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Abstract 

Background: DNA methylation plays a critical role in breast cancer development. Previous 

studies have identified DNA methylation marks in white blood cells as promising biomarkers for 

breast cancer. However, these studies were limited by low statistical power and potential biases. 

Utilizing a new methodology, we investigated DNA methylation marks for their associations 

with breast cancer risk. 

Methods: Statistical models were built to predict levels of DNA methylation marks using 

genetic data and DNA methylation data from HumanMethylation450 BeadChip from the 

Framingham Heart Study (N=1,595). The prediction models were validated using data from the 

Women's Health Initiative (N=883). We applied these models to genome-wide association study 

(GWAS) data of 122,977 breast cancer cases and 105,974 controls to evaluate if the genetically 

predicted DNA methylation levels at CpGs are associated with breast cancer risk. All statistical 

tests were two-sided. 

Results: Of the 62,938 CpG sites (CpGs) investigated, statistically significant associations with 

breast cancer risk were observed for 450 CpGs at a Bonferroni-corrected threshold of 

P<7.94×10-7, including 45 CpGs residing in 18 genomic regions which have not previously been 

associated with breast cancer risk. Of the remaining 405 CpGs located within 500 kilobase 

flaking regions of 70 GWAS-identified breast cancer risk variants, the associations for 11 CpGs 

were independent of GWAS-identified variants. Integrative analyses of genetic, DNA 

methylation and gene expression data found that 38 CpGs may affect breast cancer risk through 

regulating expression of 21 genes. 

Conclusion: Our new methodology can identify novel DNA methylation biomarkers for breast 

cancer risk and can be applied to other diseases.  
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Breast cancer is the most common cancer for women in the United States as well as many 

countries around the world (1). DNA methylation plays critical roles in cancer development, 

including breast cancer (2).  

DNA methylation of several genes in white blood cells had been associated with breast 

cancer risk, however inconsistent results showed (3-7). Most of these studies had a retrospective 

design. Two prospective studies found that overall DNA hypo-methylation in white blood cells 

was associated with increased breast cancer risk (8, 9). In addition, a panel of 250 CpGs in white 

blood cell DNA was identified to be predictive of breast cancer risk (10). However, none of these 

CpGs were consistently observed in a later study (9). These studies were limited by small sample 

size, lack of replication and/or reverse causation. Furthermore, the repeatability of DNA 

methylation measurements at some CpGs using the HumanMethylation450 BeadChip was not 

optimal (11), which may have contributed to the inconsistency across studies. 

A recent study indicated the epigenetic supersimilarity of monozygotic twin pairs (12). 

More recently, 24 heritable CpGs were associated with breast cancer risk (13). Multiple genetic 

variants had been identified as DNA methylation quantitative trait loci (meQTL) (14-16), 

suggesting that DNA methylation at some CpGs are genetically determined and thus can be 

predicted using genetic variants. Studies using cis (500 kilobase [Kb] flanking regions) meQTL 

single nucleotide polymorphisms (SNPs) had discovered novel CpGs for diseases (17, 18). 

However, the proportion of variance explained by a single meQTL SNP for most CpGs is 

typically small. Herein, we proposed a new methodology to build statistical models to predict 

DNA methylation in white blood cells via multiple SNPs in a reference dataset and then apply 

the models to large genome-wide association study (GWAS) datasets to evaluate genetically 

predicted DNA methylation in association with disease risk. We tested this methodology by 
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investigating the association of genetically predicted DNA methylation with breast cancer risk 

using data from 122,977 breast cancer cases and 105,974 controls. 

 

Methods 

Building DNA methylation prediction models and evaluating prediction performance 

Figure 1 presents the overall workflow. Genetic and DNA methylation data of white blood cell 

samples from 1,595 unrelated European participants included in the Framingham Heart Study 

(FHS) were obtained from dbGaP (phs000342 and phs000724). The HumanMethylation450 

BeadChip DNA methylation data were QC-ed and normalized by using the “minfi” package (19) 

and were then regressed on age, sex, cell type composition and top ten principal components to 

get residuals. Genotyping was conducted using the Affymetrix 500K mapping array and data 

were imputed to the 1000 Genomes Phase I Version 3. SNPs with imputation quality ≥0.80 and 

minor allele frequency ≥0.05 were used. For each CpG, we built a statistical model using allelic 

dosage data of cis SNPs to predict DNA methylation residuals, following the elastic net method 

(α=0.50) with ten-fold cross-validation (20) (Supplementary Methods). Genetic data and white 

blood cell DNA methylation data from the HumanMethylation450 BeadChip of 883 unrelated 

