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Abstract
The success of most vaccines relies on the generation of antibodies to provide
protection against subsequent infection; this in turn depends on a robust
germinal centre (GC) response that culminates in the production of long-lived
antibody-secreting plasma cells. The size and quality of the GC response are
directed by a specialised subset of CD4  T cells: T follicular helper (Tfh) cells.
Tfh cells provide growth and differentiation signals to GC B cells and mediate
positive selection of high-affinity B cell clones in the GC, thereby determining
which B cells exit the GC as plasma cells and memory B cells. Because of their
central role in the production of long-lasting humoral immunity, Tfh cells
represent an interesting target for rational vaccine design.
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Introduction
Vaccination is one of the most successful, cost-effective interven-
tions for combating infectious disease, thereby reducing infection- 
related disease, disability and death worldwide1. Despite this 
enormous success, there are still multiple infections that require a 
vaccination solution, including vaccines that protect against HIV 
and malaria2,3, and a way to improve vaccine efficacy in older 
persons4. The majority of current vaccines have been developed 
empirically rather than rationally, suggesting that a change in 
approach to vaccine development may enable breakthroughs in vac-
cine design5. All routine human vaccinations, with the exception of 
the Bacillus Calmette-Guérin tuberculosis vaccine, provide protec-
tion by generating antibodies that block the ability of a pathogen 
to establish an infection and that target it for destruction. Vaccine-
induced antibody responses are supported by T follicular helper 
(Tfh) cells; here, we discuss how advances in the knowledge of Tfh 
cell biology could be used to improve vaccine efficacy.

The production of vaccine-specific antibodies can occur via two cel-
lular routes: the extrafollicular or germinal centre (GC) responses. 
The extrafollicular response produces an initial burst of antibodies 

early after immunisation and can occur with or without T cell help6. 
These extrafollicular plasma cells are short-lived and because 
of this are not able to provide a long-term source of protective 
antibodies7. The GC is a specialised microenvironment that forms 
in secondary lymphoid tissues after immunisation when antigen-
activated B cells migrate to the B cell follicle, begin to prolifer-
ate, and undergo somatic hypermutation (SHM) of their immu-
noglobulin genes8. The cellular products of the GC are long-lived 
plasma and memory B cells that can provide protection for decades 
after initial exposure9. Because of the longevity of these cells, the 
GC represents an exciting target to improve vaccine responses in 
situations in which there is an unmet clinical need.

The GC is a microenvironment of intense cellular collaboration: GC B 
cells, Tfh cells, T follicular regulatory (Tfr) cells, tingible body mac-
rophages and follicular dendritic cells (FDCs) act together to gener-
ate a robust response (Figure 1). The “multi-player” nature of the GC 
means that there are a number of cellular targets that can be manipu-
lated in the GC during vaccination in an attempt to modulate its out-
put. Here, we will discuss whether targeting Tfh and Tfr cells may be a 
successful strategy for improving the GC in response to vaccination.

Figure 1. Pathways to antibody production. The germinal centre (GC) is initiated when activated B cells migrate into the B cell follicle, 
begin to divide, and mutate their B-cell receptor (BCR) genes. These proliferating centroblasts then exit the cell cycle, becoming centrocytes 
that use their mutated BCR to collect antigen from the surface of follicular dendritic cells (FDCs) and present processed peptide on major 
histocompatibility complex class II to T follicular helper (Tfh) cells. Tfh and T follicular regulatory (Tfr) cell differentiation initiates during T cell 
priming when Bcl-6, the transcription factor required for Tfh and Tfr cell differentiation, is upregulated. Subsequent interactions with B cells 
stabilise Bcl-6 expression in pre-Tfh and pre-Tfr cells, allowing them to migrate into the GC where Tfh cells provide help to centrocytes and 
Tfr cells act as GC suppressors. As an alternative to entering the GC, antigen-activated B cells can also receive T cell help and differentiate 
into short-lived extrafollicular plasma cells that produce the first wave of protective antibodies. DC, dendritic cell; FDC, follicular dendritic cell; 
mB, memory B cell; SHM, somatic hypermutation; TBM, tingible body macrophage; Th, T helper cell; Treg, regulatory T cell.
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Follicular T cells and the GC response
In physiological conditions, the GC is absolutely dependent on 
T cell help for its formation. Experimentally, immunisation with 
superantigens can initiate GC formation in the absence of T cells, 
however, the response collapses after five days, demonstrating 
the absolute requirement of T cells for the GC to produce plasma 
cells10. The specific requirement for T cell help is fulfilled by a 
specialised subset of CD4+ helper T cells: Tfh cells. Tfh cells dif-
ferentiate in response to immunisation by using a specific differen-
tiation pathway that requires various cytokine signals and multiple 
rounds of antigen presentation that culminates in the expression of 
the transcriptional repressor Bcl-6 and localisation to the GC11. The 
signals that are required for Tfh cell development have been well 
characterised in both humans and mice; these are summarised in 
Table 112–42. These pathways may represent viable targets to 
manipulate the number of Tfh cells that form after vaccination.

