mass
concentration.

2.3 Outline of thesis

Stochastic aggregation kinetics
I first present, in Chapter 3, a stochastic theory describing how monomers aggregate into
fibrils in sub-thermodynamic volumes. Crucially, it is found that an aggregation reaction
becomes stochastic under confinement in small volumes in a way that causes primary
nucleation to have a dominant role in the kinetics. By contrast, in bulk aggregation
reactions, the primary nucleation rate enters the kinetic equations only logarithmically
and coupled to elongation, and is thus challenging to measure accurately. Thus, small
volume aggregation reactions, carried out in microdroplets using microfluidic devices,
allows us to accurately study the primary nucleation mechanism for the first time.
The early stages of coaggregation
In Chapter 4 I develop general kinetic equations describing coaggregation of multiple
monomer types into mixed filaments, and solve them analytically for early times, before
significant monomer depletion has occurred. This provides valuable insight into the effect
of coaggregation on the early stages of amyloid aggregation. This is a problem of signifi-
cant real-world interest, as amyloidogenic proteins rarely exist in isolation in vivo, instead
typically being found in heterogeneous environments that are supportive of coaggregation.
The kinetics of amyloid aggregation via oligomeric intermediates
A major part of my thesis is given over to investigating the kinetics of amyloid fibril
formation coupled to amyloid oligomer formation. In Chapter 5 I develop partly analytical
models to describe formation of oligomers of the functional yeast prion protein Ure2,
discovering that although most Ure2 oligomers dissociate rather than form fibrils, they
are still on-pathway intermediates of the Ure2 fibril formation process. Drawing on this,
on my work on tau oligomer formation not included here, and on other insights obtained
by Thomas C. T. Michaels on Aβ oligomer formation, Chapter 6 then explains the general
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features of amyloid oligomer formation, and how insight may be derived from them using
chemical kinetics. It includes new, accurate and fully analytical, models for the kinetics
of oligomers formed as intermediates of both primary and secondary nucleation reaction
steps, that are suitable for modelling all amyloid oligomer species heretofore discovered.
Statistical mechanics of oligomer formation
Next, the thermodynamics of oligomer and co-oligomer formation is considered. In Chap-
ter 7 I investigate co-oligomer formation at equilibrium between Aβ40 and Aβ42 peptides
using a simple dimer model; in Chapter 8 I then investigate equilibrium co-oligomerization
between α-synuclein mutants using a model of linear co-oligomer formation. In both cases,
co-oligomers are found to be at least as stable as self-oligomers. It has proved difficult
to measure oligomer size distributions and geometry in kinetic experiments, even for self-
oligomers. To aid in understanding these features of oligomer diversity, in Chapter 9 I
investigate the equilibrium statistical mechanics of peptide oligomers consisting of a single
monomer type. I draw on micelle theory to model size distributions of globular oligomers,
compare the results to those of an established linear oligomer model, and discuss how
they may be distinguished from experiment.
Universal solutions to linear self-assembly using renormalization group (RG)
theory
Although the initiation of aggregation has been my main focus, I have carried out a
broad range of research and several projects do not fit solely into this category. One such
project of particular significance is presented in Chapter 10. Using dynamical RG theory
I develop a strategy for obtaining highly accurate analytical solutions to the kinetics of
linear self-assembly across a wide range of different systems. We used this to investigate
the universal behaviour of filamentous growth kinetics. Due to its unsurpassed generality
and accuracy, and to its clear conceptual underpinnings, I believe this will find many
applications in my future work. Moreover, it has already been used successfully in this
thesis (Chapter 6), to develop particularly accurate solutions to oligomerizing systems
featuring secondary nucleation of filaments.

To summarize, in this thesis I present a wide range of works relating to the early
stages of amyloid aggregation. These include several studies combining theory and exper-
iment, as well as pure theoretical studies. Together they provide a universal framework
for understanding the nature of amyloid oligomers and their role in amyloid filament for-
mation, exerted via the coarse grained primary nucleation reaction step. These theories
were derived for homomolecular aggregation; I also begin to investigate the early stages
of coaggregation of multiple monomeric peptide types into mixed oligomers and fibrils. I
finally present a powerful and highly general technique for studying linear self-assembly
that I believe will supplant most existing techniques.
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Part II

The Early Stages of Fibril Formation
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Chapter 3

Studying Primary Nucleation Using
Confinement

Chapter Abstract

Biological systems are characterized by compartmentalization from the sub-
cellular to the tissue level, and thus reactions in small volumes are ubiquitous in
living systems. Under such conditions, statistical number fluctuations, which
are commonly negligible in bulk reactions, can become dominant and lead to
stochastic behaviour. We present here a stochastic model of protein filament
formation in small volumes. We show that two principal regimes emerge for
the system behaviour, a small fluctuation regime close to bulk behaviour and a
large fluctuation regime characterised by single rare events. Our analysis shows
that in both regimes the reaction lag-time scales inversely with the system vol-
ume, unlike in bulk. Finally we use our stochastic model to connect data from
small volume microdroplet experiments of amyloid formation to bulk aggrega-
tion rates, and show that digital analysis of an ensemble of protein aggregation
reactions taking place under micro-confinement provides an accurate measure
of the rate of primary nucleation of protein aggregates, a process which has
been challenging to quantify from conventional bulk experiments.

In this project, a stochastic model for amyloid aggregation in the sub-thermodynamic
small-volume regime was developed. A key result was the discovery that stochastic kinetic
experiments provided a way of studying the early stages of amyloid filament formation
directly, and with much greater accuracy than pre-existing methods. The work presented
in this chapter was carried out in close collaboration between T. C. T. Michaels and
myself; since I provided roughly half of the theoretical content, our contributions cannot be
disentangled into coherent separate manuscripts. Instead, our work is presented together,
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and results sections for which I do not wish to claim primary credit are labelled with a
dagger (†). Derivations for which I am responsible are included in Appendix A. Our work
was published in Phys Rev Lett in 2016, under the title “Fluctuations in the Kinetics of
Linear Protein Self-Assembly”. An abbreviated version of this paper, focussing somewhat
more on the implications for studying the early stages of amyloid aggregation, is presented
in this chapter.

A precise list of my contributions are as follows. I discovered and proved the correlation
between n and x, allowing me to reduce the insoluble full master equation Eq. (3.1) to the
tractable form Eq. (3.2). I discovered that the naive boundary conditions used in [52] were
incorrect, and subsequently determined the correct ones; and used these new boundary
conditions to correct both T. C. T. Michaels’ solution to the simplified master equations
and A. Szabo’s solution for the lag time distribution. Finally I uncovered the limiting
behaviour of the lag times in key regimes, and identified that stochastic aggregation
experiments would permit much more accurate investigation of the primary nucleation
reaction step.

3.1 Introduction

The formation of protein filaments is a process of central importance for both normal
[18, 53] and aberrant biology [1, 4], as well as for the development of novel materials for
nanotechnology [54–57]. The fundamental kinetic equations describing such processes
in bulk are well-established in the literature and have been studied extensively over the
past 50 years [13, 18, 19, 21, 30, 47, 53, 58–60]. These descriptions rely on the mean-field
assumption [59] and therefore neglect statistical mechanical fluctuations. Yet, protein
aggregation processes in typical cellular environments (fL-pL) involve significantly smaller
numbers of molecules than conventional bulk experiments and thus stochastic variability is
expected to play an important role [19,47,61,62]. Moreover, recent experimental advances
in microdroplet techniques [62, 63] allow volumes in the picolitre range, comparable to
intracellular volumes, to be probed for synthetic systems, creating the need for a general
theoretical framework capable of describing protein filament assembly in small volumes.

Current theoretical descriptions of protein filament formation in small volumes focus
on systems characterized by aggregate propagation from a single primary nucleation event
[64]. A key question is, however, the nature of the full fluctuation behaviour bridging
the gap between the limit of classical nucleation theory and bulk behaviour. In this
Letter, we present a general theoretical description of stochastic effects in filamentous
growth processes with secondary pathways [13,19,21,39,46,47,58,65–69] and derive closed-
form expressions for the distribution of lag times. Our theoretical framework describes
currently available microdroplet experimental data which are characterized by aggregate
proliferation from multiple nucleation sites. Moreover, our results suggest a powerful
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method for characterizing the primary nucleation step, which is typically difficult to access
from current bulk methods. We demonstrate the power of this approach by obtaining a
value for the rate of primary nucleation for bovine insulin aggregation which is significantly
better constrained than results obtained from analysis of bulk data.

3.2 Stochastic moment equations†

We consider a system of volume V containing a mixture of fibrillar aggregates and
monomeric proteins in solution. Since we are interested in the early-stages of the assem-
bly process, we assume a constant chemical potential for the available soluble precursor
proteins [21,30,58]. We describe the state of the system by a vector (n, x), where n is the
number of fibrils and x is the number of monomers incorporated into aggregates, param-
eters which relate directly to experimental observables [70]. The probability distribution
function (PDF) P(n, x, t) of states (n, x) evolves according to a master equation [64]

∂P(n, x, t)
∂t

= α1P(n− 1, x− xc, t)− α1P(n, x, t)

+ µnP(n, x− 1, t)− µnP(n, x, t)

+ α2(x− x2)P(n− 1, x− x2, t)

− α2xP(n, x, t),

P(n, x, t) =0 ∀(n, x) < 0,

(3.1)

where α1, µ and α2 are the transition rates (units s−1) for primary nucleation, filament
elongation and secondary mechanisms, respectively (Fig. 1(a)). This description explicitly
considers time variations of the PDF in terms of probability fluxes: the positive expres-
sions represent gain terms that account for system transitions into state (n, x), whereas
the negative terms describe losses from transitions from (n, x) into other states. The terms
on the first line of Eq. (3.1) describe the initial primary nucleation step as the spontaneous
formation of new growth-competent aggregates from xc monomers. The increase of ag-
gregate mass through elongation is described by the terms on the second line of Eq. (3.1).
Secondary processes, in which new filaments of initial size x2 are produced by means of a
reaction involving existing fibrils, are captured by the third and fourth lines of Eq. (3.1).
These cover several options, including filament breakage (x2 = 0) [21, 46, 65, 66], lateral
branching (x2 = 1) [58,67] and surface-catalyzed secondary nucleation (x2 ≥ 2) [19,68,69].
Note that in general monomer dissociation from filament ends and re-joining of fibrils are
necessary components to ensure microscopic reversibility [71]. The assumption of van-
ishing rates of monomer dissociation and polymer re-joining employed here, however, is
justified as these processes do not significantly affect the early stages of the reaction [49].

The transition rates entering Eq. (3.1) can be related to the total concentration of
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proteins, mtot, and the bulk rate parameters kn, k+, k2 for primary nucleation, elongation
and secondary pathways, respectively, by requiring the rate equations for the averages 〈n〉
and 〈x〉 being in agreement with existing early-time deterministic models [21, 30, 58, 59].
This condition yields α1 = knm

nc
totNAV , µ = 2k+mtot and α2 = k2m

n2
tot, where NA is the

Avogadro number [64], nc is the reaction order for primary nucleation, and n2 the reaction
order for secondary nucleation. Importantly, the transition rate for primary nucleation,
α1, explicitly depends on the system size, V , while the parameters µ and α2 describing
autocatalytic growth are determined only by the associated bulk quantities. We expect
therefore that reducing system size leads to a transition from a situation when the kinetics
are controlled by autocatalytic growth to a situation when the fibrillization reaction is
limited by primary nucleation. Thus, primary nucleation events becoming infrequent is at
the origin of the stochastic behaviour of filamentous growth processes in small volumes.

3.3 Analytical solution for the PDF

The master equation Eq. (3.1) yields differential equations for the principal moments of
the PDF through summation over system compositions. The equations for the jth-order
moments can be determined for general j and written in matrix form (see Appendix A.1).
The largest eigenvalue and its associated eigenvector may then be calculated. The largest
eigenvalue for the jth-order moments is found to be jκ, with κ = √µα2 =

√
2k+k2m

n2+1
tot

being the characteristic time scale for aggregate proliferation [21, 30, 58]. The moments
are therefore dominated by the contribution from this eigenvalue-eigenvector pair in the
limit t � κ−1. From this it follows that n and x are perfectly correlated for times
greater than κ−1, but still sufficiently short for the constant monomer approximation
to be valid. This is confirmed by calculation of the Pearson’s correlation coefficient for
n and x, ρn,x = [〈nx〉 − 〈n〉〈x〉][(〈n2〉 − 〈n〉2)(〈x2〉 − 〈x〉2)]−1/2, which equals 1 in this
limit (see Appendix A.2). These results imply the existence of a linear correlation in this
regime between the random variables n and x, whereby the constant of proportionality
is x = κ

α2
n, t � κ−1. We can directly test this prediction from numerical realizations of

Eq. (3.1) generated using Gillespie algorithm [72] which reveal that n and x are indeed
linearly correlated even before aggregation is detected [73]. The linear correlation between
n and x allows recasting the master equation (3.1) into an equivalent one with a single
variable (see Appendix A.3 for calculation)

∂P(n, t)
∂t

= α1P(n− 1, t)− α1P(n, t)

+ κ(n− 1)P(n− 1, t)− κnP(n, t).
(3.2)

Interestingly, Eq. (3.2) is analogous to the master equation of bacterial growth [52],
whereby bacteria are constantly introduced into the system at rate α1 and multiply with
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Figure 3.1: (a) Different transitions in stochastic protein aggregation. (b) Time evolution of
average mass concentration and 68% confidence bands. Inset: PDF for x at t = 106 minutes
predicted by Eq. (3.3) (solid line) is compared to numerics. The dashed line is the solution
of [52]. (c) The scaling behaviour of the average lag time with system volume predicted by
Eq. (3.5). Inset: PDF of lag times for V = 1 nL predicted by Eq. (3.4) (solid line) is compared
to numerics. The dashed line is from [52]. Calculation parameters: kn = 4 × 10−13 M−1s−1,
xc = 2, x2 = 0, k2 = 2.5×10−8 s−1, k+ = 2.5×104 M−1s−1, mtot = 5 mM, V = 1 nL. Numerical
simulations performed by J. B. Kirkegaard [73].

rate κ. This analogy, first hypothesized by Szabo [52], is a statement of the fact that for
times bigger than κ−1 the average length of aggregates is constant. To define appropriate
initial conditions for Eq. (3.2), we match the first moments of the PDFs of Eqs. (3.1)
and (3.2) for times t � κ−1, yielding 〈n〉(t = log 2/κ) = 0. This condition translates
necessarily into P(n, t = log 2/κ) = δn,0 therefore ensuring that also all higher moments of
the PDFs of Eqs. (3.1) and (3.2) match for t� κ−1 at leading order. The exact solution
of Eq. (3.2) subject to the above initial conditions is (see Appendix A.4)

P(n, t) =
2α1/κΓ

(
n+ α1

κ

)
Γ(n+ 1)Γ

(
α1
κ

) e−(α1+κn)t(eκt − 2)n, (3.3)

where Γ(x) =
∫∞

0 tx−1e−tdt is the Gamma function. The PDF in terms of the variable x
is obtained by implementing the correlation between n and x in Eq. (3.3). Figure 1(b)
shows that Eq. (3.3) is in agreement with numerical realizations of Eq. (3.1).
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Figure 3.2: (a) Analysis of small-volume experiments of bovine insulin fibrillization kinetics from
Ref. [57]. Dashed line: best fit to 〈τ〉 ∝ cn/V with c−1

n = 6× 106 s−1 l−1; solid line: prediction
from Eq. (3.5); dotted lines: kn is decreased and increased by an order of magnitude. 〈τ〉 shows
marked volume dependence despite the presence of multiple nucleation sites as demonstrated by
the plot of the number of nuclei formed on average during the mean lag time against 1/V . (b)
Kinetic analysis of insulin aggregation in bulk. Solid line: best fit curve to initial exponential
growth; dotted lines: kn is decreased/increased by an order of magnitude relative to best fit.
Data provided by K. L. Saar. [73] (c) Average number of nuclei formed in lag time.

3.4 Lag times†

A common qualitative feature of filamentous growth processes is the observation of a lag
phase before aggregation can be detected. A commonly used measure of this polymeriza-
tion delay is the lag time, τ , defined as the time at which the aggregate mass concentration
x(t)/(NAV ) reaches an arbitrarily chosen concentration threshold Mth. Although it is of-
ten the case that a halfway point for the reaction is taken, this may fall outside the realm
over which our approximations are valid. Therefore a 10% extent or the experimental
limit for aggregate detection [70] are simple choices for Mth more in keeping with our
solution. Because τ is a random variable, the quantity of interest is the PDF of lag times,
i.e. the probability T (t) that τ equals t.

Although previous authors have studied lag times in kinetic growth equations [74],
these have typically been focused on the bulk mass-action limit, and have not investigated
stochastic effects. Moreover, the systems typically explored do not feature secondary
growth processes, and are thus qualitatively different in behaviour. On the other hand,
Szabo et al [52] investigated lag times in stochastic bacterial proliferation. Since the
master equation for bacterial propagation was found to be identical to our simplified
master equation Eq. (3.2), we were able to apply the same techniques to determine lag
times in stochastic filamentous growth with secondary processes.

According to the theory of first passage times [52], T (t) is computed as T (t) = −dQ(t)
dt

,
where Q(t) = ∑nth−1

n=0 P(n, t) is the probability that at time t the process x(t)/(NAV ) has
not yet reached Mth, and nth is the number of filaments associated with this threshold.
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Using Eq. (3.3) we find (see Appendix A.5)

T (t) =
κ2α1/κΓ

(
nth + α1

κ

)
Γ (nth) Γ

(
α1
κ

) e−(α1+(nth−1)κ)t(eκt − 2)nth−1, (3.4)

where nth = α2NAVMth/κ. The average lag time, 〈τ〉 =
∫∞

0 tT (t)dt, is obtained from
adaptation of the result in [52] to our boundary conditions (see Appendix A.5) as

〈τ〉 = log(2)
κ

+
nth−1∑
j=0

1
α1 + jκ

(3.5)

and the extent of fluctuations is similarly obtained as

σ2 = 〈τ 2〉 − 〈τ〉2 =
nth−1∑
j=0

1
(α1 + jκ)2 . (3.6)

3.5 Limiting behaviour of lag time in key regimes

Inspection of Eqs. (3.5) and (3.6) reveal that the level of stochasticity in the system
is controlled by the dimensionless parameter γ = κ/α1. Based on this parameter, we
can distinguish three natural regimes of stochastic behaviour: bulk (γ = 0), onset of
stochasticity (γ → 0) and single-event controlled (γ →∞). We now discuss how Eqs. (3.5)
and (3.6) can be simplified in these regimes. In bulk (γ = 0), the sum in Eq. (3.5)
is replaced by an integral and Eq. (3.5) is determined solely by the propagation time
associated with the secondary nucleation chain reaction, τbulk (see Appendix A.6.1).

In the opposite limit of very small volumes or slow nucleation (γ → ∞), the domi-
nant contribution to Eq. (3.5) is the inverse nucleation rate, 〈τ〉 = 1/α1 = cn/V , where
cn = 1/(knmnc

totNA) [64]. In this regime, V is small enough that eventually only a sin-
gle nucleation event occurs ahead of the threshold being reached, at which point 〈τ〉 is
dominated by the waiting time for formation of a single nucleus, which scales inversely
proportional to system volume as expected from classical nucleation theory [75, 76]. The
growth of this nucleus into sufficient amounts of aggregates to pass the mass concentra-
tion threshold Mth occurs far faster than the formation of a second nucleus in this limit.
Furthermore, the extent of fluctuations is now controlled by σ2 = (cn/V )2 (see Appendix
A.6.3).

These simplifications apply in the limit of very small volumes, and cannot be used at
intermediate volumes that are small enough for stochastic fluctuations to be visible, but
still large enough that several primary nucleation events can occur. Series approximation
of Eq. (3.5) around γ = 0 allows us to explore the onset of stochasticity and reveals that
〈τ〉 approaches the bulk value τbulk as 〈τ〉 = τbulk + cn/(2V ), where cn = 1/(knmnc

totNA) is
the average time of forming nuclei in volume V (see Appendix A.6.2). This system size
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expansion shows therefore that, in this regime, 〈τ〉 approximately decomposes into a sum
of the deterministic lag time and half of the inverse nucleation rate (a term proportional
to 1/V ). The extent of fluctuations in this regime is approximately given by σ2 = cn/(κV )
(see Appendix A.6.2).

Equations (3.5) and (3.6) interpolate smoothly between these limiting regimes. In
particular, across the entire range of system sizes 〈τ〉 approximately writes as the sum
of the deterministic lag time and a nucleation term proportional to 1/V , whereby the
constant of proportionality satisfies cn/2 ≤ d〈τ〉/d(1/V ) ≤ cn. The transition between
these two limiting regimes occurs approximately at the critical volume Vc = κcn at which
γ = 1. This critical volume corresponds to the radius of convergence of the system size
expansion of 〈τ〉 around γ = 0 and hence marks the upper volume limit for the small
fluctuation result to be accurate.

3.6 Stochastic analysis provides strong constraints
for probing primary nucleation events

Heretofore, rate constants for protein aggregation have been determined by carrying out
kinetic experiments in bulk, in which the mass concentration of fibrils over time is mea-
sured [70, 77], and by fitting such data to rate laws derived from deterministic master
equations [77]. Typically, however, the rate constants characterising the elementary pro-
cesses of primary and secondary nucleation and growth occur as combinations, and thus
it remains challenging to obtain accurate values for the rates of these processes from ex-
perimental data. In particular the process of primary nucleation has proven challenging
to quantify, in part as the major experimental observables such as the lag-phase display
only a weak logarithmic dependence on this parameter. Remarkably, however, our re-
sults suggest that a measurement of the volume dependence of the lag time allows the
rate of primary nucleation to be determined directly from the slope of a plot of 〈τ〉 ver-
sus 1/V . This approach has several advantages over attempting to characterize primary
nucleation from bulk polymerization fraction experiments: (i) While fitting of bulk ex-
periments fixes only the combined rate parameter k+kn, the analysis of stochastic data
allows the rate of primary nucleation to be determined directly, without the necessity
of estimating the elongation rate constant or the length of the aggregates, from other
experimental techniques, factors which are intrinsically sources of significant error. (ii)
Microdroplet experiments can be tightly controlled, and lag time experiments are digital
in nature with the exact value of the threshold not entering the gradient and thus not
contributing to error. (iii) In the presence of secondary mechanisms, the fitting of bulk
data over the full time course is predominantly constrained by the autocatalytic processes
rather than the primary nucleation step, contributing to uncertainties of several orders
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of magnitude for the determined nucleation rate [78]. Even if fitting is limited to the
early-times, the exponential form of the fitting equation allows for substantial leeway in
the values of the fitting parameters, as numerous combinations of such parameters give
rise to fairly similar-looking curves. For example, changing the best fit value for kn by
an order of magnitude would not significantly affect the performance of the bulk analysis
fit, but would give rise to a dramatically poorer fit of 〈τ〉 vs 1/V in a linear relationship
(Figs. 2(c,e)).

3.7 Connecting small-volume experiments of bovine
insulin fibrillization kinetics to bulk experiments†

We have applied this technique to analyse data from microdroplet experiments on bovine
insulin [57] and obtained a value for the rate of primary nucleation of c−1

n = (6± 1) · 106

s−1L−1 (Fig. 2(a)). K. L. Saar then carried out bulk experiments of insulin aggregation,
and the data were fitted to a standard deterministic model, in conjunction with our
calculated value for the rate of primary nucleation in microdroplets (Fig. 2(b)). The
resultant calculated rate of elongation µ = 2 · 105 s−1 agrees with those reported in
the literature, to within the levels of error expected from the method of calculation [79],
showing that the stochastic analysis presented in this paper allows small volume behaviour
to be related to conventional bulk experiments. Moreover, the value of the nucleation rate
constant is constrained to within better than an order of magnitude, a result that is very
challenging to achieve with analysis of bulk data (Fig. 2(b)).

3.8 Conclusions

We have reported of a theoretical study on stochastic effects in nucleated polymerization
phenomena in small volumes. We have derived fully analytical results describing the dis-
tribution of lag times that allows linking the bulk parameters characterizing large-volume
experiments with the statistical properties of polymerization curves in small volumes
across the entire range of fluctuation behaviour. Our results provide a practical route to-
wards an accurate determination of primary nucleation rates which represent a key event
in the transition of soluble proteins into their aggregated forms. Of particular interest is
the ability to probe the primary nucleation reaction order with respect to monomers in
detail, both for homogeneous systems and for copolymerising systems; which may reveal
new information about oligomeric species formed as intermediates of primary nucleation.
Moreover, microdroplet-based experiments admit the possibility of exploring the role of
interfaces in primary nucleation, through modulation of the chemical properties of droplet
surfaces.
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Chapter 4

The Early Stages of Heteromolecular
Filament Formation

Chapter Abstract

The self-assembly of molecular building blocks into linear filaments is a com-
mon form of self-organization in nature, and underlies the formation of supra-
molecular polymers in a variety of contexts, including in both functional and
aberrant biology. To date, attention has focused mainly on homomolecular
assembly phenomena; however, it has recently become apparent that hetero-
molecular assemblies can be common, and for instance pathological protein
filaments such as amyloid aggregates form in vivo in environments supporting
copolymerization. Here, we present a general kinetic scheme for heteromolec-
ular filament formation, and derive closed-form analytical expressions that
describe the dynamics of such systems under constant-monomer conditions.
Our results reveal the existence of a demixing transition time controlled by
the relative rates of depletion of the different aggregating species, after which
predominantly homomolecular polymers are formed even when the initial so-
lution is heteromolecular. Furthermore, these results may be applied to the
analysis of experimental kinetic data on the aggregation of mixtures of pro-
teins, to determine which fundamental reaction steps occur between unlike
proteins, and to provide accurate estimates of their rate constants.

This chapter investigates the effect of heterogeneity on the early stages of aggregation.
It outlines effectively exact analytical solutions to the kinetics of formation of mixed fila-
ments from coaggregation of multiple monomer types at early reaction times. The work in
this chapter was published in J Chem Phys under the title “Dynamics of heteromolecular
filament formation”. I was responsible for all results and writing, receiving helpful advice
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and feedback on the drafting from Tuomas P. J. Knowles and Thomas C. T. Michaels. All
sections from the paper dealing with the full-time kinetics of closed aggregation reactions
have been omitted, and some technical calculations and derivations have been removed
to Appendix B.

4.1 Introduction

Protein filament formation is a molecular-level process of central importance for both nor-
mal [18,53] and aberrant biology [1,4], as well as for the development of novel materials for
nanotechnology [54–57]. In recent years, it has become increasingly clear that copolymer-
ization is an important phenomenon in the context of protein filament formation. Copoly-
merization has been directly implicated in amyloidogenic diseases in vivo [80–82], and has
been observed and studied in numerous in vitro experiments [83, 84]. Specific examples
include cross-nucleation between Aβ40 and Aβ42 [85], formation of heteromolecular fib-
rils consisting of multiple Aβ42 variants [86], and copolymerization of IAPP and Aβ40
proteins [80]. The latter is of especial interest given the known link between Alzheimer’s
disease and diabetes [87]. There is therefore a clear motivation for the development of
models analogous to existing single-species models, that are capable of quantitatively in-
terpreting data from such experiments, and elucidating the important microscopic mech-
anisms responsible for copolymerization of different biologically-relevant combinations of
proteins.

Hitherto, models of linear aggregation kinetics have focused on self-aggregation of sin-
gle protein species. Such models include the Oosawa model of polymer nucleation and
elongation [18], that has been employed to successfully describe a range of biophysical
phenomena, such as cell cytoskeleton assembly [53]; and models incorporating secondary
processes such as fragmentation of polymer chains, and surface-catalysed nucleation, that
are capable of describing protein aggregation in amyloidogenic diseases such as Alzheimer’s
and Parkinson’s [13,19,21,30,39,46–48,58,65–69,88]. Although accurate analytical solu-
tions have been derived for these models, they are single-species only and not applicable
to multiple-protein systems. This historical direction of development has been motivated
by the assumption that a single protein is responsible for a single amyloidogenic disease,
and also by the much greater mathematical complexity involved in any attempt to model
a multiple-species system.

In this work, we present a new analytic model for heteromolecular fibril formation that
explicitly accounts for the interactions of multiple protein types in terms of the various
possible fundamental processes. We illustrate much of the work using a system of two
protein types, although the model can be generalized to three or more. We expect that
this theory will find practical use in interpreting the significant amount of experimental
work that is being undertaken in this field.
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The paper is organized as follows. In Sec. 4.2, we introduce the approach used to
formulate the theory. In Sec. 4.3-4.4, we consider an Oosawa-like system with no sec-
ondary processes, and show how to introduce copolymerization into such a system. In
Sec. 4.5-4.6, we then generalize our methodology to model a general copolymerizing sys-
tem that includes secondary processes. In Sec. 4.7, we investigate the internal structure
of coaggregated fibrils that are formed during the self-assembly reaction; and finally, in
Sec. 4.9, we discuss with examples how this new theory may be applied to the analysis of
experimental data, and what can be learned from such analysis.

4.2 Composition Distribution and Principal Moments

On a macroscopic scale, the kinetics of a system of chemical species can be described by a
master equation that expresses the rate of change of concentrations of the various species
in terms of elementary reaction steps [48]. Invoking the law of mass action, the rates of
these elementary reaction steps can be written as simple powers of the concentrations of
the species involved. In order to proceed in the development of a kinetic theory of mixed
fibril formation, we must therefore first identify the relevant chemical species that we wish
to track, and then establish the equations that govern their kinetics.

4.2.1 Introducing the composition distribution

A single-species aggregating system is fully characterized by knowledge of the time-
dependent length distribution f(t, j) [21, 30], giving the concentration of an aggregate
composed of j monomers at time t. When multiple species are present and can coag-
gregate this description is no longer sufficient, as in addition to their length, one must
keep track of their internal composition. For example, Fig. 1 shows the variety of possible
copolymeric structures that can result from the linear assembly of two species, such as ran-
dom copolymers, block copolymers, and alternating copolymers. In order to encapsulate
this possible variety, a full characterization must thus be given in terms of multi-indices
f(t,~j), where ~j is a vector representing an aggregate of length j = dim(~j). Each compo-
nent ji can take values from 1 to M , with each number representing a species and M is
the number of different species in the system.

4.2.2 Defining the moments of the composition distribution

The full composition distribution equations for a general copolymerizing system contain
a very large number of degrees of freedom; however, knowledge of the full composition
distribution is often not necessary for the understanding of the system behaviour at a
macroscopic level. A fruitful analysis strategy is therefore to follow the time evolution of

45



the fibril mass concentration and the number concentration of fibril ends only, which are
related to the composition distribution by:

Px(t) =
∑
~j

(δj1x + δj|j|x)f(t,~j)

Mx(t) =
∑
~j

∑
i

δjixf(t,~j), (4.1)

and contain only that information which is currently accessible in bulk experiments. Note
that these quantities (4.1) are analogous to the principal moments commonly considered
in a single-species system [30], defined as:

P (t) =
∑
j

f(t, j)

M(t) =
∑
j

j f(t, j), (4.2)

with the key difference that P (t) tracks the concentration of whole fibrils, whereas Px(t)
tracks the concentration of fibril ends. Note also that, in the single-species case, there is
no difference between the number of ends Px and the number of filaments P , aside from
a factor of two. However, in the copolymerizing case, tracking the concentration of ends
rather than concentration of fibrils allows us to write Px and Mx as the simplest possible
closed set of dynamic equations for this system. These can be directly solved in the case
where we have no secondary processes, a task which is more complicated if instead P is
used.
In the following sections, we discuss closed-form expressions for these quantities Mx(t),
Px(t) under constant-monomer conditions for different models of practical importance,
including the Oosawa model and models featuring secondary processes. In a general

Uniform Block

AlternatingRandom

Figure 4.1: Examples of types of copolymers that can be observed, for j = 6. Red is labelled
monomer type 1, blue is type 2. Subsequently in the paper we refer to red as type a, and blue
as type b.
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copolymerizing system, we may have any number of monomer species interacting and
forming fibrils together; for simplicity, however, we restrict our attention to systems com-
prising just 2 monomer types, labelled a and b, while noting that our methodology is
easily generalizable to systems involving arbitrary numbers of monomer types.

4.3 The Mixed Oosawa Model: From One to Multi-
ple Species

Oosawa and coworkers were the first to study the kinetics of protein polymerization in
the absence of secondary processes (e.g. actin polymerization) [18], and in this section we
demonstrate how this model can be generalized to account for multiple species.

4.3.1 Introducing the microscopic processes

Differential equations governing the length distribution of a single-species system can be
written down, in which each microscopic reaction step is explicitly accounted for [59].
Differential equations governing the principal moments can also be written down, or al-
ternatively derived from the length distribution equations using (4.2) [89]. In the original
Oosawa model, we have just 2 active microscopic processes: formation of linear, growth-
competent nuclei from free monomers with reaction order nc and rate constant kn, known
as “primary nucleation”; and addition of free monomers to the ends of these nuclei and of
other existing aggregates with reaction order 1 and rate constant k+, known as “elonga-
tion”. In principle there may be inverse elongation and nucleation steps, described by an
“off” and a “dissociation” rate; however, for many experimentally-relevant systems these
rates are very small compared to the forward ones and here we choose to neglect them
for simplicity.

Generalizing nucleation to more than one species

In the multiple-species case, nuclei of a variety of reaction orders with respect to monomers
a and b may in principle form. For notational simplicitly, we illustrate our methodology
with nuclei of total reaction order 2 only, and assume that reaction orders are directly
equivalent to nuclei produced. We thus have only 3 nucleation reactions: production of
nuclei of type aa, ab and bb. We note that both of these limitations can be relaxed,
and explore this possibility in Appendix B.1. For the case considered, we write the rate
constants for these 3 reactions as 2kn(aa), kn(ab), and 2kn(bb). These microscopic reaction
steps, along with their associated rate constants, are illustrated in Fig. 4.2.
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Generalizing elongation to more than one species

We consider the most general markovian first-order elongation reactions in which the
rate depends both on the identity of the monomer and of the fibril end, but not on
the history of the fibril. We write k+(x|y) as the elongation rate constant for addition
of monomer of type x onto an end of type y. Typical elongation reaction steps are
illustrated in Fig. 4.2. In some systems, it has been shown that elongation follows a
2-step mechanism [16, 90, 91], with the elongation rate becoming monomer-independent
under certain conditions. However, in this first study of copolymerization we ignore this
possibility and assume that the rate of elongation is always linearly proportional to the
monomer concentration, even though our approach can in principle be generalized to take
this effect into account.

4.3.2 Moment equations

We have made the assumption that only nearest-neighbour interactions are important,
and therefore that internal composition does not affect the elongation rates. Therefore
the multiple-species analogues of the 0th- and 1st-order moment equations alone can
encapsulate the key determinants of the dynamics of the multiple-species Oosawa model.
Writing Pa(t), Ma(t) and ma(t) for the number concentration of filament ends of type a,
mass concentration of filament-incorporated monomer of type a, and concentration of free
monomer of type a respectively, and Pb(t), Mb(t) and mb(t) for the equivalent quantities

k+(b|a) k+(a|a)

kn(ab)

kn(bb)

Figure 4.2: A representative set of the types of fundamental primary nucleation and elongation
processes involved in heteromolecular filament formation.
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of type b, the following moment equations can be written down:

d

dt
Pa(t) = 2kn(aa)ma(t)2 + kn(ab)ma(t)mb(t)

+ k+(a|b)ma(t)Pb(t)− k+(b|a)mb(t)Pa(t)
d

dt
Pb(t) = 2kn(bb)mb(t)2 + kn(ab)ma(t)mb(t)

− k+(a|b)ma(t)Pb(t) + k+(b|a)mb(t)Pa(t) (4.3a)
d

dt
Ma(t) = k+(a|b)ma(t)Pb(t) + k+(a|a)ma(t)Pa(t)

d

dt
Mb(t) = k+(b|b)mb(t)Pb(t) + k+(b|a)mb(t)Pa(t). (4.3b)

Note that in arriving at these equations we have assumed the contribution of nucleation
to monomer depletion to be negligible [48].
The different terms in (4.3) have straightforward interpretations. The first two terms in
the same equations are analogous to single-species terms and represent the production
of ends of the relevant type through nucleation. The terms in the final two equations
are similarly analogous and represent the contribution of self- and cross-elongation to
monomer depletion. However, the final two terms in the first two equations have no
direct equivalence to single-species processes and are “drift” terms that represent the
inter-conversion of ends of type a and type b due to elongation.
Note that if one of the monomer populations is depleted from solution before the other,
the dynamics reduce to that of a single-species system, and may be qualitatively different
from the pre-depletion dynamics if the elongation rate constants differ significantly. If
this is the case the reaction is governed by two timescales: a copolymer timescale and
a single-species timescale, with the dominant timescale switching from the former to the
latter as the first monomer species is depleted. This feature is in contrast to the single-
species Oosawa model, whose dynamics is controlled by a single timescale. This behaviour
is visible in the numerical solutions to the rate equations (4.3) plotted in Fig. 4.3(b) and
(d). Once one monomer species is depleted from the solution, the rate of depletion of the
other monomer shows a “kink” and slows significantly, as it comes to be controlled by the
slower single-species timescale.

4.4 The Mixed OosawaModel: Early-Time Behaviour

Having formulated the fundamental set of equations governing the dynamics of Px(t) and
Mx(t), we now study the steady-state case in which there is a flux of monomer into the
system such that the monomer concentration remains constant at all times. We find
that this condition renders the moment equations (4.3) exactly soluble. Moreover, since
monomer concentration varies little at early times, this solution is valid in the limit of
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early time, even when mass conservation is imposed. We consider the most general case in
which there is significant cross-elongation, as the early-time mixed Oosawa model without
significant cross-elongation is essentially trivial to solve.

4.4.1 Linearized early-time moment equations

At early times ma(t) and mb(t) can be approximated by their initial values, ma(0) and
mb(0), as monomer has not been significantly depleted. We write M (0)

a (t) and M (0)
b (t) as

the early-time fibril mass concentrations, and P (0)
a (t) and P (0)

b (t) as the early-time fibril
end concentrations. The moment equations can then be written as:

dP (0)
a

dt
= αa + µabP

(0)
b (t)− µbaP (0)

a (t)

dP
(0)
b

dt
= αb − µabP (0)

b (t) + µbaP
(0)
a (t) (4.4a)

dM (0)
a

dt
= µabP

(0)
b (t) + µaaP

(0)
a (t)

dM
(0)
b

dt
= µbbP

(0)
b (t) + µbaP

(0)
a (t), (4.4b)

where αa and αb describe the initial rates of primary nucleation; and µab, µba, µaa and
µbb describe the initial rates of elongation. The rates are constant and are given by
αx = ∑

y(1 + δxy)kn(xy)mx(0)my(0), and µxy = k+(x|y)mx(0).

4.4.2 Solving the early-time equations

The linearized ordinary differential equations (ODEs) for the polymer ends (4.4a) are
solved, when cross-elongation is present, to give:

P (0)
a (t) = Pa(0)e−µct + αt

µc
µabt

+ 1
µ2
c

[
(y + µabP (0)µc)(1− e−µct)

]
P

(0)
b (t) = Pb(0)e−µct + αt

µc
µbat

+ 1
µ2
c

[
(µbaP (0)µc − y)(1− e−µct)

]
, (4.5)

where the total early-time nucleation rate αt = αa + αb, the early-time cross-elongation
rate µc = µab + µba, P (0) = Pa(0) + Pb(0), and y = αaµba − αbµab.
For extended fibrils to form, the timescale of elongation must be much more rapid than the
timescale of the overall aggregation reaction. Thus, when cross-elongation is significant,
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µct� 1 for any time of interest, and (4.5) reduces to:

P (0)
a (t) = µab

µc
(αtt+ P (0))

P
(0)
b (t) = µba

µc
(αtt+ P (0)) . (4.6)

This result can be understood as the fibril end concentrations rapidly equilibrating at early
times due to cross-elongation. The same results can therefore be arrived at by calculating
the total early-time fibril end concentration, and applying to it the equilibrium ratio of end
types, given by setting the cross-elongation rates equal to one another. These expressions
(4.6) can be substituted into the equations for the mass concentrations (4.4b), to give
early-time solutions:

M (0)
a (t) = αt

2µc
µab(µaa + µba)t2

+ P (0)
µc

µab(µaa + µba)t+Ma(0)

M
(0)
b (t) = αt

2µc
µba(µab + µbb)t2

+ P (0)
µc

µba(µab + µbb)t+Mb(0). (4.7)

These expressions (4.7) are plotted against numerical solutions to the full-time rate laws
(4.3) in Fig. 4.3, and show excellent agreement at early times. At later times they continue
to grow indefinitely as t2, whereas the numerical solutions, after an initial t2 growth phase,
converge to a finite maximum filament mass concentration. This difference is due to the
fact that monomer concentration is kept constant in the early-time solutions; thus, the
rates of reaction remain constant and fibril concentration increases unboundedly. On
the other hand, the full-time moment equations feature depletion of monomer and thus
the rate of filament growth tends to zero as the monomers all become incorporated into
filaments.

4.4.3 Lag times and scaling

The availability of closed form expressions for the early time dynamics is already able to
reveal important insights into the problem of copolymerization. For instance, the scaling
of the time taken to deplete a given proportion of each monomer type in the absence of
seed can be obtained, provided the proportion of monomer consumed is relatively low.
These times are known as lag times. Rearranging our early-time relations (4.7), setting
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P (0) = M(0) = 0, we obtain:

tlag,x;a =
(

2xµc/αt
k+(a|a)µab + k+(a|b)µba

)1/2

tlag,x;b =
(

2xµc/αt
k+(b|a)µab + k+(b|b)µba

)1/2

tlag,x =
(

2xm(0)µc/αt
(µaa + µba)µab + (µab + µbb)µba

)1/2

, (4.8)

where tlag,x;y is time taken to deplete a proportion x of the monomer of type y (or of all
types in the absence of a subscript x).

4.4.4 Average size of aggregates

Another important parameter that can be accessed from Eqs. (4.6) and (4.7) is the
average size of fibrils L(t), which is simply M(t)/P (t). In the absence of seed, i.e. setting
P (0) = M(0) = 0, we obtain:

L(t) = µaaµab + 2µabµba + µbaµbb
2µc

t. (4.9)

As expected, the average size of aggregates increases linearly with time, as in the single
species case.

4.5 Secondary Processes: Internal Composition

4.5.1 Motivation for study

Secondary processes, such as surface catalyzed secondary nucleation and fragmentation,
are critical for the rapid formation of fibrils in amyloid diseases, and often directly pro-
duce those species responsible for the observed cell toxicity [13,39,92].
Unlike primary processes, which only involve the ends of polymer chains, secondary pro-
cesses typically involve the internal parts of the polymer. For instance, in surface-catalysed
nucleation, monomers of either type adsorb onto the surface all along the fibril length [20].
In a copolymerizing system, the physical and chemical properties of the polymers are not
expected to be homogeneous along their length. Thus, to model a copolymerizing system
in the presence of secondary processes, it is necessary to consider the internal composi-
tions of the polymer chains away from the ends, which in principle requires us to solve
the full master equation. However, such detailed knowledge is not actually necessary to
describe the kinetics when we consider only nearest-neighbour interactions; instead, the
local structure around a site of secondary nucleation or of fragmentation is all that is
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Figure 4.3: A plot of mass concentration vs time for a primary nucleation-dominated system,
for parameter values consistent with extended fibril formation (see Appendix B.5). Red is the
rapidly depleting species a, blue is species b. Dotted lines are early-time solutions (4.7), solid
black lines are numerical solutions to the moment equations (4.3). (a) is unseeded, and with
similar monomer depletion rates. (b) is unseeded, and with different monomer depletion rates.
(c) is seeded, and with similar monomer depletion rates. (d) is seeded, and with different
monomer depletion rates. Dashed and solid coloured lines are approximate full-time analytical
solutions not presented in this thesis.

needed to know. This can be most obviously seen in the case of fragmentation, where
the rate of breakage depends on the identity of the species being separated. Furthermore,
the rate of formation of secondary nuclei of reaction order n2 = 2 will also depend on the
concentration of adjacent pairs of subunits of different types with which they may inter-
act. We illustrate these processes, and their rate constants, in Fig. 4.4. We use n2 = 2
throughout, although the methodology can be applied in principle to any reaction order.