European women included in the Women’s Health Initiative (WHI) from dbGaP (phs000315, 

phs000675 and phs001335) were used for the external validation of models. Genotyping was 

conducted using the HumanOmni1-Quad_v1-0_B and the HumanOmniExpress array and data 

were imputed to the 1000 Genomes Phase I Version 3. DNA methylation and genotyping data 

were processed following a similar procedure used for the FHS data. For each CpG, the 

predicted DNA methylation level was estimated using its prediction model and the correlation 

between predicted and measured DNA methylation level was evaluated using Spearman’s 
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correlation. In total, prediction models for 63,000 CpGs built by using FHS data were externally 

validated by WHI data (Supplementary Methods).  

 

Statistical analyses 

We used MetaXcan (20, 21) to investigate genetically predicted DNA methylation in association 

with breast cancer risk by applying prediction models to summary statistics of breast cancer 

GWAS from the Breast Cancer Association Consortium (BCAC) (22), including 122,977 cases 

and 105,974 controls of European descent. The BCAC includes three datasets, i.e. 46,785 cases 

and 42,892 controls genotyped on the iCOGS, 61,282 cases and 45,494 controls on the 

OncoArray, and 14,910 cases and 17,588 controls on varied GWAS arrays (22). Genotyping data 

were imputed to the 1000 Genomes Phase I Version 3. Among the 751,157 SNPs included in the 

predicting levels for 63,000 CpGs, summary statistics for associations between SNPs and breast 

cancer risk in the BCAC were available for 750,914 (>99.9%) SNPs, corresponding to 62,938 

CpGs, which were included in the final analyses. This study was approved by the BCAC Data 

Access Coordination Committee. The association Z score was estimated using the following 

formula: 

𝑍𝑚 ≈  ∑ 𝑤𝑠𝑚𝑠∈Model𝑚

𝜎̂𝑠

𝜎̂𝑚
 

𝛽̂𝑠

se(𝛽̂𝑠)
   

In the formula, 𝑤𝑠𝑚 is the weight of SNP 𝑠 on CpG 𝑚. 𝜎̂𝑠 and 𝜎̂𝑚 are the estimated variances of 

SNP 𝑠 and CpG 𝑚 respectively. 𝛽̂𝑠 and se(𝛽̂𝑠) are the effect size and standard error of SNP 𝑠 on 

breast cancer risk respectively (Supplementary Methods). Association P values were also 

calculated by MetaXcan and a Bonferroni-corrected threshold of P<7.94×10-7 (0.05/62,938) was 

used to determine statistically significant associations of genetically predicted levels of CpGs 

with breast cancer risk. All statistical tests were two-sided. 
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We then conducted GCTA-COJO (23) and MetaXcan (21) analyses to assess whether 

associations of predicted DNA methylation with breast cancer risk were independent of GWAS-

identified breast cancer susceptibility variants. We also performed stratification analyses by 

datasets within the BCAC, i.e. iCOGS, OncoArray and GWAS, and by estrogen (ER) status. 

Heterogeneity across BCAC datasets, and between ER status was estimated by Cochran’s Q test 

(Supplementary Methods).  

 

Functional analyses  

Functional annotation of CpGs were conducted using ANNOVAR (24). The enrichments of 

breast-cancer-associated CpGs in putative functional elements, including DNase I hypersensitive 

sites and genomic regions overlapping with histone modification marks, e.g. H3K27me3, 

H3K36me3 and H3K4me3, were evaluated by eFORGE (25) v1.2 using data from the Roadmap 

Epigenomics Project (26) (Supplementary Methods).  

 

Identifying consistent directions of associations across DNA methylation, gene expression 

and breast cancer risk 

For breast-cancer-associated CpGs, we investigated DNA methylation of them in correlation 

with expression of their nearby genes annotated by ANNOVAR, using data of 1,367 unrelated 

European participants from the FHS (Supplementary Methods). For genes with expression 

levels statistically significantly correlated with DNA methylation levels at these CpGs, we built 

genetic models to predict their expression levels using data from 6,124 different tissue samples 

of 369 participants of European ancestry from the Genotype-Tissue Expression (GTEx) (27). 

The models were applied to the BCAC data to estimate associations between genetically 
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predicted expression of these genes and breast cancer risk, utilizing MetaXcan (20, 21) 

(Supplementary Methods). For both analyses, we used false discovery rate (FDR)<0.05 to 

determine statistically significant correlations/associations. To elucidate putative pathways 

through which DNA methylation impacts breast cancer risk, association results across DNA 

methylation, gene expression and breast cancer risk were integrated to assess the consistency of 

association directions (Supplementary Methods). 

