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Abstract

Literature-based Discovery (LBD) uses information from explicit statements in literature to
generate new or unstated knowledge. Automated LBD can thus facilitate hypothesis testing
and generation from large collections of publications to support and accelerate scientific
research, which is adversely affected by publication explosion and knowledge fragmentation.
Existing methods, however, use methodologies which are inadequate for capturing the
complex information available in scientific literature and are prone to proposing spurious
discoveries or an abundance of low-quality ones. To be capable of solving these problems,
automated LBD needs to accurately glean the extensive information present in literature,
cope with the dynamic nature of scientific knowledge and place high-quality proposals at the
top of ranked outputs.

Recent advances in Natural Language Processing (NLP) allow for deep textual analysis
to obtain a wide coverage of information present in text and can adapt easily to recognising
new biomedical entities and terms. Similarly, recent advances in graph processing have
made it possible to do in-depth analysis on information represented as graphs, such as
published biomedical connections, to facilitate high-quality knowledge discovery. Both of
these advances utilise neural networks extensively.

This work used neural networks in a bid to advance automated LBD in three ways: 1)
improving biomedical Named Entity Recognition (NER) to extract entities from unstruc-
tured text by using multi-task learning across multiple biomedical datasets; 2) improving
knowledge discovery from realistic, random- and time-sliced biomedical graphs using link
prediction and 3) improving the ranking of published discoveries on open- and closed- LBD
instances by scoring the strength of connection paths using neural models. Excitingly, the lat-
ter approaches outperformed those used by the state-of-the-art LION LBD system, indicating
that their integration into it would provide better support to cancer researchers using it.

The results from this work show that it is feasible to use neural networks to improve LBD
in different ways. They also demonstrate that neural networks are versatile enough to be
applied to improve traditional as well as non-traditional LBD. The principal implication of
these findings is that neural biomedical knowledge discovery, especially LBD, is presently
useful in addition to being a potentially rich field for further study.
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Chapter 1

Introduction

1.1 Automated Literature-based Discovery (LBD) and its
Potential

Literature-based Discovery (LBD) aims to discover new knowledge by connecting informa-
tion which are explicitly stated in literature to deduce connections which are not explicitly
stated in literature. The field was pioneered by Don Swanson who hypothesised that the
combination of two separately published results indicating that “A causes B” and “B causes
C” are evidence of a relationship between A and C which is usually unknown or unexplored.
He used this method to propose fish oil as a treatment for Raynaud syndrome based on
their shared connections to blood viscosity in published literature (Swanson, 1986a). This
hypothesis was later shown to have some merit in a prospective study (DiGiacomo et al.,
1989) and along with Neil Smalheiser, he continually proposed other discoveries using similar
methods including between migraine and magnesium (Swanson, 1988), Somatomedin C and
arginine (Swanson, 1990b), Alzheimer’s disease and Estrogen (Smalheiser and Swanson,
1996b), and several others (Smalheiser and Swanson, 1996a, 1998).

Since LBD generates new knowledge by combining existing literature and has shown
potential using a mostly manual approach, the possibility of using computers and algorithms
to discover many such connections automatically in large collections of literature is tantalising.
This is called automated LBD and it can facilitate both complex hypothesis testing and
hypothesis generation from large collections of literature and thus give tangible support to
scientific research (Hristovski et al., 2013; McDonald et al., 2012). Scientific literature is
growing at an exponential rate (Hunter and Cohen, 2006) making it difficult for researchers to
stay current in their discipline. This overwhelming volume of publications and the increasing
necessity of researchers to specialise has led to non-interacting literature silos, which creates
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an environment where discoveries in one area are not known outside of it (Swanson, 1990a)
and valuable logical connections between disparate bodies of knowledge remain unnoticed
(Swanson, 1986b). This creates a situation where there is a very real chance that pieces
of information which can be combined to make breakthroughs are already discovered but
are splintered and dispersed in the literature. Automated LBD can solve these problems
by helping researchers to quickly gain information on relevant advances inside and outside
of their respective niches and increase interdisciplinary information sharing. Thus, as the
scientific literature grows, automated LBD is becoming an increasingly necessary research
tool. For the rest of this thesis we will deal with only automated LBD, which we will refer to
simply as LBD.

LBD has already proven its usefulness in a range of applications. It has been used to
identify new connections between biomedical entities (such as genes, drugs and diseases);
new candidate genes and treatments for illnesses (Hristovski et al., 2013); and to propose
treatments for Parkinson’s Disease, Multiple Sclerosis and cataracts (Kostoff, 2008b; Kostoff
and Briggs, 2008; Kostoff et al., 2008a). It has seen use in drug development and repurposing
(Ahlers et al., 2007; Hristovski et al., 2010; Zhang et al., 2014), as well as predicting
adverse drug reactions (Banerjee et al., 2014; Shang et al., 2014). It has also been used
to propose new potential cancer treatments (Ahlers et al., 2007). Its use has also been
explored outside the biomedical domain, where it has been applied to developing water
purification systems, accelerating development of developing countries and identifying
promising research collaborations (Gordon and Awad, 2008; Hristovski et al., 2015; Kostoff
et al., 2008c).

Despite these promising applications and its potential for knowledge discovery and
increased research efficiency, at present LBD systems are yet to see widespread adoption
and any meaningful uptake by those who can potentially benefit the most from them (Henry
and McInnes, 2017; Kostoff, 2008a). There are several reasons for this which include non-
technical issues like lack of interaction between developers and users during development
which leads to systems which are incompatible with the workflow of researchers, but there
are also technical shortcomings in existing LBD approaches which negatively impact their
performance and hinder their application in real-world environments.

1.2 LBD Shortcomings and Possible Solutions

LBD is a secondary process because it needs to utilise the outputs of other processes to
discover new knowledge. Broadly speaking LBD must have concepts (entities) and some
notion of which concepts are related and which are not. There are multiple ways that
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concepts can be procured and an almost infinite amount of relationships can be defined which
determine how they are related. There are shortcomings at the stage of producing concepts
and relationships as well as at the stage of using them to actually propose discoveries.

1.2.1 Concept and Relationship Procurement Stage

Current methods to procure concepts are based on methodologies such as matching text with
entries in ontologies or dictionaries. Among other things, these methodologies inherently
limits the captured information to the content of these resources instead of the larger amount
of information available in literature. Such static methodologies are also prone to becoming
outdated and require repeated expensive human and capital investment to maintain and
update. Similarly, for relationships between concepts, existing methods rely on indications
like literature co-occurrence which can produce spurious and noisy connections while missing
genuine connections expressed as synonyms, among other infractions (Hristovski et al., 2006;
Preiss et al., 2012). These can lead to substandard input to the discovery phase which can
have a detrimental effect on the performance of LBD approaches.

Natural Language Processing (NLP) combined with Text Mining (TM) allow for deeper
text analysis and could present opportunities for much wider coverage of concepts and
relationships present in published literature. There has been widespread application of TM
and NLP to biomedicine which has produced tools for tasks such as literature curation and
semantic database development (McDonald et al., 2012; Simpson and Demner-Fushman,
2012). It thus seems likely that they could support LBD (Hristovski et al., 2013; McDonald
et al., 2012), but there is presently little work on this (Preiss et al., 2012; Tsuruoka et al.,
2011).

The better inputs produced by NLP and TM can lead to more dynamic LBD systems
which are better capable of evolving with science, so research on improving LBD have
focused on both the concepts and relations for use in LBD. There are indications that this is
the future of the field and there are works which use NLP methodologies to perform these
tasks, but especially so in procuring and processing concepts. Procuring and processing
concepts with NLP involves Named Entity Recognition (NER) to obtain concepts from weakly
structured text along with normalization and entity linking to ground and disambiguate them.

1.2.2 Discovery Stage

Existing LBD methods usually suffer from one or more shortcomings in the discovery phase
which inhibit their capabilities. The most prominent ones include failing to demonstrate
that they are capable of scaling to perform discovery on a large scale; producing highly
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ranked useful discoveries; and performing well beyond the limited traditional paradigm
which dominates the field. These shortcomings, respectively, lead to systems only being
feasible for performing discoveries on a small amount of entities; proposing an overwhelming
amount of low-quality discoveries; and only proposing discoveries which are so logically
simple that they are easily deduced by humans or which are already common knowledge.
We propose that link prediction can help overcome these and other problems in the discovery
phase of LBD.

Link prediction involves predicting links or edges between nodes in a graph which are
currently not present in it. If there is a graph whose nodes represent concepts and whose edges
represent literatue-induced relationships between the concepts, then this graph effectively
represents the current state of the literature. Link prediction on such a graph is analogous to
LBD. There have been works using link prediction as an approach to LBD (Eronen et al.,
2012; Katukuri et al., 2012; Sebastian et al., 2015).

However, link prediction is also independently a valid form of knowledge discovery and
one which can be more powerful than LBD as it is freed from the assumptions of explicit
connectivity which define LBD. That is, for a given graph representing knowledge contained
in literature, LBD is link prediction on a subset of nodes which meet the additional criterion
that a path consisting of no more than a stipulated maximum number of edges exists. This
makes link prediction as an avenue for biomedical knowledge discovery a particularly fertile
area for current research as it can be constrained to perform traditional LBD and unleashed
to perform general biomedical knowledge discovery. The case for this is strengthened by the
plethora of recent works which have focused on using neural networks and deep learning
to produce improved graph representations and perform graph-related tasks such as link
prediction and node classification. In this work, both of these uses of link prediction are
explored with promising results for their application to LBD and general biomedical knowl-
edge discovery.

This thesis presents research to improve the performance in both stages of LBD. Improv-
ing biomedical NER is used to advance the first stage while link prediction on biomedical
graphs is its counterpart in the discovery phase. Machine learning models, some inspired by
work on the latter, are also applied to evaluations used in a real-world, recently-released LBD
system which uses a traditional approach to LBD. The work presented in this thesis relies on
recent advances in neural networks in several areas including improved development and
training of deep neural models and enhanced word and graph representations.
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1.3 Neural Networks, Deep Learning and LBD

Machine Learning (ML) is concerned with finding patterns in large amounts of data to
successfully complete a given task. Traditional ML techniques were limited in their ability to
process data in their raw form and so constructing ML systems required in-depth domain
expertise to design and engineer feature extractors. The feature extractors would discover
the relevant features of the input data to create feature vectors which were then used by
the machine learning system to detect or classify patterns in the input. Neural networks
are universal approximators co-opted for representation learning which allow machines to
take the raw data as input directly and automatically produce the representations needed for
detection or classification. Deep learning methods are neural representation learners with
multiple levels obtained by stacking non-linear modules. By composing enough of these
modules, more complex functions between the input and the output can be learned (LeCun
et al., 2015).

Since ML aims to find patterns in large amounts of data and LBD seeks to uncover
discovery patterns from large amounts of literature, at a high level there is a case for the use
of neural networks in LBD. A unified deep learning system for LBD may be something for
the future, but as a stepping stone to that, at present these tools and methods can be used to
improve various parts of the current LBD machinery. They have been applied to concept and
relation extraction from text (Chiu and Nichols, 2016; Lample et al., 2016; Rei et al., 2016),
to create high-quality representations of graphs (Grover and Leskovec, 2016; Ou et al., 2016;
Perozzi et al., 2014; Tang et al., 2015; Wang et al., 2016) and to link prediction (Grover and
Leskovec, 2016; Wang et al., 2016). In light of the fact that they have been applied to these
LBD-related tasks and report state-of-the-art performance, it is conceivable that they could
be applied to LBD to improve its performance. That is the purpose to which they are put
throughout this work.

1.4 Thesis Outline

This thesis contains the following chapters. A brief synopsis of its contents accompanies
each chapter entry listed here.

Chapter 1 introduces the field of LBD and justifies its relevance and importance. It
highlights what the current open problems in the field are and gives an overview of some
possible solutions which utilise recent advances in machine learning, particularly neural
networks to improve biomedical NER, link prediction and the existing LBD paradigms.
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Chapter 2 gives the relevant background needed to understand the rest of this thesis.
It begins with a detailed overview of LBD; highlighting how it works, why it is a relevant
research area and how it is evaluated. It looks at some of the approaches which have been
taken to improve LBD. It then segues into the backgrounds of the methods investigated
to improve LBD. It looks at NLP, in particular NER; link prediction; Multi-task Learning
(MTL) and neural networks. Related relevant topics like Text Mining, knowledge discovery,
representation learning, knowledgebases and graphs are also briefly covered for completeness.

Chapter 3 contains details of work to improve recognising biomedical concepts as entities
in unstructured text, including using semantically-rich word embeddings for biomedical NLP
along with using MTL and incorporating character-level features in deep neural architectures.
It introduces each of those concepts then details how they are used to contribute to the
improving of biomedical NER with experiments and results.

Chapter 4 contains details of work which uses neural networks to perform link prediction
in large-scale biomedical graphs for various tasks, including LBD. It introduces the link
prediction problem; motivates the use of neural approaches to this problem as well as
informative evaluation techniques; and presents the experiments and results of that phase of
the work.

Chapter 5 gives some background on the recently-released LION LBD system (Pyysalo
et al., 2018) along with its LBD approaches and evaluation. It then details how neural network
approaches and models, partly inspired by the link prediction approaches and models from
Chapter 4 are applied to traditional LBD. It contains comparisons of the results from the
proposed models and methods to those of the released system.

Chapter 6 concludes this thesis. It recapitulates the potential of LBD for use in modern
biomedical research, the technical problems it still has and how they can be solved. It also
deals with how the work proposed in the thesis can be solutions to those problems and the
implications of the findings of the work. It then looks at possible directions in which this
work can be taken in the near future.

1.5 Publications

In carrying out the work that this thesis presents, a few peer-reviewed publications were
produced. A list of these and their respective brief overviews are given below.

1. How to train good word embeddings for biomedical NLP
(Chiu, B., Crichton, G., Korhonen, A., and Pyysalo, S. (2016a). How to train good
word embeddings for biomedical NLP. ACL 2016, page 166.)
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Better inputs to neural network models can lead to improved results and has been a
cause of recent state-of-the-art results in NER. I play a part in an effort to improve
such inputs for neural networks for various biomedical tasks such as NER. My role is
in the extrinsic evaluation of the inputs so in Section 3.3 we focus exclusively on that
aspect of the work.

2. Attending to characters in neural sequence labelling models
(Rei, M., Crichton, G., and Pyysalo, S. (2016). Attending to characters in neural
sequence labeling models. In Proceedings of COLING 2016, pages 309–318.)

Since biomedical texts are sequential and biomedical entities encode much information
at the character level, it makes sense to use a model which is designed to exploit both
of these characteristics to improve performance. Long Short-Term Memory (LSTM)
network is one such model so it is logical to use it for performing biomedical NER and
incorporating character-level features. This gives rise to a role in work which utilises
attention (a mechanism to improve neural network performance) in character-level
LSTMs for several sequence labelling tasks including biomedical NER. The relevant
parts of the work are described in Section 3.5.

3. A neural network multi-task learning approach to biomedical Named Entity
Recognition
(Crichton, G., Pyysalo, S., Chiu, B., and Korhonen, A. (2017). A neural network multi-
task learning approach to biomedical Named Entity Recognition. BMC Bioinformatics,
18(1):368.)

In this paper, we investigate whether an MTL modelling framework implemented
with a particular deep learning architecture (Convolutional Neural Networks) can be
beneficially applied to biomedical NER. This is, to the best of our knowledge, the first
application of this MTL framework to the task. Like other language processing tasks in
biomedicine, NER is made challenging by the nature of biomedical texts which usually
feature heavy use of terminology, complex co-referential links, and complex mapping
from syntax to semantics. Additionally, the annotated datasets available for this task
vary greatly in the nature of named entities (e.g. species vs. disease), the granularity
of annotation, as well as in the specific domains they focus on (e.g. chemistry vs.
anatomy). It is therefore an open question whether this task can benefit from MTL.
Details are given in Section 3.4.

4. Neural networks for link prediction in realistic biomedical graphs: a multi- di-
mensional evaluation of graph embedding-based approaches
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(Crichton, G., Guo, Y., Pyysalo, S., and Korhonen, A. (2018). Neural networks for link
prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph
embedding-based approaches. BMC Bioinformatics, 19(1):176.)

Link prediction in biomedical graphs has several important applications including
predicting Drug-Target Interactions (DTIs), Protein-Protein Interaction (PPI) prediction
and LBD. It can be done using a classifier to output the probability of link formation
between nodes. Recently several works have used neural networks to create node
representations which allow rich inputs to neural classifiers. Preliminary works were
done on this and report promising results. However they did not use realistic settings
like time-slicing, evaluate performances with comprehensive metrics or explain when
or why neural network methods outperform. We investigate how inputs from four node
representation algorithms affect performance of a neural link predictor on random- and
time-sliced biomedical graphs of real-world sizes (up to 6 million edges) containing
information relevant to DTI, PPI and LBD. We compare the performance of the neural
link predictor to those of established baselines and report performance across five
metrics. This is described in Chapter 4.

5. Neural networks for open and closed Literature-based Discovery
(Crichton, G., Baker, S., Guo, Y., and Korhonen, A. (Under Review). Neural networks
for open and closed Literature-based Discovery.)

Neural networks have demonstrated improved performance on LBD-related tasks but
are yet to be applied to it. We propose four graph-based, neural network methods to
perform open and closed LBD. We compare our methods with those used by the state-
of-the-art LION LBD system on the same evaluations to replicate recently published
findings in cancer biology. We also apply them to a time-sliced dataset of human-
curated, peer-reviewed biological interactions. These evaluations and the metrics they
employ represent performance on real-world knowledge advances and are thus robust
indicators of approach efficacy. In the first experiments, our best methods perform
2-4 times better than the baselines in closed discovery and 2-3 times better in open
discovery. In the second, our best methods perform almost 2 times better than the
baselines in open discovery. These results are strong indications that neural LBD is
potentially a very effective approach for generating new scientific discoveries from
existing literature. Chapter 5 describes this work.
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1.6 Conclusion

This Chapter explained what LBD is, why it can be particularly important in the biomedical
domain and is presently a viable area of research. It presented arguments that its use is
necessary to solve a glaring and growing problem in the field and postulates that the relevant
computational technologies are at the stage where LBD can be implemented in a manner
which gives useable output which can accelerate scientific discoveries. It also introduced
link prediction as a powerful way of both performing LBD and transcending it and hinted
how this can be done.

The overarching goal of my PhD was to investigate methodologies to improve the
performance of tasks which produce input for LBD as well as LBD itself. Neural networks
have shown their versatility and utility in their applicability to and improvement of various
tasks, so using them as the primary engine to provide this improvement made sense. We used
them in improving biomedical NER, improving link prediction on biomedical graphs and
improving LBD with methods than can both be applied to the current dominant discovery
paradigm and beyond it. This work was done within the context of the LION Project which
is based on the ideas proposed in (Korhonen et al., 2014).





Chapter 2

Literature Review

2.1 Introduction

This Chapter gives the relevant background needed to understand the rest of this thesis. It
begins with a detailed overview of Literature-Based Discovery (LBD) highlighting how it
works, why it is a relevant research area and how it is evaluated. It then looks at some of the
approaches which, like this work, have been taken to improve LBD. Following this, it segues
into the backgrounds of the methods we investigate to improve LBD.

In general neural networks and deep learning are used throughout the work. Specific
instances of their application are in the tasks of Natural Language Processing (NLP), in
particular Named Entity Recognition (NER); link prediction and Multi-task Learning (MTL).
Related relevant topics like Text Mining, Knowledge Discovery, representation learning,
knowledgebases and graphs are also covered for completeness. Interspersed throughout are
explanations of how these are applied to solve some of the pressing open problems in LBD
and how they can perhaps be useful beyond the current dominant LBD paradigms.

2.2 Literature-based Discovery (LBD)

Literature-Based Discovery seeks to discover new knowledge from existing literature in an
automated or semi-automated way (Henry and McInnes, 2017). LBD research has mostly
focused so far on the biomedical domain, but it has also focused on other domains.

Within the biomedical domain it has been used to propose treatments for Parkinson’s
Disease, Multiple Sclerosis and cataracts (Kostoff, 2008b; Kostoff and Briggs, 2008; Kostoff
et al., 2008a). It has also been used to propose new uses for curcumin and potential cancer
treatments (Ahlers et al., 2007; Srinivasan and Libbus, 2004). However the areas which
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have seen the most active research and results are in drug development and repurposing
(Ahlers et al., 2007; Hristovski et al., 2010; Zhang et al., 2014) and in predicting adverse
drug reactions (Banerjee et al., 2014; Shang et al., 2014). Outside the biomedical domain,
proposals have focused on developing water purification systems, accelerating development
of developing countries and identifying promising research collaborations (Gordon and Awad,
2008; Hristovski et al., 2015; Kostoff et al., 2008c).

Scientific literature is growing at an exponential rate (Hunter and Cohen, 2006) making
it difficult for researchers to stay current in their discipline. This overwhelming volume of
publications and the increasing necessity of researchers to specialise has led to non-interacting
literature silos, which creates an environment where discoveries in one area are not known
outside of it (Swanson, 1990a) and valuable logical connections between disparate bodies
of knowledge remain unnoticed (Swanson, 1986b). This creates a situation where there is a
real chance that pieces of information which can be combined to make breakthroughs are
already discovered but are splintered and dispersed in the literature. LBD helps researchers
to quickly gain information on relevant advances inside and outside of their respective niches
and increase interdisciplinary information sharing. As the scientific literature grows, tools
which aid researchers in finding and combining salient findings, like LBD systems, are
becoming increasingly necessary for facilitating impactful research.

To deal with this challenge, LBD now uses various computational approaches and
algorithms which seek to discover previously unknown associations or hidden links between
pieces of existing knowledge by analysing literature (Smalheiser, 2012; Swanson, 2008).
However the genesis of the field is generally attributed to Don Swanson’s mostly manual
discovery of the potential benefits of dietary fish oil for the treatment of Reynaud syndrome
(Swanson, 1986a) by analysing their seemingly disparate literatures. This hypothesis was
later shown to have some merit in a prospective study (DiGiacomo et al., 1989).

In that work, Swanson also introduced the idea of ’noninteracting literatures’ and illus-
trated an example using Reynaud syndrome and dietary fish oil. Although there were almost
2,000 Reynaud papers and 1,000 fish oil papers, the literatures were isolated as determined by
mentions or citations of works across the groups. An extensive search process revealed that
only four papers mentioned papers in both groups, and of those four, two were co-incidental
and the other two (which were similar enough to be counted as one) are review papers which
mention both topics in separate sections. Sebastian et al. (2015) illustrated this disconnect
between those same literatures at that time by comparing a figure of the co-citation links
between the literatures prior to Swanson’s 1986 publication and after it (Figure 1 of that
work); there is a stark difference in the amount of links across the literatures. Since Swanson’s
work, the concept has been used in LBD works under different names; for example Katukuri
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et al. (2012) speaks of ’cross-silo’ literature hypotheses, Thaicharoen et al. (2009) of ’disjoint
sets of literatures’ and Hu et al. (2006) of ’complementary and non-interactive biomedical
literature’.

2.2.1 Categorising LBD Approaches

Swanson (1986a) defined the basic and most dominant type of LBD in the literature, called
the ABC paradigm because it centres around three concepts referred to as A, B and C. The
main idea is that if there is a connection between A and B and one between B and C then
there is one between A and C which, if not explicitly stated is yet to be explored. Within
the ABC paradigm, there are two types: open and closed discovery. In open discovery (also
called hypothesis generation), only A is given. The system finds Bs (called intermediate or
linking terms) and uses them to return possibly interesting Cs (called candidate or target
terms) to the user, thus generating hypotheses from A. With closed discovery (also called
hypothesis testing), the A and C are given to the system which seeks to find the Bs which
can link the two, thus testing a hypothesis about A and C. From this starting point, several
related approaches have arisen.

Sebastian et al. (2017a) distinguishes between the traditional approaches which are
characterised as statistical, knowledge-based and visualization; and newer paradigms which
they term ’emergent’ and believe will define the field in the future. They see these as
characterised by two main trends: 1) integrating traditional approaches such as statistical,
knowledge-based and visualization approaches to create a unified LBD solution and 2)
using techniques borrowed from other research fields including link prediction and machine
learning which offer a different angle on how LBD can be performed and its problems
addressed.

Henry and McInnes (2017) prefer to delineate approaches based on how they represent
terms, what types of relationships they use and how they find linking and target terms. Using
this rubric, they categorise LBD models as co-occurrence, semantic or distributional.

There are different ways of categorising LBD systems and most categories used would
only capture some aspect of an approach while appearing to ignore others. In general, the
myriad papers spawned since 1986 on the topic would defy simple categorising as most
would span several categories. Thus the categories used here simply refer to what may be
prominent features of the approaches mentioned within them and are to be read as such.
In general a method explained under a particular category would also employ elements
applicable to other categories and these should be obvious; where appropriate we point out
when they may not be.
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2.2.2 Representing Concepts

The way an LBD approach represents entities affects which entities it would and would not
capture from text, how it will treat synonymous entities and other things which would affect
the discovery phase. There are three main approaches to representing entities about which
knowledge is discovered in LBD. They have been represented as words or terms; concepts
and keywords. Each of these entail a precision-recall trade-off; for example words/terms
tend to have high recall but low precision.

Words or terms: These approaches represent concepts as words as they are found in
text. This is the easiest way of representing entities, so it is unsurprising that it is the most
popular approach used when the field was nascent (Swanson, 1986a, 1988).

Knowledgebase entries: These approaches represent concepts as entries from a external
resources such as United Medical Language System (UMLS) (Bodenreider, 2004).

Weeber et al. (2000) developed an NLP system called DAD (Drug-Adverse Drug
Reaction-Disease) to assist biomedical experts in generating and testing hypotheses, mainly
for drug discovery research. They were able to use concepts by mapping words in titles and
abstracts to entries in the UMLS Metathesaurus. By using such entries they were able to
circumvent some of the problems involved in using terms such as the difficulty of identifying
them in unstructured text, the need to use lists of stop words and complex approaches to
capture synonyms and variants. Using concepts also facilitated the extraction of multi-word
entities and filtering the amount of entries the system had to deal with by using filters
constructed from UMLS semantic types. To demonstrate the usefulness of their discovery
system, Weeber et al. (2003) published the results of a study on potentially new targets for
the drug Thalidomide - a withdrawn sedative. They found evidence in PubMed suggesting
that Thalidomide could be an effective treatment for several conditions including chronic
Hepatitis C and acute Pancreatitis.

Keywords: These approaches represent concepts as keywords, which are less restricted
than knowledgebase entries but more so than words. They can include Medical Subject
Headings (MeSH) descriptors (Lipscomb, 2000); a controlled vocabulary thesaurus used for
indexing articles in MEDLINE and PubMed.

Stegmann and Grohmann (2003) analysed the strength of co-occurrence for pairs of
keywords assigned to MEDLINE documents. Keywords included MeSH, Enzyme Com-
mission Numbers and Chemical Abstracts Service Registry Numbers. The analyses lead to
maps or "strategical diagrams" of clusters containing keywords. Promising terms linking
complementary but disjoint literatures tend to appear in regions of low centrality and den-
sity. They validated their approach by replicating Swanson’s Raynaud’s syndrome - fish oil
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and migraine - magnesium findings. They also found evidence for a relationship between
manganese, prions and neurodegenerative diseases.

2.2.3 Use of (non-distributional) Semantics

These approaches made use of tools which seek to capture and exploit the semantics in text to
facilitate LBD. The hope is that using semantics will allow the approach to capture a deeper
meaning of the information in the text which is not captured by simple term matching etc. in
text.

Srinivasan (2004) used UMLS semantic types and MEDLINE metadata (MeSH terms) in
Text Mining algorithms for discovery. This was done by building profiles of research topics
based on weighted MeSH terms from MEDLINE documents, where weights are estimated
within semantic types based on the weighted terms it contains. Taken together, weighted
terms constitute a profile of the topic of interest. Topics for profiling can be single words
or phrases that need not be composed of MeSH terms. The method was evaluated on the
first step of the discovery process: the identification and ranking of key terms on five of the
discoveries proposed by Swanson. They found that across all the discoveries (in open and
closed discovery settings) the method was able to rank key terms highly within semantic
types.

Hristovski et al. (2006) highlights two main problems with using simple concept co-
occurrence as the primary relationship between entities for LBD: 1) It provides no semantic
information about the nature of the relation between the entailing concepts which leads
to an inability to produce explicit explanations of the discovered relations and, 2) not all
co-occurrences are indicative of useful relations, so systems employing this approach tend
to produce large numbers of spurious relations which in turn mean that users must read
large numbers of papers when reviewing candidate relations. They address these deficiencies
with the use of semantic relations to augment co-occurrence processing. To achieve this,
they combine the output of two NLP systems (SemRep (Rindflesch and Fiszman, 2003)
and BioMedLee (Lussier and Friedman, 2007)) to provide semantic predications. Semantic
predications are subject-relation-object triples extracted from text and have since been widely
used in LBD. In order to make use of semantic predications in LBD, they introduce the
notion of a discovery pattern, which contains a set of conditions to be satisfied for the
discovery of new relations between concepts. The conditions are combinations of relations
between concepts extracted from MEDLINE citations. They evaluated their approach on
two proposed discovery patterns using the BITOLA LBD system (Hristovski et al., 2001)
to replicate Swanson’s Reynaud syndrome discovery and by uncovering links between
Huntingdon’s disease. For the latter, they sought links between the disease and changes
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in substances or body functions which could be potential therapeutic targets leading to the
development of new treatments. They found that their approach produced a smaller number
of false positives while facilitating user review of new relations.

Cohen et al. (2012) sought to automate the identification of these discovery patterns
using what they termed Predication-based Semantic Indexing (PSI). These patterns were
derived from semantic predications extracted from biomedical literature using SemRep
and used to direct the search for known treatments for a held-out set of diseases. PSI
represents both concepts and the relationships between them as vectors in hyperdimensional
space. They exploited the geometry of this space to use reversible vector transformations
to perform inference for LBD. They compared their method to the Reflective Random
Index (RRI) (Cohen et al., 2010). PSI was further used in (Cohen et al., 2014), along with
SemMedDB, a publicly available database of semantic predications provided by SemRep
for query expansion in semantic search. Their approach was able to rediscover discovery
patterns that were constructed manually in previous work. It was also able to find a set of
previously unrecognised patterns. They propose that the method results in better recovery of
therapeutic relationships than with models based on distributional statistics alone.

Goodwin et al. (2012) used the mathematical models underlying Information Foraging
Theory (IFT) which predict information foraging behaviours of users on the web to design
a discovery browsing system which performs biomedical discovery. The system mines a
semantic network created by millions of semantic predications from several million MED-
LINE citations using SemRep. They evaluated the system by giving it some seed terms and
testing its ability to use them as starting points to replicate two previous discoveries linking
testosterone to sleep and sleep to depression. The tests demonstrated that the system was
able to predict concepts that were determined as playing a role in novel proposed hypotheses.
This work shares similarities to the field of concept-based Exploratory Search (ES) (Crichton,
2013; Marchionini, 2006; White and Roth, 2009).

Even closer to the field of ES is the discovery browsing work of Wilkowski et al. (2011)
which aimed to extend LBD methodology beyond making discoveries to a principled way of
navigating through aspects of a particular research area and to reveal crucial relationships
in the domain in response to a query instead of merely document retrieval. These relation-
ships allow a user to evolve their query as they continue to use the method. To achieve
this, they incorporate semantic predications and graph-based methods in order to guide
researchers through the relevant literature on a user-specified biomedical phenomenon. Their
methodology included creating a graph of the relevant predications, extracting paths from the
graph and ranking them, and manually inspecting a small subgraph based on selected paths.
At several steps in the process, the system’s output is influenced by the user’s interaction.
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They demonstrated their approach by using it to investigate aspects of depressive disorder
especially as it pertains to the interaction of inflammation, circadian phenomena, and the
neurotransmitter Norepinephrine; and deemed it up to the task of doing so.

Preiss et al. (2015) introduced an LBD system that used matrices to encode weighted
relations between terms. They explored six relations: three based on co-occurrence and three
on semantic linguistic analysis. They created an adjacency matrix of the graph formed from
the relationships between terms in a corpus: positive integers if a relation is detected; zeroes
otherwise. Hidden knowledge is then found by looking for non-zero terms in the matrix
generated by the difference of the norms of this matrix and its square. They evaluate the
system by using seven discoveries that have previously been used for replication experiments
in LBD as well as by time-slicing a database to create three different gold standards which
depend on how many of the discoveries were identified in the evaluation slice by one, two or
all of the same three semantic approaches used. They found that approaches that use relations
extracted through automatic linguistic analysis reported several orders of magnitude fewer
instances of hidden knowledge than approaches that use term co-occurrence relations. This
drastic decrease did not have an adverse effect on the system’s ability to replicate existing
discoveries in most cases. They thus concluded that using automated linguistic analysis in
relation identification for LBD provides significant benefits.

2.2.4 Distributional and Statistical Approaches

These approaches take advantage of distributional and/or statistical methods to perform LBD.
They usually apply the methods to extract information from texts then use that information
for the task.

Gordon and Dumais (1998) used Latent Semantic Indexing (LSI) (Deerwester et al.,
1990) for improving information retrieval effectiveness in general and LBD in particular.
They proposed that their method could aid in either of the two phases of LBD: during the
search for intermediate literatures and in helping to identify potential discovery literatures. In
the latter, LSI can be used in two ways: to locate and retrieve a set of documents associated
with suspected intermediate literature, or by analysing the wider literature in which the terms
of interest in suspected connections occur. Following Gordon and Lindsay (1996), they
evaluated the approach by seeing how well it performed on two of Swanson’s discoveries
on those tasks. This evaluation suggested that LSI might be a useful tool in LBD because it
provides another technique that can be considered in uncovering hidden discoveries as other
methods of performing LBD may fail when applied to certain problems.

Lindsay and Gordon (1999) used four lexical statistics (token frequency, document fre-
quency, relative frequency compared to entire corpus, and term frequency-inverse document
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frequency) to perform LBD on MEDLINE documents. They determined connections be-
tween entities using uni-, bi- and tri-grams. They evaluated their method by testing to see
if it would retrieve any of the intermediate literatures of Swanson’s migraine-magnesium
hypothesis. Their automated methods were able to identify 10 of 12 known intermediate
topics relating migraine and magnesium within a "reasonably sized" candidate list.

Wren (2004) used Mutual Information Measure as a proof of principle that statistical
methods of association information can be extended to implicit relationships and thus be used
to uncover implicit associations in text. Such inferred associations can be used for LBD. To
evaluate his approach, fifty objects of research interest (e.g. biomedical entities or ontology
categories) were chosen at random from MEDLINE and random word databases and used
to create a network of associations. Each object was analysed to identify and rank other
objects that shared relationships with it as described and the Area Under the Curve (AUC)
was taken for four ranking methods and a random baseline. He also performed a detailed case
study to uncover and rank inferred relationships to Capsaicin as well as re-evaluated two of
Swanson’s hypotheses. He concluded that MIM can be effectively extended to relationships
which are not directly observable. The shared minimum MIM (MMIM) model was found to
perform best using observed strength and frequency of known associations as the metric.

Symonds et al. (2014) carried out a survey comparison on the complexity of four corpus-
based distributional approaches for LBD: Latent Semantic Analysis/Indexing (LSA), Hyper-
space Analogue to Language (HAL), Random Indexing (RI) and Tensor Encoding (TE). In
general these models work by constructing matrices whose values represent distributional
semantics about the terms and/or documents in large corpora, reducing them (using for
example SVD) so that only the most relevant information remains then calculating similarity
metrics (e.g. cosine similarity) on the vectors of the terms of interest (A-C terms) for LBD.
They found that models which store representations in fixed dimensions provide superior
efficiency on LBD tasks. In particular, the TE model was well-adapted to the task of open
discovery due to its ability to complete the steps of storing representations and computing
similarities from them in a single step.

