
Ghost trace on the wire?
Using key evidence for informed decisions

Diana A. Vasile, Martin Kleppmann,
Daniel R. Thomas, and Alastair R. Beresford

Department of Computer Science and Technology
University of Cambridge, UK

{FirstName.LastName}@cl.cam.ac.uk

Abstract. Modern smartphone messaging apps now use end-to-end en-
cryption to provide authenticity, integrity and confidentiality. Conse-
quently, the preferred strategy for wiretapping such apps is to insert
a ghost user by compromising the platform’s public key infrastructure.
The use of warning messages alone is not a good defence against a ghost
user attack since users change smartphones, and therefore keys, regu-
larly, leading to a multitude of warning messages which are overwhelm-
ingly false positives. Consequently, these false positives discourage users
from viewing warning messages as evidence of a ghost user attack. To
address this problem, we propose collecting evidence from a variety of
sources, including direct communication between smartphones over lo-
cal networks and CONIKS, to reduce the number of false positives and
increase confidence in key validity. When there is enough confidence to
suggest a ghost user attack has taken place, we can then supply the user
with evidence to help them make a more informed decision.

Keywords: trust establishment · public key evidence · end-to-end encryption ·
secure messaging · security usability · informed consent

1 Introduction

Modern messaging apps with end-to-end security, such as Signal, WhatsApp and
iMessage, are now regularly used by over 1 billion people [3,21]. These apps use
public-key cryptography to encrypt messages on the sending device such that
it can only be decrypted by recipient devices; any server infrastructure used to
store and forward such messages cannot read or modify message contents. How-
ever, modern messaging apps have a common weak point in their security model:
knowing whether a user has the right public keys for their communication part-
ners. In the case of Signal, WhatsApp and iMessage, the discovery of public keys
is performed using a key server or key directory operated by the app provider:
when a device generates a keypair it sends its public key to the key server, and
when a user wishes to communicate with a contact, the app looks up the public
keys for the contact’s devices using their phone number or email address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/222831923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 D.A. Vasile, M. Kleppmann, D.R. Thomas, A.R. Beresford

Key servers are an example of a Public Key Infrastructure (PKI). In this
paper we compare them with Certificate Authorities (CAs), a more traditional
form of PKI used e.g. in the context of TLS, to provide a mapping between DNS
domain names and the public keys of TLS servers. Both key servers and CAs
link human-readable names (email addresses, phone numbers, domain names)
with public keys, and both require an element of trust in the PKI provider.
Both forms of PKI remove the need for users to manually manage keys – a task
that has repeatedly been shown to be challenging for users [7,17,18,19,22] – and
e↵ectively automate the security decision of whether to trust a particular public
key.

Such automation of security decisions and key checking undoubtedly helps,
and is one reason why the current generation of messaging apps with end-to-end
security have seen widespread adoption, whereas PGP did not. Unfortunately,
the security and privacy requirements of a user are not universal. For example,
a human rights activist using a messaging app in a country with a repressive
regime has a di↵erent threat model from a typical user communicating via social
media in the United Kingdom. The e↵ectiveness of specific attacks depends on
how users behave, what they are trying to protect, and the degree to which
they understand the security features of an app. In short, requirements and
context matter. Consequently, an app cannot automate all security decisions;
some decisions are necessarily deferred to the user.

Deferring security decisions to the user is hard to do safely because we cannot
expect users to be cryptographers and security engineers: they do not have the
knowledge to reason about and deal with security decisions appropriately.

Moreover, the PKI is a significant weak link in the end-to-end encryption
ecosystem as deployed by messaging apps today: a compromised PKI allows an
attacker to break end-to-end encryption by adding another “end” (sometimes
called a ghost user) to the set of public keys that a user has registered with
the PKI, allowing the ghost user to read all messages in a conversation. Neither
user may be aware that this has happened. This approach has been proposed
by GCHQ as the preferred way to provide law enforcement with access to end-
to-end encrypted communication without inserting explicit back-doors into the
actual encryption protocols [13].

To protect against this kind of attack, WhatsApp and Signal o↵er users the
option of verifying public keys (a.k.a. safety numbers) for their contacts. Such
verification can be performed manually by comparing long alphanumeric strings,
or by scanning QR codes on each others’ phones. However, such manual checks
take a significant amount of time, and – in the case of the QR code at least –
require both users to meet in person. Anecdotal evidence suggests that they
are not used much in practice. Even if safety numbers have been checked, they
have a tendency to change fairly often, due to a user replacing their device or
reinstalling the app; since most changes to safety numbers are due to such benign
causes, users are conditioned to treat a change in safety number as harmless, even
though this is exactly what a ghost user attack would look like. Apple’s iMessage
does not even o↵er the option of checking keys manually.



Ghost trace on the wire? Using key evidence for informed decisions 3

Various approaches have been proposed to detect ghost user attacks and
compromised PKIs, which we summarise in Section 2. However, these approaches
are not perfect, and we discuss false positives and false negatives that can arise
in the detection of such attacks in Section 3. We detail failure modes and user
expectations in Section 4. Finally, in Section 5 we describe how incentivising
users, understanding user context, and collecting and evaluating evidence for
key changes could lead to better system designs.

2 Detecting ghost users and key mismatches

Older end-to-end encrypted communication tools such as PGP rely exclusively
on manual key fingerprint checking and explicit key signing to build a graph of
trusted keys (the web of trust). However, PGP has failed to gain traction partly
because of the di�culty users faced in performing these operations [22].