 

Comparison between prediction model approach and single meQTL SNP approach 

Of the 62,938 CpGs investigated, meQTLs had been identified for 24,845 CpGs (15). We 

compared the prediction performance of these 24,845 CpGs via prediction models or single 

meQTL SNPs. We also investigated these 24,845 CpGs for their DNA methylation levels, 

predicted via single meQTL SNPs, in association with breast cancer risk using the BCAC data, 

following the inverse-variance weighted method (28) (Supplementary Methods). The 

association results were compared with those from the prediction model approach. 

 

Results 

DNA methylation prediction models 

A flow diagram describing the number of CpGs and SNPs during each analysis step is shown in 

Supplementary Figure 1. Genetic and white blood cell DNA methylation data from FHS were 

used to build DNA methylation prediction models. In total, 473,865 autosomal CpGs were 

assayed and 370,785 were retained after QC. Statistical models were established to predict DNA 

methylation levels for 223,959 CpGs, 61,219 of which were within CpG islands. Of these 

223,959 CpGs, the predicted and measured DNA methylation levels are positively correlated 
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with a correlation coefficient of at least 0.10, i.e. RFHS≥0.10 and RFHS
2≥0.01 for 81,361 CpGs. To 

validate these 81,361 models, we applied them to the WHI data and calculated the squared 

values of correlation coefficients between predicted and measured DNA methylation levels, i.e. 

RWHI
2. For these 81,361 models, a high correlation of RFHS

2 and RWHI
2, was observed with a 

Pearson correlation r=0.95 (Figure 2), indicating that CpGs predicted well in FHS were also 

predicted well in WHI. Notably, 70,269 of the 81,361 CpGs showed a RWHI
2≥0.01. For 7,269 of 

these 70,269 CpGs, their corresponding probes on the HumanMethylation450 BeadChip overlap 

with genetic polymorphisms (based on dbSNP Build 151). Such overlapping could potentially 

affect the estimation of their DNA methylation levels (15), hence these 7,269 CpGs were 

excluded. In total, 63,000 CpGs were included in downstream analyses. 

 

Associations of genetically predicted DNA methylation with breast cancer risk 

We conducted MetaXcan analyses to estimate genetically predicted DNA methylation of the 

63,000 CpGs in association with breast cancer risk. Among 751,157 SNPs included in prediction 

models of these 63,000 CpGs, data were available for 750,914 (>99.9%) SNPs in BCAC, 

corresponding to 62,938 CpGs. For most of these CpGs, a substantial majority of SNPs were 

used in association analyses. The Manhattan plot for the associations results is shown in 

Supplementary Figure 2. Of the 62,938 CpGs, statistically significant associations were 

observed for 450 at P<7.94×10-7, a Bonferroni-corrected threshold (Tables 1-2 and 

Supplementary Table 1). For these 450 CpGs, 12,286 SNPs were included in their prediction 

models, with the average of 27 SNPs for each CpG. Of the 12,286 SNPs, genotypes of 10,099 

(82.2%) were associated with DNA methylation levels of these CpGs at P<0.05. Among these 

450 CpGs, 45 reside in 18 genomic regions that are 500Kb away from GWAS-identified breast 
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cancer risk variants. After adjusting for proximally located GWAS-identified risk variants, 

statistically significant associations (P<7.94×10-7) retained for 17 CpGs within 10 genomic loci 

(Table 1). Among the remaining 405 CpGs located within 500Kb flaking regions of 70 GWAS-

identified breast cancer risk variants, statistically significant associations (P<7.94×10-7) 

remained for 11 CpGs within seven genomic regions after adjusting for corresponding GWAS-

identified risk variants (Table 2). The predicted DNA methylation levels of these 450 CpGs 

could explain 2.2% of the familial relative risk of breast cancer (Supplementary Methods).  

For these 450 CpGs, stratified analyses by ER status were conducted to evaluate the 

heterogeneity between ER-positive and ER-native diseases. Most CpGs were associated with 

risks of both (Supplementary Tables 2-3), nevertheless, 39 and eight CpGs were respectively 

more statistically significantly associated with ER-positive and ER-negative disease with 

Cochran’s P<1.11×10-4 (0.05/450) (Supplementary Table 2). All 450 CpGs showed consistent 

associations across three BCAC subsets (Supplementary Table 4).  