2.2.5 Graph-based Approaches

The nature of LBD lends itself easily to being performed by mining a graph containing the
requisite knowledge. It is no surprise then that several approaches have taken a primarily
graph-based approach to LBD and others have used it in conjunction with other approaches.

Katukuri et al. (2012) modelled the existing biomedical literature as a network of biomed-
ical concepts using concept co-occurrence in documents. They then performed supervised
link prediction on the graph to generate hypotheses. They manually created two topological
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and two semantic features which were then used to create input to Decision Trees and a
Support Vector Machine (SVM) to classify whether a link exists between future nodes or not.
The links predicted represented hypotheses from non-interacting fields. They evaluated their
approach by time-slicing the graph and predicting links in the later time period. They found
an improvement of 7-9% in classification accuracy when adding semantic type and author
-based features.

Eronen et al. (2012) presented Biomine which performed link prediction on a biomedical
graph for general knowledge discovery. The weighted, heterogeneous graph was constructed
by combining data from several biomedical databases including PubMed, Entrez Gene
(Maglott et al., 2005), Gene Ontology (Ashburner et al., 2000) and UniProt (Apweiler et al.,
2004). They performed the linking using proximity measures including probability of best
path, network reliability and expected reliable distance. It was evaluated using time-slicing
to determine which links were actually added to the various data sources at a later time
period. They used the Area Under the ROC Curve (AUC-ROC) to quantify this. They found
that combining data from several sources was beneficial to the task and that the proximity
measure which used random walks on the graph was the best.

Ding et al. (2013) proposed the idea of entitymetrics which they define as using knowledge
units as entities to measure impact, knowledge usage and knowledge transfer to facilitate
knowledge discovery. They constructed a bio-entity citation network among biomedical
papers which captures information on how entities provide signals for citation relationships.
They then used macro, micro and meso-levels features of the graph to calculate scores
for nodes of interest. To evaluate their approach, they constructed such a graph for the
drug Metformin which was developed to treat Type 2 diabetes but has also shown potential
to prevent cancer, obesity, depression and ageing; making it a drug of high interest for
biomedical knowledge discovery. After calculating the scores using the features, they
compared it with a score provided by the dataset which indicated likelihood of linkage in a
network reserved for inference. Their method proved to be useful but it was only evaluated
with a single entity and the features used on the graph were selected manually, although they
are general graph-theoretic features.

Cameron et al. (2013) sought to recover and decompose Swanson’s dietary fish oils
– Reynaud syndrome hypothesis into its constituent high level and atomic parts, which
they refer to as primary, secondary and association hypotheses. They extracted semantic
predications (subject, predicate, object triples in this case) from the biomedical texts which
Swanson used, then used these predications to create a predications graph which was used to
generate semantic associations. These were then used to manually create subgraphs of the
associations expressed by Swanson. Background knowledge and domain expertise were used
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to improve the subgraph creation. They found that they were able to recover and decompose
well with titles, abstracts and full texts but had almost no success with simply titles and
abstracts. The subgraphs provided several insights into unmentioned associations which
could explain why fish oil affected Reynaud syndrome and thus gives some explanation
and interpretability. There were several limitations of this work: they evaluated on only
a single case; their approach relies heavily on external resources, tools and pre-defined
semantic predications; and the subgraphs were manually constructed by persons with domain
knowledge. They automated the latter procedure in later work (Cameron et al., 2015). In
that work, they looked at associations along different dimensions such as Cellular Activity
and Pharmaceuticals. MeSH descriptors of documents were used to provide context to
the algorithm for determining which paths to combine into subgraphs using Hierarchical
Agglomerative Clustering (HAC). Their results showed that this context was more important
to elucidating hidden connections than frequency, connectivity or specificity in graphs. This
work was evaluated on nine cases; three in great detail and six in less.

Sebastian et al. (2015) performed LBD as link prediction between disjoint research
areas over a heterogeneous graph of bibliographic information. They created paths on
heterogeneous graphs containing information such as terms, author, publisher, topic, cited-
reference and citing-paper as vertices and relationships such as cites, cited_by, published_by
etc. They evaluated by testing the ability of their approach to predict future co-citation links
for Swanson’s fish oil and Reynaud syndrome proposal. This was done by framing links as
three classes (inter-cluster, within-cluster, and no-links) and using several machine learning
classifiers to classify a link into one of those classes based on input from the meta-path
features. They downplayed the use of the content of papers to predict new connections
between complementary but non-interacting fields of research which is the aim of LBD,
instead arguing that the bibliographic information on a heterogeneous graph is quite good
by itself. Their approach was highly manual: the meta-path features used were manually
constructed and methods for scoring the association strengths of the paths were selected
manually which left them susceptible to bias. In (Sebastian et al., 2017b) they expanded on
that work by evaluating on an additional Swanson case (Magnesium-Migraine) and adding
semantic processing in the form of word sense disambiguation and topic modelling to the
approach.

Kastrin et al. (2016), building on earlier work (Kastrin et al., 2014) which showed the
plausibility of using link prediction for LBD, fashioned LBD as a classification problem on
a graph of MeSH terms. They used unsupervised and supervised link prediction methods
on this graph to predict previously unknown connections between the biomedical concepts
represented by the MeSH terms. Their unsupervised approaches were Adamic-Adar (AA)
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(which was the best performer), Common Neighbours (CN), Jaccard Coefficient (JC), and
Preferential Attachment (PA). For the supervised learning approach, they sought to decide
whether those proximity measures can be combined to define a model of link formation across
all four predictors by applying Decision Trees, k-nearest neighbours, logistic regression,
multi-layer perceptron, naïve Bayes, and random forests (which was the best performer). They
concluded that the supervised statistical learning approaches outperformed the unsupervised
approaches using AUC (ROC) as the metric.

Building on their existing LBD system (Preiss et al., 2015), which used some graph-
based approaches, Preiss et al. (2018) created the publicly available HiDE (Hidden Discovery
Explorer). HiDE is an online knowledge browsing tool which allows fast access to hidden
knowledge generated from abstracts in MEDLINE. It also allows users to explore the full
range of hidden connections generated by an underlying LBD system. It combines a graph-
based approach which allows hidden knowledge to be generated on a large scale with
an inference algorithm to identify the most promising (i.e. most likely to be non-trivial)
information. It used graphs in knowledgebase completion which generates new connections
by performing random walks through a graph of the knowledgebase. It also uses linguistically-
motivated subject-relation-object triples (such as X-treats-Y or X-affects-Y) extracted from a
SemRep-annotated version of PubMed. HiDE then generates a list of potentially relevant
UMLS Concept Unique Identifiers (CUIs) for the user to select one and the hidden knowledge
proposed is grouped by MeSH terms. To illustrate the system’s utility, they presented an
image of the tool’s output when replicating the connection between Swanson’s Raynaud
syndrome and fish oil discovery from MEDLINE publications in the period 1960-1968. The
image showed the hidden knowledge generated by entering the search term raynaud and that
the link to fish oil was found.

2.2.6 Miscellaneous

Swanson and Smalheiser (1997) introduced interactive software and database search strate-
gies (ARROWSMITH) to facilitate the discovery of unknown cross-specialty scientific
information. Using these strategies, a user begins by searching MEDLINE for article titles
that identify a topic of interest. The software then uses the titles of the retrieved papers to
create input for additional searches and produces a series of heuristic aids that help the user
select a second set of articles which are from a complementary research area. Two sets are
considered complementary if taken together they can reveal new information that cannot be
inferred from either set alone. The software also helps the user identify new information
and derive from it novel testable hypotheses. Evaluation consisted of testing whether the
system can at least be helpful in rediscovering complementary structures in three completed
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and published analyses of complementary non-interactive literatures which were three of
Swanson’s discoveries. It additionally evaluated the performance on a usage variant, which
was focused on elucidating intermediate pathways or mechanisms by which two concepts
of interest are linked. To perform the latter it used a further three cases: Indomethacin and
Alzheimer’s disease, Estrogen and Alzheimer’s disease and Phospholipases and Sleep. In two
of the cases, suggestions from the system were brought to the attention of relevant researchers
for investigation and in the other case, a link was published while the manuscript was under
review.

2.2.7 Summary

In summary, there has been a plethora of work on LBD since it was proposed as a strategy
for discovering new scientific knowledge. These works have proposed several different
approaches to LBD even when they used some similar components. For the most part the
processes they have used to identify biomedical entities in text mostly consists of using
n-grams in text and of matching to a list of known terms from entries in external resources.
That makes them reliant on these resources being complete and updated; and makes them as
error-prone as the simple string matching process for information extraction can be. There is
scant evidence that the discovery methods proposed by these systems can scale to produce a
wide range of good quality discoveries.

One of the strengths of neural networks is their theoretical ability to incorporate several
of the beneficial strategies used by existing models presented here. For example, neural
models which process text make use of word embeddings produced by other neural networks
which are vector representations that encode distributional semantics and capture various
linguistic semantic properties. While these methods would still miss information which is
pertinent to LBD such as negation, hedging and compositional concepts, they are able to
provide more information to neural models which they are used in to improve performance.

Building on the success of such work, such embeddings have also been used to encode the
information in graphs making neural processing of them for a wide-range of tasks, including
LBD, possible. Similar to the embeddings created by text, the graph embeddings are also
expected to provide richer inputs to neural models but can also potentially have shortcomings
including ignoring edge weights and direction.
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2.3 Evaluating LBD Systems

Evaluation is needed to determine which methods and models are successful as well as
to quantify any successes. This has proven to be difficult in LBD thus far for several
reasons which include: disagreement about the role of LBD systems in research (i.e. the line
between aiding and replacing researchers), and thus what makes a successful one; difficulty
in determining metrics for how useful, interesting or actionable a discovery is; and difficulty
in objectively defining a ’discovery’, which has led to difficulties in creating a standard
evaluation set which quantifies when a discovery has been replicated or found.

As a result, several approaches have been used in the literature to evaluate a proposed
approach. The more prominent ones are covered here along with some of their strengths and
weaknesses.

2.3.1 Replication of Previous Discoveries

One of the more popular methods used in LBD is to seek to replicate previous discoveries
(Gordon and Lindsay, 1996; Stegmann and Grohmann, 2003; Swanson and Smalheiser, 1997;
Weeber et al., 2000). Discovery replication consists of replicating a prior discovery made by
actual researchers or previous LBD systems. These have usually been LBD-based discoveries
as they are relatively easy to quantify as opposed to other discoveries. This means that there
are only a handful of such discoveries to use and there is a danger of designing systems which
are tuned to perform well on these discoveries but are not generalisable; so other evaluation
techniques should be used in conjunction with this approach. Additionally, this technique
ignores all other discoveries the system may propose, which may be as equally valid as the
ones being replicated. Despite its shortcomings, discovery replication seems a reasonable
necessary first hurdle for a proposed system to get past, and it is the only evaluation found in
most older work on the topic.

In this type of evaluation, the state of the literature before the discovery to be replicated
is used to generate discovery candidates in the form of the target term. Success is determined
by whether the term of interest is returned as part of this list or not. However, the presence of
the desired term in a list of target terms is insufficient to indicate the likelihood of the term
being noticed by a hypothetical researcher. This approach also does not allow for quantitative
comparisons between systems or system components.

For these reasons, it is now standard procedure to perform LBD as a ranking task and to
report the rank of the term(s) of interest. The higher the rank of the term(s) of interest, the
better the system. These techniques can be used to evaluate both open and closed discovery
systems depending on whether the ranked list consist of linking or target terms.
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2.3.2 Time or Literature Slicing

This method consists of splitting the existing literature at a certain point in time. The system
is then trained on the literature from the period before the split with the aim of determining
how many of the discoveries in the latter period it can discover. Issues with this approach
include: the unclear definition of a discovery, as mentioned before, leading to some ambiguity
about what the gold standard for the evaluation should be; interpreting the results in light
of the metrics used to measure performance; and not being able to determine if a proposed
discovery is incorrect or simply has not been made as yet.

In the absence of a perfect list of the evaluation gold standard, this approach estimates it
by finding instances of the defined relationships in the test set which are not in the training
set and can be reasonably inferred from it. This means that the evaluation depends heavily
on what constitutes a relationship for the given system. If a noisy relationship like co-
occurrence is used, then the evaluation will be noisy (and easy to perform well on). Existing
systems have used term co-occurrences (Hristovski et al., 2000), relationships from external
biomedical resources (e.g SemMedDB) (Cameron et al., 2015) and semantic relationships
(Preiss et al., 2015). A high precision approach would be to get expert opinion to generate a
list of gold standard terms (Yetisgen-Yildiz and Pratt, 2009), although this is expected to be
time-consuming, possibly expensive and have low recall rates.

One example of using expert opinion in this manner is the recent LION LBD tool (Pyysalo
et al., 2018). In addition to replicating five of Swanson’s discoveries, they evaluated on a
Cancer Discovery dataset created by cancer researchers which can be used as a gold standard
for LBD evaluation in biomedical domain. It features A, B and C triples - extracted from
publications in top biomedical journals - and the year of the publication that made the
connection. Systems are evaluated on how highly they are able to rank the AC connection
when trained on PubMed documents released before the AC publication year. While this
method employs the literature slicing strategy, it differs in that it provides a fixed set of
certified discoveries curated by domain experts and supports testing of a system’s ability to
discover multiple intermediary links which point to AC.

The advantage of this evaluation approach is that it tends to produce an indicator of the
system’s performance on a large number of possible test instances. This gives rise to the need
for evaluation metrics which can quantify the system’s performance on large, ranked lists. For
this, LBD works usually use metrics more popular in Information Retrieval (Yetisgen-Yildiz
and Pratt, 2008). These include Precision, Recall, Precision-Recall Curve, Receiver Operator
Characteristics (ROC) Curve, Precision at K, Mean Average Precision (MAP) and F-score.
More details on these are given in Section 2.3.4.



2.3 Evaluating LBD Systems 25

2.3.3 Proposing New Discoveries

Proposing new discoveries or treatments goes a step beyond replicating past discoveries or
predicting instances of a particular relationship after a point in time and shows that a system
is capable of being used in realistic situations and has been used in several works (Hristovski
et al., 2010; Stegmann and Grohmann, 2003; Swanson and Smalheiser, 1997; Wren et al.,
2004). To be valid, this is usually accompanied by vetting of the proposal by a recognised
domain expert or peer-reviewed publication in the relevant domain. An example of this is
that Wren et al. (2004) identified compounds which their system predicted might affect the
development and/or progression of cardiac hypertrophy and performed laboratory tests in
a rodent model and found that the compound Chlorpromazine reduced the progression of
cardiac hypertrophy.

In summary, there have been several approaches to evaluating LBD approaches intrinsi-
cally and extrinsically. There has been heavy use of seeking to replicate specific discoveries,
especially those proposed by Swanson and others usually with a time-slicing element al-
though more generalisable evaluations have been used. Unfortunately, in general very few
evaluations can lay claim to demonstrating that an approach is generalisable and practically
useful. In the end however, the ultimate extrinsic evaluation of an LBD system is still its
uptake by practitioners and users. This has been and still is a problem for LBD (Kostoff,
2008a).

2.3.4 Evaluation Metrics

The evaluation metric that is used is an important aspect of LBD system evaluation because
it highlights what areas of the task are being done well and which are not. This is dependent
on which of the above evaluation methods is chosen, because that influences how many
evaluation cases there are and thus what metrics are suitable and even possible. As mentioned
above, it is now expected that terms of interest and linking terms will be ranked in the
returned list.

In cases where there is a single or only a few correct (gold) terms in the evaluation
set, Rank (single gold) or Mean Rank (multiple golds) makes sense. When there are many
possible correct terms in the evaluation set, as mentioned above, LBD works usually use
metrics more popular in Information Retrieval. These include Precision, Recall, Precision-
Recall Curve, Receiver Operator Characteristics (ROC) Curve, Precision at k, Mean Average
Precision (MAP) and F-score. Other metrics which are suited to ranked lists include Mean
Reciprocal Rank (MRR) and Mean Relevance Precision (Mean R-precision). Some of these
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metrics are dealt with in more detail later in the thesis (Section 4.6.1 and Appendix C), but
for completeness we give brief descriptions of each here.

Area under the Precision-Recall Curve (AUC-PR): Recall measures what percentage
of all possible positives in the evaluation set were returned by the system. Precision measures
what percentage of the results returned by the system are true positives. These metrics are
used to construct a Precision-Recall Curve which illustrates how the increase in recall affects
precision.

Area Under the Receiver Operating Characteristics Curve (AUC-ROC): True pos-
itive rate is equivalent to recall. The fallout or false positive rate measures how many
negatives were returned as false positives by the system. These metrics are used to construct
a Receiver Operating Characteristics (ROC) Curve which illustrates this relationship.

Precision at k: Other metrics measure performance across all recall levels but most
applications with ranked results are only interested in the quality of highly ranked results.
Precision at k or the top k predictive rate is the percentage of true positives among only the
top k ranked results.

Mean Average Precision (MAP): Given a ranked list of results relevant to a particular
query or term, we can calculate the precision at each true positive. The average of these
values gives the average precision for that query or term. This done over all queries/terms
in an evaluation set gives a single-value measure of a system’s performance across all
queries/terms.

Averaged R(elevant)-Precision: Similar to MAP but instead of calculating the precision
after each positive in the list of results for a given query or term, precision is only calculated
with the top R results. R is determined by how many true positives exist for the query or
term. This metric is similar to precision at k except that instead of having a fixed k, it changes
based on the amount of positives each query has so that a query with less than k positives is
not unfairly penalised and a query with a lot more positives than k is not trivially easier for
the system to perform well on.

Mean Rank (MR): This is the mean of the ranks of the correct or positive terms in the
list of ranked results returned.

Mean Reciprocal Rank (MRR): The MR is not normalised across lists of results of
varying sizes, which makes it susceptible to distorted results from relatively long or short
lists. It also does not give strong prominence to systems which rank correct terms at the top
of the list which is of importance for ranking tasks. By inverting the ranks, both of these
issues are solved.
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2.4 Improving LBD

There have been numerous approaches aimed at improving various aspects of LBD with
a view to improving its performance. These include: using machine learning to rank
intermediate/linking terms for relevance and predict them for a given search (Torvik and
Smalheiser, 2007); removing the need to generate and evaluate intermediate terms (Cohen
et al., 2010; Gordon and Dumais, 1998); pruning the amount of intermediate terms by using
knowledgebases (Srinivasan, 2004; Weeber et al., 2001); making intermediate connections
more transparent (Cameron et al., 2013; Weeber et al., 2001); use meta information (e.g.
bibliographic links) to make discoveries (Sebastian et al., 2017b); combining disparate
information sources to obtain better information (e.g. bibliographic, knowledgebases, text)
(Ding et al., 2013; Eronen et al., 2012; Kostoff, 2010; Sebastian et al., 2015); expanding
queries beyond the core terms (Cameron et al., 2015; Kostoff et al., 2008b; Wilkowski et al.,
2011); using Word Sense Disambiguation to resolve ambiguities pervasive in biomedical
texts (Preiss and Stevenson, 2016); using semantic information to reduce noise in inputs
(Preiss et al., 2015, 2012) and filtering the linking or resulting terms (Hristovski et al., 2003;
Preiss and Stevenson, 2017).

Of these methods, some categories are of particular interest to this work: works which
used machine learning (ML); works which included utilising graphs and those which used
NLP methodologies. We have already covered most of the list from the previous paragraph
in detail in Section 2.2. Here we will add information on a few methods taken specifically to
improve LBD and highlight which works are relevant because they are the closest approaches
to what this thesis deals with. Relevant ML works include (Kastrin et al., 2016; Katukuri
et al., 2012; Sebastian et al., 2015). Relevant works which utilise graphs were dealt with in
Section 2.2.5; of particular interest are (Cameron et al., 2013; Eronen et al., 2012; Katukuri
et al., 2012). Works which make use of NLP methodologies include (Preiss et al., 2015;
Sebastian et al., 2017b).

Hristovski et al. (2003) integrated background knowledge into an LBD system aimed at
discovering candidate genes for diseases. The knowledge was the chromosomal locations of
the diseases and genes from external resources such as LocusLink (Pruitt and Maglott, 2001)
and Online Mendelian Inheritance in Man (OMIM) (Hamosh et al., 2005). When given a
disease as the starting point for LBD, this allowed the system to constrain proposed candidate
genes to be in the same location as the disease.

Gulec et al. (2010) investigated the effectiveness of pruning and grouping, two approaches
used to improve the performance of LBD systems. Pruning refers to removing very general
(thus uninformative) terms, terms which are highly related to the initial term and using
semantic types to eliminate conflicting or impossible relationships. They found that grouping
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on the target term led to decreased performance; that pruning terms which are closely related
to the starting term did not have an impact; and that semantic pruning had a negative impact.

Preiss et al. (2012), like Hristovski et al. (2006) before, bemoan the use of simplistic
approaches to obtaining information from biomedical texts for LBD, such as bag-of-words
for entity extraction and co-occurrence for relationships. They list some of the problems these
can lead to and some possible solutions. The problems include ambiguity among biomedical
terms which can lead to real connections being missed and false connections being made;
relationship types based mostly on textual co-occurrences which give no explanation of how
the entities are related (if at all) and may miss linguistically important phenomena such
as negation; and lack of interpretation of the results proposed by the system which is of
little help to persons who require an explanation for the conclusions reached by the system
(especially in light of a non-trivial possibility of incorrect conclusions), which applies to
most, if not all, categories of LBD users. They propose Word Sense Disambiguation (WSD),
Information Extraction (IE) and data mining techniques respectively as solutions to these
issues.

Following on from the first issue raised in that work, Preiss and Stevenson (2016) detailed
how ambiguity among biomedical terms is a potential problem for LBD, leading to abundant
low-quality proposals. To study this, they integrated WSD into an LBD system (Preiss et al.,
2015) using three WSD approaches of varying performance levels. They found that the
performance of the LBD system improved as the WSD approach’s performance did, which
was a strong indication that LBD performance benefits notably from WSD.

Rastegar-Mojarad et al. (2016) used semantic predications, from SemMedDB, of drug-
gene and gene-disease relations to perform LBD. They referred to these predications as
’causal findings’ and investigated the use of the sentences from which the predications were
extracted as context to classify the relationships into desired classes for the tasks of drug
repositioning, identifying adverse drug events and detecting drug-disease relationships. They
extracted features from the sentences and used them to train classifiers (including SVM,
Naïve Bayes and random forests) to perform the classification.

Given the high amount of new knowledge proposals that LBD systems generate, ap-
proaches to filtering out the high-quality ones as a means of improving LBD have been a
research focus over the years. These approaches have included: synonym merging (Cameron
et al., 2015), using stoplists (Swanson and Smalheiser, 1997; Swanson et al., 2006), literature
reduction (Swanson et al., 2006), restrictions based on term or semantic type (Hristovski
et al., 2003; Yetisgen-Yildiz and Pratt, 2008), confidence thresholds (Hristovski et al., 2003)
and using concepts and keywords instead of terms (Weeber et al., 2001).
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Preiss and Stevenson (2017) performed an extensive study of the quality of the proposals
of an LBD system and investigated the efficacy of four filtering approaches. The approaches
they investigated were synonym merging, semantic type restriction, using a common linking
terms stoplist and identifying and removing connections of common linking terms. They
evaluated the performance of a system which incorporated these methods on replicating seven
previously proposed discoveries as well as on a time-sliced dataset using SemRep relations as
the relationship between the entities. They found breaking the connections between common
linking terms to be the most effective approach.

2.5 Natural Language Processing (NLP) and Text Mining
(TM)

LBD is a secondary process in the sense that it uses the outputs of other processes as its
inputs. The main inputs required are concepts (or entities) and relationships between those
concepts. Current methods of procuring concepts include dictionary matching in text and use
of biomedical knowledgebases (such as MeSH and SemMedDB). These methods require
resources and humans for maintenance and are prone to becoming outdated. They also
restrict recall to the concepts found within them, although precision tends to be high when
using them.

Text Mining (TM) is a general approach which aims to automatically identify, extract
and discover new information from text by combining approaches from IR, NLP and data
mining. A related field of TM that is pertinent to this thesis is NLP, which is concerned
with the interactions between machines and natural languages, particularly how to enable
machines to process large amounts of natural language data. These offer an alternative way of
procuring concepts and relationships for LBD as they can process the myriad of biomedical
text available in a manner which can increase recall and require little or no resources to
maintain their flexibility to identify concepts and relationships.

Biomedical TM has become increasingly popular over the past decade or so in response to
the exponential growth of biomedical scientific publications. Resources and NLP techniques
such as part-of-speech (POS) tagging and parsing have been developed for biomedicine. IR
and Information Extraction (IE) are now developed, and relatively accurate techniques are
now available for recognising biomedical named entities (NER), relations and events in text
(Korhonen et al., 2014).

NLP has made great strides in recent years due to the advent of neural networks and
improved inputs into neural network models which perform NLP tasks. Because of this, these
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are two areas of active research in the field. Given these recent advances which produced
new state-of-the-art results in many NLP tasks on existing datasets in the general domain,
using NLP to improve the processing of biomedical texts to improve inputs to LBD methods
is a viable area of research. This was investigated as part of this work; details are in Chapter
3 where it is applied to biomedical NER and POS-Tagging.

2.6 Link Prediction and Knowledge Discovery

Knowledge discovery is concerned with bringing latent knowledge to the fore by putting
together disparate pieces of information. LBD is a form of knowledge discovery. Knowledge
discovery can take many forms which are dependent on how the existing knowledge is
represented and thus how new knowledge is discovered. For the purposes of this work, we
are particularly interested in knowledge discovery in graphs. This is the domain of link
prediction.

Link prediction is the task of predicting edges or links in a graph which are not present
in the current version of the graph. Liben-Nowell and Kleinberg (2003) formulated the link
prediction problem in social networks and most link prediction works have focused in large
part on determining which links will form next in various types of social networks where
links can represent friendships (Backstrom and Leskovec, 2011; Leskovec et al., 2010),
collaborations and co-authorships (Al Hasan et al., 2006; Backstrom and Leskovec, 2011),
citations (Benchettara et al., 2010) and online transactions (Benchettara et al., 2010) among
others. Additionally, link prediction has been used on large-scale knowledgebases to add
missing data and discover new facts (Nickel et al., 2016; Schlichtkrull et al., 2018).

Link prediction has already been applied in the biomedical domain for various uses.
Predicting Drug Target Interactions (DTIs) is important in repositioning existing or abandoned
drugs by identifying new uses for them. Wang and Zeng (2013) and Lu et al. (2017) both
used link prediction on this task by providing in silico predictions of interactions. Wang and
Zeng (2013) used Restricted Boltzmann Machines (RBMs) to predict different types of DTIs
on a multi-dimensional network while Lu et al. (2017) used similarity indices to predict links
in DTI networks.

The use of link prediction for LBD has already been explored. We covered most of the
previous work on this in Section 2.2.5 (Kastrin et al., 2016; Katukuri et al., 2012; Sebastian
et al., 2017b). Additionally, Kastrin et al. (2014) performed link prediction on Semantic
MEDLINE, a large-scale relational dataset of biomedical concepts. They used three different
similarity measures as predictors for link prediction: Common Neighbours (CN), Jaccard
Index/Coefficient (JI/C) and Preferential Attachment (PA). Their results showed prediction
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performance which suggested plausibility of using link prediction for LBD across all their
approaches, however they used the AUC (ROC) metric whose shortcomings are mentioned
in Section 4.6.1. These shortcomings manifested themselves in our investigations as well in
Chapter 4 where more details about link prediction will be presented.

2.6.1 Knowledge Graphs and Networks

We are concerned with link prediction in graphs because much biological data already exist
as graphs and many of those which are not can be formulated as such. One such group of
data are knowledgebases. These are a collection of concepts and specified relationships
between them. Popular examples used in general domain text processing include DBPedia
(Auer et al., 2007), WordNet (Miller, 1995), VerbNet (Schuler, 2005) etc. They have been
integrated into various tasks in NLP where they provide external, usually manually-created
knowledge about the real world which have boosted the performance of NLP models.

A non-exhaustive list of biomedical knowledgebases which are available for use and
possibly beneficial to LBD for task such as Normalization and Entity Linking include: for
Genes/Proteins, Entrez Gene (Maglott et al., 2005) and The Universal Protein Resource
(Uniprot) (Wu et al., 2006); for Chemicals, Chemical Entities of Biological Interest (ChEBI)
(de Matos et al., 2010; Degtyarenko et al., 2008); for Subcellular structures, the Cellular
Component subontology of the Gene Ontology (Ashburner et al., 2000; Consortium et al.,
2004); for Cells, The Cell ontology (Bard et al., 2005) and neXtProt’s Cellosaurus (Gaudet
et al., 2015); for Tissues and Anatomical structures, Foundational Model of Anatomy (Rosse
and Mejino Jr, 2008; Rosse et al., 2003) and Uberon (Mungall et al., 2012); for Organisms,
NCBI taxonomy (Federhen, 2012) and for Biological processes, the Biological Process
subontology of the Gene Ontology (Ashburner et al., 2000; Consortium et al., 2004).

Medical Subject Headings (MeSH) have also been widely used for graph-centric LBD.
SemMedDB (Kilicoglu et al., 2012), a repository of semantic predications (subject–predicate–object
triples) extracted from the entire set of PubMed citations has also been used for graph centred
LBD. This is unsurprising as it was billed from inception as ’a knowledge resource that can
assist in hypothesis generation and literature-based discovery in biomedicine’.

2.7 Machine Learning, Neural Networks and Deep Learn-
ing

The field of Machine Learning (ML) is concerned with having machines leverage patterns
in data to successfully complete a given task. Conventional machine learning techniques
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were limited in their ability to process data in their raw form. Constructing machine learning
systems required domain expertise as it entailed designing and engineering feature extractors
that used the raw data feature vectors which were used by learning systems, like classifiers,
to detect or classify patterns in the input. Representation learning methods, like neural
networks, allow machines to take the raw data as input directly and automatically uncover
the representations needed for detection or classification. Deep learning methods are rep-
resentation learning methods with multiple levels of representation, obtained by stacking
non-linear modules that transform the representation at each level (from the raw input) into
a representation at a more abstract level. By composing enough of these modules, more
complex functions between the input and the output can be learned. LeCun et al. (2015) and
Schmidhuber (2015) provide recent overviews of deep learning in neural networks.

The most common form of machine learning approach is supervised learning. It works
by using large collections or datasets of the items to use as input along with the respective
labels. During training, the machine is shown an instance from the dataset and produces a
vector of scores as output, where each component of the vector represents a score for each
label category. The objective is to have the right category score the highest of all categories.
To achieve this, an objective function that measures the error (or distance) between the output
scores and the desired scores is computed. The model then modifies its internal adjustable
parameters (called weights) to reduce this error. Central to this step is the backpropagation
algorithm (commonly referred to as backprop) which computes the gradients of the objective
function with respect to the weights. This gradient is then used to determine how each weight
should be adjusted to hopefully improve performance. In a typical deep learning system,
there may be hundreds of millions of weights, and hundreds of millions of labelled examples
with which to train the machine learning model, although shallower neural networks would
have a lot less.

Many deep learning approaches use feedforward neural network architectures, which
learn to map a fixed-size input to a fixed-size output. To go from one layer to the next, a set
of units compute a weighted sum of their inputs from the previous layer and pass the result
through a non-linear function (in recent years the Rectified Linear Unit, ReLU (Nair and
Hinton, 2010) has been popular). Units that are not in the input or output layer are called
hidden units and form hidden layers. The hidden layers can be thought of as transforming
the input such that categories become linearly separable by the last layer of the model.
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2.7.1 Popular Neural Network Models and Topics

Although the entire fields of neural networks and deep learning have taken off as machine
learning approaches of choice in recent years, some topics, particularly models, have been at
the core and are relevant to understanding the work presented in this thesis.

Convolutional Neural Networks (CNNs or ConvNets)

CNNs are designed to process data that can be deconstructed as multiple channels, for
example pixels in a colour image can be presented as having red, blue and green channels.
Nonetheless CNNs have found uses on data with only a single channel. The architecture
of a typical CNN is structured as a series of stages. The first few stages are composed of
two types of layers: convolutional layers and pooling layers. Units in a convolutional layer
are organized in feature maps, within which each unit is connected to local patches in the
feature maps of the previous layer through a set of weights called a filter. The result of
this local weighted sum is then passed through a nonlinearity such as a ReLU. All units in
a feature map share the same filter. Different feature maps in a layer use different filters.
Mathematically, the filtering operation performed by a feature map is a discrete convolution,
hence the name.

Recurrent Neural Networks (RNNs) and Long Short Term Memory (LSTMs)

For tasks that involve sequential inputs, such as speech and language, it is often better to use
RNNs. RNNs process an input sequence one element at a time, while their hidden units keep
a state vector that implicitly contains information about the history of all the past elements
of the sequence. RNNs are powerful models, but training them proved to be problematic
because the backpropagated gradients either grow or shrink at each time step, so over many
time steps they typically explode or vanish (Bengio et al., 1994) resulting in the network not
learning what the training intends it to learn.

If each input element which the RNN processes is viewed as a separate unit in a neural
network, it is said to be unrolled in time. When an RNN is unrolled in time, it can be seen as
a very deep feedforward network in which all the layers share the same weights. Although
their main purpose is to learn long-term dependencies, theoretical and empirical evidence
shows that it is difficult to learn to store information for very long (Bengio et al., 1994). To
solve this problem, one idea is to explicitly add memory to the network. The first proposal of
this kind is the LSTM networks that uses special hidden units, which enables the network to
remember inputs for a long time (Hochreiter and Schmidhuber, 1997). A special unit called
the memory cell acts like an accumulator or a gated neuron: it has a connection to itself at
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the next time step that allows it to copy its state and accumulates the external signal, but this
self-connection is itself gated by another unit that learns to decide when to clear the content
of the memory.

Distributed representations

In a neural language model, the hidden layers of the network learn to convert the input
word vectors into an output word vector for the predicted next word, which can be used
to predict the probability for any word in a given vocabulary to appear as the next word.
The network learns word vectors that contain many active components, each of which can
be interpreted as a separate semantic feature of the word, as was first demonstrated in the
context of learning distributed representations for symbols (Rumelhart et al., 1986). These
semantic features were not explicitly present in the input but were discovered by the learning
procedure as a good way of representing the structured relationships between the input and
output symbols. Learning word vectors turned out to also work very well when the word
sequences come from a large corpus of real text (Bengio et al., 2003). When trained to
predict the next word in sentences from a given text, the learned word vectors of semantically
similar terms (such as chair and couch) are very similar. Such representations are called
distributed representations because their features are not mutually exclusive thus allowing
the distributing of the information learnt over several vectors. These word vectors are
composed of learned features that were not determined ahead of time by domain specialists,
but automatically discovered by the neural network. Vector representations of words learned
from text are now indispensable in state-of-the-art NLP (Cho et al., 2014; Collobert et al.,
2011; Sutskever et al., 2014). Work on this for biomedical NLP is detailed in Section 3.3.