After establishment of the GC, it divides into two distinct zones: 
the GC B cells rapidly divide in the dark zone and undergo SHM 
of their B-cell receptor (BCR) genes and then exit the cell cycle 
and migrate to the light zone of the GC, where the fully differenti-
ated Tfh cells are located. The random nature of SHM requires that 
mutated B cells undergo a selection process before they exit the GC 
as plasma cells or memory B cells. The GC B cells test their newly 
mutated BCR by collecting antigen-containing immune complexes 
from the surface of FDCs and then present processed antigen to 
Tfh cells on major histocompatibility complex (MHC) class II43. 
The B cells that are able to present the most antigen to Tfh cells 
are the recipients of T cell help44, which results in the upregulation 
of c-myc and subsequent return to the dark zone to undergo further 
rounds of proliferation and mutation45–47. By this mechanism, Tfh 
cells act as a limiting factor in the selection of high-affinity GC 

B cells. This could simply be numerical, as B cells outnumber Tfh 
cells in the GC. Alternatively, there may be an interaction threshold 
that needs to be overcome before Tfh and B cells form productive 
conjugates in the GC. During Tfh and B cell interactions in the 
GC, there is a bidirectional exchange of signals: Tfh cells provide 
help in the form of CD40L, interleukin-21 (IL-21) and IL-4 to GC 
B cells, which supports proliferation and survival, while B cells 
provide inducible T cell co-stimulator ligand (ICOSL) to Tfh 
cells48,49. Thus, Tfh cells facilitate the preferential expansion and 
mutation of high-affinity GC B cell clones and are key regulators of 
the size and quality of the GC response.

In addition to Tfh cells, there is a second specialised subset of CD4+ 
T cells present in the GC: Tfr cells. Tfr cells derive from Foxp3+ 
regulatory T (Treg) cells and act as suppressors of the GC response. 
Tfr cells limit the size of the GC response, thereby acting as a coun-
terbalance to Tfh cells50–52. Although there are some transcriptional 
and phenotypic similarities between Tfh and Tfr cells, function-
ally Tfr cells are suppressive and thus resemble conventional Treg 
cells53.

Together, Tfh and Tfr cells are key regulators of the GC response; 
Tfh cells positively control the size and output of GC, whereas Tfr 
cells act as negative regulators of the response. This suggests that 
strategies to enhance Tfh number or function (or both) or reduce 
Tfr cells may enhance GC responses and promote a more potent 
response to vaccination.

Circulating peripheral blood Tfh as biomarkers of GC 
Tfh cells
The majority of advances in Tfh and Tfr cell biology have occurred 
through studying secondary lymphoid tissues in mice. This is 

Table 1. Several surface receptors play vital roles in regulating T follicular helper development by 
incorporating signals that result from interactions with a variety of cell types.

Surface receptor Interacting cell type Downstream signalling Mouse Tfh Human Tfh References