To explore potential regulatory functions of the 450 CpGs, eFORGE was used to estimate 

the enrichments of them in putative functional genomic regions. These 450 CpGs were enriched 

in genomic regions harboring H3K4me1 marks, indicative of enhancers, in human mammary 

epithelial cells as well as in 36 out of 38 cell types and tissues assayed in the Roadmap 

Epigenomics Project (26) (Supplementary Figure 3). Compared with all the 62,938 CpGs, 

these 450 CpGs were statistically significantly enriched in ncRNA_exonic regions with 

hypergeometric distribution test P<5.55×10-3 (0.05/9) (Supplementary Table 5). In addition, of 

these 450 CpGs, 36, 37 and seven were respectively within or close to (10Kb) metastable 

epialleles identified by three recent studies (29-31). 
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To determine whether these 450 CpGs are soma-wide, we re-built prediction models 

without adjusting for cell type composition. Totally, models for 411 CpGs were established with 

RFHS
2≥0.01. For these 411 CpGs, a high correlation between R2 based on models with or without 

cell type composition adjustment was observed (Spearman correlation r=0.95, Supplementary 

Figure 4A). All these 411 CpGs were associated with breast cancer risk at P<7.57×10-5 and the 

association Z scores were highly correlated with those based on prediction models with cell type 

composition adjustment (Spearman correlation r=0.98, Supplementary Figure 4B). 

 

DNA methylation impacting breast cancer risk through regulating gene expression 

We investigated whether DNA methylation of the 450 CpGs could influence flanking gene 

expression using the FHS data. Among 342 CpGs and 158 genes with DNA methylation and 

gene expression data, statistically  significant correlations were observed for 100 CpG-gene pairs, 

including 100 CpGs and 62 genes, at FDR<0.05 (Supplementary Table 6). In total, 60 of these 

100 statistically significant correlations were negative. Especially, for 22 CpGs that reside in 

promoter regions, DNA methylation at 20 CpGs were negatively correlated with gene expression. 

We evaluated the associations between genetically predicted expression of these 62 genes and 

breast cancer risk using the GTEx and BCAC data. Gene expression prediction models were 

established for 45 genes, 32 of which were statistically significantly associated with breast 

cancer risk at FDR<0.05 (Supplementary Table 7).  

To explore whether DNA methylation at CpGs could impact breast cancer risk through 

regulating gene expression, we integrated all association results and identified consistent 

directions of associations across 38 CpGs, 21 genes and breast cancer risk (Table 3 and 

Supplementary Table 8). Among these 38 CpGs, five reside in genomic regions not previously 
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reported for breast cancer risk via GWAS, including cg22221025 and cg26668989 in GSTM4, 

cg16647868 and cg19040266 in SLC22A5, and cg25839482 in IMP3. Except for LRRC25, the 

associations between predicted expression of the other 20 genes and breast cancer risk attenuated 

substantially upon adjusting for SNPs included in prediction models of their corresponding CpGs 

(Table 3 and Supplementary Table 8). The associations of these 20 genes with breast cancer 

risk may be modulated by DNA methylation.  

 

Comparison of the genetic prediction model approach with the single meQTL SNP 

approach 

To evaluate the performance of DNA methylation prediction improved by prediction model 

approach, we compared the R2 from prediction models with those from meQTLs. Among the 

24,845 CpGs having both models and meQTLs, prediction performances of models (RFHS
2) were 

statistically significantly higher than those of single meQTL SNPs (RmeQTL
2) (Figure 3). 

Especially, 21,874 CpGs (84.1%) were predicted better (RFHS
2

 > RmeQTL
2) using models. 

To determine whether our prediction model approach could identify more breast-cancer-

associated CpGs than the meQTL approach, for the 24,845 CpGs having both prediction models 

and meQTLs, we investigated their DNA methylation levels, predicted by single meQTL SNPs, 

in association with breast cancer risk. For these 24,845 CpGs, a strong correlation (Pearson 

correlation r=0.88) between Z scores from prediction model and single meQTL SNP approaches. 

The P values from prediction model approach were lower than those from single meQTL SNP 

approach (Supplementary Figure 5). Of the 450 breast-cancer-associated-CpGs, meQTLs were 

identified for only 162 CpGs and 128 reached P<2.01×10-6 (Bonferroni-correction; 0.05/24,845) 
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based on single meQTL SNP approach (Supplementary Table 9). Therefore, only 128 (28.4%) 

of the 450 breast-cancer-associated-CpGs could be identified using single meQTL SNP approach.  

 

Discussion 

Using breast cancer as an example, we tested a novel methodology to identify CpGs associated 

with disease risk. We identified 450 CpGs that were statistically significantly associated with 

breast cancer risk. Of these, 38 CpGs may affect breast cancer risk through regulating expression 

of 21 genes. We demonstrate that our methodology is successful in identifying novel DNA 

methylation biomarkers for disease risk. Our findings provide substantial new information 

regarding the mechanistic relationship of genetics, epigenetics and gene expression and their 

associations with breast cancer risk. 