PKIs (certificate authorities and key servers) replace these manual processes
with a centralised authority; the challenge is then to ensure that this authority
remains honest. To this end, Certificate Transparency [12] has introduced the use
of public append-only logs. Here, certificate authorities are required to submit
a record of all issued certificates to the log infrastructure, providing an exter-
nally auditable proof of their existence. While Certificate Transparency does not
prevent certificates from being incorrectly issued, it makes it more likely that
such behaviour is detected, and thus discourages it. For example, in September
2015 Symantec was found to have mis-issued thousands of certificates; this event
was discovered through Certificate Transparency logs, and had consequences for
Google Chrome’s handling of Symantec-issued certificates [20].

CONIKS [15] and Key Transparency [11] apply the Certificate Transparency
approach to key servers. They maintain an append-only log of all public keys
submitted to the key server, together with the human-readable username (e.g.
email address or phone number) associated with each key. When a client wishes
to look up the public keys for a given username, the key server provides a cryp-
tographic proof that its response is consistent with the audit log. CONIKS is
able to achieve this while preserving the privacy of phone numbers and email
addresses in the log.

In parallel work we propose an alternative solution: to use gossip protocols on
local area networks to privately and automatically check the bindings between
human-readable names and public keys between contacts without requiring any
user intervention. Such a protocol can operate on a local Wi-Fi network with
Multicast DNS [4], which enables two devices, such as smartphones, to discover
each other and compare their links between human-readable names and public
keys directly. If the link between names and keys are the same, this provides
additional assurance that there is no ghost user; if the links are not the same, then
the key server may have been compromised. Our protocol can also use Private Set
Intersection [6] to allow two devices that meet on a local Wi-Fi network to check
the links from names to keys of any contacts they both have in their respective
address books, without revealing any contact details for individuals they do not



4 D.A. Vasile, M. Kleppmann, D.R. Thomas, A.R. Beresford

share. The advantage of using gossiping over systems such as CONIKS is that
di↵erent app PKIs do not need to collaborate and there is no need for the service
provider to publish their key directory. Even if contacts only meet on the same
Wi-Fi network once a month, this will still provide much better oversight than
the current manual verification approach. Some contacts will meet much more
frequently (colleagues or geographically close family or friends).

However, while these solutions automate the process of auditing the be-
haviour of PKIs, there are several cases that need to be resolved by user in-
put. For instance, in CONIKS, users have to reason about errors relating to
inconsistent key server summaries, which may be the result of benign clock syn-
chronisation problems between the client and the server, or an actual malicious
server publishing di↵erent views of its directory [14]. Furthermore, we expect
key changes to be the most common errors that CONIKS users and automated
gossiping users might have to reason about. While most key changes are caused
by the user adding a new device or re-installing the app, it can also be the key
server acting maliciously and modifying the user’s set of keys.

Section 4 reasons about user perspectives and Section 5.3 explores di↵erent
levels of evidence that can be used to reduce the number of false positive errors
that often overwhelm the user and cause them to ignore security warnings.

3 The imprecision of key change errors

In an ideal world, a communication system would report an error (and refuse fur-
ther communication) only in those situations where a genuine PKI compromise
(e.g. a ghost user attack) by an adversary is taking place, and never otherwise.
However, in practice, all PKIs have false positives (an error is reported even
though no wiretap is taking place) and false negatives (a wiretap succeeds with-
out the user being alerted).

User-facing errors related to public keys have been most extensively studied
in the context of TLS. It has been shown that most users ignore TLS certificate
errors [1,2]; this behaviour is rational, since almost all such errors are false pos-
itives (for example, the certificate presented by the server has expired, does not
match the given domain name, or is not signed by a certificate authority trusted
by the client). Most TLS errors are thus due to client or server misconfigura-
tion rather than a true man-in-the-middle attack, and hence they can be safely
ignored [10].

Our goal in designing communication systems should be to reduce the prob-
abilities of both false positives and false negatives as far as possible. False neg-
atives must be minimised because every false negative represents a failure to
guarantee the system’s required security properties. False positives must be min-
imised because unnecessary errors amount to “crying wolf”, reducing users’ con-
fidence in the system, and making it more likely that users ignore true positive
errors in the future [2,5,10].



Ghost trace on the wire? Using key evidence for informed decisions 5

3.1 Reducing false negatives

With traditional PKIs, if the adversary is able to compromise the PKI (for
example by stealing a certificate authority’s secret key for signing certificates),
it can perform interception without being detected by clients. Framed this way,
we can see that CONIKS, Certificate Transparency and Key Transparency are
mechanisms for reducing false negatives: by employing a verifiable append-only
log, they make it very di�cult for a key server or CA to return di↵erent public
keys to di↵erent clients depending on who is asking, without being detected.

Transparency logs address one particular weakness through which false neg-
atives can occur, namely the compromise of a CA or key server, but they do
not fully eliminate false negatives: for example, an adversary may be able to
block communication between clients and the transparency log (thus prevent-
ing the log integrity from being checked), it may block OCSP requests (thus
allowing an attacker to continue using a stolen private key with a revoked cer-
tificate), or it may tamper with NTP server responses (thus setting the client
clock incorrectly). Adversary control over client clocks may allow interference
with time-based actions, such as preventing a daily consistency check of keys
from occurring by making the client believe that less than 24 hours have elapsed
since the last check. Further work is needed to address these additional sources
of false negatives.