ICOS DC, B cell PI3K/Akt ↑ ↑ 12–16

CD28 DC, B cell PI3K ↑ ND 17–20

OX40 DC PI3K/NFkB ↑ ↑ 21–23

CD84/Ly108 B cell SAP ↑ ↑ 24–27

PD1 DC, B cell SHP2 ↑ ND 28–30

IL-21R T cell STAT1/STAT3 ↑ = 16,31,32

IL-6R DC, B cell STAT1/STAT3 ↑ ↑ 33–35

IL-12R/IL-23R DC STAT4 ND ↑ 36,37

TGF-BR I and II DC STAT4/STAT3 ↓ ↑ 38,39

IL-2R T cell STAT5 ↓ ND 40,41

IL-10R DC, B cell STAT3 ↓ ↑ 16,42

For each receptor expressed by T follicular helper (Tfh) cells or their precursors, the predominant downstream signalling 
pathway is indicated. Surface receptors and signals were deemed to influence Tfh cell development if Tfh cell frequencies 
were altered in deficient mice or in human patients with genetic deficiency. ↑, an increase in T follicular helper frequencies; 
↓, a decrease in T follicular helper frequencies; =, no change in T follicular helper frequencies; DC, dendritic cell; ND, not 
determined.
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largely because of the impressive range of tools (e.g., genetically 
modified mice) that allow precise dissection of GC biology in mice 
and because access to healthy human lymphoid tissue can be dif-
ficult, particularly for the purpose of studying GC responses to a 
defined antigenic stimulus. In an attempt to circumvent this issue, a 
circulating cellular biomarker of GC Tfh cells has been used to fur-
ther investigate Tfh cell biology in humans. These cells have been 
coined circulating Tfh-like (cTfh) cells and were first identified in 
sanroque mice and in patients with systemic lupus erythematous 
and were defined by CXCR5, programmed cell death protein 1 
(PD-1), and ICOS expression54. Subsequently, it has been shown 
that an increased frequency of cTfh cells coincides with the peak 
GC response in mice and the plasmablast response to influenza vac-
cination in humans55,56. These studies suggest that cTfh cells may 
be a key tool for studying the role of Tfh cells in human vaccine 
responses. However, the use of cTfh cells as a surrogate of GC 
Tfh cell responses in humans requires a robust assessment of the 
strengths and limitations of this approach.

Studies in both humans and mice support a link between the GC 
Tfh and cTfh cells. Human cTfh cells can provide help to B cells 
in vitro and upon stimulation display several features consistent 
with GC Tfh cells, including ICOS expression and expression of 
IL-21 and CXCL1357–59. Although cTfh cells do not express BCL6, 
they have low levels of BLIMP1 and express cMAF, and this indi-
cates that they share features of transcriptional control with GC 
Tfh cells57–59. Several human immunodeficiency syndromes that are 
associated with severely impaired GC responses due to loss of func-
tional CD40L60, ICOS15,61, STAT362 or IL-12βR136 display corre-
sponding reductions in blood cTfh cells, suggesting that cTfh cells 
can be a biomarker for an active GC response. Conversely, mice 
deficient for Sh2d1a have impaired GC reactions but unchanged 
cTfh frequencies55. Consistent with this, patients with X-linked 
lymphoproliferative disease (XLP) caused by defects in SH2D1A, 
or healthy XLP carriers, did not display alterations in cTfh 
frequencies55. These data suggest that although cTfh cells resemble 
GC Tfh cells, a GC reaction is not required for cTfh cell devel-
opment, which parallels the development of extrafollicular Tfh 
cells63. One possibility is that cTfh cells are memory cells that are 
induced upon vaccination to enable fast GC Tfh responses follow-
ing subsequent infection. Consistent with this idea, tetanus- and 
smallpox-specific cTfh cells can be identified in humans years after 
vaccination58,64. In mice, cTfh cells have the capacity to become GC 
Tfh cells and support the GC response55,65, suggesting that cTfh cells 
may be an important component of secondary immune responses 
and therefore a biologically relevant cell population in successful 
vaccination. Despite the recent surge in correlative studies assessing 
cTfh cells in a multitude of disease settings, unsupervised compari-
sons of gene expression in GC Tfh cells have not been performed in 
blood and lymphoid tissue samples from the same individual58, and 
antigen-specific responses have not been determined. Addressing 
these issues will help to clarify the relationship between circulating 
and GC Tfh cells.