Traditional epidemiologic studies of DNA methylation were limited by small sample size, 

confounders and reverse causation. Our study focused on genetically determined DNA 

methylation, which is immune from reverse causation and confounders. Compared with the 

approach using single meQTL SNPs as genetic instruments, our prediction model approach 

statistically significantly improved prediction performances. More importantly, over half of the 

breast-cancer-associated CpGs would be missed using single meQTL SNP approach. Although 

we focused on breast cancer, this methodology can be applied to other diseases. 

We observed consistent directions of associations across 38 CpGs, 21 genes and breast 

cancer risk. Among them, five CpGs in three genes, GSTM4, SLC22A5 and IMP3, are within 

genomic regions which had not been associated with breast cancer risk via GWAS. GSTM4 over-

expression could help to maintain a reduced state of cytochrome c, which contributes to 

methotrexate resistance in breast cancer cells (32). A mutation in SLC22A5 was reported to 
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enhance cancer cell metastasis in breast tissues (33). The over-expression of IMP3 was observed 

in BRCA‐ mutated invasive breast carcinomas (34). Three CpGs in CD160 were associated with 

increased breast cancer risk by the down-regulation of CD160 expression. This gene was 

suggested to have anti-cancer activity (35). Another three CpGs were located in MAPT, which 

were associated with breast cancer metastasis (36). In ER-negative breast cancers, the 

knockdown of a natural antisense of MAPT, MAPT-AS1, resulted in inhibited cancer cell 

proliferation (37). Recently, a CpG in GREB1, cg18584561, was associated with breast cancer 

risk (13). In the present study this CpG was removed because of low quality, hence a comparison 

couldn’t be made. Another study (38) reported that a rare variant BRCA1 c.-107A>T could 

silence BRCA1 and increase breast cancer risk via DNA methylation. However, this variant is 

very rare and not included in data of FHS, WHI and BCAC, hence we could not investigate this 

variant for its association with either BRCA1 methylation or breast cancer risk. 

One limitation of our study is that prediction models were built using data from white 

blood cells, not breast tissues. However, it is unfeasible to obtain breast tissues from healthy 

individuals. Although in the Cancer Genome Atlas, both genotype and DNA methylation were 

profiled for histologically normal tissue samples from 115 breast cancer patients of European 

descent (39), the DNA methylation profiles of “histologically normal” tissue samples from breast 

cancer patients may differ from those of tissue samples from healthy women. Multiple studies 

have suggested that meQTLs could be consistently detected across different tissues (40-43), 

indicating that genetically determined DNA methylation at many CpGs have cross-tissue 

consistency. Therefore, the genetic models we built using data from white blood cells should 

capture DNA methylation of many CpGs in breast tissues.  
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The present study has multiple strengths. Our novel methodology overcomes limitations 

of traditional epidemiological studies and is more accurate and powerful than studies based on 

single meQTL approach. A large number of samples in the reference dataset were used for model 

building and the performances of models were excellent as demonstrated by external validation. 

The BCAC GWAS data with to-date the largest sample size provided strong statistical power to 

identify associations between CpGs and breast cancer risk. By integrating multi-omics data, we 

found consistent evidence to support that DNA methylation may impact breast cancer risk 

through regulating gene expression.  

In summary, using a novel methodology, we identified multiple CpGs statistically 

significantly associated with breast cancer risk and proposed that several CpGs may affect breast 

cancer risk through regulating gene expression. Our study demonstrates the utility of integrative 

analyses of multi-omics data in identifying novel biomarkers for risk of developing breast cancer 

and provides new insights into the etiology of this malignancy.  
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Tables 

 

 

 

 

 

  

Table 1. Seventeen DNA methylation marks associated with breast cancer risk identified in genomic regions not yet reported for breast cancer risk 

CpG Chr Position Closest gene Classification Z score* OR (95% CI)* P value* RFHS
2† RWHI

2† 

Closest breast 

cancer risk 

SNP 

Distance to 

the risk 

SNP (Kb) 