In Section 2 we described the use of gossip protocols to exchange public
keys directly between clients on a local network; this approach also reduces false
negatives, since it detects when two users have di↵erent public keys for the
same contact, which may indicate that a wiretap key has been inserted for that
contact. However, this approach also carries the risk of increasing false positives:
if a client does not correctly follow the protocol, either by accident or by malice,
it may report incorrect public keys for a contact and thus trigger warnings, even
though no actual attack is taking place.

3.2 Reducing false positives

A false positive occurs when a user is shown a warning or error that might
indicate an attack, when in fact no attack is taking place. For example, the
WhatsApp and Signal messaging apps show the user a warning message when-
ever the public key for one of their contacts changes (see Figure 1), even though
in the vast majority of cases the cause of this key change is benign (e.g. the user
installed the app on a new device, or deleted and re-installed it on an existing
device). The explanatory message rightly downplays the significance of this key
change, so users are conditioned to ignore these warnings.

The most straightforward way of reducing false positives is to report fewer
warnings and errors. For example, iMessage has no manual key verification fea-
ture and no transparency log, i.e. key server responses are assumed to be fully
trusted, and it does not report key changes to users. This means that there are
no key mismatch errors, reducing false positives; of course, this approach also in-
creases false negatives, since a compromise of the key server remains undetected.



6 D.A. Vasile, M. Kleppmann, D.R. Thomas, A.R. Beresford

Fig. 1. Warning message displayed by Signal when a user’s key changes.

Reducing false positives without increasing false negatives is also possible.
For example, in the context of TLS, many false positive certificate errors are due
to server misconfiguration (e.g. serving a certificate for the wrong hostname,
or forgetting to renew a certificate before its expiry), client misconfiguration
(e.g. client clock is set incorrectly, making the client believe it is outside of
the certificate’s validity period), or ‘benign’ network interference (e.g. antivirus
software or captive portals on public Wi-Fi networks) [1].

Various measures can be taken to reduce these false positives: for example,
about one third of HTTPS errors on Windows are due to misconfigured client
clocks [1]; to reduce this source of errors, the use of authenticated time services
has been proposed [8]. Key servers, such as those used by Signal and WhatsApp,
are less susceptible to clock errors than certificate-based PKIs, since the key
server’s response is assumed to be valid immediately, and usually does not include
an explicit validity period.1 Also, smartphones typically sync to cellular network
time (which is derived from GPS) and so (mostly) avoid clock synchronisation
issues. Other devices may use NTP, but in all cases malicious action may cause
problems.

3.3 Authenticating key changes

To reduce false positive warnings about key changes, systems could o↵er an
authenticated key change: a user’s old private key can be used to sign a statement

1 Communication between client and key server occurs over TLS, with the key server
usually authenticated with a certificate, so there is still some residual dependence
on clocks in this case.



Ghost trace on the wire? Using key evidence for informed decisions 7

saying which public keys the user will be using henceforth, and other users will
not be shown a warning if the key change is correctly authenticated in this way.2

However, this approach is only possible if the old key is still accessible; if the user
bought a new device because their old device was lost or irrecoverably destroyed,
the user may need to recover their account without being able to access their
old key.

For high-risk users it may be appropriate to disallow any unauthenticated
key changes, requiring the user to back up their keys, and accepting that the
user account would be irrecoverable if all keys are lost. However, for most users
such a strict policy on lost keys is likely to be unacceptable: estimates indicate
that approximately 20% of all Bitcoin ever mined, valued at billions of dollars,
have been irretrievably lost due to the loss of the corresponding wallet private
keys [16]. If so many keys with an immediate financial value are lost, we expect
that keys for communication apps (with no direct financial value) are even more
likely to be lost. From this statistic we conclude that for most users, a key change
without signature from a previous key will sometimes be necessary.

Even if the system were restricted to only allow authenticated key changes,
false negatives are possible: a malicious key server could return the attacker’s
public key the first time a key is requested for a user (for which there is no
authentication, since there is no prior key), or withhold a key change to revoke a
key that has been compromised. Detecting those attacks will still require either
manual checking of public keys, a transparency log, or a gossip approach as
discussed in Section 3.1.

4 Message visibility and key changes

There are three main operations that will alter a user’s set of keys:

Addition: a key is added to the set of current valid keys for a user;
Revocation: a key is revoked from the set of current valid keys for a user;
Replacement: an old key is replaced with a new key (revocation + addition).

Each one of these operations triggers warnings or errors in secure messaging
apps, such as Signal and WhatsApp. For instance, a key replacement often hap-
pens when a user gets a new device or re-installs the app on their current device.
While this is not an attack, it looks very similar to key server misbehaviour by
changing the user’s set of keys without authorisation because it triggers a key
mismatch.

Most users, however, do not directly care about or understand key operations.
Instead they care about the authenticity and confidentiality of the messages they
send and receive.

2 To avoid key changes, Signal allows the user to save a backup of the secret key
on the old device, and restore it on the new device. However, this process is poorly
documented and di�cult to perform correctly. It requires the use of third-party apps
to transfer and set up the backup before installing Signal on the new device.