An interesting feature of GC Tfh cells is their well-described 
heterogeneity66, and cTfh cells are not an exception. Analysis of 
blood CD4+CXCR5+ cells for expression of PD1, CCR7, CXCR3, 
CCR6 and ICOS has been proposed to define nine populations of 

cTfh cells67. However, across the range of studies, robust B cell 
helper function in vitro has consistently been demonstrated for 
CD4+CXCR5+ cells that express high levels of PD-1 or ICOS or 
both67. CXCR3 and CCR6 expression on cTfh enables identifica-
tion of cTfh cells with Th1-like (cTfh1, CXCR3+CCR6−), Th2-like 
(cTfh2, CXCR3−CCR6−) and Th17-like (cTfh17, CXCR3−CCR6+) 
properties, including the expression of transcription factors and 
cytokines that define these T helper subsets57. cTfh2 and cTfh17 can 
support naïve and memory B cells to produce antibodies in vitro, 
whereas cTfh1 cells have limited in vitro helper function57,58, 
although following influenza vaccination a population of ICOS+ 
cTfh1 cells were able to help memory B cells make antibodies56. 
One limitation of these studies is that it remains unclear to what 
extent in vitro B cell helper function reflects effective GC Tfh help 
in vivo. Although these cTfh cell subtypes have been identified in 
blood, characterisation of GC Tfh cell populations by using these 
markers has been limited, calling into question the relevance of 
these subsets to GC biology. However, tonsillar Tfh can co-express 
BCL6 and RORγ t67 and a proportion of human lymph node Tfh 
cells express CXCR3 (D.L. Hill, unpublished), and this suggests 
that comparable heterogeneity exists within in the GC Tfh cell pop-
ulation. But whether there is a specialised role for Th1/Th2/Th17 
polarised GC Tfh cells in the GC has yet to be elucidated.

The polarisation of GC Tfh cells depends on the stimuli provided 
during differentiation. In mice, Th2-biased infections produce IL-4- 
secreting GC Tfh cells, whereas Th1-biased infections support 
interferon-gamma-positive (IFNγ+) GC Tfh cells68–71. In humans, 
cTfh2 cell frequency increases in people with Th2-polarised Schis-
tosoma japonicum infection72, whereas cTfh1 cells are preferen-
tially expanded during Th1-biased acute Plasmodium falciparum 
infection and after seasonal influenza vaccination56,73. Thus, differ-
ent cytokine environments induced by specific infections or immu-
nisations appear to drive Tfh cell polarisation and may enable Tfh 
cells to appropriately support B cell production of the antibody iso-
type required to clear the infection. For example, in mice, IFNγ+ 

Tfh cells could be found in conjugates with Ig2a+ B cells, whereas 
IL-4+ Tfh cells were more likely to be paired with IgG1+ B cells74. 
Immunity against pathogens relies upon production of specific 
antibody isotypes that ultimately play an important role in clearing 
infections. For example, inappropriate production of Th1-supported 
isotypes to the parasitic roundworm Wuchereria bancrofti75 and 
Th2-supported isotypes in P. falciparum malaria76 correlates with 
poor disease outcomes. Therefore, cTfh cell heterogeneity may 
reflect the ability of Tfh cells to be shaped by the environmental 
signals present during differentiation, which enables them to guide 
an appropriate B cell response to infection or vaccination, to facili-
tate pathogen clearance.

It has been proposed that the limited efficacy of seasonal influ-
enza vaccination results from the preferential induction of cTfh1 
cells58. As such, skewing Tfh cells away from Tfh1-like and toward 
Tfh2/17-like may represent a potential target to enhance antibody 
titres following influenza vaccination (Figure 2A). Interestingly, 
blocking the Th1 cytokines IL-2 and tumour necrosis factor (TNF) 
improved Tfh-mediated B cell help in vitro77,78. However, this 
approach may not be effective for generating protective responses 
to vaccination in vivo. Passive transfer of broadly neutralising 
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Figure 2. Strategies for manipulating follicular T cells to enhance the output of the germinal centre (GC) response. (A) Altering the 
balance of different subsets of T follicular helper (Tfh) cells toward Tfh2 and Tfh17 cells may enhance the B cell helper capacity of the Tfh 
cells within the GC and the production of the necessary antibody isotypes. (B) Increasing the number of Tfh cells may help increase the size 
and output of the GC response. (C) Reducing the frequency of suppressive T follicular regulatory (Tfr) cells may enhance the output of the GC 
response. FDC, follicular dendritic cell; IFNγ, interferon-gamma; IL-17A, interleukin-17A; mB, memory B cell.
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antibodies to hemagglutinin can protect mice from succumbing to 
experimental influenza infection. Importantly, for some clones, 
this protection is conferred only by a Th1 polarised IgG2a antibody 
and not Th2 polarised IgG1, despite having the same ability to bind 
hemagglutinin79. This suggests that production of Th1-supported 
isotypes and the selective induction of Th1-like Tfh cells are likely 
important for generating protective influenza vaccine responses. 
Yet as current influenza vaccine formulations fail to generate a 
protective immune response in up to 30% of vaccine recipients80, 
further enhancing Tfh cell responses may improve vaccine efficacy.

