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BACKGROUND: Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modi-
fications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time
can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human,
the implications of which are only beginning to be explored.

OBJECTIVE AND RATIONALE: In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic
information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human.

SEARCH METHODS: Relevant studies were identified by PubMed search.
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OUTCOMES: We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis,
fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally
unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fer-
tilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the
vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone
modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development
has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse
and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings
emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans.

WIDER IMPLICATIONS: Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing mater-
nal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the neces-
sary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which
these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
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Introduction
All cell types of an organism contain identical genetic information and
yet are distinct in function and characteristics. Instructive epigenetic
marks are key to this developmental conundrum. Epigenetic marks
include modifications to the DNA or its associated proteins, which
enable regulation of gene expression in a cell type-specific manner
(Fig. 1). Among the most well-characterised epigenetic modifications
is DNA methylation, but the various additional layers of epigenetic
information may represent more dynamic and responsive features of
this regulation landscape. DNA is wrapped around an octamer of his-
tone proteins (a nucleosome) enabling its compaction and organisa-
tion in the nucleus. Numerous post-translational modifications and/
or variants of these histone proteins can facilitate the packaging of
chromatin into accessible or inaccessible states and, consequently,
regions of active or repressed gene expression, respectively.

The field of developmental biology has long studied the intriguing
nature of how two fully differentiated and very distinct cells, the sperm
and the oocyte, can come together to create a totipotent embryo.
Genetic studies in mice have firmly established that epigenetic regula-
tion is key to the acquisition of totipotency during this transition. Early
studies using molecular approaches and immunofluorescence showed
that widespread epigenetic reprogramming accompanies both germ
cell and embryonic development (Santos et al., 2002; Seisenberger
et al., 2012). However, limitations in obtaining large numbers of cells,
specifically in oogenesis and early embryogenesis, has restricted the
detailed molecular investigation in these cells, until recently. Advances
in low-input and single-cell sequencing methods have not only
improved our understanding of these developmental windows, but the
data have also led to new questions and challenged existing dogmas/
hypotheses. In this review, we summarise the current knowledge of
epigenetic dynamics in development, from DNA methylation to
chromosome organisation, specifically during spermatogenesis, oogen-
esis, pre-implantation development and early lineage specification. We
will discuss how the mechanistic insights established in mice may be
relevant for human development and reflect on known differences
between the two systems. In this review, we focus particularly on the
recent developments in in-vivo studies.

Recent advances in epigenetic
profiling technologies
Next generation sequencing based approaches have revolutionised
our ability to profile epigenetic information and all layers of the epi-
genome can now be interrogated by these methods. Until relatively
recently, these technologies have required millions of cells to obtain
high resolution genomic maps, but advances in capturing and amplify-
ing smaller and smaller amounts of material have allowed them to be
scaled down to require only minimal numbers of cells (Table I).

DNA methylation can be studied with greatest resolution and pre-
cision by bisulphite conversion followed by sequencing (Cokus et al.,
2008). Bisulphite treatment converts the DNA base cytosine to
uracil, but only when the cytosine is unmethylated. In this manner,
methylated and unmethylated cytosines can be distinguished by
sequencing. Bisulphite sequencing initially required large amounts of
starting material because the bisulphite conversion reaction leads to
DNA breaks and loss of material. This problem has been overcome
by refinements in methods such as post bisulphite-adaptor tagging
(PBAT) and reduced representation bisulphite (RRBS) sequencing,
which allow the interrogation of DNA methylation in just 100–200
cells or even on a single-cell level (Miura et al., 2012; Smallwood and
Kelsey, 2012; Guo et al., 2013; Smallwood et al., 2014). Methods
independent of bisulphite chemistry may provide alternatives that cir-
cumvent the loss of material inherent in bisulphite treatment (Boers
et al., 2018). A variety of approaches have also been developed to
map oxidation derivatives of 5-methylcytosine, some at the single-cell
level, but they typically lack the sensitivity or absolute quantification
of bisulphite sequencing (Kelsey et al., 2017).

Histone proteins can be post-translationally modified at numerous
amino acid residues in the protruding N-terminal tail or core domain
(Zhao and Garcia, 2015); these predominantly include methylation,
acetylation, phosphorylation and ubiquitination. Using antibodies, the
abundance and nuclear distribution of these modification states have
been studied by immunofluorescence and Western blots. Determining
their genomic occupancy depends upon using antibodies to precipitate
chromatin fragments (chromatin immunoprecipitation, ChIP) followed
by purification of the associated DNA. In 2006, next-generation
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Figure 1 Levels of epigenetic regulation. The DNA sequence can be methylated at cytosine residues in a CpG context, termed DNA methylation.
DNA is wrapped around the histone octamer to form the nucleosome. Variants and post-translational modifications of these histone proteins form
another layer of epigenetic regulation. The state of these epigenetic modifications together determines whether the chromatin will be organised in
an accessible ‘open’ or an inaccessible ‘closed’ state. Higher order folds and loops organise the chromatin into active and inactive compartments.

.............................................................................................................................................................................................

Table I Low-input and single cell methods available for assaying epigenetic modifications.

Epigenetic layer Assay Low-cell protocol Single-cell protocol

DNA methylation Post-bisulfite adaptor tagging
(PBAT)

400 cells (Miura et al., 2012) Yes (Smallwood et al., 2014)

Reduced representation bisulfite
sequencing (RRBS)

75–1000 cells (Smallwood and Kelsey, 2012) Yes (Guo et al., 2013)

Histone modifications Chromatin immunoprecipitation
(ChIP)-seq

400–1000 cells (Brind’Amour et al, 2015, Zhang et al.,
2016, Dahl et al., 2016, Hanna et al., 2018)

Yes* (Rotem et al., 2015)

Cleavage under targets and release
using nuclease (CUT&RUN)

100 cells (Skene et al., 2018) Not available

Chromatin accessibility Assay for transposase accessible
chromatin (ATAC)-seq

20–100 cells (Wu et al., 2016, Wu et al., 2018) Yes (Buenrostro et al., 2015;
Cusanovich et al., 2015)

DNase-seq 100–200 cells (Lu et al., 2016) Yes (Jin et al., 2015)

DNA methylation and
chromatin accessibility

Nucleosome occupancy and
methylome (NOMe)-seq

Not available Yes (Pott, 2017, Guo et al.,
2017a, Clark et al., 2018)

Higher order organisation Hi-C 500 cells (Du et al., 2017) Yes (Nagano et al., 2013)

*Only applied using thousands of cells.
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sequencing was applied for the first time to obtain genome-wide maps
of histone modifications, in a method termed ChIP-seq (Barski et al.,
2007; Mikkelsen et al., 2007; Robertson et al., 2007). This method is
an enrichment-based approach that is strongly dependent on antibody
efficiency and specificity. Only recently, ChIP-seq has been adapted for
low-cell inputs of 500–1000 cells (Brind’Amour et al., 2015; Dahl et al.,
2016; Zhang et al., 2016; Hanna et al., 2018), and single-cell
approaches still require the processing of thousands of individual cells
(Rotem et al., 2015). A novel approach, termed cleavage under targets
and release using nuclease (CUT&RUN), has been developed to allow
the evaluation of histone modification patterns in as few as 100 cells
(Skene et al., 2018). CUT&RUN involves tethering a DNA-cutting
enzyme to a histone-bound antibody, resulting in only targeted DNA-
wrapped nucleosomes being released into solution for sequencing
(Skene et al., 2018).

Chromatin states can be analysed further by a variety of methods
that use enzymes to isolate accessible from inaccessible regions of
DNA. For example, the assay of transposase-accessible chromatin
(ATAC-seq) employs the Tn5 transposase to integrate sequencing
adapters into regions of accessible chromatin (Buenrostro et al.,
2013), while DNase-seq employs the DNase I enzyme to cleave
these regions (Boyle et al., 2008). Both methods have recently been
adapted for single-cell and low-cell input (Buenrostro et al., 2015;
Cusanovich et al., 2015; Jin et al., 2015; Lu et al., 2016; Wu et al.,
2016). An alternative assay, termed nucleosome occupancy and
methylome (NOMe-seq), uses a unique non-enrichment-based
approach to evaluate chromatin accessibility, by exploiting a bacterial
methyltransferase (Kelly et al., 2012). Accessible regions of DNA are
demarked with GpC methylation, and therefore subsequent bisul-
phite sequencing not only provides information on DNA accessibility
but additionally endogenous DNA methylation patterns. NOMe-seq
has been successfully adapted to the single-cell level (Pott, 2017; Guo
et al., 2017a; Clark et al., 2018).

On a larger scale, chromatin conformation capture (Hi-C) methods
evaluate chromosome interactions from a defined loci or throughout
the nucleus, using cross-linking to ligate regions of DNA that lie in close
proximity to each other (Lieberman-Aiden et al., 2009). The so-called
topological associated domains (TADs) partition the genome into large
self-interacting A (active) and B (silent) compartments. Hi-C sequencing
can also be conducted on a single-cell level (Nagano et al., 2013), but at
rather limited resolution. At higher resolution, HiC-based methods can
identify enhancer-promoter interactions, but this application is not yet
possible in low numbers of cells.