8 D.A. Vasile, M. Kleppmann, D.R. Thomas, A.R. Beresford

For example, read receipt is a concept that serves the purpose of telling
senders whether the intended user received their message and, if enabled, whether
they read it or not. This could be further augmented by ensuring a full list
of message readers is provided, for instance, if the recipient has two devices
registered with the system, user-provided aliases may be used to identify to the
sender that both the phone and the tablet received the message.

Message deletion can happen either at one client (deleting the messages only
on one user’s device) or, with application support, on all clients (deleting the
messages from every communication participant). This is another important
piece of information users would care about, but it may be di�cult to explain
the di↵erence between the two to the average user until they experience someone
deleting a message they had received.

Aside from the issues discussed above, end-to-end encrypted group messaging
poses further di�culty. For instance, it is non-trivial to explain to users what
happens to their messages when a new user joins their group, and di↵erent apps
have taken di↵erent approaches. For instance, users may expect that a new joiner
in the group would have access to the historical messages from the inception of
the group, but this is not always the case.

5 Future directions

We now explore possible solutions which ensure systems only display warning
messages where necessary and that the content of such messages help users make
informed decisions.

5.1 Incentivising users

Anecdotal evidence suggests that a user treats a new app as a toy, exploring its
features more in the first few sessions than later. This could be leveraged for the
purpose of achieving better security.

For instance, an app can provide proactive manual checking as a feature,
which can make it easier to detect if something has gone wrong. Users can be
awarded points, levels, or badges to encourage such checks. The relative confi-
dence in the correctness of the keys for a particular user can be displayed, e.g.
with Bronze, Silver, Gold medals or a red-to-green scale with levels automati-
cally assigned based on observed cryptographic evidence, as further explained in
Section 5.3.

Such gamification is employed by many apps to incentivise user behaviour.
However, gamification might incentivise users to spend more time on security
than is rational given the benefits to them, so care is required to ensure the
design is ethical.

5.2 User context

Context matters and users have di↵erent threat models. Thus, allowing users
to customise the display of key change notifications is important. This enables



Ghost trace on the wire? Using key evidence for informed decisions 9

the system to vary what it displays based on the user’s context, so a user who
suspects they are of interest to an intelligence agency can be shown warnings
which probably include false positives, while a more typical user would only be
shown warnings more likely to be true positives. Alternatively, an initial setup
phase to infer a user’s threat model could then be used to customise defaults
intelligently.

5.3 Evidence for key validity

To determine what notifications, if any, the messaging software should show to
a user, we propose collecting evidence on the validity of a contact’s keys. Rather
than unconditionally trusting a signature from a PKI or a response from a key
server, we can combine several types of evidence with prior expectations on the
probability of a compromise to estimate the likelihood of a false-positive or a
true-positive. This information can then, in turn, help users make an informed
security decision.

To establish a binding between people (identified by a human-readable name,
such as an email address or phone number) and the public keys of their devices,
we propose collecting evidence in the following categories:

Trusted The key for the user’s currently in-use device is completely trusted.
Signed trusted A key can be signed by this device’s key as being one of the

user’s keys on another device because, at some point in the past, they autho-
rised it and optionally performed some mutual verification (QR-codes, local
network gossiping, password authenticated key exchange [9]).

PKI signature This key-name mapping was supplied and signed by the PKI.
So the PKI believed it to be correct at that time based on sending a text
message/email or other verification process; this can also happen if the PKI
is manipulating keys because of a warrant or a rogue employee.

Auditable PKI signature The signature on the key-name mapping by the
PKI can be audited as it was published using CONIKS or Certificate Trans-
parency. Therefore, the key-name mapping can be checked by the owner of
the name and misbehaviour by the PKI will be detected.

Manually verified The user has verified the key-name mapping using QR-
codes or some other out of band mechanism (confidence provided will vary
with mechanism). This provides a strong guarantee that at a particular time
the key-name mapping was correct.

Other communication channel The user exchanged key material with the
contact via a partially trusted communication channel, such as email, SMS,
phone call, or another messaging app. Although this channel may not provide
strong confidentiality guarantees, it may be di�cult for the adversary to
tamper with this communication.

Signed by a key for the same name Another key for the same name has
signed this key-name mapping and it has its own evidence as to its valid-
ity. The evidence this provides depends recursively on the evidence for the
validity of the signing key. In the context of the device for the key which



10 D.A. Vasile, M. Kleppmann, D.R. Thomas, A.R. Beresford

did the signing this would be signed trusted but the evidence provided is
lesser when this signature is from a key for a contact rather than your own
device.

Gossiped directly The key-name mapping was directly gossiped with the de-
vice for that mapping and so was on the same network as the user’s device
at that time. Being able to display the location and time to the user pro-
vides greater confidence that either the key-name mapping is correct or the
network they were on was compromised.

Gossiped indirectly The key-name mapping was gossiped via a mutual con-
tact. Therefore the PKI has supplied the same key-name mapping to other
contacts making detection of misbehaviour more likely.

Freshness from gossiping In the gossip protocol, devices use mDNS to pub-
lish advertisements proving that the device has control of the key at a partic-
ular point in time. These advertisements can be stored and provide evidence
of the freshness of the key in a particular location. Since timestamps are
chosen by the device producing the advertisement, the receiving device must
verify it is within sensible bounds (advertisements time out).

Indirect freshness Mutual contacts can pass on advertisements they have ob-
served for a key and so provide evidence of freshness during gossiping. Since
timestamps cannot be verified by the device, this evidence is not absolute,
but tampering requires collusion by the contact.