2.7.2 Multi-task Learning (MTL)

One particular use of neural networks that is of interest is Multi-task Learning (MTL)
(Caruana, 1993). MTL is concerned with training a ML model for multiple tasks such that
the model’s performance is improved either for a main task or across the multiple tasks
it is trained for. This improvement can happen for multiple reasons and can be motivated
in various ways. An overview of early work pertaining to MTL in neural networks was
presented in (Caruana, 1997). This work motivated and laid the foundation for much of the
work done in MTL by demonstrating feasibility and important early findings. Ruder (2017),
which provides a more recent overview of MTL in deep neural networks, states that decades
after Caruana’s ground-breaking work, most MTL still follows the hard parameter sharing
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approach proposed in (Caruana, 1993). Some of the recent uses of MTL, especially in neural
networks are summarised here.

Ando and Zhang (2005) investigated learning functions which serve as good predictors
of good classifiers on hypothesis spaces using multi-task learning of labelled and unlabelled
data. The algorithms presented reported good results when tested on several machine learning
tasks: NER, Chunking and POS-Tagging. Previous works required training sets to contain
the same pattern with different labels, but this method circumvented that restriction.

According to Evgeniou et al. (2005), many empirical works, such as in (Ando and Zhang,
2005; Bakker and Heskes, 2003; Caruana, 1997), demonstrated that it is beneficial to learn
multiple related learning tasks simultaneously rather than independently. They however
stated that there was still much unknown about the theory behind MTL and the development
of MTL methods and sought to fill this gap. In later work (Argyriou et al., 2007) they learnt
multi-task features as low-dimensional representations which can be shared across a set of
related tasks.

Collobert et al. (2011) built on earlier work (Collobert and Weston, 2008) and sought to
use MTL in a unified model to gain increased performance in several core NLP task: NER,
Chunking, POS-Tagging and Semantic Role Labelling (SRL), with neural networks. They
found that while they were able to achieve a unified model which could perform all tasks
without significant degradation of performance in any of them, there was little or no benefit
from MTL for those tasks.

More recent work on MTL include (Maurer et al., 2016) which presented a general
method for learning data representations from multiple tasks and justified their method in
both multi-task learning and learning-to-learn situations. Liu et al. (2015) used multi-task
deep neural networks with shared and private layers for information retrieval and semantic
classification.

In the field of image processing, Zeng and Ji (2015) successfully used the weights of
convolutional networks from Simonyan and Zisserman (2015) trained on general domain
images as the starting point for further training on images in the biomedical domain. They
reported improvements from this approach, indicating that convolutional approaches can
work in multi-task settings.

The idea of MTL in neural networks has been investigated for over two decades with
varying degrees of intensity and a wide spectrum of approaches. While great results have been
reported in Image Processing, the results have been more muted in NLP. MTL is prospectively
useful for LBD because it can be used in a variety of ways. It can be useful in the concept
and relationship procuring phase as several related NLP tasks (such as POS-Tagging and
Chunking) can aid in NER and even the tasks of relationship extraction and NER may be
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mutually beneficial to each other. In the discovery phase, learning representations for the
nodes in the graph and predicting links between them could be mutually beneficial tasks. We
use MTL for the concept procuring phase by using a wide selection of biomedical datasets as
different tasks to improve performance on biomedical NER (Section 3.4).

2.8 Conclusion

In summary, there has been an abundance of work on LBD since it was proposed as a
strategy for discovering new scientific knowledge. These works have proposed several
different approaches to LBD even when they used some similar components (Section 2.2).
The evaluation methods used have been a lot less varied: there is heavy use of seeking to
replicate specific discoveries especially Swanson’s although there have been other approaches
to evaluation as well (Section 2.3). In general, very few evaluations can lay claim to
demonstrating that an approach is generalisable and practically useful. There have also
been several approaches to improving LBD either through improving how it extracts useful
information from text for use in LBD or in performing LBD more efficiently and obtaining
high-quality proposals from the LBD process itself (Section 2.4).

The existing methods reported in the chapter either use very shallow processes to extract
the entities in text either by matching to a list of known terms from lists created by external
resources such as MeSH and UMLS. That makes these methods reliant on these resources
being complete and updated; and makes them error-prone as simple matching will tend to
produce both false positives and false negatives. Text Mining, especially NLP (Section 2.5)
presents a solution to these problems and while there will be a trade-off in precision, the
benefits would outweigh this downside. Link prediction (Section 2.6) is exciting because it
provides both an alternative approach to facilitating simple and multi-hop LBD and a more
powerful approach to knowledge discovery from biomedical knowledge represented as graphs
than the traditional open and closed ABC paradigm of LBD. Advances in neural networks
and deep learning (Section 2.7) have made applying all these techniques to improving LBD
not only possible, but feasible and highly promising given their stellar performances on other
tasks. That has been the focus of the work reported in this thesis.

While the previously stated classification by Sebastian et al. (2017a) is useful, it does not
have to be rigid. Since neural networks are ubiquitous and versatile, this work sought to use
them in various ways to improve various aspects of LBD. Thus some parts of this work may
be considered as using the traditional approach of open and closed discovery but others less
so. Chapter 4 focuses on link prediction for LBD and more powerful knowledge discovery
from literature. Chapter 5 epitomises this point as it uses link prediction-inspired machine
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learning models within the ABC paradigm to perform neural LBD. Additionally, all aspects
sought to use neural networks in both the text processing to procure inputs phase and in the
graph processing to generate discoveries phase.

This Chapter gave an overview of the relevant literature which motivated the work pre-
sented in this thesis as well as the background needed to understand the work presented. It
gave details of LBD, including how it works and why it is a relevant research area. It looked
at some of the previous approaches taken and proposed to improve LBD. It gave details
on neural networks and deep learning whose influence and use pervades the work. It also
introduced specific approaches used such as NLP, NER, link prediction and MTL. Related
relevant topics like TM, knowledge discovery, representation learning, knowledgebases and
graphs were also included to further orient the work in the existing literature.

Section 2.5 pointed out that LBD is a secondary process in the sense that it uses the
outputs of other processes as its inputs and that the main inputs required are concepts (or
entities) and relationships between those concepts. It highlighted NLP as a possible solution
to some of the problems which plague concept procurement in existing LBD approaches.
Chapter 3 contains the work done to improve recognising biomedical entities in unstructured
text.





Chapter 3

Improving Biomedical Named Entity
Recognition (NER)

3.1 Role of NER in LBD and Knowledge Discovery from
Text

Concepts are a central component of LBD as they represent the objects about which knowl-
edge is stated and discovered. These can be simple or complex and include genes/proteins,
chemicals, species and diseases among others. Concepts are usually represented in text as
named entities. Identifying which portions of unstructured text are relevant named entities
and which are not is thus the necessary first step to using unstructured or weakly structured
text for many computational language processing tasks, including LBD. This task is termed
Named Entity Recognition (NER).

Thus far in LBD, recognizing named entities in text has revolved around using only
dictionaries and ontologies such as MeSH and matching their contents to corresponding
terms in text. These resources have the advantage of being vetted by humans and thus
methods which utilize them can boast high precision. Unfortunately, they must be maintained
and updated and this is a resource-intensive and arduous task. It is possible then for them to be
inaccurate or outdated. There are also the inherent dangers of simply matching occurrences
of strings of named entities in an ontology to its equivalent in text which can give rise to
spurious hits. Methods incorporating NLP would almost certainly suffer lower precision but
can have much better adaptability to new terms, thus increasing recall. These advantages
of higher recall and no dependencies on external resources can offset the issue of lower
precision. Our work in this direction sought to build on the progress of these and other
machine learning techniques and models.
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3.2 Neural Networks and Deep Learning for NER

There have recently been state of the art results reported on this task (Chiu and Nichols,
2016; Lample et al., 2016). Recent successful systems used word embeddings for rich input,
avoided or minimized the amount of hand-crafted features used, and utilized character based
models which are capable of exploiting information found at the character-level to improve
performance. Our work sought to leverage these characteristics as well, along with others.

3.3 Better Word Representations for Neural Biomedical
NER Models

Better inputs to neural network models can lead to improved results and has been a contribut-
ing factor to recent state-of-the-art results in NER. I played a part in an effort to improve such
inputs for neural networks for various Biomedical tasks such as NER (Chiu et al., 2016a).
Our role was in the extrinsic evaluation of the inputs so in the details which follow, we will
focus exclusively on that aspect of the work.

As one of the main inputs of many NLP tasks, including NER, word representations have
long been a major focus of research. The most recent successes have come from embedding
words into a low-dimensional space using neural networks (Bengio et al., 2003; Collobert
and Weston, 2008; Mikolov et al., 2013b; Pennington et al., 2014; Turian et al., 2010). These
approaches represent each word as a dense vector of real numbers, which collectively form a
vector space. In this vector space, words that are semantically related to each other occupy
the same regions of the vector space. Among neural embedding approaches, the skip-gram
model of (Mikolov et al., 2013a) has achieved cutting-edge results in many NLP tasks,
such as NER, sentence completion, analogy and sentiment analysis (Fernández et al., 2014;
Mikolov et al., 2013a,b).

Word embeddings have been extensively studied in recent work (e.g. (Lapesa and Evert,
2014)), but most such studies only involve general domain texts and evaluation datasets for
training and evaluation. As such their results do not necessarily apply to biomedical NLP
tasks. In the biomedical domain, Stenetorp et al. (2012) studied the effect of corpus size
and domain on various word clustering and embedding methods, and Muneeb et al. (2015)
compared word2vec and Global Vectors (GloVe) (Pennington et al., 2014), two state-of-
the-art word embedding creation algorithms, on a word-similarity task. They showed that
skip-gram significantly out-performs other models and that its performance can be further
improved by using higher dimensional vectors. The word2vec tool was also used by Pyysalo
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et al. (2013) and Kosmopoulos et al. (2015) to create biomedical domain word representations
to perform NER on 3 corpora and dimensionality reduction for semantic indexing on the
BioASQ datasets respectively.

Since word2vec has been shown to achieve state-of-the-art performance that can be further
improved with parameter tuning, we focused on its performance on biomedical data with
different inputs and hyper-parameters. We use all available biomedical scientific literature
for learning word embeddings using models implemented in word2vec. Embeddings can be
evaluated intrinsically and extrinsically. Intrinsic evaluation focuses on the characteristics
of the vector space of the embeddings, the standard UMNSRS-Rel and UMNSRS-Sim
datasets (Pakhomov et al., 2010), were used as they enabled similarity and relatedness to be
measured separately. For extrinsic evaluation, a CNN NER model we developed was applied
to two standard benchmark biomedical NER datasets. When the embeddings were used in
biomedical NER they led to improved performance over the existing embeddings which were
created with text from PMC, PubMed and Wikipedia (Pyysalo et al., 2013). The observation
that a larger corpus does not necessarily guarantee better results was also made.

We used two corpora to create word vectors: the PubMed Central Open Access subset
(PMC) and PubMed. PMC is a digital archive of biomedical and life science literature,
which contains more than 1 million full-text Open Access articles. The PubMed database
has more than 25 million citations that cover the titles and abstracts of biomedical scientific
publications.

Given that the ultimate evaluation for word vectors is their performance in downstream
tasks, we assessed the quality of the vectors by performing NER using two well-established
biomedical reference standard datasets: the BioCreative II Gene Mention task corpus (BC2)
(Smith et al., 2008) and the JNLPBA corpus (PBA) (Kim et al., 2004). Both corpora consist
of approximately 20,000 sentences from PubMed abstracts manually annotated for mentions
of biomedical named entities. Following the window approach architecture with word-level
likelihood proposed by (Collobert and Weston, 2008), we apply a tagger built on a CNN 1.
More details of this model can be found in Section 3.4.3.

Our word vectors are used as the embedding layer of the network, with the only other
input being a binary vector of word surface features. To emphasize the effect of the input
word vectors on performance, we avoided fine-tuning the word vectors during training as
well as introducing any external resources such as entity name dictionaries. While this causes
the performance of the method to fall notably below the state of the art, we believe this
minimal approach to be an effective way to focus on the quality of the word embeddings

1In the paper, we presented a simpler model: a feed-forward neural network, window of five words, one
300-neuron hidden layer with sigmoid activation, leading to a Softmax output. This was done to de-emphasise
the role of the model in the performance. Performance dropped overall, but the findings remain the same.



42 Improving Biomedical NER

created by word2vec. For parameter selection, we estimated the performance of the word
vectors on the development sets of the two corpora using mention-level F-score.

We found contradictory results from changing the size of the context window parameter.
All sets of vectors showed a notable increase in the intrinsic evaluation scores when the
context window size grows. However, the extrinsic evaluation shows the opposite pattern:
all results in extrinsic tasks have an early performance peak with a narrow window (the best
results were win = 1), followed by a gradual decrease when window size increases. One
possible explanation may be that a larger window emphasizes the learning of domain/topic
similarity between words, while a narrow context window leads the representation to primarily
capture word function (Turney, 2012). It is possible that for intrinsic evaluation datasets
such as UMNSRS it is more important to model topical rather than functional similarity.
Conversely, it is intuitively clear that for tasks such as NER the modelling of functional
similarity such as co-hyponymy is centrally important. Further discussion on the effect of
the context window size parameter can be found in (Hill et al., 2015) and (Levy et al., 2015).

In this work, we showed how the performance of word vectors changes with different
corpora, preprocessing options (normal text, sentence-shuffled text, lower-cased text), model
architectures (skip-gram vs. CBOW) and hyper-parameter settings (negative sampling, sub
sample rate, min-count, learning rate, vector dimension, context window size). For hyper-
parameter settings, it is evident that performance can be notably improved over the default
parameters, but the effects of the different hyper-parameters on performance are mixed and
sometimes counter-intuitive specifically in the case of NER, which is of interest to our work.
It is noteworthy that (Chiu et al., 2016b) also found a similar result in general domain work
with Wikipedia text.

In the next section we will focus on neural models which use the biomedical word
embeddings developed from this section as inputs to perform biomedical NER. The same
model used to perform extrinsic evaluation here will be used along with two expanded
versions (Crichton et al., 2017).

3.4 Using Multi-task Learning to Improve Biomedical NER

High accuracy NER systems require manually annotated named entity datasets for training
and evaluation. Many such datasets have been created and made publicly available. These
include annotations for a variety of named entities such as genes and proteins (Smith et al.,
2008), chemicals (Krallinger et al., 2015) and species (Gerner et al., 2010) names. Because
manual annotations are expensive to develop, datasets are limited in size and not available
for many sub-domains of biomedicine (Doğan et al., 2014; Wei et al., 2015). Consequently,
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many NER systems suffer from poor performance (Batista-Navarro et al., 2015; Munkhdalai
et al., 2015).

The question of how to improve the performance of NER, especially in the very common
situation where only limited annotations are available, is still an open area of research. One
potentially promising solution is to use multiple annotated datasets together to train a model
for improved performance on a single dataset. This can help since datasets may contain
complementary information that can help to solve individual tasks more accurately when
trained jointly.

In machine learning, this approach is called Multi-task Learning (MTL) (Caruana, 1997).
The basic idea of MTL is to learn a problem together with other related problems at the same
time, using a shared representation. When tasks have commonality and especially when
training data for them are limited, MTL can lead to better performance than a model trained
on only a single dataset, allowing the learner to capitalise on the commonality among the
tasks. This has been previously demonstrated in several learning scenarios in bioinformatics
and in several other application areas of machine learning (Ando and Zhang, 2005; Maurer
et al., 2016; Wu et al., 2015).

A variety of different methods have been used for MTL, including neural networks, joint
inference, and learning low dimensional features that can be transferred to different tasks
(Ando and Zhang, 2005; Argyriou et al., 2007; Evgeniou et al., 2005). Recently, there have
been exciting results using CNNs for MTL and transfer learning in image processing (Zeng
and Ji, 2015) and NLP (Collobert and Weston, 2008; Collobert et al., 2011; Søgaard and
Goldberg, 2016), among other areas.

In this work, we investigated whether an MTL modelling framework implemented with
CNNs can be applied to biomedical NER to benefit this key task. This is, to the best of our
knowledge, the first application of this MTL framework to the task. Like other language
processing tasks in biomedicine, NER is made challenging by the nature of biomedical texts,
e.g. heavy use of terminology, complex co-referential links, and complex mapping from
syntax to semantics. Additionally, the annotated datasets available vary greatly in the nature
of named entities (e.g. species vs. disease), the granularity of annotation, as well as in the
specific domains they focus on (e.g. chemistry vs. anatomy). It is therefore an open question
whether this task can benefit from MTL.

Due to the aforementioned disparities between datasets, we treat each dataset as a separate
task even when the annotators sought to annotate the same named entities. Thus the words
’datasets’ and ’tasks’ are used interchangeably. We first developed a single-task CNN model
for NER and then two multi-task CNN models. These were applied to 15 datasets containing
multiple named entities including Anatomy, Chemical, Disease, Gene/Protein and Species.
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The results were then compared for evidence of benefits from MTL. On one MTL model
we obtained an average F-score improvement of 0.8% with a range of -2.4% to 6.3% on
MTL in comparison with single task learning from an average baseline F-score of 78.4%
with range 68.6% to 83.9%. Although there is a significant drop in performance on one
dataset, performance improves significantly for five datasets. For the other MTL model we
obtained an average F-score improvement of 0.4% with a range of -0.2% to 1.1% on MTL in
comparison with single-task learning from the same baseline. There is no significant drop in
performance on any dataset, and performance improves significantly for six datasets. These
are promising results which show the potential of MTL to improve biomedical NER.

3.4.1 Motivation and Background

Previous work have demonstrated the benefits of MTL. These include leveraging the infor-
mation contained in the training signals of related tasks during training to perform better
at a given task, combining data across tasks when few data are available per task and dis-
covering relatedness among data previously thought to be unrelated (Bakker and Heskes,
2003; Collobert and Weston, 2008; Maurer et al., 2016). These benefits can be seen, for
example, in potentially ambiguous terms which are spelled the same and are named entities
in some situations, but not in others. One example of this is noted by Preiss and Stevenson
(2016): the word ’cold’ can mean the disease common cold, a cold sensation or the acronym
for Chronic Obstructive Lung Disease. Some training sets may contain examples of both so
that a model can learn to distinguish between them, but others may only contain one type. A
model trained with a dataset combination which contains both types (even if each dataset
contains only one type but they are opposites) can learn to distinguish between them and
perform better.

We are similarly interested in these benefits, but am additionally concerned with the
following, given the particular challenges of biomedical text mining:

Making the best use of information in existing datasets. Given the level of knowledge
interaction and overlap in the biomedical domain, it is conceivable that signals learned from
one dataset could be helpful in learning to perform well on other datasets. For example,
if a multi-task model can learn to identify chemicals from a dataset which only annotates
chemicals, that information can be useful when identifying Gene/Proteins in sentences which
contain interaction of a Gene/Protein with a chemical.

If a model can utilize such information it could conceivably perform better as a result
of having access to this additional knowledge. Currently, when models use additional
knowledge as guidance it is typically hand-crafted and passed to models during training
rather than learned as part of the training process.
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Efficient creation and use of datasets. The datasets used to train supervised and semi-
supervised models are expensive to create. They typically contain manual annotations by
highly trained domain specialists (e.g. biologists with sufficient linguistics training) often
covering thousands of instances (e.g. of named entities or relations) each. If models which
facilitate the transfer of knowledge between existing datasets can be developed and under-
stood, they may be able to reduce the annotation overhead. For example, such models may
be able to detect which type of annotations are really needed and which are not because
the information is already included in another dataset or the knowledge requirements of
tasks overlap. This can help to focus annotation efforts aimed at types not covered in any
existing datasets and can aid in obtaining required annotations faster even if the resulting
datasets are smaller. Caruana (1997) demonstrated that sampling data amplification can help
small datasets in MTL where tasks are related by combining the estimates of the learned
parameters to obtain better estimates than it would by estimating them from small samples
which may not provide enough information for modelling complex relationships between
input and predictions.

It can be tempting to think that these objectives can be met by simply combining the
existing corpora into a single large corpus which can then be used to train a model. The
work of Wang et al. (2009), which investigated the feasibility of this for gene/protein named
entities in three datasets, showed otherwise. They found that simply using combined data
resulted in performance drops of nearly 12% F-score and identified as the main cause of the
drop incompatibilities in the annotations due to the fact that they were made by different
groups with no explicit consensus about what should be annotated.

Thus the problem of utilizing all the knowledge in existing datasets in a single model to
gain the benefits of doing so, including those highlighted here, is a challenging open problem
in biomedical NLP.

3.4.2 Datasets

We used 16 biomedical corpora: 15 focused on biomedical NER and one on biomedical
Part-Of-Speech (POS) tagging. POS tagging is a sequential labelling task which assigns
a part-of-speech (e.g. Verb, Nouns) to each word in text. We chose datasets which were
publicly available and included sufficient amounts of the most utilized named entities in
bioinformatics: Anatomy, Chemical, Disease, Gene/Protein and Species. The names of the
datasets and information about their corresponding named entities are listed in Table 3.1.
Details of their entity counts, creation, prior use, and comparison of the original data to the
versions prepared for sequential labelling can be found in Appendix A.
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Dataset Contents
AnatEM (Pyysalo and Ananiadou, 2013) Anatomy
BC2GM (Smith et al., 2008) Gene/Protein
BC4CHEMD (Krallinger et al., 2015) Chemical
BC5CDR (Wei et al., 2015) Chemical, Disease
BioNLP09 (Kim et al., 2008) Gene/Protein
BioNLP11EPI (Pyysalo et al., 2012b) Gene/Protein
BioNLP11ID (Pyysalo et al., 2012b) Gene/Protein, Organism

Chemical, Regulon-operon
BioNLP13CG (Pyysalo et al., 2015) Gene/Protein, Cell, Cancer, Chemical,

Organism, Multi-tissue structure,
Tissue, Cellular component, Organ,
Organism substance, Pathological
formation, Amino acid, Immaterial
anatomical entity, Organism subdivision,
Anatomical system
Developing anatomical structure

BioNLP13GE (Kim et al., 2013) Gene/Protein
BioNLP13PC (Ohta et al., 2013) Gene/Protein, Chemical, Complex,

Cellular component
CRAFT (Bada et al., 2012) SO, Gene/Protein, Taxonomy,

Chemical, CL, GO-CC
Ex-PTM (Pyysalo et al., 2011) Gene/Protein
JNLPBA (Kim et al., 2004) Gene/Protein, DNA, Cell Type,

Cell Line, RNA
Linnaeus (Gerner et al., 2010) Species
NCBI-Disease (Doğan et al., 2014) Disease
GENIA-PoS (Ohta et al., 2002) POS-Tags

Table 3.1 The datasets and details of their annotations

A point of concern for the stated approach would be whether there is significant overlap
between the training sentences of one dataset and the test sentences in another as this
would expose the model to examples which it would be evaluated on and be a confound for
any performance improvement. We found that the test sets for BC5CDR and BioNLP09
overlapped with the BC2GM train sets 0.02% and 0.37%, respectively, and that the test set
for JNLPBA overlapped with 0.08% of the BioNLP09 train set. These figures were not
deemed large enough to influence the validity of the experiments so no steps were taken to
resolve this issue.
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3.4.3 Experimental Setting

We first trained a single-task model for each of the datasets in multiple settings then trained
them in several MTL settings. The results of the performance in the multi-task settings were
compared to those in similar single-task settings. The multi-task settings are detailed in
Section 3.4.4 and involved two multi-task models which we will introduce in this section
while the others involved variations on subsets of the datasets trained jointly and variation in
dataset sizes.

At each training step a fixed amount of training examples (mini-batch) from the dataset
being trained was selected after shuffling the training examples. For the multi-task models
this mini-batch would be randomly selected from one of the datasets being trained and the
model trained with only the part of the model relevant to the selected dataset activated.

The models were trained to perform NER as a sequential tagging task where each word
in a sentence is tagged with an appropriate tag. The tags used were Single-named entity,
Begin-named entity, In-named entity, End-named entity and Out where named entity differed
according to the type of named entities in the dataset (gene/proteins, chemicals etc.). A word
is tagged Single-named entity if it is the only word in the named entity, while entities of two
or more words begin with Begin-named entity and end with End-named entity. In-named
entity is used for words which occur between Begin-named entity and End-named entity
tags if a named entity has three or more words. Out is used if a word is not a part of any
named entity. Each dataset contained train, development and test sections and a split into
these sections was introduced if none existed. Models were trained on the train section, their
hyperparameters were tuned on the development section and the final evaluations were done
on the test section.

The three main models in this work are all CNNs with varying architectures, and a
feed-forward MLP model was used as a baseline. The models and relevant method details
are described later in this section. For reasons mentioned earlier, we treated each dataset as a
separate task.

The input layer of all the models accept representations of the focus word to be classified
and a context of n words before and after it to give a total of 2n + 1 words. The representations
remain unchanged during training. During pre-processing, special tokens representing
sentence breaks are added. The Viterbi algorithm used for calculating binary transition
probabilities as by Wang et al. (2015) is applied to the outputs of all models. An overview of
this is as follows, first a binary transition matrix is calculated from the training data labels
where for each possible tag transition sequence a score of 1 is given if the training data
contains the transition and 0 if such a transition does not exist. The information in this
matrix is then applied to the sequence of predicted tags and used to update any predicted tag
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sequences which are not seen in the training data (i.e. with tag transition score 0) with a tag
transition sequence which was seen.

Baseline Model

This was a Multi-layer Perceptron (MLP) network with a hidden Rectified Linear Unit
(ReLU) activation layer leading to an output layer with Softmax activation.

Single-task Model

The input layer leads to a convolutional layer which applies multiple filter sizes to a window
of words in the input in a single direction. To apply each filter in only a single direction over
the window of words, the width of the filter always equals the amount of dimensions of the
word embeddings. The outputs of all filters then go to a layer with ReLU activation. The
outputs are then concatenated and reshaped before they pass into a fully connected layer then
an output layer with a Softmax activation which classifies the focus word by selecting the
label with the maximum value of the Softmax output. This model is similar to the one used
by Collobert and Weston (2008) but there is no max-pooling after the convolution layer. We
refrained from using pooling layers so that positional information in the input would not be
lost. We experimented with max-pooling and found that performance improved when it was
not used. See Figure 3.1 for a depiction of this model.

Multi-output Multi-Task Model

The first multi-task model is similar to the single-output model described in Section 3.4.3
up to the fully-connected layer. In this model there are separate fully-connected and output
layers for each task the model learns. Thus a private output layer with Softmax activation
represents each task but all tasks share the rest of the model. This model is similar to the one
used by Collobert et al. (2011) but there are convolutional layers. It is also similar to the one
used by Collobert and Weston (2008) but we share the convolution layers in addition to the
word embeddings and there is again no max-pooling. Figure 3.2 depicts this model.

Dependent Multi-Task Model

This model makes use of the fact that some NLP tasks are able to use information from other
tasks to perform better. An example of this is that NER may utilize the information contained
in the output of POS tagging to improve its performance. This model combines two of the
single-task models described above with one model accepting input from the other. The
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Fig. 3.1 Single-task Convolutional Model

first model trains for the auxiliary task which is POS tagging in this case, then that trained
model is used in the training of the second part of the model for the main task, NER in this
case. This is done by concatenating the fully connected layers of the model trained for the
auxiliary task and the one trained for the main task. The use of this arrangement is similar to
the one used in (Huang et al., 2013) but these layers between word embeddings and Softmax
are convolutions and fully-connected layers. See Figure 3.3 for a depiction of this model.

3.4.4 Experiments

All inputs consisted of a focus word and 3 words to the left and right of it to give a 7 word
context window. The baseline model had one hidden layer of size 300 and was trained with
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Fig. 3.2 Multi-output Multi-Task Convolutional Model

the Stochastic Gradient Descent (SGD) optimizer using mini-batch size 50. All CNN models
used Dropout (Srivastava et al., 2014) with a probability of 0.75 at the fully connected layer
only. No other form of regularization was used. The CNN models used 100 filters of sizes
of 3, 4 and 5 and a learning rate of 10−4 was used with the Adam (Kingma and Ba, 2015)
optimizer on mini-batch size 200. The Categorical Crossentropy loss function was used.
These settings were chosen as they produced the best results from parameter tuning on the
development sections of BC2GM, BioNLP09, BC5CDR and AnatEM.

Each dataset was used to train a single-task model (Section 3.4.3). Details of these as
well as the various multi-task experiments utilizing multi-task models (also Section 3.4.3)
follow.
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Fig. 3.3 Multi-task Dependent Convolutional Model

Baseline experiments: We completed tests with the baseline model using each of the
datasets listed in Table 3.1.

Effect of datasets on each other: To determine the exact effect that each NER dataset
had on every other one, the multi-output multi-task model was used to train each NER dataset
with every other one. That is, a Multi-output multi-task model was trained for each ordered
combination of the datasets to give 15 x 14 models.

Grouping datasets with similar named entities: Several datasets in Table 3.1 sought
to annotate the same named entities (Chemicals, Cells, Cellular Component, Gene/Proteins,
Species). Modified versions of these datasets which extracted only those entity annotations
and then grouped the datasets which annotated the same named entity were created. This was
done by changing the labels of the classes of annotations of entities, other than the one in
focus, to the ’Out’ class. These groups were used to train the Multi-output multi-task model
from Section 3.4.3.
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Multi-task experiments with complete dataset suite: The first part of this experiment
used all the NER datasets to train the Multi-output multi-task model. In the second part, the
Dependent multi-task model was used to train each dataset with the GENIA-PoS dataset as
the auxiliary task.

Correlation of dataset size and effect of MTL: To determine how the effect of MTL
varies with dataset size for the chosen datasets, we used only 50%, 25% and 10% of the
training section of each dataset in both single and multi-task settings and observed the effect
this had on performance. In the multi-task settings, the reduced dataset was trained only
with the dataset which best improved it as determined from the effects experiment described
above (i.e. the dataset listed in the ’Best Dataset’ column of Table 3.2). The Multi-output
multi-task model (Section 3.4.3) was used for these experiments.

3.4.5 Results and Discussion

In the tables of results, columns headed STM refer to results from the single-task model,
columns headed MO-MTM refer to results from the Multi-output multi-task model and
columns headed D-MTM refer to the Dependent multi-task model. The scores reported are
macro F1-Scores (a single precision and recall calculated for all types) of the entities at the
mention level so exact matches are required for multi-word entities. Best results are shown in
bold and statistically significant score changes are shown with an asterisk (*). All statistical
tests were done using a two-tailed t-test with α = 0.05. The accuracy on the POS tagging
task for the model used in the Dependent multi-task model training was 98.10%.

Multi-task Learning effect of each Dataset

Recall from Section 3.4.4 that in this experiment the multi-output multi-task model was used
to train each NER dataset with each of the other 14 NER datasets in the suite to determine
which of the other 14 datasets produced the best result when jointly trained with the other.

Information about the maximum scores achieved for each dataset is shown in Table
3.2. In 4 of the 15 datasets, there were maximums which were significantly higher than the
single-task maximum scores shown in the ’STM’ column of the table. This illustrates that
for these datasets there is at least one other dataset in the suite which could be trained jointly
with it which would yield better performance than training it by itself. It should be noted
here that quite a large number of experiments were carried out to obtain the results in this
table and while the differences in performance were significantly better, the large number of
datasets increase the probability of hitting upon another dataset in the suite which can have
that positive effect.
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Dataset STM Best MO-MTM Best Dataset
AnatEM 81.55 81.68 NCBI-Disease
BC2GM 72.63 72.21 Ex-PTM
BC4CHEMD 82.95 80.31 BioNLP13GE
BC5CDR 83.66 83.77 BioNLP11EPI
BioNLP09 83.90 84.16 BioNLP13GE
BioNLP11EPI 77.72 78.10 BioNLP09
BioNLP11ID 81.50 82.26* BioNLP13GE
BioNLP13CG 76.74 77.33* BioNLP13PC
BioNLP13GE 73.28 76.09* BioNLP11EPI
BioNLP13PC 80.61 80.94 Ex-PTM
CRAFT 79.55 78.48 BioNLP13GE
Ex-PTM 68.56 73.58* BioNLP11EPI
JNLPBA 69.60 68.92 BioNLP13GE
Linnaeus 83.98 83.63 NCBI-Disease
NCBI-Disease 80.26 80.74 Ex-PTM
Average 78.43 78.81 N/A

Table 3.2 Best Positive Effects. Datasets in rightmost column are the auxiliary ones. (Bold:
best scores, *: statistically significant)

An aim of this experiment was to determine which dataset had the most positive in-
teraction with a particular dataset. Table 3.2 shows the result of this in the ’Best Dataset’
column. Most of the datasets which proved to be the best combined with a given dataset were
predictable in that datasets which annotated the same named entities were able to help each
other, but other successful combinations were less predictable, for example the dataset which
best interacted with BC4CHEMD (Chemical) was BioNLP13GE (Gene/Protein) despite the
presence of other datasets which annotated Chemicals and the dataset which best interacted
with Linnaeus (Species) was NCBI-Disease (Disease) not another dataset which annotated
Species.

The full list of results from the 15 x 14 models were not included here for brevity, but
they can be found in Section A.2 of Appendix A.

Multi-task Learning in grouped datasets

Recall from Section 3.4.4 that in this experiment we took datasets which annotated the
same named entity and trained them all jointly using the multi-output multi-task model,
for example Table 3.3 refers to an experimental setup where only datasets which annotated
Chemicals were jointly trained and evaluated on each of the test sets in turn.
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Dataset STM MO-MTM
BC4CHEMD 82.95 82.51
BC5CDR 87.02 89.22*
BioNLP11ID 65.79 63.74
BioNLP13CG 66.40 77.17*
BioNLP13PC 74.53 79.46*
CRAFT 80.00 74.83
Average 76.43 77.49

Table 3.3 Chemical Group. (Bold: best scores, *: statistically significant)

Dataset STM MO-MTM
BioNLP11ID 74.14 77.25*
BioNLP13CG 82.75 86.29*
CRAFT 97.74 97.44
Linnaeus 83.98 83.54
Average 84.65 86.13

Table 3.4 Species Group. (Bold: best scores, *: statistically significant)

The results in Tables 3.3 to 3.8 present the effect of training the Multi-output model
with datasets which aim to annotate similar named entities. In four of the six groups, there
were marked increases in the average performance of the group of tasks, marked decrease
in one group and the results of the remaining one were equivalent. Across the groups there
were 27 experiments; 16 showed significant increase, 1 showed significant decrease and the
remaining 10 showed no significant change.

It is important to note that although the focus of the annotations were similar, both
the sources of the text and the annotations are different for these datasets. This general
improvement suggests that the multi-task model was able to utilize the real-world distributions
from which these labelled examples were sampled and leverage information in all or some of
them to increase performance in most of them, despite variations in source text and possibly
annotation guidelines. This provides evidence of MTL having a positive effect on the NER
task.

Dataset STM MO-MTM
BioNLP13CG 72.79 74.80*
BioNLP13PC 83.23 84.67*
CRAFT 61.04 63.08*
Average 72.35 74.18

Table 3.5 Cellular Component Group. (Bold: best scores, *: statistically significant)
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Dataset STM MO-MTM
BC5CDR 80.46 80.39
NCBI-Disease 80.26 80.46
Average 80.36 80.42

Table 3.6 Disease Group. (Bold: best scores, *: statistically significant)

Dataset STM MO-MTM
BioNLP13CG 83.25 82.83
CRAFT 88.08 86.89*
Average 85.66 84.86

Table 3.7 Cell Group. (Bold: best scores, *: statistically significant)

Dataset STM MO-MTM
BC2GM 72.63 73.04
BioNLP09 83.90 84.76*
BioNLP11EPI 77.72 79.00*
BioNLP11ID 86.20 87.21*
BioNLP13CG 83.40 85.98*
BioNLP13GE 73.28 79.66*
BioNLP13PC 83.21 84.84*
CRAFT 72.85 75.16*
Ex-PTM 68.56 74.91*
JNLPBA 69.60 69.73
Average 77.14 79.43

Table 3.8 Gene/Protein Group. (Bold: best scores, *: statistically significant)



56 Improving Biomedical NER

Multi-task Learning on all datasets

Recall from Section 3.4.4 that in this experiment we trained the Multi-output multi-task
model and the Dependent multi-task model with all the datasets as they were originally
annotated by randomly selecting a particular dataset at each training step and training the
model on the relevant parts activated. Table 3.9 show the results of this.