Epigenetic regulation of gene
expression
In differentiated cells, there are canonical patterns of epigenetic
marks across genomic elements (Fig. 2). DNA methylation is gener-
ally high across gene bodies and inter-genic regions, with low or inter-
mediate methylation observed almost exclusively at regulatory
regions, such as promoters and enhancers. Histone marks, typified by
histone H3 modifications, also show reproducible genomic patterns,
some of which are correlated with gene expression. Active marks,
such as histone 3 lysine 4 trimethylation (H3K4me3) and/or histone
3 lysine 27 acetylation (H3K27ac), are found at active promoters

and/or enhancers, are negatively correlated with DNA methylation,
and positively correlated with gene expression (Fig. 2) (Smith and
Meissner, 2013). Repressive histone marks, such as H3K36me3 across
transcribed gene bodies and H3K9me2 and/or H3K9me3, are strongly
associated with DNA methylation and transcriptional silencing (Du et al.,
2015). While gene body H3K36me3 is positively correlated with tran-
scription, paradoxically it is thought to function across gene bodies by
repressing spurious, off-target transcription initiation (Neri et al., 2017)
and promoting acquisition of DNA methylation (Baubec et al., 2015).
Alternatively, while repressive H3K27me3 is associated with transcrip-
tional silencing, it is predominantly localised with unmethylated DNA,
suggesting it may be complementary mode of genomic silencing (Fig. 2)
(Manzo et al., 2017). While many other modifications of histone pro-
teins have been reported (Zhao and Garcia, 2015), in this review we
focus on the aforementioned well-characterised histone modifications.

DNA methylation is established and maintained by a protein family
of five DNA methyltransferases (DNMTs). Among these, three de-
novo DNMTs (DNMT3A, 3B and 3C) and a catalytically inactive co-
factor (DNMT3L) are responsible for establishing cytosine methyla-
tion, usually in a CpG context (Okano et al., 1999; Bourc’his et al.,
2001; Barau et al., 2016). It is not fully apparent how DNA methyla-
tion is targeted to specific regions of the genome, but biochemical
studies have shown that several domains on the DNMT proteins or
their co-factors can interact with modified histone tails (Ooi et al.,
2007; Dhayalan et al., 2010). During cell replication, DNMT1 is loca-
lised to hemi-methylated DNA at the replication fork by the co-
factor UHRF1 (Bostick et al., 2007; Sharif et al., 2007), where it faith-
fully copies CpG methylation patterns to the newly replicated DNA
strand (Li et al., 1992). Once established, DNA methylation can be
repressive for transcription either by impairing the binding of tran-
scription factors or through the activity of methyl-binding proteins
(Hendrich and Bird, 1998; Domcke et al., 2015). Classic examples of the
repressive role for DNA methylation are X-chromosome inactivation in
females and imprinted gene regulation, where one parental allele is
silenced through the inheritance of differential germline methylation
(Jones, 2012). Methylated cytosine can be oxidised to the derivatives 5-
hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine through
the action of Ten-Eleven Translocation (TET) proteins, but whether
these derivatives function as epigenetic marks in a manner similar to 5-
methylcytosine is not clear (Wu and Zhang, 2017).

The modifications of histone tails are dynamically regulated by so-
called ‘writers’ and ‘erasers’, and once established can be bound by
‘readers’ (Cheng, 2014; Rothbart and Strahl, 2014; Torres and Fujimori,
2015; Allis and Jenuwein, 2016). There is an ever-growing list of proteins
that can modulate and/or bind histones (http://weram.biocuckoo.org/
), suggesting that the complexity of this system is extensive. In general
terms, active and repressive histone marks, through their respective
readers, can enable the immediately surrounding chromatin to be pack-
aged in an open (accessible) or closed (inaccessible) conformation,
respectively (Zhang et al., 2015). Regions of open or closed chromatin
are organised into self-interacting compartments, termed TADs, which
are on average ~1Mb in size (Dixon et al., 2012). Within the nucleus,
TADs of similar chromatin conformation are more likely to organise
together into active and inactive (A and B) compartments (Lieberman-
Aiden et al., 2009). This supports the notion that there is coordinate
regulation of transcriptional activity through the 3D organisation of DNA
within the nucleus.
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Ongoing work in model systems including, but not limited to, the
mouse is building our understanding of the interplay between these
epigenetic layers and how they coordinate genomic regulation. One
way to evaluate these relationships is to study their dynamics during
developmental reprogramming and lineage specification, an area of
research that has rapidly advanced in the past few years.

Mechanistic insights from mouse
models

Gametogenesis
The chromatin organisation and epigenetic profiles of the male and
female gametes at the time of fertilisation are profoundly different.

Sperm DNA is highly methylated and tightly packaged with prota-
mines, a protein that replaces canonical histones (Wright, 1999);
while oocyte DNA is uniquely methylated in an bimodal pattern and
is associated with non-canonical distributions of histone modifications
(Tomizawa et al., 2012) (Fig. 3). These divergent patterns are estab-
lished during gametogenesis, which is initiated during embryonic
development. The precursors for both male and female germ cells
are assigned in the epiblast at embryonic day (E) 7.25 and as these
primordial germ cells (PGCs) migrate to the genital ridge (E9.5–
E11.5), they undergo almost complete demethylation of the genomic
DNA (Guibert et al., 2012; Seisenberger et al., 2012). The loss of
DNA methylation is due to downregulation of both de-novo DNMTs
and the DNMT1-cofactor UHRF1 (Kagiwada et al., 2013). With the
decline of DNA methylation, there is a re-organisation of repressive
histone marks as well, with widespread loss of H3K9me2 and an

Figure 2 Canonical epigenetic patterns. H3K4me3 is associated with actively transcribed promoters, as well as CpG islands, irrespective of tran-
scription. H3K27ac demarks active promoters and enhancers, while associated transcribed genes bodies are enriched for H3K36me3. Repressed
regions of the genome are typically associated with either H3K9me2/3 or H3K27me3. DNA is generally highly methylated throughout the genome,
with the exception of regulatory regions marked by H3K4me3 and/or H3K27ac, and H3K27me3- domains. Methylated CpGs are depicted as closed
circles and unmethylated CpGs are open circles.
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Figure 3 Epigenetic reprogramming in mouse development. (A) Epigenetic patterns are shown for non-growing oocytes and fully grown germinal ves-
icle (GV) oocytes. In non-growing oocytes, DNA is almost completely unmethylated, H3K4me3 is exclusively enriched at active promoters and
H3K27me3 is spanning broad non-canonical domains. By the fully grown GV stage, DNA across transcribed gene bodies is fully methylated and
H3K4me3 has accumulated in broad domains throughout untranscribed regions. (B) Schematic of epigenetic reprogramming events during gametogenesis
and embryogenesis. DNA methylation is erased in primordial germ cells and re-established earlier in the sperm of males and after birth in oocytes in
females. Oocytes acquire lower overall methylation than sperm, with non-canonical genome-wide distribution. After fertilisation, the paternal DNA is
rapidly demethylated, while maternal DNA methylation is passively lost over several cell divisions. DNA methylation is re-acquired in canonical patterns
in the post-implantation embryo, concomitant with lineage specification. H3K4me3 is non-canonically distributed in the oocyte, is rapidly erased after fer-
tilisation, and becomes canonically enriched at CpG islands and active promoters. Very few domains retain H3K4me3-marked histones in the protamine
exchange in sperm and subsequently through the re-acquisition of histones in the zygote. H3K27me3 acquires a non-canonically broad distribution in
PGCs in the absence of other repressive epigenetic marks. This pattern is relatively maintained throughout oogenesis, while very few H3K27me3-marked
histones are retained in the sperm protamine exchange. In the pre-implantation embryo, H3K27me3-transmitted from the gametes is progressively lost,
with pronounced loss at CpG-rich regions. H3K27me3 is then re-established in a canonical pattern in the post-implantation embryo. Chromatin accessib-
ility is contrastingly and exceptionally open in the oocyte and compact in the sperm. The open chromatin state of maternal DNA is gradually resolved in
the pre-implantation embryo, while the compact packaging of paternal DNA is rapidly resolved with incorporation of histones in the zygote. Topological
associated domains (TADs) are nearly absent in the mature oocyte and become gradually re-instated in the pre-implantation embryo.
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increase of H3K27me3 (Seki et al., 2005). PGCs then subsequently
progress either into spermatogenesis or oogenesis, depending on the
sex of the embryo.