4.5.2 Generalizing the moment equations to account for sec-
ondary processes

For a copolymerizing system involving subunit-pair-dependent secondary processes, the
previously-derived moment equations (4.3) are extended to include these new processes
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as follows:

dPa
dt

= 2kn(aa)ma(t)2 + kn(ab)ma(t)mb(t)

+ k+(a|b)ma(t)Pb(t)− k+(b|a)mb(t)Pa(t)

+
∑
pq,xy

(δpa + δqa)k2(pq|xy)mp(t)mq(t)Nxy(t)

dPb
dt

= 2kn(bb)mb(t)2 + kn(ab)ma(t)mb(t)

− k+(a|b)ma(t)Pb(t) + k+(b|a)mb(t)Pa(t)

+
∑
pq,xy

(δpb + δqb)k2(pq|xy)mp(t)mq(t)Nxy(t) (4.10a)

dMa

dt
= k+(a|b)ma(t)Pb(t) + k+(a|a)ma(t)Pa(t)

dMb

dt
= k+(b|b)mb(t)Pb(t) + k+(b|a)mb(t)Pa(t), (4.10b)

where Nxy(t) is the concentration of adjacent pairs of subunits of type xy at time t,
k2(pq|xy) is the rate constant for production of secondary nuclei of type pq on adjacent
subunit pairs of type xy, and the sums are over the possible monomer and subunit pairs.
This notation is valid assuming we can directly interpret k2(pq|xy) as the rate constant
for formation of a nucleus of type pq, at the site of an xy subunit pair. If we wish to
relax this assumption we can use a more general notation k2(z; pq|xy) as the rate constant
for formation of ends of type z through secondary processes with reaction order 1 with
respect to each of mp(t), mq(t), and Nxy(t) (if p = q then the reaction order sums to
2). This allows for instance that ends of type a form through secondary processes with
reaction order 0 with respect to ma(t), and 2 with respect to mb(t).

If fragmentation is occurring but secondary nucleation is absent, we instead have:

dPa
dt

= 2kn(aa)ma(t)2 + kn(ab)ma(t)mb(t)

+ k+(a|b)ma(t)Pb(t)− k+(b|a)mb(t)Pa(t)

+
∑
xy

(δxa + δya)k−(xy)Nxy(t)

dPb
dt

= 2kn(bb)mb(t)2 + kn(ab)ma(t)mb(t)

− k+(a|b)ma(t)Pb(t) + k+(b|a)mb(t)Pa(t)

+
∑
xy

(δxb + δyb)k−(xy)Nxy(t), (4.11)

where k−(xy) is the rate constant for filament fragmentation occurring at a subunit pair of
composition xy. Note that at early times, when we can treat monomer concentrationsm(t)
as constant, all these equations for different possible secondary processes have identical
functional form.
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k2(aa|ab) k2(ab|bb)

Figure 4.4: Representative possible fragmentation and secondary nucleation events in a 2-species
copolymerizing system.

It is important to note that, due to the inclusion of Nxy(t) terms, these equations are
no longer closed. We can, however, write down ODEs describing the time evolution of
the pair concentrations:

dNaa

dt
= k+(a|a)ma(t)Pa(t)

dNab

dt
= k+(a|b)ma(t)Pb(t) + k+(b|a)mb(t)Pa(t)

dNbb

dt
= k+(b|b)mb(t)Pb(t). (4.12)

As with the 1st moments, these equations are accurate in the limit that elongation is
much faster than nucleation. They depend only on the 0th- and 1st moments of the
distribution; thus, the extended moment equations featuring these equations along with
those for the 0th and 1st moments is closed when combined with a conservation-of-mass
relation, and can in principle be solved uniquely.

4.6 Secondary Processes: Analytical Early-Time So-
lutions

The early-time behaviour of the system is interesting to study in its own right and provides
a framework for interpreting lag time experiments. Here we discuss the hardest possible
case, in which cross-elongation plays a significant role. In Appendix B.3 we discuss the
simpler case in which no appreciable cross-elongation occurs, and also the case in which
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no cross-secondary processes occur.

4.6.1 Early-time moment equations

At early time, the rates (δpx + δqx)k2(pq|yz)mp(t)mq(t) as well as the rates of primary
nucleation become time-independent, as we fix ma(t) and mb(t) at their initial values.
The system of moment equations are now linear. Furthermore, the 1st moment ODEs are
now decoupled from the rest and we need only solve the filament end concentration and
subunit pair concentration equations simultaneously to calculate the mass concentrations.
We write these in matrix form:

d

dt



P (0)
a (t)
P

(0)
b (t)

N (0)
aa (t)

N
(0)
ab (t)

N
(0)
bb (t)


=



αa

αb
0
0
0


+



−µba µab α2a
aa α2a

ab α2a
bb

µba −µab α2b
aa α2b

ab α2b
bb

µaa 0 0 0 0
µba µab 0 0 0
0 µbb 0 0 0





P (0)
a (t)
P

(0)
b (t)

N (0)
aa (t)

N
(0)
ab (t)

N
(0)
bb (t)


, (4.13)

where α2x
yz = ∑

pq(δpx + δqx)k2(pq|yz)mp(0)mq(0), and α2x
yzNyz(t) represents the early-

time rate of formation of ends of type x through secondary nucleation at sites of com-
position yz. For a system undergoing fragmentation but not secondary nucleation, the
results are identical except k2(pq|yz)mp(0)mq(0) is replaced with k−(pq).

4.6.2 Solutions to the extended moment equations

These equations cannot be exactly solved in a useful manner, since they give rise to
a quintic eigenvalue equation. We instead non-dimensionalise the eigenvalue equation
and identify the dimensionless parameter ν = (∑i=a,b [α2i

aa + α2i
ab + α2i

bb])/(µab + µba), and
note that ν << 1, under the assumption that there is significant cross-elongation. We
perform dominant balance on the eigenvalue equation using this small parameter to ob-
tain approximate eigenvalues (see Appendix B.2). We can then obtain the corresponding
approximate eigenvectors, by considering only the leading-order behaviour in ν of the
eigenvector equations. After a very short initial adjustment time, Eq. (4.13) is controlled
by the only positive eigenvalue λ+, and its associated eigenvector. We neglect contribu-
tions to the full inhomogeneous solution from the remaining eigenvalue-eigenvector pairs,
since these have a negligible effect over most of the reaction time course. Ultimately we
obtain the following expressions for the early-time fibril end concentrations:

P (0)
a (t) = αtµab

2λ+µc

(
eλ+t − 1

)
P

(0)
b (t) = αtµba

2λ+µc

(
eλ+t − 1

)
, (4.14)
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with
λ+ =

√
(α2t

aaµaaµab + 2α2t
abµabµba + α2t

bbµbaµbb)/µc, (4.15)

and α2t
xy = α2a

xy + α2b
xy; and subunit pair concentrations:

N (0)
aa (t) = αtµaaµab

2λ2
+µc

(
eλ+t − 1

)
N

(0)
ab (t) = αtµabµba

λ2
+µc

(
eλ+t − 1

)
N

(0)
bb (t) = αtµbaµbb

2λ2
+µc

(
eλ+t − 1

)
. (4.16)

We can then use the early-time mass concentration equations with these solutions to
calculate:

M (0)
a (t) = αt(µaa + µba)µab

2λ2
+µc

(
eλ+t − 1

)
M

(0)
b (t) = αt(µab + µbb)µba

2λ2
+µc

(
eλ+t − 1

)
. (4.17)

Seeded solutions are given in Appendix B.2. These are plotted against numerical solutions
to the rate equations (4.10), (4.12) in Fig. 4.5, and show excellent agreement at early
times, as expected. As with the Oosawa early-time solutions, they diverge away from
the numerical solutions at later times due to the lack of monomer conservation in the
early-time rate equations.

4.6.3 Lag Times

For a system without seed, it is interesting to obtain an expression for the time taken to
deplete a given proportion of the monomer. We can use early-time expressions (4.17) to
do this provided the proportion of depleted monomer is relatively low. Neglecting small
terms, we obtain:

tlag,x = 1
λ+

ln
[

2λ2
+xmtotµc

αt(µaaµab + 2µabµba + µbaµbb)

]
, (4.18)

where x is the proportion of monomer that has been depleted. We immediately see that
the behaviour of the lag time is controlled predominantly by λ+, with primary nucleation
entering the expression only logarithmically. This is in analogy with the role of κ in a
single-species system with secondary processes.
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Figure 4.5: A plot of mass concentration vs time for a fragmentation-dominated system, for
parameter values consistent with extended fibril formation (see Appendix B.6). Red is the
rapidly depleting species a, blue is species b. Dotted lines are early-time solutions (4.17), and
black lines are numerical solutions to the moment equations (4.10), (4.12). (a) is unseeded, and
(b) seeded. Solid coloured lines are approximate analytical solutions not presented in this thesis.

4.6.4 Average size

The average size of fibrils is simplyM(t)/P (t). We use the unseeded early-time expressions
(4.14) and (4.17) to obtain:

L(t) = µaaµab + 2µabµba + µbaµbb
λ+µc

. (4.19)

This expression reduces straightforwardly to the single-species expression [30].

4.7 Investigating Internal Composition

So far, we have derived general solutions to the dynamics of mixed fibril number and
mass concentration with and without secondary processes. The next question is how
the internal structure of these fibrils evolves with time. To answer this question we
introduce the pair correlation function, P(xy; t), which is defined as the probability that
a randomly selected fibril subunit pair will have a particular identity xy at time t, and
measures the time-dependent spatial correlation of a given pair of subunits in a fibril.
We also introduce the related correlation function P(x− n− y; t), in which the subunits
are separated by n unknown residues; and also consider the n-tuple correlation function
P(xyz...m...pqr; t), giving the probability that a randomly selected fibril subunit n-tuple
will have a particular identity xyz...m...pqr at time t. We wish to explore analytically
the behaviour of these quantities. Note that the obvious approach to accessing the pair
correlations, based on normalizing the quantities Nxy(t), although conceptually simpler,
is less easily generalizable to n-tuple correlations. We demonstrate the equivalence of this
approach in Appendix B.4.
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Figure 4.6: A plot of the pair correlation functions vs time for a fragmentation-dominated
system, for parameter values used in Fig. 4.5(a) (see Appendix B.6). Dotted lines are early-time
solutions (accessible from Eqs. (4.16) and (4.17)), and solid lines are approximate analytical
solutions (not presented here). Darker solid lines are numerical solutions to the extended moment
equations (4.10), (4.12). (a) examines aa pairs (P(aa)(t)); (b) is for ab pairs, and (c) is for bb
pairs.

4.7.1 Formulating the pair correlation

Provided elongation is much faster than primary and secondary nucleation (as it must be
for extended fibrils to form, see Sec. 4.6.4) the vast majority of subunits are formed by
elongation, and are not ends. Thus, for a given pair of residues in a fibril that formed at
early times, to a good approximation, one will have formed by elongation from the other.
Given that the first residue in the pair to form is of type x, the probability that the next
one to form is of type y is given by G(y|x), where:

G(a|a) = µaa
µaa + µba

G(b|b) = µbb
µbb + µab

G(a|b) = µab
µab + µbb

G(b|a) = µba
µba + µaa

. (4.20)

Since the elongation process has been assumed to be fast, formation-time-specific condi-
tional composition probabilities for non-adjacent sites can be written down as a concate-
nation of these terms. We define the matrix:

G =
G(a|a) G(a|b)
G(b|a) G(b|b)

 . (4.21)

We can then construct the formation probabilities of particular n-tuples in a given direc-
tion simply by concatenating the appropriate matrix elements, and obtain the directionless
formation probability by adding the expressions for each direction if they differ.
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Figure 4.7: (a) A plot of the possible kinds of internal structure in the initial stages of a two-
species copolymerizing system, before significant monomer depletion has occurred. Monomers of
type a are labelled red, and b are blue. For large enough cxy, no cross-elongation is seen during
the early stages of aggregation and perfectly uniform filaments are formed; for small enough cxy,
no self-elongation occurs, and perfectly alternating filaments form. (b) Charting the different
possible mixing and demixing behaviours of a copolymerizing system, dependent on the average
filament length Lave, and the mixing coefficient Cmix. For values of Cmix approaching zero, one
monomer type is depleted before the other, and at later times homo-polymers of the remaining
monomer type are formed. For short enough filaments the internal composition of aggregates is
controlled by the nucleation processes forming them, not the subsequent elongation reactions.
See Sec. 4.7.2 for full details.

Also of interest is the probability that, given a selected fibril subunit of type x, a subunit
of type y is found n sites away from it. This is given by:

P(a|n|a) = [Gn]11

P(a|n|b) = [Gn]12

P(b|n|a) = [Gn]21

P(b|n|b) = [Gn]22. (4.22)

Fully general directionless site correlation functions are given by:

P(x;n; y) = P(x|n|y) + P(y|n|x)
1 + δxy

. (4.23)

The probability of a randomly selected subunit pair having a particular composition is
then P(x; 1; y) which we shorten for convenience to P(xy).

60



4.7.2 Steady-state composition and de-mixing

From the form of the correlation function calculated (4.20), we see that the correlation
behaviour depends only on the dimensionless parameters cxy = µyy/µxy. These can be
interpreted as the preference for an end of type y to add a monomer of the same type
or a different type. We may use these to construct a convenient diagram (Fig. 4.7(a))
that classifies the possible kinds of internal structure being produced at early times in a
two-species system. Where the parameters cxy are smaller, there is a greater preference
for cross-bonds to form, and domain lengths are smaller. In the limit that the parameters
cxy approach zero, a perfect alternating copolymer is obtained. In the opposite limit
cxy → ∞, perfectly uniform homo-polymers are obtained. In practice, however, uniform
homo-polymers are seen at finite values of cxy, since for sufficiently large cxy, the timescale
of cross-elongation becomes longer than the time taken for the polymerization reaction
to complete. Under these conditions no mixed filaments or domain walls are seen during
the early stages of the reaction. For the same reason, perfectly alternating polymers are
produced at finite values of log(cxy). The axes of Fig. 4.7(a) are log(cxy) in order that
these limits can be represented in a single plot.

If the monomer species deplete at the same rate, then the structure produced at
all times is accurately given by Fig. 4.7(a); however, typically one monomer depletes
before the other (type a by convention depletes first). The condition for this happen-
ing, in the absence of seed, can be derived by noting that the relative early-time rates
of depletion must be different if one monomer is to deplete first. Therefore the ratio
ma(0)M (0)

b (t)′/mb(0)M (0)
a (t)′ must not be close to 1. We name this ratio the mixing coef-

ficient Cmix, and calculate it as k+(b|a)(µab+µbb)/(k+(a|b)(µaa+µba)). This argument can
be equivalently formulated in terms of the tenth times rather than the early-time rates of
depletion, leading to the same formula. The type of structure then being formed migrates
upward and to the left on Fig. 4.7(a) as the reaction progresses; and once a is totally
depleted we have total de-mixing and only uniform type-b polymer forms. De-mixing can
also occur in a fragmenting system where the rate of hetero-fragmentation k−(ab) is large,
and much bigger than the other fragmentation rates.

A final parameter that is important in determining both steady-state composition and
de-mixing at later times is the average filament length Lave. For most systems of interest,
extended filaments form such that the average filament length is far greater than the crit-
ical nucleus sizes, and the composition of fibrils at any time are determined principally by
the elongation rates. However, for systems undergoing very little elongation, fibril com-
position becomes controlled by the relative rates of homomolecular and heteromolecular
nucleation processes. Moreover, de-mixing is also controlled by concentration-dependent
changes in these rates. The influence of Cmix and of the average filament length Lave on
the mixing behaviour of a copolymerizing system is shown schematically in Fig. 4.7(b).
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4.8 Correlation lengths

One of the few prior analytical studies of copolymerisation kinetics was performed by
Whitelam et al [93]. In their paper, they consider mixed filaments of two subunit types,
growing under conditions of constant monomer concentration. Their work differs to ours
in several key regards. Firstly, they do not consider nucleation processes, studying instead
the growth of pre-existing filaments. Secondly, they investigate the near-equilibrium limit
where fibril depolymerisation is appreciable, whereas we consider situations where depoly-
merisation is negligible (as is typically the case in amyloid fibril formation). Thirdly, they
consider stochastic kinetics whereas our model is deterministic. Finally, they consider
elongation to occur only at one rate, regardless of the composition of the fibre end or of
the type of monomer being added.

They conclude that under these circumstances the fibre composition is dependent
on the extent of supersaturation, such that the equilibrium fibre structure cannot be
attained when there is any supersaturation. Interestingly, they also conclude that a
desired “equilibrium” structure can be achieved for a given level of supersaturation by
instead changing the depolymerisation rate constants. To achieve this in practice, they
provide an analytical formula linking the mean domain length, the supersaturation and
the rate constants together.

This control can also be achieved in our model, by varying the rate constants. It is a
worthwhile goal to derive analytical expressions for the mean domain lengths, which we
do as follows. We have already derived the probability of adding a type-a monomer onto
a type-a end as G(a|a) = (1 + µba/µaa)−1. The probability of forming a type-a domain of
length na is P (na) = G(a|a)na−1G(b|a). Writing G(a|a) as ga, the mean domain length is
then given by

〈na〉 =
∞∑

na=1
naP (na) = G(b|a)

∞∑
na=1

naG(a|a)na−1

= (1− ga)
d

dga

∞∑
na=1

gnaa = (1− ga)
d

dga

(
ga

1− ga

)

= (1− ga)
(

1
1− ga

+ ga
(1− ga)2

)
= 1

1− ga
. (4.24)

The result for domains of type-b is identical but with indices permuted; substituting the
expressions for ga and gb, we can finally write:

〈na〉 = 1 + k+(a|a)
k+(b|a)

ma

mb

; 〈na〉 = 1 + k+(b|b)
k+(a|b)

mb

ma

. (4.25)

We see clearly that, for given rate constants, we can obtain any desired type-a or type-
b domain length by varying the ratio of monomer concentrations. However, we cannot
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control both domain lengths simultaneously in this way; changing the ratio increases the
mean length of one type of domain but shrinks the other. Alternatively, as suggested by
Whitelam et al, target type-a and type-b domain lengths can be obtained for any ratio
of monomer concentrations by tailoring the cross-elongation rate constants k+(b|a) and
k+(a|b).

4.9 Implications for Experimental Investigations

This paper has focused on quantities analogous to those typically measurable in exper-
iments on single-species filament formation. An arsenal of formulae has been developed
that interprets these quantities in terms of microscopic rate constants. Hence, by applying
techniques similar to those currently used in single-species studies to mixed systems [16],
the extent to which different protein species coaggregate can now be determined quanti-
tatively. In this section, details of how this may be done are given for two key classes of
experimentally measurable quantities.

4.9.1 Scaling of tenth times

Lag times are the times taken for a given proportion x of monomer to be converted
into filamentous material. Lag times are often measured experimentally for x = 0.1 and
x = 0.5, whereupon they are named tenth times and half times respectively. The scaling
of these quantities with initial monomer concentration can yield a wealth of information
on the underlying kinetics. Herein, we focus solely on tenth times and consider only
systems with primary processes as an example, but similar arguments can be made for
the other possible cases.

Using Eq. (4.8) as our starting point, and given the single-species rate constants,
lag time experiments can be used to determine the cross-elongation rate constants. The
tenth times for type a and type b monomers are calculated for fixed total monomer
concentration, but varying partitioning into type a and type b monomers. The square
ratio of the two tenth times, r, is taken at each composition, and should obey the formula:

(
ttenth;a
ttenth;b

)2

= k+(b|a)k+(a|b)f + k+(b|b)k+(b|a)(1− f)
k+(a|a)k+(a|b)f + k+(a|b)k+(b|a)(1− f) , (4.26)

where f = ma(0)/m(0). This ratio is plotted in Fig. 4.8 for varying values of f .
Equation (4.26) provides a valuable tool for extracting important information about the
system’s kinetics. For example, the cross-elongation rate constants can be determined
from a fit of the experimentally-determined r to Eq. (4.26). In the limits ofma(0)→ 0 and
mb(0) → 0, the square tenth time ratio reduces to k+(b|b)/k+(a|b) and k+(b|a)/k+(a|a)
respectively, and full fitting is not needed, if these limits are well-determined by the
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Figure 4.8: Square ratio of tenth times, r = (ttenth;a/ttenth;b)2, vs ratio of initial monomer
concentrations, f = ma(0)/m(0), as given by (4.26), for the same parameter values as used in
Fig. 4.3(a) (see Appendix B.5).

experimental data.
Finally, by taking the logarithm of the total tenth time given by (4.8), and settingma(0) =
mb(0) we obtain:

ln(ttenth) = 1
2 ln

(
0.2(k+(a|b) + k+(b|a))∑

i,j k+(i|j)k+(j|j′)

)

− 1
2 ln (kn(aa) + kn(ab) + kn(bb))− ln(ma(0)), (4.27)

where j′ 6= j. Therefore, a log-log plot of lag time vs initial monomer concentration will
give a straight line atma(0) = mb(0); and the sum of the primary nucleation rate constants
can be found from the intercept of the log-log plot, if the elongation rate constants are
known.

4.9.2 Scaling of filament mass concentration

Filament mass concentration, or free monomer concentration, can both be measured using
a variety of experimental techniques, and analysed in exactly the same way by taking
advantage of conservation of mass. The resultant kinetic traces will be qualitatively
different for different types of copolymerizing behaviour. An example of this behaviour
is the strong “kink” seen in the kinetic trace for a system without secondary processes
exhibiting cross-elongation that is significantly faster than the self-elongation of one of
the species, but not seen when the elongation rates are all similar. These qualitative
differences can be taken advantage of to select the most appropriate formulae of the ones
presented in this paper. At this point, seeded experiments can be used to determine the

64



cross-elongation rate constants relative to the single-species rate constants. For instance,
under highly seeded conditions the initial gradients of the filament mass concentrations,
Eq. (4.4b), when divided through by the initial gradients of single-species aggregation
reactions, become:

1
µaaP (0)

dM (1)
a (t)
dt

∣∣∣∣∣
t=0

=
µab + k+(a|b)

k+(a|a)µba

µab + µba

1
µbbP (0)

dM
(1)
b (t)
dt

∣∣∣∣∣∣
t=0

=
k+(b|a)
k+(b|b)µab + µba

µab + µba
. (4.28)

By fitting initial gradients to this expression for a range of initial monomer concentrations
we can therefore obtain the cross-elongation rate constants.

4.10 Conclusions

We have examined copolymerizing behaviour in linear filament self-assembly for both pri-
mary and secondary process-dominated systems. We have then presented a mathematical
approach that yields closed-form analytical expressions for the early-time dynamics of
copolymerizing systems without secondary processes. Furthermore we have developed a
formalism for modelling the internal composition of a copolymerizing system in a compu-
tationally feasible way. We have used this approach to generalize our methodology and
obtain analytical closed form expressions for the early-time dynamics of copolymerizing
systems with secondary processes.

We anticipate that this work will be of great interest to researchers studying the
interaction between multiple protein types in the course of amyloid diseases. Particularly
we expect that our work will be used to interpret experimental data on heteromolecular
fibril formation, to discover the underlying dynamics for different coaggregating systems.
However, given the paucity of quantitative experimental data on coaggregation at the time
of publication, subsequently to this research I moved on to theoretical projects in the more
experimentally-accessible field of oligomer kinetics. A priority for my research after my
PhD will be to actually enter a lab and take a direct hand in helping develop quantitative
experimental techniques for coaggregation, in collaboration with experimentalists in the
Linse group in Lund, Sweden, to get this hugely exciting field moving.
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Part III

The Kinetics of Amyloid Oligomers
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Chapter 5

Oligomeric Intermediates Initiate
Fibril Formation by the Yeast Prion
Protein Ure2

Chapter Abstract

The self-assembly of polypeptides into amyloid structures is associated with
a range of increasingly prevalent neurodegenerative diseases as well as with a
select set of functional processes in biology. The phenomenon of self-assembly
results in species with dramatically different sizes, from small oligomers to
large fibrils; however, the kinetic relationship between these species is chal-
lenging to characterize. In the case of prion aggregates, these structures can
self-replicate and act as infectious agents. Here I analyse quantitative data on
the oligomer populations formed during aggregation of the yeast prion protein
Ure2 obtained by single molecule spectroscopy. Global analysis of the aggrega-
tion kinetics reveals the molecular mechanism underlying oligomer formation
and depletion. Quantitative characterization indicates that the majority of
Ure2 oligomers are relatively short-lived, and their rate of dissociation is much
higher than their rate of conversion into growing fibrils. An initial metastable
oligomer is identified, which can subsequently convert into a structurally dis-
tinct oligomer, which in turn converts into growing fibrils. I also show that
fragmentation is responsible for the autocatalytic self-replication of Ure2 fib-
rils, but that preformed fibrils do not promote oligomer formation, indicating
that secondary nucleation of the type observed for peptides and proteins asso-
ciated with neurodegenerative disease does not occur at a significant rate for
Ure2. These results establish a framework for elucidating the temporal and
causal relationship between oligomers and larger fibrillar species in amyloid
forming systems, and provide insights into why functional amyloid systems
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are not toxic to their host organisms.

The previous two chapters seek to model early events in amyloid aggregation using an
explicit primary nucleation reaction step, the same coarse-grained approach to new fila-
ment formation as has been employed in almost all bulk studies of amyloid kinetics to
date. The current chapter instead explores primary nucleation in more detail by explic-
itly investigating kinetic intermediates of this reaction step. The work described in this
chapter was published in J Am Chem Soc with the title “Direct Observation of Oligomer-
ization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for
the Yeast Prion Protein Ure2”. I took joint first authorship and was responsible for the
great majority of the numerical modelling, theoretical work and analysis, as well as a large
part of the drafting. Jie Yang and Si Wu carried out all experiments and the remainder
of the drafting. The extensive Supporting Information section is reproduced in Appendix
C. It contains further details of experimental techniques, further details of the model
including partial analytical solutions, and additional experimental evidence for some of
our conclusions (including a fibril size distribution analysis carried out with the assistance
of Thomas C. T. Michaels).

5.1 Introduction

The self-assembly of soluble proteins into insoluble and highly structured amyloid fib-
rils rich in β-sheet structure is associated with a variety of human disorders, including
Alzheimer’s and Parkinson’s diseases, type II diabetes, and the prion diseases. [8, 94] In
addition, the formation of amyloid fibrils has been found to be a common or generic prop-
erty of polypeptide molecules, and also to be associated with a number of diverse biological
functions in living organisms. [94,95] Over the past decade, oligomeric intermediates that
form during the early stages of amyloid fibril formation or dissociate from mature fibrils
have become of increasing interest [12] because such species, rather than the fibrils, have
been shown to be toxic to cells and are now thought to be the major pathogenic agent in
neurodegenerative disease. [8, 22–24, 94] Understanding the nature and dynamics of the
oligomers is not only of intrinsic interest, but has the potential to provide a catalyst for
the development of therapeutic strategies for protein misfolding diseases. [8, 96,97]

Several conventional biochemical and biophysical methods are able to provide ensem-
ble information about the aggregation kinetics of amyloidogenic proteins as well as the
conformation and morphology of amyloid fibrils and the intermediate prefibrillar species
populated during their formation. The metastable and heterogeneous nature of protein
oligomers, however, has historically limited the detailed characterization of such prefibril-
lar species. Recently, a variety of novel approaches have been developed and applied for
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this purpose. Of these, single molecule fluorescence spectroscopy offers a particularly pow-
erful approach for exploring the formation and properties of oligomers, as it has the ability
to investigate individual molecular species and to reveal conformational dynamics that
may be averaged in ensemble experiments. [98,99] These techniques have been shown to be
able to identify and characterize the low-populated, heterogeneous and transient species
formed during fibril assembly of several amyloidogenic proteins. [26,28,29,100,101]

Ure2 from Saccharomyces cerevisiae is the protein determinant of the yeast prion state
[URE3 ] [102] and provides an important system for probing amyloid formation and prion
propagation. Ure2 is a negative regulatory factor of nitrogen metabolism, as in its native
state the protein interacts with the transcription factor Gln3 and represses the uptake
of poor nitrogen sources. [103] Therefore, when Ure2 converts into the aggregated prion
state, Gln3 is released and activates the expression of the genes related to the metabolism
of less favorable nitrogen sources.

While the aggregated prion form of Ure2 is tolerated by yeast cells, precursor aggre-
gates of Ure2 are toxic to mammalian cells, [104, 105] as are amyloid aggregates of other
proteins. [106] It is therefore interesting to study the oligomers formed and the structural
changes occurring during Ure2 fibril formation, and to compare them to disease-related
models. In a previous study prefibrillar intermediates of Ure2 with a range of differ-
ent sizes formed during the aggregation process were identified by AFM. [107] A soluble
oligomeric species formed during the early stages of Ure2 aggregation was separated and
characterized by biochemical and spectroscopic methods. Taken together, these results
suggest a connection between the population of oligomeric species and the course of Ure2
amyloid assembly into mature fibrils.

Theoretical modelling has previously enabled the kinetic parameters that describe
the growth and breakage of Ure2 fibrils to be defined, allowing the contribution of in-
dividual molecular steps to be correlated with prion propensity; [108] however, data on
the oligomeric populations of Ure2, which would allow this type of mechanistic analy-
sis to be carried out, have not previously been available. In the present study, single
molecule fluorescence resonance energy transfer (smFRET) was applied to investigate
in detail the intermolecular assembly and aggregation process of Ure2. This approach
enabled oligomerization during the initial lag phase to be observed, and two types of
Ure2 oligomers with different assembly modes were identified. Using theoretical analysis
combined with single molecule and ensemble kinetic data, I could describe the formation
and depletion pathway of oligomers, and propose a multistep mechanism for Ure2 fibril
formation, in which initial oligomerization is followed by conformational conversion to
β-sheet-containing oligomers that are then able to grow to form mature amyloid fibrils.
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5.2 Methods

5.2.1 Developing a model for kinetic data fitting

We set out here to develop a quantitative model that describes the experimental observ-
ables: the total fibril mass concentration M(t) and the total oligomer concentration O(t).
In addition to M(t) and O(t), the model explicitly considers the concentration of native
state dimeric Ure2 m(t), and of fibrils P (t). In particular, the model describes explic-
itly the formation of oligomers through dimer association with rate constant koligo, their
conversion to fibrils with rate constant kc, their destruction (rate constant kd), and fibril
growth and fragmentation (rate constants k+ and k−, respectively). Addition of further
complexity to this coarse-grained model is in principle readily possible within the master
equation formalism; such additional details, including differentiating between multiple
structural classes within the oligomer sub-populations, would, however, require further
experimental constraints than are currently available, in order to avoid overfitting. [109]
We used the Ure2 dimer concentration for m(t) rather than the monomer concentration,
as evidence suggests Ure2 remains in its dimeric form throughout the aggregation reaction
(see Results).

The rate equations for the model can be written as a master equation:

dO

dt
= koligom(t)2 − kcO(t)− kdO(t) (5.1)

dP

dt
= kcO(t) + k−M(t) (5.2)

dM

dt
= 2k+m(t)P (t) (5.3)

mtot = M(t) +m(t) + xoligoO(t), (5.4)

where xoligo is the number of Ure2 dimers in an average oligomer, and where we have
left out processes with negligible contributions to the overall kinetics, such as filament
annealing [48,49]. mtot is the total concentration of Ure2 in dimeric, oligomeric or fibrillar
state at any time, and is equal to m(0) in an unseeded reaction. Any larger oligomers are
expected to form from growth of smaller oligomers; all oligomers ultimately grow from the
initial interaction of a pair of dimeric Ure2 molecules. The physically reasonable choice
of overall reaction order for oligomer formation is therefore 2.0. (For further explanation,
see Appendix C.1.) Equations (5.1)-(5.3) were solved for early times in the aggregation
process.

Since observed oligomer concentrations are very low compared to that of the other
species, the contribution from xoligoO(t) to Eq. (5.4) is negligible (and determining xoligo
is not needed to successfully model the kinetics). Dropping this term, we could combine
Eq. (5.4) with Eq. (5.3) and with the early-time solutions to derive a first-order self-
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consistent solution for M(t) valid for all times (see also Appendix C.1):

M (1)(t) = m(0)
(
1− exp

(
−A

(
eκt − 1

)))
(5.5)

with A = αk+kc/κ
2(kl + κ), kl = kc + kd, κ =

√
2k+k−m(0) and α = koligom(0)2.

The time-dependent evolution of the oligomer population depends only on koligo, kl

and m(t). In turn, m(t) depends only on κ and A, or κ, kl, and αk+kc. Overall there-
fore, the dynamics of the dimer and oligomer populations depend on the following four
combinations of rate parameters: k+k−, k+kc, kl, and koligo. Moreover the fitted values
of koligo and kl are approximately independent of the values chosen for k+k− and k+kc,
provided that these two parameter combinations give a reasonable fit to the fibril mass
concentration.

5.2.2 Relating model rate constants to fundamental reaction
steps

Experiments indicate that we can resolve the observed oligomers into two structurally
distinct populations, with a low-FRET oligomer formed initially and subsequently con-
verting into a high-FRET oligomer, which in turn converts to fibrils. The data are not,
however, sufficiently detailed to allow a full kinetic analysis to be carried out on both
populations individually. The avoidance of overfitting necessitates, therefore, that we
consider together the different structural classes of oligomers, and examine the overall
fluxes that lead to their generation or depletion. We can, however, incorporate elements of
our knowledge of the oligomer sub-populations in the overall interpretation of the results.
We did so by determining how each species contributes to the total oligomer formation,
depletion and conversion rate constants in our coarse-grained model. The concentration
of the later high-FRET oligomer species changes very little over the time course of the
aggregation reaction compared to that of the earlier low-FRET species, and is present at
significantly lower concentrations than the earlier low-FRET species over the times most
relevant to the fitting procedure. Moreover, we show below that high-FRET oligomers
are likely to be formed from conversion of low-FRET oligomers. Therefore, the rate con-
stants for total oligomer formation and dissociation obtained from the fitting process can
be interpreted as approximately the rate constants for low-FRET oligomer formation and
dissociation. The rate constant kc gives the approximate proportionality between the
overall oligomer concentration and the rate of formation of fibrils from oligomers, and
so contains information on both the conversion of low-FRET to high-FRET oligomers,
as well as the conversion of high-FRET oligomers to fibrils. The concentration data on
high-FRET oligomers indicated that the steady-state approximation is likely to be valid
here, in which case we can explicitly write kc in terms of the rate constants of a more
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detailed kinetic model featuring two separate oligomeric species (see Appendix C.1). The
“conversion” rate constant would then be proportional to the rate constant for transfor-
mation of low-FRET oligomers to high-FRET oligomers, as well as to the rate constant
for conversion of high-FRET oligomers to fibrillar species.

5.2.3 Fitting the combined smFRET/ThT data to the model

The ThT component of the data was fitted globally to the analytical expression for the
full time-course fibril concentration to obtain values for A and κ using the online fitting
platform Amylofit. [16] Then, the smFRET component of the data was fitted to our early
time expression for O(t) using Mathematica to give approximate values for koligo and kl.
Having established that kd � kc, we can set kd = kl. Combining these conclusions with A
and κ yields approximate values for k+k− and k+kc. The availability of these approximate
rate constants as trial parameters enabled a numerical fit of our combined smFRET/ThT
data to Eqs (5.1)-(5.4) to be carried out, yielding robust rate constants and verifying
the consistency of our model with the experimental data. For the fitting of the combined
smFRET/ThT data, a ratio of 1.5:1 was chosen for k+k−(S68C):k+k−(V9C) (see Results).
For a full description of the kinetic model and fitting methods, see Appendix C.1.

5.3 Results

5.3.1 SmFRET measurements reveal the absence of significant
oligomer formation via secondary nucleation during Ure2
fibril formation

The two generic mechanisms that lead to the formation of fibrils are the primary nu-
cleation pathway, during which new oligomers are generated by the direct association of
soluble protein or peptide molecules, and secondary pathways, where existing fibrils have
the propensity to generate the formation of new fibrils, either through fragmentation or
through surface catalyzed secondary nucleation. In the latter case, nucleation of new
fibrils takes place on, and is catalyzed by, the surface of existing fibrils, [30] the rate of
which therefore depends on the mass concentration of existing fibrils. In the case of Aβ42
aggregation, [13] whose kinetics are dominated by the surface-catalyzed secondary nucle-
ation pathway, it has been shown explicitly that the majority of small oligomers present
during the reaction are produced during secondary nucleation. In earlier studies of Ure2,
it has been shown that fragmentation events are important determinants of the rate of
fibril formation under both quiescent and shaking conditions [108, 110, 111] although the
production of oligomers through surface-catalyzed secondary nucleation in the case of
Ure2 has not previously been discounted.
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The generation of Ure2 oligomers was measured directly using smFRET in the pres-
ence of 1% preformed mature fibrils [112] to provide a surface for oligomer formation if
secondary nucleation were to occur at a significant rate for Ure2. The time course of
oligomerization observed by smFRET in the presence of the added fibrils shows a similar
initial rate to that of the unseeded system, and the quantity of oligomers detected at
each time point is not increased, indicating that the rate of oligomer production during
secondary nucleation is insignificant compared to the rate of direct association of dimers
to form oligomers during primary nucleation. This was confirmed by explicit fitting to
kinetic models featuring oligomer formation during primary nucleation (Figure 5.1A) and
during secondary nucleation (Figure 5.1B). The former yielded a good fit; the latter a poor
fit, a result that is very different from the findings for Aβ42 [13] (Figure 5.1C). The effect
of seeding can be fully captured by supplying appropriate non-zero initial conditions to
the kinetic models. The initial mass concentration is known since the mass concentration
of the seeds is simply 1% of the initial monomer concentration, or 0.15µM. The initial
fibril number concentration was estimated from the initial mass concentration divided by
the average fibril length as calculated from TEM measurements. The quantity of Ure2
oligomers under seeded conditions appears to be lower than in the absence of preformed
fibrils, which is likely to be a result of the rapid depletion of native Ure2 by association
with, and elongation of, the pre-existing fibril ends. Together with the kinetic analysis
of the ensemble fibril formation of Ure2 (Appendix C.1 and Figure C.1), this observation
confirms that the proliferation of Ure2 fibrils results from fragmentation and not from
secondary nucleation.

5.3.2 Analysis of oligomer populations reveals the existence of
an oligomer conformational conversion step

The results so far have established that Ure2 oligomers are formed predominantly from
the free association of dimers during primary nucleation. We can demonstrate using the
following simple argument that only a minority of these oligomers ultimately become
fibrils, and that both an oligomer dissociation pathway and a conformational conversion
step are needed. Taking a conservative estimate of the initial oligomer formation rate
of 20 nM/h, and noting that minimal native Ure2 depletion occurs over the first 4 h of
aggregation, a concentration of oligomers of at least 80 nM will be formed in the first
4 h. The rate of oligomer formation declines subsequently, but does not cease until all
Ure2 is depleted from solution at ~10 – 12 h; we therefore estimate the lower bound on
the total concentration of oligomers that form during primary nucleation to be 100 nM.
Mature Ure2 fibrils are observed to have lengths typically greater than 100 nm, and mostly
on the micrometer scale. Given that the interchain distance within an amyloid fibril is
ca. 0.5 nm, fibrils must typically contain at least 100 Ure2 dimers. In the smFRET
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Figure 5.1: Absence of a fibril-catalyzed secondary nucleation process for Ure2. (A,B)
Ensemble aggregation kinetics of 15 µM unlabeled Ure2-S68C monitored by ThT fluorescence
under unseeded (blue) or seeded (red) conditions (upper panels). Ure2 oligomers were then
detected under unseeded (blue) or seeded (red) conditions by confocal single molecule FRET
(lower panels). (A) The data fit well to a model that generates oligomers during primary
nucleation. (B) A model that generates oligomers during secondary nucleation cannot fit the
data. (C) The presence of seeds (right hand columns) drastically increases the concentration
of Aβ42 oligomers measured at a single time point in the lag phase of an Aβ42 aggregation
experiment [13] (right panel), but do not increase the production of Ure2 oligomers (left panel),
indicating fundamentally different mechanisms of oligomer formation for these two systems.
Data provided by J. Yang and S. Wu. [112]
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experiments the concentration of Ure2 dimers incorporated into fibrils is approximately
15 µM, so the final concentration of fibrils is at most 150 nM. Ure2 has also been shown
to follow fragmentation-dominant kinetics, so fibril formation through primary nucleation
is insignificant compared to the total formation of fibrils through fragmentation. The
total concentration of fibrils formed through primary nucleation must therefore be at
least an order of magnitude less than the total concentration of fibrils formed, and so is
significantly less than 15 nM. This value is far lower than the concentration of oligomers
formed during primary nucleation observed in our smFRET experiments, and leads us to
conclude that most oligomers must dissociate rather than elongate. Given that oligomers
undergo faster dissociation than the fibrils, the oligomers must be structurally distinct
from fibrils. In the following two sections we demonstrate that new fibrils are likely to
originate from structural conversion of these oligomers, although this must occur much
more slowly than dissociation. This result was confirmed by comparing fitted values for
the oligomer conversion and dissociation rate constants (see kinetic analysis below).

5.3.3 Two types of on-pathway oligomeric species with different
structures can be observed

Two oligomer populations could be resolved in experiments, distinguished by their FRET
efficiency, and with distinct structural properties [112]. High-FRET oligomers appear after
low-FRET oligomers but before fibrils, suggesting that they are formed by conversion of
the low-FRET oligomers.

Next, the structures of the Ure2 species dissociated from fibrils were probed by sm-
FRET. Two major populations centered at around 0.64 and around 0.8 were observed, the
lower of which was similar to the high-FRET distribution observed during the aggregation
reaction, and can be attributed to disaggregated oligomers. The species showing higher
FRET values, with a maximum at around 0.8, can be attributed to small fibrils, indicat-
ing the more compact structure within amyloid fibrils. This observation is remarkably
similar to that in previous studies of α-synuclein. [100] The results of TIRF experiments,
therefore, demonstrate that the oligomers that disaggregate from Ure2 fibrils have the
same structural properties as the oligomeric species formed in the later stages of the ag-
gregation reaction. This finding strongly suggests that the high-FRET oligomers contain
β-sheet structure similar to that found in mature amyloid fibrils, and that this type of
oligomeric species is able to convert to elongation-competent fibril-type species.
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5.3.4 Kinetic analysis of combined smFRET and ThT data yields
a quantitative understanding of oligomer formation, dis-
sociation and conversion

Analysis of the kinetics of the aggregation reaction is a crucial step in understanding the
microscopic mechanism of amyloid formation. Previous theoretical work has provided an
analytical solution to the kinetics of fibril formation involving fragmentation, [21] and
by globally fitting the ThT curves over a range of concentrations [77] to this expression,
two combined kinetic parameters, knk+ and k+k− can be obtained, where kn, k+ and
k− represent the amyloid nucleation, elongation and fragmentation rates, respectively.
To study how the mutations affect these rates, and thus to gain further structural and
mechanistic insight into the nucleation process, we performed smFRET experiments to
compare the oligomer formation of the two Ure2 mutants, V9C and S68C.

Previous kinetic modeling of amyloid aggregation used a single coarse-grained reaction
step to represent the “primary nucleation” pathway by which new fibrils are generated
via an initial association step. Here, the availability of accurate kinetic data on the total
concentration of oligomeric intermediates allows us to devise a less coarse-grained kinetic
model that explicitly includes intermediates in the nucleation step. The model remains
partly coarse-grained, however, as it makes no distinction between different oligomer
types; nevertheless, it provides additional insights into the nature of the nucleation pro-
cess. In this model, oligomers are formed through an initial assembly process, occur-
ring with rate constant koligo, and subsequently convert into growth-competent fibril-type
species with a rate constant kc. These species can then elongate by dimer addition with
rate constant k+, and fragment with rate constant k−. The oligomers can also dissociate
with rate constant kd (that we have shown above is much larger than kc). Note that we can
approximately interpret oligomerization and dissociation as fundamental reaction steps;
however, the conversion step is in fact a coarse-grained step that contains information on
the transformation of low-FRET to high-FRET oligomers, as well as on the subsequent
conversion of the latter species to fibrils (see Methods and Appendix C.1 for full details).
The accurate determination of reaction orders with respect to dimers requires kinetic data
for a range of initial dimer concentrations. Given just one initial dimer concentration,
however, we can make the reasonable assumption of a reaction order of 0 for conversion
and 2 for oligomer formation. Any inaccuracy in these reaction orders is effectively incor-
porated into our definitions of kc and koligo, and does not significantly affect the quality of
the fitting (see Appendix C.1). An accurate analytical solution for the time dependence
of the fibril mass concentration in our model can be derived by extension of previous
approaches. [21, 27] The solution is identical to the analytical solution for the kinetics of
a fragmenting system, upon which the kinetic analysis of the bulk ThT experiments in
Appendix C.1 is based, except that the fibril nucleation rate knm(0)nc is resolved in terms
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Figure 5.2: Fitting of combined smFRET/ThT data to models indicates a probable
effect of mutations on the dissociation of oligomers, but not on their formation.
(A-C) The bulk aggregation kinetics of 15 µM unlabeled Ure2-V9C (red) and Ure2-S68C (blue)
monitored by ThT fluorescence (left panels) and the concentration of AF555/AF647 labeled
Ure2-V9C (red) and Ure2-S68C (blue) oligomers throughout the aggregation reaction monitored
by confocal smFRET (right panels) were globally fitted to a theoretical model (see Methods)
including the formation, dissociation, and conversion of oligomers, and the elongation and frag-
mentation of fibrils. (A) Allowing both koligo and kd to differ for each mutant gives good fits,
with a mean squared error of 1.54. (B) If koligo is constrained to be the same for both mutants,
the model fits the data equally well, with a mean squared error of 1.58. (C) If neither koligo
nor kd is allowed to differ, the fit is less good, especially around the time when the oligomer
concentration is at a maximum, with a mean squared error of 1.87. This result therefore implies
that koligo is the same for the two variants, while the values of kd may differ slightly.
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of the microscopic processes introduced in our oligomer model. Specifically, we obtain

knm(0)nc = α
kc

kc + kd + κ
(5.6)

where κ =
√

2k+k−m(0) and α = koligom(0)nc . This result, combined with an analysis
of the equation governing oligomer kinetics, reveals that the kinetics of this system are
controlled by the parameter combinations koligo, kd, k+kc, and k+k−. The combined rate
parameters k+kc and k+k− can be determined with order-of-magnitude accuracy.