P value* 

adjusted for 

the risk 

SNP 

cg04794690 1 17,768,059 RCC2; ARHGEF10L Intergenic 5.04 1.36 (1.20-1.53) 4.74×10-7 0.01 0.04 rs2992756 -1,039 2.61×10-8 

cg22221025 1 110,186,044 GSTM4 Upstream 5.36 1.15 (1.09-1.21) 8.53×10-8 0.05 0.03 rs11552449 -4,262 3.04×10-7 

cg26668989 1 110,186,163 GSTM4 Upstream 6.37 1.20 (1.13-1.27) 1.92×10-10 0.04 0.04 rs11552449 -4,262 1.23×10-9 

cg04411307 2 69,391,395 ANTXR1 Intronic 5.10 1.05 (1.03-1.07) 3.38×10-7 0.31 0.22 rs6725517 44,262 3.19×10-7 

cg16190888 2 69,428,235 ANTXR1 Intronic -5.20 0.87 (0.82-0.91) 1.99×10-7 0.04 0.03 rs6725517 44,299 2.06×10-7 

cg03277049 3 156,534,076 LINC00886 ncRNA_intronic -5.01 0.92 (0.90-0.95) 5.52×10-7 0.10 0.10 rs58058861 -15,751 5.01×10-7 

cg11359771 5 131,558,794 P4HA2 5'UTR 5.00 1.21 (1.13-1.31) 5.59×10-7 0.01 0.02 rs6596100 -848 1.70×10-7 

cg16647868 5 131,706,066 SLC22A5 Intronic 4.95 1.05 (1.03-1.08) 7.36×10-7 0.20 0.27 rs6596100 -701 2.02×10-7 

cg19040266 5 131,723,239 SLC22A5 Intronic -5.05 0.93 (0.91-0.96) 4.31×10-7 0.13 0.10 rs6596100 -684 1.32×10-7 

cg11920449 6 36,645,608 CDKN1A TSS1500 -5.04 0.97 (0.96-0.98) 4.56×10-7 0.69 0.67 rs9257408 7,719 7.78×10-7 

cg03714916 6 36,645,886 CDKN1A TSS1500 -5.17 0.94 (0.92-0.96) 2.31×10-7 0.17 0.16 rs9257408 7,720 3.95×10-7 

cg03171419 8 37,700,802 GPR124 3'UTR -5.26 0.87 (0.82-0.92) 1.46×10-7 0.04 0.04 rs13365225 842 7.86×10-8 

cg07540652 8 81,805,956 ZNF704; PAG1 Intergenic 5.05 1.19 (1.11-1.27) 4.48×10-7 0.03 0.02 rs2943559 5,388 2.71×10-7 

cg25626611 12 115,102,065 TBX5-AS1; TBX3 Intergenic 6.01 1.12 (1.08-1.16) 1.91×10-9 0.09 0.05 rs1292011 -734 1.09×10-7 

cg07211768 12 115,102,290 TBX5-AS1; TBX3 Intergenic 5.98 1.08 (1.06-1.11) 2.25×10-9 0.16 0.14 rs1292011 -734 1.52×10-7 

cg25938347 15 75,639,163 NEIL1 TSS200 5.51 1.29 (1.18-1.42) 3.59×10-8 0.01 0.02 rs151090251 8,231 1.84×10-7 

cg25839482 15 75,931,953 IMP3 3'UTR -5.57 0.94 (0.93-0.96) 2.59×10-8 0.21 0.25 rs151090251 8,524 1.57×10-7 
* MetaXcan was used to estimate association Z scores, ORs, 95% CIs and P values. All statistical tests were two-sided. OR, odds ratio per standard deviation increase in genetically predicted DNA 

methylation level (continuous variable); CI, confidence interval; Chr, chromosome; ncRNA, non-coding RNA; UTR, untranslated region; TSS, transcription start site; FHS, The Framingham 

Heart Study; WHI, The Women’s Health Initiative; SNP, single nucleotide polymorphisms. 
† Correlation between predicted and measured DNA methylation levels. 
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Table 2. Eleven DNA methylation marks associated with breast cancer risk identified in genomic regions within 500Kb of known breast cancer risk variants but representing 

independent association signals  

CpG Chr Position Closest gene Classification Z score* OR (95% CI)* P value* RFHS
2† RWHI

2† 

Breast 

cancer risk 

SNPs 

Distance to the 

risk SNPs (Kb) 

P value* adjusted 

for the risk SNPs 

cg18789177 2 217,729,408 
TNP1; 

LOC105373876 
Intergenic 5.73 1.28 (1.17-1.39) 1.01×10-8 0.02 0.01 

rs4442975; 

rs34005590 

191;  

233 
7.44×10-8 

cg16971831 5 56,110,935 MAP3K1 5'UTR -11.90 0.51 (0.46-0.57) 1.23×10-32 0.01 0.06 

rs16886397; 

rs16886113; 

rs2229882; 

rs7726354; 

rs16886034; 

rs16886181; 

rs12655019; 

rs889312 

23;  