In early sperm progenitors (prospermatogonia), DNA methylation
begins to be re-established before birth (E15.5–E18.5) and is com-
pleted at the termination of meiotic pachytene after birth (D10–19)
(Hajkova et al., 2002) (Fig. 3). DNA methylation is essential for mei-
otic progression (Bourc’his and Bestor, 2004). Methylation of sperm
DNA broadly resembles other cell types in that it is almost uniformly
methylated with the exception of regulatory regions. While the DNA
is initially wrapped around histones in spermatocytes, the vast major-
ity of histones are replaced, first with non-canonical histone variants
and transition proteins, which are subsequently replaced with prota-
mines during maturation, allowing the DNA to be tightly packaged
into the compact sperm head (Balhorn et al., 2000; Bao and Bedford,
2016). The functional relevance of the ~1% of histones that are
retained in mature sperm is still debated. It seems that at least a sub-
set of these histones reside at CpG-rich promoters with low DNA
methylation, although it has been suggested that the vast majority are
retained in gene poor regions (Erkek et al., 2013; Carone et al.,
2014). Residual histones in sperm support the possibility of interge-
nerational or possibly transgenerational inheritance of an intrinsic epi-
genetic memory programme through the male germline. Indeed, loss
of H3K4me2 in sperm caused by forced expression of an H3K4-
demethylase has been shown to impair the viability of offspring in
subsequent generations (Siklenka et al., 2015).

Shortly after the migration of germ cells to the gonad in females,
there is massive mitotic expansion of this germ cell pool (E11.5). At
E13.5, these oocyte precursors enter meiotic arrest in prophase I
and remain quiescent in the developing ovary until after birth when
they are assembled into primordial follicles. These cells represent the
oocyte pool for the female’s entire lifespan, only a small subset of
which will ever become fully mature and ovulate, as the vast majority
will undergo apoptosis.

During folliculogenesis, oocytes undergo de-novo DNA methylation
in the phase of oocyte growth (Hiura et al., 2006), mediated by the
de-novo DNA methyltransferases DNMT3A and cofactor DNMT3L
(Bourc’his et al., 2001; Kaneda et al., 2004) (Fig. 3). Unlike the highly
methylated sperm, oocyte methylation is distinctly located over tran-
scribed gene bodies (Kobayashi et al., 2012; Veselovska et al., 2015)
in a pattern that is unique among mammalian cell types. The acquisi-
tion of DNA methylation across transcribed regions has been sug-
gested to be dependent on the modification of associated histones,
including acquisition of H3K36me3 and exclusion of H3K4me3 by
H3K4 demethylases KDM1A/B (Stewart et al., 2015; Gahurova et al.,
2017). DNMT1 and UHRF1 are required to complete de-novo methy-
lation, which is unusual as this protein complex normally functions in
the context of maintenance methylation (Shirane et al., 2013;
Maenohara et al., 2017). Oocytes also have unusually high levels of
methylation of cytosines outside of a CpG context. The functional
significance of this ‘non-CpG’ methylation is unclear and may merely
reflect the protracted period during which the de-novo methyltrans-
ferases are active (Tomizawa et al., 2012; Shirane et al., 2013).
Curiously, DNA methylation in general has no obvious function in
oocytes, as loss of DNA methylation through conditional deletion of
Dnmt3a or Dnmt3L has no effect on oogenesis (Kaneda et al., 2004;
Bourc’his et al., 2001).

Intriguingly, across the unmethylated fraction of the oocyte gen-
ome, histone modification patterns are also non-canonical in their
distribution. A histone mark typically associated with active promo-
ters, H3K4me3, accumulates in a transcription-independent manner
at unusually broad, inter-genic domains (Dahl et al., 2016; Zhang
et al., 2016; Hanna et al., 2018) (Fig. 3). This non-canonical pattern of
H3K4me3 has been attributed to the activity of a single H3K4
methyltransferase, MLL2 and appears to be, at least partially, driven
by underlying CpG density (Hanna et al., 2018). Paradoxically, acqui-
sition of non-canonical domains of H3K4me3 appears to be required
for genome-wide transcriptional silencing associated with oocyte mat-
uration and resumption of meiosis (Andreu-Vieyra et al., 2010; Dahl
et al., 2016; Zhang et al., 2016). Repressive H3K27me3, is also found
broadly throughout unmethylated genomic regions and appears to be
actively excluded from transcribed regions throughout oogenesis
(Zheng et al., 2016) (Fig. 3). The role of H3K27me3 in oogenesis is
not clear, but it appears to be required to establish a non-canonical
form of imprinting in the early embryo (Inoue et al., 2017a), discussed
in more detail below.

The oocyte also has a very distinct chromosome architecture com-
pared to other cell types. Chromatin undergoes major conform-
ational changes during the final stages of maturation in the germinal
vesicle (GV) oocyte, from a non-surrounded nucleolar-like body
(NSN) to a surrounded (SN) state (Mattson and Albertini, 1990;
Zuccotti et al., 1995) accompanying transcriptional silencing. In GV
oocytes, Hi-C studies have found chromosome interactions such as
TADs and chromosome loops, but the strength of these interactions
begin to decrease as the oocytes progress through the NSN to SN
transition (Flyamer et al., 2017). With resumption of meiosis, oocytes
appear to lose all higher-order chromatin structures, such that meta-
phase II (MII) oocytes show a uniform interaction pattern along entire
chromosomes that appears to be locus independent (Ke et al., 2017;
Du et al., 2017).

The distinct epigenetic patterns observed in the oocyte suggest
that there may be an uncoupling of some of the conventional
mechanisms of gene regulation. This uncoupling might be a require-
ment to allow the oocyte to maintain necessary gene regulation,
while simultaneously establishing an epigenome capable of facilitating
the early events of embryogenesis.

From germ cells to the embryo
In the zygote, the maternal and paternal genomic contributions are
reprogrammed distinctively and these dynamics are required for the
acquisition of totipotency and zygotic genome activation (ZGA).
Immediately after fertilisation, the paternal protamines are replaced
by maternal histones accompanied by widespread erasure of almost
all paternal DNA methylation. This was proposed to be active
demethylation mediated through TET activity (Gu et al., 2011; Inoue
and Zhang, 2011), but recent data challenges this finding (Amouroux
et al., 2016) and thus the mechanism of this initial erasure remains
unresolved (Hill et al., 2014). Conversely, maternal DNA methylation
is largely preserved at this stage. However, it does appear that the
widespread, non-canonical maternal H3K4me3 needs to be repro-
grammed in order for the embryo to initiate ZGA and this occurs
through activity of H3K4 demethylases KDM5B and KDM1A (Zhang
et al., 2016; Dahl et al., 2016; Ancelin et al., 2016).
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Long-range and local chromosome interactions are not immedi-
ately restored in the post-meiotic zygote, as is the case for mitotic
cells. Intriguingly, re-establishment of higher-order chromatin struc-
ture occurs independently of ZGA and cell cycle, suggesting that add-
itional factors are required for re-establishing these interactions (Du
et al., 2017). Chromosome compartmentalisation in zygotes is asso-
ciated with DNA methylation, chromatin accessibility and H3K27me3,
but not broad maternal H3K4me3 (Ke et al., 2017).

As the embryo develops towards the blastocyst stage, DNA
methylation is passively lost from both the maternal and paternal gen-
omes, resulting in the erasure of most gametic DNA methylation.
There are a few thousand domains that are protected from this eras-
ure; these include, but are not limited to, imprinted domains and
some classes of repetitive elements (Smallwood et al., 2011). Similar
to DNA methylation, repressive H3K27me3 also appears to be pro-
gressively lost during pre-implantation development, with maternal
H3K27me3 being preferentially retained at distal, inter-genic regions
(Zheng et al., 2016). The mechanism for preferential loss or retention
of maternal H3K27me3 at specific loci remains unclear. In Drosophila,
maternally inherited H3K27me3 regulates the activation of enhancers
in the early embryo (Zenk et al., 2017). Considering the correlation
between compartmentalisation, chromatin accessibility and H3K27me3
(Ke et al., 2017), loss of H3K27me3 may also be required for the
establishment of promoter–enhancer interactions in mammalian
pre-implantation development. H3K9 di- and tri-methylation are
repressive histone modifications that are tightly associated with
DNA methylation and are bound by heterochromatin protein 1
(HP1) (Bannister et al., 2001; Lachner et al., 2001); however, there
is currently no molecular data evaluating the dynamics of H3K9
methylation in oocytes or early embryogenesis. Immunofluorescence
shows that H3K9me3, typically associated with silenced repetitive DNA,
is predominantly inherited at maternal peri-centromeres in the early
embryo (Puschendorf et al., 2008). As the paternal chromatin structure
is newly re-established with the re-integration of histones, the peri-
centromeres are first silenced by H3K7me3 and by the 8-cell stage simi-
larly acquire H3K9me3 (Puschendorf et al., 2008). In addition to
these repetitive regions, H3K9me2 and H3K9me3 may be required
to maintain silencing and protect parental DNA methylation at
imprinted domains (Nakamura et al., 2007; Quenneville et al.,
2011), as discussed in more detail below. Future characterisation of
the genomic distribution of H3K9me2/3 will be essential to deter-
mine the role for these marks in early gene regulation and protec-
tion of germline DNA methylation.