The potential use of cTfh cell subsets as a biomarker of vaccine 
efficacy is an attractive possibility that would be easily amena-
ble to clinical trials. Although further study is needed, mounting 
evidence supports cTfh cells as a relevant population for the study 
of vaccine responses in humans. However, it is clear that there are 
limitations for using cTfh cells to study the GC Tfh cell response, 
as although they appear to be a biomarker for the GC response, 
they differ from bona fide GC Tfh cells in a number of aspects, 
including BCL6 expression and dependence on SAP for their dif-
ferentiation. Because of this, analysing cTfh cells will likely not 
become a substitute for studies aimed at understanding GC Tfh cell 
biology, but rather represents an additional tool to interrogate the 
human response to vaccination. Research that combines assessment 
of cTfh cells after vaccination, GC Tfh cells from human second-
ary lymphoid tissues and mouse vaccination models will enable 
thorough interrogation of strategies that target Tfh cells to improve 
vaccine efficacy.

Potential avenues for modifying follicular T cells to 
enhance vaccination efficacy
Within the GC, Tfh cells support the GC response and Tfr cells 
negatively regulate the magnitude of the GC. As such, manipulating 
the frequency of Tfh cells or enhancing their function may improve 
the GC response. Conversely, reducing the number of Tfr cells or 
their functional capacity may also increase antibody responses to 
vaccination. Here, we explore the potential strategies for manip-
ulating these T cell subsets with the view to increase GC output 
following vaccination.

Increasing the frequency of Tfh cells
The numbers of Tfh cells and GC B cells positively correlate81,82, 
as do the numbers of cTfh and blood plasmablasts after influenza 
vaccination in humans56. This suggests that strategies to augment 
Tfh cell number may be a rational approach to enhance vaccine 
responses (Figure 2B).

Antigen presentation and recognition are central to Tfh cell dif-
ferentiation, and hence providing ample antigen may enhance Tfh-
driven vaccine responses. Increasing the dose of protein antigen 
enhances the magnitude of Tfh cell responses in mice82, and in 
older people a higher dose of seasonal influenza vaccine increases 
neutralising antibody titres83,84. This increased antigen availability 
may have enabled increased peptide-MHC II presentation to T cells, 
resulting in enhanced Tfh cell differentiation and function. Specifi-
cally targeting antigen to the CD8+ DC receptor Clec9A enhanced 
MHC II presentation, antibody responses, Tfh cell numbers and 
memory B cells in the absence of adjuvants in mice and non-
human primates85–87. Likewise, when B cells present high levels of 

peptide-MHC II to Tfh cells, they are able to gain entry to the GC 
and, once within the GC, are more likely to be maintained88,89. Con-
sistent with this, the ongoing presence of antigen in people with 
chronic HIV and hepatitis B virus is associated with expansions 
in cTfh cells90,91. This suggests that increasing antigen availabil-
ity may be a strategy to enhance Tfh cell numbers in response to 
vaccination. However, despite elevated cTfh cells, the majority of 
chronically HIV-infected individuals fail to mount broadly neutral-
ising antibody responses92. Furthermore, in mice, increasing Tfh 
cell number by provision of soluble peptide did not increase the 
frequency of high-affinity B cells in the early phase of the vac-
cine response93. This suggests that, in some cases, solely increas-
ing Tfh numbers may not be sufficient to enhance vaccine efficacy, 
and approaches may need to be tailored to the specific vaccination 
challenge.