These results show that the average score of the Multi-output model is higher than that of
the 15 separately trained models. Since the average score over such varied datasets as those
used can be misleading, we examined each dataset individually and analysed the differences
in performance.

This revealed that of the results for individual datasets, there were 6 where the difference
in performance between the Multi-output model and the single-task model was statistically
significant. There were 5 datasets where it performed significantly better and 1 dataset where
it was significantly worse. The performances in the 9 remaining datasets were comparable.
This also provides evidence of MTL having a positive effect on the NER task as in the
previous experiment, but in this case it is a more impressive feat since the number of datasets
and the variability among them are more pronounced here.

Table 3.9 also illustrates that the average score of the Dependent model was higher than
that of the 15 separately trained models. Analysis of the results revealed that of the results for
individual datasets, there were 6 where the difference in performance between that and the
single-task model was significant. In all 6 it performed significantly better, it was significantly
worse in none and the performances in the 9 remaining datasets were comparable.

These results show the advantages and disadvantages of the two approaches to MTL
which each model incorporates. In the Dependent model the average improvement was
less impressive than the Multi-output model but it also shows that this model did not make
performance on any particular dataset significantly worse. This is possibly due to the large
amount of separation between the components responsible for each task which allows for the
NER model to incorporate POS information when it can be helpful and ignore it when it is
not. Comparison of the results of the Multi-output model and the Dependent Model show
that the Multi-output model had a higher average score because it gave larger gains in the
datasets where it performed better but also showed larger losses where it did not. This is
possibly due to sharing most of the model among the datasets regardless of whether or not
this is helpful. This result indicates that in cases where tasks are thought to be similar and
can contribute equally the Multi-output model may be the better of the two while in cases
where there is a clear main and auxiliary task separation, the Dependent model may perform
better.
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Dataset Baseline STM MO-MTM D-MTM
AnatEM 81.79 81.55 81.83 82.21*
BC2GM 70.31 72.63 73.17 72.87
BC4CHEMD 81.08 82.95 82.37 83.02
BC5CDR 83.11 83.66 83.90 83.83
BioNLP09 81.84 83.90 84.20 84.10
BioNLP11EPI 74.98 77.72 78.86* 78.03*
BioNLP11ID 81.44 81.50 80.58* 81.73
BioNLP13CG 75.23 76.74 78.90* 77.52*
BioNLP13GE 72.49 73.28 78.58* 74.00*
BioNLP13PC 79.35 80.61 81.92* 81.50*
CRAFT 78.76 79.55 79.10 79.56
Ex-PTM 65.75 68.56 74.90* 69.67*
JNLPBA 67.43 69.60 70.09 69.44
Linnaeus 79.01 83.98 81.57 84.04
NCBI-Disease 79.09 80.26 79.02 80.37
Average 76.78 78.43 79.26 78.79

Table 3.9 Single Task and Multi-Task F-Scores on NER tasks. (Bold: best scores, *:
statistically significant compared to single-task model)

There were seven datasets which showed significant performance change across the two
multi-task models. Five of them (BioNLP11EPI, BioNLP13CG, BioNLP13GE, BioNLP13PC,
Ex-PTM) were improved in both models which indicated that these datasets benefited from
simply having the information present in the additional datasets available to them, regard-
less of the model. One (AnatEM) had better performance in the Dependent model but no
difference in the Multi-output model while another (BioNLP11ID) had significantly worse
performance in the Multi-output model but no significant performance change in the De-
pendent model. Both of these datasets recorded improved performance in the Dependent
model which indicate that they benefit from having POS-Tagging information integrated in
the manner which the Dependent model uses.

Dataset size and Multi-task Learning

Recall from Section 3.4.4 that in this experiment we used only 50%, 25% and 10% of the
training section of each dataset in both single and multi-task settings and observed the effect
this had on performance. So for example, we trained the single task model on AnatEM with
only 50, 25 and 10% of its original training data and compared these results to it trained in a
multi-task setting with 50, 25 and 10% of its original training data along with the full training
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section of the dataset it performed best on in the first experiment (Table 3.2), NCBI-Disease
in this example.

Table 3.10 correlates dataset performance and decreased size both in isolation and when
trained in a multi-task setting. The best scores for each dataset is in bold and the better scores
for each training set size are italicized. Statistically significant changes in scores relative to
the full single-task model are shown with asterisks while statistically significant changes in
scores relative to the corresponding single-task model are marked with a +.

Multi-task Learning is advantageous here as well as shown in the ’0.5 MO-MTM’, ’0.25
MO-MTM’ and ’0.1 MO-MTM’ columns. As the size of the datasets were reduced, the
multi-task model was able to show an increase in average score over the corresponding
single-task models. The gap between the average scores of the single-task models and the
corresponding multi-task model also widened as the datasets became smaller. In fact, there
were two datasets (BioNLP13GE and Ex-PTM) where using only 50% of the training data
in a multi-task setting yielded significantly better performance than using the full training
data in a single task setting. In the case of Ex-PTM, this was also the case when it was used
with only 25% of its training data. This augurs well for our stated aim of using MTL to
improve performance on small datasets. It can also indicate that new datasets can contain
fewer annotations and thus would consume less resources to create while still being effective
- another stated aim of this work.

An additional result from this experiment was that, for many of the datasets, randomly
removing 50% of the training data sentences resulted in an average drop of only approximately
3.4% F-score in single task training as can be seen by comparing the ’1.0 STM’ and ’0.5 STM’
columns of Table 3.10. When the model is trained on 75% less training data, that average
drop extends to 8% as some datasets continue to be robust although there is a predictable
drop in performance in most datasets. It is not until 90% of the training data of the datasets
are removed that a steep drop in average performance of approximately 16.7% is registered
across all datasets. This high performance on reduced-sized corpora supports what is reported
in (Leaman et al., 2009) using BANNER (Leaman and Gonzalez, 2008), a NER model based
on Conditional Random Fields (CRF) for biomedical NER. This may indicate that, like
BANNER, the single-task model presented in Section 3.4.3 is able to efficiently utilize even
a relatively small amount of training data to obtain good enough performance. It is important
to note that in the respective data reduction scenarios, the multi-task models record drops of
approximately 0.2% when 50% of the training data is removed, approximately 3.0% when
75% is removed and approximately 9.8% when 90% is removed.

There are two caveats which temper these results. The first is that the multi-task model
would have more training data at its disposal than the reduced training data of the single-
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1.0 0.5 0.5 0.25 0.25 0.1 0.1
Dataset STM STM MO-MTM STM MO-MTM STM MO-MTM
AnatEM 81.55 78.74* 78.35* 74.82* 76.59*+ 65.99* 63.15
BC2GM 72.63 70.27* 70.73*+ 67.37* 67.14* 63.07* 63.14*
BC4CHEMD 82.95 80.16* 79.22*+ 76.81* 76.26* 71.94* 72.53*
BC5CDR 83.66 81.15* 82.45*+ 79.09* 80.44*+ 74.47* 75.48*
BioNLP09 83.90 81.89* 82.22* 80.56* 79.58* 75.12* 78.32*
BioNLP11EPI 77.72 74.00* 77.57*+ 70.89* 75.61+ 67.63* 75.04*+
BioNLP11ID 81.50 76.65 81.39 70.60* 78.17*+ 68.19* 73.52*
BioNLP13CG 76.74 70.58* 75.02*+ 65.08* 72.98*+ 51.61* 67.86*+
BioNLP13GE 73.28 73.32 81.37*+ 67.43 78.80* 52.66* 77.12*+
BioNLP13PC 80.61 75.39* 77.57 70.03* 73.90* 57.62* 68.65*+
CRAFT 79.55 75.25* 79.01+ 72.19* 76.79*+ 60.91* 71.00*
Ex-PTM 68.56 62.81 74.60*+ 53.30* 74.27*+ 47.01* 69.83+
JNLPBA 69.60 68.34 69.65 66.63* 68.13 62.80* 65.40*+
Linnaeus 83.98 80.08* 87.61+ 69.53* 79.86 39.44 45.73
NCBI-Disease 80.26 76.51 76.84 71.88* 73.55* 67.48* 62.89*
Average 78.43 75.01 78.24 70.41 75.47 61.73 68.64

Table 3.10 Effect of dataset size reduction on Single-Task and Multi-task performance.
(Bold: best scores for dataset, Italic: better score for each setting, *: statistically significant
compared to full single-task model, +: statistically significant compared to corresponding
single-task model)

task models and this situation would be exacerbated when the second dataset is quite large.
Additionally, given the wide range of dataset sizes, the absolute sizes of the reduced training
sets would vary from dataset to dataset. The second is that there is the potential for some
datasets to be more compatible with the testing data for another dataset as they could have
been drawn from the same source sentences or annotated in similar efforts.

Applications and Practicality

The argument can be made that the increases in performance we report are trivial and may
not be worth doing in practical applications. This can be especially true of the Dependent
multi-task model. We note however that, if there is no benefit from Multi-task Learning,
then the single-task setting can be used for a particular task and the practitioner is no worse
off than before. Our contribution is that for some datasets the benefits can be significant
and in those cases we present an option to the practitioner to obtain improved performance
which previously was not available. An additional argument against application of the work
presented is the results which show that it can be difficult to predict when MTL will be
beneficial and by how much. We contend that the models and methods presented here make
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it possible to quickly determine empirically the amount of benefit that MTL, as implemented
here, provides.

The training time of the models varied according to the size of the dataset(s) involved
and the type of model. The experiment which took the longest time to run was the one where
all the datasets were trained together with the Multi-output multi-task model which were
ran for 190,000 steps with batch sizes of 200 examples drawn on each step from a randomly
selected dataset. This took approximately 40 minutes to train on a single Nvidia Titan X
GPU. As the weights are randomly initialized at the start of training, there is some variation
in scores between runs. For the single task experiments, the average variance in F-Score was
0.099. For the Multi-output multi-task model it was 0.092 and for the Dependent multi-task
model it was 0.012. In our experiments under the conditions outlined here, training never
failed entirely.

The models were developed in Python (Van Rossum and Drake Jr, 1995) using Keras
(Chollet et al., 2015) with Tensorflow (Abadi et al., 2015) backend. The Numpy (Oliphant,
2006) library was also used. The code for the models used in this work can be found at
https://github.com/cambridgeltl/MTL-Bioinformatics-2016.

3.4.6 Multi-task Learning Conclusion

In this work we investigated whether Multi-task Learning could benefit the key text mining
task of biomedical NER across various NER datasets. We first developed a single task
CNN model for NER and then two variants of a multi-task CNN. We trained these on 15
domain-specific datasets representing a smorgasbord of biomedical named entities.

We observed an average improvement on MTL in comparison with single task learning.
Individually, there were also significant improvements on many of the datasets. Although
there was a drop in performance on some tasks, for most tasks performance improves
significantly. This is a promising result which shows the potential of MTL for biomedical
NER.

Limitations to the work include that it can be difficult to predict situations when these
MTL models will definitely provide benefit and the extent of any increases in performance
that they may give before it is actually applied. This area has recently received research
attention (Alonso and Plank, 2017; Bingel and Søgaard, 2017; Luong et al., 2016) and some
of the proposed methods may be useful in this regard in the future. Another limitation is that
the current implementation of the models does not allow for overlapping annotations of the
same term in the data.

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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3.5 Character-level Deep Learning Model for General and
Biomedical NER

The results from the previous section were promising for the task of biomedical NER.
However the models used there were convolutional neural networks and it is generally
accepted that RNNs, especially Long Short-Term Memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997) are better for sequential data such as text, hence NLP tasks like
NER. Additionally, recently there has been progress in incorporating character-level features
into neural networks for various NLP tasks like NER.

Since biomedical entities encode much information at the character level (e.g. names
ending with ’ase’ tend to be enzymes), it was a logical next step to 1) use LSTMs for
biomedical NER and 2) incorporate character-level features into LSTMs. This led to a role in
work which utilised attention for character-level LSTMs for several sequence labelling tasks
including biomedical NER (Rei et al., 2016). The relevant parts are described in this section.

3.5.1 Attention-based Character-level Model for Biomedical NER

Many NLP tasks, including NER, POS-tagging and shallow parsing can be framed as
sequence labelling so the development of accurate and efficient sequence labelling models is
thus useful for a wide range of downstream applications. Work in this area has traditionally
involved task-specific feature engineering such as integrating gazetteers for NER, or using
features from a morphological analyser in POS-tagging. Recent developments in neural
architectures and representation learning have led to the proliferation of models that can
discover useful features automatically from data. Such sequence labelling systems are
applicable to many tasks, using only the surface text as input, yet are able to achieve
competitive results (Collobert et al., 2011; Irsoy and Cardie, 2014).

Current neural models make use of word embeddings as explained in Section 3.3, which
allow them to learn similar representations for semantically or functionally similar words.
While this is an important improvement over count-based models, they still have weaknesses
that should be addressed. The most obvious problem arises when dealing with a previously
unseen token, referred to as out-of-vocabulary (OOV) words. In such cases the model does
not have an embedding and needs to back-off to the same, generic representation for all
OOV words. Words that have been seen very infrequently have embeddings, but they will
likely have low quality due to lack of training data. The approach can also be sub-optimal
in terms of parameter usage – for example, certain suffixes indicate more likely POS tags
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for these words, but this information is repeatedly encoded into each embedding instead of
being shared between the whole vocabulary.

In this work, we constructed a task-independent neural network architecture for sequence
labelling, and then extend it with two different approaches for integrating character-level
information. By operating on individual characters, the model is able to infer representations
for previously unseen words and share information about morpheme-level features. This can
be particularly useful for handling unseen words – for example, if it have never seen the word
cabinets before, a character-level model could still infer a representation for this word if it
has previously seen the word cabinet and other words with the suffix -s. In contrast, a word-
level model can only represent this word with a generic out-of-vocabulary representation,
which is shared between all other unseen words. We proposed a novel architecture for
combining character-level representations with word embeddings using a gating mechanism,
also referred to as attention, which allows the model to dynamically decide which source
of information to use for each word. Additionally, it harnesses a new objective for model
training where the character-level representations are optimised to mimic the current state of
word embeddings so that the initially learnt information is not lost.

The neural models were evaluated on some of the biomedical NER datasets and the
POS-tagging dataset described in Table 3.1, among others. Our experiments show that
including a character-based component in the sequence labelling model provides substantial
performance improvements on all the benchmarks.

3.5.2 Model

The basic model is a word-level neural network for sequence labelling, following the models
described in (Lample et al., 2016; Rei and Yannakoudakis, 2016). It receives a sequence of
tokens as input, and predicts a label corresponding to each of the input tokens. The tokens
are first mapped to a distributed vector space, resulting in a sequence of word embeddings.
Next, the embeddings are given as input to a bi-directional LSTM (two LSTM components
moving in opposite directions through the text), which create context-specific representations.
The respective forward- and backward-conditioned representations are concatenated for
each word position, resulting in representations that are conditioned on the whole sequence.
Following Huang et al. (2015), we also used a CRF as the output layer, which conditions
each prediction on the previously predicted label. The last hidden layer is used to predict
confidence scores for the word having each of the possible labels. A separate weight matrix
is used to learn transition probabilities between different labels and the Viterbi algorithm, as
described in Section 3.4.3 and used by the CNN models, is used to find an optimal sequence
of weights.
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Distributed embeddings still treat words as atomic units and ignore any surface- or
morphological similarities between different words but by constructing models that operate
over individual characters in each word, one can take advantage of these regularities. At the
time this work was done, research into character-level models was still in fairly early stages,
and models that operate exclusively on characters were not yet competitive to word-level
models on most tasks so, instead of fully replacing word embeddings, combining the two
approaches made sense. This allowed the model to take advantage of information at both
levels of granularity. Each word is broken down into individual characters, these are then
mapped to a sequence of character embeddings, which are passed through the bidirectional
LSTM.

This approach assumes that the word-level and character-level components learn some-
what disjoint information, and it is beneficial to give them separately as input to the sequence
labeller Alternatively, we can have the word embedding and the character-level component
learn the same semantic features for each word. Instead of concatenating them as alternative
feature sets, the network was specifically constructed so that they would learn the same
representations, and then allow the model to decide how to combine the information for each
specific word. Instead of concatenating the character embedding with the word embedding,
the two vectors are added together using a weighted sum, where the weights are predicted
by a two-layer network. The main benefits of character-level modelling are expected to
come from cases where useful information is encoded at the character level and improved
handling of rare and unseen words, whereas frequent words are likely able to learn high-
quality word-level embeddings directly. To take advantage of this, and train the character
component to predict these word embeddings the attention-based architecture requires the
learned features in both representations to align, and an extra constraint is added to encourage
this. During training, a term is added to the loss function that optimises the character vector
to be similar to the word embedding. Importantly, this is done only for words that are not
out-of-vocabulary since it is desirable for the character-level component to learn from the
word embeddings, but this should exclude the OOV embedding, as it is shared between many
words. The basic model and its two variants are depicted in Figure 3.4.

3.5.3 Results

Optimising the hyperparameters for each dataset separately would likely improve individual
performance, but we conducted more controlled experiments on a task-independent model so
we use the same hyperparameters on all datasets, and the development set is only used for
the stopping condition. With these experiments, the aim was to determine 1) which sequence
labelling tasks character-based models offer an advantage to, and 2) which character-based
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Fig. 3.4 Left: Basic neural sequence labelling model. Middle: concatenation-based char-
acter architecture. Right: attention-based character architecture. Dotted lines show vector
concatenation. x represent word vectors.

architecture performs better. Results for the different model architectures on the biomedical
NER and POS-tagging datasets are shown in Table 3.11. As can be seen, including a
character-based component in the sequence labelling architecture improves performance on
every benchmark. The NER datasets have the largest absolute improvement; we believe
that this is due to several factors. The model is able to learn character-level patterns to
deduce names of biomedical entities it did not see in training as they have the general form
of biomedical entity names, and also improve the handling of any previously unseen tokens.
Compared to concatenating the word- and character-level representations, the attention-based
character model outperforms the former on all evaluations. The mechanism for dynamically
deciding how much character-level information to use allows the model to better handle
individual word representations, giving it an advantage in the experiments. Visualisation of
the attention values shows that the model is actively using character-based features, and the
attention areas vary between different words. The results of this general tagging architecture
are competitive, even when compared to previous work using hand-crafted features. The
network achieves 72.70% on JNLPBA compared to 72.55% in (Zhou and Su, 2004). In the
case of BC2GM, we were also able to beat the previous best results – 87.99% compared to
87.48% in (Campos et al., 2015).

3.5.4 Attention-based Character-level Approach Conclusion

Developments in neural network research allow for model architectures that work well on a
wide range of sequence labelling datasets, such as NER, without requiring hand-crafted data.
While word-level representation learning is a powerful tool for automatically discovering
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Dataset Word-based Character Concatenation Character Attention
BC2GM Dev 84.07 87.54 87.98

Test 84.21 87.75 87.99
BC4CHEMD Dev 78.63 82.80 83.75

Test 79.74 83.56 84.53
JNLPBA Dev 75.46 76.82 77.38

Test 70.75 72.24 72.70
GENIA-POS Dev 97.55 98.59 98.67

Test 97.39 98.49 98.60
Table 3.11 Comparison of word-based and character-based sequence labelling architectures
on 4 biomedical sequence labelling datasets. (Bold: best scores for dataset)

useful features, these models still come with certain weaknesses – rare words have low-quality
representations, previously unseen words cannot be modelled at all, and morpheme-level
information is not shared with the whole vocabulary.

In this work, we investigated character-level model components for a sequence labelling
architecture, which allow the system to learn useful patterns from sub-word units. In
addition to a bidirectional LSTM operating over words, a separate bidirectional LSTM is
used to construct word representations from individual characters. A novel architecture for
combining the character-based representation with the word embedding by using an attention
mechanism, allowing the model to dynamically choose which information to use from each
information source was described. In addition, the character-level composition function is
augmented with a novel training objective, optimising it to predict representations that are
similar to the word embeddings in the model. The evaluation was performed on different
biomedical datasets representing 2 sequence labelling tasks. It was found that incorporating
character-level information into the model improved performance on every benchmark,
indicating that capturing features regarding characters and morphemes is indeed useful in
a general-purpose tagging system. In addition, the attention-based model for combining
character representations outperformed the concatenation method used in previous work in
all evaluations.

3.6 Investigations into MTL, Character-level Attention-based
NER

Table 3.12 shows the comparison of the best scores obtained through multi-task learning with
CNNs described in Section 3.4 and those obtained by integrating character-level attention
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Dataset Character Attention Bi-LSTM Multi-task Learning CNN
BC2GM 87.99 73.17
BC4CHEMD 84.53 83.02
JNLPBA 72.70 70.09

Table 3.12 Comparison of character-based sequence labelling results with MTL on the 3
biomedical NER datasets used in both works. (Bold: best scores for dataset)

using bi-directional LSTMs. These are the three NER datasets that were used by both
works, and the character-level attention using bi-directional LSTMs performed better in all
cases. Since character-level attention using bi-directional LSTMs and MTL are not mutually
exclusive, an obvious next step is to introduce MTL into the LSTMs approach.

This avenue was pursued, but was unsuccessful. This was mostly due to the fact that in
most of the datasets used in the MTL work (Table 3.1), the character-level attention LSTM
was outperformed by the single-task CNN model. We hypothesized that this was because
most of the other datasets are quite small and thus do not provide enough data for the LSTM
to learn well. In smaller datasets, the convolution filters (which is an approximation of an
n-gram window) can become more capable of identifying the features of named entities
from the surrounding context words than a sub-optimally trained LSTM with character-level
features.

3.7 Conclusion

NER is an important part of LBD and knowledge discovery. Various recent advances in neural
networks have opened new avenues for improved NER. These include semantically-rich
word embeddings, MTL with CNNs, and character-level features with LSTMs. Seeking to
exploit these methods, we did work on three aspects of NER with the aim of improving its
performance for biomedical NER. We worked on extrinsic evaluation of improved biomed-
ical word embeddings as inputs to neural NER models, MTL with CNNs to harness the
information in disjoint datasets and on attention-based, character-level sequence labelling for
NER.

The word embeddings developed were evaluated extrinsically, using a CNN NER model
we developed, on two biomedical NER datasets. They led to improved performance over
the existing embeddings. During this testing, we found divergent results from changing
the value of the window size parameter in the embedding creation model. All sets of
vectors showed a notable increase in the intrinsic evaluation scores when this parameter was
increased. However, the extrinsic evaluation showed that all results in extrinsic tasks have
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peak performance when the parameter was at its lowest value, followed by a gradual decrease
as the parameter increased.

For investigations into MTL, we first developed a single-task CNN model for NER and
then two variants of a multi-task CNN. We trained these on 15 domain-specific datasets rep-
resenting a wide range of biomedical named entities. We observed an average improvement
on MTL in comparison with single-task learning. Individually, there were also significant
improvements on many of the datasets. Although there was a drop in performance on
some tasks, for most tasks performance improves significantly. We also found that MTL is
beneficial for small datasets. Across the various settings the improvements are significant,
demonstrating the benefit of MTL for biomedical NER.

The investigations into character-level extensions to models for sequence labelling tasks
such as NER led to a novel architecture for combining alternative word representations. By
using an attention mechanism, the model is able to dynamically decide how much information
to use from a word- or character-level component. We evaluated different architectures on a
range of sequence labelling datasets, and character-level extensions were found to improve
performance on every benchmark, especially the biomedical NER datasets. In addition, the
proposed attention-based architecture delivered the best results.

Once concepts are extracted from biomedical texts as named entities, they can be used
for LBD. In our case this means making them nodes in a graph with various relationships and
using the information there to perform LBD. If the graph is created such that the information
it represents is the state of the biomedical literature at the time it was created, any additional
links in the graph formed at a later time period will represent an addition to the literature and
thus is a candidate for LBD. The field of link prediction is concerned with inferring missing
links from a graph so it has potential to be used for LBD. Exploring the ways in which this
can be done is the topic of the next Chapter.





Chapter 4

Leveraging Link Prediction

4.1 Introduction

Literature-Based Discovery (LBD) is concerned with both filling in gaps in knowledge, as
represented in literature, and extending it. This knowledge can be represented by graphs
and lots of biomedical knowledge are explicitly represented as graphs. Filling gaps in and
extending graphs is the field of link prediction, thus link prediction can be useful for LBD. in
fact, LBD can be fashioned as constrained link prediction: it is link prediction restricted to
links between two nodes A and C where there exists a set of B nodes on a (usually restricted)
path connecting A and C.

In the context of LBD, link prediction can involve predicting connections between
biomedical concepts where such connections do not currently exist in the literature. It can
be used for LBD by predicting the contribution of future discoveries in the field and for
predicting missing information in biomedical knowledgebases. Using link prediction for
filling in missing information without taking into account the time dimension can be used
for completion, and when the evolution of the graph over time is taken into account it can
highlight potential future discoveries, which is directly analogous to LBD. We did work
which investigated using neural networks for link prediction in realistic biomedical graphs
for several tasks including LBD (Crichton et al., 2018).

4.2 Link Prediction in Biomedical Data

Link prediction is the task of predicting edges between nodes in a graph which are currently
not present in the graph. Liben-Nowell and Kleinberg (2003) first formulated the link
prediction problem in social networks. Most link prediction works have focused in large
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part on determining which links will form next in various types of social networks where
links can represent friendships (Backstrom and Leskovec, 2011; Leskovec et al., 2010),
collaborations and co-authorships (Al Hasan et al., 2006; Backstrom and Leskovec, 2011),
citations (Benchettara et al., 2010) and online transactions (Benchettara et al., 2010) among
others. Additionally, link prediction has been used on large-scale knowledgebases to add
missing data and discover new facts (Nickel et al., 2016; Schlichtkrull et al., 2018). One of
those large-scale knowledgebases, Knowledge Vault (Dong et al., 2014), used an MLP to
perform link prediction as we do in this work.

Link prediction has already been applied in the biomedical domain for various uses
including LBD. Katukuri et al. (2012) used Decision Trees and a Support Vector Machine
(SVM) to perform supervised link prediction on a large-scale biomedical network of concept
co-occurrence in documents to generate hypotheses. They used topological as well as
semantic features to predict links which represented cross-silo hypotheses in a literature-
sliced corpus. Predicting Drug Target Interactions (DTIs) is important in repositioning
existing or abandoned drugs by identifying new uses for them. Wang and Zeng (2013) and
Lu et al. (2017) both used link prediction on this task by providing in silico predictions of
interactions. Wang and Zeng (2013) used Restricted Boltzmann Machines (RBMs) to predict
different types of DTIs on a multi-dimensional network while Lu et al. (2017) used similarity
indices to predict links in DTI networks.

Connections which indicate relationships between concepts is the second vital piece of
information which is needed to perform LBD. The presence of these connections formalizes
some level of relatedness with certainty between the concepts involved which distinguishes
them from a pair of concepts which have no connection. Popular approaches for obtaining
these connections include: co-occurrence (Preiss et al., 2012); relationships from external
knowledgebases, such as protein-protein interactions; gene-disease associations (Eronen
et al., 2012) and existence of established real-world relationship such as between papers and
their authors (Sebastian et al., 2015).

4.3 Biomedical Graphs

The biomedical domain has a wealth of datasets which encapsulate varied and useful infor-
mation which can be represented as graphs, and many already are. It is useful to know if any
information is missing from these or what information may be added to them in the future.
Since link prediction is the task of proposing links which are not currently part of a graph but
could become a part of it, if the information in these datasets are represented as graphs, link
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prediction has application in various biomedical information processing tasks. These include
predicting Drug-Target Interactions (DTI) for drug re-purposing, predicting Protein-Protein
Interactions (PPI), facilitating Literature Based Discovery (LBD) for generating hypotheses
from publications and automating knowledgebase completion. Much of this depends on what
the links in the graph represent. This determines what data the graph contains and what is
the significance of the links predicted.

Link prediction has been used for predicting DTI by applying it to graphs representing
drugs/chemicals and the proteins which they interact with (Lu et al., 2017; Wang and Zeng,
2013). It has also been used to facilitate LBD by applying it to bibliographic networks
(Katukuri et al., 2012; Sebastian et al., 2015) and term co-occurrence networks (Preiss et al.,
2015). Kastrin et al. (2016) also used it on MeSH to demonstrate its use on graphs of
organised knowledge. Grover and Leskovec (2016) used it to predict PPI from a subset of
the BioGRID graph (Stark et al., 2006).

4.4 Embedding Graphs

Many of the existing approaches to link prediction do not make use of the information
contained in the structure of the graph, which can aid in link prediction. Others which do
use this information either do so using approaches which are only able to draw a limited
amount of patterns from the graph or provide restricted datasets to their methods. Our work
on this task made use of information in the graph by using methods which are able to extract
non-linear patterns from graph structures and use this information to predict the likelihood of
a link forming between two nodes.

This is possible in large part to the recent rise in the number of works using various
neural network approaches to embed graphs in low-dimensional spaces. These produced
vectors of real numbers which are representations of a graph’s nodes that aim to place similar
nodes close to each other in the vector space and dissimilar ones far apart based on the
structure/topology of the graph and in some cases the weights of the edges. These node
vectors are thus similar to the word embeddings explained in Section 3.3 and are called node
embeddings to reflect this. The earliest methods that create them include DeepWalk (Perozzi
et al., 2014), node2vec (Grover and Leskovec, 2016), LINE (Tang et al., 2015), SDNE (Wang
et al., 2016) and HOPE (Ou et al., 2016), although many more with various benefits appeared
later.

These node embedding creation methods opened the possibility of training rich represen-
tation as inputs to neural link predictors which output how likely it is for a link between two
nodes to form. Several works have already begun to explore this avenue and report promising
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results, however their approaches have not comprehensively addressed the issues of using
these methods for link prediction. Particularly lacking are experiments in realistic settings
like time-slicing, where graphs are split so that predictors are evaluated on how well they
predict chronologically later links; and evaluating performances with metrics where all nodes
have equal weight, since link prediction applications usually need to perform well across
a wide cross-section of nodes as opposed to performing very well on few nodes which are
hubs in the graph and are thus easy to perform well at. These investigations are pertinent
if link prediction is to be used for LBD. Time-slicing is necessary as knowledge discovery
proceeds chronologically and LBD systems should be capable of performing well across a
large number of nodes instead of very well at a few hub nodes and poorly otherwise. This
is because LBD is inherently a node-centric task: knowledge is being discovered about
particular entities of interest to the end user, not across the entire field of knowledge.

Graphs encode knowledge and can be processed to extract information which may not be
easily seen before. For a machine to perform this processing, the graph must be represented
in a format which it can use, usually by representing nodes as vectors of real numbers. Works
on node representation aim to devise methods which can create vector representations which
preserve the original information in the graph. In general the information in a graph can be
classified as first or second (and higher) order proximity (Goyal and Ferrara, 2018b; Tang
et al., 2015).

Given two nodes in a graph, first order proximity is concerned with the strength of
the direct link between them. Second order proximity between two nodes compares their
neighbourhoods and classes them as similar if their neighbourhoods are similar. The extent
to which a method can preserve the proximities of a graph when creating representations
determines its quality. The node representations created by recent research models each node
as a vector in a space where similar nodes are located close to each other. Figure 4.1 uses
t-SNE (Maaten and Hinton, 2008) to visualise a portion of 2-dimensions of an example of
such a vector space for the PubTator dataset used in this work created with the DeepWalk
method.

Since there has been a proliferation of methods which seek to create these node embed-
dings from graphs and it would be unwieldy to include all of them in this work, we investigate
four of the most popular ones whose implementations are freely available online.

• DeepWalk (Perozzi et al., 2014) uses random walks on graphs to learn latent repre-
sentations of nodes and encodes them in a continuous space. It does this by treating
random walks on graphs like sentences in a natural language and generalizes recent
advancements in language modelling (Mikolov et al., 2013a) developed for word
sequences to graphs. This makes it easy to use existing language modelling tools to
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implement, but it consequently lacks an objective function which explicitly captures
the graph’s structure. As a result of using these language modelling tools, its vector
space take on the characteristics of word vector spaces where words which appear
in similar context are embedded close to each other, likewise nodes which appear in
similar neighbourhoods would be deemed similar and embedded close to each other.

• Large-scale Information Network Embedding (LINE) (Tang et al., 2015) explic-
itly defines two optimization functions to capture the structure of the graph. One
captures first order proximity and the other captures second order proximity. As with
the other methods, this results in nodes which are explicitly connected and which share
similar neighbourhoods being deemed similar. They report that training their model
with each setting then concatenating the outputs gave the best performance.

• Node2vec (Grover and Leskovec, 2016) is similar to DeepWalk in how it preserves
higher order proximity between nodes. It does so by maximizing the probability
of the occurrence of subsequent nodes in random walks over a graph, resulting in
nodes which share similar environments being deemed similar. The difference to
DeepWalk is that node2vec’s random walks are parametrized to provide a trade-off
between prioritising breadth-first or depth-first walks. This allows for similarity to
be defined not only based on the neighbourhood similarity of two nodes but also on
the role they play in the network. For example, walks which prioritise breadth-first
search will capture the similarity of two nodes which are in the same neighbourhood
while those which prioritise depth-first search can capture the similarity of two nodes
which are in different immediate neighbourhoods but play the role of hub node in both
neighbourhoods. Choosing the right balance enables node2vec to preserve first- and
second-order proximity between nodes to potentially produce more informative walks,
leading to superior embeddings.

• Structural Deep Network Embedding (SDNE): Wang et al. (2016) argue that the
shallow models which the other methods use cannot adequately capture the highly
non-linear structure of most graphs. Since deeper models have proven successful at
capturing non-linearity in complex data, they use them to create representations. Their
model jointly optimises unsupervised and supervised parts. The unsupervised part
produces an embedding for a node which can reconstruct its neighbourhood. The
supervised part applies a penalty when nodes deemed to be similar are mapped far
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Fig. 4.1 Visualisation of a subset of the vector space created by DeepWalk from the PubTator
dataset. Vectors of nodes representing respiratory infections are close to ’Viral Pneumonia’
while those of acids and chemicals are close to ’Hydrochloric Acid’ indicating that their
vectors are more similar.

from each other in the vector space. Here as well similarity means a combination of
nodes with explicit connections as well as nodes which share similar neighbourhoods.

4.5 Node Embeddings for Link Prediction

There have been recent works which used the embeddings created from neural network
methods for link prediction. The evaluation metrics mentioned here are explained in Section
4.6.1. To the best of our knowledge, none of these works included time-sliced datasets and
the sizes were generally smaller than realistic biomedical graphs.

Grover and Leskovec (2016) evaluated node2vec embeddings on three graphs, including
a PPI subset of BioGRID, and compared the results to existing well-known and competitive



4.6 Link Prediction with Neural Networks and Node Embeddings 75

link prediction metrics Common Neighbours, Jaccard Index, Adamic-Adar and Preferential
Attachment. This work evaluated using Area Under the Receiver Operator Characteristics
Curve and its largest graph contained 19,706 nodes and 390,633 links.

Wang et al. (2016) used the embeddings created from SDNE on a single dataset of 5,242
nodes and 28,980 links. They compared to LINE, DeepWalk, GraRep, Laplacian Eigenmaps
and Common Neighbours. They evaluated using precision at k for the full network and Mean
Average Precision (MAP) for a sparse version of the graph.