In addition to DNA methylation and histone remodelling in pre-
implantation development, chromatin structure appears to be pro-
gressively re-organised. ATAC-seq (Wu et al., 2016) and Hi-C
experiments (Du et al., 2017; Flyamer et al., 2017; Ke et al., 2017)
showed that zygotes have a very relaxed chromatin state, which is
gradually resolved to a more canonical state by the blastocyst stage,
a finding that is consistent with previous microscopy-based observa-
tions (Ahmed et al., 2010; Burton and Torres-Padilla, 2014). With
the re-establishment of higher-order chromatin structure in the pre-
implantation embryo, interactions between promoters and enhancers
become defined (Du et al., 2017; Ke et al., 2017) and the number of
DNase hypersensitivity sites increases (Lu et al., 2016).

Together, the epigenetic profiles explored to date in pre-
implantation embryos demonstrate that the chromatin regulatory

landscape is dynamic during the transition from a totipotent to a
pluripotent embryo with refinement of chromatin compartments and
localisation of H3K4me3 to promoters. Paradoxically, this transition
is accompanied by almost widespread loss of repressive DNA methy-
lation and H3K27me3, suggesting that targeting of transcriptional
machinery in pre-implantation embryo is not facilitated by these pro-
tective repressive marks.

Lineage specification in post-implantation
development
Once the embryo implants, there are widespread morphological
changes as cell lineages differentiate, accompanied by epigenetic pro-
gramming. The role of epigenetic regulation during this lineage specifi-
cation is complex and still not fully understood. Many studies
investigating epigenetic mechanisms in lineage specification thus far
have used transgenic mouse models to identify key regulators; in-vivo
data showing the localisation and dynamics of epigenetic modifica-
tions remain scarce.

There is substantial evidence for a function for repressive chroma-
tin marks in reinforcing lineage specification. During post-implantation
development, there is de-novo acquisition of repressive DNA methy-
lation (Okano et al., 1999), H3K9me2 (Zylicz et al., 2015) and
H3K27me3 (Zheng et al., 2016), all of which are essential for
appropriate lineage development. Genetic ablation in mice of the
H3K27 methyltransferase EZH2 (O’Carroll et al., 2001), H3K9
methyltransferase EHMT2 (also known as G9A) (Tachibana et al.,
2002, 2005) or de-novo DNA methyltransferase DNMT3B (Okano
et al., 1999) all lead to developmental abnormalities and lethality
in mid-gestation.

In the post-implantation embryo, repressive H3K27me3 is targeted
de novo to transcriptionally silent promoters, including CpG islands,
and gene bodies, by Polycomb repressive complex proteins (Liu
et al., 2016; Zheng et al., 2016) and is required to keep these genes
transcriptionally repressed at this stage (Yang et al., 2018). This pro-
gramming corresponds to a widespread switch from the maternally
inherited enrichment pattern at silent inter-genic B compartments in
the pre-implantation embryo to the regulatory domains of active A
compartments in the post-implantation embryo (Zheng et al., 2016;
Ke et al., 2017). At many regulatory domains, H3K27me3 can be
found together with H3K4me3 in a chromatin state referred to as
bivalent. Bivalent domains are enriched at unmethylated, but silent,
promoters of developmental genes in the post-implantation epiblast
and extra-embryonic ectoderm (Rugg-Gunn et al., 2010). Bivalent
chromatin is thought to poise these genes for rapid activation or
repression during lineage specification in the developing embryo
(Bernstein et al., 2006). Indeed, it has been shown during migration
and development of neural crest cells that bivalent genes are embed-
ded in large repressive Polycomb domains in which they maintain
plasticity and chromatin accessibility in all subpopulations (Minoux
et al., 2017). Upon differentiation, decreasing H3K27me3 and
increasing H3K4me2 then leads to cell type-specific gene expression
(Minoux et al., 2017). While the genomic location and resolution of
bivalent domains has now been characterised in vivo (Minoux et al.,
2017; Zheng et al., 2016), paralleling the observations made in cul-
tured cells, it remains unclear how H3K27me3 is targeted in the
post-implantation embryo.
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Unlike the targeted gain of H3K27me3 in the post-implantation
embryo, DNA methylation is established across ~80% of the embryonic
genome. Yet despite its widespread occurrence, DNA methylation
does not appear to be necessary to direct the transcriptional pro-
gramme in early embryos, but rather to reinforce lineage decisions
(Zhang et al., 2018). As such, there are a few key domains that become
differentially methylated between the post-implantation embryonic and
extra-embryonic compartments to prevent aberrant trans-differentiation
(Ng et al., 2008; Zhang et al., 2018). Similarly, differential methylation
was observed at functionally relevant enhancer elements between gas-
trulating tissues, suggesting that this mechanism may also reinforce lin-
eage commitment within the embryo (Zhang et al., 2018).

Interestingly, despite dramatic acquisition of H3K9me2 in post-
implantation development, it is not required for the genome-wide
gain of DNA methylation, but rather appears to be important for a
small subset of CpG-rich domains (Auclair et al., 2016). As such,
deposition of H3K9me2 is only necessary for efficient repression of a
few germline-specific genes, mediated by silencing of their promoters
and/or enhancers (Zylicz et al., 2015; Auclair et al., 2016).
Furthermore, H3K9me2 deposited by EHMT2 is not required for
silencing the vast majority of repetitive elements (Zylicz et al., 2015).
Together these findings suggest that H3K9me2 is ubiquitously asso-
ciated with methylated DNA in the post-implantation embryo, but its
functional role is rather specialised. This may be attributable to
redundancies in repressive epigenetic marks or to these repressive
modifications acting not as upstream transcriptional regulators but
rather as reinforcements for transcriptionally inactive regions of
DNA.

Active chromatin marks, such as H3K4me3 and H3K27ac, also
likely play a role in transcriptional regulation during lineage specifica-
tion. Active histone modifications can promote transcription by facili-
tating the accessibility of regulatory regions to transcription factors,
but whether these marks are required for establishing a transcrip-
tional programme or for merely reinforcing it remains contentious
(Howe et al., 2017). For example, the level of H3K4me3 at promo-
ters correlates with transcription and transcriptional machinery inter-
acts with H3K4me3; however, in many contexts, ablation of
H3K4me3 has a limited effect on transcription (Briggs et al., 2001;
Clouaire et al., 2012; Margaritis et al., 2012). The predominant H3K4
methyltransferase in the pre-implantation embryo is MLL2, while in
the post-implantation embryo it is SETD1A (Bledau et al., 2014).
However, due to the overlapping redundancy of the six H3K4
methyltransferase proteins, it has been challenging to interpret the
role for each methyltransferase and, in turn, H3K4me3 during
embryogenesis (Bledau et al., 2014). Embryos deficient in H3K4
methyltransferases MLL1 and MLL2 both arrest in mid-gestation and
show patterning defects likely due to aberrant expression levels of a
subset of the Hox genes (Ernst et al., 2004; Glaser et al., 2006), sug-
gesting that MLL1/2-mediated H3K4me3 is required to express
appropriate levels of these genes. The post-implantation upregula-
tion of SETD1A appears to have a central role in lineage specifica-
tion, as it is required to complete gastrulation (Bledau et al., 2014),
suggesting that it may be important for establishing transcriptional
patterning.

During differentiation, acquisition of H3K27ac at enhancers is asso-
ciated with the formation of enhancer-promoter interactions and
induction of their target genes (Wang et al., 2016; Rubin et al., 2017).

Knockout in mice of the H3K27 acetyltransferases CBP or p300
(which also acetylate other histone residues and interact with many
transcription factors themselves) leads to mid-gestation embryonic
lethality (Yao et al., 1998). Embryos suffer from neural tube defects
and aberrant cell proliferation (Yao et al., 1998); surprisingly, this sug-
gests that H3K27ac is not required for establishing the transcriptional
programming during early lineage specification. This is consistent with
the finding that the effect of histone acetylation on chromatin access-
ibility is rather subtle (Wang et al., 2000). Therefore, H3K27ac may
act synergistically to increase chromatin accessibility at active regula-
tory elements, but likely is not sufficient to activate a locus.

Together these studies suggest that several epigenetic marks, in
particular H3K27me3 and H3K4me3, are required for lineage specifi-
cation, but for the most part it appears that epigenetic modifications
may reinforce lineage commitment rather than direct it. As new sin-
gle/low-cell molecular approaches are implemented to evaluate gene
regulation and epigenetic patterning through this important develop-
mental window, new insights into the molecular hierarchy of gene
regulation may be revealed.

Dynamics of genomic imprinting during
embryonic development
As discussed above, a subset of genomic loci maintain gamete DNA
methylation throughout epigenetic reprogramming in the embryo.
These domains are termed germline differentially methylated regions
(gDMRs) and their mono-allelic parent-of-origin DNA methylation per-
sists through cell differentiation and into adulthood. GDMRs can regu-
late nearby genes, resulting in mono-allelic gene expression, termed
genomic imprinting. In mice, there are 23 maternal and three paternal
gDMRs regulating the gene expression of ~151 genes (https://www.
mousebook.org/imprinting-gene-list). Collectively, imprinted genes are
essential for development, as demonstrated by embryo manipulation
experiments used to generate embryos with exclusively maternal or
paternal genomes (McGrath and Solter, 1984; Surani et al., 1984).
These embryos showed severe developmental and placental defects
and do not survive.