One of the potential challenges to specifically targeting Tfh cells 
during vaccination is to not perturb normal immune cell homeosta-
sis. The best way to do this has long been considered “the immunol-
ogist’s dirty little secret”—adjuvants, which trigger T and B cells 
to respond to antigen94. Currently, only a handful of different adju-
vants have been used in licensed vaccines95, and the use of Alum 
is the most widespread. Novel or modified adjuvants may prove 
to be an effective strategy to skew helper T cells to differentiate 
toward the Tfh cell subset and promote GC responses. The squalene 
adjuvant MF59 has been shown to increase the quantity, diversity 
and affinity of antibodies produced following pandemic influenza 
vaccination96–98. MF59 increases GC B cells, Tfh cells, and antigen-
specific DCs following immunisation in mice99,100, and this suggests 
that MF59 may act via DCs to enhance the GC response. The use 
of Toll-like receptor (TLR) agonists as adjuvants has been suc-
cessful in enhancing vaccine responses in mice and non-human 
primates. Nanoparticles containing TLR4 and TLR7/8 agonists 
prolonged GC reactions, improved antibody quality, supported 
memory B cell development in mice101,102, and protected against sec-
ondary influenza infection101. It would be particularly pertinent to 
consider adjuvants that trigger pathways known to enhance Tfh cell 
differentiation (Table 1). For example, immunisations supplemented 
with TLR9 agonists enhanced antibody responses and Tfh and GC 
B cell numbers in mice via DC production of the Tfh-promoting 
cytokine, IL-633,103. Alternatively, ICOSL binding is a requisite event 
in multiple stages of Tfh cell development but is not an essential 
requirement for Th1 or Th2 cell differentiation13,104,105. Upregulation 
of ICOSL on DCs upon the addition of a TLR2 agonist correlated 
with enhanced antibody production following protein immuni-
sation in vivo106. Thus, TLR signalling in DCs and B cells could 
be specifically directed to enhance vaccine antibody and Tfh cell 
responses.

Another potential strategy to enhance Tfh cell numbers is to use 
adjuvants to modulate the cytokines produced by antigen-presenting 
cells to promote Tfh cell differentiation. In mice, IL-6 and IL-21 
support Tfh cell differentiation, whereas IL-2 suppresses Tfh cell 
fate31,32,35,40,107. In humans, an entirely separate cohort of cytokines 
support Tfh cells: IL-12, IL-23 and transforming growth factor-
beta (TGF-β) (Table 1)36–38. Because of this, the IL-12/STAT4 axis 
may be a potential target to enhance Tfh cells in humans. How-
ever, preclinical trials of an IL-12 expression plasmid adjuvant did 
not enhance vaccine antibody responses108,109. Alternatively, the 
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addition of Fc-fused IL-7 enhanced B cell and Tfh responses to 
influenza vaccination in mice and cynomolgus monkeys110, suggest-
ing that delivery of a generic T cell survival signal could be suffi-
cient to enhance the vaccination responses. The different cytokine 
requirements between mice and humans for Tfh cell differentiation 
demonstrate the importance of studying human Tfh cell biology.

Altering Tfh cell function
The pathways involved in Tfh development are well established 
(Table 1); however, the signals that regulate Tfh cell effector func-
tion are less well described. Increased antigen presentation from B 
cells increases Tfh cell production of the cytokines IL-4 and IL-2148. 
These observations suggest that increasing vaccine antigen dose 
or targeting antigen to B cells may improve Tfh function and the 
quality of the GC reaction. ICOSL expression by GC B cells pro-
moted calcium-dependent CD40L expression from Tfh cells, and 
this feed-forward signalling loop provided a competitive advantage 
to ICOSL-expressing B cells49. Because help via CD40L, IL-21 
and IL-4 is important for GC B cell-positive selection, it raises the 
possibility that adjuvant approaches that lead to increased ICOSL 
or CD40L in GC B and Tfh cells, respectively, could be a strategy 
to enhance vaccine responses.