Ou et al. (2016) performed link prediction on two graphs to compare performance of
HOPE to Partial Proximity Embedding, LINE, DeepWalk, Common Neighbours and Adamic-
Adar. The larger graph had 834,797 nodes and 50,655,143 links. They randomly sampled
0.1% of node pairs for evaluation but the amount used for creating embeddings is not reported.
They evaluated using precision at k.

Goyal and Ferrara (2018b) compared the performances of Laplacian Eigenmaps, Graph
Factorization, node2vec, SDNE and HOPE to perform link prediction on four datasets in-
cluding a PPI subset of BioGRID. They evaluated using precision at k and MAP to determine
how performance corresponded to changes in vector dimensions. They experimented on five
random subsets of each graph created such that each subset contained 1,024 nodes.

4.6 Link Prediction with Neural Networks and Node Em-
beddings

In this part of the work we employed four graph embedding algorithms: DeepWalk, LINE,
node2vec and SDNE. We investigated how a neural predictor, using representations from
these methods, performs on link prediction in biomedical graphs containing information
which can be used for several bioinformatics tasks including DTI, PPI and LBD. We compared
this approach to the performance of established baseline methods Common Neighbours,
as used in (Newman, 2001); Adamic-Adar (Adamic and Adar, 2003) and Jaccard Index
(Jaccard, 1901). These methods were chosen because they continue to be very competitive
and challenging baselines for link prediction (Liben-Nowell and Kleinberg, 2003; Wang
et al., 2016), are conceptually simple and scale well to large graphs which are of realistic
sizes in the biomedical domain and useful for LBD.

We report results on graphs which represent real biomedical information in settings where
links were randomly removed as well as where links were removed by time-slicing. These
results show evaluations with metrics that weigh the performance at each node equally and
those which do not as they illustrate different aspects of a predictor’s performance and can
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be useful depending on its application. These contributions together provide large-scale
comparisons and analyses that inform and explain the best approaches to link prediction
using neural networks with node embeddings and highlight areas of further research.

4.6.1 Important Considerations in Link Prediction

This section presents some factors which affect link prediction experiments and thus the
interpretability and applicability of their results. To the best of our knowledge, no study
preceding this one using node embeddings and neural networks for link prediction took all of
these factors into consideration.

Link Prediction Setting

There are two main link prediction settings: random- and time-slicing. In random-slicing,
a percentage of the links are removed randomly and evaluation consists of predicting the
removed links. This can be useful for filling in missing information such as gaps in the
literature without a time component. Time-slicing (or literature-slicing) aims to take the
temporal evolution of the graph into account and only links formed after some point in time,
t, are removed. The state of the graph before t is given to the link predictor and its aim is to
predict links formed at a later time.

The first setting is applicable when the current knowledge represented by the graph is
incomplete and link prediction aims to complete it as well as when the temporal data for
the graph is unknown or irrelevant. The second can be used to predict the future state of the
graph and so can suggest feasible links to investigate. This setting can make link prediction
more challenging for two reasons:

1. New nodes can be introduced to the graph at later time periods which will present little
or no information to the link predictor to use as these nodes will have no links to other
nodes in the time period which the predictor uses to make predictions,

2. In evolving graphs, the easier links tend to form before more difficult ones, so the links
to be predicted in later time periods tend to be more difficult. This evolution is akin to
hypothesis testing and generation which LBD explicitly aims to perform.

Meaningful Evaluation Metrics

Several metrics which measure different aspects of a predictor’s performance have been used
to evaluate link prediction methods. It is useful to distinguish between metrics which weigh
performance at all nodes in the network equally and metrics which do not. We refer to the
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former as an node-equality metrics and the latter as link-equality metrics. Node-equality
metrics can be robust to performance at hub nodes, which tend to be easier for link prediction,
and some link prediction applications are more concerned with how a predictor performs
across a cross-section of nodes than how many links it predicts across the entire graph. This is
analogous to the difference between micro- and macro-averaging. Node-equality metrics can
be particularly useful for LBD as it is concerned with a method’s performance across a wide
cross-section of nodes because hypothesis testing and generation are inherently node-centric.
Prior work involving neural link prediction mainly reported evaluations on link equality
metrics.

The following five metrics were used in this and previous works. In-depth explanations
of these metrics can be found in several works including (Goyal and Ferrara, 2018b; Yang
et al., 2015). For all the metrics, a higher score indicates better performance. It is useful to
define some terms to understand the definition of the metrics.

• True Positives (TP): The links which a predictor predicts as positive and actually are
true missing or future links.

• False Positives (FP): The links which a predictor predicts as positive but actually are
not missing or future links.

• True Negatives (TN): The links which a predictor predicts as negative (or not existing)
and actually turn out to not be missing or future links.

• False Negatives (FN): The links which a predictor predicts as negative (or not existing)
but which turn out to be missing or future links.

• Recall or true positive rate = |T P|
|T P|+|FN|

• Precision = |T P|
|T P|+|FP|

• Fallout or false positive rate = |FP|
|FP|+|T N|

1. Area under the Precision-Recall Curve: Recall measures what percentage of all
positives were returned. Precision measures what percentage of the results are true
positives. These metrics are used to construct a Precision-Recall Curve which illustrates
how the increase in recall affects precision. The area under this curve can be used
to evaluate link prediction. When precision and recall are not restricted to involve a
particular node, this is a link-equality metric.
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2. Area Under the Receiver Operating Characteristics Curve: True positive rate is
equivalent to recall. The fallout or false positive rate measures how many negatives
were returned as false positives by the predictor. These metrics are used to construct
a Receiver Operating Characteristics (ROC) Curve which illustrates this relationship.
The area under this curve is used to evaluate link predictors. When the true and false
positive rates are not restricted to involve a particular node, this is a link-equality
metric.

3. Precision at k: The above metrics measure performance across all recall levels but
some uses of link prediction are only interested in the quality of highly ranked results.
Precision at k or the top k predictive rate is the percentage of true positives among only
the top k ranked links. This is usually used to return the top k of all possible links thus
it is a link-equality metric.

4. Mean Average Precision (MAP): Given a ranked list of predicted links relevant to a
particular node, we can calculate the precision after each true positive. The average of
these values gives the average precision for that node. This done over all nodes in the
graph gives a single value, node-equality measure.

MAP = ΣiAP(i)
|V | ,

where |V | = number of nodes, AP(i) = Σn(Rn−Rn−1)Pn and Pn and Rn are the Precision
and Recall at the nth threshold for the ith node.

5. Averaged R(elevant)-Precision: Similar to MAP but instead of calculating the pre-
cision after each positive link in the list of results for a given node, precision is only
calculated with the top R results. R is determined by how many true positives exist
for the node. The main difference from MAP is that this metric does not consider
the remainder of the ranked list outside of the length of the top R. This also gives a
single value, node-equality measure. This metric is similar to precision at k except that
instead of having a fixed k, it changes based on the amount of positives each node has
so that a node with less than k positives is not penalised and a node with a lot more
positives than k is not easier for the predictor to perform well at.

Averaged R-precision = ΣiPr@R(i)
|V | ,

where |V | = number of nodes, Pr@R(i) = precision at R for the ith node with R
positives.
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Scalability, sparsity and negatives

Biomedical and other real-world graphs reflect complex relationships between numerous
entities so to be truly useful, methods employed to make use of them should be able to scale,
usually to hundreds of thousands of nodes and millions, or billions of links.

Supervised machine learning approaches require both positive and negative examples to
train models. Negatives are created from links which do not exist in the network. Graphs
tend to be sparse as only a small fraction of potential links are actually formed. While a link
between two nodes in a graph confirms a relationship, the absence of a link does not confirm
a lack of relationship thus the assumption that most node pairs which do not have a link have
no relevant relationship is not always true. As a result of this, links can potentially be used
as negative examples in supervised machine learning techniques for link prediction which
should not be negatives, because they will in fact form later. In real-world situations, the
model will inevitably encounter such links and it will be trained on some negative examples
which would later turn out to be positive.

Due to the problems of large size and extreme sparsity, it is usual to create negatives for
training and testing by sub-sampling from the list of potential negative links. The manner
in which this sub-sampling is done can affect the performance of the link predictor. Yang
et al. (2015) looked in great detail into these issues and how they can affect link prediction
evaluation. The issue of scalability also affects the ratio of negative to positive examples
in the evaluation data. In real-world situations the number of unformed links far outweigh
the formed ones, but it is often computationally prohibitive to replicate the real positive to
negative ratio or to even approximate it for large graphs.

Node combination method

A neural network approach to link prediction with node embeddings requires the model to
represent the input link as a single vector so the embeddings of the nodes involved in a link
need to be combined. This can be done in several ways which can affect the predictor’s
performance. Concatenating the embeddings is simple and preserves all information but
increases the size of the input vector in proportion to the amount of nodes and relationships
comprising the link. Grover and Leskovec (2016) used four methods which give a constant
input size and we experimented with these in addition to concatenation. These are detailed in
Table 4.1.
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Operator Definition
Average fi(u)+ fi(v)

2
Concatenate f (u) . f (v)
Hadamard fi(u)∗ fi(v)
Weighted-L1 | fi(u)− fi(v)|
Weighted-L2 | fi(u)− fi(v)|2

Table 4.1 Node Combination methods on vectors of nodes u and v. Binary operators operate
on the ith element.

4.7 Experimental Methods

This Section gives in-depth details about how the experiments were conducted.

4.7.1 Datasets

The graphs we use were created from the following datasets. The graph details can be found
in Table 4.2.

Biological General Repository for Interaction Datasets (BioGRID): This is an open
database created from manually curating experimentally-validated genetic and protein in-
teractions that are reported in peer-reviewed publications (Stark et al., 2006). The latest
major release (Chatr-aryamontri et al., 2017) includes over 1 million Genetic and Protein
interactions across all major organism species and humans. Links in this graph represent
interactions between biomedical entities derived from published, experimentally-validated
genetic and protein interactions, including PPI. We used version 3.4.147 of this dataset.

Manually Annotated Target and Drug Online Resource (MATADOR): This is an
open online DTI database (Günther et al., 2008). It includes interaction between chemicals
and proteins. Following Lu et al. (2017) the Chemical and Protein IDs are used to form a
bipartite DTI graph. Thus the links in this graph represent interactions between chemicals
and proteins representing drugs and targets respectively.

PubTator: Biomedical entities recognised by PubTator (Wei et al., 2013) mentioned in
the titles and abstracts of PubMed publications from 1873 to 2017 were used to create this
dataset. A link exists between two biomedical entities if they co-occur in a single sentence.
The annotations were downloaded on June 20th, 2017.

4.7.2 Settings for Training Node Representation Methods

The hyper-parameter settings for DeepWalk and LINE were the same as used in (Wang
et al., 2016) which is a recent work which compared both of those methods. Parameters
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Dataset Node Count Link Count Has Dates Link Type
BioGRID 65,026 1,076,308 Yes Published Interactions
MATADOR 3,704 15,843 No Drug-Target Interactions
PubTator 265,148 6,854,054 Yes Literature Co-occurrences

Table 4.2 The datasets and their relevant details. The link counts here are of undirected links.

for node2vec which overlapped with DeepWalk’s were set to the same values. All methods
created embeddings of 100 dimensions as this was determined to be a good value on datasets
which are not used as part of this work.

DeepWalk: window size = 10, walk length = 40, walks per vertex = 10. LINE: learning
rate = 0.025, number of negative samples = 5 and total number of samples = 10 billion.
According to (Tang et al., 2015), LINE performs best when it is run twice to obtain first-
and second-order proximity embeddings which are concatenated and L2 normalized. We
follow their recommendations. For each order we created half the number of dimensions
as needed so that when they were concatenated, the final result had the appropriate number.
node2vec: window size, walk length and walks per vertex were the same as DeepWalk’s.
The parameters p and q were 2 and 4 respectively as randomly chosen from the optimal set
given by the creators (Grover and Leskovec, 2016). We used SDNE implementations from
both (Goyal and Ferrara, 2018b) and (Wang et al., 2016) with hyperparameters as used by
(Goyal and Ferrara, 2018b): α = 1e-6, β = 5, ρ = 0.3, xeta = 1e-4 and nu1 & nu2 = 1e-3.

4.7.3 Neural Link Predictor and Baselines

The neural link predictor was a binary classifier implemented as a Multi-layer Perceptron
(MLP) neural network with a single hidden layer containing 100 Rectified Linear Units
(ReLU) (Nair and Hinton, 2010). It accepted the vector representation of two nodes repre-
senting a link by combining their individual vector representations with operators defined in
Table 4.1 and output the probability of a link forming between the nodes. These probability
scores were used to create a ranked list of all links in the evaluation set. The model was
trained for 7 epochs. This minimalist model was chosen so that the contribution from each
node embedding method could be compared without the confound of the contribution of a
powerful neural network model, although a powerful neural network model can also be used.
The other parameters were determined to be a good values based on datasets which are not
used as part of this work.

We employed three baseline methods which have been used successfully for link predic-
tion: Adamic-Adar, Common Neighbours and Jaccard Index. It is necessary to modify these
slightly for bipartite graphs following (Huang et al., 2005). Their definitions are in Table 4.3.
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Name Definition Bipartite Definition
Adamic-Adar 1

log(|N(u)∩N(v)|)
1

log(|N(u)∩N̂(v)|)
Common Neighbours |N(u)∩N(v)| |N(u)∩ N̂(v)|
Jaccard Index |N(u)∩N(v)|

|N(u)∪N(v)|
|N(u)∩N̂(v)|
|N(u)∪N̂(v)|

Table 4.3 Baseline methods for node pair (u, v) with neighbour sets N(u) and N(v). N̂(x) are
the neighbours of the neighbours of x.

4.7.4 Experiments

We experimented with both link prediction settings explained in Section 4.6.1 where possible.
For the MATADOR dataset, there was no temporal data so no time-sliced experiments could
be done. The existing links of each graph were split into 3 segments.

For the random-slice experiments, 60% of the links were used to create the node embed-
dings, which included 10% used to train the neural link predictor where necessary and the
remaining 40% were used to evaluate the predictors. The data used to train the model was
also used to induce the embeddings since there is no reason to withhold that information from
the node representation methods and more information will lead to better representations.
The test set is larger than is usually found in machine learning works but being able to
demonstrate good results with reduced training data is generally a desirable quality. For
time-slice experiments, we sought to have similar split sizes as the random-sliced, but exact
sizes were not possible since this is dependent on the amount of links in a year. The details
of the time slices are in Table 4.4.

For both settings, after splitting the existing links, we then sub-sampled negative examples
by randomly sampling from all the possible node pairs without a link while maintaining
a 1:1 ratio of positive to negative links. Following (Grover and Leskovec, 2016), graph
connectivity was maintained in the random-sliced data, but this was not possible to enforce
in the time-sliced data as the links in each slice were determined by what year they were
added to the dataset. Due to the varying sizes of the graphs, for precision at k we let the
total amount of positives which can be returned dictate the k. We report k to be 30% of all
possible positives here. Results on additional k values can be found in Appendix B. We
implemented the baselines listed in Section 4.7.3 and used them on the same induction, train
and evaluation subsets. We used Scikit-learn (Pedregosa et al., 2011) to efficiently calculate
most of the metrics on the predictions of the neural and baseline link predictors.
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Dataset Link Use Time Slice Link Count Link Percentage (%)
BioGRID Induction 1970-2014 678,994 63.08

Train 2013-2014 121,442 11.28
Test 2015-2017 397,302 36.91

PubTator Induction 1873-2003 4,069,683 59.38
Train 2001-2003 614,031 5.90
Test 2004-2017 2,784,371 40.62

Table 4.4 Time Sliced details. Induction includes Train

4.8 Results and Discussion

The scores presented in the result tables are the means of three runs of each experimental
setting. Scores in bold represent the best score for a particular metric. The best score and all
other scores were tested for statistical significance using a two-tailed t-test with α = 0.05.
Scores with an asterisk (*) are not significantly different from the best score, scores without
an asterisk are significantly different. The standard deviation of the means reported here
were excluded to aid readability but can be found in the full result tables in Appendix B.

The performance of the neural classifier with inputs combined using Hadamard, Weighted-
L1 and Weighted-L2 are not the best performers in any experiments so they are left out of
the tables in this Section. The results for embeddings created with SDNE are much poorer
than the others and are left out of these tables for brevity. The full set of results containing
all these figures can be found in Appendix B. It also contains analysis about interesting
results involving DeepWalk embeddings combined with Weighted-L1 and -L2. The most
efficient reference implementations of SDNE available exceeded the available computational
resources for the BioGRID and PubTator graphs, so we report no results for them in those
settings.

4.8.1 MATADOR

These results are in Table 4.5. The Common Neighbours and Jaccard Index baselines
are the best performers across all metrics. This can be attributed to the graph being too
small for the neural network methods to create good embeddings for each node which lead
to poor input to the neural link predictor. For precision at k, averaged and concatenated
DeepWalk embeddings also produce comparable results. Adamic-Adar performs the worse
of the baselines despite the fact that it is common neighbours-based. This is because the
algorithm weighs a small amount of shared items between entities high and a higher amount
of shared items less. As we are only using amount of common neighbours as the shared item
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Node
Method Combination AUC (ROC) AUC (PR) MAP Avg. R-prec Prec @ k
Deep- Average 95.93 95.82 89.81 86.86 98.77*
Walk Concat 94.97 94.83 88.30 84.63 98.34*
LINE Average 80.63 81.30 67.74 61.04 91.65

Concat 81.16 81.82 68.53 61.42 92.00
node- Average 78.38 78.75 66.42 59.32 88.67
2vec Concat 77.62 77.54 65.44 58.40 87.25
AA N/A 91.97 88.40 87.16 85.06 86.87
CN N/A 97.27 97.04* 95.47 94.64 98.74*
JI N/A 97.23* 97.10 94.72 92.29 98.96

Table 4.5 MATADOR random-slice results

between two nodes here, links which score high for common neighbours will score lower for
Adamic-Adar.

4.8.2 BioGRID

Random-slice: The results of this experiment are in rows 4-12 (the top half) of Table 4.6.
Concatenated and averaged node2vec embeddings are the best performers across 4 of the 5
metrics and the best performer in the remaining metric is not significantly better. Averaged
LINE embeddings are not significantly different from the best performer in any metric. In
general the neural network approaches outperform the baselines. This is not surprising as
there are favourable conditions for the neural network methods: there is a large amount of
data to induce the node embeddings with and, since connectivity is guaranteed, all nodes
have a chance of getting an embedding which is better than its random initialization. These
embeddings would then perform better in the neural link predictor.

Common Neighbours is the best performer for precision at k, although it is not sig-
nificantly better than four neural network approaches. The chosen k focuses only on the
very highly ranked links and other works have already posited that Common Neighbours
returns good results at the top of its ranked list (Lu et al., 2017). Its failure to perform well
for the AUC metrics highlights that lower in its ranked list of links, performance degrades
substantially. Its poor performance at the node-level metrics also indicate that the links which
it is predicting correctly at the top of its ranking are dominated by the links of hub nodes.

Time-slice: These results are in rows 15-23 (the bottom half) of Table 4.6. Averaged
node2vec embeddings are the best performer for three of the metrics and embeddings
combined by concatenation are not significantly worse in two of the metrics. Common
Neighbours performs the best in two metrics, including one node-level metric where it is
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significantly better than all other approaches. In general, the performances of Common
Neighbours and Jaccard Index are not as far behind that of the neural network approaches as
they are for the random-sliced setting of this dataset. This is due to a property of the dataset:
it is skewed towards later publications. Because of this bias, when it is time-sliced as detailed
in Table 4.4, 14.5% of the nodes representing entities in the test slice had never occurred in
the induction slice. The neural network approaches could not create good embeddings for
these nodes so they are simply assigned their randomly initialized values, which contain no
useful information and so negatively influenced the neural link predictor’s performance. This
is an instance of new nodes appearing in the evaluation slice of the graph as mentioned in
Section 4.6.1 and makes a difference to performance, which highlights the importance of
evaluating by time-slicing.

It is interesting that the best performer for each of the node-level metrics is different
and the difference between them is significant in each case. This indicates that the neural
predictor using averaged node2vec embeddings is good at ranking true positives for a given
node within the top R while Common Neighbours is better at ranking more positives at the
very top of the lists but is unable to do so for some positives. Based on the performance on
the same graph random-sliced, it may be that the more difficult nodes are the ones it fails to
perform well at.

4.8.3 PubTator

Random-slice: These results are in rows 4-12 (the top half) of Table 4.7. Concatenated
DeepWalk embeddings produce the best results in three of the metrics and is not significantly
worse in another. Averaged and concatenated LINE embeddings are on par with the best
results except in a single instance.

An interesting result is the dual observation that Common Neighbours performs the best
for averaged R-precision while its performance for MAP is significantly worse than the
best. Taken together, these indicate that it captures several true positives for a given node
within the top R but not rank them at the top of that list and is prone to ranking some of the
true positives quite low. The approaches which outperform it for MAP but not for averaged
R-precision are better at ranking true positives just outside of the top R than it is.

Note that this is the reverse of what we found for Common Neighbours on the time-sliced
BioGRID dataset. Both the setting and information encoded in the graphs are different and
this illustrates that these can have an impact on link predictor performance and need to be
taken into consideration when drawing conclusions from link prediction experiments.

Time-slice: These results are in rows 15-23 (the bottom half) of Table 4.7. Similar to
the random-sliced experiments on this dataset, concatenated DeepWalk vectors produce the
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Random Slice
Node

Method Combination AUC (ROC) AUC (PR) MAP Avg. R-prec Prec @ k
Deep- Average 97.69 97.62 79.24 73.86 99.30
Walk Concat 97.74 97.65 82.48 77.70 99.18
LINE Average 98.10* 97.80* 83.13* 78.22* 99.54*

Concat 98.08 97.76 82.94 78.04 99.29
node- Average 98.32* 97.97* 85.70* 81.17* 99.38*
2vec Concat 98.51 98.26 86.49 81.84 99.49*
AA N/A 86.10 90.75 70.97 57.65 96.13
CN N/A 91.20 94.96 75.72 69.81 99.64
JI N/A 90.80 93.95 73.93 68.79 98.59

Time Slice
AUC (ROC) AUC (PR) MAP Avg. R-prec Prec @ k

Deep- Average 89.40 90.10 68.94 63.30 97.25*
Walk Concat 92.12 92.78 71.61 65.96 98.04
LINE Average 91.86 92.31 72.85 67.76 97.40

Concat 93.55 93.74 73.60 68.57 97.90
node- Average 95.25 95.43 74.91 70.39 98.26
2vec Concat 93.66 94.66* 73.48 68.77 98.40*
AA N/A 77.46 87.69 74.84 61.39 98.10
CN N/A 85.07 91.81 76.20 67.73 99.38
JI N/A 84.74 90.20 75.60 67.49 97.45

Table 4.6 BioGRID random-slice and time-slice results
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Random Slice
Node

Method Combination AUC (ROC) AUC (PR) MAP Avg. R-prec Prec @ k
Deep- Average 98.85 99.01 83.67 75.97 99.93*
Walk Concat 99.20 99.30 91.01 85.46 99.94*
LINE Average 99.10* 99.23* 90.36* 84.56 99.97

Concat 99.13 99.24 90.07 84.03 99.95*
node- Average 98.71 98.90 82.98 75.29 99.94*
2vec Concat 99.16 99.21 88.94 82.14 99.92*
AA N/A 92.92 84.56 56.48 66.38 83.33
CN N/A 98.40 98.28 79.84 87.10 99.94*
JI N/A 92.36 87.59 65.44 59.74 91.21

Time Slice
AUC (ROC) AUC (PR) MAP Avg. R-prec Prec @ k

Deep- Average 93.86* 95.51* 70.78* 62.16* 99.89
Walk Concat 93.99 95.70 71.11 62.65 99.89
LINE Average 88.68* 92.27* 55.61* 46.41* 99.89

Concat 90.32 93.01 62.51 53.21 99.89
node- Average 88.40 92.07 55.72 46.48 99.87
2vec Concat 88.13 91.83 53.24 43.69 99.84
AA N/A 85.10 80.24 35.49 40.13 90.56
CN N/A 88.37 88.83 43.67 46.59 99.84
JI N/A 86.08 83.52 38.66 38.75 94.27

Table 4.7 PubTator random-slice and time-slice results

best results in all metrics although there is a four-way tie for precision at k. Averaged LINE
embeddings are on par with the best results here as well. The neural network approaches
vastly outperform the baselines. Although this graph only contains co-occurrence information,
this is noteworthy as this is the largest graph, in a difficult realistic setting and with no apparent
biases to hinder the neural network methods. It is of particular importance to this thesis as
node-centric performance is of more importance for LBD and co-occurrence information has
been used extensively for LBD in the literature.

4.8.4 General Discussion

Investigating nodes with no common neighbours

We hypothesize that the superior performance of the neural network methods are due to
the limitations in recall of Common Neighbours and baselines based on it. It is possible
for links to form between nodes which have no previous common neighbours and these
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methods would fail in such cases. We investigated this limitation and the effect it has on
the performance of the link predictors. We first quantified these links in the test examples
of each experimental setting then looked at how the best predictors in each category ranked
these links. In the latter, we specifically looked at whether the links were ranked in the top or
bottom half of the overall ranked lists. Since there are equal number of positive and negative
links, a good predictor would rank a high amount of links in the top half. The neural network
approaches performed vastly better in those cases, although the varying amount of such
positives affected the overall effect.

In the following discussion, it is important to bear in mind that for links which have no
prior neighbours, the baselines would all assign them a score of zero, so any which appear
in the top half will do so by pure chance as they would be tied with all the others (positive
and negative) which also score zero. These can be thought of as links in the evaluation
data which the baselines had no chance of getting right due to inherent limitations. The
neural approaches however, did have a chance of getting them right since the embedding
inducing methods are capable of creating representations for the nodes involved by using
other nodes which they are connected to besides the other node in the link in question. Thus
the neural approaches would have information about these nodes beyond their immediate
neighbourhood which it could use to make a decision.

For the MATADOR experiment, approximately 2% of the positive links had no prior
common neighbours. Common Neighbours ranked none of these links in the top half of the
rankings, but the best neural predictor ranked 26% there. In the BioGRID random-sliced
experiment, approximately 16% of the positive links had no prior common neighbours.
Common Neighbours ranked about 11% of these links in the top half, while the best neural
predictor ranked 71% in the top half. For the time-sliced version, approximately 28% of the
positive links had no prior common neighbours. Common Neighbours ranked about 21% of
these links in the top half of the rankings, while the best neural predictor ranked 69% there.
In the PubTator random-sliced experiment, approximately 2% of the positive links had no
prior common neighbours. Common Neighbours ranked none of these links in the top half,
while the best neural predictor ranked 51% there. For the time-sliced version, approximately
21% of the positive links had no prior common neighbours. Common Neighbours ranked
about 11% of these links in the top half, while the best neural predictor ranked 57% there.

Note from those numbers that there was a marked increase in the number of links which
formed which had no prior common neighbours in the time-sliced graphs. This relates to
the point made in Section 4.6.1 about easy links forming chronologically earlier in a graph’s
evolution and underscores the need for evaluation of link prediction in time-sliced settings,
especially when the aim is to aid LBD as this property applies to scientific knowledge.
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Since the traditional ABC paradigm of open- and closed- LBD is inherently path based, this
augments the arguments of the need to go beyond them to things like link prediction to really
make interesting discoveries from scientific literature.

Issues with negative sampling method

As mentioned before, the negatives used for this experiment were randomly sampled from
the set of nodes which had no links in the training data. This was a choice of convenience
and there are potential issues with it. The main issue with this approach is that the majority
of links which are created in this manner can be easy to spot as negatives because they will
appear between nodes which are quite far apart in the graph. This is an additional explanation
for the relatively high scores in the result tables, especially for precision at k. This issue is
compounded by the fact that direction was ignored for these experiments so that a class of
difficult negatives (nodes with a link in the reversed direction) was not available to evaluate
the approaches on.

Summary

In general, for the neural network approaches, concatenate and average were the best node
embedding combination techniques. Common Neighbours was the best baseline approach
especially as graphs increased in size and remains quite an accurate heuristic for link predic-
tion. In cases where the purpose of link prediction is to get only the very best links across
the entire graph, then it almost does not matter which of the approaches is chosen for a small
enough k, but if the quality of links at higher recall levels or the performance of the predictor
across most nodes is essential, the choice of method is an important factor and the neural
network approaches are clearly superior if they have enough data. For LBD the quality of
links at higher recall levels or the performance of the predictor across most nodes should be
considered essential.

The results showed that link prediction is a complex task which requires comprehensive
experiments to determine best approaches, that performance is dependent on several things
including the size of the graph and how it is split and that it is necessary to discern how a
particular approach is achieving performance. It also highlighted that link prediction ought to
be evaluated according to its intended purpose and that AUC metrics may not capture when
and how well a particular approach works.
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4.9 Link Prediction with Neural Networks Conclusion

In this work we investigated how node embeddings created with four graph embedding
algorithms and combined with various methods perform on link prediction in biomedical
graphs, with a neural link predictor. We tested in settings where links were randomly
removed and where links are removed by time-slicing. We compared these methods to the
performance of established baseline methods and reported performance on five metrics which
aim to capture different facets of a link predictor’s performance.

Our findings in both random- and time-sliced experiments indicate that where there is
enough data for the neural network methods to learn good representations and there is a
negligible amount of disconnected nodes, those approaches could perform much better than
the baselines. However if the graph is small or there are large amounts of disconnected nodes,
existing baselines such as Common Neighbours are a justifiable choice for link prediction. At
low recall levels the approaches are basically equal, but at higher recall levels across all nodes
and average performance at individual nodes, then the neural network approaches are clearly
superior if they have enough data. We found evidence that the neural network methods do
especially well in links which feature nodes with no previous common neighbours. We also
found that while in general neural network methods benefit from large amounts of data, they
require considerable amounts of computational resources to scale to large datasets. These
findings provide large-scale comparisons and analyses that informs and explains the best
approaches to link prediction and highlight areas of further development.

The neural network approaches to link prediction provide a truly promising way forward
but they are not the best in all conditions and introduce added experimental considerations
such as the creation of negatives and the combination of node representations. It is also
well-known that the success of neural network methods greatly rely on hyperparameter
tuning.

For future work it would be worth investigating the problem of creating good negatives
for using machine learning methods for link prediction. Randomly creating negatives is
experimentally valid but may create negatives which are not reflective of real-world difficulty.
The problem of maintaining a large ratio of negative to positive links, as is the case in the
real-world, without being computationally prohibitive is also worth exploring.

The models were developed with Python in Tensorflow. The Numpy, NetworkX (Hagberg
et al., 2008), SciKit-learn, GEM (Goyal and Ferrara, 2018a) and Pandas (McKinney et al.,
2010) libraries were also used. The code for the models used can be found at https://github.
com/cambridgeltl/link-prediction_with_deep-learning.

https://github.com/cambridgeltl/link-prediction_with_deep-learning
https://github.com/cambridgeltl/link-prediction_with_deep-learning
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4.10 Conclusion

General knowledge discovery, and link prediction specifically, makes sense as a logical
method of performing traditional open and closed LBD and going beyond those paradigms.
The advent of node embeddings and neural networks makes this possible using lots of existing
tools. We investigated the feasibility of this in our work and obtained very promising results
which indicated that neural network models which are given node embeddings from realistic
biomedical graphs can perform very well at link prediction, especially in time-sliced settings
for node-centric evaluations; two criteria which are important for LBD.

The approach of using node embeddings as input to neural networks which output some
score of the probability of a path forming was shown to be successful here for links between
two nodes. As LBD is a subset of link prediction, these results indicate that these techniques
could be useful for generating high-quality suggestions from LBD systems. After the paper
which introduced most of the work in this Chapter was published, a new LBD system claiming
state-of-the-art performance was released (Pyysalo et al., 2018). It was developed with cancer
researchers at two institutions and computer scientists working in collaboration. Instead of
evaluating only on predicting links on graphs that were random- and time-sliced as we did
here, they evaluated on five triples that represent specific recent discoveries (2011-2016)
on the molecular biology of cancer that could have potentially been suggested by an LBD
system in the past that were selected and curated by cancer biologists along with five pairs
of Swanson’s discoveries. Although these are a small amount of instances, this evaluation
seems far more stringent and possibly more indicative of performance in the real-world.

The system used baseline methods that were similar to those used here and were mostly
common neighbours-based. It was thus a logical next step to apply the methods presented in
this Chapter to that system’s data to measure their performance against a real-world system
used by cancer researchers for scientific work and evaluated on published cancer discoveries.
The next Chapter contains this work.





Chapter 5

Towards Integration – Comparison with
a Real-world LBD System

5.1 Introduction

As stated in Section 2.3, the ultimate evaluation of an LBD improvement method or technique
is its performance in the real world. At this point we stop just short of that high mark by
evaluating methods and models for open and closed discovery, some inspired by those
developed in Chapter 4, on real-world discoveries and compare their performance to a state-
of-the-art, live system which was developed in conjunction with cancer researchers and also
evaluated on the same discovery cases. We also applied them to a time-sliced dataset of
human-curated, peer-reviewed biological interactions. These evaluations and the metrics
they employ represent performance on real-world knowledge advances and are thus robust
indicators of approach efficacy.

The relevant background on the system and the evaluation cases are presented, then
details about the models and methods we developed were applied to the cases. We then
compare my best performances to theirs, analysed the results and discuss their implications.

5.2 The LION LBD System

The LION LBD system (Pyysalo et al., 2018) enables researchers to navigate published cancer
information and perform hypothesis generation and testing. It is focused on publications
relating to the molecular biology of cancer processed using state-of-the-art ML and NLP
methods, including NER and grounding to domain ontologies which include a wide range
of entity types. It uses PubTator for annotating PubMed scientific articles with concepts
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A B C Reference
NF-κB Bcl-2 Adenoma Van Der Heijden et al. (2016)
NOTCH1 senescence C/EBPβ Hoare et al. (2016)
IL-17 p38α MKP-1 Gaffen and McGeachy (2015)
Nrf2 ROS pancreatic cancer DeNicola et al. (2011)
CXCL12 senescence thyroid cancer Kim et al. (2017)
Migraine - Magnesium Swanson (1988)
Somatomedin C - Arginine Swanson (1990b)
Alzheimer’s Disease - Estrogen Smalheiser and Swanson (1996b)
Alzheimer’s Disease - Indomethacin Smalheiser and Swanson (1996a)
Schizophrenia - Calcium Independent Smalheiser and Swanson (1998)

Phospholipase A2

Table 5.1 The Cancer Discovery and Swanson cases used to evaluate the LION System.

such as chemicals, genes/proteins, mutations, diseases and species; as well as sentence-level
annotation of cancer hallmarks (Hanahan and Weinberg, 2000) that describe fundamental
cancer process and behaviour (Baker et al., 2017a,b) according to the taxonomy of Baker
et al. (2015). It uses co-occurrence metrics to rank relations between concepts and perform
both open and closed discovery revealing indirect associations between entities in a database
created from tens of millions of publications. An evaluation of the system demonstrates
its ability to identify undiscovered links and rank relevant concepts highly among potential
connections.

5.2.1 The LION Test Cases and Evaluation

These cases are described in detail in (Pyysalo et al., 2018). A condensed version is presented
here for completeness.