There has been extensive investigation into the mechanisms allow-
ing gDMRs to evade the DNA methylation erasure in the pre-
implantation embryo. Several essential proteins have been identified,
including DNA-binding proteins (ZFP57, UHRF1), key interactors
(TRIM28/KAP1) and histone binding proteins (PGC7/Stella) (Bostick
et al., 2007; Sharif et al., 2007; Li et al., 2008; Quenneville et al., 2011;
Messerschmidt et al., 2012; Nakamura et al., 2012). These appear
to assemble in a complex that facilitates recruitment of DNMT1
and the H3K9 methyltransferase SETDB1 and exclusion of DNA
demethylation enzymes (TETs) at imprinted gDMRs (Messerschmidt,
2012).

A recent study has also shown that genomic imprinting can be con-
ferred by another epigenetic mark in addition to DNA methylation:
maternal H3K27me3 inherited from the oocyte (Inoue et al., 2017a).
Inoue and colleagues (2017a) identified several domains where the
maternal allele was silenced by H3K27me3, thereby mediating
paternal-specific gene expression. Intriguingly, this non-canonical form
of imprinting was only able to be maintained in extra-embryonic
lineages post-implantation (Inoue et al., 2017a), suggesting embryonic
lineages effectively reprogram the parental bias at these domains.
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Human development: how
conserved are mechanisms
between mouse and human?
Using low-input and single-cell sequencing techniques, the first
advances with human samples were made in recent years, allowing us
to compare the transcriptome, methylome and chromatin accessibil-
ity of human gametes and early embryos with what is known from
mouse models. Other technologies, such as Hi-C, are likely to follow
soon, but current ChIP-seq methods still require at least one hundred
cells, making progress with human oocytes and early cleavage stage
embryos more challenging. So far, studies on human development
have shown that, in general, DNA methylation patterns and repro-
gramming events are relatively conserved between mouse and human
(Table II). This supports the mouse as a model organism for elucidat-
ing general mechanisms of epigenetic reprogramming in early devel-
opment. However, when looking in detail, differences can be
observed, likely with functional consequences (Table II). In the fol-
lowing sections, we highlight the known differences between human
and mouse.

Gametes
Similar to mice, human PGCs undergo almost complete erasure of
DNA methylation during early embryonic development (Guo et al.,
2015, 2017b; Gkountela et al., 2015). Given the difficulties in obtain-
ing samples from late gestation foetal gonads and immature gametes,
the resetting of DNA methylation during spermatogenesis and
oogenesis remains unexplored. However, the DNA methylome of
human mature gametes, gives us some insights into epigenetic pro-
gramming events during gametogenesis.

There are substantial physiological differences between mammalian
species during spermatogenesis (Ehmcke et al., 2006), and yet, global
epigenetic trends in mature sperm, such as DNA hyper-methylation
in inter-genic regions and the histone-to-protamine exchange, are
similar (Molaro et al., 2011). However, some aspects of the de-novo
DNA methylation mechanisms may differ between mouse and
human. Recently, a novel DNA methyltransferase (DNMT3C) was
discovered, specifically active at young transposable elements during
mouse spermatogenesis (Barau et al., 2016). In male mice, this
enzyme is crucial for fertility, but this gene is not present in the
human genome. Furthermore, while DNMT3L is essential for sperm-
atogenesis in mice (Bourc’his et al., 2001), DNMT3L appears to not
be expressed at any time during human spermatogenesis (Marques
et al., 2011). While the replacement of histones by protamines is
conserved, ~10-fold more nucleosomes appear to be retained in
human sperm than in mouse sperm (Hammoud et al., 2009;
Brykczynska et al., 2010). Retained histones may therefore be more
likely to permit paternal epigenetic regulation of transcription in the
pre-implantation embryo (Carrell, 2012; Miller et al., 2010), although
this remains to be shown.

The first study to report DNA methylation patterns in human
oocytes used RRBS, which mainly captures CpG islands and other
CG-rich sequence and covers 5–10% of the genome (Guo et al.,
2014). Since then, a genome-wide approach on pools of oocytes and
two single-cell studies have been published, all together giving us a

very comprehensive understanding of the human fully grown oocyte
methylome (Okae et al., 2014; Yu et al., 2017; Zhu et al., 2018).
Human oocytes have a higher average DNA methylation level than
mice (~54% in humans versus ~40% in mice) (Data source: PRJDB18
and PRJDB4030) (Kobayashi et al., 2012; Okae et al., 2014) (Fig. 4A).
Despite the increase in fully methylated regions in human oocytes, it
is still predominantly restricted to gene bodies (Fig. 4B). Indeed, a lar-
ger proportion of genes are methylated in human oocytes than in
mouse (Fig. 4C); however, this is likely not due to an overall increase
in transcription in human oocytes, as a similar number of transcripts
were detected (FPKM>1) (Data source: GSE44183) (Xue et al.,
2013). These findings suggest either that DNMTs may be more active
in human oocytes or that the relatively longer duration of oocyte
maturation in humans compared to mouse (~150 days vs. 21 days,
respectively) permits more extensive accumulation of DNA methyla-
tion (Gougeon, 1986; Hiura et al., 2006). Notably, DNMT3L, a co-
factor of DNMT3A that is essential for de-novo methylation in mouse
oocytes (Bourc’his et al., 2001; Smallwood et al., 2011; Shirane et al.,
2013), is not expressed in human oocytes (Guo et al., 2014; Okae
et al., 2014). It is currently unknown if DNMT3A can function inde-
pendently in the human oocyte or if it is supported by other factors,
like DNMT3B.

From germ cells to the embryo
After fertilisation, there is global reprogramming of DNA methyla-
tion in the human pre-implantation embryo with lowest levels
attained at the blastocyst stage (Guo et al., 2014; Okae et al., 2014;
Smith et al., 2014; Zhu et al., 2018). The paternal genome is actively
demethylated first and more substantially, whereas the maternal
genome shows maintenance of much of the oocyte-derived methy-
lation (Guo et al., 2014; Okae et al., 2014; Zhu et al., 2018). The
retention of maternal methylation is considerably more substantial
in the human than in the mouse, suggesting there is less passive
demethylation and that perhaps DNMT1 has a more active role in
the human pre-implantation embryo (Fig. 4A and B). As discussed in
the section above, in mice, gDMRs are protected from passive
demethylation by a complex including ZFP57 (Messerschmidt,
2012). Interestingly, unlike mice, ZFP57 is not expressed in human
oocytes (Okae et al., 2014), but is still required for maintenance of
imprinting during human development (Mackay et al., 2008). Thus
ZFP57 is required for maintaining imprinted gDMRs in both mouse
and human, but the developmental stage for its requirement differs.

A profound difference between human and mouse during early
pre-implantation development is the discrepancy in timing of ZGA.
Whereas the mouse genome undergoes the major wave of ZGA at
the 2-cell stage, in human embryos this occurs at the 8-cell stage
(Braude et al., 1988; Aoki et al., 1997). Despite these differences in
timing, a recent study has shown that pre-ZGA embryos have wide-
spread open chromatin in both mouse and human, and this unusual
chromatin landscape is rapidly remodelled upon ZGA (Wu et al.,
2018). Importantly, using an inhibitor of transcription (α-amanitin) in
mouse and human embryos, they were able to show that this trans-
ition of chromatin accessibility was in fact dependent on transcrip-
tional activation (Wu et al., 2018). The widespread open chromatin
pattern in transcriptionally silent mouse zygotes has been shown to
be linked to non-canonical patterning of H3K4me3 in the oocyte
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Table II Comparative evaluation of epigenetic features and processes evaluated during human and mouse
development to date.