A numerical procedure was used to fit the combined smFRET and bulk ThT data to
this model (see Methods for further details). The numerical fits are reasonable given the
accuracy of the data, and show that our coarse-grained model provides a good description
of the system (Figure 5.2). The minor divergence between the fitted curve and the data
for S68C oligomers at the latest times is consistent with the fact that disaggregation
from fibrils yields a small population of oligomers at equilibrium, yet to avoid overfitting
there is no explicit fibril disaggregation step in the model. Fitting gives a value for koligo
of 1.6 × 10−3 µM−1 h−1 for both variants (Figure 5.2A,B), and a value of kd of 0.60
h−1 for S68C, and 0.45 h−1 for V9C. This result indicates that the kinetics of oligomer
formation by S68C and V9C are broadly similar, but that the S68C oligomers dissociate
more readily by a factor of approximately 1.3. Given that the rates of oligomer formation
are very similar, it is likely that the reaction order of oligomerization is approximately
the same in the two mutants at this concentration range.

The differences in k+kc and k+k− between the V9C and S68C variants are less than
an order of magnitude, indicating that these parameters are similar for both variants. An
order-of-magnitude estimate for k+ of 40 µM−1 h−1 was obtained from analysis of the
seeded aggregation experiment monitored by ThT fluorescence (see Appendix C.1 and
Figure C.2 for details). This value allows us to calculate order-of-magnitude estimates
for k− and kc, of 1× 10−4 h−1 and 2× 10−3 h−1 respectively. We note that kc is 2 orders
of magnitude smaller than kd, as expected from our analysis of oligomer dissociation.
To estimate the differences in these parameters between each variant, we used a ratio
k+(S68C):k+(V9C) of 1.5:1, as indicated by seeded bulk experiments (see Appendix C.1
and Figure C.2), and a ratio k−(S68C):k−(V9C) of 1:1 as indicated by fragmentation rate
measurements (see Appendix C.1 and Figure C.3). This series of steps then allows us to
calculate a ratio kc(S68C):kc(V9C) of 1.4:1. Although this value is rather sensitive both to
experimental error and to errors in the parameter ratios that are used, it can be interpreted
as demonstrating that the conversion rates are similar, although possibly somewhat larger
in S68C. Taken together, these results indicate that the V9C mutation decreases the
fibril elongation rate and oligomer dissociation rate, leaving the fibril fragmentation rate
and oligomer formation rate unaffected. Furthermore, they suggest that the oligomer
conversion rate may also be slightly decreased by the V9C mutation.
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Figure 5.3: Proposed model for the aggregation pathway of Ure2. Native dimeric Ure2
forms loosely structured oligomers driven by hydrophobic interactions and either dissociates
back to the native state or undergoes conformational conversion to form more compact oligomers
containing β-sheet structure, which can in turn convert into growth-competent fibrillar species.
Fragmentation of fibrils then contributes to their proliferation.

5.4 Discussion

Single molecule FRET measurements were carried out to investigate the aggregation be-
haviour of the yeast prion protein Ure2 and to observe the low populations of transient
oligomers formed during the aggregation reaction that are challenging to detect by en-
semble methods. Analytical modelling of the single molecule FRET observations indicate
that the majority of the oligomers formed during the initial step of the nucleation process
dissociate back to the native dimeric state, but a small population of oligomers undergoes
a conformational conversion step leading to formation of elongation-competent species.
Quantitative analysis of a combination of bulk and single molecule data has provided
detailed information about the rates of the microscopic kinetic steps in the formation
of amyloid fibrils, and how these rates are altered by point mutations in the prion do-
main. Based on our observations, a mechanism has been proposed for the formation of
Ure2 amyloid fibrils in which native Ure2 forms relatively disordered oligomers, probably
driven by hydrophobic intermolecular interactions, only a small proportion of which then
rearrange to form structurally more compact β-sheet containing oligomers that are able
to convert further to elongation-competent fibrillar species and grow by addition of native
dimers to form mature amyloid fibrils (Figure 5.3).

Primary nucleation of amyloidogenic proteins, in which a native protein converts into
an elongation-competent species, is a crucial step in fibril formation. Molecular simula-
tions of the aggregation of Aβ42 indicate that primary nucleation occurs via intermediate
disordered non-β oligomers, which not only facilitates encounters between the monomeric
proteins but also provides an environment that facilitates their conversion to fibrillar
β-structure. [113,114] Nonspecific intermolecular interactions, such as hydrophobic inter-
actions, play a crucial role in the formation of the initial disordered oligomers, [113] while
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the intra- and intermolecular hydrogen bonding within β-sheets is considered to be the
driving force for the subsequent conformational conversion. [115] This formation of hydro-
gen bonds compensates for the disruption of the hydrophobic interactions in the initial
disordered oligomers, thus favoring conformational reorganization to β-sheet structure in
order to reach the lowest energy state. The conformational reorganization between early
relatively disordered oligomers and β-rich elongation-competent species during amyloid
formation has also been suggested by experimental studies of other amyloidogenic pro-
teins such as α-synuclein, [100] Aβ40, [116] and the yeast prion protein Sup35. [117] In
agreement with theoretical and experimental results for other amyloid proteins, both the-
oretical analysis of oligomer concentrations and direct observation of two types of Ure2
oligomers possessing different assembly and emergence times provide additional evidence
for the oligomerization/conversion model as a generic feature of amyloid nucleation.

In order to obtain a quantitative understanding of the fundamental reaction steps
that contribute to the amyloid formation process, analytical methods have been used to
describe fibril growth and to obtain the microscopic kinetic parameters. [21, 30] Since
the advent of single molecule techniques, it has become feasible to probe the nucleation
process directly in real time throughout the aggregation reaction. [28,29,100,101] However,
the kinetic analysis in previous studies has either focused on the early stage of oligomer
formation [28,100] or made use of a highly coarse-grained nucleated polymerization model
in which secondary processes were not considered and in which the fitted rate constants
were difficult to relate to specific reaction steps. [29] In this study, we provide a kinetic
analysis of the combined single molecule FRET and ensemble ThT data (Figure 5.2
and Figure 5.1) that considers not only the oligomer formation process but also the
elongation and fragmentation processes, providing quantitative information about the
complete aggregation pathway of an amyloid protein. Another advance in the present
study is the determination of an expression for the bulk primary nucleation rate kn, which
is found to depend not only on the rate constants of oligomer formation, dissociation and
conversion, but also on the rate constants for fibril elongation and fragmentation. Global
analysis of the oligomer formation kinetics, measured by smFRET, and the fibril formation
kinetics, monitored by the ensemble ThT assay, results in two independent parameters
koligo and kd and two combined parameters kck+ and k+k−, where the latter two can be
decomposed by direct measurement of k+ or of k−. Thus, the theoretical analysis of the
smFRET data provides detailed quantitative information about the fundamental steps in
the process of amyloid nucleation.

Our study also provides new structural insights into the aggregation mechanism of
Ure2. We observed that the V9C mutation causes an increase in the length of the lag
phase for fibril formation compared with that of wild-type Ure2. Kinetic analysis of the
bulk ThT variable-concentration data under both unseeded and cross-seeded conditions
reveals that this effect is predominantly due to a decrease in the elongation rate caused
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by the V9C mutation. We then investigated the effect of the mutation on the nucleation
process in detail by kinetic analysis of the combined smFRET and bulk ThT data. The
rates of both oligomer dissociation and oligomer conversion are slightly decreased in the
V9C mutant relative to WT Ure2, while the rate of oligomer formation is unaffected,
indicating that V9C forms a more stable oligomer. However, the V9C mutation has a
negligible effect on the overall rate of formation of elongation-competent oligomers (kn).
Taken together, these results show that the V9 residue plays an important role in the
elongation of Ure2 fibrils.

The toxicity of amyloid oligomers has been demonstrated to be correlated with the de-
gree of exposure of hydrophobic surface. [118,119] Since oligomers assembled by functional
amyloidogenic proteins, such as Ure2 in this study, and Sup35 in a previous study, [117]
have similar conformational features (for example, reactivity with A11 and OC antibodies)
and a similar formation and conversion pathway to that of toxic amyloidogenic proteins
such as α-synuclein [100] and Aβ, [113,116] the difference between functional and disease-
related amyloid remains to be elucidated. In this study, we observed a gradual decrease in
the concentration of oligomers accompanying the onset of ThT fluorescence. Calculations
and theoretical analysis of the smFRET data has led to the conclusion that the majority
of Ure2 oligomers formed do not ultimately become fibrils but are depleted by dissocia-
tion. In contrast, the populations of Aβ40 and α-synuclein oligomers have been observed
to follow a single exponential process and to remain at a significant equilibrium concen-
tration even after all the monomers are depleted. [28, 100, 101] A possible explanation
for the accumulation of Aβ40 and α-synuclein oligomers is that they convert very slowly
relative to their formation, and become kinetically trapped once monomers are depleted,
as the residual population of oligomers can no longer grow through monomer addition
into fibrils. Another possible explanation for the difference is that the fibrils of Aβ40 and
α-synuclein may not be as stable as the Ure2 fibrils, such that the equilibrium between
oligomers and fibrils favors oligomers to a much greater extent than is the case with Ure2.
In either of the above cases, Aβ40 and α-synuclein oligomers should have higher stability
relative to the native state than Ure2 oligomers, and therefore would not be expected to
dissociate significantly. The accumulation of relatively high concentrations of oligomers
formed by disease-related amyloidogenic proteins could therefore be the cause of their
toxicity.

A further potential reason for the higher toxicity of disease-related amyloidogenic pro-
teins is that oligomers are generated not only during primary nucleation but also during
secondary nucleation. For the case of Ure2, we have been able to demonstrate directly
the lack of formation of surface-catalyzed secondary nuclei using smFRET measurements
(Figure 5.1). The absence of surface-catalyzed secondary nucleation will greatly reduce
the generation of oligomers, [13] which is another possible reason for the lower toxicity
of functional amyloids. Taken together, the low stability of Ure2 oligomers and the ab-

83



sence of secondary nucleation suggests that the functional yeast prions may replicate and
propagate by fragmentation rather than secondary nucleation and hence avoid significant
populations of potentially toxic oligomers, as occurs in the aggregation of neurodegen-
erative disease-related proteins. This study paves the way for the detailed study and
comparison of further examples of both disease-related and functional amyloid systems,
particularly the variety of amyloidogenic proteins that play structural and functional roles
in bacteria. [120,121] The understanding gained from such studies will not only shed light
on the mechanisms by which amyloid structures are harnessed for functional roles, but
may also provide clues as to possible new therapeutic strategies to combat amyloid disease.

5.5 Conclusions

In summary we used kinetic theory to uncover basic details of the mechanism of Ure2 fibril
formation via oligomeric intermediates. We found that oligomers were formed through pri-
mary nucleation only, and that unlike with previously-studied α-synuclein, most oligomers
dissociated rather than convert into fibrillar species. As a result of the latter feature, and
of the filament fragmentation present in this system, a substantially new kinetic model
was developed. I carried this out at the same time as another, similar, project on tau
oligomerization (currently under review at ACS Chem Neurosci), that I have not included
in this thesis due to constraints on the word count. These two projects highlighted to
me the need for a more general analytical theory of oligomer formation kinetics, that I
outline in the following chapter.
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Chapter 6

Classifying Amyloid Oligomers Using
Chemical Kinetics

Chapter Abstract

The misfolding and aberrant aggregation of proteins into fibrillar structures
is a key factor in some of the most prevalent human diseases, including dia-
betes and dementia. Oligomers present during the early stages of amyloid fibril
formation are thought to be the major pathogenic agent in these diseases. Un-
derstanding the nature of these oligomers and the reactions they undergo is
thus not only of intrinsic interest, but is likely to aid in the successful develop-
ment of treatments for protein misfolding diseases. Here, we present a general
approach, based on chemical kinetics, for understanding the key processes of
oligomer formation and depletion, and their role in fibril formation. We re-
veal the kinetic equations that govern filament self-assembly proceeding via
oligomeric intermediates; and develop analytical solutions to them. We apply
this methodology to experimental data on 3 unrelated amyloid systems to dis-
cover the commonalities and differences between oligomeric intermediates of
the primary and secondary fibril nucleation processes. In all cases we find that
oligomers are mechanistically distinct from small fibrils, and overwhelmingly
dissociate back to monomeric form rather than convert to fibrillar species.

To date, oligomer kinetics have been dealt with in an ad-hoc way; the previous chapter
provides an example of this. A natural and important next step is to create a complete,
unified and mathematically rigorous theory of amyloid oligomer kinetics. The manuscript
presented in this chapter sets out to do precisely this. I am primarily responsible for all
work described herein with the exception of the simulations, carried out by Anđela Šarić,
and the early-time solutions to secondary oligomerization and the Aβ42 data fitting,
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Figure 6.1: Schematic of the role of oligomers in amyloid filament formation. Pre-nucleation
clusters and short colloidal fibrils are both oligomeric and both detectable by experiment. Pre-
existing fibrils may in principle catalyze both pre-nucleation cluster formation and their conver-
sion to fibrillar species.

both carried out by T. C. T. Michaels. Appendix D contains derivations, supplemental
theoretical results and details of the Monte-Carlo simulations.

6.1 Introduction

Oligomers are of paramount importance in the field of protein aggregation. They are
believed to be the primary species responsible for the pathology of human disorders as-
sociated with amyloid filament formation, such as Alzheimer’s disease and Parkinson’s
disease [22–24, 122]. There has often been confusion surrounding the term and what ag-
gregate species it includes. However, a precise definition for oligomers has in fact long
existed [123], originating in supramolecular chemistry: molecules whose structure com-
prises a small plurality of units derived from molecules of lower relative molecular mass,
and whose properties vary significantly with the removal of one or a few of the units. The
protein oligomer species meeting this definition are highly heterogeneous, varying signifi-
cantly both in structure and in size; and in propensity to grow into filaments. The protein
filament formation process has previously been studied using bulk Thioflavin T (ThT)
assays among other techniques, providing kinetic data on the mass concentration of fibrils
formed. The fundamental kinetic equations describing the formation and growth of amy-
loid fibrils in bulk are now well-established in the literature [13,18,19,21,30,47,48,53,58],
and have permitted modelling of kinetic data to discover the underlying reaction mech-
anisms. These models do not explicitly consider oligomer populations, with formation
of new filaments from monomers occurring directly via a slow “primary nucleation” step
(rate constant kn), that treats any oligomeric intermediates implicitly; and filaments sub-
sequently growing through monomer addition, via a rapid “elongation” mechanism (rate
constant k+). They also account for filament-dependent “secondary processes”, such as
fragmentation of existing filaments (rate constant k−) and “secondary nucleation” of new
filaments on the surface of existing filaments (rate constant k2). The treatment of a multi-
ple microscopic reaction steps involving intermediate species as a single simplified reaction
process is known as coarse-graining, and is a crucial component of kinetic modelling [109].
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Figure 6.2: Classifying oligomers according to their role in filament formation. (a) The full amy-
loid oligomer reaction network, organized according to conformation and number of constituent
monomers. Experiments can typically only distinguish conformation (or structure type) and not
size. (b) The coarse-grained reaction network with no size distinctions. Oligomer types A and
B are in rapid exchange on the experimental timescale and are thus part of the same ensemble,
and both on-pathway. (c) Decision tree for categorizing different types of oligomers, once both
experimental and timescale coarse graining procedures have been carried out.

Recent advances in single molecule experimental techniques have allowed researchers to
record the time-dependence of the concentration of oligomeric species present during amy-
loid fibril formation [100,124]. These advances, coupled with the recent recognition of the
fundamental importance of oligomers in amyloid diseases, have given rise to a need for
new kinetic theory, capable of describing the formation and loss of oligomers during pro-
tein filament formation. To date, however, the only analytical theory developed has either
neglected non-fibrillar species [59, 125, 126]; or has neglected oligomer dissociation, and
been limited to early-time, constant-monomer conditions in the absence of secondary pro-
cesses [27]. The latter has had notable success in the study of alpha-synuclein oligomers (a
protein associated with Parkinson’s disease) [28,100,124,127]; but has proven insufficient
to model more recently-studied systems [112,128], including the data on Aβ42 presented
here.

In this paper, we therefore develop a complete framework for understanding the dy-
namics of amyloid oligomer populations. We illustrate throughout with coarse-grained
Monte-Carlo simulations of oligomer-driven fibril formation, and with experimental data
on the oligomerisation and aggregation of the yeast prion protein Ure2, and the amyloid
proteins Aβ42 and tau associated with Alzheimer’s disease.

6.2 Most amyloid oligomers are nonfibrillar

The single-molecule experimental techniques currently used to track oligomer concentra-
tions cannot directly report on oligomer size. They instead yield quantities that are only
approximately correlated with size, such as time taken for a species to cross the confo-
cal volume. The delineation between oligomers and fibrils has so far been made using
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arbitrary values of these quantities, that are high enough to ensure that few if any non-
fibrillar oligomers are mislabelled as fibrils [124]. We therefore expect measured oligomer
populations to contain both nonfibrillar prenucleation clusters, and very small colloidally-
suspended ThT-active linear species with high β-sheet content, capable of rapid elongation
(Fig. 6.1). These cannot properly be viewed as intermediates of the nucleation process, as
their propensity to undergo rapid elongation makes them kinetically equivalent to longer
fibrils; instead, these “fibrillar oligomers” [129] should be considered as products of the
coarse-grained nucleation steps employed in earlier kinetic models of filament formation.
In all amyloid systems hitherto studied, fibrillar oligomers can be shown to be present
at negligible concentrations compared to non-fibrillar oligomers. The maximum possible
concentration of a fibrillar oligomer of length j produced via primary nucleation is that
attained under constant monomer conditions in the late-time limit. This is given by the
late-time limit of Eq. (26) in ref. [59]: knm(0)nc−1/2k+. The maximum possible concen-
tration of a fibrillar oligomer of length j produced via secondary nucleation, on the other
hand, is given by Eq. (30) of ref. [126] as k2m(0)n2/2k+. Note these are both indepen-
dent of the length. Choosing an oligomer-fibril cut-off of x monomers, we can therefore
calculate a generous upper bound on the total concentration of fibrillar oligomers present
at any time, SF :

SF <
xknucm(0)β

2k+
, (6.1)

where knuc is the rate of the dominant coarse-grained fibril nucleation process (primary or
secondary), and β is related to the reaction order of the dominant nucleation mechanism
as nc − 1 (primary), or n2 (secondary), and can also be determined by dimensional-
ity arguments [130]. For Aβ42, Ure2 and tau aggregation, we find that SF is far lower
than experimentally-observed concentrations of oligomers; thus, observed oligomers are
predominantly non-fibrillar, and not able to undergo the rapid elongation characteristic
of fibrils. This negates the need for explicitly considering the contribution of fibrillar
oligomers when modelling experimental data. We illustrate this conclusion with the ex-
ample of Aβ42. Here, for an m(0) of 5 µM, k+ ≈ 3 × 106 M−1s−1, k2 ≈ 104 M−2s−1,
β = 2 [13]. Then, choosing a generous x = 100, SF is at most 4 pM, compared to an
observed oligomer concentration S of around 75 nM. Full results for other systems are
detailed in Appendix D.

6.3 Characterizing the oligomer reaction network

Since non-fibrillar oligomers greatly outnumber short filaments, it is expected that the
majority of the former do not ultimately convert into filamentous species. This does not
imply, however, that they are off-pathway species. To understand this, it is useful to
consider the underlying reaction network connecting monomers to fibrillar species. The
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network contains a node for monomers (reactants), for fibrils (products), and for each
distinct oligomeric species. Species are considered distinct if the free energy barrier sepa-
rating them is > O(kT ), the energy of thermal fluctuations (k is the Boltzmann constant;
T is the temperature in Kelvin). Amyloid oligomers can be uniquely identified by their
conformation, or structure, and by the number of monomers they contain (their size).
The oligomer reaction network can then be conveniently organized into a 2-dimensional
grid; with one axis corresponding to oligomer size, and the other serving to distinguish
different conformations (see Fig. 6.2(a)).
Each reaction process directly connecting distinct species is represented by an arrow. We
assume that all reaction processes are either unimolecular or involve addition or loss of
monomers. By treating monomer addition or dissociation implicitly we may then repre-
sent all reaction processes by arrows with only 1 origin and 1 destination.
This picture represents the maximum desirable level of information we could have about
the reacting system. However, we almost never have sufficient data to fully constrain a
kinetic model of this complexity. Model selection theory [109] dictates that our chosen
kinetic model should contain no more detail than is necessary to describe the data using
mass-action kinetics; we must therefore coarse-grain our network according to experimen-
tal considerations. Firstly, although available experimental techniques can often obtain
separate reaction profiles for different types of oligomer conformations, they cannot usu-
ally collect kinetic data separately on oligomers of the same generic conformation but
different numbers of constituent monomers. For instance, in [112] we identified 2 separate
oligomer structures distinguished by their Förster Resonance Energy Transfer (FRET)
efficiency, and in [128] we identified 2 generic structure types by their differing stabilities
in different buffer solutions. In both cases, however, we could not further distinguish
oligomers with the same structure type but different size. We must therefore typically
coarse-grain reaction networks such that oligomer populations are summed over size (see
Fig. 6.2(a)-(b)) and sometimes also structure, and consider only total fluxes between these
combined populations. Secondly, species can in practice be considered distinct only if the
timescale of their interconversion is not much shorter than either the timescale over which
experiments can be accurately carried out, or the timescale of the overall aggregation reac-
tion (see Fig. 6.2(b)). For instance, in one of the tau oligomer species exchanges so rapidly
with monomer above 22◦C (data not shown) that they must properly be considered part
of the reactant ensemble, and not an intermediate at all at the available experimental
resolution.

6.4 Identification of on- and off-pathway oligomers

Having identified the level of coarse-graining appropriate for the available data, we may
now identify “reaction pathways” as the chains of processes connecting the reactant node
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Figure 6.3: Simulations of the kinetics of filament formation via oligomers of a single bonding
type, but a range of sizes. (a) Schematic of the coarse-grained Monte-Carlo simulations. (b) Size
distribution of oligomers at steady state; the lowest-concentration species (below the red line)
contribute to less than 5% of the total oligomer concentration and are labelled unpopulated. (c)
Probability of conversion to fibrils vs oligomer size N . This steeply increases with N initially,
peaks at N = 6 and then plateaus. (d) Contribution of oligomers of different size to the overall
flux to fibrils. Larger oligomers grow via smaller oligomers; therefore, the smaller the oligomer,
the more reaction pathways it sits on and the larger its ξ value. The species below the red line
contribute less than 5% of the flux to fibrils, and would be considered off-pathway if significantly
populated. However, the population falls off with increasing size faster than the propensity
to convert; coarse-graining by size is therefore not expected to lead to mixed on/off-pathway
oligomer populations.

in our coarse-grained network to the product node without loops. Each pathway X car-
ries a portion fX of the total flux f of reactants to products. Defining the on-pathway
coefficient ξi of an oligomeric species Si as ξi = ∑

i∈X fX/f , a species is on-pathway if it
lies on a set of reaction pathways with a high total flux, or has a high value of ξi. By
contrast, it is off-pathway if it is significantly populated during the reaction but has a low
ξi. See Fig. 6.2(b) for an illustration of these distinctions. If it has a low ξi and a low share
of total oligomer concentration, we label it an unpopulated oligomer. See Fig. 6.2(c) for
a summary of this decision-making process. An on-pathway species of oligomer may then
be greatly in excess of fibrils if it becomes kinetically trapped, or if it forms reversibly
from monomers.
To illustrate the properties of a network in which we do not need to coarse-grain by size,
we simulate a simple aggregation reaction containing oligomers of a range of sizes but just
2 possible conformations: non-fibrillar and fibrillar (Fig. 6.3(a)). Our simulations sug-
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Figure 6.4: Schematic of the coarse-grained reaction network employed in the remainder of this
paper. Its underlying kinetic equations are solved analytically and found to successfully describe
all kinetic data collected on amyloid oligomers to date. Note fibrillar oligomers are typically
present at far lower concentrations than non-fibrillar species, and are thus ignored.

gest that significantly-populated oligomers of different size but the same structure, when
distinguishable, are likely to be either all on-pathway or all off-pathway. The propensity
to convert to fibrils (Fig. 6.3(c)) increases with size initially, as it only takes one subunit
to convert to a fibrillar state for the whole oligomer to rapidly convert. It then appears
to peak at an intermediate oligomer size, possibly due to increased crowding inhibit-
ing the required conformational rearrangement; however, oligomer concentrations fall off
faster than the conversion propensity (Fig. 6.3(b)). It is therefore unlikely that small
on-pathway oligomers can coexist with a significant population of larger, off-pathway
oligomers of the same structural type (Fig. 6.3(d)). Note that Fig. 6.3(d) is computed
as the reverse-cumulative flux directly to fibrils, since all larger oligomers are formed by
growth of smaller oligomers. A given oligomer in these simulations therefore sits on all
the reaction pathways in which larger oligomers convert directly to fibrils.

It is fortunately often possible to experimentally distinguish off-pathway oligomer
populations from those that are on-pathway. For example, in [128] the more stable group-
ing of oligomer species formed significantly more slowly than fibrils and are thus likely
off-pathway. In [112] and [28], separate low- and high-FRET oligomer species were dis-
covered; and the latter was found to form from the former. Additionally, the high-FRET
species was found to form by disaggregation from mature fibrils. Microscopic reversibil-
ity thus implied them both to be on-pathway. Inhibitors or activators may also be em-
ployed to probe reaction pathways: if the rate of formation of a measurable coarse-grained
oligomeric species is decreased or increased but the rate of fibril formation is not, then
this species must be off-pathway.
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Figure 6.5: Fitting of available experimental kinetic data on a range of amyloid systems using the
analytical models derived in this study. Experimental data on oligomer formation (top) and fibril
aggregation (bottom) are fitted simultaneously (solid lines), with fitting parameters summarized
in table S1. (a) Tau data, with solution to primary nucleation model (Eqs. (6.2)-(6.4)). (b) Ure2
data, with breakable filament model containing additional fragmentation step. (c) Aβ42 data,
with model containing additional secondary nucleation step for oligomer formation. (d) Fraction
of oligomers that convert to fibrillar species. (e) A comparison of oligomer lifetimes. Note Ure2
and tau form predominantly primary oligomers, whereas Aβ42 forms predominantly secondary
oligomers.

6.5 Analytical solutions to the kinetics of filament
assembly via an oligomeric intermediate

The coarse-grained reaction networks for Aβ42, tau and Ure2 all have the generic form
shown in Fig. 6.4. Having determined this form, we may now obtain general rate equa-
tions for filament assembly via an oligomeric intermediate that explicitly include optional
secondary processes and oligomer dissociation. Such equations can be obtained in closed
form by considering only the species m(t), S(t), P (t), and M(t), representing the con-
centrations of monomers, oligomers, fibrils and fibril mass respectively. For a system in
which oligomers are generated through primary nucleation (“primary oligomers”), we can
then write:

dS

dt
= koligom(t)no − (kc + kd)S(t) (6.2)

dP

dt
= kcS(t) + k2m(t)n2M(t) (6.3)

dM

dt
= 2k+m(t)P (t) m(t) +M(t) = mtot, (6.4)

where we have neglected filament annealing and depolymerisation of fibrils, and the con-
tributions to monomer depletion from non-elongation processes, which are typically in-
significant. Fibrils can elongate with rate constant k+. Oligomers are formed through
monomer association (occurring with rate constant koligo and reaction order no); and
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subsequently convert to growth-competent fibril-type species with a rate constant kc, or
dissociate back to monomers with rate constant kd. Further fibril formation via secondary
processes occurs with rate constant k2 (=0 in the case of no secondary processes), and
reaction order n2 (=0 in the case of filament fragmentation). These equations may be
straightforwardly generalized to allow an explicit monomer dependence for the conversion
step (see Appendix D), and also to include multiple on- and off-pathway oligomer species;
for simplicity, we neglect these possibilities here.

In the early-time limit these equations become linear and admit exact solutions. By
applying similar fixed point techniques to those employed in refs [21,30,50], we can extend
the range of validity of these solutions to the full time course. These solutions are given in
closed form in Appendix D. After a short initial adjustment period, the solutions forM(t)
both with and without secondary processes reduce to the same functional forms as their
counterparts for filament formation without oligomeric intermediates (see refs [21,30,36]),
validating the use of a coarse-grained nucleation step to model filament assembly kinetics.
The timescale of this adjustment period is ke = kc + kd; it arises from the vanishing of a
term in the solutions, proportional to e−ket, that is the only component not also present
in the solutions for filament formation via direct nucleation. For a full discussion of this
phenomenon, see Appendix D.1.1. Note this timescale and this functional simplification
arises due to the onset of steady-state conditions for oligomers; these results can thus
equivalently be obtained by application of the steady-state condition dS/dt = 0.

The kinetics of filament assembly without oligomeric intermediates feature two timescales,
λ and κ, that describe aggregate proliferation through primary and secondary processes
respectively. The latter timescale is unchanged when primary oligomeric intermediates
are introduced, and is still given by κ =

√
2k+k2m(0)n2+1, since we have not altered the

elongation or secondary nucleation steps. The other timescale, however, changes from
λ =

√
2k+knm(0)nc to λp =

√
2k+koligom(0)nokc/(ke + κ). Thus, the key effect of intro-

ducing an intermediate into the primary nucleation step is to recast the primary nucleation
rate as knm(0)nc = koligom(0)nokc/(ke + κ), or kc multiplied by the steady-state oligomer
concentration.

In addition to these timescales, the solutions for S(t) are also explicitly controlled by
ke and by the initial rate of oligomer formation, α = koligom(0)no . Overall, then, our
systems are controlled by the 4 timescales α, λ, κ, and ke. From these come 5 fitting
parameters: koligo, no, ke, k+kc, and κ.

6.6 Contrasting primary and secondary oligomers

We have so far considered a system featuring primary oligomeric intermediates; closely
related equations can be written down to account for formation of filaments or oligomers
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through secondary processes (“secondary oligomers”):

dS

dt
= ko1m(t)no1 + ko2m(t)no2M(t)− (kc + kd)S(t) (6.5)

dP

dt
= kcS(t) (6.6)

dM

dt
= 2k+m(t)P (t) m(t) +M(t) = mtot, (6.7)

Similarly to before, these equations may be solved using self-consistent techniques;
the solutions are presented in Appendix D. As with primary oligomers, introducing
oligomeric intermediates to the secondary nucleation step of filament formation does
not change the functional form of the solution for M(t) first given in Ref [30]. Unlike
before, both timescales are different to the no-oligomer case, and are given by λs =
(2k+kcko1m(0)no1)1/3, and κs = (2k+kcko2m(0)no2+1)1/3. Equating our timescales we re-
solve k2 in terms of both secondary oligomerization and conversion as (kcko2)2/3; and kn
intriguingly in terms of conversion and both primary and secondary oligomerization as
2ko1k2/3

convk
−1/3
o2 /3.

Secondary oligomers may be tested for using single-molecule aggregation experiments
with and without the presence of pre-formed fibril seeds. If the presence of fibril seeds does
not increase the speed at which oligomers are formed, or the concentration of oligomers
formed, then they are produced predominantly by direct association of soluble monomers,
as a primary nucleation intermediate if on-pathway. By this method, we confirm that Ure2
oligomers are intermediates only of primary nucleation (“primary oligomers”), and that
Aβ42 oligomers are predominantly intermediates of secondary nucleation.

Having solved the dynamical equations governing oligomer formation, we now proceed
to analyzing experimental kinetic data on the oligomer formation process for 3 systems of
interest. The fitting procedure requires simultaneous consideration of oligomer data and
aggregate mass concentration data. The data for each protein were fitted to the relevant
expressions, yielding good fits and demonstrating that these models indeed explain the
observed behaviour (Fig. 6.5).

6.7 Oligomers are depleted predominantly by disso-
ciation

In an aggregating system, some on-pathway oligomers must be consumed by conversion
to fibrillar species; however, oligomer dissociation may also be important. From fitting
unseeded kinetic data alone, it is not possible to determine the rate constants for these
processes: our fitting parameters are the combined rate constants ke = kc + kd, and
k+kc. For Ure2, tau and Aβ42, however, almost all oligomers are ultimately depleted;
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having established earlier that the vast majority do not become fibrils, non-conversion
mechanisms must dominate. It is important to again emphasize here that a dominant
non-conversion oligomer depletion mechanism does not imply that the oligomers are off-
pathway.

For a more precise calculation, analytical expressions can be developed for the average
filament size; these may be used in conjunction with microscopy data to approximately
disentangle these rate constants. Alternatively k+ may be extracted directly from seeded
kinetic experiments. A convenient measure is then the oligomer productivity, defined
as kc/ke; a low value indicates that most oligomers dissociate rather than convert. The
results for Ure2, tau and Aβ42 are displayed in Fig. 6.5(d), and confirm that the majority
of reactive flux from monomers to fibrils goes through intermediates that simply have
much quicker rates for dissociation back to monomers than for conversion to fibrils over
the reaction timecourse. It is important to note, however, that if the conversion reaction
step has a monomer dependence, the conversion rate may initially be larger than the
dissociation rate constant without violating the rule that most oligomers ultimately do
not become fibrils. Examining Fig. 6.6, it seems that this is an almost universal feature
of amyloid oligomers, the only known exception being αS under certain conditions.

We have hitherto assumed that non-conversion depletion (represented by kd) is dom-
inated by the most obvious candidate mechanism: unimolecular dissociation back to
monomers. Other possible contributing mechanisms, however, include sticking to fibrils.
To eliminate these possibilities, one can measure the rate of oligomer dissociation directly
by taking an aliquot from an aggregation reaction, and diluting heavily to effectively sup-
press all non-unimolecular processes. kd(dissociation) is then determined by fitting the
observed oligomer concentration to an exponential decay function. If this is similar to the
kd value determined from fitting data to our kinetic models above, then oligomer deple-
tion must be dominated by dissociation. For Ure2, this experiment reveals that this is the
case, and oligomers predominantly deplete through dissociation [112]. These conclusions
are supported by our simulations, in which oligomers have a much stronger propensity to
dissociate than to rearrange to form fibrils.

6.8 Kinetic stability varies widely between systems

Determining ke = kc + kd also allows us to calculate the average half-lives, th = ln(2)/ke,
of the measured total oligomer populations. For types A and B tau oligomers, these
are approximately 9 minutes and 208 minutes respectively; for Ure2, 69 minutes; and
for Aβ42, 105 minutes. As the key toxic species in amyloid aggregation diseases, the
comparatively long lifetimes of Aβ42 oligomers and type B tau oligomers carries direct
clinical significance: it is possible that their comparative kinetic stability hinders their
clearance by cellular mechanisms and that their resulting greater persistence increases
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Figure 6.6: Categorizing nonfibrillar oligomers by their key properties. Bubble width: maximum
abundance relative to monomers (approximate logarithmic scale). Persistence: th/(th + τh),
where th = ln(2)/ke is oligomer half-life and τh is observed monomer depletion half-time; this
is a measure of the relative kinetic stability of oligomers. Productivity: kc/ke, or contribution
of conversion to overall oligomer depletion. Of systems hitherto studied, only αS oligomers
convert more rapidly than they dissociate; and only Aβ42 oligomers and type-B tau oligomers
persist longer than their monomers. Tau data taken from [128]; “αS” represents the low-FRET
αS WT oligomer population from [28]; “αS+NbSyn2/NbSyn87” represents the low-FRET αS
WT oligomer population from [131], aggregated in the presence of NbSyn2/NbSyn87 camelid
nanobodies; “Ure2” represents the overall Ure2 S68C mutant oligomer population from [112],
believed to have identical kinetics to WT-Ure2; Aβ42 data provided by Sara Linse. ∗: Prion
protein PrP oligomer persistence and productivity not known precisely, but can be constrained
to fall within the highlighted region. Relative abundance unknown. Data provided by Jason
Sang.
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their toxic effect. Interestingly, while in Ure2 aggregation oligomer depletion is much faster
than fibril proliferation (half time 510 minutes), in the case of disease-related Aβ42 and
tau oligomer depletion is slower than fibril proliferation (half times 45 and 162 minutes).
A convenient measure of relative oligomer stability is given by th/(th+τh), where th is the
oligomer depletion half-life as defined above, and τh is the observed monomer depletion
half-time. This measure is termed persistence, and reported as a percentage. Examining
Fig. 6.6, it appears that most amyloid oligomers hitherto investigated are less kinetically
stable than their monomers; therefore, oligomers and monomers have time to approach
equilibrium, and observed oligomer decay is instead controlled by monomer depletion.
By contrast, observed decay of secondary Aβ42 oligomers and type-B tau oligomers occur
over longer timescales than monomer depletion, and hence must be controlled by oligomer
dissociation.

It is interesting to note an apparent gap in the distribution of oligomer properties
illustrated in Fig. 6.6, with no oligomers being both persistent relative to monomers
and predominantly converting in nature. We cannot formally include fibrillar oligomers
in this matrix, but can nonetheless assign them a location based on their analogous
behaviour. Their incidence is very low, leading to a very small bubble; and they do not
undergo significant dissociation, putting them on the far right. Moreover, in the absence
of monomers their persistence is high, being unable to elongate into fibrils, and they
may then be placed in the top-right corner of the matrix, filling the gap identified. It is
finally also interesting to note that the disease-associated tau and Aβoligomers are formed
significantly more readily than oligomers of the functional amyloid Ure2, suggesting a
possible link between oligomer abundance and toxicity.

6.9 Conclusions

In summary, we have presented a general chemical kinetic approach to understanding
the nature, formation and disappearance of peptide oligomers generated during amyloid
filament formation.

We first described a rigorous conceptual framework for identifying amyloid oligomers
and for classifying them according to their role in fibril formation. A key therapeutic goal
in neurodegenerative diseases is to interrupt or halt the fibril formation process; charting
the reaction network connecting native protein to fibrillar aggregates is a vital component
of this endeavour. On-pathway oligomers, properly identified, present attractive targets
for rational drug design; not only due to their inherent and well-documented toxicity, but
also due to the critical dependence of the overall fibrillation process on their formation.

We next developed general coarse-grained kinetic models of filament formation via on-
pathway oligomeric intermediates of both primary and secondary nucleation. We derived
analytical solutions to the oligomer and fibril concentrations, demonstrating their validity
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by comparison to numerical solutions. We confirmed that these models are capable of ex-
plaining in-vitro aggregation behaviour by generating good fits to our experimental data.
Examining these models revealed the emergence of key additional timescales upon intro-
duction of oligomeric intermediates into the nucleation process, notably the adjustment
timescale k−1

e = (kc+kd)−1, where kc and kd are the rate constants for oligomer conversion
to fibrils and oligomer dissociation to monomers, respectively. At times greater than this
timescale, these models reduce to the same functional form of the simpler no-intermediate
models used previously to describe a wide range of filamentous growth processes. This
may explain the success of these direct-nucleation models despite the fact that most fil-
amentous growth processes to which they have previously been applied are known or
suspected to proceed via oligomeric intermediates.

We next defined two useful metrics based on the rate constants in these models:
oligomer persistence, and oligomer productivity. Persistence, a convenient measure of the
relative kinetic stability of oligomers compared to monomers, was defined to be th/(th+τh),
(where th = ln(2)/ke is the oligomer half-life, and τh is the observed monomer depletion
half-time); productivity was defined as kc/ke, and indicates the proportion of oligomers
that convert rather than dissociate. Combined with oligomer thermodynamic stability
compared to monomers, we were able to use these metrics to categorize all oligomers
hitherto modelled according to their kinetic properties. This analysis revealed that, de-
spite the fact that the mechanisms producing both oligomers and fibrils differ widely in
different systems, in almost every case the majority of oligomers formed dissociate back
to monomers rather than go on to form fibrils. This revelation as to the nature of the
oligomers formed in such systems may have far-reaching implications for the understand-
ing of amyloid diseases, and for rational design of drugs to target toxic oligomers. Our
methodology will find ready application to other systems when new data become available.
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Part IV

Oligomer Thermodynamics
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Chapter 7

Thermodynamics of Aβ co-oligomer
formation

Chapter Abstract

Multiple isoforms of aggregation-prone proteins are present under physio-
logical conditions and have the propensity to assemble into co-oligomers with
potentially very different properties from self-oligomers, but this process has
not been quantitatively studied to date. We have investigated the amyloid-
β (Aβ) peptide, associated with Alzheimer’s disease, and the aggregation of its
two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling
approach in combination with in vitro single-molecule fluorescence measure-
ments. We find that at low concentrations of Aβ corresponding to its physio-
logical abundance, there is little free energy penalty in forming co-oligomers,
suggesting that the formation of both self-oligomers and co-oligomers is possi-
ble under these conditions and that mixing entropy can promote the formation
of mixed species. Our model can be used to predict the oligomer concentra-
tion and size at physiological concentrations of Aβ and suggests mechanisms
by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ra-
tio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which
can potentially increase the hydrophobicity of the oligomeric species and thus
promote deleterious binding to the cell membrane and increase neuronal dam-
age. Our results suggest that co-oligomers are a common form of aggregate
when Aβ isoforms are present in solution and may therefore potentially play a
significant role in Alzheimer’s disease.

Having considered only total oligomer populations in prior chapters, in this chapter
Aβ oligomer heterogeneity in both size and composition are investigated. The work
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presented here was published in Sci Rep in 2016, under the title “Quantitative analy-
sis of co-oligomer formation by amyloid-beta peptide isoforms”. My contributions were
to combine theory and experiment to infer that most oligomers must be dimeric, render-
ing geometry irrelevant; to reduce an unpublished linear co-oligomer model developed by
G. A. Garcia into a simpler mixed dimer one; and to use this simpler model to analyse a
dataset on Aβ co-oligomer formation at equilibrium. The parts of the Supporting Infor-
mation section for which I was responsible are reproduced in Appendix E. It contains a
derivation of the dimer model used, and supporting theoretical results.

7.1 Introduction

Neurodegenerative diseases, such as Alzheimer’s disease (AD), are devastating and in-
curable conditions associated with the misfolding and aggregation of native monomeric
proteins [4]. The deposition of aggregated amyloid-β peptide (Aβ) in the brain is a patho-
logical hallmark of AD [132]. Aβ is formed from the cleavage of a transmembrane receptor,
the amyloid precursor protein (APP), in various locations to generate peptides of varying
lengths, most commonly 40 and 42 residues (Aβ40 and Aβ42) [133]. The Aβ42 isoform
has an additional Ile-Ala dipeptide at its C terminus making it more hydrophobic and
more aggregation-prone than Aβ40 [14, 134]. Hence, while the relative ratio of the Aβ40
to Aβ42 in cerebrospinal fluid (CSF) is approximately 9:1, the amount of Aβ42 is en-
riched relative to Aβ40 in deposits such as amyloid plaques [135, 136]. Moreover, some
early-onset versions of AD have been related to the overproduction of Aβ42 relative to
Aβ40 [137], and an increase in the ratio of Aβ42 to Aβ40 cleaved from APP has been
correlated to increases in toxicity both in vitro and in vivo [138–143].

Although solid fibrillar deposits of Aβ accumulate in AD brains, the major cytotoxic
effects causing the earliest pathological events are associated with smaller aggregates,
Aβ oligomers [144]. Such species are formed via the association of monomeric Aβ and
ultimately polymerize into amyloid fibrils when the total protein concentration exceeds
the critical aggregation concentration (CAC) [27]. Due to their transient presence and
low abundance, the oligomers have been difficult to characterise using conventional ex-
perimental techniques [145], particularly in the systems containing multiple isoforms of
Aβ. There have been numerous studies of the mixtures of Aβ isoforms, demonstrating
that Aβ40 and Aβ42 co-interact during the aggregation reaction [146–150]. Furthermore,
there is evidence that Aβ40 and Aβ42 can form co-oligomers in vitro [139], [146], and on
the surface of neurons [151]. A detailed study revealed that while Aβ40 and Aβ42 form
separate fibrils in solution, the peptides co-interact in the early stages of Aβ aggregation,
during primary nucleation [85].

In these previous studies, it has not been possible to determine the concentration and
composition of the formed self- or co-oligomeric species of Aβ40 and Aβ42. Moreover, since
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Figure 7.1: Schematic of the statistical mechanical model used to estimate Aβ oligomer numbers
and relative composition. For the single-species datasets, the model considers oligomers of
any length, whereas for the co-oligomerising datasets it considers monomers and dimers for
mathematical simplicity. This simplification is justified by the single-species analysis predicting
a very low number of oligomers larger than dimers.

most biophysical studies are typically performed at non-physiological high-micromolar
concentrations of Aβ, it has not been possible to extrapolate the observations to very low
total concentrations of Aβ peptide observed in vivo [152]. Because of the demonstrated
strong and non-linear concentration dependence of Aβ aggregation [153–156], a mean-
ingful extrapolation would require direct measurements of Aβ oligomer populations at
sub-micromolar peptide concentrations. In order to address this, we combine here direct
single-molecule measurements of oligomer populations at low Aβ concentrations with a
statistical mechanical model to estimate the number and composition of the oligomers
present under equilibrium conditions, and subsequently investigate how changing the ra-
tios of the two Aβ isoforms affects the resulting oligomer populations.