-115;  

57; 

 145; 

 -127; 

 -81;  

84; 

 -79 

7.42×10-8 

cg20580673 14 91,735,665 
GPR68; 

CCDC88C 
Intergenic -6.16 0.76 (0.69-0.83) 7.26×10-10 0.02 0.03 rs941764 105 8.03×10-9 

cg00787180 14 91,751,731 CCDC88C Intronic -5.57 0.88 (0.84-0.92) 2.54×10-8 0.05 0.06 rs941764 89 6.72×10-7 

cg09032423 16 4,015,231 ADCY9 3'UTR -5.01 0.82 (0.77-0.89) 5.56×10-7 0.02 0.01 rs11076805 91 1.02×10-7 

cg12776287 18 24,125,939 KCTD1 Intronic -5.36 0.95 (0.93-0.97) 8.12×10-8 0.27 0.21 
rs1436904; 

rs527616 

444;  

211 
1.45×10-8 

cg19738924 18 24,126,072 KCTD1 Intronic -5.60 0.93 (0.91-0.96) 2.20×10-8 0.14 0.14 
rs1436904; 

rs527616 

444; 

211 
2.91×10-8 

cg15073853 19 18,549,131 ISYNA1 TSS200 9.28 1.09 (1.07-1.11) 1.77×10-20 0.26 0.21 rs4808801 22 9.24×10-26 

cg21962901 19 18,549,134 ISYNA1 TSS200 9.37 1.11 (1.09-1.13) 7.27×10-21 0.19 0.15 rs4808801 22 9.24×10-26 

cg11102782 19 18,549,136 ISYNA1 TSS200 8.80 1.08 (1.06-1.10) 1.38×10-18 0.32 0.26 rs4808801 22 9.24×10-26 

cg09232727 22 29,140,725 HSCB Intronic -6.23 0.76 (0.70-0.83) 4.60×10-10 0.02 0.03 
rs17879961; 

rs132390 
-19; 480 2.12×10-8 

* MetaXcan was used to estimate association Z scores, ORs, 95% CIs and P values. All statistical tests were two-sided. OR, odds ratio per standard deviation increase in genetically predicted DNA 

methylation level (continuous variable); CI, confidence interval; Chr, chromosome; UTR, untranslated region; TSS, transcription start site; FHS, The Framingham Heart Study; WHI, The 

Women’s Health Initiative; SNPs, single nucleotide polymorphisms. 
† Correlation between predicted and measured DNA methylation levels. 
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Table 3. Selected * consistent directions of associations across DNA methylation, gene expression and breast cancer risk 

CpG Chr Position Gene Classification 

CpG Vs. breast cancer 

risk 
CpG Vs. Gex Gex Vs. breast cancer risk 

Gex Vs. breast cancer 

risk adjusted§ for DNA 

methylation 

Dir P value† Dir P value‡ Dir P value† Dir P value† 

cg26668989 1 110,186,163 GSTM4 Upstream Positive 1.92×10-10 Negative 5.37×10-5 Negative 2.04×10-5 Negative 0.52 

cg08614201 1 145,715,134 CD160 5'UTR Positive 5.00×10-7 Negative 3.26×10-51 Negative 9.35×10-4 Negative 0.93 

cg20311333 1 155,197,753 GBAP1 TSS1500 Positive 2.54×10-11 Negative 4.55×10-12 Negative 2.22×10-9 Positive 0.86 

cg02834765 1 155,214,859 GBA TSS1500 Negative 1.16×10-7 Negative 2.44×10-5 Negative 5.77×10-8 Negative 0.62 

cg16030869 4 38,867,304 FAM114A1 Upstream Positive 1.72×10-8 Positive 6.47×10-5 Positive 1.72×10-8 Positive 0.22 

cg17942617 5 81,327,376 ATG10 Intronic Negative 6.81×10-13 Positive 9.66×10-11 Negative 6.84×10-11 Negative 0.75 

cg16647868 5 131,706,066 SLC22A5 Intronic Positive 7.36×10-7 Negative 9.84×10-9 Negative 1.81×10-6 Negative 0.90 

cg12078157 6 13,612,218 SIRT5 3'UTR Negative 1.44×10-7 Negative 1.62×10-5 Positive 1.74×10-4 Positive 0.51 

cg05216056 6 28,887,836 TRIM27 Exonic Negative 3.71×10-7 Negative 1.45×10-29 Positive 7.34×10-4 Negative 0.99 