To identify discoveries, the cancer researchers involved in the project first surveyed
articles published between 2006 and 2016 in journals that publish works pertaining to
biomolecular cancer, such as Science, Nature, The Lancet, British Journal of Cancer, and
Cell. In the initial pass, they sought to identify specific cancer-related discoveries that can be
characterized as a causal chain of three concepts, i.e. that fit the constraints of the traditional
ABC paradigm of LBD. This initial literature survey yielded 50 candidate discoveries. The
second stage filtered the candidates to identify discoveries that could have potentially been
found by LBD: the two connections A-B and B-C should be found in the literature at some
point in time before the connection between A and C is published. They identified cases
where in some year in the past, A-B and B-C each co-occurred in at least 100 publications
but where no or very few publications had A-C co-occur. To avoid possible bias towards a
particular NLP methods or LBD tools the filtering was performed manually using PubMed
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searches. In this manner the 50 candidates were culled to 16 which were then assessed by
all project participants. This yielded a final set of 5 triples that represented specific recent
discoveries on the molecular biology of cancer that could have potentially been suggested by
an LBD system prior to their publication. The ontology and database identifier in the relevant
resources were manually identified for each of the concepts in the dataset. In addition to these
5 cancer cases, in an effort to continue the trend of prior work, 5 cases from Swanson were
also evaluated by the system. Details of these can be found in Table 5.1 which is adapted
from (Pyysalo et al., 2018).

To evaluate LION using these cases, they used all combinations of metrics and scoring
functions (explained in Section 5.2.2) and performed an open discovery query and a closed
discovery query for each A-B-C triple using a version of the graph data that only includes
literature up to five years before the year of the relevant publication (Table 5.1) and further
excludes any document, regardless of publication date, where A and C co-occur. In open dis-
covery, they query the system for nodes indirectly connected with the A node and determine
the rank of the C node in the results. In closed discovery, they query the system for nodes
connecting A and C and identify the rank of B. They summarise the results over the different
test cases by reporting the average rank of the target node, using median as the average.

5.2.2 The Baseline Approaches

The baselines used for this part of the work are those used in the current version of LION LBD
which claims state-of-the-art results. We present a condensed version here for completeness.
The edge weight metrics which are currently implemented and a brief description of what
they are follows (names in brackets are the shorthand they will be referred to going forward).
Detailed definitions of these metrics can be found in the Supplementary Information of the
LION paper.

• Co-occurrence count (Count): the number of sentences in which mentions of the
entities connected by the edge co-occur.

• Document count (Doc-count): the number of documents in which mentions of the
entities connected by the edge co-occur.

• Jaccard Index (Jaccard): the ratio of the size of the intersection over the size of the
union of the sets of sentences in which the entities occur.

• Symmetric conditional probability (SCP): the product of the conditional probabilities
of one entity being mentioned in a sentence where another occurs.
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• normalized pointwise mutual information (NPMI): a measure of the independence of
the mention occurrence distributions,

• Chi-squared (χ2), Student’s t-test (t-test) and log-likelihood ratio (LLR) are statistical
tests measuring whether the mention distributions are independent of each other.

A number of alternatives for the scoring functions operating over the edge weights have
also been implemented. For the aggregation function f(g), the alternatives min, avg, and max
are used. These functions assign the score for a path the minimum, mean, and maximum
respectively of the edge weights on the path. For the accumulation function f(c), the choices
sum and max are supported. When multiple paths lead to the same node, the former sums the
path score to obtain the node score while the latter simply uses the maximum score.

5.3 Models and Methods

This section contains the models and methods of my approach to the problem.

5.3.1 Evaluation

The post-cutoff years are used for evaluation. For the BioGRID dataset, this is randomly
divided into development and test sets.

Cancer Case Discoveries

To facilitate direct comparison, we evaluate on the cases used in (Pyysalo et al., 2018), which
describes them at length and for which a summary was provided in Section 5.2.1.

Time-slicing

The Cancer Discovery cases are strong evaluations for biomedical LBD systems as showing
how a system would have ranked a discovery later published in a top-tier, peer-reviewed
journal is a potent argument of its usefulness for LBD. However, the dataset is unsuitable for
machine learning because it does not provide a development set to tune hyperparameters on;
neither is it obvious how to create one. This meant that in the experiments with this dataset
we had to evaluate its performance directly on the test cases which is not ideal for machine
learning approaches. This, in addition to its limited size led us to seek additional evaluation
methods to gain a more accurate picture of performance of our approaches and models.
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For this we chose a dataset which contained human-curated biomedical interactions which
were published in peer-reviewed journals (details in Section 5.3.4). A graph created from the
interactions in this dataset is time-sliced. From the post cut-off publication year, development
and test sets are constructed. In some senses, this is not as stringent an evaluation and it is
not possible to do closed discovery with it, but this provides robust additional evaluation
of our open discovery approaches on a larger test set which is more indicative of approach
generalizability.

Metrics

The evaluation metrics used are important when analysing the performance of ranking
systems. Pyysalo et al. (2018) reported median ranks over the groups of cases for the case
discoveries. For comparability, we shall also report this along with the mean over the cancer
and Swanson cases separately and combined.

For the time-sliced experiments, we will also report MAP, Mean Reciprocal Rank (MRR)
and Mean R-precision. There are 2 reasons for this: there is great variance between the
amount of Cs which are ranked for each A so the mean rank can vary widely and distort
the results; and these metrics, especially the latter 2, give higher priority to correct scores
ranked highly in the list. This is of importance in any ranking problem but especially so for
LBD where investigating each proposal is a costly endeavour. Formal definitions of these
evaluations are in Appendix C.

5.3.2 Baselines

The baseline approaches are those used by Pyysalo et al. (2018). They are 8 co-occurrence
metrics accompanied by 3 aggregator functions and 2 accumulator functions (for open
discovery). Details can be found in the referred paper: Section 3.3 and full details in the
Supplementary Information. We focus on only the best performing methods for the mean (and
standard deviation) and median metrics and report the relevant accumulator and aggregator
functions in each experiment.

5.3.3 Neural Approaches

Two neural link prediction models and methods are used for closed discovery and another two
for open discovery. All approaches use node embeddings created with LINE with weighted
edges, where weights are calculated using Jaccard Index. The embeddings were induced
with the portion of the graph used for training, the pre-cutoff year period. The settings used
are in Appendix C.
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For each of the approaches described here, the same five node combination methods
as in Section 4.6.1 and defined in Table 4.1 were used to determine how the nodes which
constitute the link path were combined for input into the model. Here, models ending in ’-A’
refer to approaches which used Average to do this, ’-C’ - Concatenation, ’-H’ - Hadamard,
’-W1’- Weighted-L1 and ’-W2’- Weighted-L2.

Closed Discovery neural models and approaches

In both of these approaches the model was a Multi-Layer Perceptron (MLP) which was
effective in the similar task of neural link prediction on biomedical graphs (Chapter 4). The
model contains a single hidden layer with ReLU activation which led to a final layer with
Softplus activation to allow for unrestricted positive scores. The model was trained as a
classifier with the Cross Entropy loss.

CD-1: The neural model is used to provide a score for each A-B and B-C link in the
path. The scores are then used in aggregator functions as the baseline methods, so the neural
network in effect replaced the metric calculation.

CD-2: In this approach A-B-C vectors are combined to create a single input to the model
which predicts a score for the entire A-B-C link. This negates the need for an aggregator
function as in the baselines and CD-1 approach and allows the approach to be (mostly)
indifferent to the length of the path between A and C.

Open Discovery neural models and approaches

OD-1: The same model and a similar approach to CD-1 was used here. The difference was
that here the scores are then used in the aggregator and accumulator functions which the
baseline methods use.

OD-2: A CNN was used to implement an approach to open discovery which removes
the need for aggregator and accumulator functions. In this approach, the A-B-C path for
each A-C link constitutes a window which we pass into the CNN which outputs a score
indicative of the strength of the A-C links. This is analogous to applying a CNN over images
but here the ’image’ is produced by stacking combined vector representations of ABC link.
The convolutional filter always slides down the stack of links, never across so that it always
covers the entire link. The ABC links to be stacked are combined using the same 5 link
combination methods mentioned above. The CNN expects a fixed size input and the amount
of intermediate connections vary from case to case, so the links were combined into a fixed
window size using elementwise summation. Zero padding was used to fill any remaining
gaps in the window.
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In this model, the input layer led to a batchnormed convolutional layer with ReLU
activation units, then a max pooling layer then a fully connected layer before the final layer
with Softplus activation. Unlike the other models which are trained as classifiers, this model
uses a pointwise approach, employing Mean Squared Error (MSE) loss, to learning the
ranking function by using the Jaccard Index score of the AC link as the multi-level ratings
(see Chen et al. (2009)).

5.3.4 Datasets

The graphs used were created from the following datasets. The graph details can be found in
Table 5.2.

PubTator:

Biomedical entities recognised by PubTator (Wei et al., 2012, 2013) mentioned in the titles
and abstracts of PubMed publications from 1873 to 2017 were used to create this dataset.
A link exists between two biomedical entities if they co-occur in a single sentence. The
annotations were downloaded on June 20th, 2017. Instances of Hallmarks of Cancer identified
in text are also featured in this graph.

Biological General Repository for Interaction Datasets (BioGRID):

This is an open database created from manually curating experimentally-validated genetic
and protein interactions that are reported in peer-reviewed publications (Stark et al., 2006).
The latest major release (Chatr-aryamontri et al., 2017) includes over 1 million Genetic
and Protein interactions across all major organism species and humans. Links in this graph
represent biomedical interactions from published, experimentally-validated genetic and
protein interactions. We use version 3.4.167 of this dataset.

Dataset Node Count Link Count Link Type
BioGRID 68,734 1,209,578 Published Interactions
PubTator ∼194,691 ∼12,797,468 Literature Co-occurrences

Table 5.2 Graph details (undirected link count)
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5.4 Experimental Settings

As all approaches create ranked lists, the possibility of tied ranks exists. We use the median
of the tied range to determine the rank of a gold item with ties, for example a gold ranked
10th with 10 ties is ranked the median of 10-20 range: 15th.

5.4.1 Details of Neural Approaches

Unlike the baseline models, the neural approaches need negative examples for training. We
created these by selecting either A-B or B-C links which did not form for a given A-C or
A-C connections which did not exist for models which operated on the entire link path (i.e.
those without accumulators or aggregators).

All models are trained with batch size 100, training set size 200,000 for 150 epochs with
the Adam optimiser (Kingma and Ba, 2015), but the model is evaluated on the case after
every 5 epochs and the best performance reported. For the BioGRID experiments, because
evaluation is a lot more time-consuming, the models are evaluated every 25 epochs on the
development set and the best performing model on MRR is evaluated on the held out test at
the end. The CNN uses a learning rate of 10−5 while the MLPs use 10−4. For CD-1, CD-2
and OD-1, there is a single hidden layer with 100 units. For OD-2, the input height is 50 and
the width is the size of the combined vector dimensions. The convolution window height is 7
and the convolutional output size is 128.

5.4.2 Case Discoveries

We used the data from Pyysalo et al. (2018) directly, so that our results will be directly
comparable. The graphs were cut off at the relevant years before the publication date of the
discovery as mentioned above.

Cancer Discoveries Closed Discovery: For CD-1, the model was fed the A-B and B-C
links and the scores it produced were used in the aggregator functions to rank the Bs. For
CD-2 the model was fed all the A-B-C links for the given A and C in each triplet and the
score it produced was used to rank the Bs.

Cancer and Swanson Discoveries Open Discovery: For OD-1, the model was fed the
A-B and B-C links and the scores it produced for each link were used in the aggregator
functions to produce a score for each path. The different paths which led to the same C were
used in the accumulator functions to produce a score used to rank the Cs. For CD-2, the
model was fed all the A-B-C links for the given A and C in each pair and the score it output
was used to rank the Cs.
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5.4.3 BioGRID

The graph is split at the year 2016. We randomly split the post-2016 links into development
and test sections. The development set is used to determine which epoch has the best trained
model for evaluation. Due to computational constraints, we have to restrict the amount of
nodes we could evaluate on. We randomly select 1,000 entities from the test set to be A
nodes and have the model score each node within two hops as the Cs. The scores are then
used to rank the Cs. Like the Swanson cases, it is not possible to perform closed discovery
on this dataset.

5.5 Results

The results of the neural approaches are means of the means and medians which were
calculated over 5 runs. The standard deviations reported are of the mean ranks. The results
of the baselines are means of the method across all relevant cases and the standard deviations
are those over those ranks. The best score for a metric is in bold and the best for an approach
is underlined; all the baselines methods are treated as a single approach. For the cases,
we sought to determine what methods gave the lowest mean and median ranks and lowest
variance (measured by standard deviation). For BioGRID experiments, we sought the lowest
MR, but the highest MRR, MAP and R-precision. To increase clarity in the tables, only the
best results for each approach was selected to be shown here. Full experimental results for
all approaches in all experiments can be found in Appendix C.

5.5.1 Closed Discovery: Cancer Discovery Cases

The results for closed discovery performed on the five Cancer discovery cases used to evaluate
LION are in Table 5.3.

Approach Mean Rank Std. Dev. Median Details
Jaccard 214.8 256.9 81.0 Agg: min
t-test 262.0 341.8 56.0 Agg: min
CD-1-A 86.3 52.0 93.8 Agg: min
CD-1-C 94.5 80.0 36.4 Agg: min
CD-2-C 48.7 19.5 42.0 -

Table 5.3 Closed discovery: Mean and Median ranks on the Cancer Discovery cases
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5.5.2 Open Discovery: Cancer Discovery and Swanson Cases

Open discovery on only Cancer Cases

The results for open discovery performed on the 5 Cancer Discovery cases used to evaluate
LION are in Table 5.4.

Approach Mean Rank Std. Dev. Median Details
NPMI 60.2 54.4 36.0 Acc: sum, Agg: max
Count 367.4 553.3 15.0 Acc: sum, Agg: min
OD-1-C 93.4 145.8 31.4 Acc: sum, Agg: min
OD-1-A 218.3 368.7 26.8 Acc: sum, Agg: min
OD-2-H 31.1 11.9 12.2 -

Table 5.4 Open discovery: Mean and Median ranks on the Cancer Discovery cases

Open discovery: Swanson Cases

The results for open discovery performed on the five Swanson cases used to evaluate LION
are in Table 5.5.

Approach Mean Rank Std. Dev. Median Details
Doc-Count 2,199.8 4,216.7 31.0 Acc: max, Agg: avg
t-test 3,956.4 7,899.3 5.0 Acc: max, Agg: avg
OD-1-H 3,558.3 7,930.7 19.2 Acc: sum, Agg: min
OD-1-C 3,721.4 8,306.7 4.0 Acc: sum, Agg: min
OD-2-H 1,013.4 167.9 17.6 -

Table 5.5 Open discovery: Mean and Median ranks on the Swanson Cases

Open discovery: Cancer Discovery and Swanson Cases

The results for open discovery performed across the five Cancer Discoveries and five Swanson
cases combined are in Table 5.6.

5.5.3 Open Discovery: BioGRID Published Interactions

Results for open discovery performed on the BioGRID dataset. Performance across the 4
metrics explained in Section 5.3.1 are in Table 5.7.
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Approach Mean Rank Std. Dev. Median Details
Jaccard 1,634.4 4733.9 21.0 Acc: sum, Agg: min
Count 1,925.8 5171.3 11.5 Acc: sum, Agg: min
OD-1-C 1,907.4 5,859.4 18.2 Acc: sum, Agg: min
OD-2-H 522.2 89.9 14.9 -

Table 5.6 Open discovery: Mean and Median ranks on all open discovery Cases

Approach MR MRR R- Prec. MAP Details
Jaccard 1,197.3 2.19 2.47 2.86 Acc: sum, Agg: min
LLR 1,132.9 1.34 1.38 1.9 Acc: sum, Agg: max
OD-1-H 1,907.5 0.92 0.96 1.25 Acc: sum, Agg: max
OD-1-C 1,913.4 0.94 1.01 1.23 Acc: sum, Agg: max
OD-1-W2 1,908.3 0.92 0.98 1.26 Acc: sum, Agg: max
OD-2-C 1,113.1 3.42 4.73 5.46 -

Table 5.7 Open discovery on time-sliced BioGRID

5.6 Discussion

5.6.1 Cancer Discovery and Swanson Cases

Closed discovery on Cancer Discovery cases

The neural approaches performed much better than the existing methods in these experiments.
The performance measured by mean ranks doubled by simply replacing the metrics with a
small neural classifier to provide the scores instead. It almost doubled again by replacing the
aggregation of individual path scores with combining the vectors of the nodes involved in the
path. Performance on the median also increased though not as drastically.

Of note here is that the neural approach which dispelled with the aggregator functions,
instead opting to combine the inputs and obtaining a score for the entire path, was the best
performer on mean ranks and the second best performer on median. This indicates that the
information which the aggregator functions seek to provide to an approach is better provided
by combining the vector representations of the nodes in the path.

Open discovery on Cancer Discovery cases

Despite the strong improvements seen in closed discovery by simply replacing the scoring
metrics with a neural classifier, that was not the case here in both mean and median ranks.
However, the more complex CNN approach was able to produce results which approximately
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doubled performance from a strong baseline. It was also able to perform the best on median
ranks.

Analogous to the closed discovery experiments, the approach which dispelled with
aggregators and accumulators outperformed on mean ranks. Additionally, it was the best
median performer here, further validating it.

Open discovery on Swanson cases

A similar trend to the cancer cases was shown here: simply replacing the metrics with a
neural classifier decreased performance on mean rank, although one such approach did
produce the best median rank. The strong performance of the CNN continued as it again
doubled performance on mean rank although it was only the third best on median rank. The
trend of the approach which dispelled with aggregators and accumulators outperforming on
mean ranks also continued.

Open discovery on both Cancer Discovery and Swanson cases

Given the results of the subset experiments, it is not surprising that the CNN was the best
performer across all open discovery cases. Its performance on mean rank was approximately
three times better than that of the best baseline and it was the second best on median, although
the simple count baseline approach was the best.

General open discovery

In addition to its strong performance across the cases, the OD-2-H approach is also quite
stable as it showed the lowest variation in performance over multiple runs of the best
performing methods.

A point in favour of the neural approaches presented here over the baselines is their
apparent consistency in performance over the subsets of the cancer and Swanson discoveries.
The baseline methods which performed the best over Tables 5.4, 5.5 and 5.6 varied while
the best neural approaches recurred, demonstrating their invariability to the vagaries of the
subsets of the cases.

General case discoveries

Whether to use mean or median as average for these experiments is a valid question. Pyysalo
et al. (2018) reported median and we do the same here to allow for comparison while reporting
the mean as well because we believe that it is better adapted to this situation. The median is
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robust to outliers and can give a more accurate picture of an approach’s performance when
an outlier can radically affect the mean as is the case with the Swanson cases used. However,
the aim of this research is to find an approach which will aid researchers on unseen data, so
the worst-case performance of the system (even if it is rare) is of importance and the aim
should be to use methods which will give the best results across all cases. Thus, evaluating
accurately should involve looking at performance in all available cases and median ignores
not only outliers, but effectively all performances which are beyond the median (∼ half of
the use cases). The argument can thus be made that the median does not give a true reflection
of an approach’s performance.

Taking mean as a preferable metric to median for this situation, the case of the neural
methods is strengthened as they were the best performers across all the case experiments.
Additionally, there was low variance among the best neural approaches. It was also pleasing
to find that approaches which dispelled with the cumbersome aggregator and accumulator
functions were the best. This highlights that when given the full path information, the neural
models are able to discern how best to use it to improve performance.

It is also worth noting that although methods which concatenated the node representations
performed well, there were other approaches whose performance were comparable or better
than it across these experiments. This is of significance because the other node combination
methods are indifferent to the amount of hops between A and C, which makes them amenable
to approaches to LBD beyond the simple two-hop ABC paradigm which it is generally agreed
must be overcome for LBD to reach its true potential.

5.6.2 Time-sliced BioGRID

The reasons for undertaking these experiments were explained in Section 5.3.1 and the
reasons for the multi-faceted evaluation in Section 5.3.1. We will make use of and expand on
these here.

The graph used in this experiment represent experimentally validated, human-curated
interactions which were published in peer-reviewed publications. Thus the knowledge
proposed by the approach is of high quality. Additionally, the evaluation is a time-sliced
one which is reflective of how knowledge discovery progresses in the real world, is a more
difficult type of evaluation and involves far more evaluation instances than a handful of cases,
notwithstanding the very high quality of the cases.

LBD across a large amount of possible positives is a ranking problem because its pro-
posals are usually costly to investigate. Thus priority should be given to approaches which
can rank correct new associations at the very top of the list even if they rank more of them
lower; the classic precision-recall trade-off. Performance too far down the list can effectively
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be ignored: when experimentally validating new knowledge proposals, whether it is ranked
200th or 900th is likely of little concern to a user; it is too far down the list.

Metrics like MAP, MRR and R-precision place value on higher ranked true positives
but they do not do so equally. MAP and MRR are concerned with the entire list but MRR
punishes lower-ranked correct items more when the retrieval space is large as it tends to be
in LBD, especially open discovery. R-precision literally discards most of the returned results
and reports results only on the best. Thus performance on metrics like R-precision and MRR
give a better idea of the practical worth of an LBD system, especially on open discovery.

The OD-2-C method we introduce here performs approximately 1.5-1.9 times as good the
baseline approaches on these metrics, in addition to strong performance on MAP and mean
rank. It is a minor variant of the OD-2-H method which showed vastly better performance on
the cases experiments. The results here thus validates the OD-2 (CNN) approach to open
discovery we presented in Section 5.3.3. It is a shortcoming of this evaluation that closed
discovery couldn’t be performed here, but based on these results, there is an indication that
neural network approaches without aggregators would have performed the best.

While there is still lots of room for improvement, these results are dependable and
demonstrate the potential for using neural networks to perform even traditional open and
closed discovery within the ABC paradigm.

5.7 Conclusion

The ultimate evaluation of an LBD technique or improvement method is its performance
in the real world. At this point we stop just short of that by presenting and evaluating four
methods and models for open and closed discovery, some inspired by those developed in
Chapter 4, on real-world discoveries and compare their performance to methods used in a
state-of-the-art, live system which was developed in conjunction with cancer researchers and
also evaluated on the same discovery cases. We also applied them to a time-sliced dataset
of human-curated, peer-reviewed biological interactions. These evaluations and the metrics
they employ represent performance on real-world knowledge advances and are thus robust
indicators of approach efficacy. In both cases, our methods showed a notable and significant
improvement over the existing methods on metrics adapted to the situation.

Although there is scope for much improvement, these results demonstrate the strong
potential of using neural networks to perform open and closed LBD well, even within the
flawed and maligned ABC paradigm and in some cases using the inferior co-occurrence
relationship. Combined with the work of Chapter 4 on the viability of using neural link
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prediction for LBD, it seems clear that neural networks can significantly improve performance
on this increasingly important task.

The models were developed with Python in Pytorch (Paszke et al., 2017). The Numpy,
NetworkX, SciKit-learn, and Pandas libraries were also used. The code for the models used
can be found at https://github.com/cambridgeltl/nn_for_LBD.

https://github.com/cambridgeltl/nn_for_LBD




Chapter 6

Conclusion

6.1 Introduction

In this Chapter we recap the motivations and issues which instigated this research, provide
a synopsis of the work done and highlight the salient findings of this research along with
their implications. We revisit the potential of LBD for use in modern biomedical research
and the technical problems it still has and how they can be solved. We also deal with how
the work proposed in this thesis can be solutions to those problems, main findings from our
investigations and the implications of those findings for LBD. We then close off by looking
at possible directions in which this work can be taken in the near future.

LBD seeks to discover new knowledge from existing literature in an automated or
semi-automated way. The biomedical domain has been its main test-bed so far because of
its potential for great impact there. Since LBD generates new knowledge by combining
existing literature, the possibility of using computers and algorithms to discover biomedical
connections automatically in large collections of literature is tantalising. It can potentially
facilitate both testing and generation of complex hypotheses from such collections of literature
and support or accelerate scientific research.

Scientific literature is growing exponentially, making it difficult for researchers to stay
current in their discipline. This overwhelming volume of publications and the increasing
need to specialise has led to the creation of non-interacting literature silos, which engenders
an environment where discoveries in one area are not known outside of it and valuable
logical connections between disparate bodies of knowledge remain unnoticed. In such an
environment, there is a very real chance that slivers of information which can be combined
to make breakthroughs are already discovered but are dispersed throughout the literature.
LBD can solve these problems by combining these slivers to help researchers quickly gain



110 Conclusion

information on relevant advances inside and outside of their respective niches. As the
scientific literature grows, LBD is increasingly becoming a necessary research tool.

6.2 Research Motivation and Synopsis

Despite the promising applications found for LBD thus far and its potential for knowledge
discovery and increased research efficiency, at present LBD systems are yet to see widespread
adoption and any meaningful uptake by those who can potentially benefit the most from
them. There are several reasons for this, some of which are non-technical, but there are
also technical shortcomings in existing LBD approaches which negatively impact their
performance and hinder their application in real-world environments.

These include producing an over-abundance of low-quality discoveries; high dependence
on static external resources for entity and relationship recognition in literature; simplistic
approaches to expressing biomedical relationships such as co-occurrences; and an over-
reliance on the restricted ABC paradigm which was proposed at the field’s conception. All of
this is exacerbated by the lack of comprehensive evaluation methods and metrics which would
allow direct comparisons and analyses of the merits of a proposed approach or improvement.
We propose that the relevant computational technologies are at the stage where LBD systems
can process literature to extract real information from it and produce viable high-quality
discoveries to result in usable output. We also make use of robust, reusable evaluations of
our approaches which allow quantification of their performance and comparability with other
approaches.

This work presented research to neurify LBD. It used neural networks to improve the
performance of a task which produces input for LBD; applies them to an LBD approach
which can also surpass LBD as an avenue for knowledge discovery from biomedical literature;
and on increased performance on the current dominant ABC paradigm while using methods
which can circumvent some of its weaknesses. Some of the methods presented here were
applied to evaluations used in a real-world, state-of-the-art LBD system.

There has been an abundance of work on LBD since it was proposed as a strategy
for discovering new scientific knowledge. These works have proffered several different
approaches to LBD even when they used some similar components. The evaluation methods
used have been more prosaic: there is heavy use of seeking to replicate specific discoveries
especially Swanson’s although there have been other approaches to evaluation as well.
Unfortunately, in general very few evaluations can lay claim to demonstrating that an
approach is generalisable and practically useful. There have also been several approaches to
improving LBD either through improving how it extracts useful information from text for use
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in LBD or in performing LBD more efficiently and obtaining high-quality proposals from the
LBD process itself. The existing methods mostly use very shallow processes to extract the
entities in text by matching to a list of known terms from lists created by external resources.
That makes these methods reliant on these resources which are generally incomplete and
lag the current state of knowledge. It additionally makes them error-prone as simple string
matching tends to produce false positives and false negatives.

NLP presents a solution to entity recognition in text and while there will be a trade-offs,
the benefits would outweigh this downside; we explored this in Chapter 3. Link prediction
provides both an alternative approach to facilitating simple (single-hop) and multi-hop
LBD and a more powerful approach to knowledge discovery from biomedical knowledge
represented as graphs than the traditional open and closed ABC paradigm of LBD; we
explored this in Chapters 4 and 5. Advances in neural networks and deep learning have made
applying all these techniques to improving LBD possible, feasible and highly promising
given their stellar performances on other tasks.

The overarching goal of the PhD was to investigate possible areas of research to improve
the performance of the tasks which produce input for LBD as well as LBD itself. Specifically,
the task which produce input for LBD was biomedical NER, link prediction on biomedical
graphs was the LBD approach and we also applied neural networks to the ubiquitous ABC
paradigm, evaluated on published discoveries. They all relied on recent advances in neural
networks in several areas including improved development and training of deep neural models
and enhanced word and graph representations.

6.3 Contributions: Work Completed and Important Find-
ings

6.3.1 Neural Biomedical NER

NER is an important precursor to LBD and knowledge discovery. Various advances in neural
networks have opened new avenues for improved NER. These include semantically-rich word
representations (embeddings), MTL with CNNs and character-level features with LSTMs.
Leveraging these methods, we engaged in work on three aspects of NER with the aim
of improving its performance for biomedical NER. We worked on extrinsic evaluation of
improved biomedical word embeddings as inputs to neural NER models, MTL with CNNs to
harness the information in disjoint datasets and on attention-based, character-level sequence
labelling for NER.
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The word embeddings developed were evaluated using a CNN model we developed for
NER on two biomedical NER datasets. When trained with the window size hyperparameter
set to 1, they led to improved performance over the existing embeddings for biomedical
NER.

For investigations into MTL, we developed a single-task CNN model and then two
variants of a multi-task CNN. We trained these on several datasets representing a wide range
of biomedical named entities. We observed an average improvement from the MTL models in
comparison with single task learning. Individually, there were also significant improvements
on many of the datasets. There was a drop in performance on some tasks, but for most tasks
performance improves significantly. We also found that MTL is beneficial for small datasets.
Across the various settings the improvements are significant, demonstrating the benefit of
MTL for biomedical NER.

The investigations into character-level extensions to models for sequence labelling tasks
such as NER led to an architecture for combining alternative word representations. By using
an attention mechanism, the model is able to dynamically decide how much information to use
from a word- or character-level. We evaluated different architectures on a range of sequence
labelling datasets, and character-level extensions were found to improve performance on
every benchmark, especially the biomedical NER datasets. The proposed attention-based
architecture delivered the best results.

6.3.2 Neural Link Prediction

In this work we investigated how node embeddings created with four graph embedding
algorithms and combined with various methods perform on link prediction in biomedical
graphs with a neural link predictor. We tested in settings where links were randomly removed
and where links are removed by time-slicing. We compared these methods to the performance
of established baseline methods and reported performance on five metrics which captured
different facets of a link predictor’s performance.

The findings in both experiments indicate that where there is enough data for the neural
network methods to learn good representations and there is a negligible amount of discon-
nected nodes, those approaches could perform much better than the baselines. However, if
the graph is small or there are large amounts of disconnected nodes, existing baselines are a
justifiable choice for link prediction. At low recall levels the approaches are basically equal,
but at higher recall levels across all nodes and average performance at individual nodes,
then the neural network approaches are clearly superior if they have enough data. We found
evidence that the neural network methods do especially well on links which feature nodes
with no previous common neighbours.
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The neural network approaches to link prediction provide a truly promising way forward
but they are not the best in all conditions and introduce added experimental considerations
such as the creation of negatives and the combination of node representations. General
knowledge discovery, specifically link prediction makes sense as a logical method of per-
forming traditional open and closed LBD and going beyond those paradigms. The advent of
node embeddings and neural networks makes this possible using lots of existing tools. We
investigated the feasibility of this and obtained very promising results which indicated that
neural network models which are given node embeddings from realistic biomedical graphs
can perform very well at link prediction, especially in time-sliced settings for node-centric
evaluations - which are important for LBD.

6.3.3 Neural LBD

The ultimate evaluation of an LBD technique or improvement method is its performance in
the real world. We stopped just short of that by presenting and evaluating four methods and
models for open and closed discovery, some inspired by those developed for link prediction,
on real-world discoveries and compared their performance to methods used in a state-of-
the-art, live system which was developed in conjunction with cancer researchers and also
evaluated on the same discovery cases. For additional evaluation, we also applied them
to a time-sliced dataset of human-curated, peer-reviewed biological interactions. These
evaluations and the metrics they employ represent performance on real-world knowledge
advances and are thus robust indicators of LBD approach efficacy. In both cases, our methods
showed a notable and significant improvement over the existing methods on metrics adapted
to the situation.

Although there is scope for much improvement, these results demonstrate the strong
potential of using neural networks to perform open and closed LBD well, even within the
flawed ABC paradigm and in some cases using the simplistic co-occurrence relationship.
Combined with the work on the viability of using neural link prediction for LBD, it seems
clear that the inexorable spread of neural networks will arrive at the increasingly important
task of LBD where it can significantly improve performance.

6.4 Implications of Findings for LBD

6.4.1 Neural Biomedical NER

This work indicates that it is possible to create a biomedical NER model which can harness
multiple annotated datasets to perform well at recognising various biomedical entities in
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unstructured text. It also showed the benefits of MTL for small datasets. There are two main
implications of this work.

The first is that the multiple NER datasets in existence for a cross-section of biomedical
entities can be utilised in a way which may create a model which can perform biomedical
NER at a high level. It is possible that this could lead to improved recognition and extraction
of biomedical entities in unstructured text which will lead to better inputs to an LBD
approach and thus improved LBD. Such a model will also be expected to deal with new
biomedical entities introduced in the literature with little or no re-training, diminishing the
negative effects of limited and outdated vocabulary and error-prone term, concept or keyword
matching.

The second is that for entities for which there are only small datasets, neural approaches
can be applied to extract them well anyway by training a multi-task model with larger datasets
which already exist. An implication of this is also that when it becomes necessary to create a
new dataset for a new class of biomedical entities, the dataset can be small. This will allow it
to be completed quicker and with less human and financial resources.

The work on improving biomedical word embeddings for NER shows that it makes sense
to train specialised embeddings for the biomedical domain and to adjust the hyperparameters
to create embeddings which are better suited to the task which the embeddings will be
used. The character-level LSTM approach to NER showed that it is beneficial to incorporate
character-level information into models designed for biomedical NER and using methods
like character-level attention could further enhance performance. This is easily justified due
to the amount of information that biomedical entities encode at the character-level.

6.4.2 Neural Link Prediction

This work showed that it was possible to perform neural link prediction in large-scale
biomedical graphs in realistic settings like time-slicing. The methods here showed improved
performance as the amount of data to induce embeddings and train models increased. The
amount of high-quality biomedical data represented as graphs are plentiful, and any method
capable of exploiting their network structure to improve performance on tasks which use them
is welcome. That the neural methods were also the better performers on time-sliced graphs
and on node-centric evaluations also has positive implications since time-sliced approaches
closely mimic the progress of biomedical knowledge evolution and LBD is an inherently
node-centric task.

It also showed that the neural methods were able to perform best on links involving nodes
which had no common neighbours. In traditional LBD parlance, this means discoveries with
no close linking terms. This highlights the approach’s ability to progress past the simple ABC
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paradigm popularised in the field’s nascent stages and which it is now commonly agreed
must be superseded for LBD to reach its true potential. Such discoveries are also likely to be
the most unexpected and thus interesting ones; the type which LBD systems are expected to
provide, since humans are unable to without serendipitous events.

6.4.3 Neural LBD

The implications for the results of this work are easier to see than the others. The obvious
implication is that once these methods are implemented in the LION LBD system, its
performance will improve. This makes it conceivable that a useable system with the ability
to test and generate hypotheses which is freely-available to all cancer researchers with an
internet connection will return improved results which could positively impact their work
- bringing it one step closer to the dream of an LBD system which can provide concrete
support to scientific research.

Another feature of this work is that it used graphs of simple sentence-level term co-
occurrences. Its results indicate that the approaches proposed were able to still make use of
the noisy input to produce good quality results. For all the arguments against it, co-occurrence
continues to be used because of its simplicity and scalability; if there are approaches which
can filter out co-occurrence noise with large enough datasets then they will be embraced. In a
similar vein, it also used the simple ABC paradigm to perform well on the evaluations used;
illustrating that although it is flawed, a powerful enough model will be able to still glean
useful signals to perform well within it. Note that these are not arguments against using more
intelligent relationships and paradigms, but rather suggest positive features of the proposed
models and hints that performance may improve further with more intelligent approaches.