7.2 Results and Discussion

7.2.1 Modelling approach

In this study, the relevant thermodynamic parameter characterising oligomerization is
the free energy of monomer addition, ∆G◦, independent of oligomer size, and this single
parameter forms the basis for our model, as described in detail in Appendix E.

In the model we consider the major contribution to the energetics of the oligomeric
aggregates to emerge from nearest neighbour interactions. We thus treat self-oligomers
as simple non-interacting one-dimensional chain structures with nearest-neighbour inter-
actions independent of the chain length (Fig. 7.1), and thus ∆G◦ is an elongation free
energy. We note that the assumption of one-dimensional chain structures is not restrictive
under our experimental conditions, where both self- and mixed oligomers can be inferred
by our self-oligomer model to be predominantly dimeric (see Appendix E.3), and there-
fore larger non-linear structures where geometric effects can play a major role are not
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expected to perturb the analysis. This result permits us to formulate and employ a sim-
ple model for co-oligomers, containing monomers of both Aβ40 and Aβ42, that considers
only dimers. The system behaviour is thus effectively governed by the Gibbs free energy
released upon adding two monomers together to form a new intermolecular interaction.
Note that while the assumption of the size-independent binding free energy is valid for
the studied Aβ system, it is not applicable to non-filamentous growth assemblies.

In general for a linear aggregation process involving size-independent aggregation and
disaggregation rates, the equilibrium constant K for filament elongation is given by:

K = f(j + 1)c0

f(j)c , (7.1)

where f(j) is the equilibrium concentration of an aggregate of length j, c is the equilibrium
monomer concentration and c0 the standard concentration (taken to be 1 M). We may
therefore write:

c

c0
e−∆G◦/(RT ) = f(j + 1)

f(j) . (7.2)

We can then identify e∆G◦/(RT ) = c/c0 with a CAC c [53]: this is the maximal equilibrium
monomer concentration that can be attained by the system, since the filament size dis-
tribution must always be monotonic decreasing for a finite population of filaments. The
nature of the species present at equilibrium depends strongly on the initial concentration
of the monomeric peptides. When the initial monomer concentration is below the CAC,
the majority of the peptides in the system are in their monomeric states and only a few
aggregates are formed consisting of a small number of monomers. By contrast, above the
CAC, most molecules are present as aggregates. These aggregates are either oligomers
or fibrils. Previous single-molecule [100] and bulk data [157–159] indicate that these two
species differ in their structures, and thus we allow for separate ∆G◦ for the oligomeric
and fibrillar states, ∆G◦(oligo) and ∆G◦(fib). Moreover, oligomers are populated only for
small aggregation numbers, while mature fibrils are observed for sizes that exceed 1000
monomers [101]. At low concentrations, therefore, below the CAC, the formation of large
aggregates is suppressed, and the majority of aggregates are oligomeric. When the total
concentration reaches the CAC, the majority of monomers are sequestered into fibrillar
forms, and the concentration of oligomers does not increase even when the total peptide
concentration is increased. Thus we expect the initial increase in aggregate concentra-
tion to be controlled by the free energy of oligomer formation ∆G◦(oligo). Once the total
peptide concentration reaches the CAC, c0e

∆G◦(fib)/(kT ), the theory predicts a plateau in
the concentration of oligomers, controlled by the free energy of fibril formation ∆G◦(fib).
A recent study shows that the formation of self-fibrils of the Aβ isoforms is favoured in
vitro [85], which implies that there is a significant difference between the ∆G◦(fib) when
adding a monomer to a self-fibril or a fibril of different composition for Aβ40 and Aβ42.
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However, the same study suggests that the difference is smaller for ∆G◦(oligo) when adding
a monomer to a self- or mixed oligomer.

7.2.2 Single-molecule measurements

Having established the described theoretical approach, we then used single-molecule two-
colour coincidence detection (TCCD) [160] in order to measure directly the concentration
of Aβ oligomers present in solutions below and around the CAC, for Aβ40, Aβ42 and a
1:1 mixture of Aβ40 and Aβ42 [161].

Initially, we measured the fibril CAC through two independent methods: firstly by
determining the concentration of soluble species in equilibrium with fibrils, which coincides
with the fibril CAC at high concentration, above the fibril CAC [53] [161]. Secondly, we
determined the concentration at which the oligomer concentration ceases to increase with
total peptide concentration and reaches a plateau phase; the theory predicts that this
transition should take place at the fibril CAC.

The total concentration of the released species in the former approach, which corre-
sponds to the CAC, was measured to be 94± 37 nM for Aβ40, and 28± 4 nM for Aβ42 at
pH 7.4. The value for Aβ40 is in good agreement with the previous result of 100 nM at
pH 7.440, and the value for Aβ42 is lower than a previously reported value of 0.2 µM at
pH 8 [70], consistent with a reported decrease in CAC with lowering the pH [162]. This
gives values of the free energy for fibril formation as ∆G◦(fib)42,42 = −44.8 ± 0.4 kJ mol−1

for Aβ42 and ∆G◦(fib)40,40 = −41.7 ± 1.1 kJ mol−1 for Aβ40. The result for Aβ40 is within
the range of previously reported values for the unlabelled peptide [163, 164], which were
-37.7 kJ mol−1 and -46.7 kJ mol−1, indicating that the presence of the fluorophore labels
at the N-terminus does not substantially alter the free energy of fibril formation. The
observation that Aβ42 fibrils disaggregate to a lesser extent than fibrils of Aβ40 suggests
that the Aβ42 fibrils are more stable than their Aβ40 counterparts, correlating well with
previous reports of Aβ disassembly and stability [165,166].

Next, we combined equal quantities of monomeric peptide singly labelled with a blue-
fluorophore with monomeric peptides singly labelled with a red-fluorophore, using low
concentrations of total Aβ, 1-250 nM [161]. The solutions were left until equilibrium was
attained. As the monomeric peptides self-associate to generate oligomers, we can dis-
tinguish them from monomers by the criteria of coincidence and quantify the oligomeric
populations by TCCD [161]. The results are shown in Fig. 7.2, and the oligomer concen-
trations are in the range of 0–20 nM for Aβ40, 0–4 nM for Aβ42 and, strikingly, around
0–3 nM for mixed Aβ40-Aβ42 species. The error bars are relatively high in these experi-
ments due to the low oligomer concentrations and inherent sample to sample variations.
However, the results appear to follow the prediction from the theory and allow an estimate
of the ∆G◦(oligo) values to be obtained in each case, as is described below.
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Figure 7.2: Equilibrium oligomer concentrations as a function of the total initial monomer
concentration in the aggregation reaction. (Error bars SD, N(samples) = 3). The oligomer
concentration was modelled and fitted separately for both Aβ40 (a), Aβ42 (b), and the 1:1
mixture (c); allowing extraction of the free energies of oligomerization and estimation of the
CAC for Aβ40 and Aβ42 (fitted curves shown overlaid). The shaded bounds on these charts
are curves plotted using the maximum and minimum free energies of oligomerization, and of
fibril formation (given by the CAC) that still lie within the majority of the error bars. (d) The
fitted free energies of oligomerization are also shown in comparison to the free energies of fibril
formation obtained by direct measurement of the CAC (“Direct”), and also the free energies of
fibril formation obtained from the fitted estimation of the CAC (“Fitted”).

106



7.2.3 Estimations of the free energies of oligomer and fibril for-
mation

From the results in Fig. 7.2a and b, the similarity in the slopes of the growth regions
below the CAC of the Aβ40 and Aβ42 self-oligomerizing systems suggests that there is
no large difference in the mean free energy of oligomerization in both cases. By fitting
our model to the self-oligomerizing systems (Appendix E), we estimate the free energy
of oligomerization for Aβ40, ∆G◦(oligo)40,40 , as −36.3± 3.0 kJ mol−1, and similarly ∆G◦(oligo)42,42

for Aβ42 as −36.3 ± 3.2 kJ mol−1 (Fig. 7.2). These values are different from those for
the fibrils, which is consistent with the expected differences in the structure of oligomers
and fibrils. The CAC for Aβ40 is estimated as 222 ± 10 nM by the same fitting proce-
dure, and the CAC for Aβ42 is estimated as 86± 10 nM; these values allow independent
estimation of ∆G◦(fib)40,40 as −39.5 ± 0.1 kJ mol−1 and ∆G◦(fib)42,42 as −42.0 ± 0.3 kJ mol−1,
demonstrating broad consistency with the direct measurements. The value of ∆G◦(oligo)40,42

is estimated to be −32.6 ± 2.6 kJ mol−1, and the absence of apparent plateau in the
co-oligomer plot (Fig. 7.2c) is consistent with both isoforms being present below their
CAC values. According to these results, summarized in Fig. 7.2d, in all cases the free
energy of oligomerization is large and negative. The seemingly small difference in the
free energy of oligomerization for the formation of co-oligomers in comparison to the self-
oligomers, however, leads to lower abundance of these species, as will be described later.
To point out, while there have been previous reports of the free energy for fibril formation
of Aβ [163, 164] and other amyloidogenic proteins [167], the directly measured free ener-
gies of oligomerization for Aβ40, Aβ42 and Aβ40-Aβ42, to our knowledge, are reported for
the first time. The formation of the spectator co-oligomers means that, in the presence
of both Aβ40 and Aβ42, fewer self-oligomers of Aβ40 or Aβ42 will be formed, so growth
into Aβ40 or Aβ42 fibrils may be suppressed. This may provide an explanation of why
the aggregation kinetics of both isoforms were observed to be mutually affected in the
previous related studies [139], [146].

7.2.4 Predictions of oligomer populations at 1 nM concentration
of Aβ

The obtained experimental values for the free energies of oligomerization can be used to
predict the total oligomer concentration and the fraction of mixed and self-oligomers at
pre-defined Aβ concentrations and ratios of Aβ40 and Aβ42. The measurements in this
study have been carried out at 0–250 nM starting concentrations of Aβ, the range which
is substantially lower than what can be accessed using more conventional experimental
methods [145]. However, it is known that the physiologically related total concentration
of this peptide is in the range of 1–10 nM [152]. To infer the information about oligomer
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types and sizes at these extremely low concentrations of Aβ, we can use the derived free
energy values and set the starting total Aβ concentration to a chosen value within the
physiological range. Figure 3a shows how the distributions of oligomer sub-populations
are predicted to change in Aβ40 and Aβ42 mixture as a function of the Aβ42 proportion,
when the total Aβ concentration is chosen to be 1 nM. Similar predictions with the
total concentrations set to 5 nM and 10 nM are shown in Appendix Fig. E.1. Due to less
negative free energy of co-oligomerization, the resulting predicted co-oligomer populations
are lower than the self-oligomer populations at all mixing ratios of Aβ40 and Aβ42. The
predominant oligomers at a physiologically-relevant ratio of 9:1 of Aβ40 to Aβ42 will be
the oligomers of Aβ40, then a small fraction of co-oligomers with only a tiny fraction
of Aβ42 oligomers. Moreover, the size distributions can be also inferred, as shown in
Fig. 7.3b. At 1 nM of the total protein concentration, the main oligomers present are
dimers, and the number of oligomers is predicted to decrease exponentially with oligomer
size.

Since Aβ42 peptide is more hydrophobic than Aβ40, it is plausible that this difference
would be conserved in the derived oligomers, which could influence their properties. Our
previous study suggested that Aβ40 and Aβ42 oligomers are both cytotoxic, once formed
[168]. Furthermore, our previous experimental data on the binding of Aβ40 and Aβ42
oligomers to neuronal cells suggested that, at the lowest concentration measured, the
relative affinity of Aβ42 oligomers for the cell membrane was 4 times that of the Aβ40
oligomers [169]. If we assume that the affinity of the co-oligomers is 2 times that of
the Aβ40 oligomers, a value intermediate between Aβ40 and Aβ42 oligomers, and that
the majority of oligomers are dimers, according to Fig. 7.3b, we can then predict how
the relative concentration of membrane-bound oligomers varies as a function of Aβ42
proportion, as is presented in Fig. 7.3c. This analysis predicts a clear increase in the
relative number of oligomers bound to the cell surface with the increase in the proportion
of Aβ42. Interestingly, the minimum number of cell-bound oligomers in this simulation
occurs at a ratio of 9:1 of Aβ40 to Aβ42. Note that the oligomer size distribution (Fig. 7.3b)
is not significantly altered by the ratios of Aβ40 and Aβ42 since the free energies of
oligomerization are all comparable and in all cases are dominated by dimers. However,
more of these dimers will contain Aβ42 as the proportion of Aβ42 increases. We note that
while our analysis in Fig. 7.3c considers dimers, as they are the most abundant oligomers
in our system, the prediction of absolute concentrations of large surface-bound oligomers
is beyond the scope of this analysis due to the absence of additional oligomer to membrane
interactions.

Clearly, this model may not be fully applicable to the Aβ oligomers in AD, since their
formation under more complex in vivo environment is potentially affected by numerous
extrinsic factors such as, for instance, the presence of small molecules and proteins, lipid
surfaces, altered pH or ionic strength and the underlying assumption of thermodynamic
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equilibrium may not be correct. Nevertheless, it is interesting to compare the predictions
of our model to what is actually observed in humans. From the results of a previous
quantitative study where stable synthetic Aβ dimers were used as standards, the con-
centrations of Aβ oligomers in CSF of AD patients and controls were identified to be
in the sub-picomolar range, in agreement with our predictions of the oligomer concen-
tration at a total Aβ concentration of 1 nM, although the low concentration prevented
the determination of the oligomer sizes in that work [170]. It is also interesting that the
oligomer concentration measured in vivo appears to be determined by the Aβ monomer
concentration in the CSF. AD patients will also have amyloid plaques containing Aβ40
and predominantly Aβ42 fibrils. In our experiments, the oligomer concentrations above
fibrils are those shown in the plateau regions in Fig. 7.2. Overall the total oligomer con-
centration is about 20 nM, which is two orders of magnitude larger than around 0.1 pM
observed in vivo [170]. This suggests that either the exchange between oligomers and fib-
rillar plaques does not occur to any significant extent in vivo, or that there are additional
contributing factors which are not present in our analysis, for example, active degradation
mechanisms that remove oligomers [171]. To note, even though the amount of Aβ42 in the
CSF is generally observed to decrease in AD, our model would predict that this has little
effect on the total oligomer concentration, because their population is largely dominated
by Aβ40 oligomers. This may provide a simple explanation for why most diagnostic tests
for AD to date based on detecting the Aβ oligomer concentration in CSF observe little
significant difference between controls and AD patients [172].

Our model can be applied to predict how the number of membrane-bound oligomers
changes upon increasing the ratio of Aβ42 to Aβ40 using pre-defined concentrations of
Aβ which correlate with the onset of AD. While this analysis does not take account
of any additional factors that may contribute to the disease in man [132], it serves to
illustrate how significantly the starting concentrations of the two isoforms influence the
resulting populations of potentially pathogenic oligomers. For example, in the case of
the Beyreuther/Iberian mutation [173,174] where the ratio of Aβ42 to Aβ40 is as high as
22:1 [175], early onset of AD occurs before 40 years of age. If we use a starting peptide
ratio of 22:1 in our simulations, the number of oligomers on the cell surface is predicted to
increase by a factor of 4 relative to Aβ40 self-oligomers. Not only can a raised proportion
of Aβ42 be pathogenic in vivo, but also the overall overproduction of Aβ. For example,
in Down’s syndrome there is an extra copy of the gene for APP, meaning that the total
Aβ concentration is elevated by a factor of 1.5, leading to an early-onset AD at around 40
years [176]. If we increase the total peptide concentration by a factor of 1.5 in our model,
the total Aβ oligomer concentration increases by 125%, and the predicted number of cell-
bound oligomers increases by a factor of 2.1 relative to the number of oligomers bound
for 100% Aβ40 at the initial total Aβ concentration. While a change in Aβ40 to Aβ42
ratio from 9:1 to 7:3 results in no overall increase in the total number of oligomers, there
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Figure 7.3: Simulation of Aβ40-Aβ42 co-oligomerization equilibrium behaviour at a total Aβ con-
centration of 1 nM for a range of Aβ42 proportions, using ∆G◦(oligo)40,40 , ∆G◦(oligo)40,42 , ∆G◦(oligo)42,42 .
Simulations at 5 nM and 10 nM of total Aβ are shown in Appendix Fig. E.1. (a) Total oligomer
concentration and composition as a function of Aβ42 proportion. (b) Estimated concentrations
of oligomers of different sizes at 1 nM total protein concentration, calculated by assuming that
∆G◦(oligo)40,42 is unchanged from the single-species value (in which case the ratio of Aβ40:Aβ42 is
irrelevant). The true distribution will decline with oligomer size even more rapidly, as visual
inspection of the data shows ∆G◦(oligo)40,42 to be less favourable than the single-species values. The
error bars correspond to averaged uncertainty in the ∆G measurements. (c) The relative con-
centration of oligomers estimated to be bound to the surface of a neuronal cell, expressed relative
to the concentration of oligomers bound to the surface at 1 nM of Aβ40. This result assumes
that the relative affinity of co-oligomers for the cell membrane is 2 times higher than the affinity
of Aβ40 oligomers, and that the relative affinity of Aβ42 oligomers is 4 times higher than that
of Aβ40 oligomers.
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is a significant difference in their predicted composition, with more co-oligomers being
bound. In addition, the co-oligomers may be more persistent than self-oligomers, since
they cannot grow into less toxic fibrils [85], so it is possible that the increased persistency
of co-oligomers additionally contributes to the increased toxicity.

7.3 Summary and Conclusions

Our results show that co-oligomers of Aβ40 and Aβ42 can be formed at sub-micromolar
concentrations of Aβ with little free energy penalty. This finding suggests that the en-
vironment of the Ile-Ala dipeptide on Aβ42 does not change significantly between the
monomeric and oligomeric state, and that the effect of these additional peptides on the
free energy of oligomerization is small. There are multiple other isoforms of Aβ present
because of truncations, mutations, ubiquitination or post-translational modifications. If
there is no high penalty in the free energy of co-oligomerization, then these species may
potentially be formed by various isoforms of the peptide since mixing entropy under such
conditions favours the formation of mixed rather than purely segregated aggregates. It
is likely therefore that under in vivo conditions where multiple isoforms are present, such
mixed aggregates are prevalent. Thus, any comprehensive therapeutic strategy based on
antibodies that bind Aβ may need to take account of the presence of co-oligomers in
addition to self-oligomers of Aβ. At present it is still unclear which forms of Aβ are the
true pathogens in AD [177], and the contribution of Aβ co-oligomers to AD may not have
been recognized to date.

The techniques developed in this paper soon found use in the investigation of α-
synuclein oligomers in the next chapter. The uncertainty around oligomer geometry that
prompted my initial involvement in this project later inspired me to directly investigate
non-linear oligomer geometries, the results of which form the chapter-after-next.
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Chapter 8

Thermodynamics of αS co-oligomer
formation

Chapter Abstract

Small oligomers of the protein α-synuclein (αS) are highly cytotoxic species
associated with Parkinson’s disease (PD). In addition, αS can form co-aggregates
with its mutational variants and with other proteins such as amyloid-beta (Aβ)
and tau, implicated in Alzheimer’s disease. The processes of self-oligomerisation
and co-oligomerisation of αS are however, challenging to study quantitatively.
Here, we have utilised single-molecule techniques to measure the equilibrium
populations of oligomers formed in vitro by mixtures of wild-type αS with its
mutational variants and with Aβ40, Aβ42 and a fragment of tau. Using a
statistical mechanical model, we find that co-oligomer formation is generally
more favourable than self-oligomer formation at equilibrium. Furthermore,
self-oligomers more potently disrupt lipid membranes than co-oligomers. How-
ever, this difference is sometimes outweighed by the greater formation propen-
sity of co-oligomers when multiple proteins co-exist. Our results suggest that
co-oligomer formation may be important in PD and related neurodegenerative
diseases.

Here, we extend the methodology of the previous chapter and employ a statistical me-
chanical model to study both the propensity of co-oligomers to form between wild-type
α-synuclein and other peptides, and their relative ability to disrupt membranes. The
work presented here forms part of a manuscript under review at ACS Nano, on which I
am joint first author. I was responsible for all modelling and analysis presented in this
chapter. Experimental details have been largely neglected; the experiments themselves
were carried out by M. Iljina, P. Flagmeier, and S. De. The statistical mechanical model
employed, derived by G. A. Garcia, is detailed in Appendix F.
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8.1 Introduction

The aggregation of the protein alpha-synuclein (αS) from its soluble monomeric form
into amyloid fibrils is associated with a range of devastating neurodegenerative disorders
such as Parkinson’s disease (PD) and a series of related synucleinopathies. [178] In these
conditions, amyloid fibrils of αS are segregated into cytoplasmic brain inclusions, Lewy
Bodies or Lewy Neurites, [179] although molecular complexes consisting of a small number
of αS monomers, termed oligomers, are increasingly recognised as the most cytotoxic
forms giving rise to the disease etiology. [1, 100,122, 180,181] It has also been found that
single residue mutational variants of the protein, including A30P, E46K and A53T, are
associated with familial forms of PD. [182–184] Moreover, aggregates of αS are observed
in more than half of the patients suffering from Alzheimer’s disease (AD) along with the
more characteristic deposits of the amyloid-beta (Aβ) peptide and the protein tau. [185]
The co-occurrence of aggregates of αS, Aβ and tau has been reported in a variety of
neurodegenerative conditions, and it has been suggested that this enhancement could be
due to co-interactions between the proteins. [186]

αS has been shown in vitro to assemble into a large variety of oligomers with distinct
morphologies, structures and functional properties. Such oligomers can be formed via
different mechanisms and include nonfibrillar off-pathway species and prefibrillar inter-
mediates of the amyloid fibril formation process. [100, 187–190] The mutational variants
of αS have been found to affect the rates of αS aggregation [191–193] and oligomer forma-
tion, [127] and to alter its interactions with lipid membranes. [15] The effects of the amino
acid substitutions on the rate of oligomer formation and the number of oligomers remain
unclear. Previous studies have reported either increased [122,192,194], or unaltered [127]
levels of oligomers formed by the mutational variants relative to wild-type αS. Addition-
ally, the formation of co-oligomers between different variants of αS has been observed to
occur in aqueous solution. [195]

In addition to its ability to self-assemble into a variety of oligomeric species, αS has
been reported to interact with other proteins, including Aβ and tau. For example, the
effects of αS and Aβ co-interaction on the aggregation of Aβ42 in vitro have recently
been delineated, [196] and the direct binding between αS and Aβ40 and Aβ42 in solution
has been characterised, [197–199] as well as the direct interaction of αS and tau. [200–
202] The formation of co-oligomers containing both αS and Aβ has been predicted by
several molecular dynamics simulations. [203–205] Furthermore, the formation of a dimer
comprising αS and Aβ domains upon their coordination to Cu2+ has been reported, [206]
and the formation of co-oligomers of αS and tau has been observed in vitro. [207] The
accumulation of co-oligomers of αS and tau in the human brain has been shown using
novel conformational-specific antibodies. [208] In addition, the formation of co-oligomers
of αS with Aβ and tau in human red blood cells has recently been reported. [209]
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Despite the accumulating evidence that αS can form self-oligomers as well as co-
oligomers with other proteins, the extent of formation and the properties of these co-
oligomeric species remain to be determined and quantified. Most in vitro investigations,
particularly at low physiologically-relevant protein concentrations, have focussed on the
self-oligomerisation of αS, since its co-oligomerisation is difficult to detect and quantify
under these conditions. A comprehensive characterisation of the self-oligomerisation pro-
cess of αS and its co-oligomerisation with the mutational variants or Aβ and with tau
can help to compare their relative abundances, and functional assays can reveal the rel-
ative cytotoxicities of the self- and co-oligomeric species. To address these issues, we
have applied statistical mechanical modelling to experimental measurements of self- and
co-oligomers. Using these methodologies, we have analysed the self-oligomerisation of
wild-type αS, its co-oligomerisation with the mutational variants A30P, A53T and E46K,
and its co-oligomerisation with Aβ40 and Aβ42 and tau construct k18, that contains four
repeats of the aggregation-prone region of full-length tau, [210] at physiologically-relevant
protein concentrations in aqueous solution. We have derived the equilibrium free ener-
gies of oligomer formation for the studied protein combinations, enabling a quantitative
comparison of the self- and co-oligomerisation processes. Furthermore, we have investi-
gated the ability of the characterised self- and co-oligomers to permeabilize lipid vesicles,
allowing us to quantify and compare their potential for lipid membrane disruption.

8.2 Results and Discussion

8.2.1 TCCD measurements of the formation of self-oligomers

Measurements of equilibrium self-oligomer concentrations formed by wild-type αS (subse-
quently abbreviated to “WT”), A30P, A53T and E46K αS over a range of initial monomer
concentrations and under non-fibril-forming conditions were performed by M. Iljina using a
previously-reported method [161]. In addition to αS, concentrations of self-oligomerisation
under the same conditions of tau protein k18, which comprises the central region of this
protein that is included in the microtubule binding region, and is frequently used to study
tau aggregation, were provided. [211]

In this method, half of the monomers are labelled with one fluorescent dye and the
other half are labelled with another dye. Only oligomers containing monomers of both
types are detected, and we therefore term the resulting oligomer concentrations as “ap-
parent oligomer concentrations”. The resulting plots of the apparent concentrations of
self-oligomers of αS A30P, A53T, E46K, WT and of tau k18 are shown in Fig. 8.1. The
data show that the oligomer populations formed under these conditions are below 200 nM,
highlighting the challenge of studying these species by less sensitive bulk experimental
techniques. The oligomer populations of the αS variants A30P, A53T and E46K reached
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Figure 8.1: Equilibrium populations of self-oligomers plotted against the total initial protein
concentrations. Three to five separate samples were analysed for each initial concentration of
monomeric protein. The resulting values are represented by red crosses, and the fit to a single-
peptide oligomerisation model is shown as a solid line. The shaded bounds represent the fitting
error derived using nonparametric bootstrapping, as detailed in the Methods section. Data
provided by M. Iljina.

higher levels than the WT protein, with E46K giving the highest apparent oligomer con-
centrations. The highest apparent equilibrium concentrations of oligomers were observed
at the highest total starting αS concentrations, as expected by mass action, in agreement
with our previous study of oligomer formation by αS. [28] The apparent concentrations of
oligomers formed by k18 were mostly below 10 nM, which is consistent with the expected
low aggregation propensity of this protein in aqueous buffer solution in the absence of
aggregation inducers. [211] They were nevertheless sufficiently above the background (ev-
idence not shown), confirming the formation of a low population of oligomeric species
under the incubation conditions used here.

8.2.2 TCCD measurements of the formation of co-oligomers

We next set out to determine whether or not αS WT could co-oligomerise with its muta-
tional variants, as well as with Aβ40, Aβ42 and k18, by combining equimolar ratios of the
WT with the other proteins. The 1:1 mixtures of αS WT with its mutational variants are
likely to be physiologically-relevant as the variants of αS are known to co-exist with αS
WT in vivo. [182–184] The interactions of αS with Aβ40 and with Aβ42, both of which
are largely extracellular, is of interest in the light of the reported role extracellular αS
may play in neurodegeneration. [212] The potential co-interaction of αS WT with the tau
construct k18 is of interest since both αS and tau proteins are predominantly intracellular,
and therefore are likely to co-exist under the same conditions.

To quantify the extent of co-oligomerisation of the various protein combinations, we
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combined and incubated 1:1 stoichiometric ratios of αS WT, singly-labelled with one
dye, with each of these other proteins, singly-labelled with another dye, and selectively
monitored the formation of co-oligomeric species that contain both fluorophore labels
by sm-TCCD following the same protocols as described above for the detection of self-
oligomers. The apparent oligomer concentrations measured in this way are shown in
Fig. 8.2, indicating that co-oligomeric species are formed with all of the protein combi-
nations. The apparent equilibrium concentrations of co-oligomers of αS WT and A30P
(Fig. 8.2(a)) can be seen to be similar to the apparent concentrations of self-oligomers of
αS WT (Fig. 8.1(e)). Interestingly, the apparent concentrations of αS WT co-oligomers
with A53T and E46K (Fig. 8.2(b) and (c)) are similar to the apparent concentrations
of oligomers generated by the mutational variants alone (Fig. 8.1(b) and (c)), and are
higher than the apparent concentrations of the self-oligomers of αS WT (Fig. 8.1(e)). Our
observation that αS WT can readily co-oligomerise with all of the chosen mutational vari-
ants differs from the conclusion of a relatively recent single-molecule study that identified
selectivity in the co-interactions with these different isoforms. [195] The experimental con-
ditions in the two studies are, however, different and the incubations were carried out over
much longer timescales in the present experiments, thus making the results not directly
comparable. The observed populations of co-oligomers between WT and k18 can be seen
to be below 20 nM over a similar monomer concentration range (Fig. 8.2(d)). Despite
the low levels of such species, the direct detection of co-oligomerisation of αS with tau is
interesting, especially considering that there are at least six major isoforms of tau in the
human brain. [213] The concentrations of co-oligomers between αS and Aβ detected ap-
pear even lower, but in fact can be predicted to be higher than for all other co-oligomers
when comparison is made over the same initial monomer concentration range. This is
also an interesting result, especially given that multiple isoforms of Aβ can be present in
vivo. [214] Indeed, it is likely that various isoforms of tau or of Aβ may also co-assemble
since the extent of co-aggregation between different proteins is known to be determined
by the identity of their primary sequences. [215]

8.2.3 Theoretical modelling of self- and co-oligomer datasets to
determine the free energies of oligomer formation

We then analysed the datasets observed for self- and co-oligomer formation by sm-TCCD
(Figs. 8.1,8.2) using a statistical mechanical model similar to a previously reported model.
[161] In this theoretical model, the key parameter describing the oligomerisation process
is the Gibbs free energy of monomer addition to an oligomer or another monomer, ∆G◦,
independent of oligomer size, as illustrated schematically in Fig. 8.3(a). This parameter
characterises the ease of oligomer formation by monomeric species, and the more negative
the value the more favourable the oligomerisation.
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Figure 8.2: Equilibrium populations of co-oligomers formed in 1:1 mixtures of the various protein
combinations as indicated in the panels. Two to five separate samples were studied at each
concentration. Individual values are represented as purple crosses, and the fit to a 2-peptide
model of oligomer formation is denoted by a solid line. The shaded bounds represent the fitting
error, as in Fig. 8.1. Note the apparent low oligomer concentrations in (e) and (f) are due to
the lower monomer concentration ranges investigated (see x axes). In fact these concentrations
are predicted to be higher than for other co-oligomers over the same monomer concentration
range. Data provided by M. Iljina.

In the present model, described in the Methods section, the oligomers were treated
as simple non-interacting one-dimensional chain structures with nearest-neighbour inter-
actions independent of chain length. The approximation of non-interacting oligomers is
reasonable given the very low apparent concentrations of oligomers in the present exper-
iments. For self-oligomers our model is identical to that previously reported. [161] Note
again that the modelling explicitly takes into account the fact that only oligomers contain-
ing both dyes will be detected whereas the singly-labelled oligomers are not detectable.
The modelling of linear co-oligomers requires substantial new theory to be developed. Un-
der the present conditions, most oligomers are inferred to be dimeric (see Appendix F).
Therefore, although we cannot rule out the existence of larger nonlinear oligomeric species
(e.g. tetrahedral clusters) not explicitly included in our linear oligomer model, they can-
not in any case be present at high enough concentrations under the present experimental
conditions to significantly affect our analysis. We emphasize that oligomers have been
shown to have a different structure, stability and toxicity compared to fibrils; [28, 100]
thus, our ∆G◦ is not the same as for fibril elongation.

Our model is not applicable to the analysis of the data derived for the samples con-
taining Aβ at the highest concentrations investigated, since we expect fibrillar aggregates
to exist at equilibrium above the critical aggregation concentration for fibril formation,
which is the lowest total monomer concentration that is required for the formation of
fibrils. [161] Using the same fitting procedure, we previously estimated these critical ag-
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Figure 8.3: Modelling of self- and co-oligomer formation. (a) Schematic representation of the
two processes. (b) The fitted values of free energies of oligomerisation, ∆G◦s, derived from
the analysis of sm-TCCD data for the formation of self-oligomers and (c) of co-oligomers. The
standard errors in the ∆G◦ values were determined using a nonparametric bootstrap approach
as defined in Methods. The dotted line denotes the ∆G◦ for the formation of oligomers from
WT.

gregation concentration values to be 222±10 nM and 86±10 nM for Aβ40 and Aβ42
isoforms, respectively. [161] Since Aβ comprises only a half of the protein molecules in
the αS-Aβ solutions, we restricted our analysis of these datasets to total protein concen-
trations that were up to twice those previously derived critical aggregation concentration
values.

Following the fitting of self- and co-oligomer datasets, as detailed in the Methods
section, we derived the value of ∆G◦ of oligomerisation of all the protein combinations
investigated in this study. The resulting values, summarised in Figs. 8.3(b)-(c) and listed
in Appendix Table F.1, are all large and negative, similar in magnitude to the values
previously reported for the formation of Aβ40/42 oligomerising systems. [161] The least
negative ∆G◦ value of -19.4±0.5 kJ mol−1 was obtained for k18, which is consistent with
its lowest propensity to self-assemble under our experimental conditions in the absence of
aggregation inducers. Interestingly, the resulting ∆G◦ value for αS WT of -24.0±0.3 kJ
mol−1 is less negative than the resulting values for all mutational variants of αS, except
WT-A30P. In addition, the ∆G◦ values for WT-Aβ co-oligomers (-29.4±0.6 kJ mol−1 for
WT-Aβ40 and -30.8±1.0 kJ mol−1 for WT-Aβ42) are more negative than the value for
αS WT, and less negative than our previously obtained values for Aβ40 and Aβ42 self-
oligomers (-36.3 kJ mol−1 for both isoforms). [161] Overall, the more negative ∆G◦ values
for the mixtures containing the WT protein compared to αS WT alone suggest that the
co-oligomer formation by αS WT is more favourable than the self-oligomer formation for
most of the mixtures under our experimental conditions.
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8.2.4 Predicted equilibrium concentrations of oligomer popula-
tions based on the derived free energies of oligomer for-
mation

The derivation of the free energies of oligomer formation enables the prediction of the total
rather than apparent equilibrium concentrations of self- and co-oligomers at any chosen
protein concentration. Given that oligomer concentrations depend exponentially on ∆G◦s
(as detailed in Appendix E; in particular Eqs (E.7) and (E.11)), even slight differences
in the derived ∆G◦ values correspond to large differences in the resulting equilibrium
oligomer populations. Indeed, under the present conditions, a stabilization of less than 2
kJ mol−1 is sufficient to result in a doubling of the observed oligomer concentration. To il-
lustrate this statement, we set out to explore the relative concentrations of different types
of oligomers formed by the mixtures of αS WT with its mutational variants. To this end,
we predicted the overall oligomer concentrations and the concentrations of the separate
oligomer sub-populations for the 1:1 mixtures of WT with its variant A30P, A53T and
E46K generated over the total range of protein concentrations from 10 to 1,000 nM, and
compared them to the predicted oligomer populations for αS WT at the same starting
protein concentrations. These predictions reveal that the co-oligomers of αS WT-A53T
and WT-E46K are the dominant sub-populations across the entire ranges of the protein
concentrations (Fig. 8.4). In addition to the concentrations of the self- and co-oligomer
sub-populations in the αS WT-mutational variant mixtures, we also predicted the concen-
trations of oligomers for αS WT at a concentration of αS of 1.5×, which is relevant to the
scenario of αS overproduction [216,217] and corresponds to the conditions of its gene du-
plication. [218] According to these simulations, the total oligomer concentration in the αS
WT-mutational variant mixtures can reach similar levels to the 1.5WT system, and even
higher concentrations of oligomers are generated in the case of WT-E46K combination.

Importantly, this analysis shows that the generation of high concentrations of oligomers
can be caused not only by the increased concentration of soluble αSWT, but can also occur
as a result of the presence of the protein variants that have a favourable interaction with
the αS WT owing to sequence similarity. [215] The propensity identified in this study of
the mutational variants of αS to generate elevated equilibrium concentrations of oligomers
and co-oligomers may explain their pathogenicity, along with other previously established
disease-relevant properties of these mutational variants such as perturbed aggregation
rates, [191–193] altered binding to lipid membranes [15, 219] and the altered structural
organisation of the oligomers. [127]

Subsequently, we used the derived ∆G◦s to predict the populations of the defined
oligomeric species at the protein concentrations that correspond to their physiological
abundance, focussing on the mixture of αS WT and Aβ isoforms. Using the protein
concentrations that might be present inside a cell, 0.9 nM and 0.1 nM for Aβ40 and Aβ42,
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Figure 8.4: Predicted equilibrium concentrations of protein oligomer populations over the con-
centration range of 10-1,000 nM. In (a)-(c), the total concentrations of oligomers generated
in 1:1 mixtures of αS WT-mutational variant are shown (“total”), and the separate oligomer
sub-populations that are present in these mixtures (co-oligomers are denoted as “mixed”, and
the self-oligomers of either component as “WT” and the corresponding mutational variant). In
addition, αS WT self-oligomers generated at the same total protein concentrations are shown
(“1.0WT”), and the oligomers generated at 1.5-times higher total starting total concentration
of αS WT (“1.5WT”). Note that in (b), the curves “1.5WT” and “total” overlap.

assuming the intacellular concentration is similar their extracellular concentrations, [152]
vs 300 nM for αS WT, based on the measured Kd for membrane binding, [220] the major
oligomeric form is predicted to be self-oligomers of αS WT (0.96 nM), followed by co-
oligomers of αS WT and Aβ (0.05 nM and 0.01 nM for WT-Aβ40 and WT-Aβ42), with
Aβ self-oligomers being at concentrations that are orders of magnitude lower. Thus, under
these conditions, most of the Aβ peptides within the oligomeric species are incorporated
into the co-oligomers with αS WT. At the protein concentrations that correspond to their
extracellular abundance in cerebrospinal fluid (CSF), (0.9 nM and 0.1 nM for Aβ40 and
Aβ42 vs 1 nM for αS WT), [152, 221] the predicted dominant type of oligomer are self-
oligomers of Aβ40 (83%) at a concentration of 1.1 pM. Aβ42-containing oligomers are
present at 0.04 pM: 70% of these latter oligomers are predicted to be co-oligomers of αS
WT and Aβ42, with 30% being self-oligomers of Aβ42. Remarkably, most of Aβ42 is thus
predicted to be a constituent of co-oligomers under these conditions.

8.2.5 Co-oligomer formation leads to increased calcium influx
into lipid vesicles due to membrane disruption

Next, we set out to examine if the self- and co-oligomers that αS forms with its mu-
tational variants and with the Aβ peptide are able to permeabilise lipid membranes, a
process that has been associated with neurotoxicity. [222] Measurements of the oligomer-
induced permeabilization of lipid membranes were provided by P. Flagmeier and S. De,
using a recently developed ultrasensitive single vesicle assay, that quantifies Ca2+ influx
into lipid vesicles upon membrane disruption based on fluorescence intensity changes of
a calcium sensitive dye. [223] Using this assay and identical experimental conditions, it
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was previously reported that neither monomeric Aβ peptide nor monomeric αS WT cause
significant calcium influx; [223] therefore, any influx observed can be attributed to the
action of peptide aggregates on the vesicle membranes. The detection of a higher fluores-
cence intensity corresponds to a larger calcium influx due to a higher level of membrane
permeabilization caused by the aggregates. [223]

Firstly, the action of αS WT with and without its mutational variant E46K was ex-
amined, since this combination of αS proteins generated the highest steady-state concen-
trations of mixed oligomers, was expected to have comparable lipid-binding properties
and not to form lipid-induced aggregates under our experimental conditions. Separate
solutions of 150 nM monomeric αS WT and of 150 nM monomeric αS E46K variant were
prepared and incubated under the same conditions as were used for the oligomer con-
centration measurements above (Fig. 8.1(e),(c)), and probed with the assay (Fig. 8.5(a)).
Significant Ca2+ influx was observed in both cases, confirming that the self-oligomers
formed by these αS variants can disrupt membranes. We then used our theoretical model
to calculate the equilibrium concentration of oligomers formed in each of these solutions
(Table 8.1). Comparing these figures to the permeabilization data allows us to quanti-
tatively determine the ability of the respective self-oligomers to induce Ca2+ influx (the
permeabilization propensity, measured in units of percentage point (ppt) Ca2+ influx /
pM).

αS solution (initial WT self-oligomer E46K self-oligomer WT-E46K co-oligomer
monomer concentrations) concentration (pM) concentration (pM) concentration (pM)
WT (150 nM) 240 - -
E46K (150 nM) - 1500 -
WT + E46K (75 + 75 nM) 60 370 740

Table 8.1: Predicted oligomer concentrations for αS WT-E46K solutions.

αS or Aβ solution (initial WT self-oligomer Aβ42 self-oligomer WT-Aβ42 co-oligomer
monomer concentrations) concentration (pM) concentration (pM) concentration (pM)
αS WT (40 nM) 17 - -
Aβ42 (4 nM) - 21 -
WT + Aβ42 (40 + 4 nM) 17 20 49

Table 8.2: Predicted oligomer concentrations for αS WT-Aβ42 solutions.

Next, solutions containing both monomeric αS WT and the E46K variant at equimolar
concentrations of 75 nM (total concentration of 150 nM) were prepared, incubated under
the conditions described above to allow the formation of oligomer populations, and tested
(Fig. 8.5(a)). We again used our theoretical model to determine the concentrations of
WT self-oligomers (60 pM), E46K self-oligomers (370 pM), and WT-E46K co-oligomers
(740 pM) present in these solutions (Fig. 8.5(b)). Based on the concentrations of the self-
oligomers and their ability to induce Ca2+ influx that we have calculated above, we can
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determine how much of the Ca2+ influx of the mixture can be attributed to αS WT self-
oligomers (3.7 ppt) and αS E46K self-oligomers (5.6 ppt). The co-oligomers are therefore
responsible for 37.1 ppt of the Ca2+ influx. Dividing this by the predicted co-oligomer
concentration gives us the permeabilization propensity of the WT-E46K co-oligomers.

These results show that although E46K-containing oligomers are formed much more
readily than WT oligomers (Table 8.1), the ability of E46K self-oligomers to cause Ca2+

influx is lower compared to the αS WT-containing oligomers, indicated by their lower
permeabilization propensity (Fig. 8.5(b)). The co-oligomers both readily form and signif-
icantly disrupt membranes, and are thus responsible for the great majority, namely 80%,
of the observed Ca2+ influx caused by the mixed αS WT-E46K solution (Fig. 8.5(b)).

Since the toxicity of Aβ42 self-oligomers is also well-established, [101, 223] it is of in-
terest to test the potential toxicity of αS WT-Aβ42 co-oligomers. Choosing monomeric
concentrations at which co-oligomer formation was predicted to be particularly high, we
performed membrane permeabilization experiments (Fig. 8.5(c)) for solutions containing
only self-oligomers (generated from incubation of 4 nM Aβ42 or 40 nM αS WT, respec-
tively) and solutions containing self- and co-oligomers (generated from incubation of 4
nM Aβ42 + 40 nM αS WT). We employed our theoretical model to calculate the concen-
trations of αS WT self-oligomers (17 pM), Aβ42 self-oligomers (20 pM), and WT-Aβ42
co-oligomers (49 pM) formed in the mixed solution. Combined with theoretical predic-
tions of the oligomer concentrations formed in the single-species solutions (Table 8.2), the
data enabled us to perform the same analysis as above to determine the relative ability
of these different oligomeric species to permeabilise membranes. Our results show that
although more than half of the oligomers formed in the mixed solution are co-oligomers,
their contribution to the ability of the solution to permeabilise membranes is small, and
therefore co-oligomers are significantly less disruptive than the self-oligomers (Fig. 8.5(d)).
Interestingly, we also find that Aβ oligomers are over an order of magnitude more disrup-
tive to membranes than αS oligomers; and that they are present at similar concentrations
(Table 8.2). The greater number of co-oligomers in this case is insufficient to outweigh
the greater membrane permeabilization propensity of Aβ42 self-oligomers, which remain
responsible for the majority (80%) of the Ca2+ influx caused by the oligomers present in
the WT-Aβ42 mixed solutions (Fig. 8.5(d)).