Diminishing suppression of the GC by Tfr cells
A reduction in the frequency of Tfr cells may be a useful approach 
to enhance the GC response, particularly in situations such as age-
ing in which an increased number of Tfr cells correlates with a 
smaller GC response111. In mice, it is possible to alter the ratio of 
Tfh to Tfr cells simply by using different adjuvants; the more the 
ratio favours Tfh cells, the larger the GC response (Figure 2C)103,112. 
To specifically manipulate Tfr cells, two key inhibitory molecules 
may be potential targets: cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA-4) and PD-1. CTLA-4 is a suppressive mechanism 
by which Treg and Tfr cells can control GC response to vaccination 
through limiting CD28 signalling that is important for Tfh mainte-
nance17,113,114. Inhibiting this receptor in mice increases the number 
of antigen-specific Tfh cells, plasma and memory B cells follow-
ing immunisation. Proof-of-principle testing could be performed in 
melanoma patients receiving the CTLA-4 inhibitor ipilimumab and 
vaccination, although the side effects and cost associated with this 
compound would prohibit its use with routine vaccines. Another 
interesting target is PD-1, as signalling through this receptor lim-
its Tfr cell differentiation in mice30. However, this is likely not to 
be practicable as PD-1 is also expressed highly on Tfh cells115 and 
targeting PD-1 on Tfr cells specifically would be difficult. Also, 
some adjuvants support the generation of induced Tfr cells via a 
PD-L1-dependent mechanism112, suggesting that the role for PD-1 
signalling for Tfr cell formation is context-dependent and more 
complex than originally thought. The main barrier for determining 
whether inhibiting Tfr cells is a logical strategy to improve vaccina-
tion is our lack of knowledge of their precise role in the GC, par-
ticularly whether they suppress humoral autoimmunity arising from 
the GC53. Currently, there are conflicting reports about whether Tfr 
cells constrain vaccine-specific responses or non-vaccine-specific 
responses in the GC50–52. For these cells to be a viable target, definitive 
evidence would be needed to demonstrate that the role of Tfr cells in 
the GC is to restrain responses to foreign, rather than self, antigens.

Potential dangers of enhancing Tfh responses
Although it is clear that Tfh cells are essential for a productive 
response to vaccination, they have also been implicated in a number 
of autoimmune conditions as key drivers of disease. Sanroque mice 
have a point mutation in the Roquin1 gene (Rc3h1) that causes a 
lupus-like phenotype that is driven by Tfh cells that support GCs 
in the absence of exogenous antigen116,117. As B cells can acquire 
self-reactivity during somatic hyper-mutation, findings from the 
sanroque mice suggest that increases in Tfh cell number may lead to 
a break in GC tolerance, enabling self-reactive B cells to be selected 
in the GC. Correspondingly, several autoimmune conditions have 
been associated with an increase in cTfh frequencies54,118–120 or have 
a skewed cTfh population away from cTfh1 and toward cTfh2 or 
cTfh17 or both57,118,121,122. This is an important consideration in the 
context of enhancing Tfh responses to vaccination, particularly in 
older persons, as the occurrence of autoantibodies increases with 
age123, suggesting that the B cell pool may contain a higher fre-
quency of autoreactive B cells able to enter the GC. Taken together, 
these studies demonstrate a potential hazard of increasing Tfh cell 
frequencies or function in vaccination and indicate that autoanti-
body production would need to be accounted for in future study 
design as a possible outcome.

Concluding remarks
The GC is critical for the production of long-lived antibody- 
secreting plasma cells after vaccination, making it a promising cel-
lular response to improve vaccine efficacy. There are many players 
in the GC response; Tfh and Tfr cells tightly control its size and 
output and thus make them key targets to manipulate in vaccine 
design. Altering vaccines in a way that increases Tfh cell forma-
tion or function (or both) or reduces the suppression exerted on 
the GC by Tfr cells may be a rational strategy to improve vaccine 
responses. As vaccines need to have an extremely high safety pro-
file, any perturbations to vaccines must be very low-risk. Because 
of this, the most logical way to manipulate follicular T cells is to 
use antigen doses or adjuvants that favour differentiation of Tfh 
cells with excellent B cell helper capacity, and suppress Tfr cell 
development. Recent research into next-generation adjuvants dem-
onstrates that adjuvants that support enhanced antibody production 
also associate with increased numbers of Tfh cell in experimen-
tal animals. To determine whether this can translate into enhanced 
Tfh responses in humans, cTfh cells will be a useful biomarker of 
GC Tfh responses in preliminary clinical trials. Further research 
in both humans and animal models into precisely how to manipu-
late Tfh and Tfr cells to improve vaccine responses may enable us 
to address some of our current unmet clinical requirements for 
improved vaccines.
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