Tissue/cell
type

Epigenetic
feature/process

Mouse Human Reference Relative
similarity

PGCs DNA methylation
erasure

Global DNA methylation and
imprinted DMRs are erased
upon PGC specification

Global DNA methylation and imprinted
DMRs are erased upon PGC
specification

Guibert et al. (2012),
Seisenberger et al. (2012),
Guo et al. (2015),
Gkountela et al. (2015),
Guo et al. (2017b)

Sperm DNA methylation
patterns in sperm

~80% genome-wide
methylation, with unmethylated
regulatory domains

~75% genome-wide methylation, with
unmethylated regulatory domains

Oakes et al. (2007),
Kobayashi et al. (2012),
Guo et al. (2014)

De novo DNMTs in
spermatogenesis

DNMT3A, 3L and 3C are
essential for spermatogenesis

Unknown; DNMT3A, 3B and 1 are
dynamically expressed during
spermatogenesis, but there is no
expression of DNMT3L and no
orthologous gene for DNMT3C

Bourc’his et al. (2001),
Kaneda et al. (2004),
Barau et al. (2016),
Marques et al. (2011)

Retention of
modified histones
in sperm

~1% genome-wide, enriched at
developmental promoters

~10% genome-wide, enriched at
developmental promoters

Brykczynska et al. (2010),
Hammoud et al. (2009)

Oocyte DNA methylation
patterns in the
oocyte

~40% genome-wide
methylation and localised
predominantly to expressed
gene bodies

~54% genome-wide methylation and
localised predominantly to gene bodies

Okae et al. (2014),
Kobayashi et al. (2012)

De novo DNMTs in
oogenesis

DNMT3A and 3L are essential
for establishing DNA
methylation in oocytes

Unknown; in human oocytes, DNMT1,
3A and 3B are expressed, but not
DNMT3L

Bourc’his et al. (2001),
Smallwood et al. (2011),
Shirane et al. (2013),
Guo et al. (2014),
Okae et al. (2014)

Histone
modification
patterns

Non-canonical distributions of
both H3K4me3 and
H3K27me3 across regions
lacking DNA methylation

Unknown Zhang et al. (2016), Dahl
et al. (2016), Hanna et al.
(2018), Zheng et al. (2016)

Higher order
chromatin
organisation

Weak TADs and loops and a
loss of A/B compartments
upon transcriptional silencing

Unknown Flyamer et al. (2017), Du
et al. (2017), Ke et al. (2017)

Pre-
implantation
embryo

DNA methylation
dynamics in pre-
implantation
development

Active loss of paternal
methylation and passive loss of
maternal methylation; regions
of DNA methylation turnover

Active loss of paternal methylation and
minimal passive loss of maternal
methylation; regions of DNA
methylation turnover

Guo et al. (2014), Okae et al.
(2014), Smith et al. (2014),
Zhu et al. (2018)

ZFP57-mediated
protection of
imprinted DMRs

Maternal/oocyte contribution
of ZFP57 is required to protect
imprints in pre-implantation
development

ZFP57 is required to protect imprints,
but it is not expressed in human
oocytes; expression is initiated in the
pre-implantation embryo

Quenneville et al. (2011), Li
et al. (2008), Okae et al.
(2014), Mackay et al. (2008),
Sanchez-Delgado et al.
(2016b)

Chromatin
configuration post-
fertilisation

Widespread open chromatin
that resolves upon ZGA

Widespread open chromatin that
resolves upon ZGA

Wu et al. (2016), Wu et al.
(2018)

Histone
modification
dynamics

Non-canonical maternal
H3K4me3 resolves to canonical
pattern, while maternal
H3K27me3 is predominantly
erased

Unknown Zheng et al. (2016), Zhang
et al. (2016), Dahl et al.
(2016)

Higher order
chromatin
organisation

Canonical patterns of TADs,
loops, and A/B compartments
restored during early
embryogenesis

Unknown Flyamer et al. (2017), Ke et al.
(2017), Du et al. (2017)

Continued
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Table II Continued

Tissue/cell
type

Epigenetic
feature/process

Mouse Human Reference Relative
similarity

Blastocyst DNA methylation
patterns in
blastocyst-stage
embryos

Maintenance of imprinted
DMRs and low levels of oocyte
methylation patterns

Maintenance of imprinted DMRs and
persistent oocyte methylation patterns

Kobayashi et al. (2012), Okae
et al. (2014), Guo et al.
(2014), Zhu et al. (2018)

Post-
implantation
embryonic
tissues

Number of
imprinted genes

~125–151, with numerous
imprinted gene clusters

~50–90, with numerous imprinted gene
clusters

Crowley et al. (2015), Babak
et al. (2015), Sanchez-
Delgado et al. (2016a),
Santoni et al. (2017),
Andergassen et al. (2017)

Epigenetic
regulation of
imprinted gene
clusters

Non-coding RNAs and
differential DNA methylation
regulate imprinted gene
expression

Non-coding RNAs and differential DNA
methylation regulate imprinted gene
expression

Reviewed in Reik and Walter
(2001)

X chromosome
inactivation (XCI)
in embryogenesis

Random XCI, mediated by
opposing expression of Xist and
Tsix

Random XCI, mediated by expression of
XIST from the inactive X

Reviewed in Furlan and
Rougeulle (2016)

Genetic
polymorphisms
influence imprinted
gene expression

Cis-acting strain-specific SNPs
can influence allelic bias in
imprinted gene expression

Cis-acting SNPs can influence allelic bias
in imprinted gene expression

Crowley et al. (2015),
Andergassen et al. (2017),
Babak et al. (2015), Garg
et al. (2012)

Tissue-specific
imprinted gene
expression

Several imprinted genes are
tissue-specific

Several imprinted genes are tissue-
specific

Crowley et al. (2015),
Andergassen et al. (2017),
Babak et al. (2015)

Post-
implantation
extra-
embryonic
tissues

Genome-wide
methylation
patterns

Extra-embryonic tissues are
characterised by large partially
methylated domains

Extra-embryonic tissues are
characterised by large partially
methylated domains

Rossant et al. (1986),
Schroeder et al. (2013),
Decato et al. (2017)

XCI in extra-
embryonic tissues

Imprinted inactivation of the
paternal X chromosome,
conferred by repression of
maternal Xist by oocyte-
derived H3K27me3

Random XCI Takagi and Sasaki (1975),
Migeon and Do (1979),
Penaherrera et al. (2003),
Inoue et al. (2017b)

Abundance of
placental-specific
imprinted gDMRs

None reported >1500 placental-specific gDMRs
reported

Hanna et al. (2016), Hamada
et al. (2016), Sanchez-
Delgado et al. (2016a)

Polymorphic
imprinted DMRs

Unknown Pervasive in extra-embryonic tissues Hanna et al. (2016), Sanchez-
Delgado et al. (2016a)

Non-canonical
imprinting

Several non-canonical placenta-
specific imprinted genes
mediated by maternal
H3K27me3

Unknown Inoue et al. (2017a)

Large placenta-
specific imprinted
domains: KvDMR

Distal placental-specific
imprinting of genes in the
KvDMR locus

While the canonical imprinting at
KvDMR is conserved, distal genes are
not imprinted in placenta

Lewis et al. (2004); Frost
et al. (2010)

Large placenta-
specific imprinted
domains:
Chromsome 19
micro-RNA cluster

No orthologous region Chromosome 19 micro-RNA cluster is
imprinted specifically in placenta

Noguer-Dance et al. (2010)

Colour key: green – highly similar; yellow – similar, but with key differences identified; red – highly discrepant; grey – unknown in mouse or human.
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(Dahl et al., 2016; Ancelin et al., 2016; Zhang et al., 2016), and while
ChIP-seq data is currently unavailable for human embryos, one can
speculate that similar mechanisms may be involved.

In pre-implantation development, there are notable differences in
the transcriptome of mouse and human embryos (Xue et al., 2013;
Yan et al., 2013; Blakeley et al., 2015). Although similar transcription
factors appear to function in mouse and human pre-implantation
embryos, the temporal regulation and the transcriptional networks
they regulate can differ, suggesting there are divergent aspects of
early development (Blakeley et al., 2015; Fogarty et al., 2017; Wu
et al., 2018). It is not clear yet if the epigenome may be instructive
for some of these transcriptional differences. However, one study
found that there was an increasing correlation between transcription
and promoter methylation from the zygotic stage to post-
implantation, especially after ZGA, in the human embryo (Guo et al.,
2014). This suggests that the retention of maternal DNA methylation
in the human embryo may play a role.

Initially, pre-implantation development was thought to be exclu-
sively a time of DNA methylation erasure (Smith et al., 2012); how-
ever, recent studies in mouse and human show that there is de-novo
methylation during pre-implantation development (Amouroux et al.,
2016; Zhu et al., 2018). Thus far, this phenomenon has been best
described in human development. Zhu and colleagues found two
phases of de-novo methylation: first, the paternal genome in the zyg-
ote between the early- to mid-pronuclear stage, just after a major
wave of active demethylation; second, between the 4- and 8-cell
stage coinciding with ZGA. Regions gaining methylation are enriched

in repetitive elements, especially evolutionary younger classes of
SINEs and LINEs. The targeting of de-novo methylation to potentially
more active repeat elements has been suggested to repress their
transcriptional activity to avoid mobilisation and safeguard genome
stability during ZGA (Smith et al., 2014). However, methylation of
these regions was surprisingly transient, as they became demethy-
lated again in the following developmental stages (Zhu et al., 2018).
These findings highlight the unexpectedly complex methylation
dynamics in the early embryo.

Post-implantation development
The epigenetic regulation of lineage specification in the post-
implantation embryo is largely unexplored in humans due to chal-
lenges in obtaining samples. Our current knowledge of epigenetics in
post-implantation development is largely extrapolated from human
embryonic stem cell differentiation systems, which have provided
important insights into tissue differentiation, as discussed elsewhere
(Xie et al., 2013). However, recent advances of in-vitro culture of
human embryos have enlivened the ethical discussion about embryo
culture past the implantation-stage blastocyst (Weimar et al., 2013;
Shahbazi et al., 2016), and may eventually allow the study of epigen-
etics in post-implantation development in vivo.