As the αS WT protein co-exists in the human brain with its E46K variant in subjects
displaying a single E46K mutation, which means the person carries one WT αS allele
and one allele with the E46K mutation, species formed during co-aggregation may be
involved in membrane permeabilization and the loss of protein homeostasis. Our results
show that the presence of E46K mutation leads to the increased formation of E46K self-
and co-oligomers and not to these structures being inherently more toxic. Our results
also indicate substantial co-oligomerisation between the PD-related αS protein and the
AD-associated Aβ42 peptide. However, although this hints at a possible cross-seeding
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Figure 8.5: Quantification of the Ca2+ influx induced by oligomers using the single vesicle
assay. (a) Experimentally measured average values of Ca2+ influx, induced by the oligomers
formed at equilibrium in solutions containing αS WT and E46K (concentrations in monomer
equivalents). Error bars correspond to the standard deviations from three separate experiments
for each experimental condition (p = 0.032). (b) Comparing self- and co-oligomer populations
to their contributions to total Ca2+ influx, and their relative permeabilization propensity, in
the αS solution containing both 75 nM WT and 75 nM E46K. (c) Average values of Ca2+

influx, induced by the oligomers formed at equilibrium in solutions containing αS WT and Aβ42
(concentrations in monomer equivalents). Error bars correspond to the standard deviations
from four separate experiments for each experimental condition (p = 0.017). (d) Comparing
self- and co-oligomer populations to their contributions to total Ca2+ influx, and their relative
permeabilization propensity, in the solution containing both αS (40 nM WT) and Aβ42 (4 nM).
Data provided by P. Flagmeier and S. De.
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effect that may have relevance for amyloid fibril formation, the co-oligomers themselves
appear to be relatively inert in the single vesicle assay compared to the self-oligomers of
Aβ42 and thus may have comparatively little direct effect on cell membrane disruption.

Taken together, our combined experimental and theoretical methodology permits us
not only to determine the concentrations of different types of oligomers formed from mix-
tures of amyloidogenic monomeric peptides and proteins at biologically-relevant concen-
trations, but also to gain insight into their likely relative toxicities due to cell membrane
disruption. In addition, the close agreement between the permeabilisation propensity val-
ues calculated for αS self-oligomers formed from 40 nM and 150 nM monomeric αS solu-
tions (Fig. 8.5(b),(d)) clearly demonstrates the self-consistency of our modelling approach.
The number of possible cytotoxic αS-containing co-oligomer types can, in principle, be
very large in vivo, considering that new αS mutational variants are still being discov-
ered [224,225] and numerous post-translationally modified and truncated proteoforms of
αS are physiologically abundant, [226] as well as multiple isoforms of Aβ, [227] and other
amyloidogenic proteins and their complexes. [228] More generally, most proteins asso-
ciated with neurodegenerative diseases are found to be post-translationally modified in
the aggregated state so that the formation of co-oligomers, either between different post-
translationally modified forms of the same protein or different proteins present in the same
cellular compartment, is likely to play a much more important role in neurodegenerative
diseases than previously thought.

8.3 Conclusions

In this study, we have performed a detailed quantitative analysis of self- and co-oligomer
formation by αS and its mutational variants in vitro, and investigated its co-oligomerisation
with two major AD-related proteins, Aβ and tau k18 construct. We have compared the
potential for lipid membrane disruption by the different oligomer types using a single-
vesicle assay. Our results show that at low physiologically-relevant protein concentrations,
co-oligomer formation in most cases is more favourable than self-oligomer formation by
αS, and thus αS-containing co-oligomers may be highly abundant under conditions where
multiple proteins co-exist. We also find that although the co-oligomers examined are
less potent membrane disruptors in comparison to self-oligomers, their adverse effects can
become dominant when the co-oligomers are present at high steady-state concentrations.
The identified favourable formation of co-oligomers between αS and other proteins and
the high potential of the resulting species to disrupt lipid membranes are important in the
context of synucleinopathies, and in the development of therapeutics against the onset
and progression of these diseases.

125



8.4 Methods

8.4.1 Modelling of self- and co-oligomer datasets

Having ascertained that the experiments detailed here have reached equilibrium with
respect to oligomer formation, we analysed our results using two equilibrium statistical
mechanical models: a previously described single-peptide oligomerization model outlined
in Appendix E.2, [161] and a new 2-peptide model of co-oligomer formation outlined in
Appendix F.2. The first model considers a solution of a single species of monomeric
peptide that can reversibly self-associate to form linear chains of any length. The second
model considers a solution containing 2 species of monomeric peptide that can reversibly
associate to form both mixed and single-species chains. The equilibrium constants of
these reactions can be related to the free energies of monomer addition to like and unlike
peptides, or to self- and co-oligomerization. We work in the grand canonical ensemble,
and we set the chemical potentials by insisting on conservation of peptide. Further, we
consider concentrations not numbers, thus the only free thermodynamic parameter is
the temperature. Thus, the systems described by both models are completely specified
by the standard free energies, the peptide concentrations, and the temperature. We
can therefore determine the standard free energies by least-squares fitting the apparent
oligomer concentrations as a function of initial monomer concentrations.

We first fit the self-oligomer data to the single-species model (Appendix Eqs (E.15)
and (E.16)) to obtain the self-oligomerization standard free energies. Note that the model
contains a correction factor (calculated exactly analytically) to account for the fact that
only the oligomers containing both donor and acceptor dye are detected by the experimen-
tal measurements, with donor-only and acceptor-only oligomers being invisible. We then
enter these free energies into the 2-species model, which we fit to the 2-species oligomer-
ization data to determine the co-oligomerization standard free energy. These data only
measure the co-oligomer concentration so we fit only to the mixed oligomer component
of the model (Appendix Eqs (F.4)-(F.12)).

Due to the complicated analytical fitting procedure, a formal parametric approach to
error estimation is not suitable. Therefore, we prefer to use a nonparametric bootstrap
approach. [229] Our data are effectively stratified by initial monomer concentration; there-
fore, we also stratify our sampling to better reproduce the structure of the data in our
resamples. [230] Furthermore, we prefer a subsampling technique rather than full boot-
strap, as subsampling is valid under much weaker conditions than full resampling. [231]
Our full method is then to randomly sample one data point at each monomer concentra-
tion and fit the resulting sub-dataset to our model, recording the resultant ∆G◦. This
process is then repeated many times (we choose to do 500 repeats), generating a distri-
bution of ∆G◦s. An estimate of the standard error for ∆G◦ is then given by the standard
deviation of this distribution.
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Chapter 9

Statistical Mechanics of Oligomer
Formation

Chapter Abstract

The aggregation of proteins into oligomers and linear fibrils finds widespread
relevance in human biology, particularly in connection with the pathology
of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases.
Even though oligomeric peptide aggregates are intimately connected with amy-
loid disease toxicity, their size distributions and morphologies remain poorly
understood. We discuss here formation of globular oligomers via hydrophobic
interactions. Such oligomers are expected to be micelle-like, although much
smaller than typical micelles. We therefore generalize a long-wavelength equi-
librium thermodynamical micelle model to small cluster sizes, finding that this
explains Monte-Carlo simulations of oligomer formation well. We identify the
controlling parameters of the model, which are closely related to simple quan-
tities that may be fitted directly from experiment. We predict that globular
oligomers are unlikely to form at equilibrium in many amyloid systems, but
instead may form transiently in the early stages of aggregation. We finally
contrast the globular model to a well-known model for linear oligomer forma-
tion, highlighting how the differing ensemble properties of linear and globular
oligomers offers a potential strategy for identifying oligomer morphology from
experimental measurements.

A natural question that arises following the studies on Aβ and αS oligomers presented
in the previous chapters is to what extent linear oligomer models are appropriate for
analysing oligomer populations. The research presented in this chapter seeks to answer
this question, and investigates globular oligomers, which are expected to be important
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components of some oligomer populations. The work in this chapter is being prepared
for submission to Biophys J under the title “Statistical mechanics of globular oligomer
formation”. I am primarily responsible for all theory and writing. Anđela Šarić is respon-
sible for the Monte-Carlo simulations, and Thomas C. T. Michaels assisted in the drafting
and discussion. Appendix G contains supplemental theoretical results and details of the
Monte-Carlo simulations.

9.1 Introduction

The process of linear self-assembly, whereby monomeric protein units aggregate spon-
taneously to form larger filamentous structures, is central to both normal and aberrant
human biology and has been studied extensively over the past five decades [18, 20, 21,
30, 46, 50, 53, 89, 232]. Such a process is fundamental to the pathology of a number of
widespread and deadly afflictions, most prominently protein misfolding diseases such as
Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) [1–4, 11, 233–236], Sickle-Cell
Anaemia [20,61,237] and prion disorders [5, 238–241].

In many of these conditions, it has been shown that cell damage is caused mainly
by small oligomeric species, rather than the large fibrillar aggregates that ultimately are
formed. [8] Whilst most studies of filamentous protein aggregation have focussed on the
formation of these fibrils, relatively little work targets the oligomers. This discrepancy
arises from difficulties in detecting oligomers under physiological conditions, where they
are present at picomolar concentrations. Recent advances in single molecule detection
techniques have greatly facilitated the observation of peptide oligomer populations at low
concentrations, and even allow approximate inference of oligomer size distributions at
equilibrium via confocal two-color coincidence detection. [25, 26] Through these experi-
mental advances, many peptide oligomer geometries have been reported in the literature,
including discs, [157] rings, [194, 242] chains, [242] and spheres [242, 243]. Additionally
several studies have investigated oligomer size distributions without determining their
geometry [29, 244, 245]. Some of these geometries were only reported under unusual con-
ditions [157]; and it is also possible that some are artefacts of the methods of preparation
and imaging. Furthermore, measurements of apparent size distributions are currently
highly approximate. Mathematical modelling of oligomer formation therefore has the
potential to provide much-needed clarity on oligomer properties and morphology that
experiments alone cannot currently provide. Developing such an understanding will have
important implications for both the kinetics and the thermodynamics of amyloid protein
aggregation; and likely also for understanding the mechanisms behind oligomer toxicity.

In this paper, we draw on micelle theory to present a statistical mechanical model for
equilibrium globular oligomer formation. We investigate the key properties of globular
oligomers using the model and how its parameters may be determined experimentally.
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We finally compare the results to those for linear oligomers using a well-known model,
and discuss how these geometries may be distinguished in practice.

9.2 Statistical Mechanics of Globular Amyloid Oligomers

Using the theoretical framework offered by the grand canonical ensemble (see Appendix
G.1), a general expression for the concentration f(j) of noninteracting oligomers of size
j in a system at temperature T can be found, in terms of the internal oligomer partition
function qint(j) = exp(−β∆G◦int(j)) and the fundamental volume v0(j) associated with
the translational partition function:

f(j) = 1
NA v0(j) qint(j) eβjµ, (9.1)

where β = 1/(kB T ) is the inverse temperature, NA is Avogadro’s number, and µ is the
chemical potential of the monomers, which is set implicitly by the conservation-of-mass
condition, p = ∑∞

j=1 jf(j), where p is the total peptide concentration. For notational
consistency with previous kinetic and thermodynamic studies of oligomerization [112,161],
we hereafter write f(1) = m. We further assume that v0(j) ≡ v0 is independent of oligomer
size. From Eq. (9.1), it follows that to model equilibrium oligomer size distributions,
we must identify the internal free energy change associated with oligomer formation,
∆G◦int(j).

9.2.1 Internal free energy

Globular morphology can be expected on physical grounds to be common for oligomers
assembled via hydrophobic interactions: only part of the surface of an amyloidogenic
peptide is typically expected to be hydrophobic. If this part is contiguous and not too
large [246], the peptide has amphiphilic character, and oligomers are likely to be finite
and spherical, and micellar in nature. An analytical expression for spherical micelle free
energy relative to monomers has been derived by Maibaum, Dinner and Chandler [247]:

∆G◦int(j) = α j2/3 + ∆Gbulk j + h j5/3/β, (9.2)

where ∆Gbulk is the favourable free energy of transferring the hydrophobic “tail” of an
amphiphile into a pure-tail phase; and αj2/3 is an energy penalty arising from surface
tension between the bulk phase and the new “tail” phase. hj5/3 is a connectivity-enforcing
term that penalises the separation of head and tail groups that occurs if the micelle
becomes too large whilst retaining its spherical geometry [248], originally computed by
utilizing an analogy between micelle formation and charge repulsion [249]. The large-j
penalty from steric clash between head groups can be shown to be insignificant in front
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of this term (see Appendix G.2). For simplicity we consider only uncharged micelles in
the present work.

This model was developed for typical surfactant micelles with aggregation numbers
50 < j < 100 and whose constituent amphiphiles have long hydrocarbon tail groups,
for which the concept of a micelle surface tension is well-defined. It was intended that
the surface tension be measured directly from experiments featuring a water phase and
a phase consisting of oil molecules similar to the tail groups. For the small aggregation
numbers (5 < j < 15) [113] typically seen in oligomers, however, the micelle core can
hardly be considered a distinct phase separated from the bulk phase by a well-defined
surface, whose nature would instead vary significantly with j. Moreover, measurements
of the kind outlined above are not readily possible with amphiphilic peptides instead of
hydrocarbon surfactants. We instead write the free energy of forming a micelle core as
the sum of pairwise interactions between amphiphiles, yielding an overall free energy:

∆G◦int(j) = j
zj
2 Gb + h j5/3/β, (9.3)

where zj is a size-dependent mean-field coordination number. For nonspecific interactions
we expect this description to be reasonable [250]; even where internal structures lack
fluidity bonding isomers are likely to only be relevant for j = 3− 4.

To utilize this model we require a functional form for zj that can reproduce the coor-
dination numbers seen in oligomer ensembles. We know that limj→∞ zj exhibits perfect
spherical scaling; at small j, however, deviations from this mean-field relation are possible.
We nonetheless try the exact spherical form:

zj = z∞(1− γ j−1/3). (9.4)

Combined with the choice γ = 1.21 and z∞ = 12 this reproduces known small Van der
Waals cluster coordination numbers [250], e.g. z6 = 4. Furthermore, this matches average
coordination numbers measured from Monte-Carlo simulations of globular oligomers re-
markably well (Fig. 9.2). Equating Eq. (9.2) and Eq. (9.3) yields γ = −2α/z∞Gb; we have
thus eliminated a model degree of freedom without resorting to the impractical experi-
mental strategy previously recommended. We note that determining α experimentally is
often unsuitable even for conventional micelles, being unable to reproduce Monte Carlo
simulations of size distributions [251]. Our bond-counting approach instead makes clear
the link between the surface tension and the bulk bonding free energy, which seems to be
a more effective constraint than surface tension measurements.
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Figure 9.1: a: Schematic of cluster oligomer model. Peptides in the model have a non-bonding
hydrophilic region and a hydrophobic region capable of non-directional bonding. Bonding in-
teractions are counted pairwise. Typical protein oligomer aggregation numbers are expected to
range from 5-15 monomers. b: We replace bulk and surface energy terms with a bonding energy
term depending on an average spherical coordination number function (bars), and eliminate a pa-
rameter by matching known small cluster geometries [250] using the value γ = 1.21 and z∞ = 12.
This matches the results from Monte Carlo simulations (data points), reflecting the flexibility
of oligomer structure. Minor deviations below the function values at larger sizes suggests a
tendency to form spherocylindrical micelles; this effect has been observed previously [252].
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9.2.2 Size distribution

Having determined an expression for the free energy of globular oligomerization, we are
now in a position to determine the size distribution for globular oligomers. Using (9.3)
in (9.1), we find:

f(j) = 1
NAv0

exp
(
−βj zj2 Gb − h j5/3 + βjµ

)
. (9.5)

The origin of this size distribution in micelle theory ensures a total peptide transi-
tion concentration p∗, above which the size distribution is peaked, and below which it is
monotonically decreasing. The equilibrium monomer concentration m∗ associated with
the transition is approximately the critical micelle concentration (CMC).

A further key advantage of Eq. (9.5) over the Maibaum-Dinner-Chandler formulation
is that we can more naturally interpret the properties of the size distribution in terms of
its parameters. We expect the modal oligomer size above p∗ to be controlled by the ratio
βGb/h: the trade-off between the bonding free energy, that increases the favourability of
larger oligomers, and the connectivity term, that decreases it. Given a known average
oligomer size, we then expect the polydispersity of the size distribution to be set by
the magnitude of βGb or h; the smaller their magnitude the flatter the internal free
energy, and the smaller the difference in stability between oligomers of different sizes.
The concentration units are then set by v0.

We were able to globally fit our model successfully to our Monte-Carlo simulations
of oligomer formation at two different total peptide concentrations (Fig. 9.2), yielding
βGb/h = −3.62, h = 0.58, and v0 = (11.8 nm)3. The h value is comparable to the
range predicted by ab initio calculations [248]. Details of the simulations are given in
Appendix G.3.

132



2 4 6 8 10 12 14
0

2

4

6

8

10

12

Oligomer size / j

F
ra
ct
io
n
of
ol
ig
om
er
s
/%

2 4 6 8 10 12 14
0

5

10

15

20

25

Oligomer size / j

F
ra
ct
io
n
of
ol
ig
om
er
s
/%

p = 106 μMp = 55 μM
a b

Figure 9.2: The analytical size distribution model (bars) can be globally fitted to coarse-grained
numerical Monte Carlo results (data points) with reasonable accuracy (fitted parameters in
Sec. 9.2.2).

9.3 Key Characteristics of Globular Amyloid Oligomers
at Equilibrium

Having predicted how the model parameters will relate to the key properties of the system,
we now seek explicit expressions for these properties. A key advantage of doing so is that
these properties are more easily measurable from experiment than the full size distribution
itself; by measuring them we can thus constrain the model and simulate the expected size
distribution. Furthermore, we can rewrite Eq. (9.5) in a particularly convenient form in
terms of these properties. We finally discuss how the size distribution changes in the
presence of amyloid fibrils.

9.3.1 Average oligomer size

The most probable oligomer size above m∗ is a key property often directly measurable
from experiment, and is given by solving df(j)/dj = 0. A lower bound on this is given by
the location of the point of inflection j∗ of the size distribution at m = m∗ (Appendix G.4;
first derived for micelles in Ref. 247):

j∗ = −6γβGb

5h , (9.6)

where we have set z∞ = 12. Maibaum et al. [247] also derived an approximate expression
for the most likely micellar size, by approximating the size distribution above the CMC
as monodisperse at size j = j′. Combining Eq’s (16) and (17) from Ref. 247 using our
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notation, the value of j′ is given by solving:[
∂β∆G/j

∂j

]
j=j′

= z∞γβGb

6 j′−4/3 + 2h
3 j′−1/3 = 1

j′2
ln (fjNAv0) , (9.7)

where x is the fraction of peptide incorporated into micelles (x = j′fj/f1). The RHS was
further approximated as zero to arrive at an analytical expression for j′. We note, however,
that the RHS actually approaches zero from below as fj increases towards 1/NAv0 M. We
further note that this limit is approximately the highest concentration possible for the
system, corresponding to a volume fraction of unity, since v0 is of the order of the monomer
dimensions; therefore their expression is in fact an upper bound on the peak position. In
particular, from the inequality:

z∞γβGb

6 j−4/3
p + 2h

3 j−1/3
p < 0, (9.8)

one obtains the following expression for the peak jp when z∞ = 12:

jp < j′ = −6γβGb

2h . (9.9)

We expect the peak jp to increase rapidly from j∗, as the lower bound j∗ is an inflection
point; and then to approach the upper bound j′ asymptotically. Therefore, jp will typically
be closer to j′ than to j∗. Indeed, in the current case the choice jp = −5γβGb/2h is in
good agreement with our system (see Fig. 9.3). Crucially, both bounds show the expected
scaling behaviour Gb/h.

Once a peak in the globular oligomer size distribution forms, we expect the mass of
the system to shift rapidly into oligomers with increasing p, with a higher peak size, or
|Gb|/h, corresponding to a faster shift. This is inferred from the fact that above p = p∗ the
oligomer concentration scales initially as approximately pjp . Indeed, explicit calculations
using parameters fitted from the Monte-Carlo simulations demonstrate that the total
peptide concentration for which 50% of peptide, p50, is in oligomers is only slightly higher
than p∗ (Fig. 9.3).

9.3.2 m∗ and rescaling

Size distributions have units of concentration. Rescaling by an experimentally-measurable
concentration should therefore dedimensionalize the model, and effectively replace one
degree of freedom with another more accessible one. A natural concentration for globular
oligomers is m∗, at which a new maximum first appears in the size distribution; this can
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be shown to be (see Appendix G.4):

m∗ = 1
NAv0

exp
(
6β Gb + (5h)1/3

(
−6γβ Gb)2/3

))
(9.10a)

= 1
NAv0

exp
(
zj∗

2 β Gb

)
, (9.10b)

where zj∗ is the coordination number at the point of inflection of the size distribution
at f(1) = m∗, and where we have set z∞ = 12. We can then identify the convenient
dimensionless form for the size distribution:

f̂(j) = f̂(1)j exp
(
h

[
−βGb

h

(
j
zj
2 − (j − 1)zj

∗

2

)
− j5/3

])
, (9.11)

where f̂(j) = f(j)/m∗, and the exponential term is the size distribution at f̂(1) = 1,
which is monotonically decreasing apart from a point of inflection at j∗. We clearly see
that at concentrations below f̂(1) = 1, the size distribution is monotonic decreasing, and
above m∗ it has a peak.
Rescaling concentrations by m∗ thus eliminates v0 and collapses all possible size distribu-
tions onto a set of curves indexed only by Gb and h. To map to SI units we now require
m∗ instead of v0, which may often be conveniently determined experimentally.

9.3.3 Polydispersity of the size distribution

An indicator of the polydispersity of the globular size distribution above m∗ is given by
its second derivative with respect to j at j = jp normalized by the peak height, which we
label C:

C = 1
f(j)

d2f(j)
dj2

∣∣∣∣∣
j=jp

. (9.12)

Using Eq. (9.3) in Eq. (9.12), we find:

C = 1
9 j1/3

p

[
γz∞
jp

(−βGb)− 10h
]
. (9.13)

Interestingly there is no explicit concentration dependence; thus j∗ is always a point of
inflection with zero curvature, and curvature is always negative at higher j since the
positive first term is reduced more than the negative second term.
We see that the polydispersity of the distribution is thus controlled by the magnitude of
Gb or h, as expected. Upon closer inspection, doubling (−βGb) reduces the curvature by
21/3, whereas halving h reduces C by 24/3; thus, the polydispersity is substantially more
sensitive to h than to Gb. Halving both |Gb| and h gives no change in jp and thus halves
C.

An expected consequence of a more polydisperse size distribution is a greater range of
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peptide concentrations over which the transition from a dimer-dominated distribution to a
peaked distribution occurs. Thus a greater |Gb| or h should lead to a more rapid transition
from one regime to the other (Fig. 9.3). The form of Eq. (9.11) ensures that, given a
moderate average oligomer size, the distribution below m∗ is highly dimer-dominated for
all but the smallest h.

Our model considers only spherical oligomers; however, at sizes above jp we expect
spherocylindrical oligomers to become important [252], since it becomes favourable to
reduce average coordination number to avoid head and tail group separation. We therefore
expect our model to underestimate the polydispersity. Fitting our model to full size
distributions will then only lead to lower bounds on the magnitudes of |Gb| and h, and
consequently an upper bound on v0, rather than exact values. Indeed, fitting to the
Monte-Carlo simulations yielded v0 = (11.8 nm)3, which is slightly larger than expected
given monomer dimensions of (2 nm)3. However, given only m∗ and j∗, the model still
has good predictive power apart from the concentration range immediately above p = p∗

(Fig. 9.3). Should greater accuracy for parameter magnitudes be required, h may in some
cases be computed relatively simply analytically [247,248].

9.3.4 Oligomer formation in the presence of fibrils

We have characterized oligomer formation in isolation; in practice, we are frequently
interested in peptides that can form both oligomeric pre-nucleation clusters and macro-
scopic fibrillar aggregates, with different structures and therefore different chemistries.
The coupling of these processes has important implications for oligomer formation.

Filament formation by monomeric peptides involves a phase transition, below which
fibrils do not form; the total monomer concentration at which this occurs is known as the
critical aggregation concentration (CAC). To show this, we first define P (t) as the number
concentration of filaments of any size, and k+ and koff as the size-independent filament
elongation and depolymerization rate constants respectively. Following from earlier no-
tation, the monomer concentration at time t is m(t). The equilibrium concentration of
monomers in filament forming conditions is then independent of initial monomer concen-
tration:

2k+m(∞)P (∞) = koffP (∞) =⇒ m(∞) = koff
2k+

. (9.14)

We may then identify m(∞) ≡ mCAC: if the initial monomer concentration is lower
than this, no macroscopic filament formation occurs; if it is higher, mCAC becomes the
equilibrium monomer concentration.

136



5 10 15 20
0

1

2

3

Oligomer size / j

O
lig
om
er
co
nc
en
tr
at
io
n
/m
*

0.1 1 10 100
0

5

10

15

20

Relative peptide concentration

A
ve
ra
ge
ol
ig
om
er
si
ze

〈j
〉

0

20

40

60

80

100

O
lig
om
er
m
as
s
fr
ac
tio
n
/%

5 10 15 20
0

1

2

3

Oligomer size / j

O
lig
om
er
co
nc
en
tr
at
io
n
/m
*

0.1 1 10 100
0

5

10

15

20

Relative peptide concentration

A
ve
ra
ge
ol
ig
om
er
si
ze

〈j
〉

0

20

40

60

80

100

O
lig
om
er
m
as
s
fr
ac
tio
n
/%

0.1 1 10 100
0

5

10

15

20

Relative peptide concentration

A
ve
ra
ge
ol
ig
om
er
si
ze

〈j
〉

0

20

40

60

80

100

O
lig
om
er
m
as
s
fr
ac
tio
n
/%

5 10 15 20
0

0.5

1

1.5

Oligomer size / j

O
lig
om
er
co
nc
en
tr
at
io
n
/m
*

a b

c d

e f

Figure 9.3: The key parameters controlling the globular model are the transition concentration
m∗ and the transition size j∗. a: Average size and mass fraction as a function of peptide
concentration scaled by m∗; parameters fitted from Monte Carlo data (Sec. 9.2.2). Systems
identical apart from v0 collapse onto single curves of this form upon rescaling concentrations by
m∗. b: Size distribution at scaled p = 100 (gridline on a). Tripling Gb and h does not affect
j∗, but increases the sharpness of the transition from small to large size (c). By delaying the
appearance of large oligomers, it also delays the onset but not the speed of the mass fraction
transition relative to the size transition. These effects are achieved by the reduction in the
polydispersity of the size distribution (d). Increasing Gb by 1.5× increases the average size by
the same factor (e), without affecting the polydispersity significantly (f). The larger average
size increases the rapidity of the oligomerization transition.
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Equilibrium oligomer formation

Given that amyloid fibrils are expected to be more thermodynamically stable than pre-
nucleation clusters, the analogue of the CMC for any globular oligomers will typically be
higher than the CAC (m∗ > mCAC). Globular oligomers will therefore never dominate over
monomers at chemical equilibrium, no matter what the initial monomer concentration
is. Furthermore, globular prenucleation clusters are unimportant compared to dimeric
prenucleation clusters at equilibrium. This is borne out by studies of α-synuclein oligomers
at equilibrium [ref ACSNano], and of equilibrium Aβ oligomer concentrations [161]; both
of which demonstrate oligomers to be predominantly dimeric.

Transient oligomer formation

Although we have demonstrated that globular prenucleation clusters are unlikely to fea-
ture at equilibrium with fibrils, they are expected to form transiently at the much higher
monomer concentrations visited during kinetic experiments. It is often the case that
the timescale of oligomerization is faster than that of fibril formation, such that a pre-
equilibrium between monomers and oligomers may be a reasonable approximation. In
such experiments, our equilibrium model of globular oligomer formation is therefore ex-
pected to be useful for understanding observed size distributions of prenucleation clusters,
as well as filament formation when the oligomers are on-pathway nucleation intermediates.

9.4 Contrasting Linear and Globular Oligomers

Here we derive or present the key characteristics of linear oligomer systems based on the
well-known Oosawa model [253]. We explain how they differ from globular oligomers
(Fig. 9.4) and how this may be taken advantage of to infer oligomer geometry from
experiments.

9.4.1 Size distribution

In Sec. 9.2 we reduced the problem of finding a size distribution for an oligomerizing system
to one of finding a suitable internal free energy form. In the case of linear oligomers, we
have to a good approximation ∆G◦int(j) = (j − 1)ε, where ε is the size-independent
nearest-neighbour binding energy. Thus, using (9.1) we recover Oosawa’s result for the
size distribution [253] (see [161] for further details):

f(j) = 1
NA v0

e−β ε (j−1) eβ j µ. (9.15)
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If we instead absorb v0 into ε, identifying ε = ∆G◦+, the size-independent free energy of
monomer addition, this may be further simplified to a single-parameter model:

f(j) = e−β ε (j−1) eβ j µ. (9.16)

We therefore expect a monotonically-decreasing equilibrium oligomer size distribution for
all initial monomer concentrations, with increasing initial monomer concentration has
no effect beyond increasing the slope of the size distribution in log-space (Fig. 9.4(e));
this is confirmed by coarse-grained Monte-Carlo simulations of linear oligomer formation
(Fig. G.1). This is qualitatively different to globular oligomers (Fig. 9.4(b)), which have a
peaked size distribution above a critical peptide concentration. Although current experi-
mental measurements of size distributions are highly approximate [28], this distinction is
large enough that it may in certain circumstances be detected.

9.4.2 Critical concentration and rescaling

A critical concentration analogous to m∗, but for linear oligomers, is m‡ = eβε; above this
total peptide concentration, most peptide added becomes aggregated into more linear
oligomers. Since size distributions have dimensions of concentration, rescaling by this
concentration reduces the size distribution to the dimensionless form f̂(j) = f̂(1)j, with
f̂(1) = f(1)/m‡ computable from the reduced form of the total peptide concentration
p̂ [253]:

p̂ = p/m‡ =
∞∑
j=1

jf̂(j) = f̂(1) d

df̂(1)

∞∑
j=1

f̂(1)j

= f̂(1) d

df̂(1)

 f̂(1)
1− f̂(1)

 = f̂(1)
1− f̂(1)

+ f̂(1)2

(1− f̂(1))2

= f̂(1)
(1− f̂(1))2

. (9.17)

Additionally, the reduced total oligomer concentration is given as:

F̂ =
∞∑
j=2

f̂(j) =
∞∑
j=2

f̂(1)j = f̂(1)2

1− f̂(1)
. (9.18)

Thus, scaling concentrations by m‡ causes all key properties of linear oligomers to collapse
onto single curves parameterized by p̂; changing ε → ε + δ is equivalent to changing the
concentrations on the unscaled curves p → p e−βδ (Fig. 9.4(g)-(h)). Since m‡ does not
correspond to a sharp transition, we expect that longer linear oligomeric species may be
able to exist in equilibrium with fibrils at the end of an aggregation reaction, unlike in
the globular case. This crucial difference may be taken advantage of in experiments to
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determine what oligomer morphologies may be present in an aggregating system.

9.4.3 Average size and polydispersity

The average linear oligomer size may be computed with greater ease using rescaled units.
We find the mean oligomer size as:

〈j〉 = 1
F̂

∞∑
j=2

jf̂(j) = p̂− f̂(1)
F̂

= 1− [1− f̂(1)]2

f̂(1)[1− f̂(1)]

= 2− f̂(1)
1− f̂(1)

, (9.19)

which, for large p̂, approaches p̂1/2. Note this is unbounded, unlike globular oligomers
which reach a well-defined maximum peak size. We expect as a consequence that the poly-
dispersity of the linear size distribution is much greater at high concentrations than the
globular size distribution, since there is no free energy penalty for large linear oligomers.
The resultant qualitative differences in average size and polydispersity may be detected
comparatively easily from appropriate approximate experimental measurements of the
size distribution.
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Figure 9.4: The differing properties of globular (a-d) and linear (e-h) oligomers. Whereas
globular oligomers are expected to form from amphiphilic monomers (a), linear oligomers may
be formed from monomers with 2 nonspecific bonding regions (e). Whereas globular oligomer
size distributions become peaked at high enough total peptide concentration p (b), linear size
distributions always decrease exponentially (f), simply falling off less rapidly at higher p. Average
globular oligomer size (c) transitions rapidly from 2 to a well-defined intermediate value at higher
concentrations; linear oligomer average size increases more gradually but without bound (g).
As a consequence, linear oligomer mass fraction (h) also increases more gradually than globular
(d). Decreasing v0 has the effect of rescaling globular concentrations to higher values, without
changing the phase-like properties (c-d; dashed lines); the equivalent parameter in the linear
case is the sole model parameter β∆G◦ (g-h; dashed lines). Scaling linear peptide and oligomer
concentrations by m‡ = eβ∆G◦ therefore simplifies the model by dedimensionalizing it just as
scaling globular system concentrations by m∗ does.
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9.5 Conclusions

In summary, we have adapted a model of micelle formation to be suitable for micelle-
like globular oligomers with low aggregation number, and demonstrated that this can
reproduce coarse-grained Monte-Carlo simulations of oligomer formation. We found that
when total peptide concentration p is below a critical value p∗, the size distribution is
monotonic decreasing. Increasing p above p∗, however, the distribution is soon dominated
by a peak at higher aggregation number, and soon after most peptide rapidly becomes
incorporated into oligomers.

We found that a particularly convenient non-dimensional form of the model could
be obtained by scaling all concentrations by the fundamental monomer concentration m∗

associated with p∗. This could be expressed in terms of the fundamental observables of the
model, revealing the crucial scaling laws and simplifying the analysis of experimental data.
We also developed bounds for the average globular oligomer size above the transition,
finding that the globular size tends asymptotically towards a limiting value.

We have also shown that the presence of fibrils suppresses globular oligomer forma-
tion at equilibrium, such that they cannot be present at the end of a fibril aggregation
reaction. Finally we contrasted the properties of globular oligomers with those of linear
oligomers, highlighting the key distinctions that may be looked for in experiments de-
signed to reveal oligomer morphology. The most notable are the lack of a peak in the
linear size distribution, which is instead monotonic decreasing with aggregation number
j, and the possibility for larger linear oligomers to coexist with fibrils at equilibrium.

Going forward, I would like to explicitly include the nonlinear spherocylindrical geome-
tries that arise at larger sizes, to better match the experimentally-observed polydispersity.
I would also like to extend the globular model to consider globular co-oligomers formed
by multiple monomer types.
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Part V

A Unified Theory of Linear Self
Assembly
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Chapter 10

Renormalization Group for Protein
Filament Formation

Chapter Abstract

We describe a perturbative renormalization group theory approach to study
the kinetics of protein filament self-assembly processes in a unified manner
across multiple timescales. Using this approach, we find that, irrespective of
the specific molecular details or experimental conditions, filamentous assem-
bly systems display universal behavior in time. Moreover, we show that the
renormalization group fixed points for filamentous self-assembly correspond
to simple autocatalytic processes and that the diversity of behavior in these
systems is determined solely by the reaction order for secondary nucleation,
which labels all possible universality classes. We validate these predictions on
experimental data of different filamentous proteins. These results establish the
power of perturbative renormalization group in distilling the ultimately sim-
ple temporal behavior of complex protein aggregation systems, opening the
door to the study the kinetics of general self-assembly phenomena in a unified
fashion.

This thesis concludes with a powerful method for accurately solving the kinetics of
biofilament formation that, although applicable to problems in oligomer formation ki-
netics (see Appendix D), is most notable for its generality and its application across
the whole field of self-assembly. It was conceived and carried out in close collaboration
with T. C. T. Michaels; for clarity of reading the chapter therefore retains his contribu-
tions. Results sections for which I do not wish to claim primary credit are thus labelled
with a dagger (†). Whereas I am primarily responsible for development of the method,
T. C. T. Michaels is primarily responsible for its use to interpret filament assembly in
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terms of universality classes and scaling behaviour. The chapter is substantially the same
as a manuscript we recently submitted to Phys Rev Lett, on which we share joint first
authorship.

10.1 Introduction

The formation of protein filaments is an ubiquitous example of a self-assembly phe-
nomenon that has fundamental implications for biology [53, 254], medicine [8, 94, 255],
and materials science [56, 256, 257]. For instance, biofilaments of actin and tubulin are
key components of the cellular cytoskeleton, which is implicated in cell shape regulation
and cell division [53, 254], while a particular class of protein filaments, known as amy-
loids, are associated with over 50 medical disorders, including Alzheimer’s and Parkinson’s
diseases [8, 94, 255]. One of the most intriguing yet least understood aspects of protein
filament formation is its generality, i.e. the fact that many different proteins, with unre-
lated sequence or fold, are able to self-assemble into such filamentous structures [3, 167].
A central question in this area is thus to establish whether certain aspects of the aggre-
gation process are universal, i.e. are independent of the molecular specifics and are thus
conserved across different protein systems.

Historically, renormalization group (RG) theory approaches [258] have emerged as the
fundamental tool for explaining how microscopically different systems can display univer-
sal features at the macroscopic level in areas ranging from condensed matter physics to
particle physics. Asymptotic analysis seeks to obtain the simplified intermediate asymp-
totic behaviour af a system of equations, for instance through the identification and
solution of an amplitude equation, or the discovery of a slow manifold. Since asymptotic
analysis involves identifying a reduced, lower-dimensional description of the behaviour
of a physical system, we might expect disparate systems to display universal features
asymptotically, just as in classical RG problems. In this context, Goldenfeld and cowork-
ers [259–261] demonstrated a deep connection between RG theory and asymptotic analysis
of singular perturbation problems, and developed a highly general perturbative RG ap-
proach to asymptotic analysis that was shown to be superior in accuracy to many standard
methods. In this paper, we bring the power of perturbative RG theory to protein fila-
ment self-assembly kinetics. We find that the macroscopic behavior of protein filament
formation kinetics is universal in time and that this universal behavior is controlled solely
by the dependence of fibril self-replication on the supply of monomeric protein. These
results, which we validate using experimental data on protein aggregation, establish per-
turbative RG theory as a key for understanding the kinetics of diverse filamentous protein
self-assembly systems across multiple timescales and in a unified fashion.
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10.2 Perturbative RG approach to protein filament
self-assembly

10.2.1 Kinetic equations for protein filament formation†

Protein filament self-assembly is the result of an interplay between multiple molecular
events (Fig. 1). Generally, protein filament assembly is initiated by a primary nucleation
step, whereby monomers in solution come together spontaneously to form the smallest
stable aggregate, followed by filament growth through elongation at one or both ends of
the aggregates [53]. For many protein systems, including the aggregation of disease-related
species such as Alzheimer’s Amyloid-β peptide, aggregation is accelerated by secondary
processes, that, unlike primary nucleation, depend on the actual fibril concentration and,
hence, lead to an autocatalytic multiplication of the fibrillar structures; key examples
of such secondary processes are filament fragmentation [21, 39, 46, 262], lateral branching
[67, 88] and surface-catalyzed secondary nucleation [13, 20, 68, 263, 264]. The interplay
between these different microscopic steps of aggregation can be captured by means of a
master equation approach [13, 20, 21, 53, 60, 265], which tracks the time evolution of the
population of aggregates of different sizes. In the context of protein aggregation, however,
the experimentally accessible information about the aggregation process is encoded in the
time evolution of three coarse-grained fields: the number and mass concentrations of
fibrils, denoted with P (t) and M(t), and the free monomer concentration m(t). The
time evolution of these experimentally observable quantities, which correspond to the
principal moments of the filament distribution, can be derived explicitly in terms of the
underlying mechanisms of aggregation from the non-linear master equation describing the
time evolution of the entire distribution of aggregate sizes [265]; for an aggregating system
evolving through primary and secondary nucleation pathways, this procedure results in
the following general set of kinetic equations [13,20,21,53,60,265]:

dP (t)
dt

= knm(t)nc + k2m(t)n2 [mtot −m(t)] (10.1a)

dm(t)
dt

= −2k+m(t)P (t) = −dM(t)
dt

, (10.1b)

where mtot = M(t) + m(t) is the conserved total monomer concentration. Equation
(10.1a) describes the rate of formation of new fibrils through primary and secondary
nucleation, with the rate constants for these processes being kn and k2; nc, n2 are the
reaction orders of primary and secondary nucleation with respect to the free monomer
and embrace several options: filament fragmentation, which is independent of monomer
concentration, corresponds to n2 = 0, lateral branching corresponds to a linear dependence
on the monomer concentration (n2 = 1), while surface-catalyzed secondary nucleation
is usually described by higher reaction orders (n2 ≥ 2). It is important to note that
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Figure 10.1: Schematic representation of the elementary steps of protein filament formation and
definition of the associated rate constants.

both primary and secondary nucleation of new filaments are believed to be non-classical,
multi-step processes, such that the reaction orders nc and n2 are not equal to the critical
nucleus sizes of classical nucleation theory [113, 114, 263]. Equation (10.1b) describes
the consumption of monomers and consequent build-up of aggregate mass through the
elongation of existing filaments with rate constant k+.

10.2.2 Perturbation expansion

Equations (10.1a) and (10.1b) do not admit exact solutions in general [20, 60], and we
instead seek asymptotic solutions. The perturbative RG approach is intimately connected
with asymptotic analysis [259–261]; as a first step, it is thus useful to recast (10.1) into
a singular perturbation problem. To do so, we introduce µ(t) = m(t)/mtot, t′ = κt, and
ε = λ2/2κ2, where λ =

√
2k+knm

nc
tot, and κ =

√
2k+k2m

n2+1
tot are the characteristic rates

that describe aggregate proliferation via primary [53] and secondary nucleation [20,21,30],
respectively. Equations (10.1a) and (10.1b) can then be combined and re-formulated as:

−d
2 log µ(t′)
dt′2

= 2ε µ(t′)nc + µ(t′)n2
[
1− µ(t′)

]
. (10.2)

In many cases, secondary processes dominate over primary nucleation for the formation of
new filaments, i.e. ε� 1. Typical values for ε are in fact ε ∼ 10−2 for the yeast prion Ure2p
[266], ε ∼ 10−3 for sickle-cell hemoglobin (Hsb) [20], ε ∼ 10−5 for the Amyloid-β (Aβ)
peptide [13], and ε ∼ 10−7 for the Islet Amyloid Polypeptide (IAPP) [68]. Consequently,
a second-order perturbation series solution µ(t′) = µ(0)(t′) + ε µ(1)(t′) + ε2µ(2)(t′) +O(ε3)
can be found for Eq. (10.2) by applying the initial conditions µ(0) = 1 and dµ(0)/dt′ = 0,
to yield:

µ(t′) = 1− εet′ + ε2

2ce
2t′ +R, (10.3)

where c = 3/(2n2 + 4) and R denotes other terms that are either of order ε3 or vanish in
comparison to the dominant terms at the respective order in ε for large t′. The perturba-
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Figure 10.2: (a) Comparison of perturbative solution, Eq. (10.3) (dashed red), and RG solution,
Eq. (10.12) (solid blue), with the numerical solution to Eqs. (10.1) (dashed black) for n2 = 0
and ε = λ2/(2κ2) = 3 × 10−3. (b) Schematics of the RG approach to filamentous aggregation
kinetics and analogy to RG procedure for high energy physics. A running time variable σ
connects the observed monomer concentration at time τ = eκt with the known initial monomer
concentration. The RG procedure, Eq. (10.9), describes how the initial monomer concentration,
ρ, is renormalized as the renormalization scale σ runs between the initial time and τ .

tive solution Eq. (10.3) approximates the exact solution of (10.1) for early times, but it
fails to capture the behavior at later times (Fig. 2(a)). This is due to exponentially diver-
gent terms (UV divergence), a phenomenon originally pointed out by Ferrone et al [20]
and that has challenged the derivation of accurate expressions for the aggregation kinet-
ics; Eq. (10.3) is identical to the solution to the linearized form of Eqs. (10.1) obtained
when m(t) = mtot [20].

10.2.3 Perturbative RG

To tame this divergence we impose timescale invariance on our perturbative solution.
This amounts to re-summing the perturbation series for µ at the observation time t′ such
that its dependence on the time that has elapsed since µ was at its initial concentration
(here t′ = 0) is removed. We start by defining a new variable τ = eκt to simplify the
mathematics. Following the conventional work-flow of perturbative RG [259–261], we
then introduce an arbitrary past-time cut-off σ which we will vary between the initial
time and the observation point τ , and write τ = (τ − σ) + σ in Eq. (10.3) (Fig. 2(b)).
This past-time cut-off is equivalent to the UV cut-off in conventional momentum-space
RG; timescale coarse-graining by rewriting µ(τ) in terms of µ(τ − σ) and increasing σ is
directly equivalent to coarse-graining by reducing the UV cut-off and integrating out the
high-frequency degrees of freedom in momentum-space. Doing so, we obtain from (10.3):

µ(τ − σ, σ) = 1− ε(τ − σ) + ε2

2c(τ − σ)2 + εσ + ε2

2c
[
σ2 + (τ − σ)σ

]
+R. (10.4)
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The next step is to renormalize µ by multiplying Eq. (10.4) by a renormalization constant
ρ(σ), whose second order perturbation expansion in ε is:

ρ(σ) = ρ0(σ) + εδρ1(σ) + ε2δρ2(σ). (10.5)

δρ1(σ) and δρ2(σ) are counter terms, chosen to absorb the UV divergent terms in σ at
the respective orders in ε [259–261]. The constant initial monomer concentration is thus
effectively replaced by a running coupling which evolves with the RG scale. This yields:

δρ1(σ) = σρ0(σ), δρ2(σ) = σ2ρ0(σ)
(

1− 1
2c

)
(10.6)

and we arrive at the following renormalized second-order expansion:

µ′(τ − σ, σ) = ρ0(σ)
{

1− ε (τ − σ) + ε2
[
τ 2 − σ2

2c − σ(τ − σ)
]

+R
}
. (10.7)

The renormalized solution, however, cannot depend on σ once the observation scale τ is
reached. We thus require [259–261]:

∂µ(τ, σ)
∂σ

∣∣∣∣∣
σ=τ

= 0. (10.8)

This condition gives the perturbative RG equation, which, to second order in ε, reads:

∂ρ0(τ)
∂τ

= −ε
(

1− ετ

θ

)
ρ0(τ) +O(ε3) (10.9)

where we have introduced the parameter:

θ = c

1− c = 3
2n2 + 1 . (10.10)

This procedure is entirely analogous to performing a perturbative momentum-space RG
calculation in statistical physics or quantum field theory; in this analogy, the electron
charge or mass is replaced by the initial monomer concentration ρ, and the RG procedure
yields renormalized values for this quantity at different time scales [260]. The RG equation
describes a fixed point; here, it is a similarity solution that no longer diverges in time. The
critical points of conventional RG are equivalent to bifurcation points in parameter space
in this dynamical RG approach, and can be interpreted similarly: minute fluctuations
in the system parameters at these points give rise to qualitative changes in the system
properties. The flow of the renormalization constant, or “initial condition”, with respect
to the initial time is precisely the long-wavelength motion we seek.