Another advantage of this work is that although it was evaluated on the ABC paradigm,
like the link prediction methods, it is also capable of going beyond it. All the node combina-
tion methods except concatenate are indifferent to the length of the path between A and C.
The only open question is how each will be affected by the repeated vector arithmetic as the
path length grows. However, given the diversity in the way in which they approach the node
combination, it is conceivable that at least one will still perform well on longer paths which
illustrate the A−B1 −B2 − ...−Bn −C paradigm of open discovery.

6.4.4 General

This work set out to investigate the feasibility of using neural networks to improve LBD
in general. Its results showed that it is in fact feasible to use neural networks to improve
LBD at different points in the pipeline. It also showed that neural networks are versatile
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enough to be applied to improve traditional approaches to LBD as well as different forms
of non-traditional LBD including LBD with longer path hops between starting term and
discovery candidate and even no path hops. The principal implication of the findings of this
work is that neural knowledge discovery, especially LBD is potent and ready for present use
in addition to being a potentially rich field for further study.

6.5 Future Work and Directions

In earlier chapters, we highlighted several shortcomings of the current state of LBD and
possible ways they can be rectified. We also mentioned several ways in which neural networks
can be used for LBD. Some of the shortcomings were not addressed in this work and some of
the ways which neural networks can be applied to LBD were not investigated. These remain
prospective research areas and we catalogue the most prominent here, although the list is
longer.

6.5.1 Relation Extraction

LBD requires concepts and the relationships between the concepts to work. Work was done on
improving the extraction of concepts from free text, but not the relationships. Neural relation
extraction has already received some attention in both the biomedical domain (Barnickel
et al., 2009) and the general domain (Lin et al., 2016; Nguyen and Grishman, 2015; Zeng
et al., 2015).

Of interest in this area is also a recent machine learning approach to predicting Adverse
Drug Events using embedded relations (Mower et al., 2016). Once these relations are
embedded and are represented with a vector of real numbers then they can be seamlessly
integrated into our neural approaches. Works in the general domain already use relations
embeddings (Lin et al., 2015; Yang et al., 2014).

6.5.2 Integrating Information in Knowledgebases

We mentioned the wealth of information available in biomedical knowledgebases (detailed
in Section 2.6.1) but they are never harnessed explicitly in any of the work presented here.
On the face of it, this seems easy to do as they are mostly already formulated as graphs so
the graph embedding algorithms used could perhaps be applied to them easily. The resulting
vectors could then be combined with those of the vectors created from the graphs of the
datasets used to obtain a final representation which contains information from multiple
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sources. This was mostly left undone due to the difficulty in reliably mapping the name of an
entity in one dataset to its equivalent name in another dataset.

6.5.3 Integrating Information from Non-Literature Sources

Biomedical researchers use a range of tools and sources besides published papers to derive
their understanding and create hypotheses. These include tools which map pathways, among
others. LBD methods should also make use of these resources and the information within
them to realistically aid researchers in understanding the state of their field and suggest
possible advancements. One example of how this may be done was mentioned in Section 2.4
where Hristovski et al. (2003) used knowledge of chromosomal locations of diseases and
genes from LocusLink and OMIM to require that candidate genes be in the same location as
the diseases they are involved with.

6.5.4 Using Improved Graph Embedding Methods

The graph embedding methods used in this work produced results which advanced the state
of the field on the tasks they were applied to. However, they were the first generation of
works which used neural approaches for embedding graphs. Since their publication, there
has been an explosion of other methods which claim to be significantly better than they
are. Of note are graph convolutional networks (Kipf and Welling, 2017) and GraphSAGE
(Hamilton et al., 2017). The hope is that improved embeddings would then lead to improved
graph-based methods to perform LBD.

6.5.5 End-to-end Neural LBD

This is not so much an unexplored avenue of this work as it is a newly feasible, intriguing
next level. Neural networks have gained a reputation of performing well when they are used
for end-to-end task and LBD could be one such task. End-to-end models are models which
replace a pipeline which may or may not include neural networks and feed the original input
to the neural network and collect the final outcome at the end, letting the neural network
perform the steps that were previously separated in the pipeline together in its hidden layers.
This usually results in more efficient performing of tasks and avoids propagating errors made
earlier in the pipeline.

For LBD this would translate to passing the embeddings of the text to such a model and
having it output the new discoveries without explicitly performing concept or relationship
extraction, or the actual discovery methods. In addition to the increased performance seen in
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other domains on this, we also saw a micro version of this in Chapter 5 when the methods
which dispelled with aggregators and accumulators were able to outperform the methods
which did. In that approach, those manual steps (and their limitations and biases) were
replaced with a model that took the entire path and found its own way of using the condensed
input it was given to perform better at the task. The main disadvantage of such a model
would be that it would be difficult to interpret how it arrived at its results and to debug it.
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Appendix A

Multi-task Learning Biomedical NER

This Appendix contains supplementary information for Chapter 3.

A.1 Details of Datasets

We used 16 biomedical corpora representing 15 NER corpora and one part-of-speech (POS)
corpus. Details of their entity counts are in Table A.1. Details of their creation, prior use, and
conversion into the CoNLL format used to train, develop and test our methods are presented
in the following.

A.1.1 AnatEM Corpus

The extended Anatomical Entity Mention corpus Pyysalo and Ananiadou (2013) is the result
of combining and extending the Anatomical Entity Mention (AnEM) corpus Ohta et al.
(2012) and the Multi-level Event Extraction corpus (MLEE) Pyysalo et al. (2012a). AnEM
consists of 500 randomly selected PubMed abstracts and full-text extracts annotated for
anatomical entity mentions. MLEE consists of 262 PubMed abstracts on the molecular
mechanisms of cancer, specifically relating to angiogenesis. MLEE is also annotated for
anatomical entities specified in AnEM.

AnatEM was created by combining the anatomical entity annotations of the AnEM and
MLEE corpora, then manual annotation was done on an additional 100 documents following
the selection criteria of AnEM and 350 documents following those of MLEE, for a selection
of topics related to cancer. The resulting corpus thus consists of 1212 documents, 600 of
which are drawn randomly from abstracts and full texts as in AnEM, and the remaining 612
are a targeted selection of PubMed abstracts relating to the molecular mechanisms of cancer.
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Conversion The AnatEM corpus data is available from http://nactem.ac.uk/anatomytagger/
in multiple formats, including CoNLL-style IOB, and is provided with a pre-defined split into
train, development and test subsets. We use this data in a single-class NER setting, mapping
all NE labels to ANATOMY, but otherwise without modification; the number of annotations
and their spans are thus identical to the source data.

A.1.2 BC2GM Corpus

The BioCreative II Gene Mention (BC2GM) task corpus consists of 20,000 sentences from
biomedical publication abstracts and is annotated for mentions of the names of genes, proteins
and related entities using the single NE class GENE Smith et al. (2008). It has become the
major NER benchmark for gene/proteins names and has been used to train and evaluate many
available NER systems such as BANNER Leaman and Gonzalez (2008) and Gimli Campos
et al. (2013).

Conversion The BC2GM corpus is available from http://www.biocreative.org/ in a custom
standoff format and a standard train/test split. We created a development set by splitting off
2,500 sentences from the training data and converted the corpus into CoNLL format using
tools available from https://github.com/spyysalo/bc2gm-corpus.

The BC2GM corpus has the unique feature of defining alternative boundaries for some of
the annotated names. For the conversion, we only used the primary annotations (GENE.eval
files), which could be represented highly accurately in the CoNLL format: the converted data
contained 99.95% of the number of annotations in the original. No differences from token
boundaries were introduced: all names in the converted data matched names in the source
data.

A.1.3 BC4CHEMD Corpus

The BioCreative IV Chemical and Drug (BC4CHEMD) named entity recognition task corpus
consists of 10,000 abstracts annotated for mentions of chemical and drug names using a
single class, CHEMICAL Krallinger et al. (2015).

Conversion The BC4CHEMD corpus data is available from http://www.biocreative.org/
in a TAB-separated standoff format and defines standard training, development and test
subsets. We converted the data into CoNLL format using custom tools available from
https://github.com/spyysalo/chemdner-corpora, mapping non-ASCII characters to ASCII.
The basic conversion is highly accurate; the number of annotations in the converted data is

http://nactem.ac.uk/anatomytagger/
http://www.biocreative.org/
https://github.com/spyysalo/bc2gm-corpus
http://www.biocreative.org/
https://github.com/spyysalo/chemdner-corpora
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99.95% of that in the source. Non-ASCII characters in the source and tokenisation differences
lowered the number of matching strings somewhat, to 97.16%.

A.1.4 BC5CDR Corpus

The BioCreative V Chemical Disease Relation (CDR) corpus was created for the BioCreative
V Chemical Disease Relation (CDR) Task Wei et al. (2015) and consists of human annotations
of all chemicals, diseases and their interactions in 1,500 PubMed articles. 1,400 of these
articles were selected from an existing 150,000 chemical-disease interactions which were
annotated by CTD-Pfizer. The CTD biocurators followed CTD’s rigorous curation process
and curated interactions from mostly just the abstract, but referenced the full text when it was
necessary to resolve relevant issues mentioned in the abstract. The remaining 100 articles
were completely new.

Conversion The BC5CDR corpus is available in BioC Comeau et al. (2013) and PubTator
Wei et al. (2013) formats from http://www.biocreative.org/ with pre-defined training, develop-
ment and test subsets. We converted the chemical and disease annotations of the corpus from
the PubTator format using tools available from https://github.com/spyysalo/pubtator. The
conversion introduced only minimal divergence, increasing the annotation number by two to
100.01% of the original due to sentence splitting errors inside annotation spans. 99.94% of
the annotated strings in the source match those in the converted data, reflecting rare instances
where annotation boundaries occurred inside alphanumeric tokens.

A.1.5 BioNLP09 Corpus

The BioNLP’09 shared task on event extraction Kim et al. (2009) targeted semantically rich
event extraction, involving the extraction of several different classes of information. To focus
on these novel aspects of the event extraction task, it was assumed that NER has already
been performed and the task began with a given set of gold protein annotations. The named
entities in the BioNLP task data were prepared based on the GENIA event corpus. Part of
the data were derived from the publicly available event corpus Kim et al. (2008), and the
remainder from an unpublished portion of the corpus.

Conversion The BioNLP’09 shared task data is available from www.nactem.ac.uk/tsujii/
GENIA/SharedTask/ in the .ann standoff format first introduced for the task. We use the
PROTEIN annotations of the corpus (the only physical entity annotations released also for
its test data) and the training, development and test split of the original dataset. The data

http://www.biocreative.org/
https://github.com/spyysalo/pubtator
www.nactem.ac.uk/tsujii/GENIA/SharedTask/
www.nactem.ac.uk/tsujii/GENIA/SharedTask/
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was converted from standoff to the CoNLL format using the standoff2conll tool available
from https://github.com/spyysalo/standoff2conll.

After conversion, the number of annotations was 99.96% of the number in the source,
and 99.69% of names in the original data matched names in the converted data (ignoring
whitespace), indicating that almost all of the original annotations could be exactly represented
in the CoNLL format with the applied tokenisation

A.1.6 BioNLP11 Corpora

Similar to the BioNLP’09 task, the BioNLP Shared Task 2011 Kim et al. (2011); Pyysalo
et al. (2012b) was focused on semantically rich tasks such as Infectious Diseases (ID) and
Epigenetics and Post-translational Modifications (EPI). The ID task was concerned with the
molecular mechanisms of infection, virulence and resistance while the EPI task focused on
the extraction of statements regarding chemical modifications of DNA and proteins. Both
tasks used manual annotations created specifically for the shared task, with automatic support
for the initial tagging of named entities.

The texts for the EPI task corpus were drawn from PubMed abstracts annotated with
the MeSH term corresponding to the target event (e.g. Acetylation). Protein/Gene entity
mentions in the selected abstracts were automatically tagged using the BANNER Leaman
and Gonzalez (2008) named entity tagger trained on the GENETAG Tanabe et al. (2005)
corpus. Abstracts where fewer than five entities are found were removed and documents not
relevant to the targeted topic were also manually removed.

The data for the ID corpus were drawn from the primary text content of full-text PMC
open access documents deemed by infectious diseases domain experts to be representative
publications on two-component regulatory systems. The annotation of the Protein entities
was performed automatically using NeMine Sasaki et al. (2008) trained on the JNLPBA data
Kim et al. (2004) with threshold 0.05, filtered to only GENE and Protein types.

Conversion The BioNLP’11 corpora are available from http://2011.bionlp-st.org/ in the
standoff format used for the BioNLP’09 data (Section A.1.5). We use the standard train-
ing, development and test sets of each of the BioNLP’11 corpora and all physical entity
annotations released for all subsets of the two corpora. Conversion was performed with
the standoff2conll tool. As the BioNLP’11 ID task data contained a large number of
annotations where more than one name occurred inside the span of another annotation (e.g.
REGULON-OPERON or TWO-COMPONENT-SYSTEM), we resolved overlaps in favour of

https://github.com/spyysalo/standoff2conll
http://2011.bionlp-st.org/
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keeping the shorter of any pair of overlapping annotations,1 thus maximizing the number of
annotations carried over from the source. Notably, this overlap pattern occurred for all 492
TWO-COMPONENT-SYSTEM annotations in the corpus (3.8% of all annotations), leading to
the elimination of this annotation type from the converted data.

The converted EPI data contains 99.87% of the number of annotations in the source, but
just 94.86% of originals matched converted in text, reflecting a comparatively high number
of cases where an annotation boundary occurred within an alphanumeric token. For ID,
the number of annotations fell to 86.99% in conversion, reflecting the frequent pattern of
annotation overlap. The fraction of matching names was 85.53%, indicating that annotation
boundaries rarely differ from token boundaries.

A.1.7 BioNLP13 Corpora

The BioNLP 2013 Shared Task focused on knowledge-based construction. There were six
tasks in this Shared Task, of which three datasets were used for our work: GENIA Event
Extraction (GE), Cancer Genetics (CG) and Pathway Curation (PC).

The GE corpus consists of 20 full paper articles sourced from PubMed Central Open
Access subset (PMCOA) with 7721 spans manually annotated as protein names Kim et al.
(2013). The CG task corpus consists of 600 PubMed abstracts annotated for over 17,000
events and was prepared as an extension of the MLEE Pyysalo et al. (2012a) corpus of
250 abstracts (c.f. Section A.1.1). The PC task corpus consists of 525 PubMed abstracts,
chosen for the relevance to specific pathway reactions selected from SBML models registered
in BioModels and PANTHER DB repositories Mi and Thomas (2009). The corpus was
manually annotated for over 12,000 events on top of close to 16,000 entities.

Conversion The BioNLP’13 corpora are available from http://2013.bionlp-st.org/ in the
same standoff format as the ’09 and ’11 corpora (Sections A.1.5 and A.1.6). As for these
resources, we use the standard training, development and test set splits of each corpus and all
of the physical entity annotations available for each dataset, and perform the conversion using
the standoff2conll tool. Of the BioNLP’13 corpora only the CG task involved overlap
between annotations in the source data; these were resolved in favour of keeping the shorter
annotations, as for BioNLP’11 ID processing.

The conversion was highly accurate for all three of the BioNLP’13 corpora: the numbers
of annotations in the converted data were 99.07%, 99.91%, and 99.95% of the numbers

1Option -o keep-shorter for standoff2conll

http://2013.bionlp-st.org/
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of annotations in the source for CG, GE, and PC respectively. Similarly, the fractions of
annotated strings matching after conversion were 98.67%, 98.79%, and 99.80% (resp.).

A.1.8 CRAFT Corpus

The Colorado Richly Annotated Full Text (CRAFT) corpus Bada et al. (2012); Verspoor
et al. (2012) consists of 67 full-text articles, over 790,000 Tokens, over 21,000 Sentences
and approximately 140,000 concept annotations. It manually annotates all mentions of
nearly all concepts from nine prominent biomedical ontologies and terminologies: Cell
Type Ontology, Chemical Entities of Biological Interest ontology, NCBI Taxonomy, Protein
Ontology, Sequence Ontology, Entrez Gene database entries, and the three sub-ontologies of
the Gene Ontology. There was emphasis on journal articles that comprise the corpus being
drawn from diverse biomedical disciplines and on them being completely annotated. We use
the annotated physical entities from this corpus.

Conversion

The 67 publicly released articles of the CRAFT corpus are available in multiple formats
from http://bionlp-corpora.sourceforge.net/CRAFT/. We split the data into 34 training, 11
development and 22 test documents and created a custom conversion for the corpus from
the Knowtator format Ogren (2006). Of the resources considered in this study, the CRAFT
term annotations represented the most challenges for use in sequence labelling: these are
frequently overlapping, occasionally discontinuous, and associated with ontology identi-
fiers (e.g. PR:000009758) rather than simple labels such as PROTEIN. To convert the
corpus, we first excluded annotations not associated with physical entity types (biological
process/molecular function, coreference, sections and typography). We then merged annota-
tions associated with gene (ENTREZGENE) and protein (PR) identifiers, which frequently
mark identical spans in the source data, into a single gene/gene-product type. We likewise
merged those referencing ORGANISM and TAXONOMIC RANK vocabularies. We finally
deduplicated the resulting annotations and resolved remaining overlapping and discontin-
uous entities with corpus-specific heuristics implemented in a custom tool available from
https://github.com/spyysalo/knowtator2standoff/.

The resulting dataset contains 72.05% of the number of annotations in the physical
entity-associated subsets of CRAFT (CHEBI, CL, ENTREZGENE, GO-CC, NCBITAXON, PR,
and SO), with 69.76% of the annotated names in the source matching ones in the converted
data. These numbers are by far the lowest among the corpora considered here. While most of
the difference reflects fundamental limitations of the BIO representation, many decisions in

http://bionlp-corpora.sourceforge.net/CRAFT/
https://github.com/spyysalo/knowtator2standoff/
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the conversion could reasonably be made in another way and our results on CRAFT should
thus not be directly compared to others where a different conversion of the data has been
used.

A.1.9 Ex-PTM Corpus

The Exhaustive Post-Translational Modifications corpus Pyysalo et al. (2011) was part of
the BioNLP Shared Task 2011 and employed a similar creation methodology to that of the
BioNLP11 EPI task corpus (c.f. Subsection A.1.6). It annotated 360 PubMed abstracts
containing 76,806 words of which 4,698 were annotated as proteins. Though the more
semantically complex PTM identification task used manual annotations, the Protein/Gene
entity mentions were automatically tagged using the BANNER Leaman and Gonzalez (2008)
named entity tagger trained on the GENETAG Tanabe et al. (2005) corpus. Abstracts
containing fewer than five entities were removed and a randomly chosen subset of the
remaining documents were annotated.

Conversion The Exhaustive PTM corpus is available from http://www.geniaproject.org/
in the standoff format used by the BioNLP corpora (Section A.1.5). Unlike the shared task
resources, the Ex-PTM corpus does not come with a pre-defined development set, but only
a split between training and test data; we thus split off 49 of the 196 test documents as a
development set. Conversion of the single physical entity annotation type, PROTEIN, was
again performed with standoff2conll. As the source data contained a small number of
non-ASCII characters, the conversion tool was run with the -a option to map these to ASCII.

The conversion exactly preserves the number of annotations in the source data. However,
as for the BioNLP’11 EPI corpus (Section A.1.6) with which the Ex-PTM corpus shares
a domain and some development history, the fraction of original names matching the text
of converted names is notably lower at 95.72%, reflecting comparatively frequent entity
mention boundaries inside alphanumeric tokens.

A.1.10 JNLPBA Corpus

The Joint workshop on NLP in Biomedicine and its Applications corpus consists of 2,404
publication abstracts (approx. 22,400 sentences) and is annotated for mentions of five entity
types: CELL LINE, CELL TYPE, DNA, RNA, and PROTEIN Kim et al. (2004). The corpus
was derived from GENIA corpus entity annotations. It is now a standard point of reference
for evaluating multi-class biomedical entity taggers and has served as training material for
tools such as ABNER Settles (2005) and the GENIA Tagger.

http://www.geniaproject.org/
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Conversion The JNLPBA corpus is available from http://www.geniaproject.org/ and dis-
tributed in the CoNLL IOB format with a split into train and test subsets. To create the
development set, we separated 200 of the 2000 documents from the training data. As format
conversion was not required, the annotations match the original data exactly.

A.1.11 LINNAEUS Corpus

The LINNAEUS corpus Gerner et al. (2010) consists of 100 full-text documents from the
PMCOA document set which were randomly selected. All mentions of species terms were
manually annotated and normalized to the NCBI taxonomy IDs of the intended species.

Conversion The LINNAEUS corpus is available from http://linnaeus.sourceforge.net/ in a
TAB-separated standoff format. The resource does not define training, development or test
subsets. We converted the corpus into BioNLP shared task standoff format using a custom
script available from https://github.com/spyysalo/linnaeus-corpus, split it into 50-, 17-, and
33-document training, development and test sets, and then converted these into the CoNLL
format using standoff2conll. As a full-text corpus, LINNAEUS contains comparatively
frequent non-ASCII characters, which were mapped to ASCII using the standoff2conll
-a option.

The conversion was highly accurate, but due to sentence-splitting errors within entity
mentions, the number of annotations in the converted data was larger by four (100.09%) than
that in the source data. 99.77% of names in the original annotation matched names in the
converted data.

A.1.12 NCBI Disease Corpus

The NCBI Disease corpus Doğan et al. (2014) consists of 793 PubMed abstracts fully
annotated at the mention and concept level for disease mentions. The public release of the
NCBI disease corpus contains 6,892 disease mentions, which are mapped to 790 unique
disease concepts. Of these, 88% link to a MeSH identifier, while the rest contain an OMIM
identifier. 91% of the mentions were linked to a single disease concept, while the rest are
described as a combination of concepts.

Conversion The NCBI Disease corpus is available in a TAB-separated standoff format
with a standard split into training, development and test subsets from http://www.ncbi.nlm.
nih.gov/CBBresearch/Dogan/DISEASE/. We converted the corpus annotations to CoNLL
format using tools available from https://github.com/spyysalo/ncbi-disease. The converted

http://www.geniaproject.org/
http://linnaeus.sourceforge.net/
https://github.com/spyysalo/linnaeus-corpus
http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
https://github.com/spyysalo/ncbi-disease
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number of annotations was 99.84% of the original number, with 99.81% of strings in the
original annotations matching with converted data. The differences were mostly due to a
duplicated document in the source data.

A.1.13 GENIA POS

The GENIA corpus is one of the most widely used resources for biomedical NLP and has a
rich set of annotations including parts of speech, phrase structure syntax, entity mentions,
and events Ohta et al. (2002). For this work we use the GENIA POS annotations, which
cover 2000 PubMed abstracts (approx. 20,000 sentences).

Conversion We use the GENIA corpus v3.02 POS annotations that were used to train the
GENIA tagger Tsuruoka et al. (2005), available from https://github.com/spyysalo/genia-pos.2

We split off 210 of the 1790 training set documents into a development test. The data is
distributed in a tagged-token format that could be straightforwardly recast into the CoNLL
format, preserving both the tokenisation and the annotations of the original exactly.

A.2 Complete Results of MTL Effects

To determine the exact effect that each NER dataset had on every other one, the multi-task
model described in the paper was used to train each NER dataset with every other one. That
is, a Multi-output multi-task model was trained for each ordered combination of the datasets
to give 15 x 14 models. The best results for each dataset was included in the paper, but the
full set of all results could not be included for space considerations. They are added in Table
3.2.

Dataset Scores
AnatEM BC2GM: 80.63, BC4CHEMD: 77.72, BC5CDR: 80.85, BioNLP09: 80.99,

BioNLP11EPI: 80.81, BioNLP11ID: 81.22, BioNLP13CG: 81.14,
BioNLP13GE: 81.48, BioNLP13PC: 81.03, CRAFT: 80.03, Ex-PTM: 81.57,
JNLPBA: 78.20, Linnaeus: 80.94, NCBI-Disease: 81.68*

BC2GM AnatEM: 72.07, BC4CHEMD: 68.32, BC5CDR: 71.80, BioNLP09: 71.43,
BioNLP11EPI: 71.95, BioNLP11ID: 71.56, BioNLP13CG: 71.68,
BioNLP13GE: 72.17, BioNLP13PC: 72.04, CRAFT: 70.20, Ex-PTM: 72.21*,

2We are grateful to Yoshimasa Tsuruoka for providing this version of the corpus, which differs from that
available from http://www.geniaproject.org/ most importantly in providing a train/test split.

https://github.com/spyysalo/genia-pos
http://www.geniaproject.org/
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Dataset Scores
JNLPBA: 69.35, Linnaeus: 71.64, NCBI-Disease: 71.84

BC4CHEMD AnatEM: 79.58, BC2GM: 78.84, BC5CDR: 79.43, BioNLP09: 79.34
BioNLP11EPI: 79.91, BioNLP11ID: 79.35, BioNLP13CG: 78.98,
BioNLP13GE: 80.31*, BioNLP13PC: 79.54, CRAFT: 78.19, Ex-PTM: 80.29,
JNLPBA: 77.37, Linnaeus: 79.39, NCBI-Disease: 79.57

BC5CDR AnatEM: 83.21, BC2GM: 82.54, BC4CHEMD: 81.45, BioNLP09: 83.18,
BioNLP11EPI: 83.77*, BioNLP11ID: 83.38, BioNLP13CG: 83.66,
BioNLP13GE: 83.54, BioNLP13PC: 83.58, CRAFT: 81.95, Ex-PTM: 83.03,
JNLPBA: 81.10, Linnaeus: 83.28, NCBI-Disease: 83.72

BioNLP09 AnatEM: 83.24, BC2GM: 83.56, BC4CHEMD: 81.89, BC5CDR: 83.35,
BioNLP11EPI: 84.14, BioNLP11ID: 83.50, BioNLP13CG: 83.68,
BioNLP13GE: 84.16*, BioNLP13PC: 83.53, CRAFT: 82.97, Ex-PTM: 83.86,
JNLPBA: 82.29, Linnaeus: 82.78, NCBI-Disease: 83.55

BioNLP11EPI AnatEM: 76.62, BC2GM: 76.60, BC4CHEMD: 74.48, BC5CDR: 76.67,
BioNLP09: 78.10*, BioNLP11ID: 76.86, BioNLP13CG: 76.97,
BioNLP13GE: 77.49, BioNLP13PC: 77.14, CRAFT: 75.80, Ex-PTM: 77.99,
JNLPBA: 74.87, Linnaeus: 76.62, NCBI-Disease: 76.51

BioNLP11ID AnatEM: 81.43, BC2GM: 81.35, BC4CHEMD: 77.16, BC5CDR: 81.43,
BioNLP09: 81.87, BioNLP11EPI: 81.76, BioNLP13CG: 81.90,
BioNLP13GE: 82.26*, BioNLP13PC: 81.66, CRAFT: 80.36, Ex-PTM: 81.73,
JNLPBA: 78.80, Linnaeus: 81.62, NCBI-Disease: 81.78

BioNLP13CG AnatEM: 75.85, BC2GM: 73.94, BC4CHEMD: 68.73, BC5CDR: 76.05,
BioNLP09: 75.41, BioNLP11EPI: 75.78, BioNLP11ID: 76.58,
BioNLP13GE: 76.26, BioNLP13PC: 77.33*, CRAFT: 74.08, Ex-PTM: 77.16,
JNLPBA: 70.46, Linnaeus: 75.09, NCBI-Disease: 75.72

BioNLP13GE AnatEM: 74.05, BC2GM: 74.08, BC4CHEMD: 73.19, BC5CDR: 73.48,
BioNLP09: 75.99, BioNLP11EPI: 76.09*, BioNLP11ID: 73.66,
BioNLP13CG: 75.35, BioNLP13PC: 73.99, CRAFT: 75.46, Ex-PTM: 73.78,
JNLPBA: 74.15, Linnaeus: 74.16, NCBI-Disease: 74.05

BioNLP13PC AnatEM: 79.61, BC2GM: 77.78, BC4CHEMD: 75.72, BC5CDR: 79.79,
BioNLP09: 79.08, BioNLP11EPI: 79.31, BioNLP11ID: 80.67,
BioNLP13CG: 80.36, BioNLP13GE: 80.76, CRAFT: 77.66, Ex-PTM: 80.94*,
JNLPBA: 78.73, Linnaeus: 78.60, NCBI-Disease: 79.55

CRAFT AnatEM: 77.08, BC2GM: 76.97, BC4CHEMD: 73.61, BC5CDR: 77.97,
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Dataset Scores
BioNLP09: 77.70, BioNLP11EPI: 77.61, BioNLP11ID: 78.10,
BioNLP13CG: 77.30, BioNLP13GE: 78.48*, BioNLP13PC: 77.93, Ex-PTM: 78.36,
JNLPBA: 74.86, Linnaeus: 77.38, NCBI-Disease: 77.43

Ex-PTM AnatEM: 68.45, BC2GM: 68.35, BC4CHEMD: 60.33, BC5CDR: 69.46,
BioNLP09: 72.00, BioNLP11EPI: 73.58*, BioNLP11ID: 69.58,
BioNLP13CG: 68.82, BioNLP13GE: 70.07, BioNLP13PC: 70.36, CRAFT: 67.25,
JNLPBA: 62.60, Linnaeus: 69.20, NCBI-Disease: 68.49

JNLPBA AnatEM: 68.19, BC2GM: 68.20, BC4CHEMD: 66.49, BC5CDR: 68.77,
BioNLP09: 68.11, BioNLP11EPI: 68.33, BioNLP11ID: 68.19,
BioNLP13CG: 68.54, BioNLP13GE: 68.92*, BioNLP13PC: 68.84, CRAFT: 67.97,
Ex-PTM: 68.84, Linnaeus: 68.18, NCBI-Disease: 68.51

Linnaeus AnatEM: 83.23, BC2GM: 81.71, BC4CHEMD: 79.24, BC5CDR: 82.83,
BioNLP09: 83.12, BioNLP11EPI: 82.20, BioNLP11ID: 81.77,
BioNLP13CG: 80.47, BioNLP13GE: 82.81, BioNLP13PC: 82.68, CRAFT: 81.21,
Ex-PTM: 82.37, JNLPBA: 77.06, NCBI-Disease: 83.63*

NCBI-Disease AnatEM: 79.76, BC2GM: 78.40, BC4CHEMD: 75.16, BC5CDR: 79.98,
BioNLP09: 78.97, BioNLP11EPI: 79.75, BioNLP11ID: 79.24,
BioNLP13CG: 79.85, BioNLP13GE: 80.06, BioNLP13PC: 79.41, CRAFT: 76.96,
Ex-PTM: 80.74*, JNLPBA: 74.84, Linnaeus: 79.21

Table A.2 Full Effects Results. (*: best score)



148 Multi-task Learning Biomedical NER

Dataset Contents Entity Counts
AnatEM Anatomy 13,701
(Pyysalo and Ananiadou, 2013)
BC2GM (Smith et al., 2008) Gene/Protein 24,583
BC4CHEMD Chemical 84,310
(Krallinger et al., 2015)
BC5CDR Chemical, Disease Chemical: 15,935; Disease: 12,852
(Wei et al., 2015)
BioNLP09 (Kim et al., 2008) Gene/Protein 14,963
BioNLP11EPI Gene/Protein 15,811
(Pyysalo et al., 2012b)
BioNLP11ID 4 NEs Gene/Protein: 6,551; Organism: 3,471;
(Pyysalo et al., 2012b) Chemical: 973; Regulon-operon: 87
BioNLP13CG 16 NEs Gene/Protein: 7,908; Cell: 3,492;
(Pyysalo et al., 2015) Cancer: 2,582; Chemical: 2,270;

Organism: 1,715;
Multi-tissue structure: 857; Tissue: 587;
Cellular component: 569; Organ: 421;
Organism substance: 283;
Pathological formation: 228;
Amino acid: 135;
Immaterial anatomical entity: 102;
Organism subdivision: 98;
Anatomical system: 41;
Developing anatomical structure: 35

BioNLP13GE Gene/Protein 12,057
(Kim et al., 2013)
BioNLP13PC 4 NEs Gene/Protein: 10,891; Chemical: 2,487;
(Ohta et al., 2013) Complex: 1,502;

Cellular component: 1,013
CRAFT 6 NEs SO: 18,974; Gene/Protein: 16,064;
(Bada et al., 2012) Taxonomy: 6,868; Chemical: 6,053;

CL: 5,495; GO-CC: 4,180
Ex-PTM Gene/Protein 4,698
(Pyysalo et al., 2011)
JNLPBA 5 NEs Gene/Protein: 35,336; DNA: 10,589;
(Kim et al., 2004) Cell Type: 8,639; Cell Line: 4,330;

RNA: 1,069
Linnaeus Species 4,263
(Gerner et al., 2010)
NCBI-Disease Disease 6,881
(Doğan et al., 2014)
GENIA-PoS PoS-Tags N/A
(Ohta et al., 2002)

Table A.1 The datasets and details of their annotations



Appendix B

Neural Biomedical Link Prediction

B.1 Introduction

This is the appendix for Chapter 4. It contains additional results and analysis.
For SDNE, two implementations were tried: the one created by the authors Wang et al.

(2016) and one created by Goyal and Ferrara (2018b). We used the parameters from Goyal
and Ferrara (2018b) because our attempted hyper-parameters did not give good results
and, though we contacted both sets of authors, only they responded to our request for the
hyper-parameters used in their experiments.

B.2 Additional Results and Discussion

In the result tables, the number in bold represent the best score for a particular metric. The
difference between the best and scores with an asterisk (*) are not statistically significant.

B.2.1 MATADOR

These results are in Table 4.5. The additional result is that SDNE is much worse than the
other approaches for this dataset. This may be due to the fact that it is the deepest of all the
neural network approaches and so required more data to train properly. In the main paper,
we already attribute the relatively poor performance of the deep learning models compared
to the baselines to the small size of this dataset - that argument would hold even more so for
SDNE.

Note also that LINE embeddings combined with Hadamard were on par with the best
performer for precision at k.
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Node
Combi- AUC AUC Avg. Prec

Method nation (ROC) (PR) MAP R-prec @ k
Deep- Average 95.93 ± .003 95.82 ± .005 89.81 ± .003 86.86 ± .003 98.77 ± .004*
Walk Concat 94.97 ± .004 94.83 ± .003 88.30 ± .000 84.63 ± .001 98.34 ± .002*

Hadamard 90.21 ± .003 91.55 ± .004 86.65 ± .01 82.59 ± .01 97.56 ± .005
W-L1 80.45 ± .01 82.74 ± .01 69.27 ± .006 62.56 ± .000 93.74 ± .02
W-L2 85.67 ± .001 88.12 ± .004 77.31 ± .004 71.57 ± .005 97.44 ± .004

LINE Average 80.63 ± .01 81.30 ± .006 67.74 ± .02 61.04 ± .03 91.65 ± .009
Concat 81.16 ± .01 81.82 ± .007 68.53 ± .02 61.42 ± .02 92.00 ± .009
Hadamard 89.11 ± .008 90.37 ± .006 83.45 ± .01 77.47 ± .02 98.00 ± .003
W-L1 70.76 ± .02 79.32 ± .009 73.86 ± .007 66.15 ± .006 98.02 ± .009*
W-L2 69.52 ± .02 76.37 ± .01 70.94 ± .003 63.33 ± .001 92.38 ± .02

node- Average 78.38 ± .02 78.75 ± .02 66.42 ± .02 59.32 ± .02 88.67 ± .01
2vec Concat 77.62 ± .03 77.54 ± .03 65.44 ± .02 58.40 ± .02 87.25 ± .03

Hadamard 84.74 ± .03 85.12 ± .02 82.34 ± .02 76.88 ± .02 93.71 ± .02
W-L1 75.38 ± .05 74.98 ± .05 69.32 ± .03 62.08 ± .04 83.94 ± .05
W-L2 74.31 ± .05 74.57 ± .05 69.56 ± .03 62.48 ± .04 84.62 ± .05

SDNE Average 55.77 ± .02 55.22 ± .03 54.81 ± .02 47.21 ± .02 57.56 ± .05
Concat 54.88 ± .01 54.17 ± .01 53.37 ± .01 46.14 ± .01 56.41 ± .02
Hadamard 53.12 ± .02 52.20 ± .02 51.81 ± .01 47.85 ± .07 52.84 ± .03
W-L1 54.35 ± .01 53.44 ± .01 50.06 ± .06 45.56 ± .03 54.93 ± .03
W-L2 52.60 ± .01 51.34 ± .01 50.67 ± .01 43.41 ± .01 50.44 ± .01

AA N/A 91.97 ± .001 88.40 ± .002 87.16 ± .001 85.06 ± .003 86.87 ± .006
CN N/A 97.27 ± .002 97.04 ± .003* 95.47 ± .002 94.64 ± .002 98.74 ± .004*
JC N/A 97.23 ± .002* 97.10 ± .001 94.72 ± .002 92.29 ± .002 98.96 ± .002

Table B.1 MATADOR random-slice results

B.2.2 BioGRID

The randomly sliced experiments on this dataset are in Table 4.6 and the time-sliced experi-
ments are in Table B.3.