Genomic imprinting
The majority of imprinted gene clusters identified in mouse are con-
served in their methylation status, allelic expression and synteny in

Figure 4 Comparison of DNA methylation in human and mouse development. (A) Beanplots showing the distribution of DNA methylation per-
centages of 100-CpG running windows (minimum coverage of 10 CpGs) in human (top) and mouse (bottom) GV oocytes, sperm and blastocysts,
with human oocytes and blastocysts being notably more methylated than mouse oocytes and blastocysts, respectively. (B) Screenshot of DNA
methylation at the KvDMR imprinted locus in human (top) and mouse (bottom) GV oocytes, sperm and blastocysts. The locus illustrates the
increased number of regions that are fully methylated in human compared to mouse oocytes. Additionally, the human blastocyst retains the maternal
pattern of methylation more substantially than the mouse blastocyst. (C) Proportion of orthologous genes that are methylated in human and mouse
oocytes. Orthologous genes were defined by ENSEMBL BioMart and categorised as highly expressed (FPKM>10), intermediately expressed
(1<FPKM<10) or lowly expressed (FPKM<1). These genes were then evaluated for overlap with fully methylated (>75%) and intermediately methy-
lated (25–75%) 100-CpG windows; genes that did not overlap a methylated window were defined as unmethylated. This analysis demonstrates that
the increase in methylated domains in human oocytes reflects an increased number of genes becoming fully methylated compared to mouse.
Publically available data was used for these analyses, including RNA-seq data for mouse and human oocytes (GSE44183) (Xue et al., 2013) and
DNA methylation data from mouse (Kobayashi et al., 2012) and human (Okae et al., 2014) oocytes, sperm and blastocyst embryos.
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humans, although with several notable exceptions (Reik and Walter,
2001). There has been considerable work identifying novel imprinted
genes in humans, using a combination of sequencing approaches over
single nucleotide polymorphisms (SNPs) (Metsalu et al., 2014; Babak
et al., 2015; Hamada et al., 2016; Santoni et al., 2017) or cases with
genomic imbalances (Choufani et al., 2011; Yuen et al., 2011;
Kobayashi et al., 2012; Court et al., 2014; Hanna et al., 2016;
Sanchez-Delgado et al., 2016). These studies have estimated there
are 50–90 imprinted genes in humans; however, many more DMRs
have been identified, but whether these are all regulating gene
expression remains unclear. The task of identifying an exhaustive list
of imprinted loci in healthy tissues has proven challenging, due to the
limited frequency and availability of parental information for SNPs in
human populations (Metsalu et al., 2014; Hamada et al., 2016;
Santoni et al., 2017), and the pervasive tissue-specific and poly-
morphic imprinting (Babak et al., 2015; Hanna et al., 2016). Overall,
findings suggest that imprinted gene expression and methylation may
be more widespread and variable in humans than in mice; however,
as similar screens are now being implemented in mice (Babak et al.,
2015; Crowley et al., 2015; Andergassen et al., 2017), comparable
patterns may emerge.

As discussed in section above, the genome-wide methylation pro-
files in human and mouse gametes are remarkably similar. This is not-
able considering that the repertoire of DNMTs responsible for these
patterns are not identical. In the foetus and adult, human imprinted
genes are similarly regulated by gDMRs that are maintained through
early development, yet to date very little is known about how
imprints are protected during human reprogramming. Foremost, the
maintenance of imprinted gDMRs in the human pre-ZGA embryo
appears to be independent of ZFP57 (Okae et al., 2014). However,
mutations in ZFP57 cause 50% of cases with transient neonatal dia-
betes with loss of imprinting at multiple loci, termed a multilocus
imprinting disorder (MLID) (Sanchez-Delgado et al., 2016b), support-
ing that ZFP57 is required during later stages. Several research groups
have sought to identify genetic mutations associated with MLID to
identify novel regulators in imprinting in humans; surprisingly, very
few genes have been identified (Sanchez-Delgado et al., 2016b). In
addition to ZFP57, maternal effect genes NLRP5, KHDC3L and
primate-specific NLRP7 are associated with loss of imprinting
(Murdoch et al., 2006; Parry et al., 2011; Docherty et al., 2015).
However, these encode cytoplasmic proteins and are thought to be
components of the subcortical maternal complex. Therefore, they
may be involved in controlling the intracellular localisation of epigen-
etic regulators in the oocyte or zygote, rather than having a direct
role in imprinting (Monk et al., 2017). Together, these findings sug-
gest that the protection of DNA methylation at imprinted gDMRs is
required in both mouse and human, but at least some of the epigen-
etic modifiers may have evolved distinct roles between species.

Recent studies have shown that imprinted gDMRs are far more
pervasive in the human placenta than in foetal and adult tissues
(Hamada et al., 2016; Hanna et al., 2016; Sanchez-Delgado et al.,
2016a). The number of placental-specific imprinted gDMRs is
reported to be upwards of 1500, and intriguingly all of these appear
to inherit methylation from the oocyte (Hamada et al., 2016). The
role of these placental-specific DMRs is still under debate, as many
are not associated with genes expressed in the placenta. These
domains may therefore be recently evolved imprinted sites (Hanna

and Kelsey, 2014), as the vast majority are not conserved between
mouse and human (Smith et al., 2014; Hanna et al., 2016). In mouse,
placental-specific imprinting appears to be largely conferred by non-
canonical repression by maternal H3K27me3 (Lewis et al., 2006;
Inoue et al., 2017a), and yet, to date, it is unknown whether humans
have this form of non-canonical imprinting.

Wider implications for human
disease and fertility
Recent advances have allowed us to gain the first insights into epigen-
etic regulation of development, which will be essential in furthering
our understanding of the role of epigenetics in human infertility,
maternal and foetal health, and complications of pregnancy. As this
field develops, it will also become clear whether epigenetic patterns
established during prenatal development may influence the lifelong
health of offspring and, additionally, whether early epigenetic repro-
gramming events are susceptible to perturbation by environmental
exposures (toxins), physiological factors (stress, diet), or medical
interventions (assisted reproductive technologies, ART). In this sec-
tion, we will provide an overview of the recent developments and
future directions in these areas of research.

Infertility
Evidence from association studies support that aberrant epigenetic
programming in sperm may contribute to male infertility. Several
studies have found an association between increased histone reten-
tion and low sperm count or infertility (Aoki et al., 2005; Torregrosa
et al., 2006; Garcia-Peiro et al., 2011; Hammoud et al., 2011;
Denomme et al., 2017). Additionally, aberrant sperm DNA methyla-
tion patterns has also been associated with semen parameters and
male infertility (Montjean et al., 2015; Urdinguio et al., 2015).
Furthermore, sequence variants in DNMT3B and DNMT1 have been
associated with male infertility (Tang et al., 2017) and variants in
DNMT3L have been associated with abnormal sperm methylation
(Kobayashi et al., 2009).

The role of epigenetics in female infertility has not been evaluated
directly due to the invasive procedures required for obtaining oocytes
from women. However, there are examples of mutations or genetic
anomalies that demonstrate the necessity of oocyte methylation in
obtaining a healthy pregnancy (Tomizawa and Sasaki, 2012). Women
homozygous for mutations in NLRP7, NLRP5 or KHDC3L have preg-
nancies with a loss of all or some maternal imprints, resulting in
recurrent biparental hydatidiform molar pregnancies that miscarry
early in development (Murdoch et al., 2006; Parry et al., 2011;
Docherty et al., 2015). Furthermore, cases of complete hydatidiform
molar pregnancies, in which there is only a paternal genetic contribu-
tion, result in no embryo and abnormal placental development (Kajii
and Ohama, 1977). Finally, unexplained miscarriage has been asso-
ciated with defects in imprinted DNA methylation in foetal or placen-
tal samples (Hanna et al., 2013; Pliushch et al., 2010; Zheng et al.,
2013), which may be a failure to establish imprints or to maintain
them. Together, these findings support that gametic epigenetic
defects contribute to human infertility and early pregnancy loss;
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however, the extent to which these changes may be causal in unex-
plained infertility or subfertility remains unclear.

Pregnancy complications
Imprinting syndromes are extensively studied developmental epigen-
etic disorders (Peters, 2014). Loss of allele-specific gene expression
at specific imprinted loci can result in developmental defects of vary-
ing severity, often involving aberrant foetal growth (reviewed else-
where; Ishida and Moore, 2013). The role of imprinted genes in
foetal growth and placentation (Bartolomei and Ferguson-Smith,
2011) has led to the suggestion that more subtle deregulation of
imprinting may contribute to pregnancy complications, such as pre-
eclampsia, and/or foetal growth restriction (Frost and Moore, 2010;
Moore et al., 2015). However, despite extensive study, many associa-
tions remain inconclusive (Koukoura et al., 2012).