In (10.9), we recognize the expansion of the function 1/(1 + ετ/θ) = 1− ετ/θ+O(ε2),
such that the solution to the second order perturbative RG equation (10.9) can be found
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to be:
ρ0(τ) =

[
1 + ετ

θ

]−θ
. (10.11)

Finally, substituting ρ0(σ) into Eq. (10.7), increasing σ to τ , and rewriting the result in
terms of the original dimensional parameters, we find the following renormalized solution
for the total aggregate mass:

M(t)
m(0) = 1−

[
1 + λ2

2κ2θ
eκt
]−θ

. (10.12)

A closed-form solution for the aggregate number concentration, P (t), can be obtained
from Eq. (10.1b) by simple differentiation, P (t) = −1/[2k+m(t)]dm(t)/dt, as:

P (t)
P (∞) =

[
1 + 2κ2θ

λ2 e−κt
]−1

, (10.13)

where P (∞) = κθ/(2k+). Figure 2(a) shows a comparison between the RG solution,
Eq. (10.12), and the numerical solution of Eqs. (10.1). By “removing” the UV divergence,
the second-order perturbative RG solution succeeds in providing a highly accurate ap-
proximate description of aggregation kinetics when, as is usually the case, ε � 1 (since
then εe−t

′ � 1, and the terms dropped from the perturbation series in Eq. (10.3) can
justifiably be neglected). This method fails only when secondary growth processes are not
present, such as in the growth of actin networks without branching; in this case, however,
the kinetic equations admit an exact solution [53].

10.3 Universality of filamentous protein self-assembling
systems

10.3.1 Self-similarity of protein aggregation

We now discuss some key consequences of our RG approach to protein aggregation. The
first key prediction is that the time course of fibril mass formation has self-similar form:

M(t)
m(0) = Φθ

(
λ2eκt

2κ2

)
, (10.14)

where
Φθ(x) = 1−

(
1 + x

θ

)−θ
, θ = 3

2n2 + 1 . (10.15)

This means that all instances of filamentous growth kinetics dominated by secondary
processes are controlled by a single effective variable x = λ2eκt/(2κ2) containing all di-
mensional parameters. Therefore, given the same value for the reaction order of secondary
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Figure 10.3: Universality of protein filament formation kinetics. (a) Experimental data
of filament mass formation at different initial monomer concentrations for the WW domain (50,
100, 200, 500µM) [267], the yeast prion Ure2p (20, 25, 38µM) [266] and insulin (2, 4, 6µM)
[21] collapse onto a single universal curve upon appropriate rescaling of the time coordinate,
where t0 = −1/κ log(ε). The universal curve (blue dashed line) is Eq. (10.14) with n2 =
0. Upon rescaling, the aggregation kinetics data for IAPP [68] recorded at 3 different initial
monomer concentrations (700, 800, 1000µM) collapse onto a different universal curve, Eq. (10.14)
with n2 = 4 (red dashed line). (b) Classification of different filamentous protein systems into
universality classes on the basis of the scaling exponent β of maximal growth rate. In this plot,
universality classes corresponding to a different reaction order for secondary nucleation, n2, are
described by straight lines with slope β = (n2 + 1)/2 (shaded dashed lines). Data are shown for
Sup35 and insulin (n2 = 0) [21], Aβ40 (n2 = 1) [14], Aβ42 (n2 = 2), IAPP (n2 = 4) [68], and
sickle-cell hemoglobin (n2 = 31) [20]. Panel (b) provided by T. C. T. Michaels.

nucleation, n2, all realizations of protein aggregation become identical upon an appropri-
ate rescaling of the time variable, irrespective of the specific experimental conditions or
the specific molecular details of the protein system under consideration. This arises since
all such realizations are in the same basin of attraction of the fixed point indexed by
this particular value of n2, and thus fall into the same universality class, regardless of
their individual values for nc, k2, etc. In Fig. 3(a), we have tested this prediction under
different conditions on a range of unrelated protein aggregation systems, ranging from in-
fectious prion systems to amyloidogenic proteins: the WW domain [267], the yeast prion
Ure2p [266], bovine insulin [21] and IAPP [68]. We find that, upon appropriate rescaling,
experimental aggregation data recorded at different initial monomer concentrations for
WW, Ure2p and insulin collapse onto a single universal curve described by Eq. (10.14)
with n2 = 0 and corresponding to systems dominated by filament fragmentation. The
aggregation of IAPP is driven by surface catalyzed secondary nucleation with n2 = 4 and
thus, as expected, experimental data of IAPP fibril formation at varying initial monomer
concentrations collapse but onto a different universal curve.

10.3.2 Scaling behaviour†

RG also provides new insights into the scaling behaviour of protein aggregation [21,30,68].
Indeed, a direct implication of RG is not only that filamentous assembly displays scaling
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behaviour, but, most importantly, that the characteristic scaling exponents must depend
solely on the universality class. This prediction is verified directly for the scaling of
the reaction half-time t1/2, which, from (10.14), is found to scale as t1/2 ∝ mγ

tot, where
exponent is γ = −(n2 + 1)/2. Another important example is the scaling of the maximal
growth rate, rmax = max[dM(t)/dt], with initial monomer concentration. In this case,
rmax ∝ mβ

tot where the scaling exponent β = (n2 + 1)/2 is, once again, solely dependent
on n2.

10.3.3 Classification of protein aggregation systems into univer-
sality classes†

Since elements of the same universality class share the same scaling behavior, scal-
ing exponents are the most direct way for classifying different protein aggregation sys-
tems into universality classes using experimental data, as shown in Fig. 3(b). Notably,
the different universality classes that we find for protein aggregation can be related to
simple autocatalytic processes. Indeed, the universal curves (10.14) are solutions to
the RG equation which is found to be equivalent to the generalized logistic equation
dM(t)/dt = θκ

(
1 − [M(t)/K]1/θ

)
M(t) with K = mtot. Generalized logistic equations

represent the simplest description of autocatalytic growth with finite resources and, thus,
emerge most commonly in population dynamics, where K is known as the carrying ca-
pacity, i.e. the maximum population size that the environment can sustain indefinitely,
given the available energy resources (e.g. in form of nutrients).

Since, for protein aggregation, K is directly related to the chemical potential of
monomers kBT log(mtot), i.e. the thermodynamic driving force for self-assembly, we may
interpret monomer concentration as the available energy resources, and we can interpret
the reaction order n2, which labels our different universality classes, as describing the
dependence of fibril proliferation on these resources. Protein systems with n2 < 1, such
as insulin or the prion protein Sup35, have small 1/θ and are characterized by a weak
dependence of proliferation on the available resources, such that their growth curves re-
spond only gently to changes in the monomer chemical potential. In the limiting case of
fragmentation (n2 = 0), there is no resource-dependence for the secondary process respon-
sible for autocatalysis, and resource dependence is almost solely due to fibril elongation.
By contrast, the assembly of protein systems with n2 > 1 and large 1/θ, such as Aβ42 or
sickle-cell hemoglobin, is strongly dependent on the available resources, such that the ap-
proach of M(t) to the carrying capacity is much more gradual as the remaining resources
dwindle. The growth of systems with n2 = 1, such as Aβ40 in the concentration range
5-10 µM, is equally as limited by resource depletion as it is accelerated by the accumula-
tion of substrate the resources are converted into, and is described by a logistic universal
function.
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10.4 Summary and outlook†

We have discussed the use of perturbative RG approaches for protein filament formation.
Using this approach, we have found that the kinetics of these phenomena display universal
behavior and that the resulting universality classes correspond to simple autocatalytic
processes. Looking forward, our work raises the natural question of whether, using RG,
the kinetics of general self-assembly systems could also be classified into universality
classes similar to those found for filamentous systems. In this sense, the RG approach
presented in this work could represent an important starting point for constructing a
unified dynamical theory of self-assembly.

I believe this project also motivates and applies dynamical RG with greater clarity
than was achieved in the seminal works in the field. I have since prepared a follow-up
paper that applies these methods to arrive at a universal theory of saturated biological
growth kinetics.
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Chapter 11

Summary & Conclusions

11.1 Impact of work

This PhD has been highly productive, with seventeen papers relating to my doctoral
studies published or under review at the time of writing. Several more manuscripts
prepared during the final year of my studies are likely to be published in 2019. Although
most of my first- and second-authorship works have been published in the past year, some
of these have already begun to have an influence on their respective fields.

My and Thomas C. T. Michaels’ work on stochastic aggregation kinetics, presented
in Chapter 3, is already inspiring experimental protocol development. Scientists in our
research group and in others are developing microfluidic platforms to perform massively
parallel protein aggregation experiments encapsulated in microdroplets, in part to better
understand primary nucleation. Our model provides an easy method for extracting accu-
rate nucleation rates from data analysis of such experiments. In combination with these
new protocols it will be possible to study the primary nucleation process in isolation and
in much greater detail than hitherto possible. Even where microfluidic experiments are
employed for purposes other than studying primary nucleation, it will still be important
to account for stochastic small-volume effects. Previous modelling approaches have only
been able to do so in the limit where volumes are so small that only single nucleation
events occur. Our model, on the other hand, can describe stochastic effects at any vol-
ume, including in intermediate volumes where smaller stochastic fluctuations, caused by
the interplay of a small number of nucleation events, are observed.

A large portion of my doctoral work has focused on the kinetics of amyloid forma-
tion via oligomeric intermediates; this work has resulted in some of my most highly-cited
papers, including that presented in Chapter 5. It has helped spur interest in kinetic
modelling of this phenomenon in hitherto unstudied protein systems and under hith-
erto uninvestigated conditions. Oligomers are formed by a wide range of amyloidogenic
proteins; collating the results from prior kinetic studies has afforded insight into the com-
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monalities and differences between these species (see Chapter 6). This brings us closer
to an understanding of the reasons behind the universal occurrence of oligomers, and of
their role in filament formation. This work is likely to be important for developing more
successful strategies for the design of drugs targeting neurodegenerative diseases. The
introduction of aliquots from oligomerizing systems into cell toxicity assays will, in com-
bination with modelling, allow us to identify harmful sub-populations of oligomers and
harmful reaction conditions; the same modelling can then in principle be used to guide
drug design to suppress toxic species and toxic reactions.

The early studies into co-oligomer formation presented in Chapters 7 and 8 demon-
strate how the relative stability of co-oligomers compared to self-oligomers may be cal-
culated from theoretical modelling, and how the likely concentrations of different co-
oligomers under biological conditions can be predicted. Furthermore, they demonstrate
the existence and importance of co-oligomers consisting of key amyloidogenic proteins
present in the brain and cerebro-spinal fluid. Given the highly heterogeneous nature of
biological environments, the observation that co-oligomers can form in significant quanti-
ties is an important one. It also provides a starting point for investigations into possible
causative links between the aggregation of different amyloidogenic proteins in both the
same and different diseases. In Chapter 8, it is also demonstrated that combining this
analysis with experiments into oligomer toxicity permits the relative toxicity of differ-
ent possible self- and co-oligomers to be calculated. This admits the exciting possibility
that development of future treatments for neurodegenerative diseases can focus solely on
suppressing specific oligomers that are most responsible for disease symptoms.

Finally, the theory of linear coaggregation presented in Chapter 4 is one of the first
successful forays into a largely unexplored field. It is a fundamental advance in its own
right, and has the potential to additionally provide significant advances in our understand-
ing of amyloid diseases going forward. The impact it ultimately has may largely depend
on the extent to which it is used in future collaborative studies into mixed aggregation
with experimentalists.

11.2 Outlook for the field

The outlook for the field of oligomer kinetics is bright, with a physico-chemical under-
standing of amyloid oligomers only just beginning to fall into place. The kinetic theory of
amyloid oligomers presented in this thesis will probably continue to be heavily employed
as new systems are studied. Relevant experimental techniques continue to be invented
and improved at a rapid rate, which will enable a much more detailed investigation of the
multiple oligomeric species that co-exist during aggregation reactions. This more detailed
view of the oligomer reaction network will necessitate significant further development of
theoretical models in order that the physical and chemical properties of these species can
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be fully understood. To this end, the models in this thesis are likely to provide a starting
point for future generalization.

The statistical mechanical theory of globular oligomer thermodynamics presented in
this thesis provides a firm theoretical basis for future experimental investigations into
oligomer geometry, size distributions and heterogeneity, an area which has been insuffi-
ciently studied to date. It also provides a starting point for future development of more
general theory. In particular, generalizing this theory to account for globular co-oligomer
formation could be highly useful for elucidating interactions between different amyloido-
genic peptides, complementing existing theories of linear co-oligomer formation.

The method for solving kinetic models presented in the final chapter of this thesis
is likely to be especially influential on the field of linear self-assembly, being capable
of yielding solutions of greater accuracy than any methods previously employed. More
important than the accuracy of this method, however, is its generality, with a huge range
of problems being amenable to this approach. Moreover, all solutions follow the same
simple architecture, which is especially advantageous for gaining physical insight into
these systems and their differences. This kind of insight is the primary motivation for
seeking analytical solutions to such problems. This method therefore has great potential
to supersede existing theoretical methods in the field, and will likely be used to replace
some of the less accurate existing models as well as to model new systems going forward.

One major aim of my future research will be to make significant inroads into the
theory of mixed self-assembly, and its real-world application. Much of the work in this
thesis will find ready application in this emerging field, and many of the homomolecular
models will likely be generalized to account for heteromolecular self-assembly. As an
example of the latter, although it seems likely that my work on the role of oligomers in
amyloid fibril formation will continue, given the current high interest in the field, it will
take a less prominent role in my research going forward as the models developed in my
doctoral studies are already versatile and highly capable. The focus will likely shift onto
heterogeneity, both in terms of co-oligomer kinetics and thermodynamics, and in terms
of structural and size heterogeneity in oligomer populations.
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Appendix A

Studying Primary Nucleation Using
Confinement

This appendix contains key proofs and derivations supporting the material in Chapter 3.
It is largely based on the Supplementary Information for the paper "Fluctuations in the
Kinetics of Linear Protein Self-Assembly" Those derivations for which I am not personally
responsible are marked with a dagger (†).

A.1 Linear correlation for number and mass of ag-
gregates in the presence of secondary pathways

In this appendix, we provide a mathematical justification for the existence of a linear
correlation for the random variables n and x at times t� κ−1. We employ two equivalent
methods to prove that n and x are linearly correlated:

• Moment approach: We show that for t � κ−1 and for any k ≥ 1 the following
relationship for the moments of the PDF holds

〈xk〉
〈nk〉

= ξk, (A.1)

where ξ is some constant that depends on environmental conditions. Therefore, a
linear relationship exists between the moments 〈xk〉 and 〈nk〉 of any order, indicating
that the random variables x and n are not independent but obey a linear relationship
of the form x = ξn.

• Pearson’s correlation approach: We show that the Pearson’s correlation coefficient
for n and x, defined by

ρn,x = 〈nx〉 − 〈n〉〈x〉√
(〈n2〉 − 〈n〉2)(〈x2〉 − 〈x〉2)

, (A.2)
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is equal to 1 for t� κ−1. Because the Pearson’s correlation coefficient is an indicator
of the degree of linear dependence between random variables, this result verifies the
existence of an exact linear functional relationship between n and x.

In the following, we describe the first approach; a proof of the linear correlation between
n and x using Pearson’s correlation coefficient is given in Sec. A.2.

A.1.1 Examining the 1st moments

The full stochastic master equation (Eq. (3.1) of Chapter 3) can be manipulated to give
differential equations for the 1st moments 〈x〉 and 〈n〉 of the PDF. We multiply the master
equation by x and n respectively and sum over all system configurations (n, x) yielding
the following set of coupled ordinary differential equations (ODEs) for the 1st moments

d〈n〉
dt

= α1 + α2〈x〉 (A.3)

d〈x〉
dt

= α1xc + µ〈n〉+ α2x2〈x〉.

Note that with the definitions P (t) = 〈n〉
NAV

and M(t) = 〈x〉
NAV

Eqs. (A.3) agree with
the deterministic equations for filament formation [21, 30, 48, 58]. Assuming the initial
conditions 〈n〉 = 〈x〉 = 0 (no aggregates present initially), the solution to Eq. (A.3) is

〈n〉 = α2A

κ+
eκ+t + α1 − α2A

κ−
eκ−t − α2A

κ+
− α1 − α2A

κ−
(A.4)

〈x〉 = Aeκ+t + (α1/α2 − A)eκ−t − α1

α2
, (A.5)

where

A = α1κ+κ−(xc − x2 − µ/κ−)
µα2(κ− − κ+) (A.6)

κ+ = α2x2

2 +
√
µα2 + α2

2x
2
2

4

κ− = α2x2

2 −
√
µα2 + α2

2x
2
2

4 .

We note that for t� κ−1 the exponential growing terms in Eq. (A.4) dominate over the
exponential decaying and constant terms, such that the following relationship holds

〈x〉
〈n〉

= κ+

α2
, t� κ−1. (A.7)

Equation (A.7) shows that for t � κ−1 the average number and mass of aggregates are
directly proportional to each other. This result that has been reported previously in the
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literature [30]. We note that Eq. (A.7) is a necessary but not sufficient condition for the
existence of a linear correlation between the random variables n and x. In general, a
linear correlation between the random variables n and x requires the relationship

〈xk〉
〈nk〉

=
(
κ+

α2

)k
, t� κ−1. (A.8)

being satisfied by all moments 〈nk〉, 〈xk〉 of order k ≥ 1.

A.1.2 Examining the 2nd moments

By a similar method, equations for the 2nd moments of the PDF can be derived from the
master equation as

d〈n2〉
dt

= 2α2〈nx〉+ 2α1〈n〉+ α2〈x〉+ α1 (A.9)

d〈x2〉
dt

= 2µ〈nx〉+ 2α2x2〈x2〉+ µ〈n〉+ (2α1xc + α2x
2
2)〈x〉+ α1x

2
c

d〈nx〉
dt

= µ〈n2〉+ α2x2〈nx〉+ α2〈x2〉+ α1xc〈n〉+ (α2x2 + α1)〈x〉+ α1xc.

These are coupled inhomogeneous 1st-order ODEs, which can be most conveniently writ-
ten in matrix form as

d

dt
x = Ax + g (A.10)

or, explicitly,

d

dt


〈n2〉
〈nx〉
〈x2〉

 =


0 2α2 0
µ α2x2 α2

0 2µ 2α2x2



〈n2〉
〈nx〉
〈x2〉

+


2α1〈n〉+ α2〈x〉+ α1

α1xc〈n〉+ (α2x2 + α1)〈x〉+ α1xc

µ〈n〉+ (2α1xc + α2x
2
2)〈x〉+ α1x

2
c

 .
(A.11)

The matrix A for the homogeneous part of Eq. (A.11) has the eigenvalues

λ+ = 2κ+ (A.12)

λ0 = κ+ + κ−

λ− = 2κ−

and associated eigenvectors

v+ =


α2

κ+

−µκ+
κ−

 , v0 =


α2

α2x2/2
−µ

 , v− =


α2

−κ−
µκ−
κ+

 , (A.13)

where κ± are defined in Eq. (A.6). Transforming Eq. (A.10) to the eigenvector basis by
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premultiplying the coupled ODEs by the inverse C−1 of the eigenvector-column matrix
C yields the uncoupled set of inhomogeneous ODEs

dyi
dt
− λiyi = hi (A.14)

where yi are the components of the solution vector in the eigenvector basis

y(t) = C−1x(t)

and hi are the components of the vector

h(t) = C−1g(t).

The solution of Eqs. (A.14) can be written as the sum of a homogeneous solution and a
particular integral

yi(t) = yi,h(t) + yi,p(t).

The homogeneous solution is given by

yi,h(t) = Bie
λit

where Bi is a constant of integration. The particular integral yi,p(t) is given by the formula

yi,p(t) = eλit
∫
hi(t)e−λitdt.

Because the components gi(t) are linear combinations of the first moments, the particular
integrals yi,p(t) are linear combinations of terms in eκ+t, eκ−t and constant terms. In the
long-time limit, the homogeneous solution term corresponding to the largest eigenvalue
dominates therefore over all other terms, yielding the solution


〈n2〉
〈nx〉
〈x2〉

 = B+


α2

κ+

−µκ+
κ−

 e2κ+t, t� κ−1, (A.15)

where the constant B+ is fixed by the initial conditions. From Eq. (A.15), we find that
the second moments of the PDF obey the relationship

〈x2〉
〈n2〉

= − µκ+

α2κ−
=
(
κ+

α2

)2
, t� κ−1, (A.16)

where we have used κ+κ− = −µα2.
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A.1.3 Examining higher-order moments

The methodology employed in the previous section can be extended to the general case
of j-th order moments to show that for any j, the following relationship holds

〈xj〉
〈nj〉

=
(
κ+

α2

)j
, t� κ−1. (A.17)

To this purpose, we examine the form of the master equation (3.1) and note that for any
p+ q = j the following holds

d

dt
〈npxq〉 = qµ〈np+1xq−1〉+ pα2〈np−1xq+1〉+ qx2α2〈npxq〉+O(〈nj−1〉). (A.18)

Equation (A.18) allows the matrix Aj describing the homogeneous part of the time evo-
lution for the j-th order moments to be written down explicitly

Aj =



0 jα2

µ α2x2 (j − 1)α2

2µ 2α2x2 (j − 2)α2

3µ 3α2x2
. . .
. . . . . . α2

jµ jα2x2


. (A.19)

Writing the column vector for the j-th order moments in descending order of increasing
powers of x

x =


〈xj〉
〈xj−1n〉

...
〈nj〉

 , (A.20)

the matrix Aj has tridiagonal form; with the top-right diagonal descending in decrements
of α2, from jα2 to α2, the middle diagonal descending in increments of x2α2 from 0 to
jx2α2, and the bottom-left diagonal descending in increments of µ from µ to jµ.

For t� κ−1, the time evolution of x is determined by the largest eigenvalue of Aj and
the associated eigenvector. We now show that the largest eigenvalue of Aj is λ = jκ+,
where κ+ is given by Eq. (A.6). To this purpose, we recall that the eigenvalues λ of the
matrix Aj are obtained as solutions of the equation

det(Aj − λI) = 0, (A.21)

where I denotes the identity matrix. Now, defining Bj,q = det(Aj − λI)q, where (Aj −
λI)q = (Aj−λI) with the bottom j− q rows and right-most j− q columns deleted, yields
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to a recursion relation

Bj,q = (qx2α2 − λ)Bj,q−1 − (j − (q − 1))qα2µBj,q−2 (A.22)

Bj,j = det(Aj − λI). (A.23)

The initial terms of this recursion relation are given explicitly by

Bj,0 = −λ (A.24)

Bj,1 = −λ(x2α2 − λ)− µjα2 (A.25)

Bj,2 = (2x2α2 − λ)Bj,1 + 2(j − 1)α2µλ. (A.26)

Inserting λ = jκ+ in the above recursion relation yields

Bj,0 = −jκ+ (A.27)

Bj,1 = j(j − 1)κ2
+ (A.28)

Bj,2 = −j(j − 1)(j − 2)κ3
+. (A.29)

From the form of the first few terms, we find that

Bj,q = (−κ+)q+1
q∏
i=0

(j − i) (A.30)

is the solution of the recurrence relation. Further, Bj,j = 0, implying that λ = jκ+ is
indeed an eigenvalue of the jth-order homogeneous matrix Aj.

We now examine the eigenvector equation

(Aj − λI)v = 0, (A.31)

where v is the eigenvector associated with the eigenvalue λ = jκ+. In order to solve
Eq. (A.31), it is convenient to consider the ratios ri = vi/v0. From Eq. (A.31), the ri
satisfy the following recurrence relation

rq = λ− x2α2(q − 1)
α2(j − (q − 1)) rq−1 −

α2µ(q − 1)
α2(j − (q − 1))rq−2 (A.32)

subject to the boundary conditions

r0 = 1, r1 = λ

jα2
. (A.33)
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The solution of Eq. (A.32) subject to the boundary conditions (A.33) is

ri =
(
κ+

α2

)i
. (A.34)

Therefore, the required eigenvector v to the largest eigenvalue λ = jκ+ is

v = v0


1
κ+
α2...(
κ+
α2

)j

 . (A.35)

Summarizing the above results, for t� κ−1 the moments of order j are given by

〈xj〉
〈xj−1n〉

...
〈nj〉

 = C


1
κ+
α2...(
κ+
α2

)j

 e
jκ+t, (A.36)

where C is a constant of integration. From Eq. (A.36), we find therefore

〈xj〉
〈nj〉

=
(
κ+

α2

)j
, t� κ−1. (A.37)

A.2 Calculation of Pearson’s correlation coefficient
for n and x

For a mathematically simpler proof of the linear correlation between n and x, we consider
Pearson’s correlation coefficient for n and x, defined as

ρn,x = 〈ñx̃〉√
〈ñ2〉〈x̃2〉

, (A.38)

where

〈ñ2〉 = 〈n2〉 − 〈n〉2 (A.39)

〈ñx̃〉 = 〈nx〉 − 〈n〉〈x〉

〈x̃2〉 = 〈x2〉 − 〈x〉2.

Pearson’s correlation coefficient is a measure of the linear relationship between two random
variables: the Pearson’s correlation coefficient ρn,x equals 1 (−1) in the case of a perfect
increasing (decreasing) linear relationship between the random variables n, x. In the
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following, we show the random variables n and x have a Pearson’s correlation coefficient
of 1 for t� κ−1, indicating that n and x are perfectly linearly correlated for t� κ−1. To
this purpose, we note that the quantities 〈ñ2〉, 〈ñx̃〉, 〈x̃2〉 obey the following closed set of
ODEs

d

dt


〈ñ2〉
〈ñx̃〉
〈x̃2〉

 =


0 2α2 0
µ α2x2 α2

0 2µ 2α2x2



〈ñ2〉
〈ñx̃〉
〈x̃2〉

+


α2〈x〉+ α1

α2x2〈x〉+ α1xc

µ〈n〉+ α2x
2
2〈x〉+ α1x

2
c

 (A.40)

obtained by combining Eqs. (A.3) and (A.9). Following the same arguments as in Sec. A.1.2,
for t � κ−1 the solution of Eq. (A.40) is obtained by considering the eigenvector to the
largest eigenvalue of the matrix

A =


0 2α2 0
µ α2x2 α2

0 2µ 2α2x2

 (A.41)

yielding 
〈ñ2〉
〈ñx̃〉
〈x̃2〉

 = C


α2

κ+

−µκ+
κ−

 e2κ+t, t� κ−1, (A.42)

where C is a constant of integration and the parameters κ± are defined as in Eq. (A.6).
Combining Eq. (A.42) with Eq. (A.38) yields the following result valid for t� κ−1

ρn,x = 〈ñx̃〉√
〈ñ2〉〈x̃2〉

= Cκ+e
2κ+t√

C2
(
−α2µκ+

κ−

)
e4κ+t

=
(
−κ+κ−
α2µ

)1/2

= 1, t� κ−1, (A.43)

where we used κ+κ− = −α2µ. Equation (A.43) implies that for t � κ−1 the random
variables n and x are linearly correlated, i.e. n and x obey a relationship of the form

x = βn+ γ (A.44)

for some β and γ. The constant β is determined from Eq. (A.7) as β = κ+
α2
, while for γ

we find γ = 0.
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Figure A.1: Time evolution of Pearson’s correlation coefficient (Solid line: analytical prediction).
Calculation parameters: kn = 4 × 10−13 M−1s−1, xc = 2, x2 = 0, k2 = 2.5 × 10−8 s−1,
k+ = 2.5 × 104 M−1s−1, mtot = 5 mM, V = 1 nL. Data points: numerical simulations of the
master equation provided by J. B. Kirkegaard [73].

A.3 Simplification of Master Equation

Using the above relation x = βn, we can simplify the full master equation Eq. (3.1). We
start by summing over all x, imposing the relation using Kronecker deltas:

∞∑
x=0

∂P(n, x, t)
∂t

δx (βn) = α1

[ ∞∑
x=0

P(n− 1, x− xc, t)δx (βn) −
∞∑
x=0

P(n, x, t)δx (βn)

]

+ µn

[ ∞∑
x=0

δx (βn)P(n, x− 1, t)−
∞∑
x=0

δx (βn)P(n, x, t)
]

+
∞∑
x=0

δx (βn)α2(x− x2)P(n− 1, x− x2, t)

−
∞∑
x=0

δx (βn)α2xP(n, x, t).

Noting that the Kronecker deltas simply pick individual terms out of these sums, we have:

∂P(n, t)
∂t

= α1 [P(n− 1, t)− P(n, t)] + µn [P(n, t)− P(n, t)]

+ α2(β(n− 1)− x2)P(n− 1, t)− α2βnP(n, t)

' α1P(n− 1, t)− α1P(n, t)

+ κ(n− 1)P(n− 1, t)− κnP(n, t),

where the last line follows from β � x2.

171



A.4 Derivation of PDF†

In this section, we provide the mathematical details pertaining to the derivation of
Eq. (3.3) of Chapter 3. As a strategy for solving Eq. (3.2) we exploit the use of gen-
erating functions

C(z, t) =
∞∑
n=0

P(n, t)zn. (A.45)

Generating functions encode complete information about the probability distribution. For
example, one can compute the principal moments of the probability distribution as

〈n〉 = ∂C(z, t)
∂z

∣∣∣∣∣
z=1

, 〈n(n− 1)〉 = ∂2C(z, t)
∂z2

∣∣∣∣∣
z=1

, etc. (A.46)

By multiplying Eq. (3.2) with zn and summing over n from 0 to ∞ on both sides, a
differential equation for the generating function C(z, t) is obtained

∂C(z, t)
∂t

= α1(z − 1)C(z, t) + κ(z − 1)z∂C(z, t)
∂z

. (A.47)

Solving Eq. (A.47) subject to the initial condition C(z, t = log(2)/κ) = 1 (corresponding
to P(n, t = log(2)/κ) = δn,0) yields

C(z, t) =
[
z − eκt(z − 1)/2

]−α1/κ
. (A.48)

According to Eq. (A.45), P(n, t) is found by expanding Eq. (A.48) in power series around
z = 0, yielding

P(n, t) =
2α1/κΓ

(
n+ α1

κ

)
Γ(n+ 1)Γ

(
α1
κ

) e−(α1+κn)t(eκt − 2)n, (A.49)

where Γ(x) =
∫∞

0 tx−1e−tdt is the Gamma function. In terms of the variable x, we combine
Eqs (A.44), (A.49) to give the PDF for the aggregate mass

P(x, t) =
2α1/κΓ

(
α2
κ
x+ α1

κ

)
Γ
(
α2
κ
x+ 1

)
Γ
(
α1
κ

)e−(α1+α2x)t(eκt − 2)
α2
κ
x. (A.50)

Equations (A.49) and (A.50) describe the time evolution of the full PDF.

We can use the generating function Eq. (A.48) to recover the time evolution of the
principal moments of the PDF. For example, for the average value for n we obtain

〈n〉 = ∂C(z, t)
∂z

∣∣∣∣∣
z=1

= α1

2κ
(
eκt − 2

)
. (A.51)
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Similarly, from the second derivative of the generating function we obtain

〈n(n− 1)〉 = ∂2C(z, t)
∂z2

∣∣∣∣∣
z=1

= α1(α1 + κ)
4κ2

(
eκt − 2

)2
(A.52)

which can be used to compute the standard deviation of n.

A.5 Derivation of lag time formulae†

In small volumes, progress curves are non reproducible and the lag time τ is a random
variable. Under these circumstances, finding τ translates into a first hitting time problem:
we define τ as the time at which a sample path of the stochastic process x first hits the
threshold xth = NAVMth

τ = inf
t≥0
{x(t) ≥ xth}. (A.53)

Because τ is random, we are interest in the PDF of lag times, i.e. the probability T (t)
that τ equals t. According to the theory of first passage times, [52] the PDF of lag times,
T (t), is given by

T (t) = −dQ(t)
dt

, (A.54)

where Q(t) denotes the probability that at time t the process x has not yet reached xth

Q(t) =
nth−1∑
n=0

P(n, t), (A.55)

where nth = α2xth/κ. We can either substitute Eq. (A.50) in Eq. (A.55) in Eq. (A.54), or
simply use the result in ref. [52] but replacing t with t− log(2)/κ to reflect our boundary
condition at t = log(2)/κ (as our boundary condition is equivalent to a delayed starting
time of log(2)/κ). Either approach yields

T (t) =
κ2α1/κΓ

(
nth + α1

κ

)
Γ (nth) Γ

(
α1
κ

) e−(α1+(nth−1)κ)t(eκt − 2)nth−1. (A.56)

Eq. (A.56) gives our central result: an analytical expression for PDF of lag times. In
the long time limit, the PDF of lag times decays exponentially

T (t) t→∞→
κ2α1/κΓ

(
nth + α1

κ

)
Γ(nth)Γ(α1/κ) e−α1t, (A.57)

with characteristic decay time α−1
1 . In the opposite limit of early times, T (t) and all its

derivative decay to zero; hence, T (t) has an essential singularity at t = 0. The maximum
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of the PDF T (t) is attained at

τ ∗ = 1
κ

log
(

2(nth − 1)κ
α1

+ 2
)
≈ 1
κ

log
(2α2xth

α1
+ 2

)
, (A.58)

which can be interpreted as the most probable value for the lag time. Interestingly, the
mode of the PDF of lag times equals the deterministic lag time, Eq. (A.66). The expected
value for the lag time τ can again be obtained from addition of log(2)/κ to the result in
ref. [52], yielding

〈τ〉 = log(2)
κ

+
nth−1∑
j=0

1
(α1 + jκ) . (A.59)

Note the expected lag time is different from the most probable lag time. In the limit
of large volumes and high nucleation rate, corresponding to α1 � κ, however, both values
agree

〈τ〉 ≈ log(2)
κ

+
∫ nth−1

0

dy

α1 + κy
= τ ∗. (A.60)

The variance of the lag-time distribution is computed similarly and reads

σ2
τ =

nth−1∑
j=0

1
(α1 + jκ)2 . (A.61)

A.6 Limiting behaviours for the formula for average
lag time and extent of fluctuations

In Chapter 3, we have derived a closed-form expression for the average lag time as a
function of volume (Eq. (3.5) of Chapter 3)

〈τ〉 = log(2)
κ

+
nth−1∑
j=0

1
α1 + jκ

, t� κ−1, (A.62)

where nth = α2NAVMth

κ
. Similarly, we obtain a closed-form expression for the variance of

the lag time

σ2 = 〈τ 2〉 − 〈τ〉2 =
nth−1∑
j=0

1
(α1 + jκ)2 , t� κ−1. (A.63)

In this appendix, we discuss several limits of practical importance, for which the functional
forms of Eqs. (A.62) and (A.63) can be greatly simplified.

A.6.1 Bulk regime

The bulk regime emerges when the system volume V is large enough that fluctuations can
be ignored. Defining the dimensionless ratio γ = κ/α1 = κ/(α0NAV ), where α0 = knm

nc
tot,
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Figure A.2: (a) Volume dependence of average lag time predicted using Eq. (A.62) and 68%
confidence bands computed using Eq. (A.63). The parameters are the same as for Fig. 2(a) of
Chapter 3. (b) Average lag time (solid line) is approximated by 〈τ〉 = τg + cn/(2V ) for γ → 0
(dashed line) turning to the prediction of classical nucleation theory for γ →∞ (dotted line).

the bulk regime corresponds to γ → 0. Under these circumstances, the sum ∑nth−1
j=0

γ
1+γj

entering the expression for the adimensionalised average lag time κ〈τ〉, Eq. (A.62), is
replaced by the integral

∫ nth
0

γ
1+γxdx, yielding

κ〈τ〉 = log(2) +
nth−1∑
j=0

γ

1 + γj
(A.64)

→ log(2) +
∫ nth

0

γ

1 + γx
dx = log

(2α2Mth

α0
+ 2

)
, (A.65)

or, equivalently,

〈τ〉 → 1
κ

log
(2α2Mth

α0
+ 2

)
= τg, (A.66)

where τg is the deterministic lag time, which is obtained as solution of M(τg) = Mth with
M(t) being the aggregate mass concentration in bulk. Therefore, our expression for the
volume dependence of the average lag time, Eq. (A.62), converges to the deterministic lag
time τg in the limit of a very large system.

In the limit γ → 0, the expression for the standard deviation of the lag time becomes

κ2σ2 =
nth−1∑
j=0

γ2

(1 + γj)2 (A.67)

→
∫ nth

0

γ2

(1 + γx)2dx = γ

1− 1
1 + α2Mth

α0

 , (A.68)
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or, equivalently,

σ → 1
√
α1κ

1− 1
1 + α2Mth

α0

1/2

= σg. (A.69)

Note that in this limit, the extent of fluctuations scale as σg ∼ κ−1/2α
−1/2
0 V −1/2.

A.6.2 Small fluctuation regime

In Sec. A.6.1, we have shown that in the limit of very large volumes the expression for
the average lag time, Eq. (A.62), recovers the deterministic lag time. Formally, this result
was obtained by replacing sums with integrals in Eq. (A.62), which is justified only in the
limit γ → 0. When γ is small but non-zero , however, correction terms appear. In this
section, we consider how Eq. (A.62) approaches the bulk limit with increasing volume and
look for an approximation of Eq. (A.62) which is valid for small but non-zero γ.

The starting point for this calculation is the Euler-Maclaurin summation formula1

nth−1∑
n=0

f(n) =
∫ nth

0
f(t)dt− 1

2 [f(nth)− f(0)] +
∞∑
i=1

B2i

(2i)!
[
f (2i−1)(nth)− f (2i−1)(0)

]
, (A.70)

where f is any smooth real function and B2i are the Bernoulli numbers. Application of
the Euler-Maclaurin formula, Eq. (A.70), to Eq. (A.62) with f(j) = γ

1+γj gives for the
following expression for the average lag time,

κ〈τ〉 = κτg + γ

2

(
1− 1

1 + γnth

)
+
∞∑
i=1

B2i

2i γ
2i
(

1− 1
(1 + γnth)2i

)
. (A.71)

As expected, for γ → 0 the bulk limit 〈τ〉 → τg is recovered, in accordance with the
results of Sec. A.6.1. Equation (A.71), however, provides higher-order correction terms in
γ (or, equivalently, V −1) that describe the departure of 〈τ〉 from the deterministic value
τg when γ is small but non-zero. To leading order in γ, Eq. (A.71) becomes

κ〈τ〉 = κτg + γ

2 + · · · . (A.72)

Hence, in a plot of 〈τ〉 against V −1 the average lag time expression Eq. (A.62) approaches
the bulk limit τg approximatively as a straight line of gradient (see Fig. 2(b) of Chapter 3)

d〈τ〉
d(1/V ) '

1
2α0NA

, V −1 � α0NA

κ
. (A.73)

1Thomas C. T. Michaels suggested use of the Euler-Maclaurin summation formula for this purpose
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A.6.3 Large fluctuation regime

In the previous section, we have considered the behaviour of Eq. (A.62) when the system
is close to the bulk regime (γ → 0). Results were expressed in terms of a power series in
γ, which requires γ to be small. We now consider the opposite limit of very small volumes
(γ →∞), where the results of Sec. A.6.2 no longer apply.

In the limit of very small volumes (large γ), Eq. (A.62) diverges. In order to extract the
leading order divergent term, it proves easier to consider the first derivative of Eq. (A.62)
with respect to γ, yielding

d(κ〈τ〉)
dγ

=
nth−1∑
i=1

[
1

1 + γi
− γi

(1 + γi)2

]
+ 1. (A.74)

In the limit γ →∞, the leading order term in Eq. (A.74) is

d(κ〈τ〉)
dγ

= 1 + · · · . (A.75)

This equation can be reduced to the simple expression for the gradient of the lag time
with the inverse volume, valid in the limit of small volume:

d〈τ〉
d(1/V ) '

1
α0NA

, V −1 � α0NA

κ
. (A.76)

In the limit γ → ∞, the expression for the variance of the lag time, Eq. (A.63), can
be treated similarly to yield

d(κ2σ2)
dγ

=
nth−1∑
i=1

[
2γ

(1 + γi)2 −
2γ2i

(1 + γi)3

]
+ 2γ = 2γ + · · · . (A.77)

Therefore, integrating Eq. (A.77) yields the compact expression

σ '
√
σ2
g + 1

(α0NAV )2 , V −1 � α0NA

κ
. (A.78)

A.6.4 Summary

Introducing the quantity cn = 1
knm

nc
totNA

, the above results can be summarized by the
following simple statement for the gradient of the lag time with the inverse volume

cn
2 ≤

d〈τ〉
d(1/V ) ≤ cn, (A.79)

with the lower bound describing the approximatively linear approach of 〈τ〉 to the bulk
limit τg for small V −1 and the upper bound cn describing system behaviour for very large
V −1.
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Figure A.3: (Analysis of small-volume experiments of bovine insulin fibrillization as discussed
in Chapter 3 (Fig. 2(a)). Data provided by K. L. Saar. [73] Thin purple lines: kn is de-
creased/increased by an order of magnitude (a); k2 is decreased/increased by a factor 4 (b);
k+ is decreased/increased by a factor 4 (c). The plots show that the slope of the average lag
time in a 1/V plot is controlled by the rate of nucleation; changing k+ or k2 shifts the inter-
cept (deterministic lag time), but does not affect the slope. These results demonstrate that an
analysis of the volume dependence of the average lag time is able to separate the contributions
from primary nucleation (kn) and auto-catalytic growth (k+, k2) and hence provides an accurate
route for determining kn with increased accuracy relative to conventional bulk methods.
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Appendix B

The Early Stages of Heteromolecular
Filament Formation

This appendix contains the key derivation associated with Chapter 4, as well as a few
generalizations and extensions of the theory. It finally contains the rate constants used
in the kinetic plots included as figures in Chapter 4. All of these appendices originate
from the paper “Dynamics of heteromolecular filament formation” published in J Chem
Phys in 2016; some appendices from this publication that were not directly relevant to
the thesis theme were not reproduced here. All work is my own.

B.1 Considering primary nucleation with arbitrary
reaction order

The moment equations can be straightforwardly generalized to arbitrary nucleation reac-
tion order, with nucleus size not necessarily corresponding to reaction order. We write
kn(x; aibj) as the rate constant for the primary nucleation step producing ends of type x
of reaction order i with respect to a and j with respect to b. We illustrate with a system
without secondary processes. The moment equations become then:

d

dt
Pa =

∑
i,j

kn(a; aibj)ma(t)imb(t)j

+ k+(a|b)ma(t)Pb(t)− k+(b|a)mb(t)Pa(t)
d

dt
Pb =

∑
i,j

kn(b; aibj)ma(t)imb(t)j

− k+(a|b)ma(t)Pb(t) + k+(b|a)mb(t)Pa(t) (B.1a)
d

dt
Ma = k+(a|b)ma(t)Pb(t) + k+(a|a)ma(t)Pa(t)

d

dt
Mb = k+(b|b)mb(t)Pb(t) + k+(b|a)mb(t)Pa(t). (B.1b)
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In practice we might expect to have an overall reaction order nc for all possible nucleation
steps; or at least a maximum overall reaction order. Regardless, at early time, with
or without secondary processes, our extended moment equations are the same but with
modified αa and αb:

αa =
∑
i,j

kn(a; aibj)ma(0)imb(0)j

αb =
∑
i,j

kn(b; aibj)ma(0)imb(0)j. (B.2)

Our methodology is thus unaffected by generalizing to arbitrary primary nucleation reac-
tion order.