cg14701867 10 64,193,068 ZNF365 Intronic Negative 5.92×10-10 Negative 1.15×10-6 Positive 0.02 Positive 0.26 

cg23754390 11 835,074 CD151 Intronic Positive 2.51×10-7 Positive 9.14×10-22 Positive 2.03×10-3 Negative 0.81 

cg04111478 11 1,991,677 MRPL23 Downstream Positive 2.20×10-8 Positive 0.008 Positive 3.63×10-6 Positive 0.57 

cg15531562 11 65,601,754 SNX32 Intronic Positive 1.41×10-13 Positive 0.002 Positive 6.15×10-8 Positive 0.74 

cg06065225 11 65,640,137 EFEMP2 Intronic Negative 2.37×10-9 Negative 0.009 Positive 1.93×10-11 Positive 0.42 

cg23526087 14 68,973,466 RAD51B Intronic Negative 4.21×10-21 Negative 5.62×10-13 Positive 4.55×10-4 Positive 1.00 

cg25839482 15 75,931,953 IMP3 3'UTR Negative 2.59×10-8 Negative 1.27×10-4 Positive 6.18×10-6 Negative 0.78 

cg18878992 17 43,974,344 MAPT TSS1500 Negative 7.07×10-10 Negative 0.003 Positive 8.78×10-6 Positive 0.09 

cg21757127 19 18,525,886 LRRC25 Downstream Negative 1.33×10-15 Negative 1.71×10-5 Positive 4.25×10-16 Positive 2.21×10-5 

cg09516349 19 18,529,339 SSBP4 TSS1500 Positive 4.95×10-25 Positive 9.70×10-4 Positive 2.55×10-23 Positive 0.49 

cg22161383 19 18,545,441 ISYNA1 3'UTR Positive 3.85×10-27 Negative 0.003 Negative 9.62×10-10 Negative 0.01 

cg14066757 19 44,285,568 KCNN4 TSS200 Negative 3.55×10-16 Negative 0.01 Positive 6.12×10-15 Positive 0.23 
* Selected from 38 consistent directions of associations across DNA methylation, gene expression and breast cancer risk. Complete list is available in Supplementary Table 8. Chr, chromosome;  

UTR, untranslated region; TSS, transcription start site; Dir, direction of association and/or correlation; Gex, gene expression.                                                                                                                                                                                    
† P values were calculated using MetaXcan. All statistical tests were two-sided.  
‡ P values were calculated using Spearman correlation test. All statistical tests were two-sided.  
§ Adjusted for all predicting variants included in prediction models of corresponding CpGs.                                                                                                                
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Figure Legends 

Figure 1. Study design flow chart. FHS = The Framingham Heart Study; WHI = The Women’s 

Health Initiative; BCAC = The Breast Cancer Association Consortium; CpGs = CpG sites; ER = 

Estrogen receptor; GWAS = Genome-wide association study; meQTL = DNA methylation 

quantitative trait loci; SNP = single nucleotide polymorphism; GTEx = Genotype-Tissue 

Expression. 

 

Figure 2. Performances of DNA methylation prediction models in the prediction dataset 

and the validation dataset. A total of 81,361 models had a prediction performance in FHS 

(RFHS
2) ≥0.01. This figure shows the performance of these models in the prediction dataset, FHS, 

and in the validation dataset, WHI. The X-axis represents the RFHS
2 (squared correlation 

coefficients of predicted and measured DNA methylation levels). We then apply these models 

into the genetic data in WHI to predict the DNA methylation levels of these 81,361 CpGs. The 

Y-axis represents the performance of these models in the WHI (RWHI
2, squared correlation 

coefficients of predicted and measured DNA methylation levels). The black line represents the 

identity line (Y = X). FHS = The Framingham Heart Study; WHI = The Women’s Health 

Initiative. 

 

Figure 3. The performance of DNA methylation prediction using the prediction model 

approach and using the single meQTL SNP approach. For a total of 24,845 CpGs, prediction 

models were built in the present study and meQTLs were identified in a previous study. This 

figure presents the prediction performances of models and meQTLs for these CpGs. The X-axis 

represents the performance (R2) of DNA methylation prediction using the single meQTL SNP 
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approach, i.e. squared correlation coefficients of predicted and measured DNA methylation 

levels in the meQTL data. The Y-axis represents performance (R2) of DNA methylation 

prediction using the prediction model approach, i.e. squared correlation coefficients of predicted 

and measured DNA methylation levels in the FHS data. The black line represents the identity 

line (Y = X). meQTL = DNA methylation quantitative trait loci; SNP = single nucleotide 

polymorphism. 
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