Revoked by self A message indicating that a key has been revoked, signed by
the key being revoked, shows that someone in control of the key has tried to
revoke it (not necessarily deliberately).

Revoked by a signed trusted key A key for the same name as the key being
revoked has signed the revocation message and it was signed as trusted by
the key being revoked. This means that a key on another device belonging to
the user has been used to revoke the key (but it could have been compromised
or this might be accidental).

Revoked by a key for the same name A key for the same name as the key
being revoked has signed the revocation message and has some evidence as
to its validity for that name.

Mutual revocation Two (or more) keys have mutually revoked each other
(but not themselves) indicating that one of the keys has been compromised
and which key under the control of the legitimate user is disputed. In this
scenario relevant evidence for a↵ected keys should be discarded and evidence
built up again.

Expired The key-name mapping has a validity period and the device’s local
time is outside of this period. This is probably accidental, as in the case of
TLS certificates.

Most evidence is associated with a timestamp, such as the time manual verifi-
cation occurred or the freshness timestamp in the gossip key-check message, and
in most cases older evidence gives us less confidence than newer evidence. For
example, we might have manually verified the key two years ago, which gave the
user high confidence at the time, but the contact might have changed that device



Ghost trace on the wire? Using key evidence for informed decisions 11

in the meantime. Hence, time-based discounting is required for the confidence
derived from pieces of evidence. An exponential decay with a two-year half-life
might be suitable as a conservative estimate of device replacement frequency.
However, a contact maintaining the same key for an extended period of time
gives greater confidence as a wiretap would have to have been maintained across
the whole period to avoid detection. A log of gossip messages or timestamps
when signed-session-keys for messaging were established could provide evidence
of an extended period of continuous usage.

By leveraging such cryptographic evidence we can estimate confidence in key
authenticity. This measurement can be used to decide whether to trigger a user
warning, while also taking into account the user’s notification settings as set up
in Section 5.2.

6 Conclusions

Users of end-to-end encrypted messaging are not interested in key management:
they are interested in who can read their messages and the authenticity and
confidentiality of the messages they receive. The insertion of ghost users into
end-to-end encrypted chats by unauthorised parties causes the same warning as
a routine key change. Most of these warnings are false positives. After analysing
existing approaches, we suggested how warning messages can be shown only
when it is useful. We proposed deriving the prior probability of true positives
from the user’s context and combining it with evidence of key validity. In this
way we aim to equip the user with the capacity to make informed decisions. We
propose collecting this evidence from di↵erent sources, such as key directories,
gossiping, or manual verification, and supplement this by incentivising the user to
generate further evidence. Di�cult trade-o↵s arise, as some measures to reduce
false negatives may also increase false positives, or vice versa.

References

1. Acer, M.E., Stark, E., Felt, A.P., Fahl, S., Bhargava, R., Dev, B., Braithwaite,
M., Sleevi, R., Tabriz, P.: Where the wild warnings are: Root causes of Chrome
HTTPS certificate errors. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. pp. 1407–1420. CCS ’17, ACM (2017).
https://doi.org/10.1145/3133956.3134007

2. Akhawe, D., Amann, B., Vallentin, M., Sommer, R.: Here’s my cert, so trust me,
maybe?: Understanding TLS errors on the Web. In: Proceedings of the 22nd
International Conference on World Wide Web. pp. 59–70. WWW ’13, ACM
(2013). https://doi.org/10.1145/2488388.2488395

3. Apple Inc.: Apple reports first quarter results (Feb 2018),
https://www.apple.com/newsroom/2018/02/apple-reports-first-quarter-results,
https://perma.cc/M6WV-Q4HK

4. Cheshire, S., Krochmal, M.: Multicast DNS. RFC 6762 (2013)
5. Clark, J., van Oorschot, P.C.: SoK: SSL and HTTPS: Revisiting past challenges

and evaluating certificate trust model enhancements. IEEE Symposium on
Security and Privacy pp. 511–525 (2013). https://doi.org/10.1109/SP.2013.41

https://doi.org/10.1145/3133956.3134007
https://doi.org/10.1145/2488388.2488395
https://www.apple.com/newsroom/2018/02/apple-reports-first-quarter-results
https://perma.cc/M6WV-Q4HK
https://doi.org/10.1109/SP.2013.41


12 D.A. Vasile, M. Kleppmann, D.R. Thomas, A.R. Beresford

6. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with
linear computational and bandwidth complexity. IACR Cryptology ePrint
Archive 2009/491 (2009)

7. Garfinkel, S.L., Miller, R.C.: Johnny 2: A user test of Key Continuity
Management with S/MIME and Outlook Express. In: Proceedings of the
Symposium on Usable Privacy and Security. pp. 13–24. SOUPS ’05, ACM (2005).
https://doi.org/10.1145/1073001.1073003

8. Google, Inc.: Roughtime (2016), https://roughtime.googlesource.com/roughtime
9. Hao, F., Ryan, P.Y.: Password authenticated key exchange by juggling. Security

Protocols LNCS 6615, 159–171 (2011)
10. Herley, C.: So long, and no thanks for the externalities: The rational rejection of

security advice by users. In: Proceedings of the New Security Paradigms
Workshop. pp. 133–144. NSPW, ACM (2009).
https://doi.org/10.1145/1719030.1719050