B.2 Solving the early-time extended moment equa-
tions for a system with secondary processes

B.2.1 Early-time extended moment equations

At early time, the rates (δpx + δqx)k2(pq|yz)mp(t)mq(t) as well as the rates of primary
nucleation become time-independent, as we fix ma and mb at their initial values. The
system of extended moment equations are now linear. Furthermore, the 1st moment
ODEs are now decoupled from the rest and we need only solve the fibril end and subunit
pair concentration equations simultaneously to calculate the fibril mass concentrations.
We write the rate equations for the fibril end concentrations and subunit pair concetrations
in matrix form:

d

dt



P (0)
a (t)
P

(0)
b (t)

N (0)
aa (t)

N
(0)
ab (t)

N
(0)
bb (t)


=



αa

αb
0
0
0


+



−µba µab α2a
aa α2a

ab α2a
bb

µba −µab α2b
aa α2b

ab α2b
bb

µaa 0 0 0 0
µba µab 0 0 0
0 µbb 0 0 0





P (0)
a (t)
P

(0)
b (t)

N (0)
aa (t)

N
(0)
ab (t)

N
(0)
bb (t)


, (B.3)

where α2x
yz = ∑

pq=a,b(δpx + δqx)k2(pq|yz)mp(0)mq(0), and α2x
yzNyz(t) represents the early-

time rate of formation of ends of type x through secondary nucleation at sites of compo-
sition yz.

B.2.2 Solving the equations

To solve the early-time extended moment equations (B.3), its homogeneous matrix must
be diagonalized. This matrix has 5 eigenvalues in total. Because this matrix has vanishing

180



determinant, one of its eigenvalues is trivial, λ = 0. The remaining 4 eigenvalues are
determined by the following quartic equation:

aλ4 + bλ3 + cλ2 + dλ+ e = 0 , (B.4)

where the coefficients are explicitly given by the following equations:

a = 1 (B.5)

b = µab + µba = µc (B.6)

c = −(α2a
aaµaa + α2b

abµab + α2a
abµba + α2b

bbµbb) (B.7)

d = −((α2a
aa + α2b

aa)µaaµab
+ 2(α2a

ab + α2b
ab)µabµba

+ (α2a
bb + α2b

bb)µbaµbb) (B.8)

e = (α2a
aaα

2b
ab − α2a

abα
2b
aa)µaaµab

+ (α2a
aaα

2b
bb − α2a

bbα
2b
aa)µaaµbb

+ (α2a
abα

2b
bb − α2a

bbα
2b
ab)µbaµbb. (B.9)

While quartic equations admit, at least in principle, an exact solution, the resulting
expressions tend to be very complicated and, thus, rather unpractical to use. Thus, in
order to make progress, it is preferable to employ asymptotic methods (dominant balance
argument) to derive simple, accurate approximative expressions for the eigenvalues.

Dominant balance

It is most convenient to employ a dominant balance argument to obtain approximate
solutions to the eigenvalue equation (B.4). To get to this point, we have assumed
that secondary nucleation is much slower than cross-elongation, which in turn is not
significantly slower than self-elongation. We define the dimensionless parameter ν =
(∑i=a,b [α2i

aa + α2i
ab + α2i

bb])/(µab + µba), and note that under our assumptions ν << 1. We
then dedimensionalize the eigenvalue equation by dividing through by b4 = µ4

c . Our
equation now typically has the form:

(λ/µc)4 + (λ/µc)3 +O(ν)(λ/µc)2 +O(ν)(λ/µc) +O(ν2) = 0. (B.10)

We first guess that λ/µc = O(ν0). This gives the first two terms as the only non-vanishing
terms and thus λ4 +µcλ

3 ' 0. This gives two approximate solutions, λ ' 0 and λ ' −µc,
but only the latter is permissible as only it is consistent with the order-of-magnitude as-
sumption used to obtain it. We next guess that λ/µc = O(ν1). This gives the final two
terms as the only non-vanishing terms and thus dλ + e ' 0. This gives the approximate
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solution λ ' −e/d, which has the correct order of magnitude and is thus permissible.
Finally we guess that λ/µc = O(ν 1

2 ). This gives the second and fourth terms as the
only non-vanishing terms and thus µcλ3 + dλ ' 0. This gives the approximate solutions
λ ' ±

√
−d/µc, which have the correct order of magnitudes and are thus permissible

(again we throw away the zero solution for being inconsistent).

In summary, the approximate eigenvalues are:

λ0 = λ+ =
√
− d

µc
(B.11)

λ1 = −e
d

(B.12)

λ2 = −
√
− d

µc
(B.13)

λ3 = −µc , (B.14)

with the long-time behaviour dominated by the largest eigenvector, λ+.

Obtaining the leading-order eigenvector contribution

We write the ODEs as:
dx
dt

= Ax(t) + g. (B.15)

Using the matrix C, whose columns are the eigenvectors (denoted wi), we transform the
ODEs to the eigenvector basis:

dy
dt

= Dy(t) + h, (B.16)

where y(t) = C−1x(t), h = C−1g, and the diagonal matrix D = C−1AC. Due to the lack
of time dependence of g the solutions to the ODEs, when decoupled in the eigenvector
basis, have the form [73]:

yi(t) = Aie
λit − [C−1g]i

λi
, (B.17)

where λi are the eigenvalues. Ai is a constant of integration whose value is given by
matching the boundary conditions.
At t = 0, yi(0) must equal [C−1x(0)]i. Thus Ai can be calculated as:

Ai = hi
λi

+ yi(0)

= [C−1g]i
λi

+ [C−1x(0)]i. (B.18)
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For t >> λ−1
+ the time evolution of x(t) is dominated by the contribution from the

exponential term in y+, and thus the full solution can be approximated as:

x(t) ' A+
(
eλ+t − 1

)
w+ + z, (B.19)

where z is some suitable constant vector. The most obvious choice for this vector would
be x(0), in order to match the initial conditions. However, it is actually more appropriate
to follow the treatment in Sec. 4.4.2, and for initial conditions allow the filament ends to
equilibrate through cross-elongation, which happens extremely rapidly for any system of
interest. We therefore take z = (P (0)µab/µc, P (0)µba/µc, Naa, Nab, Nbb).
In practice, significant filament formation can only be detected when t >> λ−1

+ , so this
approximation scheme is highly accurate.
Using the approximate eigenvalues to obtain the eigenvectors, we can calculate y+. Throw-
ing away terms of O((α2/µtot)) and smaller, we find:

[C−1g]+
λ+

= (αa + αb)
2λ2

+(µab + µba)
(B.20)

w+ =
(
λ+µab, λ+µba, µaaµab, 2µabµba, µbaµbb

)
. (B.21)

In the absence of seed x(0) = 0 and these results give the early-time fibril end and subunit
pair concentrations:

P (0)
a (t) = (αa + αb)µab

2λ+(µab + µba)
(
eλ+t − 1

)
(B.22)

P
(0)
b (t) = (αa + αb)µba

2λ+(µab + µba)
(
eλ+t − 1

)
(B.23)

N (0)
aa (t) = (αa + αb)µaaµab

2λ2
+(µab + µba)

(
eλ+t − 1

)
(B.24)

N
(0)
ab (t) = (αa + αb)µabµba

λ2
+(µab + µba)

(
eλ+t − 1

)
(B.25)

N
(0)
bb (t) = (αa + αb)µbaµbb

2λ2
+(µab + µba)

(
eλ+t − 1

)
. (B.26)

We can then use the 1st-order early-time extended moment equations to calculate:

M (0)
a (t) = (αa + αb)(µaa + µba)µab

2λ2
+(µab + µba)

(
eλ+t − 1

)
(B.27)

M
(0)
b (t) = (αa + αb)(µab + µbb)µba

2λ2
+(µab + µba)

(
eλ+t − 1

)
. (B.28)

When seeds are present, calculating [C−1x(0)]+ is not trivial and leads to:

[C−1x(0)]+ = P (0)
2λ+µc

+ FaaNaa(0) + FabNab(0) + FbbNbb(0), (B.29)
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where Fij are unwieldy functions of the initial rates µij and α2k
ij . We note that P (0)/(2λ+µc) ∼

LsysP (0)/µ2
c and ∑

FijNij(0) ∼ LseedP (0)/µ2
c , where Lseed is the average seed filament

length, and Lsys is the average filament length formed in an unseeded reaction. Therefore,
if the seeds are sonicated to ensure that Lseed � Lsys, the Fij can be ignored. This is
typically the case since in seeded experiments the aim is usually to have Lseed � Lsys in
order that we can probe only the elongation rates. Their full forms are:

Faa = 2(α2a
abα

2b
aa − α2a

aaα
2b
ab)µabµba

2(α2b
aaµaaµab + 2α2b

abµabµba + α2b
bbµbaµbb)d

+ (α2a
bbα

2b
aa − α2a

aaα
2b
bb)µbaµbb + α2b

aad

2(α2b
aaµaaµab + 2α2b

abµabµba + α2b
bbµbaµbb)d

Fab = (α2b
abα

2a
aa − α2a

abα
2b
aa)µaaµab

2(α2b
aaµaaµab + 2α2b

abµabµba + α2b
bbµbaµbb)d
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abα

2a
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2b
bb)µbaµbb + 2α2b

abd

2(α2b
aaµaaµab + 2α2b

abµabµba + α2b
bbµbaµbb)d

Fbb = − (α2a
bbα

2b
aa − α2a

aaα
2b
bb)µaaµbb

2(α2b
aaµaaµab + 2α2b

abµabµba + α2b
bbµbaµbb)d

− 2(α2a
bbα

2b
ab − α2a

abα
2b
bb)µbaµbb + α2b

bbd

2(α2b
aaµaaµab + 2α2b

abµabµba + α2b
bbµbaµbb)d

, (B.30)

where d is the linear coefficient in the eigenvalue equation.
Using these, A+ can be modified accordingly to give full seeded early-time solutions.

B.3 Secondary systems with no cross-elongation

B.3.1 Cross-terms in primary nucleation only

For a system with no cross-elongation, the hetero-correlation functions are approximately
0 provided homo-elongation is faster than fragmentation. Then the system is uncoupled
for early time, and approximate solutions can be derived for the concentration of each
species using the same methodology as the single-species case [21, 30], yielding the same
solutions but with appropriately modified early-time nucleation rates:

M (0)
x (t) = µxx

κx
(Axeκxt −Bxe

−κxt +Bx − Ax) +Mx(0), (B.31)

where Bx = Px(0)−Ax, Ax = αx/2κx + α2xMx(0)/2κ+ Px(0)/2, κx = √α2xµxx, and α2x

is the early-time rate of new end formation of type x through secondary processes per
unit of Mx.
Note that if kn(aa)m2

a >> kn(ab)mamb >> kn(bb)m2
b , then the α for the slower component

must be modified to account for depletion of monomer. It may be best to work out how
many b-type ends have formed by the a-system lag time, and then use this as the initial
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condition for a seeded solution starting at the a-type lag time.

B.3.2 Including secondary process cross-seeding

In this case we still have coupled extended moment equations, but the hetero-correlation
functions are again 0 so the pair concentrations are no longer needed to obtain the dy-
namics. We instead have 4 coupled equations for the number and mass concentrations:

d

dt


P (0)
a (t)
P

(0)
b (t)

M (0)
a (t)

M
(0)
b (t)

 =


αa

αb
0
0

+


0 0 α2a

a α2a
b

0 0 α2b
a α2b

b

µaa 0 0 0
0 µbb 0 0




P (0)
a (t)
P

(0)
b (t)

M (0)
a (t)

M
(0)
b (t)

 . (B.32)

This can be solved by the same method employed in Appendix B.2, yielding:

M (0)
x (t) = µxxGx

λ2
(eλ2t − λ2t− 1) +Mx(0), (B.33)

where

Gx = αx(λ2
2 − α2x′

x′ µx′x′) + αx′α
2x
x′ µx′x′

2λ2(2λ2
2 − α2a

a µaa − α2b
b µbb)

(B.34)

λ2 =
√

(κ2
a + κ2

b)/2 +
√

(κ2
a − κ2

b)2 + 4α2b
a α

2a
b µaaµbb/2, (B.35)

and κ2
x = α2x

x µxx (with x′ 6= x).

B.4 Equivalence of pair correlation formulations

As discussed in Sec. 4.7, the simplest way of accessing the pair correlations is simply via
Nxy(t); for instance, Paa = Naa(t)/M(t). We can demonstrate the equivalence of these
formulations as follows. Starting from the Nxy(t) formulation given in this appendix:

dNaa

dt
= µaaPa(t)

µaaPa(t) + µbaPa(t)
µaaPa(t) + µbaPa(t)

. (B.36)

As with a primary nucleation-dominated system, for all but very early times, the drift
terms cancel and µbaPa(t)/µabPb(t) is very nearly 1. Combined with the expression for
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dMa/dt, we can therefore write:

dNaa

dt
= µaaPa(t)

µaaPa(t) + µabPb(t)
µaaPa(t) + µbaPa(t)

= µaaPa(t)M ′
a(t)

µaaPa(t) + µbaPa(t)

= µaaM
′
a(t)

µaa + µba
. (B.37)

Integrating and dividing through by M(t), we recover the expression (4.20) for the pair
correlation given in Chapter 4.

B.5 Parameters used for mixed aggregation with pri-
mary processes only

The following parameters were used to generate all plots of mixed fibril aggregation with-
out the presence of secondary processes:

Parameters units Fig. 4.3(a) Fig. 4.3(b) Fig. 4.3(c) Fig. 4.3(d)

Ma(0) µM 0 0 4.17 4.17
Mb(0) µM 0 0 9.52 9.52
Pa(0) p M 0 0 41.7 41.7
Pb(0) p M 0 0 95.2 95.2
ma(0) µM 33.3 33.3 29.2 29.2
mb(0) µM 66.7 66.7 57.1 57.1
kn(aa) ×10−5 M−1s−1 1 1 1 1
kn(ab) ×10−5 M−1s−1 6 6 6 6
kn(bb) ×10−5 M−1s−1 1 1 1 1
k+(a|a) ×106 M−1s−1 4 4 4 4
k+(a|b) ×106 M−1s−1 6 6 6 6
k+(b|a) ×106 M−1s−1 12 12 12 12
k+(b|b) ×106 M−1s−1 3.6 0.8 3.6 0.8

Table B.1: Rate constants and initial conditions used to generate plots in Fig.4.3

B.6 Parameters used to investigate mixed aggrega-
tion with secondary processes

The following parameters were used to generate all plots of mixed fibril aggregation in
the presence of secondary processes:
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Parameters units Fig. 4.5(a) Fig. 4.5(b)

Ma(0) µM 0 41.7
Mb(0) µM 0 95.2
Pa(0) p M 0 417
Pb(0) p M 0 952
ma(0) µM 333 292
mb(0) µM 667 571
kn(aa) ×10−8 M−1s−1 1 1
kn(ab) ×10−8 M−1s−1 4 4
kn(bb) ×10−8 M−1s−1 1 1
k+(a|a) ×105 M−1s−1 1 1
k+(a|b) ×105 M−1s−1 1.5 1.5
k+(b|a) ×105 M−1s−1 1.3 1.3
k+(b|b) ×105 M−1s−1 0.9 0.9
k−(aa) ×10−8 s−1 1 1
k−(ab) ×10−8 s−1 1 1
k−(bb) ×10−8 s−1 1 1

Table B.2: Rate constants and initial conditions used to generate plots in Figs. 4.5 and 4.6
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Appendix C

Oligomeric Intermediates Initiate
Fibril Formation by the Yeast Prion
Protein Ure2

This appendix contains additional details of the analytical methodology I employed in
Chapter 5.

C.1 Additional Modelling

C.1.1 Detailed description of the kinetic model

The experimentally-measurable quantities that we seek to model are the total oligomer
concentration O(t), and the concentration of dimers that have been incorporated into
fibrils, called the fibril “mass concentration” M(t). We have established the main reac-
tion processes acting on these quantities in Chapter 5: oligomer formation from dimers;
oligomer dissociation back to dimers; oligomer conversion into fibrillar aggregates; elon-
gation of fibrillar aggregates through dimer addition; and fragmentation of fibrils into
smaller fibrils. We model the total oligomer concentration despite the existence of two
oligomer sub-populations because, as explained in the Methods section of Chapter 5, our
data on sub-populations of oligomers is of insufficient completeness and accuracy for ki-
netic modelling. Our model is thus partially coarse-grained. This modelling approach is
rigorously justified in the SI section “Interpreting the kinetic model”, in which we also
demonstrate that the effects of the coarse-graining are largely limited to the “conversion”
step, which contains information on the inter-conversion of distinct oligomer species as
well as their ultimate conversion to growing fibrils. This is analogous to the coarse-grained
“primary nucleation” step in traditional bulk models of fibrillar growth that actually con-
tains information on all of the oligomeric reactions that lead to new fibril formation.

We note for full rigor here that we have ignored depolymerization, as at equilibrium
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the dimer concentration is very low (less than 2% as calculated from the single molecule
burst density of donor-labeled Ure2 after the aggregation reaction reached plateau) and
thus this process does not significantly affect the kinetics. We have also ignored fibril
annealing, as it has a negligible effect on the time profile of the measured quantities M(t)
and O(t). Furthermore, we may ignore the changes in dimer concentration caused directly
by the oligomer formation and depletion processes, as these are insignificant relative to the
changes due to fibril elongation, due to the low incidence of oligomers relative to native
Ure2 dimers. According to the law of mass action, the rate of a reaction is proportional to
the product of the concentrations of the species involved. Neglecting certain other small
terms [36], we can therefore write the rate equations for our aggregating system, outlined
in Chapter 5 (Eq.1-4):

dO

dt
= koligom(t)2 − kcO(t)− kdO(t) (C.1)

dP

dt
= kcO(t) + k−M(t) (C.2)

dM

dt
= 2k+m(t)P (t) (C.3)

dm

dt
= −2k+m(t)P (t) (C.4)

In order to describe the kinetics of M(t) and O(t) with a closed set of rate equations, it
was necessary to also include an explicit rate equation for the fibril concentration P (t),
and for the dimer concentration m(t). This is because oligomer formation from dimers
depends in general on dimer concentration, and fibril elongation by dimer addition will
depend explicitly on fibril concentration and dimer concentration.

Each process of importance is now represented by a rate term in the above closed set of
rate equations: fibril elongation by 2k+m(t)P (t); fibril fragmentation (proportional to the
total concentration of potential break sites, and therefore to the fibril mass concentration)
by k−M(t); oligomer dissociation by kd O(t); oligomer conversion by kcO(t); and oligomer
formation by koligom(t)2.

C.1.2 Choosing reaction orders

We do not know the reaction orders of the oligomer formation and conversion processes
with respect to dimer concentration for certain a priori. We can see from the shape of
the oligomer concentration curves that the reaction order of oligomer formation, no, with
respect to dimers must be at least 1, and unlikely to exceed 5; however, since our dataset
involves only one initial dimer concentration, we cannot more accurately determine it from
fitting. Including the reaction order as a free parameter in the model would therefore be
overfitting, and we must choose a value before proceeding with the data fitting. We
believe 2 is a physically reasonable value given that we expect that all oligomers must
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either arise from the initial interaction of a pair of dimeric Ure2 molecules (i.e. formation
of a “dimer-of-dimers”), or have grown from dimers-of-dimers through dimer addition, so
the only reaction that forms new oligomers is the dimer-of-dimer formation reaction. In
fact, it is hard to physically justify a reaction order substantially differing from this.

Any error in our choice of reaction order relative to the “true” value is expected to
have no qualitative effect on the modelling conclusions, for the same reason as why we
were forced to choose an a priori value in the first place – for this limited dataset, all
physical choices of reaction order will result in similar fit quality and similar parameters.
This is provided we realize that with a varying reaction order we must compare values of
koligom(0)no , not koligo.

By fitting to a single initial dimer concentration it is not possible to determine the
reaction order accurately for the oligomer conversion step either. In fact, the conversion
reaction order, np, is even less visible from analysis of datasets with a single initial dimer
concentration, since conversion is of principal importance early in the reaction before
significant dimer depletion has occurred. We must therefore again choose a reaction order
with respect to dimers; we have chosen zero. As before, the value chosen has no effect
on the modelling, beyond a redefinition of the rate constant kc, provided it is understood
that the relevant fitting parameter to compare is really kcm(0)np and not simply kc.

We verified the insensitivity of the modelling of our available data to these reaction
orders by carrying out the fitting procedure with alternative values for the reaction orders,
and examining the variability of the fitted rate parameters. For oligomer formation we
expect that the only physically reasonable alternatives are between 1 and 2 (as would be
seen in the case of saturation effects). We think it is highly unlikely to be greater than
3; therefore, we trialled 1, 2, and 3. The initial slopes of the oligomer concentrations
for each Ure2 mutant are very similar, making it extremely unlikely that their formation
reaction orders are different; thus, we limit our analysis to considering identical reaction
orders for each mutant.

In the case of conversion, we trialled reaction orders of 0, 1 and 3. This time we
have no reason to suppose they are the same for each mutant. We find that, to within
error, our key fitting results are totally unaffected by changes in conversion reaction
order, even when the mutants have different reaction orders (recall that k− and kc can
only be determined to within an order of magnitude). We further find that changes in
oligomerization reaction order have only small quantitative effects on koligo and kd for each
mutant but do not affect their ratio to within error, or any of our other key conclusions.
We are therefore satisfied that the precise values of these reaction orders are unimportant
for our analysis. See Tables C.1-C.4 for full results of the sensitivity analysis.
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C.1.3 Analytical solution for the aggregation kinetics

At early times, the dimer concentration can be considered to be approximately constant
at its initial value m(0) and our kinetic rate equations (C.1)-(C.3) reduce to a simpler
form:

d

dt
O(0)(t) = α− klO(0)(t) (C.5)

d

dt
P (0)(t) = kcO

(0)(t) + k−M
(0)(t) (C.6)

d

dt
M (0)(t) = 2k+m(0)P (0)(t), (C.7)

where kl = kc+kd, and α = koligom(0)2. These can be solved for unseeded initial conditions
to give early-time analytic expressions. We know from experiment that oligomers are
present only at low concentration, and therefore that dissociation is relatively fast. This
allows us to simplify our early-time analytical expressions to give:

O(0)(t) = α

kl

(
1− e−klt

)
(C.8)

P (0)(t) = αkc
2κ(kl + κ)

(
eκt − 1

)
, (C.9)

where κ =
√

2k+k−m(0). Now, using conservation of mass, M(t) = m(0) − m(t), we
rewrite our equation for fibril mass concentration as an integral equation for the dimer
concentration:

m(t) = m(0) exp
(
−2k+

∫ t

0
P (t′)dt′

)
. (C.10)

Substituting our early-time expression P (0)(t) into the right-hand side, and again applying
conservation of mass, yields a 1st order self-consistent expression for M(t) of remarkable
accuracy, in line with Ref. [36] and [27]:

m(t) = m(0)
(
1− exp

(
−A

(
eκt − 1

)))
, (C.11)

with A = αk+kc
κ2(kl+κ) . This expression bears a striking resemblance to the expressions derived

in Ref. [21] for the kinetics of fragmenting systems. This is to be expected given that
oligomers do not comprise a large proportion of the system mass. Note that the parameters
k+, k− and kc cannot therefore be uniquely determined from fitting bulk aggregate mass
concentration to this expression.

C.1.4 Interpreting the results of data fitting to the kinetic model

The model in Chapter 5 was selected because it is the simplest possible physically reason-
able model capable of fitting the available combined smFRET/ThT experimental data
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with reasonable accuracy. This is in line with the principle of parsimony that underlies
the theory of model selection [109]. The success of the fits demonstrates that, at this level
of experimental detail, the full range of low- and high-FRET oligomers of all sizes, and
the reactions that connect them, can be well-approximated by a single oligomer species
undergoing the formation, dissociation and conversion processes currently incorporated
in the model. This is inferred, not assumed. The inclusion of any finer detail in a kinetic
model would lead to overfitting, degrading the quality of subsequent inferences made on
the basis of the model. It would only be reasonable to test such models given a much
larger dataset than is currently available.

Nonetheless, it is of interest to investigate how exactly we might interpret our coarse-
grained model reaction processes in terms of more fundamental reaction steps expected
to be present, and to what extent they might hold up as true constants in a more detailed
study. We know from smFRET data [112] that there are in fact two distinct struc-
tures of oligomer, distinguished by their differing FRET efficiencies, and that high-FRET
oligomers likely form from low-FRET oligomers and not directly from dimers. Therefore,
the total oligomer formation step in the model is likely indeed a fundamental reaction
step: that of low-FRET oligomer formation. We also know that at early and intermedi-
ate times, low-FRET oligomers dominate the population; thus, even if some high-FRET
oligomers were to form directly from dimers, the fitted total oligomer formation rate con-
stant would still be a very good approximation to the low-FRET oligomer formation rate
constant.

To investigate what range of sizes oligomers might come in, a size distribution analysis
was performed, that indicates that both low-FRET and high-FRET oligomer populations
have average apparent sizes that change little during the majority of the time course of
the aggregation reaction [112]; implying that the normalized size distribution of each pop-
ulation remains constant. Therefore, the time evolution of the full network of oligomeric
species should be faithfully represented by a kinetic model which treats the low-FRET
oligomers and the high-FRET oligomers each as a single kinetic species, since the coarse-
grained rate constants should remain approximately constant throughout the reaction.
The experiments on low/high-FRET oligomers indicate that the majority of oligomer de-
pletion is low-FRET oligomer dissociation; we may therefore identify the total oligomer
dissociation rate constant with the low-FRET oligomer dissociation rate constant.

We expect the coarse-grained total oligomer conversion step to contain information
both on inter-conversion of low- and high-FRET oligomers, and the ultimate conversion
of high-FRET oligomers to growing fibrils. To interpret it more quantitatively, we start
by explicitly writing down the more detailed kinetic model that we believe governs the
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system:

dS1

dt
= koligom(t)2 − (kc1 + kd1)S1(t) (C.12)

dS2

dt
= kc1S1(t)− (kc2 + kd2)S2(t) + kLP (t) (C.13)

dP

dt
= kc2S2(t) + k−M(t) (C.14)

dM

dt
= 2k+m(t)P (t); M(t) +m(t) = m(0) (C.15)

where kc1S1(t) is the rate of conversion of low-FRET to high-FRET oligomers (whose
concentrations are given by S1(t) and S2(t) respectively); and kc2S2(t) is the rate of
conversion of high-FRET oligomers to fibrils; we have shown in Chapter 5 that these
processes likely occur; and kd1S1(t) and kd2S2(t) are the rates of dissociation of low-
and high-FRET oligomers, respectively. Fibril depolymerization experiments outlined in
Chapter 5 imply that reverse conversion of high- to low-FRET oligomers is not a major
process. The rate “constants” kc1 and kc2 may have dimer dependence (i.e. kc1m(t)n1).
We show in Chapter 5 that the basal oligomer concentrations seen at the end of the
aggregation reactions are likely due to disaggregation of high-FRET oligomers from fibrils;
we represent this here with kLP (t).

The concentration of S2(t) changes very little through most of the reaction compared
to the other species featuring in these equations, as well as being much lower than S1(t);
thus, applying the steady state approximation and setting its rate of change to zero is
reasonable. This gives us:

S2(t) = kc1
kc2 + kd2

S1(t) + kL
kc2 + kd2

P (t) (C.16)

O(t) = S1(t) + S2(t) = kc1 + kc2 + kd2

kc1
S2(t)− kL

kc1
P (t) (C.17)

dP

dt
= kc1kc2
kc1 + kc2 + kd2

O(t) + k−M(t) + kLkc2
kc1 + kc2 + kd2

P (t). (C.18)

If we compare to the coarse-grained equations in Chapter 5, we can identify the coarse-
grained “kc” in the steady-state limit to be approximately equal to kc1kc2

kc1+kc2+kd2
. This can

be simplified given that S2(t)� S1(t), and so kc2 + kd2 � kc1. In fact, as we know most
oligomers do not become fibrils, we likely have kd2 � kc2, and so our interpretation of
conversion becomes kc ' kc1kc2/kd2, i.e. the coarse-grained “conversion” rate constant is
proportional to those for both fine-grained conversion steps. We can furthermore identify
late-time underestimate of the total oligomer concentration data by the coarse-grained
model as being due to the neglected term proportional to P (t), as expected.

These results are essentially unchanged for non-zero conversion reaction orders - the
rate constants kc1 and kc2 are simply replaced by kc1m(t)n1 and kc2m(t)n2. Given that
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conversion is of principal importance early in the reaction before significant dimer deple-
tion has occurred, the reaction orders of conversion would be practically invisible from
analysis of datasets involving only a single initial dimer concentration, even if we had
separate datasets on low- and high-FRET oligomers of sufficient detail to model.

C.1.5 Bulk concentration-variable kinetic assay and analysis of
Ure2 fibril formation

A global kinetic analysis (Fig. C.1) of Ure2 fibril formation at different concentrations
(2.5 µM – 22.5 µM) was performed. At least three replicates were performed to check the
reproducibility and 3–5 repetitions were used for global fitting analysis.

Kinetic analysis was performed with the assistance of an online fitting platform,
AmyloFit [16]. In brief, the ThT curves of amyloid formation for Ure2 were normalized,
and the time to half-completion (t1/2) of each curve was plotted against initial concen-
tration of Ure2 according to the power-law, the slope of which gave the scaling exponent
γ. Here, we used the dimer concentration of Ure2 because Ure2 seldom dissociates into
monomers either in its native state or during fibril formation, as indicated both by pre-
vious studies [268, 269] and our intra-dimer FRET experiment [112]. The slopes of the
half-time plots are close to 0.5 (0.64 for WT Ure2, 0.57 for S68C and 0.60 for V9C as shown
in Fig. S4A), suggesting a fragmentation-dominant mechanism [77]. The concentration-
variable ThT curves were therefore fitted globally to a fragmentation-dominant model [21]
to obtain the kinetic parameters for fibril formation of WT, Ure2-S68C and V9C, allow-
ing comparison of the differences between them (Fig. C.1B-D). The normalized ThT data
were fitted globally to an analytical solution of the kinetics of breakable filament assem-
bly [21, 30]. In this framework, the evolution of the fibril mass concentration is given in
terms of the rate constants as a double exponential form as shown:

M(t)
mtot

= 1− exp
(
−C+e

κt + C−e
−κt + λ2

κ2

)
(C.19)

where M(t) is the concentrations of protein in fibrillar form at time t, mtot is the total
concentration of Ure2 and the constants, C+ and C−, are fixed by the initial conditions.

C± = ± λ2

2κ2 (C.20)

The λ and κ are two combined kinetic parameters related to the primary nucleation rate
kn, fibril elongation rate k+ and fibril fragmentation rate k−.

λ =
√

2k+knm(0)nc (C.21)

κ =
√

2k+k−m(0) (C.22)
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By globally fitting the normalized ensemble kinetics data, the combined parameters k+kn

and k+k− were obtained for each mutant and shown in the figures. kn/k− could be ob-
tained by the ratio of the above two parameters. As the fragmentation rate of the two mu-
tants under the same shaking conditions was the same (see Fig. C.2 and below), the ratios
of the nucleation rates kn(S68C)/kn(V9C) and the elongation rates k+(S68C)/k+(V9C)
were calculated and compared. The results show that the elongation rate of Ure2-S68C is
2.3-fold greater than that of V9C, and the amyloid nucleation rate of Ure2-S68C is about
2-fold greater than that for V9C under these experimental conditions.

C.1.6 Analysis of cross-seeded bulk experiments

Bulk cross-seeding experiments (Fig. C.2) were carried out at 18 ℃, in order to investigate
whether the difference observed in k+k− between the two mutants is due to a difference in
k+. First a batch of S68C seeds were produced and used to seed a solution of native S68C
and V9C protein separately, and then the same was done with V9C seeds (Fig. C.2). The
seed concentration was high enough that the initial slope was controlled by elongation.
The normalized ThT data were fitted globally to the same model as the unseeded data,
but with a non-zero initial fibril concentration, to yield the values of k+P (0) for each
dimer-seed combination, where P (0) is the initial seed fibril concentration. We cannot
calculate P (0) exactly, but we can assume its value is the same for reactions using the
same seed batch. Therefore the ratios of k+P (0) for each seed type give us the ratios of
the elongation rate constants onto each seed. These ratios were approximately 1.3–1.8:1
for S68C:V9C, added to S68C seeds; and 1:1 for adding to V9C seeds. Had these ratios
been the same, this would have provided strong evidence that the elongation rates were
seed-independent and that this ratio was therefore also the ratio of self-elongation rates.
However, we instead have evidence that elongation is seed-dependent. Furthermore, these
results suggest that the elongation rate for S68C is larger than for V9C (note that this is
not a conclusive result, as it is technically possible that the rate of addition of V9C dimer
onto S68C seed fibril is slower than that of S68C dimer onto V9C seed fibril).

An estimate of the average length of the seed fibrils (100 nm) further allowed us to
obtain an order-of-magnitude estimate for P (0), and therefore the absolute elongation
rates (approximately k+ = 40 µM−1h−1), and therefore also of the fragmentation and
nucleation rates (see Chapter 5). Theoretical analysis shows that these rates are consistent
with the formation of extended fibrils.

C.1.7 Determining fragmentation rates from analysis of fibril
length distributions

Fibril length distributions were measured at different time points after completion of
the aggregation reaction, as detailed in the above section. From these distributions, the

196



average fibril length was calculated at each time point. Knowing the dimensions of the
dimers (a = 1 nm) allows us to convert this to the average number of dimers per fibril,
L(t) = M(final)/P (t). Since we know all dimers are converted to fibrils, M(final) =
mtot = 15 µM, therefore, we can estimate P (t) from the measured average lengths as
P (t) = mtot/L(t). Examining the rate equation for P (t) (Eq. (4) in Chapter 5), we
find that after aggregation is completed dP/dt = k−M(final). Therefore, the quantity
k−M(final) is simply the gradient obtained from fitting P (t) vs t to a straight line. We
have carried out this procedure for both mutants (see Fig. C.3A and B), determining that
k−, averaged over the two sets of measurements is k− = (5.1 ± 2.3) × 10−5 h−1 for V9C
and k− = (5.4 ± 0.5) × 10−5 h−1 for S68C. The difference between these two values is
within experimental error, thus justifying our assumption in the main modelling that k−
is identical for the two mutants.

C.2 Supplementary Tables

Fitted Parameter Values Precision
no = 2 (default) no = 1 no = 3

k− /h−1 1.2× 10−4 1.4× 10−4 1.2× 10−4 OMa

koligom(0)no /µMh−1 3.6× 10−2 4.6× 10−2 2.9× 10−2 ±0.3× 10−2

kc (S68C) /h−1 2.3× 10−3 2.0× 10−3 2.3× 10−3 OMa

kc (V9C) /h−1 1.7× 10−3 1.5× 10−3 1.6× 10−3 OMa

kc ratio 1.4 1.3 1.4 ±0.3
kd (S68C) /h−1 0.60 0.89 0.47 ±0.08
kd (S68C) /h−1 0.45 0.67 0.36 ±0.05
kd ratio 1.3 1.3 1.3 ±0.3
Fitting error /MREb 1.6 2.1 1.4

Table C.1: Sensitivity analysis for varying oligomer formation reaction orders. aOM, order-of-
magnitude precision. bMRE, mean residual error.

Fitted Parameter Values Precision
np (V9C) = 0 np (V9C) = 1 np (V9C) = 3

k− /h−1 1.2× 10−4 1.2× 10−4 1.3× 10−4 OMa

koligo /µM−1h−1 1.6× 10−4 1.6× 10−4 1.6× 10−4 ±0.1× 10−4

kcm(0)np (S68C) /µMh−1 2.3× 10−3 2.2× 10−3 2.1× 10−3 OMa

kcm(0)np (V9C) /µMh−1 1.7× 10−3 1.7× 10−3 1.7× 10−3 OMa

kcm(0)np ratio 1.4 1.3 1.2 ±0.3
kd (S68C) /h−1 0.60 0.60 0.61 ±0.08
kd (S68C) /h−1 0.45 0.45 0.45 ±0.05
kd ratio 1.3 1.3 1.3 ±0.3
Fitting error /MREb 1.6 1.6 1.6

Table C.2: Sensitivity analysis for varying V9C oligomer conversion reaction orders np (V9C),
with S68C conversion reaction order np (S68C) = 0. aOM, order-of-magnitude precision. bMRE,
mean residual error.
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Fitted Parameter Values Precision
np (V9C) = 0 np (V9C) = 1 np (V9C) = 3

k− /h−1 1.2× 10−4 1.2× 10−4 1.3× 10−4 OMa

koligo /µM−1h−1 1.6× 10−4 1.6× 10−4 1.6× 10−4 ±0.1× 10−4

kcm(0)np (S68C) /µMh−1 2.4× 10−3 2.3× 10−3 2.2× 10−3 OMa

kcm(0)np (V9C) /µMh−1 1.7× 10−3 1.7× 10−3 1.7× 10−3 OMa

kcm(0)np ratio 1.5 1.4 1.3 ±0.3
kd (S68C) /h−1 0.59 0.60 0.60 ±0.08
kd (S68C) /h−1 0.45 0.45 0.45 ±0.05
kd ratio 1.3 1.3 1.3 ±0.3
Fitting error /MREb 1.6 1.6 1.6

Table C.3: Sensitivity analysis for varying V9C oligomer conversion reaction orders np (V9C),
with S68C conversion reaction order np (S68C) = 1. aOM, order-of-magnitude precision. bMRE,
mean residual error.

Fitted Parameter Values Precision
np (V9C) = 0 np (V9C) = 1 np (V9C) = 3

k− /h−1 1.2× 10−4 1.2× 10−4 1.3× 10−4 OMa

koligo /µM−1h−1 1.6× 10−4 1.6× 10−4 1.6× 10−4 ±0.1× 10−4

kcm(0)np (S68C) /µMh−1 2.7× 10−3 2.5× 10−3 2.4× 10−3 OMa

kcm(0)np (V9C) /µMh−1 1.7× 10−3 1.7× 10−3 1.7× 10−3 OMa

kcm(0)np ratio 1.6 1.5 1.4 ±0.3
kd (S68C) /h−1 0.59 0.59 0.60 ±0.08
kd (S68C) /h−1 0.45 0.45 0.45 ±0.05
kd ratio 1.3 1.3 1.3 ±0.3
Fitting error /MREb 1.6 1.6 1.6

Table C.4: Sensitivity analysis for varying V9C oligomer conversion reaction orders np (V9C),
with S68C conversion reaction order np (S68C) = 3. aOM, order-of-magnitude precision. bMRE,
mean residual error.
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C.3 Supplementary Figures

Figure C.1: Global fitting of the kinetics of fibril formation of WT Ure2 and its
variants. (A) Power-law scaling plot of half-time versus initial dimer concentration of WT
(red), Ure2-S68C (green), Ure2-V9C (blue). The slopes give the scaling exponent of each protein.
(B-D) The normalized ThT fluorescence curves of five concentrations of (B) WT Ure2, (C) Ure2-
S68C and (D) Ure2-V9C were globally fitted using the analytical solution with a fragmentation-
dominant mechanism (for details see SI Text). The concentrations shown in (B-D) are 2.5 µM
(pink), 5 µM (blue), 7.5 µM (cyan), 10 µM (green), 15 µM (yellow), and 22.5 µM (orange). The
ThT assay was carried out in a Fluostar Omega plate reader (BMGLabtech) at 30 ℃ with 200
rpm orbital shaking. Three to five repetitions were analyzed for each concentration.
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Figure C.2: Fibril formation kinetics of self-seeding and cross-seeding of Ure2 variants
monitored by ThT fluorescence. Solution of different concentrations of Ure2-S68C or Ure2-
V9C, 2.5 µM (orange), 5 µM (yellow), 7.5 µM (green), 10 µM (cyan), 15 µM (blue), 22.5
µM (pink), were incubated with 1.5 µM fibril seeds of Ure2-S68C or Ure2-V9C as indicated
in the figure. The seeding experiments were carried out in a Fluostar Omega plate reader
(BMGLabtech) at 18 ℃ with 200 rpm orbital shaking. The data were globally fitted to the
saturation-elongation model to obtain the ratio of the initial elongation rate constants for the
two protein variants and an estimation of the individual elongation rate constants.

Figure C.3: Kinetic analysis of fibril length distributions to determine fragmentation
rates. (A,B) Time evolution of fibril concentration P for each protein variant, as determined
from the average length, is fitted to a straight line, whose slope yields the fragmentation rate
constant (see Determining fragmentation rates from analysis of fibril length distri-
butions above).
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Appendix D

Classifying Amyloid Oligomers Using
Chemical Kinetics

The material in this appendix supports Chapter 6. It contains derivations, support-
ing theoretical results, fitted rate constants and other quantities. All work is my own
apart from the early-time solutions for secondary oligomers, which were carried out by
T. C. T. Michaels; and the simulations, which were performed by Anđela Šarić.

D.1 Rate equations and early-time solutions for oligomer-
mediated filament assembly

Here, we first obtain general rate equations for filament assembly via oligomeric intermedi-
ate species that explicitly include oligomer dissociation and optionally include secondary
growth processes such as fragmentation and secondary nucleation. We then solve them
for early times, before significant monomer has been depleted. We consider only one
oligomeric species; in principle there may be sub-populations, but in many cases such
systems can be usefully modelled assuming the oligomer population to be uniform, and
valuable insights obtained. We note that the methodology generalizes should we wish to
explicitly consider additional oligomeric intermediate species.

In our models, free monomers have concentration m(t), and monomers incorporated
into fibrils have concentrationM(t). Fibrils can elongate with rate constant k+. Oligomers
(concentration S(t)), once formed, may subsequently convert to growth-competent fibril-
type species (concentration P (t)) with a rate constant kconv, and an optional reaction order
with respect to monomers of nconv, or dissociate back to monomers with rate constant kd.
We ignore depolymerisation throughout, as at equilibrium monomer concentration is very
low in the systems studied and thus this process does not significantly affect the kinetics.
We further ignore filament annealing, as it has a negligible effect on the time profile of
the measured quantities M(t) and S(t).
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D.1.1 Primary oligomers

We first consider systems in which oligomers are formed only as intermediates of pri-
mary nucleation. Secondary processes may be present, but do not contribute directly to
oligomer formation.

Rate equations

Oligomers are formed only through a nucleation process (occurring with rate constant ko1
and reaction order no1). Neglecting certain small terms, we can then write rate equations
describing the system:

dS

dt
= ko1m(t)no1 − (kconvm(t)nconv + kd)S(t) (D.1a)

dP

dt
= kconvm(t)nconvS(t) + k2m(t)n2M(t) (D.1b)

dM

dt
= 2k+m(t)P (t) (D.1c)

dm

dt
= −2k+m(t)P (t), (D.1d)

When the secondary rate constant k2 = 0, we have no secondary processes. Where both
k2 and n2 are non-zero, we have secondary nucleation occurring on fibril surfaces (but
not contributing significantly to measured oligomer populations). We can also model
fragmentation with these equations by setting k2 = k− and n2 = 0. We finally define
ρc(t) = kconvm(t)nconv , and ρe(t) = ρc(t) + kd.

Solutions for early times

At early times, the monomer concentration can be considered to be approximately con-
stant at its initial value m(0) and we have a reduced set of equations:

d

dt
S(0)(t) = α1 − keS(0)(t) (D.2a)

d

dt
P (0)(t) = kcS

(0)(t) + k2m(0)n2M (0)(t) (D.2b)
d

dt
M (0)(t) = 2k+m(0)P (0)(t), (D.2c)

where α1 = ko1m(0)no1 , ke = ρe(0), and kc = ρc(0). These can be solved for unseeded
initial conditions to give early-time analytic expressions. These are given by:

S(0)(t) = α1

ke
(1− e−ket) (D.3a)

P (0)(t) = α1kc
2κ(ke + κ)e

κt + α1kc
2κ(κ− ke)

e−κt + α1kc
(k2
e − κ2)e

−ket, (D.3b)
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where κ =
√

2k+k2m(0)n2+1.
This is identical in form to the early-time solution for P (t) in the equivalent model without
oligomeric intermediates [30], apart from the final component proportional to ke. When κ
is non-vanishing, this component vanishes in comparison to the leading-order term when

e(κ+ke)t �
∣∣∣∣ 2κ
ke − κ

∣∣∣∣
(κ+ ke)t > ln(2) (taking the largest possible value of the RHS)

∴ t > (κ+ ke)−1.

In this (usually-attained) limit, ignoring rapidly-decaying components gives:

S(0)(t) = α1

ke
(1− e−ket) (D.4a)

P (0)(t) = α1kc
2κ(ke + κ)(eκt − 1). (D.4b)

On the other hand, when k2 = 0 such that minimal secondary processes are present,
Eqs (D.3a) and (D.3b) reduce to:

S(0)(t) = α1

ke
(1− e−ket) (D.5a)

P (0)(t) = α1kc
k2
e

(e−ket + ket− 1), (D.5b)

and we see that the solution for P (t) is functionally identical to that for the direct-
nucleation model [36] in the limit t � k−1

e . From Eq. (D.5a) we see that this is merely
the steady-state condition for oligomers. We also note that if this steady-state condition
is satisfied, then trivially the condition for simplified secondary processes kinetics t >
(κ+ ke)−1 is also satisfied.

We later derive full-time solutions for M(t) from a self-consistent relation Eq. (D.23b)
that depends only on k+, m(0) and P (0)(t). In the limits discussed above, the solutions
for the fibril mass concentration are therefore identical in form to those obtained in prior
bulk studies that consider filament formation via single-step nucleation [21]. These limits
can then be interpreted as adjustment timescales, indicating the time that must elapse
before the kinetics of oligomer-mediated fibril formation become identical to those of fibril
formation without intermediates.