Random-Slice

Node2vec embeddings combined with Hadamard were on par with the best performer for
precision at k.

Time Slice

Section 3.1 of the paper explains why it is more difficult to perform link prediction in the
time-slice setting. To recap: first, new nodes can be introduced to the graph at later time



B.2 Additional Results and Discussion 151

periods which will present little or no information to the link predictor to use as they will
have no links to other nodes in the time period which the predictor uses to make predictions.
Second, in evolving graphs, the easier links tend to form first and more difficult ones later, so
the edges to be predicted in later time periods tend to be more difficult.

Node
Combi- AUC AUC Avg. Prec

Method nation (ROC) (PR) MAP R-prec @ k
DeepWalk Average 97.69 ± .000 97.62 ± .001 79.24 ± .003 73.86 ± .003 99.30 ± .001

Concat 97.74 ± .001 97.65 ± .002 82.48 ± .006 77.70 ± .006 99.18 ± .002
H’mard 95.76 ± .001 96.54 ± .001 79.63 ± .001 74.87 ± .001 99.25 ± .001
W-L1 79.17 ± .004 80.57 ± .004 51.96 ± .008 46.50 ± .009 91.71 ± .005
W-L2 79.73 ± .002 81.08 ± .001 52.81 ± .002 47.39 ± .003 92.12 ± .001

LINE Average 98.10 ± .00* 97.80 ± .00* 83.13 ± .02* 78.22 ± .02* 99.54 ± .00*
Concat 98.08 ± .000 97.76 ± .000 82.94 ± .004 78.04 ± .009 99.29 ± .001
H’mard 94.45 ± .002 95.35 ± .002 80.17 ± .001 75.17 ± .01 99.30 ± .002
W-L1 92.41 ± .006 92.06 ± .006 70.88 ± .009 65.21 ± .008 97.07 ± .003
W-L2 91.80 ± .006 91.55 ± .006 71.80 ± .003 66.39 ± .005 96.56 ± .005

node2vec Average 98.32 ± .00* 97.97 ± .03* 85.70 ± .01* 81.17 ± .01* 99.38 ± .00*
Concat 98.51 ± .001 98.26 ± .03 86.49 ± .009 81.84 ± .009 99.49 ± .00*
H’mard 97.19 ± .001 97.17 ± .03 81.53 ± .01 76.54 ± .01 99.33 ± .00*
W-L1 92.02 ± .007 92.30 ± .03 64.24 ± .01 59.45 ± .008 97.45 ± .003
W-L2 93.07 ± .003 93.01 ± .03 67.11 ± .007 61.94 ± .005 97.47 ± .005

AA N/A 86.10 ± .000 90.75 ± .001 70.97 ± .001 57.65 ± .001 96.13 ± .001
CN N/A 91.20 ± .000 94.96 ± .000 75.72 ± .000 69.81 ± .003 99.64 ± .000
JI N/A 90.80 ± .000 93.95 ± .000 73.93 ± .001 68.79 ± .001 98.59 ± .000

Table B.2 BioGRID random-slice results

As expected, the majority of the approaches performed worse in all metrics than the
randomly sliced experiments with this dataset. However there were some exceptions. Deep-
Walk embeddings combined by Weighted-L1 and L2, node2vec embeddings combined with
Weighted-L1 and all baselines recorded better performance for MAP. DeepWalk embeddings
combined by Weighted-L1 and L2, node2vec embeddings combined with Weighted-L1 and
Adamic-Adar recorded better performance for averaged R-precision. Adamic-Adar also
recorded increased performance for precision at k. There are several possible contributing
factors here.

For MAP and averaged R-precision, if a particular node has no positives it is removed
from the calculations as these metrics are only concerned with predicted true positives. In the
time-sliced data, there are a much higher percentage of nodes which have no true positives in
the test slice than is the case with randomly-sliced data. These nodes are also likely to have a
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Node
Combi- AUC AUC Avg. Prec

Method nation (ROC) (PR) MAP R-prec @ k
Deep- Average 89.40 ± .009 90.10 ± .01 68.94 ± .001 63.30 ± .001 97.25 ± .001*
Walk Concat 92.12 ± .004 92.78 ± .003 71.61 ± .002 65.96 ± .002 98.04 ± .002

Hadamard 89.03 ± .004 91.39 ± .004 66.28 ± .002 60.34 ± .003 98.31 ± .003
W-L1 69.75 ± .02 67.43 ± .01 59.74 ± .006 54.61 ± .006 73.26 ± .006
W-L2 72.11 ± .01 69.33 ± .006 59.84 ± .004 54.51 ± .005 75.02 ± .005

LINE Average 91.86 ± .006 92.31 ± .006 72.85 ± .002 67.76 ± .002 97.40 ± .002
Concat 93.55 ± .003 93.74 ± .002 73.60 ± .002 68.57 ± .002 97.90 ± .002
Hadamard 77.70 ± .02 82.51 ± .01 67.78 ± .004 61.33 ± .005 96.05 ± .005
W-L1 82.36 ± .007 81.32 ± .009 66.66 ± .004 60.93 ± .005 88.54 ± .005
W-L2 79.79 ± .03 78.82 ± .02 66.53 ± .002 60.75 ± .004 86.76 ± .004

node- Average 95.25 ± .002 95.43 ± .004 74.91 ± .001 70.39 ± .001 98.26 ± .001
2vec Concat 93.66 ± .002 94.66 ± .004* 73.48 ± .002 68.77 ± .002 98.40 ± .002*

Hadamard 93.94 ± .002 94.02 ± .009* 71.81 ± .003 66.57 ± .003 97.59 ± .003*
W-L1 89.06 ± .002 88.70 ± .004 66.17 ± .005 61.20 ± .004 93.86 ± .004
W-L2 88.81 ± .003 88.43 ± .006 66.09 ± .01 61.02 ± .01 93.54 ± .01

AA N/A 77.46 ± .000 87.69 ± .000 74.84 ± .000 61.39 ± .001 98.10 ± .000
CN N/A 85.07 ± .000 91.81 ± .000 76.20 ± .001 67.73 ± .004 99.38 ± .000
JC N/A 84.74 ± .000 90.20 ± .001 75.60 ± .001 67.49 ± .000 97.45 ± .001

Table B.3 BioGRID time-slice results

small amount of links and are thus difficult nodes to perform well on, so it is not surprising
that the approaches which performed poorest on the randomly-sliced version of this dataset
benefited from having less and easier nodes in the evaluation. The poor embeddings created
for this setting as explained above would contribute to decreased performance for the other
methods but as all combination methods use the same embeddings, there is something about
the DeepWalk embeddings combined with Weighted L1 and L2 which help in this setting.

Node2vec embeddings combined with Hadamard had performance that was not signifi-
cantly worse than the best for AUPRC and precision at k.

B.2.3 PubTator

The randomly sliced experiments on this dataset can be seen in Table 4.7 and the time-sliced
experiments can be seen in Table B.5.
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Random-Slice

Nothing much to add here except to note that Common Neighbours outperformed the lower
neural network performers (Hadamard, Weighted-L1 and Weighted-L2) for most metrics.

Time Slice

As with the BioGRID data, the majority of the approaches performed worse in this setting
than the random-sliced one, and there were again some exceptions. DeepWalk embeddings
combined by Weighted-L1 and L2 had better performance in all metrics and Adamic-Adar
again recorded increased performance for precision at k. Similar explanations hold for this
situation as well. In this case only the DeepWalk vectors were better and they were better
in all metrics and the previous explanations pertained only to the node-level metrics. These
results provide strong indication that DeepWalk embeddings combined with Weighted-L1
and Weighted-L2 perform better in the time sliced setting than the random slice one, but their
performances are still significantly worse than the best performers in these settings.

Node
Combi- AUC AUC Avg. Prec

Method nation (ROC) (PR) MAP R-prec @ k
Deep- Average 98.85 ± .03 99.01 ± .02 83.67 ± .12 75.97 ± .28 99.93* ± .006
Walk Concat 99.20 ± .006 99.30 ± .006 91.01 ± .16 85.46 ± .20 99.94* ± .006

Hadamard 98.44 ± .06 98.68 ± .03 84.67 ± .36 77.84 ± .31 99.88 ± .01
W-L1 88.96 ± .40 89.63 ± .36 60.76 ± 1.7 51.21 ± 1.5 97.64 ± .16
W-L2 89.25 ± .01 89.90 ± .07 62.10 ± .36 52.57 ± .40 97.67 ± .16

LINE Average 99.10 ± .09* 99.23 ± .08* 90.36 ± .82* 84.56 ± 1.0 99.97 ± .03
Concat 99.13 ± .02 99.24 ± .02 90.07 ± .34 84.03 ± .48 99.95 ± .006*
Hadamard 98.30 ± .04 98.49 ± .05 86.40 ± .69 79.28 ± .87 99.90 ± .006
W-L1 93.93 ± .10 94.16 ± .10 78.25 ± .94 69.48 ± 1.1 98.97 ± .13
W-L2 94.23 ± .11 94.51 ± .02 77.97 ± .96 69.00 ± 1.2 99.13 ± .06

node- Average 98.71 ± .05 98.90 ± .04 82.98 ± .58 75.29 ± .72 99.94 ± .006*
2vec Concat 99.16 ± .03* 99.21 ± .02 88.94 ± .29 82.14 ± .30 99.92 ± .0*

Hadamard 98.81 ± .03 98.91 ± .02 86.40 ± .22 79.07 ± .27 99.87 ± .006
W-L1 88.07 ± .03 87.28 ± .11 87.28 ± 1.4 48.95 ± 1.4 94.08 ± .16
W-L2 88.85 ± .07 88.26 ± .02 88.26 ± .74 50.72 ± .69 94.90 ± .13

AA N/A 92.92 ± .03 84.56 ± .04 56.48 ± .16 66.38 ± .13 83.33 ± .02
CN N/A 98.40 ± .01 98.28 ± .01 79.84 ± .19 87.10 ± .16 99.94 ± .00*
JI N/A 92.36 ± .02 87.59 ± .03 65.44 ± .05 59.74 ± .04 91.21 ± .01

Table B.4 PubTator random-slice results
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Node
Combi- AUC AUC Avg. Prec

Method nation (ROC) (PR) MAP R-prec @ k
Deep- Average 93.86 ± .00* 95.51 ± .00* 70.78 ± .00* 62.16 ± .00* 99.89 ± .000
Walk Concat 93.99 ± .002 95.70 ± .001 71.11 ± .003 62.65 ± .003 99.89 ± .00

Hadamard 87.23 ± .002 91.33 ± .001 54.72 ± .002 46.22 ± .002 99.70 ± .001
W-L1 92.06 ± .001 93.23 ± .000 66.47 ± .001 57.29 ± .001 98.77 ± .000
W-L2 91.81 ± .002 93.06 ± .002 65.89 ± .003 56.66 ± .004 98.76 ± .000

LINE Average 88.68 ± .03* 92.27 ± .02* 55.61 ± .09* 46.41 ± .09* 99.89 ± .000
Concat 90.32 ± .005 93.01 ± .002 62.51 ± .02 53.21 ± .02 99.89 ± .001
Hadamard 87.09 ± .007 89.98 ± .005 51.97 ± .01 42.43 ± .01 99.10 ± .003
W-L1 83.58 ± .001 86.55 ± .004 47.71 ± .003 38.11 ± .002 97.26 ± .007
W-L2 82.81 ± .003 85.79 ± .003 47.07 ± .005 37.49 ± .004 96.78 ± .006

node- Average 88.40 ± .003 92.07 ± .002 55.72 ± .003 46.48 ± .004 99.87 ± .000
2vec Concat 88.13 ± .001 91.83 ± .000 53.24 ± .002 43.69 ± .004 99.84 ± .000

Hadamard 85.24 ± .001 90.63 ± .001 47.76 ± .003 38.84 ± .003 99.81 ± .00*
W-L1 84.68 ± .003 89.08 ± .001 44.69 ± .003 35.34 ± .003 98.57 ± .00
W-L2 84.48 ± .001 89.12 ± .000 44.68 ± .001 35.49 ± .000 98.67 ± .000

AA N/A 85.10 ± .000 80.24 ± .000 35.49 ± .000 40.13 ± .000 90.56 ± .001
CN N/A 88.37 ± .000 88.83 ± .000 43.67 ± .000 46.59 ± .000 99.84 ± .000
JI N/A 86.08 ± .000 83.52 ± .000 38.66 ± .000 38.75 ± .001 94.27 ± .000

Table B.5 PubTator time-slice results

B.3 Additional K Values for Precision at k

The main manuscript lists results for precision at k when k=30% of all positives. Here we
add additional results fro k= 10, 20 and 30.
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Method Node Combination P@10 P@20 P@40
Deep- Average 99.47 99.04 98.26
Walk Concat 99.65 98.87 98.22

Hadamard 98.61 98.26 98.22
W-L1 98.61 98.87 91.66
W-L2 98.78 98.87 96.61

LINE Average 93.03 91.98 88.51
Concat 93.73 93.12 89.60

Hadamard 92.33 90.33 86.55
W-L1 98.26 98.34 98.12
W-L2 95.12 93.12 89.60

node- Average 89.91 89.40 84.75
2vec Concat 92.35 89.57 86.62

Hadamard 95.65 94.01 90.36
W-L1 92.17 91.49 86.53
W-L2 94.43 92.79 87.92

SDNE Average 57.04 54.96 54.00
Concat 55.83 53.30 52.00

Hadamard 55.83 55.91 53.91
W-L1 53.22 53.57 53.26
W-L2 50.96 48.61 49.61

AA N/A 61.32 66.18 73.88
CN N/A 97.49 98.36 97.10
JC N/A 97.10 98.07 97.54

Table B.6 MATADOR additional P@K results
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Method Node Combination P@10 P@20 P@40
Deep- Average 99.61 99.50 99.23
Walk Concat 99.69 99.59 99.33

Hadamard 99.42 99.39 99.25
W-L1 97.68 94.00 87.12
W-L2 97.29 94.74 89.30

LINE Average 99.48 99.37 99.14
Concat 99.63 99.57 99.27

Hadamard 99.56 99.37 98.94
W-L1 99.11 98.36 96.81
W-L2 98.90 97.59 95.90

node- Average 99.61 99.54 99.25
2vec Concat 99.62 99.53 99.29

Hadamard 99.31 99.28 99.02
W-L1 98.24 97.97 97.35
W-L2 98.11 97.70 96.90

AA N/A 93.52 94.83 96.47
CN N/A 99.79 99.72 99.56
JC N/A 98.21 98.49 98.45

Table B.7 BioGRID additional P@K results

Method Node Combination P@10 P@20 P@40
Deep- Average 99.12 98.67 97.36
Walk Hadamard 97.99 97.22 95.36

W-L1 98.48 97.79 96.39
W-L2 98.55 97.94 96.59

LINE Average 99.08 98.59 97.16
Hadamard 95.62 94.45 92.06

W-L1 96.84 94.89 90.48
W-L2 96.87 95.32 91.14

AA N/A 85.62 88.39 92.17
CN N/A 99.10 98.60 96.92
JC N/A 82.32 84.89 86.67

Table B.8 PubTator additional P@K results



Appendix C

Towards integration – Comparison with
a Real-world LBD System

C.1 Introduction

This Appendix contains supplementary information for Chapter 5. It contains additional
results and analysis which were left out of the main Chapter.

C.2 Formal Definitions of Evaluation Metrics

1. Mean Average Precision (MAP): Given a ranked list of predicted terms (C) relevant
to a particular query (A) term, we can calculate the precision after each true positive.
The average of these values gives the average precision for that query. This done over
all queries gives a single value measure which weights all queries (difficult or easy)
equally.

MAP = ΣiAP(i)
|V | ,

where |V | = number of queries, AP(i) = Σn(Rn − Rn−1)Pn and Pn and Rn are the
Precision and Recall at the nth threshold for the ith query.

2. Mean Reciprocal Rank (MRR):

Σi
1

rank(i) ,
where rank(i) = absolute rank for the ith query.

3. Averaged R(elevant)-Precision: Similar to MAP but instead of calculating the preci-
sion after each positive term (gold C) in the list of results for a given query, precision is
only calculated with the top R results. R is determined by how many true positives exist
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for the query. The main difference from MAP is that this metric does not consider the
remainder of the ranked list outside of the length of the top R. This also gives a single
value measure which weights all queries equally. This metric is similar to precision at
k except that instead of having a fixed k, it changes based on the amount of positives
each node has so that a query with less than k positives is not unfairly penalised and
a query with a lot more positives than k is not easier for the approach to perform well at.

AveragedR− precision = ΣiPr@R(i)
|V | ,

where |V | = number of nodes, Pr@R(i) = precision at R for the ith node with R
positives.

C.3 Other Neural Network Hyperparameters

LINE: learning rate = 0.025, number of negative samples = 5 and total number of samples =
1 billion. According to Tang et al. (2015), LINE performs best when it is run twice to obtain
first- and second-order proximity embeddings which are concatenated and L2 normalized. I
follow their recommendations. For each order I created half the number of dimensions as
needed so that when they were concatenated, the final result had the appropriate number.

C.4 Results

The results of the neural approaches are means of the means which were calculated over 5
runs. The standard deviations reported are of the mean ranks. The results of the baselines are
means of the method across all relevant cases and the standard deviations are those over those
ranks. The best rank is in boldface type. We sought to determine what methods gave the
lowest mean ranks and lowest variance (measured by standard deviation). Where possible,
we use results from Pyysalo et al. (2018).

Wherever there are models that do not use aggregators or accumulators, the results are
simply placed in the first column - this is merely for convenience, the column headers would
not apply to such models. The best for a particular approach is underlined while the best of
all approaches is in bold.

There were some experiments which produced ties with the gold which were of an amount
to make them useless for real-world use. We defined that number as 10; methods which
produced more than 10 ties with the gold are reported with a ’*’ instead of their performance.
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C.4.1 Cancer Discoveries and Swanson Cases

Results for Closed Discovery performed on the 5 Cancer discovery cases on which LION
was originally evaluated are in Tables C.1 and C.2.

Results for Open Discovery performed on the 5 Cancer Discovery cases on which LION
was evaluated as reported in the paper. Means are in Table C.3 and medians are in Table C.4.

Results for Open Discovery performed on the 5 Swanson cases on which LION was
evaluated. Means are in Table C.5 and medians are in Table C.6.

Results for Open Discovery performed on the 5 Cancer and 5 Swanson cases on which
LION was evaluated. Means are in Table C.7 and medians are in Table C.8.

Approach Min Avg Max
NPMI 278.2 272.6 282.0
SCP 252.2 285 298.6
χ2 268.2 258.0 269.8
t-test 262.0 246.8 260.8
LLR 266.0 246.4 264.0
Jaccard 214.8 258.8 281.6
Count 233.2 249.6 245.2
Doc-count 236.8 224.4 222.2
CD-1-A 112.9 86.3 97.2
CD-1-C 151.2 94.5 89.7
CD-1-H 357.2 251.3 287.0
CD-1-W1 228.7 195.8 189.0
CD-1-W2 614.3 482.9 565.2
CD-2-A 86.9 - -
CD-2-C 48.7 - -
CD-2-H 143.1 - -
CD-2-W1 402.6 - -
CD-2-W2 63.8 - -

Table C.1 Mean Ranks for Closed Discovery on the Cancer Discovery Cases

C.4.2 Published Interactions: BioGRID

The results of the BioGRID experiments are in the following tables. Each table is dedicated to
a single metric: Mean Rank (MR), Mean Reciprocal Rank (MRR), Mean Average Precision
(MAP) and Mean Relevance-precision (R-precision).

Due to rounding, some scores seem equal in the tables but are not. Where this occurs and
involves a best performer, the unrounded number was used to break the ties.
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Approach Min Avg Max
NPMI 86.0 119.0 170.0
SCP 70.0 196.0 299.0
χ2 74.0 196.0 270.0
t-test 56.0 136.0 261.0
LLR 65.0 163.0 264.0
Jaccard 81.0 213.0 282.0
Count 245.0 181.0 245.0
Doc-count 231.0 169.0 222.0
CD-1-A 96.0 93.8 89.4
CD-1-C 158.6 36.4 38.8
CD-1-H 282.8 176.0 238.8
CD-1-W1 109.4 158.4 114.8
CD-1-W2 300.2 240.0 256.0
CD-2-A 52.4 - -
CD-2-C 42.0 - -
CD-2-H 62.2 - -
CD-2-W1 180.6 - -
CD-2-W2 48.8 - -

Table C.2 Median Ranks for Closed Discovery on the Cancer Discovery Cases

C.5 Additional Analyses

The existing approaches performed much better on mean rank for open discovery than they
did on closed discovery, so there was more room for improvement there. This lower baseline
explains to some degree why the performance improvements were more pronounced for
closed discovery (Table C.1).

The difference between mean and median as average shows across the various cancer and
Swanson discovery cases: with the exception of open discovery on only the Cancer Discovery
cases (Tables C.3 and C.4), the best performer for mean and median were different.

A conclusion to be drawn from all the results tables is that although the best neural
network-based approaches performed the best, simply using neural networks is not sufficient
to produce the best results as there are several instances where the best existing approaches
outperformed some neural approaches.
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Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 73,670.4 14,658.8 310.2 11,354.6 60.2 3479.2
SCP 244.8 2,358.4 553.8 1,408.4 556.0 1,305.4
χ2 37,387.4 2,971.6 603.4 1,521.2 601.4 1,469.6
t-test 118,606.8 465.6 73,657.2 559.2 126.0 825.0
LLR 73,715.0 649.4 253.0 1,011.8 280.4 1,870.8
Jaccard 89.2 1,741.8 121.2 952.6 136.2 1,186.0
Count 367.4 2,063.6 412.6 1,483.6 421.0 875.8
Doc-count 394.4 2,141.8 472.6 1,249.2 490.6 2,071.2
OD-1-A 218.3 * 239.1 2,098.0 264.2 *
OD-1-C 93.4 * 123.2 37,248.0 156.9 *
OD-1-H 257.9 4,762.6 270.6 7,820.9 280.6 *
OD-1-W1 212.2 14,932.1 225.1 23,456.7 236.7 *
OD-1-W2 247.8 8,777.7 281.48 20,546.9 311.9 *
OD-2-A 127.9 - - - - -
OD-2-C 95,207.6 - - - - -
OD-2-H 31.1 - - - - -
OD-2-W1 57,226.2 - - - - -
OD-2-W2 582.9 - - - - -
Table C.3 Mean Ranks for Open Discovery on the Cancer Discovery Cases
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Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 98,698.0 15,476.0 121.0 5,897.0 36.0 2,268.0
SCP 276.0 926.0 400.0 1,176.0 399.0 727.0
χ2 547.0 3,582.0 402.0 1,159.0 402.0 1,159.0
t-test 118,751.0 63.0 98,406.0 325.0 125.0 176.0
LLR 98,677.0 187.0 344.0 646.0 319.0 645.0
Jaccard 29.0 1,089.0 78.0 962.0 93.0 1,122.0
Count 15.0 1,005.0 55.0 52.0 62.0 54.0
Doc-count 23.0 738.0 72.0 68.0 74.0 68.0
OD-1-A 26.8 * 38.6 1,212.6 48.6 *
OD-1-C 31.4 * 32.0 30,573.2 34.4 *
OD-1-H 46.2 1,750.3 46.6 8,120.4 49.4 *
OD-1-W1 28.6 8,905.0 33.4 21,335.2 39.2 *
OD-1-W2 43.8 8,370.2 49.0 18,442.8 55.2 *
OD-2-A 16.3 - - - - -
OD-2-C 98,148.2 - - - - -
OD-2-H 12.2 - - - - -
OD-2-W1 37,268.6 - - - - -
OD-2-W2 147.0 - - - - -

Table C.4 Median Ranks for Open Discovery on the Cancer Discovery Cases
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Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 39,481.0 12,805.6 27,041.8 13,290.0 4480.4 10,568.6
SCP 4,498.8 7,666.0 5,154.8 3,024.0 5,174.8 2,700.4
χ2 37,873.6 10,402.8 5,182.6 4,702.8 5,319.6 3,803.2
t-test 46,240.0 7,076.2 37,344.2 7,989.2 3,956.4 6,756.2
LLR 37,440.8 6,761.6 3,286.6 2,663.0 4,367.4 2,691.0
Jaccard 3,179.6 3,629.2 4,342.8 4,105.4 4,455.2 3,878.8
Count 3,484.2 2,882.2 4,242.0 2,216.0 4,265.2 5,364.4
Doc-count 3,470.8 2,871.0 4,229.6 2,199.8 4,255.6 5,365.2
OD-1-A 3,643.0 6,468.8 3,726.7 7,405.2 3,805.3 *
OD-1-C 3,721.4 11,229.8 3,757.4 16,325.9 3,788.6 *
OD-1-H 3,558.3 * 3,618.0 5,427.8 3,666.5 *
OD-1-W1 3,752.8 * 3,928.6 12,814.2 4,058.1 *
OD-1-W2 3,746.7 10,100.4 4,091.0 12,183.3 4,345.4 *
OD-2-A 6,859.0 - - - - -
OD-2-C 38,639.0 - - - - -
OD-2-H 1,013.4 - - - - -
OD-2-W1 29,960.9 - - - - -
OD-2-W2 14,697.4 - - - - -
Table C.5 Mean Ranks for Open Discovery on the Swanson Discovery Cases
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Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 41,837.0 8,869.0 16,714.0 9715.0 74.0 5,545.0
SCP 124.0 427.0 154.0 250.0 154.0 250.0
χ2 37,827.0 7,820.0 156.0 263.0 155.0 263.0
t-test 40,103.0 1,808.0 37,368.0 116.0 5.0 105.0
LLR 37,820.0 3,404.0 9.0 45.0 10.0 43.0
Jaccard 6.0 1,075.0 6.0 237.0 9.0 240.0
Count 8.0 43.0 20.0 29.0 21.0 261.0
Doc-count 7.0 21.0 20.0 31.0 21.0 237.0
OD-1-A 18.4 4,852.3 16.2 6,776.2 18.6 *
OD-1-C 4.0 1,917.8 9.6 6,933.0 16.4 *
OD-1-H 19.2 * 14.2 6,173.2 13.4 *
OD-1-W1 17.6 * 19.8 1,907.2 20.4 *
OD-1-W2 25.0 2,570.6 22.6 2,546.6 21.8 *
OD-2-A 605.4 - - - - -
OD-2-C 37,783.8 - - - - -
OD-2-H 17.6 - - - - -
OD-2-W1 44,254.0 - - - - -
OD-2-W2 49.6 - - - - -

Table C.6 Median Ranks for Open Discovery on the Swanson Discovery Cases
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Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 56,575.7 13,732.2 13,676 12,322.3 2,270.3 7,023.9
SCP 2,371.8 5,012.2 2,854.3 2,216.2 2,865.4 2,002.9
χ2 37,630.5 6,687.2 2,893.0 3,112.0 2,960.5 2,636.4
t-test 82,423.4 3,770.9 55,500.7 4,274.2 2,041.2 3,790.6
LLR 55,577.9 3,705.5 1,769.8 1,837.4 2,323.9 2,280.9
Jaccard 1634.4 2685.5 2,232.0 2,529.0 2,295.7 2,532.4
Count 1,925.8 2,472.9 2,327.3 1,849.8 2,343.1 3,120.1
Doc-count 1,932.0 2,506.4 2,351.1 1,724.5 2,373.1 3,718.2
OD-1-A 1,930.7 * 1,982.9 4,751.6 2,034.8 *
OD-1-C 1,907.42 * 1,940.3 26,786.9 1,972.8 *
OD-1-H 1,908.08 * 1,944.28 6,624.36 1,973.5 *
OD-1-W1 1,982.5 * 2,076.86 18,135.42 2,147.4 *
OD-1-W2 1,997.3 9,439.0 2,186.2 16,365.1 2,328.7 *
OD-2-A 3,493.5 - - - - -
OD-2-C 66,923.3 - - - - -
OD-2-H 522.2 - - - - -
OD-2-W1 43,593.5 - - - - -
OD-2-W2 7640.2 - - - - -

Table C.7 Mean Ranks for Open Discovery on the all Cases
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Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 50,347.0 10,624.0 698.0 9,472.0 55.0 3,630.0
SCP 200.0 758.5 370.5 9,472.0 371.0 630.0
χ2 35,808.5 3,712.5 379.5 958.0 380.5 873.5
t-test 78,806.0 344.5 48,107 220.5 43.5 169.5
LLR 48,337.0 569.0 44.5 420.0 46.5 540.5
Jaccard 21.0 1,082.0 46.5 610.5 57.5 849.0
Count 11.5 285.0 46.5 610.5 57.5 849.0
Doc-count 12.5 237.0 44.5 60.0 47.5 152.5
OD-1-A 25.2 * 29.2 3,850.4 32.7 *
OD-1-C 18.2 * 21.8 23,334.8 26.6 *
OD-1-H 22.4 * 23.4 6,901.6 25.3 *
OD-1-W1 20.3 * 21.2 19,214.2 25.1 *
OD-1-W2 28.2 5,470.4 27.3 13,559.3 30.4 *
OD-2-A 400.0 - - - - -
OD-2-C 54,867.2 - - - - -
OD-2-H 14.9 - - - - -
OD-2-W1 40,761.3 - - - - -
OD-2-W2 98.3 - - - - -

Table C.8 Median Ranks for Open Discovery on all Cases

Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 1,211.9 1,675.4 1,173.9 1,692.8 1,156.5 1,657.4
SCP 1,342.8 1,616.5 1,291.7 1,585.4 1,293.1 1,558.8
χ2 1,376.1 1,623.0 1,305.0 1,591.1 1,304.2 1,564.3
t-test 1,172.1 1,423.1 1,163.8 1,320.1 1,149.9 1,301.9
LLR 1,205.8 1,496.1 1,137.8 1,358.1 1,132.9 1,326.4
Jaccard 1,197.3 1,547.1 1,178.5 1,477.0 1,169.9 1,431.5
Count 1,175.4 1,659.0 1,146.0 1,335.6 1,146.0 1,341.6
OD-1-A 1,911.5 1,912.0 1,909.5 1,909.5 1,908.5 1,911.7
OD-1-C 1,910.5 1,909.6 1,909.5 1,909.5 1,913.4 1,915.8
OD-1-H 1,914.3 1,912.8 1,909.5 1,909.5 1,907.5 1,910.6
OD-1-W1 1,910.6 1,910.3 1,909.5 1,909.5 1,908.3 1,911.6
OD-1-W2 1,910.3 1,910.5 1,909.5 1,909.5 1,908.3 1,914.0
OD-2-A 1,154.1 - - - - -
OD-2-C 1,113.1 - - - - -
OD-2-H 1,315.8 - - - - -
OD-2-W1 1,670.4 - - - - -
OD-2-W2 1,869.5 - - - - -

Table C.9 Mean Ranks (MR) for time-sliced BioGRID
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Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 2.75 1.40 2.62 1.47 2.35 0.96
SCP 2.29 1.48 1.80 1.36 1.51 0.98
χ2 2.25 1.47 1.79 1.36 1.50 0.98
t-test 2.51 1.87 2.52 1.33 2.37 1.10
LLR 2.83 1.79 2.19 1.27 1.90 1.10
Jaccard 2.86 1.44 2.57 1.43 2.12 1.04
Count 2.00 1.04 1.91 1.07 1.70 0.94
OD-1-A 1.22 1.08 1.27 1.27 1.26 1.25
OD-1-C 1.25 1.14 1.27 1.27 1.24 1.20
OD-1-H 1.24 1.12 1.27 1.27 1.25 1.24
OD-1-W1 1.21 1.11 1.27 1.27 1.26 1.25
OD-1-W2 1.21 1.11 1.27 1.27 1.26 1.25
OD-2-A 5.17 - - - - -
OD-2-C 5.46 - - - - -
OD-2-H 4.11 - - - - -
OD-2-W1 2.58 - - - - -
OD-2-W2 2.46 - - - - -

Table C.10 Mean MAP for time-sliced BioGRID

Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 2.08 1.14 1.96 1.2 1.81 0.82
SCP 1.7 1.21 1.35 1.08 1.23 0.83
χ2 1.68 1.21 1.34 1.08 1.23 0.83
t-test 1.88 1.61 1.9 0.96 1.82 0.82
LLR 2.17 1.63 1.56 0.92 1.34 0.81
Jaccard 2.19 1.19 1.96 1.15 1.66 0.86
Count 1.77 1.04 1.49 0.9 1.3 0.78
OD-1-A 0.92 0.82 0.92 0.92 0.93 0.93
OD-1-C 0.92 0.85 0.92 0.92 0.94 0.93
OD-1-H 0.93 0.86 0.92 0.92 0.92 0.92
OD-1-W1 0.90 0.85 0.92 0.92 0.92 0.91
OD-1-W2 0.91 0.84 0.92 0.92 0.92 0.91
OD-2-A 3.36 - - - - -
OD-2-C 3.42 - - - - -
OD-2-H 2.78 - - - - -
OD-2-W1 1.75 - - - - -
OD-2-W2 1.76 - - - - -

Table C.11 Mean Mean Reciprocal Rank (MRR) for time-sliced BioGRID
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Approach Min Avg Max
Sum Max Sum Max Sum Max

NPMI 2.35 1.0 2.06 1.03 1.89 0.56
SCP 1.95 1.08 1.24 0.86 1.01 0.58
χ2 1.89 1.08 1.23 0.86 1.0 0.58
t-test 1.9 1.4 1.94 0.86 1.8 0.74
LLR 2.47 1.52 1.75 0.68 1.38 0.58
Jaccard 2.47 1.05 2.18 0.89 1.64 0.54
Count 1.9 0.79 1.44 0.73 1.35 0.62
OD-1-A 0.96 0.83 0.98 0.98 1.00 0.99
OD-1-C 0.97 0.88 0.98 0.98 1.01 1.01
OD-1-H 1.00 0.88 0.98 0.98 0.96 0.96
OD-1-W1 0.95 0.89 0.98 0.98 0.97 0.97
OD-1-W2 0.97 0.86 0.98 0.98 0.98 0.97
OD-2-A 4.45 - - - - -
OD-2-C 4.73 - - - - -
OD-2-H 3.78 - - - - -
OD-2-W1 2.15 - - - - -
OD-2-W2 1.87 - - - - -

Table C.12 Mean Relevance-precision (R-precision) for time-sliced BioGRID
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