11. Hurst, R., Belvin, G.: Security through transparency (Jan 2017),
https://security.googleblog.com/2017/01/security-through-transparency.html

12. Laurie, B.: Certificate transparency. ACM Queue 12(8), 10 (2014).
https://doi.org/10.1145/2668152.2668154

13. Levy, I., Robinson, C.: Principles for a more informed exceptional access debate
(Nov 2018), https:
//www.lawfareblog.com/principles-more-informed-exceptional-access-debate,
https://perma.cc/7RJK-FM32

14. Melara, M.: Why making Johnny’s key management transparent is so challenging
(Mar 2016), https://freedom-to-tinker.com/2016/03/31/
why-making-johnnys-key-management-transparent-is-so-challenging/,
https://perma.cc/RX2S-MZQH

15. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: Bringing key transparency to end users. In: USENIX Security
Symposium. pp. 383–398 (2015)

16. Roberts, J.J., Rapp, N.: Nearly 4 million Bitcoins lost forever, new study says
(Nov 2017), http://fortune.com/2017/11/25/lost-bitcoins/

17. Ruoti, S., Andersen, J., Zappala, D., Seamons, K.: Why Johnny still, still can’t
encrypt: Evaluating the usability of a modern PGP client. arXiv (2015),
http://arxiv.org/abs/1510.08555

18. Ruoti, S., Kim, N., Burgon, B., van der Horst, T., Seamons, K.: Confused
Johnny: When automatic encryption leads to confusion and mistakes. In:
Proceedings of the Ninth Symposium on Usable Privacy and Security. pp.
5:1–5:12. SOUPS ’13, ACM (2013). https://doi.org/10.1145/2501604.2501609

19. Sheng, S., Broderick, L., Hyland, J.J., Koranda, C.A.: Why Johnny still can’t
encrypt: Evaluating the usability of email encryption software. In: Symposium
On Usable Privacy and Security (SOUPS). pp. 3–4 (2006)

20. Sleevi, R.: Sustaining digital certificate security (Oct 2015), https:
//security.googleblog.com/2015/10/sustaining-digital-certificate-security.html

21. WhatsApp Inc.: Connecting one billion users every day (Jul 2017),
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day,
https://perma.cc/8WZJ-Y5UT

22. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: A usability evaluation of
PGP 5.0. In: USENIX Security Symposium. pp. 169–184 (1999)

https://doi.org/10.1145/1073001.1073003
https://roughtime.googlesource.com/roughtime
https://doi.org/10.1145/1719030.1719050
https://security.googleblog.com/2017/01/security-through-transparency.html
https://doi.org/10.1145/2668152.2668154
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://www.lawfareblog.com/principles-more-informed-exceptional-access-debate
https://perma.cc/7RJK-FM32
https://freedom-to-tinker.com/2016/03/31/why-making-johnnys-key-management-transparent-is-so-challenging/
https://freedom-to-tinker.com/2016/03/31/why-making-johnnys-key-management-transparent-is-so-challenging/
https://perma.cc/RX2S-MZQH
http://fortune.com/2017/11/25/lost-bitcoins/
http://arxiv.org/abs/1510.08555
https://doi.org/10.1145/2501604.2501609
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://perma.cc/8WZJ-Y5UT


Ghost trace on the wire? Using key evidence for
informed decisions (Transcript of Discussion)

Diana A. Vasile

June 17, 2019

Martin Ukrop If there’s an error shown that the secret has changed, when
I’m alerted, because I’m an aware user, I message Alice on her phone and I find
out that she hasn’t got anything reinstalled, hasn’t done anything new, hasn’t
reset her phone so it’s probably a ghost being entered into the conversation.
Can I then do something within the WhatsApp conversation to, let’s say, renew
the keys and kick the ghost out again?

Reply Unfortunately, not at the moment, but the goal is to get people to
notice these things, and then hopefully apps like WhatsApp and Signal would
allow you to trigger a new key change or, alternatively, being yourself, you can
just change to Signal, or change to something that’s not being listened to.

Fabio Massacci Can I opt out of telling the user that I have received on
three devices? I have di↵erent levels of people that receive WhatsApp messages.
Maybe I want my wife to know that I have several devices or maybe I don’t
really have several devices. But if I have a business partner that sends me a
message, I’m late, and I don’t want them to know each time I’ve received a
message, whether it’s to all three devices, four devices, or one device ... can I
opt out?

Reply I’ll talk a bit later about a few other things we can do to actually
increase the certainty of whether a key change is actually something benign or
something malicious. So in your case, you could customise it. You would not
necessarily need to show that, if this is your privacy setting.

Frank Stajano Triggered by Fabio’s question, I just want to check that I
understand things correctly. When you were saying, I’m notifying the guy
that this is being received by three recipients, does three recipients mean three
devices? Does it mean three di↵erent public keys? Because I expect that if I
had seven devices, they’d all have the same public key, correct? And so then I
thought that in that case it was received by Frank, and I don’t care where.

1



Reply Unfortunately, they don’t have the same public key, or you don’t nec-
essarily need to have the same public key. It’s down to whatever app and the
way they implement it.

Frank Stajano I don’t have many of the things that you have an icon for on
your presentation, but I do have the Apple one, iMessage. So when my wife
sends me an iMessage, she doesn’t say ”send it to Frank’s phone or Frank’s
watch”. She sends it to Frank. And then I get it on all of them. That’s why I
believed that the public key was of Frank, not the public key of the device.