D.1.2 Secondary oligomers

We now consider the case in which secondary nucleation occurs via significant levels
of oligomeric intermediates (“secondary oligomers”). The early-time equations have a
substantially different form, necessitating their separate treatment.
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Rate equations

With the rate of primary oligomer formation given by ko1m(t)no1 , and the rate of secondary
oligomer formation given by ko2m(t)no2M(t), we may write down the moment equations:

dS(t)
dt

= ko1m(t)no1 + ko2m(t)no2M(t)− [kconvm(t)nconv + kd]S(t) (D.6)

dP (t)
dt

= kconvm(t)nconvS(t) (D.7)

dM(t)
dt

= 2k+m(t)P (t). (D.8)

Solutions for early times

At early times, the monomer concentration can again be considered to be approximately
constant at its initial value m(0) and we have a reduced set of equations:

dS(0)(t)
dt

= α1 + α2M
(0)(t)− keS(0)(t) (D.9)

dP (0)(t)
dt

= kcS
(0)(t) (D.10)

dM (0)(t)
dt

= 2k+m(0)P (0)(t), (D.11)

where α2 = ko2m(0)no2 . These may be solved (see TCTM); the dominant terms of the
solution are:

S(0)(t) = α1

3κ̄
(
eκ̄t − 1

)
(D.12)

P (0)(t) = α1kc
3κ̄2

(
eκ̄t − 1

)
(D.13)

M (0)(t) = λ̄3

3κ̄3

(
eκ̄t − 1

)
, (D.14)

where

λ̄ =
(
2kconvk+ko1m(0)no1+nconv

)1/3
, and (D.15)

κ̄ =
(
2kconvk+ko2m(0)no2+nconv+1

)1/3
. (D.16)

Comparison to bulk models

In bulk models, the early-time solutions have the same functional forms, but instead of κ̄
we have κ = (2k+k2m(0)n2+1)1/2. These parameters must be equivalent; equating them
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we can resolve the bulk secondary nucleation rate parameters as:

k2 = (kconvko2)2/3

(2k+)1/3 , and (D.17)

n2 = (2no2 + 2nconv − 1)/3. (D.18)

Furthermore, in traditional bulk models we have the exponential prefactor λ2/(2κ2), where
λ =

√
2k+knm(0)nc . Simplifying the prefactors gives:

λ2

2κ2 = 2k+knm(0)nc
4k+k2m(0)n2+1 = kn

2k2
m(0)nc−n2−1 = kn

2k2
m(0)nc−(2no2+2nconv−1)/3−1 (D.19)

λ̄3

3κ̄3 = 2kconvk+ko1m(0)no1+nconv

6kconvk+ko2m(0)no2+nconv+1 = ko1
3ko2

m(0)no1−no2−1 (D.20)

Thus, equating the two we may express the bulk primary nucleation parameters as:

kn = 2ko1k2/3
conv

3(2k+ko2)1/3 (D.21)

nc = no1 + (2nconv − no2 − 1)/3. (D.22)

D.2 Full-time solutions without secondary nucleation

Our approach for calculating solutions valid for all times is different for systems without
secondary nucleation to those with secondary nucleation. Here, we follow the approach
used in [21] to derive full-time expressions forM(t) and S(t), for systems featuring primary
nucleation via oligomeric intermediates, elongation, and optionally fragmentation.

D.2.1 Solutions for fibril concentrations for all times

We first reformulate Eqs.(D.1c) and (D.1d) as an integral equation for m(t):

d lnm(t)
dt

= −2k+P (t) (D.23a)

M(t) = m(0)
(

1− exp
[
−2k+

∫ t

0
P (τ)dτ

])
(D.23b)

By substituting a suitable approximate expression for P (t) in the right-hand side, we can
derive a 1st-order self-consistent approximate expression forM(t) [21]. For fragmentation,
using Eq.(D.4b) gives an accurate solution:

M (1)(t) = m(0)
(

1− exp
[
− λ2

2κ2 (eκt − κt− 1)
])

, (D.24)
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with

λ =
(

2k+ko1
kconv
ke + κ

m(0)no1+nconv

)1/2

. (D.25)

D.2.2 Connecting to bulk models

This expression has the same functional form the expressions derived in ref. [21] for the
kinetics of fragmenting systems. This is to be expected given the assumption that we have
made that oligomers do not comprise a large proportion of the system mass. Comparing,
we can firstly see that both expressions have the same dependence on the parameter κ.
Secondly we can identify the bulk nucleation rate knm(0)nc as:

knm(0)nc = ko1
kconv

(kconvm(0)nconv + kd + κ)m(0)no1+nconv . (D.26)

In the limit of fast conversion or at high enough concentrations, oligomerisation becomes
the rate-limiting step, and we can identify kn = ko1, as expected (and also nc = no1).
At low enough concentration, we identify instead nc = no1 + nconv. We see immediately,
therefore, that introducing an oligomeric intermediate permits the bulk nucleation reac-
tion order to vary over a sufficiently large concentration range, a phenomenon that has
been observed but not explained in bulk studies of aggregation. Finally, in the limit of
fast dissociation, we identify kn = ko1

kd
kconv, in other words the conversion rate multiplied

by the equilibrium constant for oligomerization; and nc = no1 + nconv. This is simply the
pre-equilibrium oligomer concentration multiplied by the conversion rate.
The time-dependent evolution of m(t) can be seen to approximately depend only on κ

and λ, or k+k2, n2, k+ko1kconv, no1 +nconv and ke. In the right concentration regime, such
that kconvm(0)nconv ' kd + κ, we may resolve ke into its components; more typically, we
expect instead ke ' kd.
For no fragmentation, the same approach leads to:

M (1)(t) = m(0)
(

1− exp
[
−λ

2

k2
e

(
1− ket+ 1

2(ket)2 − e−ket
)])

. (D.27)

D.2.3 Solution for oligomer concentrations for all times

We can now use our first-order self-consistent solution for fibril mass to calculate a second-
order self-consistent solution for oligomer concentration. We re-formulate Eq. (D.1) as an
integral equation:

S(2)(t) = e−
∫ t

ρe(τ)dτ
∫ t

0
e
∫ t

ρe(τ)dτko1m
(1)(t)no1dτ, (D.28)

where ρe(t) = kconvm
(1)(t)nconv + kd. For a non-zero nconv this is intractable. However,

by assuming ρe(t) to be slowly varying (as, indeed, it usually is) we may assume it to be
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constant for the purposes of integration, permitting the integral to be solved analytically.
Firstly we approximate

∫ t ρe(τ)dτ = tρe(t) in line with the above assumption. Using
conservation of mass, substituting Eq. (D.24), and the substitution x = eρeτ , we arrive at
the solution:

S(2)(t) = α1

κ
ez
(
e−ρe(t)t Ei

[
1− z − ρ(t)

κ
, z

]
− ezκt Ei

[
1− z − ρ(t)

κ
, zeκt

])
, (D.29)

where z = no1λ
2/κ2, and Ei[ν, z] is the generalized exponential integral function.

In the case of no secondary processes, we obtain:

S(2)(t) = α1 e
−ρet

∫ t

0
exp

[
ρeτ +B

(
e−keτ − 1

2(keτ)2 + keτ − 1
)]
dτ, (D.30)

where B = no1λ
2/k2

e . Typically B � 1 so, for keτ . 1, the integrand exponent is
dominated by the first term, ρeτ . Where keτ � 1, the exponent is dominated by the non-
exponential terms. Thus at all times it is typically acceptable to neglect the exponential
term in the integrand exponent. Doing so allows us to evaluate the integral, giving:

S(2)(t) = α

2

√
π

g
exp

[
k2

4g −B
]
e−ket

(
erf

[
k

2√g

]
+ erf

[
2 g t− k

2√g

])
(D.31)

with g = k2
eB/2 and k = ke(1 +B). This simplifies to:

S(2)(t) = α

ke

√
π

2B exp
[

(1 +B)2

2B −B
]
e−ket

(
erf

[
1 +B√

2B

]
+ erf

[
Bket− 1−B√

2B

])
.

(D.32)

D.2.4 Controlling parameters

We see here that oligomer populations are to a good approximation controlled by α1, κ, z
and ρ(t). In the usual case where kd � kc, ρ(t) reduces to kd. Thus essentially the same
dimensionless combinations of rate parameters control S(t) as control m(t). However,
S(t) can be used to more easily resolve kd from ke.

D.3 Full-time solutions for systems featuring secondary
nucleation

Systems featuring secondary nucleation are better treated with an alternative approach,
as the self-consistent approach described in [21] is less accurate in this case. [30,50].
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D.3.1 Full-time expressions for M(t)

There is no single way to derive accurate approximate expressions for M(t). We prefer
the approach taken in Chapter 10, and write:

M(t)
m(0) = 1− 1

(1 +M (0)(t)/c)c , (D.33)

where M (0)(t) = λ2

2κ2 (eκt − 1) for secondary nucleation without secondary oligomers, and
M (0)(t) = λ̄3

3κ̄3 (eκ̄t − 1) for secondary nucleation via secondary oligomers. Furthermore,
c = 3/(2n2 + 1). Where secondary oligomerization occurs, n2 is given by Eq. (D.18);
otherwise it is a fundamental parameter in the rate equations.

D.3.2 Full-time expressions for S(t)

Using Eq. (D.33) as an input, we may once more take a self-consistent approach to cal-
culating expressions for S(t).

No secondary oligomers

In the case of secondary nucleation without secondary oligomers, we may again use the
self-consistent expression Eq. (D.28). Taking the same approach to ρe(t) as before, we
yield:

S(1)(t) = α1e
−ρe(t)t

ρe(t)

(
c

c− A

)c no1
(
eρe(t)t2F1

[
c no1,

ρe(t)
κ

, 1 + ρe(t)
κ

,
A

A− c
eκt
]

−2F1

[
c no1,

ρe(t)
κ

, 1 + ρe(t)
κ

,
A

A− c

])
, (D.34)

where 2F1(a, b, c, z) denotes the hypergeometric function, and A = λ2/2κ2.

Including secondary oligomers

In the case of secondary nucleation via oligomeric intermediates, we instead turn Eq. (D.6)
into an integral equation:

S(1)(t) = e−
∫ t

ρe(τ)dτ
∫ t

0
e
∫ t

ρe(τ)dτko1m
(1)(t)no1dτ

+ e−
∫ t

ρe(τ)dτ
∫ t

0
e
∫ t

ρe(τ)dτko2m
(1)(t)no2(m(0)−m(1)(t))dτ. (D.35)

We note that the first integral is identical to that used just previously. We may then
write:

S(1)(t) = S
(1)
prim(t) + S(1)

sec(t) (D.36)
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with:

S(1)
sec(t) = α2m(0)e−ρe(t)t

ρe(t)

(
c

c− Ā

)c no2
(
eρe(t)t2F1

[
c no2,

ρe(t)
κ̄

, 1 + ρe(t)
κ̄

,
Ā

Ā− c
eκ̄t
]

−2F1

[
c no2,

ρe(t)
κ̄

, 1 + ρe(t)
κ̄

,
Ā

Ā− c

])

− α2m(0)e−ρe(t)t
ρe(t)

(
c

c− Ā

)c (no2+1)
(
eρe(t)t2F1

[
c (no2 + 1), ρe(t)

κ̄
, 1 + ρe(t)

κ̄
,

Ā

Ā− c
eκ̄t
]

−2F1

[
c (no2 + 1), ρe(t)

κ̄
, 1 + ρe(t)

κ̄
,

Ā

Ā− c

])
, (D.37)

where Ā = λ̄3/(3κ̄3), and:

S
(1)
prim(t) = α1e

−ρe(t)t

ρe(t)

(
c

c− Ā

)c no1
(
eρe(t)t2F1

[
c no1,

ρe(t)
κ̄

, 1 + ρe(t)
κ̄

,
Ā

Ā− c
eκ̄t
]

−2F1

[
c no1,

ρe(t)
κ̄

, 1 + ρe(t)
κ̄

,
Ā

Ā− c

])
. (D.38)

D.4 Key oligomer properties

We are interested in using kinetics to uncover commonalities and differences between dif-
ferent amyloid oligomer populations. To do so, we focus on 3 key properties of oligomers
that can be revealed through kinetic analysis: kinetic stability relative to monomer, ther-
modynamic stability relative to monomer, and fertility: the degree to which oligomers
convert to fibrils rather than dissociate.

Kinetic stability of oligomers relative to monomers can be simply indicated from a
ratio of half-times. The half-time for monomer depletion, τh, can be computed from fit-
ted parameters, but can also simply be read off from kinetic plots of M(t) vs t. The
half-life for oligomers under constant-monomer conditions, th, is given by ln(2)/ke. For
primary oligomers, relative thermodynamic stability is given by the steady-state concen-
tration of oligomers attained when m(t) is held at its initial value of m(0): Sss/mtot =
koligom(0)no/(kem(0)). Finally, initial oligomer fertility is given by kc/ke. These parame-
ters, computed for several different oligomer types, are given in Table D.1.
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Ure2 (S68C) Tau A Tau B Aβ42 αS αS + Nb2 αS + Nb87
koligo 1.6× 10−4 7.6× 10−2 2.8× 10−3 2.9× 10−2 4.0× 10−4 1.0× 10−3 1.0× 10−3

mtot 15 8.5 8.5 5 35 70 70
no 2 1 1 0.9 0.9 1 1
kd 0.60 4.6 0.20 0.36 0 0.20 0.25
kc 2.3× 10−3 1.6× 10−2 0 3.3× 10−2 9.5× 10−2 1.2× 10−1 1.2× 10−1

th 1.2 0.15 3.5 1.8 7.3 2.2 1.9
kc/ke 0.38% 0.34% 0% 8.4% 100% 38% 32%
τh 8.5 2.7 2.7 0.75 34.3 40 120
th/(th + τh) 12% 5.3% 56% 70% 18% 5.1% 1.5%
Sss/mtot 0.4% 1.7% 1.4% 8.3% 0.28% 0.31% 0.27%

Table D.1: Best-fit rate constants, and time scales, for the oligomers considered in Fig. 6.6 in
the main text. Concentration units: µM. Time units: h. The oligomer lifetime th = ln 2/ke, and
the monomer half-life τh can be read directly from plots of fibril mass concentration vs time at
the desired concentration.

D.5 Secondary oligomerization of Aβ42

Fitting the above analytical model to data on Aβ42 oligomerization and fibril forma-
tion by T. C. T. Michaels in an unpublished manuscript led to the following rate con-
stants (units h, µM): k+ = 1.1 × 104 µM−1h−1, ko1 = 3.8 × 10−3 µM0.7h−1, ko2 =
2.9 × 10−2 µM−0.9h−1, no1 = 0.3, no2 = 0.9, ke = 4.0 × 10−1 h−1, kconv = 4.3 ×
10−4 µM−2.7h−1, nconv = 2.7.

The dominant mechanism of oligomer formation in Aβ42 aggregation is secondary
oligomerization. For the purposes of computing thermodynamic stability of oligomers
relative to monomers (S/m) we therefore neglect primary oligomers.

The maximum rate of secondary oligomer formation can be easily shown to occur
at an intermediate reaction time ti where m(ti) = no2

no2+1mtot. The maximum possible
oligomer concentration that can be formed in a generic secondary oligomerization reaction
occurs if oligomers equilibrate with monomers far faster than monomers are depleted at
this intermediate stage of the aggregation reaction. In practice this concentration is not
usually reached, as monomer depletion is usually rapid at these reaction times. However,
it is a useful analogue of the theoretical maximum primary oligomer concentration, being
the maximal concentration obtainable if m(t) and M(t) are held at steady-state.

We thus calculate Sss/mtot by equilibrating oligomer formation and depletion at this
time:

Sss

mtot
= ko2m(ti)no2(m(0)−m(ti))

kem(0) . (D.39)
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D.6 Fibrillar oligomer bounds

Ure2 (S68C) Tau A Tau B Aβ42 αS
mtot 15 8.5 8.5 5 35
k+ 50 59+ 59+ 1.1× 104 6.0∗

kn 4.0× 10−7 3.0× 10−4 3.0× 10−4 1.1× 10−6 4.3× 10−5∗∗

nc 2 1 1 2 0.26∗∗∗

k2 1.2× 10−4 3.6× 10−5

n2 0 2
Smax 6.0× 10−2 0.16 4.8× 10−2 7.5× 10−2 0.3†

SF 6.0× 10−6 2.2× 10−4 2.2× 10−4 4.2× 10−6 6.0× 10−5‡

SF /Smax 1.0× 10−4 1.4× 10−3 4.6× 10−3 5.6× 10−5 2× 10−4

Table D.2: Calculating theoretical upper bound for fibrillar oligomer concentration, SF , using
x = 100; and comparing it to observed peak oligomer concentration, Smax. Concentration units:
µM. Time units: h. *Taken from ref. [270]; conditions similar to those in oligomer-forming
experiments. **Highest reported value (ref. [15]). ***Corresponding to highest reported value
for kn (ref. [15]). +Lower bound estimated from average fibril length. †Using either low- or
high-FRET populations. ‡Using twice the highest reported kn.

D.7 Oligomer simulations

We used a near-minimal coarse-grained model model developed in Ref. 113. In this model
a protein is described as a hard rod decorated with an attractive patch that represents the
generic interaction between the proteins, such as charged, hydrophobic, polar interactions,
and H-bonding. For soluble proteins, one weakly-attractive patch is placed on the tip of
the rod, driving the formation of oligomers. Proteins in the fibril-forming state interact
via a side-positioned patch, which are strong and drive the formation of stable fibrils. We
run Monte Carlo simulations, with small translational and rotational moves, with random
swaps between the soluble and fibril-forming state. The swap is penalised with an excess in
chemical potential to capture the fact that amyloidogenic proteins are rarely found in a β-
sheet-prone state on their own, without binding partners. All the simulations are done by
placing 600 proteins in a box of constant volume, which gives rise to the targeted protein
concentration. Oligomer concentration is analysed using an in-house cluster algorithm,
while the probability of oligomer conversion is computed as in Ref. 114.
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Appendix E

Thermodynamics of Aβ co-oligomer
formation

The material in this appendix contains derivations and additional theoretical results in
support of Chapter 7. The first section contains results derived by G. A. Garcia that are
helpful for understanding the main text. The remaining sections are my own work.

E.1 Self-Oligomer Modelling

A streamlined statistical mechanical model was developed by G. A. Garcia [161] to de-
scribe equilibrium oligomer size distributions and to extract the free energy of oligomer
growth by single-species monomer addition. For the simple case of a single aggregating
protein type, the equivalence of the proposed model to a well-established thermodynamic
approach was demonstrated. Filamentous growth was assumed, such that oligomers are
treated as one-dimensional chains. Nearest-neighbour interactions were taken to domi-
nate the partition function of each oligomer and were assumed independent of oligomer
size. A single equilibrium constant K then describes oligomer formation and growth at
temperature T in a reaction volume V . We summarize here the key equations describing
this model.

E.1.1 Statistical Mechanical Linear Oligomer Model

The grand canonical partition function for a system containing linear oligomers up to size
M, assuming no interaction between oligomers, is found to be

Ξ(T, V, µ) = exp
 M∑
j=1

qj(T, V ) eβjµ
 . (E.1)
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where qj(T, V ) is the canonical partition function of a j-mer. The number of clusters of
size j is then given by

Nj(T, V ) = qj(T, V ) eβjµ. (E.2)

The partition function qj(T, V ), or q(j), can be factorized into translational and internal
components: q(j) = qtrans(j) qint(j). The translational partition function qtrans(j) is pro-
portional to the system volume, and so can be written as qtrans = V/v0(j), where v0(j)
is a fundamental volume (in the gaseous phase, it is given by the cube of the thermal
wavelength). The concentration of j-mers is given by f(j) ≡ Nj(T, V )/(NA V ), where NA

is Avogadro’s number:
f(j) = 1

NA v0(j) qint(j) eβjµ. (E.3)

The chemical potential µ is set implicitly by conservation of the initial total monomeric
protein concentration mtot:

M∑
j=1

jf(j) = − 1
NA V

kB T

Ξ
∂Ξ
∂µ

= mtot. (E.4)

E.1.2 Oligomer partition function

We assume size-independent oligomer growth and shrinkage rates, such that qint(j) ≈
e−β ε (j−1) and v0(j) ≡ v0. The resulting expression for the oligomer size distribution is:

f(j) = 1
NA v0

e−β ε (j−1) eβ j µ. (E.5)

The now size-independent standard free energy change ∆G◦ upon addition of a monomer
to an oligomer is:

∆G◦ = −RT lnK = −RT ln
f(j+1)
c0

f(1)
c0
· f(j)
c0

= ε−RT ln (NA c0 v0) . (E.6)

This permits us to rewrite Eq. (E.5) in terms of ∆G◦ as:

f(j) = e−β (j−1)∆G◦ eβ j (µ−RT ln (NA c0 v0)) = e−β (j−1)∆G◦ eβ j µ
′
, (E.7)

with µ′ set implicitly as before. This also shows that ε is the internal free energy measured
at standard concentration c0 = 1/(NAv0).

E.2 Co-oligomerization model

Fitting the above single-species model to the data shown in Chapter 7 allowed the de-
pendence of oligomer concentration on oligomer length to be determined, and was found
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that, at the concentrations studied, almost all oligomers are dimeric. The following sec-
tion therefore shows how, considering only monomers and dimers, the modelling approach
can be extended to describe the co-oligomerization of more than one monomer species.
Such a technique provides a usable model that was fitted to Aβ40-Aβ42 co-oligomerization
data to give the free energy of cross-elongation between the two species.

The grand canonical partition function for a co-oligomerizing ensemble of 2 different
monomer types, labelled a and b, up to a maximum oligomer size of 2, can be written as:

Ξ(T, V, ~µ) =
∞∑

Na=0

∞∑
Nb=0

∞∑
Naa=0

∞∑
Nbb=0

∞∑
Nab=0

(
qa(T, V ) eβµa

)Na
Na!

(
qb(T, V ) eβµb

)Nb
Nb!(

qaa(T, V ) eβ2µa
)Naa

Naa!

(
qbb(T, V ) eβ2µb

)Nbb
Nbb!

(
qab(T, V ) eβ(µa+µb)

)Nab
Nab!

(E.8)

This becomes:

Ξ(T, V, ~µ) = exp
(
qa e

βµa + qb e
βµb + qaa e

2βµa + qbb e
2βµb + qab e

β(µa+µb)
)
, (E.9)

where e.g. qab gives the canonical partition function for a mixed dimer. The concentration
f(ij) of dimers of composition ij is given by:

f(ij) = 1
NAV

qij e
β(µi+µj). (E.10)

As with self-oligomers, if nearest-neighbour interactions dominate we may rewrite this in
terms of the interaction free energy ∆G◦ij between monomers of types i and j as:

f(ij) = eβ∆G◦ij eβ(µi+µj). (E.11)

The chemical potential µi of monomer type i is defined for corresponding initial type i
total monomeric protein concentration mi

tot by

f(a) + f(ab) + 2f(aa) = − 1
NA V

kB T

Ξ
∂ Ξ
∂ µa

= ma
tot,

f(b) + f(ab) + 2f(bb) = − 1
NA V

kB T

Ξ
∂ Ξ
∂ µb

= mb
tot. (E.12)

E.3 Application to present work

The single-species model, in conjunction with the fitted single-species values for oligomer-
ization free energy, can be used to calculate the proportion of oligomers in the single-
species experiments that are dimers. At the range of concentrations explored in this
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study, this proportion ranges from 90-100%. Total observed oligomer concentrations are
lower in the 2-species experiments, implying cross-oligomerization to be less favorable
than single-species oligomerization, and therefore that the proportion of oligomers larger
than dimers is even lower than in the single species experiments. Under such conditions it
is therefore appropriate to fit the 2-species oligomer data to our dimer-only model derived
to estimate ε40−42. Error inherent in the model due to neglection of larger oligomers is
expected to be smaller than experimental error.

E.4 Correcting for experimental observations and fit-
ting

E.4.1 Self-oligomers

In each experiment, half of the monomer species are labeled “red”, and the other half
“blue”. Only oligomers which contain at least one red monomer and at least one blue
monomer are accounted for; all single-color species detected are branded free monomer
molecules by the experimental procedure, and the two labels are assumed to have no
differing effects besides introducing a degree of distinguishability between molecules.

Eq. (E.3) is thus modified to take into account the two colors:

f(j1, j − j1) = 1
NA v0

e−β ε(j−1)eβ j µ
(
j

j1

)
(E.13)

where f(j1, j2) denotes the concentration of oligomers of size j = j1 + j2 monomers, of
which j1 are red and j2 are blue. The apparent size distribution fexp(j) is then:

fexp(j) =


∑M
j1=1 f(j1, 0) +∑M

j2=1 f(0, j2) j = 1∑j−1
j1=1 f(j1, j − j1) j > 1

. (E.14)

Combining Eqs. (E.13) and (E.14), the total apparent oligomer concentration Fexp is given
by:

Fexp =
M∑
j=2

2j−1

NA v0
e−β ε(j−1)eβ j µ (E.15)

The conservation-of-mass condition is also modified, and becomes:

M∑
j=1

j∑
j1=0

j1 · f(j1, j − j1) = −1
2

1
NA V

kB T

Ξ
∂Ξ
∂µ

= 1
2mtot. (E.16)

Eq. (E.15), withM chosen to be large enough to encompass virtually all oligomers, can
be fitted directly via least-squares methods to experimental measurements of equilibrium
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oligomer concentrations, with ε as the sole fitting parameter. At each step, µ is evaluated
numerically from the implicit analytical conservation-of-mass condition Eq. (E.16).

E.4.2 Co-oligomers

For two species, one labeled red (type 1) and the other blue (type 2), we can fit the
expression for f(ab) directly to experimental measurements, where f(ab) is explicitly
given by

f(ab) = V

v0
e−βεab eβ(µa+µb) (E.17)

The fitting procedure now involves evaluating both chemical potentials µa and µb

at each stage numerically from implicit algebraic expressions, obtained via Eq. (E.12).
The sole fitting parameter is ε1,2, once ε1,1 and ε2,2 are established from fits to self-
oligomerization data sets [161]. An appropriate choice of v0 allows us to identify ε1,2 with
the dimerization free energy ∆G◦1,2 [161]. Errors are estimated by manually varying the
parameter until the resulting curve no longer falls within the majority of the error bars
on the datapoints. All experiments were carried out at T = 37 ◦C, and this is used to
calculate an appropriate value of β for the fitting.

E.5 Simulating different concentrations and ratios

Once all elongation free energies have been found from fitting, the expressions above
can be used to simulate co-oligomerization equilibrium concentrations of different species
for a range of concentrations of each monomer type (provided we remain within the
range of concentrations at which dimers dominate), with the chemical potentials set in
all cases by Eq. (E.12). The composition distribution f(ij) can be calculated explicitly,
and the total oligomer concentrations can be predicted from their sum. The results can
be seen in Fig. E.1, and in Fig. 3 of Chapter 7. Finally, it is of interest to consider the
maximum predicted total equilibrium oligomer concentration. This is capped because
the equilibrium monomer concentration is limited by the CAC. Using the CAC as an
accurate estimate for the total concentration of abeta in monomers and in oligomers,
we can calculate the maximum possible total equilibrium oligomer concentration to be
approximately 44 nM. The approximation that oligomers are predominantly dimers is at
its least accurate at this upper limit of the monomer concentration; however, we estimate
that the error introduced to the total oligomer concentration by this approximation is no
more than 5%. To arrive at this error estimate, we simulated a single-species system at the
same total monomer concentration, using the single-species oligomerisation free energy of
Aβ40, and discovered that when the permitted oligomer species were restricted to dimers
the calculated total oligomer concentration is 95% of the total oligomer concentration
obtained when all oligomer lengths are permitted.
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Figure E.1: Simulation of Aβ40-Aβ42 co-oligomerization equilibrium behavior at 5 nM (blue)
and 10 nM (red) total Aβ concentration for a range of Aβ40:Aβ42 ratios, using elongation free
energies obtained from fitting to experimental data (see Figure 2 in Chapter 7). A clear difference
is seen in total oligomer concentrations between the two monomer concentrations (a), although
the oligomer percentage breakdowns at both concentrations are virtually identical, with red and
blue lines overlapping (b).
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Appendix F

Thermodynamics of αS co-oligomer
formation

This appendix is mostly given over to an unpublished linear co-oligomer model developed
by G. A. Garcia, employed throughout Chapter 8. It is prefaced by a brief analysis of
oligomer sizes carried out by myself.

Protein Error in
combination ∆G◦ /kJmol−1 ∆G◦
A30P-A30P -26.9 1.37
A53T-A53T -25.2 0.44
E46K-E46K -28.7 0.59
k18-k18 -19.4 0.49
WT-WT -24.0 0.31
WT-A30P -24.4 0.85
WT-A53T -27.1 0.46
WT-E46K -28.7 0.64
WT-k18 -22.7 0.75
WT-Aβ40 -29.4 0.62
WT-Aβ42 -30.8 1.03

Table F.1: ∆G◦ values of oligomerisation, derived from the fitting of sm-TCCD data as described
in the main text. The summary of these values is in Fig. 8.3 (main text).

F.1 Oligomer sizes

Having used the linear model outlined in [161] to determine self-oligomer ∆G◦s, it is
possible to simulate oligomer size distributions formed by different αS mutants at different
initial monomer concentrations. It may be shown that, at the concentrations visited by our
study, oligomers formed by the mutants under investigation are predominantly dimeric.
For example, at 1 µM, 99% of oligomers formed by WT αS are dimeric. The steep decline
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in the size distributions implies that possible deviations from linear geometry at larger
sizes will not significantly perturb our analysis, justifying our choice of a linear model.

F.2 Co-oligomer modelling

We now present a model for co-oligomerization of two species to form linear oligomers
of any length developed by G. A. Garcia, building on the single-species linear model
presented in [161].

F.2.1 Exact solution

The grand canonical partition function for a co-oligomerizing ensemble of 2 different
monomer types is given as a direct generalization of the single-species partition function
in [161]:

Ξ(T, V, ~µ) = exp
 ∞∑
j1=0

∞∑
j2=0

q~j(T, V ) eβ~j·~µ
 , (F.1)

where ~j = (j1, j2) is a composition vector whose components ji describe the number of
monomeric residues of type i. Similarly, ~µ = (µ1, µ2) with µi being the chemical potential
associated with species i, q~j gives the canonical partition function for an oligomer with
composition described by ~j. If nearest-neighbor interactions dominate, q~j(T, V ) is given
by:

q~j(T, V ) ≈ V

v0

∑
o(~j)

e−β U(~j,o(~j)), (F.2)

where U(~j, o(~j)) denotes the internal energy of an oligomer with composition ~j and with
monomer units arranged in an order specified by o(~j); a sum must be carried out over all
possible arrangements. The concentration of oligomers with composition ~j is then given
by:

f(~j) = 1
NAv0

∑
o(~j)

e−β U(~j,o(~j)) eβ
~j·~µ. (F.3)

The chemical potential µi of monomer type i is defined for corresponding initial type i
total monomeric protein concentration mi

tot by

∞∑
j1=0

∞∑
j2=0

ji f(~j) = − 1
NA V

kB T

Ξ
∂ Ξ
∂ µi

= mi
tot. (F.4)

Carrying out the sum over configurations

The sum over arrangements o(~j) can be carried out by noting that if the composition
~j = (j1, j2) and the number of cross-bonds x present in a J-mer is known, then U(~j, o(~j))
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is almost uniquely defined. There are three cases to consider.
Case 1: x is even and the chain terminates with type 1 monomers on both ends. We then
have x/2 distinct sequences of type-2 monomers within the oligomer, and the number of
2-2 bonds is j2−x/2. The remaining j1− 1−x/2 bonds are 1-1, and the maximum value
of x is the smaller of 2(j1 − 1) and 2j2.
Case 2: x is even and the chain terminates with type 2 monomers on both ends, and the
number of 1-1 and 2-2 bonds are j1−x/2 and j2−1−x/2 respectively, with the maximum
value of x being the smaller of 2(j2 − 1) and 2j1.
Case 3: x is odd. There are (x − 1)/2 internal domains of each type, and 1 external
domain. Thus the number of self-bonds of type-i is ji − (x + 1)/2, and the maximum
allowed value of x is the smaller of 2j1 − 1 and 2j2 − 1.

These three cases all give different energies for a given value of x, so indexing the case
number with c, we may write the energy U(~j, o(~j)) as E(j1, j2, x, c):

E(j1, j2, x, 1) =
(
j1 − 1− x

2

)
ε1,1 +

(
j2 −

x

2

)
ε2,2 + x ε1,2, 1 ≤ x

2 ≤ Min(j1 − 1, j2)

(F.5)

E(j1, j2, x, 2) =
(
j1 −

x

2

)
ε1,1 +

(
j2 − 1− x

2

)
ε2,2 + x ε1,2, 1 ≤ x

2 ≤ Min(j1, j2 − 1)

(F.6)

E(j1, j2, x, 3) =
(
j1 −

x+ 1
2

)
ε1,1 +

(
j2 −

x+ 1
2

)
ε2,2 + x ε1,2, 1 ≤ x+ 1

2 ≤ Min(j1, j2),

(F.7)

where the smaller of the two numbers j1 and j2 is given by Min(j1, j2). The Boltzmann
factors for each of these energies must then be multiplied by the relevant degeneracy
and added together to give the contribution to q(~j) for each value of x. For case 1, we
must arrange x/2 type-2 internal domains with j1 − 1− x/2 type-1 self bonds, and then
x/2 − 1 type-1 internal domains with j2 − x/2 type-2 self bonds, yielding

(
j1−1
x/2

)(
j2−1
x/2−1

)
.

The degeneracies for the other cases can be obtained similarly. A sum can then be carried
out over all possible values of x, multiplying the contribution of case 3 to the sum by a
factor of 2 as such chains have directionality, and setting x = 2r or x = 2r − 1 in the
relevant sums to ensure only odd or even values are included as required. We ultimately
arrive at the expression:
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q(~j)
V/v0

=



e−βε2,2(J−1), j1 = 0

e−βε1,1(J−1), j2 = 0

2
Min(j1,j2)∑

r=1

(
j1 − 1
r − 1

)(
j2 − 1
r − 1

)
e−βE(j1,j2,r,3)

+H[j1 − 2]
Min(j1−1,j2)∑

r=1

(
j1 − 1
r

)(
j2 − 1
r − 1

)
e−βE(j1,j2,r,1)

+H[j2 − 2]
Min(j1,j2−1)∑

r=1

(
j2 − 1
r

)(
j1 − 1
r − 1

)
e−βE(j1,j2,r,2), j1 > 0, j2 > 0,

, (F.8)

where J = j1 + j2, the discrete Heaviside step function is denoted H[z], defined such that
H[0] = 1, and the remaining functions are defined as follows:

E(j1, j2, r, 1) = (j1 − r − 1) ε1,1 + (j2 − r) ε2,2 + 2r ε1,2, (F.9)

E(j1, j2, r, 2) = (j1 − r) ε1,1 + (j2 − r − 1) ε2,2 + 2r ε1,2, (F.10)

E(j1, j2, r, 3) = (j1 − r) ε1,1 + (j2 − r) ε2,2 + (2r − 1) ε1,2. (F.11)

F.2.2 Correcting for experimental observations and fitting

Where one monomer type is labelled with donor dye and one with acceptor dye, then
only mixed oligomers will be recorded. The total mixed oligomer concentration F ( ~mtot)
is given from combining Eqs. (F.3) and (F.8):

Fexp( ~mtot) =
M∑
j=2

j−1∑
j1=1

2
Min(j1,j−j1)∑

r=1

(
j1 − 1
r − 1

)(
j − j1 − 1
r − 1

)
e−βE(j1,j−j1,r,3)

+ H[j1 − 2]
Min(j1−1,j−j1)∑

r=1

(
j1 − 1
r

)(
j − j1 − 1
r − 1

)
e−βE(j1,j−j1,r,1)

+ H[j − j1 − 2]
Min(j1,j−j1−1)∑

r=1

(
j − j1 − 1

r

)(
j1 − 1
r − 1

)
e−βE(j1,j−j1,r,2) (F.12)

This expression can then be fitted directly to experimental measurements.
The fitting procedure now involves evaluating both chemical potentials at each stage

numerically from implicit algebraic expressions, obtained via Eq. (F.4) and Eq. (F.8).
The sole fitting parameter is ε1,2, once ε1,1 and ε2,2 are established from fits to self-
oligomerization data sets. The same standard value for v0 is used for all fits.
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Appendix G

Statistical Mechanics of Oligomer
Formation

The material in this appendix supports Chapter 9. It contains derivations, supporting
theoretical results, and details of simulations. All work is my own apart from the simula-
tions, which were performed by Anđela Šarić; and the first section, which is a reworking
of material from ref. [161] and is included for clarity.

G.1 Derivation of general statistical mechanical for-
mulation for oligomers

The grand canonical partition function is given by:

Ξ(T, V, µ) =
∞∑
N

Q(T, V,N)eβ N µ (G.1)

where Q(T, V,N) denotes the canonical partition function of a system that contains N
molecules, β = 1/(kB T ) is the inverse temperature (kB is the Boltzmann constant) and
µ is the chemical potential of the monomers. We consider the formation of oligomeric
aggregates up to an arbitrary maximum size of M monomers. By assuming that the
oligomers do not interact, the grand canonical partition function can be expressed in
terms of the individual oligomer partition functions:

Ξ(T, V, µ) =
∞∑

N1=0

∞∑
N2=0
· · ·

∞∑
NM=0

(
q1(T, V ) eβµ

)N1

N1!

(
q2(T, V ) eβ2µ

)N2

N2! · · ·

(
qM(T, V ) eβMµ

)NM
NM ! ,

(G.2)
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where qj(T, V ) is the canonical partition function of a j-mer. Eq. (G.2) can be re-summed
to yield

Ξ(T, V, µ) = exp
 M∑
j=1

qj(T, V ) eβjµ
 . (G.3)

From Eq. (G.3), the concentration of oligomers of size j, f(j) ≡ Nj(T, V )/(NA V ), is
given by

f(j) = 1
NA V

q(j) eβjµ, (G.4)

whereNA is Avogadro’s number and we have used the short hand notation q(j) ≡ qj(T, V ).
Note that the chemical potential µ is set implicitly by letting M → ∞ in Eq. (G.3) and
imposing the conservation-of-mass condition, p = ∑∞

j=1 jf(j), which can be written more
conveniently as

p = − 1
NA V

kB T

Ξ
∂Ξ
∂µ

(G.5)

We must now address the partition function q(j). This is given in general by a prod-
uct of independent contributions from translational and internal degrees of freedom:
q(j) = qtrans(j) qint(j). In particular, the translational partition function qtrans(j) is pro-
portional to the system volume, and so can be written as qtrans = V/v0(j), where v0(j)
is a fundamental volume (in the gaseous phase, it is given by the cube of the thermal
wavelength). Making this substitution, we arrive at Eq. (9.1).

G.2 Head group sterics

We expect that head groups have some translational, rotational and conformational de-
grees of freedom, and that these are restricted through steric interactions upon addition
of amphiphiles to a micelle. Indeed, it is known that head group size can influence micelle
geometry as a result of these interactions [271]. This free energy penalty for formation of
larger micelles was neglected by Chandler et al, presumably because it is small relative
to the connectivity-enforcing energy penalty.

We here verify this hypothesis by calculating the steric penalty explicitly. In previous
MT approaches, this has been dealt with using a test particle approach [272], yielding the
expression:

Gst = −jkT ln
[
1− ah

a

]
, (G.6)

where ah is the average cross-sectional area of the head group (in our Monte Carlo sim-
ulations πσ2/4), and a is the core surface area per monomer. We first calculate a for
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spherical micelles:

V = jv = 4
3πr

3 =⇒ r =
(3jv

4

)1/3
(G.7a)

a = S

j
= Sv

V
= 3v

r
(G.7b)

∴ a = 3v
(

4
3jv

)1/3

=
(

36v2

j

)1/3

. (G.7c)

Now since v scales with σ3, we have the scaling behaviour for Gst:

Gst ' −jkT ln
[
1− Cj 1

3
]
, (G.8)

with constant C. Thus, Gst has lower scaling with j than the connectivity-enforcing free
energy penalty (j5/3). Furthermore, C is given approximately by:

C <
πσ2/4

(36σ6)1/3 ' 0.24, (G.9)

which is smaller than the connectivity coefficient h (0.58 for our system; expected to be in
the range 0.3-1 for many peptides). Thus it is reasonable to neglect the steric contribution
for modelling the Monte Carlo simulations, and oligomers in general.

G.3 Monte Carlo simulations

To study the formation of linear and globular oligomers we used Monte Carlo (MC) simu-
lations, where N = 600 (in case of the linear model) or N = 1000 (in case of the globular
model) monomers were placed inside a cubic box to achieve the target concentration.
Simulations were run for at least 3 · 108 MC steps. The mapping between the simulation
and physical units was done by using the σ = 2nm mapping, where σ is the length-scale
in our simulations. This mapping was chosen such that the simulation model reproduces
the sizes of typical small peptides and proteins, such as Aβ. The size distribution of the
resulting oligomers was analysed using an in-house clustering algorithm.

G.3.1 Linear oligomers

A monomer is described as a hard sphere of a diameter σ. The interaction between two
monomers is created by placing two ideal spheres inside the monomer at a distance of 0.4σ
from its centre, diametrically opposite from each other. Two ideal spheres belonging to
different monomers interact with the interaction enthalpy of −ε if their centre-to-centre
distance is less than 0.3σ. This insures that a single ideal sphere cannot interact with
more than one other monomer at a time, giving rise to linear oligomers. A value for ε of
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Figure G.1: The analytical size distribution model for linear oligomers can be globally fitted to
coarse-grained numerical Monte Carlo results (data points) with high accuracy. ∆G◦ = −15kT ;
p = 0.3µM (purple); p = 1.3µM (blue); p = 5.3µM (red).

−15kT was used.

G.3.2 Globular oligomers

A monomer is described as a hard spherocylinder of a diameter of σ and a length of
4σ. An interaction centre is placed at one pole of the spherocylinder, at a distance 1.5σ
from its centre. Two spherocylinders interact with the interaction enthalpy of −ε if their
interaction centres are less than 1.3σ apart. This interaction drives the formation of
micellar-like oligomers, where tips of participating monomers are in contact in the micelle
centre. A value for ε of −5kT was used; this does not include entropic effects.

G.4 Calculating the critical monomer concentration
m∗

The maximum of the length distribution is found by solving df(j)/dj = 0:

df(j)
dj

= 1
NAv0

d

dj
e−β(∆G(j)−jµ) = f(j) · −β

(
d∆G(j)
dj

− µ
)

= 0 (G.10a)

=⇒ d∆G(j)
dj

− µ = 5
3
h

β
j2/3 +

(
z∞
2 Gb − µ

)
− 2

3j
−1/3 z∞

2 α′Gb = 0. (G.10b)
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By making the substitution x = j1/3, this can be transformed into the simpler problem
F(x) = 0, where:

F(x) = ax3 + cx+ d (G.11a)

= 5
3
h

β
x3 +

(
z∞
2 Gb − µ

)
x− z∞

3 α′Gb. (G.11b)

We in fact need both a maximum and a minimum, so we need at least 2 real solutions
to this equation. The cubic function must then cross the x axis three times. For this to
happen it must possess two real stationary points x±:

F ′(x) = 3ax2 + c = 0 =⇒ x± = ±
√
−c
3a . (G.12)

We thus need c = z∞
2 Gb−µ < 0 as a necessary but not sufficient condition. This translates

to a fairly tiny minimum monomer concentration so we look for a further constraint. We
need that the first of these stationary points gives a value of F > 0, and the second F < 0:

F(x±) = ±a
(−c

3a

)3/2
± c

(−c
3a

)1/2
+ d (G.13a)

= ±
(

(−c)3

27a

)1/2

∓ (−c)2/2
(−c

3a

)1/2
+ d (G.13b)

= ±1
3

(
(−c)3

3a

)1/2

∓
(

(−c)3

3a

)1/2

+ d (G.13c)

∴ F(x−) = 2
3

(
(−c)3

3a

)1/2

+ d, F(x+) = −2
3

(
(−c)3

3a

)1/2

+ d. (G.13d)

Given that d > 0, the first condition is always satisfied. To satisfy the second, we require
(using z∞ = 12):

2
3

(
(−c)3

3a

)1/2

> d (G.14a)

(−c)3 > 3a9d2

4 = 5h
β

(−z∞α′Gb)2

4 (G.14b)

µ− 6Gb >

(
5h
β

)1/3

(−6α′Gb)2/3. (G.14c)

This gives the critical monomer concentration:

m∗ = 1
NAv0

eβµ = 1
NAv0

exp
(
6β Gb + (5h)1/3

(
−6α′β Gb)2/3

))
. (G.15)
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The value x∗ for which the roots merge, or for which ∆ = 0, is given by 9d/2∆0 =
−3d/2ac, which gives the location of the new maximum:

j∗ = d

2 = −6α′βGb

5h . (G.16)
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