Reply It’s actually particularly hard to know exactly what happens in iMes-
sage and the Apple infrastructure but, having looked at it greatly, I believe that
you get a public/private key pair for every device you own, especially given that
you have to acknowledge them. When you get a new phone and you set it up
and sign into iCloud with Frank’s iCloud email address. Then a series of your
devices get asked, Is this authorised? Are you happy for this new device to use
the iCloud email address? which makes you think that they identify the device
as its own, so you get a series of keys that link to a series of devices, and they
all get drawn into Frank’s bubble of trusted devices.

Frank Stajano When you say send to three... Do you mean three phones, or
do you mean three people?

Reply So currently if you’re in a group message, you can see the people. You
can see how many people received or read your message. But if you’re on a
one-to-one, all you get is one of these options: sent, received, or read. What
we’re saying is you can go a level further and say sent to three devices that
Frank owns.

Frank Stajano Then for the purpose of identifying malicious, GCHQ listeners
in, I would have thought in a naive way that they would appear as a di↵erent
user. But is it possible technically that they would appear as another phone of
mine? I think that that would require more hacking than just hacking into the
central server.

Reply So, yeah, it would require more hacking. The problem is, you see,
when the key server sends your set of public keys for your devices, it will have
to include all of the devices that are meant to be receiving that particular
message. So they would appear as a di↵erent device, unless they eliminate one
of your devices and put their own key in. But there are di↵erent ways that we’ll
talk about in a bit, of how you detect such attacks.

Frank Stajano I don’t know if I can cover that. I have no more questions.
(Presentation continues, describing the proposal in Section 5 from the paper.)

2



Jovan Powar If you have a trusted key for Bob, why are you telling Alice
that there might be something wrong with Bob’s keys? Why don’t you tell Bob?
Because it might be more complicated to tell everyone else in the conversation
that, Hey, there’s something fishy about Bob’s keys. But if you have a trusted
key for Bob, why don’t you just tell all of the ones you trust on Bob’s side
that, Hey, there’s something wrong your key chain? And then that requires less
burden on users?

Reply That’s actually a really good idea. I don’t think we’ve considered it.
Thank you, yeah, we’ll look into it.

Sasa Radomirovic But the GCHQ will say ”no, it’s all fine” and then the
ghost would say ”no, it’s all fine”. You’re telling Bob, who receives now on two
devices that message.

Jovan Powar But then this is assuming that you’ve got the untrusted one
right.

Sasa Radomirovic Well, what’s also the problem is that the device will stop
trusting Bob’s key, because Charlie says that Bob’s key is bad. Then you’ve
left yourself open to all sorts of denial-of-service attacks who’ve listened to your
behaviour. It may provide an interesting PhD thesis but it might be di�cult to
actually implement. There’s one thing that strikes me the most; it’s that your
focus seems to be entirely on keys rather than on sessions. Now if you’re using
video chat, and if you trust the source code of the app enough to believe that
you can physically see the face of or a screen for every party on the call. Then,
provided you discount the possibility of real-time interference with video speed,
the existence of a video call actually gives you a higher degree of confidence in
the keys. Is that something that you’re considering?

Reply Actually, it’s something I’ve chatted about last week when I was on a
spring school. Someone has mentioned their usability researchers looking into
fairly close area to mine, and they have run some user studies to try and improve
manual verification. And their users have actually come back with saying they
would trust it more if it was based on a series of exchanges of photographs or
videos, short videos, rather than just a series of numbers. So that will be work
I’ll be looking into further. Thank you.

Frank Stajano I like the suggestion of video as an extra validator, but as
a regular user, I really have found so many instances where the sound is so
broken up that it would mask the cases where something’s gone bad because
it just goes all the time anyway and sometime it goes back because someone is
doing an attack. So I would not consider it as a very trustworthy indicator.

3



Reply Unless you use it as a video recording, but then that raises other con-
cerns.

Jovan Powar A short one, I promise. Just to check, where exactly is the
verification? Who is warning who the key in WhatsApp, is untrustworthy?
Which entity? Is it everyone else in the conversation who warns the person that
it looks like it? Or is it all of the user devices? Or is it the key server?

Reply Everyone in the conversation gets notified that the key has changed.

Jovan Powar And then each of them follows their own assessment of whether
that’s a trustworthy change or not?

Reply Yes, based on their user contexts.

Martin Ukrop Does the ghost have to be associated with either of the sides
in the end-to-end encrypted communication, if I get it correctly, so there can be
a third-

Reply Yes, there can be a man-in-the middle, it’s just not our scenario.

Martin Ukrop You’ve been talking about notifying that there’s a ghost on
the other side of the conversation. But I would like to know that there’s a ghost
on my side of the conversation. ”Oh, this conversation is being sent to your
phone that you are on right now, your desktop, and your smartwatch”. And
then at some point if it says, Oh, you’ve just added a second smartwatch, or
”it’s being sent to all four of your devices” where I only ever have three of my
devices, that’s one fishy thing for me. And I’m the one to judge better than
the other side because the other side doesn’t know how many smartwatches do
I have. I want to know if you’ve considered informing the user of their own
devices that are getting the copies of the message that they have just sent?

Reply I guess that’s down to the message visibility proposal we have. We can,
given the privacy concerns that have been raised. It would make more sense,
I guess, to move the visibility to the own user’s devices and say, I’m currently
communicating o↵ of these three devices so yeah, it’s definitely a possibility.

Michael Dodson We’ve gotten into the conversation about what’s actually
being displayed on the screen. And I think that you haven’t gotten to this yet,
but several of the solutions that you talk about are actually o✏ine solutions,
right? They’re peer-to-peer, so it’s two people who know some third person
having a conversation, gossiping keys. They’re not actually in an active conver-
sation where the person whose key is suspect-

4



Reply This part of the discussion has been referring to active conversation.

Michael Dodson Sure, but I mean ... in the actual key verification portion of
it, you may not actually be in a conversation with the person, so it’s two other
people, potentially, who are the ones who discover that they have a mismatch
of some kind, and so keys become suspect.

Reply Yes, I’m getting to that now.
(Presentation continues, discussing the solutions to detect ghost user attacks
from Section 2 in the paper.)

Ross Anderson Well, using such mechanisms to fortify things like CONIKS
is great. But it strikes me as another usability aspect, which is perhaps salient
to me because my phone died last weekend, and so I had to survive a weekend
in London on a 20th century basis. I also use Uber and so on. It strikes me that
nowadays the loss of a phone is a major life event. It is appallingly disruptive.
You’re going to have to go and reboot all your services on a new phone, or in my
case on an old phone that I’ve actually got. And so rather than using purely
technical mechanisms, where you see a phone apparently being revoked you
should demand from the counterparty an absolutely major social explanation
of why his phone was lost. When did it die? How many hours was he unable to
use Uber? How much did he pay for his new phone? Please tell us those people
in the audience all about your new phone. Because the real life replacement of
a telephone is not something that happens with a click as a glitch in the wire.
And truly having it built in is an excellent means of fortifying protocols like
this.

Reply That’s a very good point, thank you. The user is indeed the centre of
it all.

Fabio Massacci So I have a question on the gossip. I’m not so sure that going
around on wifi improves their privacy even if using zero knowledge protocols,
because you need to broadcast your location wherever you go. So this means if
they get onto the wifi and your phone advertises every half an hour, telling your
location to a lot of di↵erent things besides that. So broadcasting your location
may be good for this particular protocol, but it would tell your location to lots
of other people, so you have to look at the consequences of that.

Reply I’m not sure I understand. We are proposing to gossip on the local
network in this scenario, so you’re not really telling your locations to other peo-
ple. Plus you’re always telling your location to other people when you connect
to a wifi anyway.

5



Daniel Thomas So, in this protocol, what you publish into the multicast
DNS is completely opaque to anyone who doesn’t know your key. So you need
to know the key of the participant to be able to work out whether or not you
know that person at all. So there’s nothing identifying you that published on
multicast DNS that’s not already present because you’ve got your MAC address
on. So it’s true that if you normally turn your wifi o↵ and don’t connect to wifi
for much, then you wouldn’t benefit from this. And if you turn your wifi on to
use this protocol, you’ve already lost the privacy protections because you’ve got
the MAC being broadcast on the network. But there’s nothing in this protocol
that means more information is available about you than it would already be
available just because you were online.

Reply Thanks very much for clarifying. This is a key name graph we propose
to gossip the bindings for because we expect that people actually have more
phone numbers and email addresses identifying them and also more devices.
The gossiping can actually gossip all of these bindings on the network. We do
understand that people have certain contacts they do not often co-locate with.
So in order to maintain the window of vulnerability for particular contacts
as small as possible, we also see the possibility of performing the gossip over
alternative channels, especially if the time threshold is met without the gossip
between two contacts. If the right APIs existed, you could, for instance, gossip
the keys WhatsApp uses over Signal and the other way around. Or you can use
Dat for gossiping on the internet. This is work in progress, so we’re currently
looking into this possibility.

Martin Ukrop I just realised that as I was checking my mail contacts, I have
something like 1,500 contacts in my contacts list. So if we talk about the cost of
this in terms of energy, if I have to start gossiping and synchronising all the data
with all my contacts, because I need to keep broadcasting every time, right, if
I want to keep the things updated? So we’ll have to have a constant stream
of synchronisation from my phone, probably end up with my phone without a
battery, which as Ross said, is a major life event. And just to keep my key
synchronised for a very rare event may not be the right mechanism. Do you
want to have something that actually pushes the update rather than keep going
all the time.

Reply Thank you for the question. So, the thing with push for notification, it
makes it manual again. We’re hoping for automatic because of users not really
understanding the importance of it all. But your point about consumption of
battery is really good. There are certain mechanisms you can put in place such
that batteries do not get completely drained. We’re implementing a prototype to
experiment with certain thresholds, say, you can perform the gossiping whenever
you jump onto a new network, or you can perform the gossiping after a certain
period of time. The multicast DNS actually has an advantage that it will store
the entries in its table for 75 minutes. So that gives you about an hour and a

6



bit of you not having to re-advertise yourself on the network. There’s certain
things we’re experimenting with to arrive to the right solution.

I wanted finish by pointing out that gossiping is not necessarily restricted
only to public keys. In the key directory example, we can see how this would
be extended to gossiping app binaries, so that we can improve the binary trans-
parency for similar reasons as we’ve displayed here. Thank you.

7


	Ghost trace on the wire? Using key evidence for informed decisions