The establishment or modulation of post-implantation tissue-spe-
cific epigenetic patterns, in particular DNA methylation, have also
been widely investigated for association with pregnancy complica-
tions. Studies have focused on placental biopsies because of the non-
invasive means of obtaining these samples from healthy and patho-
logical pregnancies, as well as the biological relevance (Januar et al.,
2015; Robinson and Price, 2015). While many DNA methylation
changes have been identified, studies have often been performed on
whole placental villi, which can obscure the interpretation of these
changes due to cell heterogeneity that may exist between patient
groups (Januar et al., 2015). Additionally, DNA methylation changes
may be a cause or a consequence of poor placental and/or foetal
development. Therefore, an optimised study design will be required
to determine whether epigenetic variation can predispose to adverse
pregnancy outcomes and, furthermore, whether these changes medi-
ate environmental influences.

Environmental and physiological influences
on epigenetic reprogramming events
The Developmental Origins of Health and Disease (DoHaD) hypoth-
esis posits that adaptive and maladaptive changes during foetal devel-
opment in response to environmental exposures can result in
predisposition to disease in adulthood (Wadhwa et al., 2009). A
well-known example of this is the severe prenatal caloric restriction
that took place during the Dutch famine, which resulted in increased
risk for obesity and comorbidities late in life (Roseboom et al., 2006).
It has been suggested that DoHaD effects could be mediated by epi-
genetic programming in response to these environmental cues.

Investigations into the effects of maternal diet, smoking and stress
on DNA methylation in offspring support this idea (Joubert et al.,
2012; Dominguez-Salas et al., 2014; Novakovic et al., 2014; Kupers
et al., 2015; Palma-Gudiel et al., 2015; Geraghty et al., 2016), while
other investigations, such as studies of maternal alcohol consumption,
have found no association (Sharp et al., 2018). A particularly compel-
ling example, is the evaluation of maternal diet on foetal DNA methy-
lation in Gambian rural communities. These populations experience
profound seasonal fluctuations in nutrient and micro-nutrient avail-
ability, and it was found that maternal nutrient status was predictive
of DNA methylation patterns of so-called metastable epialleles (gen-
omic loci whose methylation varies between individuals in the
absence of genetic variants), including the imprinted gene VTRNA2-1

(Dominguez-Salas et al., 2014). A challenge for many studies is the
interpretation of observed methylation changes, as they are often
subtle differences and at only a few CpG sites. Therefore, comple-
mentary studies in mouse models are essential to evaluate whether
DNA methylation changes due to in-utero environmental exposures
can influence gene expression patterns and developmental progres-
sion (Waterland and Jirtle, 2003).

Additional evidence that early epigenetic programming is suscep-
tible to environmental factors comes from the study of pregnancy
outcomes associated with ART. With the increase in ART use glo-
bally, there has been an extensive effort to evaluate whether proce-
dures, such as ovarian stimulation, in-vitro fertilisation (IVF), intra-
cytoplasmic sperm injection (ICSI) and in-vitro culture, may increase
the risk of developmental epigenetic defects (Canovas et al., 2017).
ART procedures have been reproducibly associated with increased
risk of imprinting syndromes in human epidemiology studies, although
the prevalence is still extremely low (Hiura et al., 2014; White et al.,
2015). Studies directly evaluating epigenetic patterns in ART-
generated human embryos are scarce and since in-vivo samples as a
comparison group are inaccessible, results can be difficult to inter-
pret. Nevertheless, targeted assessment of imprinted gDMRs in
human cultured embryos has shown that aberrant imprinting could
be present in >50% (White et al., 2015). It remains contentious
whether ART is associated with additional pregnancy complications
or long-term consequences for offspring health (Davies et al., 2012;
Hart and Norman, 2013; Liu et al., 2015; Fauser et al., 2014), and
whether these may be due to developmental epigenetic changes
remains to be explored.

Concluding remarks
The recent advances in low-input technologies has provided novel
insights into epigenetic dynamics during oogenesis and the earliest
events of embryonic development in mice. Studies to date have
revealed the unique epigenetic landscape of the oocyte, not only
DNA methylation, but also histone modifications and nuclear organ-
isation. Future work will continue to explore the underlying mechan-
isms and the functional importance of these non-canonical patterns.
The evaluation of epigenetic profiles in the early embryo suggest that
there is widespread erasure of gametic epigenetic patterns after fertil-
isation and subsequent re-establishment of DNA methylation, histone
modifications, chromatin accessibility and nuclear organisation. While
the mechanisms driving this reprogramming are unclear, it is apparent
that there are localised exceptions, including both canonical and non-
canonical imprinted regions.

At present, the study of epigenetic reprogramming events in
humans has been largely restricted to DNA methylation. In compari-
son to mice, there appear to be similar dynamics in both gametes
and the early embryo, and yet the proteins modulating these dynam-
ics are often divergent in timing or function. Thus, future investiga-
tions of epigenetic patterns in human development may not only
reveal further novel regulatory mechanisms, but also differences in
the extent of epigenetic information transmitted from gametes to
embryos. These discoveries will be essential in understanding the
influence of our environment on pregnancy and lifelong health of
offspring.

570 Hanna et al.



Authors’ roles
C.H. and H.D. reviewed the literature, wrote the manuscript sections
and generated the figures. G.K. provided input into manuscript con-
tent and composition, revised the manuscript and financially sup-
ported this work.

Funding
Grants from the UK Medical Research Council and Biotechnology
and Biological Sciences Research Council awarded to G.K. supported
this work.

Conflict of interest
The authors have no conflicts of interest.

References
Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP.

Global chromatin architecture reflects pluripotency and lineage commitment in
the early mouse embryo. PLoS One 2010;5:e10531.

Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet
2016;8:487–500.

Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D’Souza Z, Nakayama
M, Matsuda M, Turp A, Ndjetehe E et al. De novo DNA methylation drives
5hmC accumulation in mouse zygotes. Nat Cell Biol 2016;2:225–233.

Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseno-Roa L, Liu T,
Metzger E, Servant N, Barillot E et al. Maternal LSD1/KDM1A is an essential
regulator of chromatin and transcription landscapes during zygotic genome acti-
vation. Elife 2016;5:e08851.

Andergassen D, Dotter CP, Wenzel D, Sigl V, Bammer PC, Muckenhuber M, Mayer
D, Kulinski TM, Theussl HC, Penninger JM et al. Mapping the mouse Allelome
reveals tissue-specific regulation of allelic expression. Elife 2017;6:e25125.

Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF,
Matzuk MM. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethyla-
tion and transcriptional silencing. PLoS Biol 2010;8:e1000453.

Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is
compromised in protamine-deficient human sperm. J Androl 2005;6:741–748.

Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the
first and second cell cycles in the preimplantation mouse embryo. Dev Biol 1997;
2:296–307.

Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, Dumas M, Cavelier P, Girardot M,
Forne T, Feil R et al. EHMT2 directs DNA methylation for efficient gene silencing
in mouse embryos. Genome Res 2016;2:192–202.

Babak T, DeVeale B, Tsang EK, Zhou Y, Li X, Smith KS, Kukurba KR, Zhang R, Li
JB, van der Kooy D et al. Genetic conflict reflected in tissue-specific maps of gen-
omic imprinting in human and mouse. Nat Genet 2015;47:544–549.

Balhorn R, Brewer L, Corzett M. DNA condensation by protamine and arginine-
rich peptides: analysis of toroid stability using single DNA molecules. Mol Reprod
Dev 2000;2:230–234.

Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC,
Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the
HP1 chromo domain. Nature 2001;6824:120–124.

Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition
during spermiogenesis. Reproduction 2016;5:R55–R70.

Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Herault Y, Guillou F,
Bourc’his D. The DNA methyltransferase DNMT3C protects male germ cells
from transposon activity. Science 2016;6314:909–912.

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I,
Zhao K. High-resolution profiling of histone methylations in the human genome.
Cell 2007;4:823–837.

Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring
Harb Perspect Biol 2011;7:a002592.

Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, Akalin A,
Schubeler D. Genomic profiling of DNA methyltransferases reveals a role for
DNMT3B in genic methylation. Nature 2015;7546:243–247.

Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner
A, Wernig M, Plath K et al. A bivalent chromatin structure marks key develop-
mental genes in embryonic stem cells. Cell 2006;2:315–326.

Blakeley P, Fogarty NM, del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie
L, Robson P, Niakan KK. Defining the three cell lineages of the human blastocyst
by single-cell RNA-seq. Development 2015;18:3151–3165.

Bledau AS, Schmidt K, Neumann K, Hill U, Ciotta G, Gupta A, Torres DC, Fu J,
Kranz A, Stewart AF et al. The H3K4 methyltransferase Setd1a is first required
at the epiblast stage, whereas Setd1b becomes essential after gastrulation.
Development 2014;5:1022–1035.

Boers R, Boers J, de Hoon B, Kockx C, Ozgur Z, Molijn A, van IJcken W, Laven J,
Gribnau J. Genome-wide DNA methylation profiling using the methylation-
dependent restriction enzyme LpnPI. Genome Res 2018;1:88–99.

Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a
role in maintaining DNA methylation in mammalian cells. Science 2007;5845:
1760–1764.

Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in
male germ cells lacking Dnmt3L. Nature 2004;7004:96–99.

Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment
of maternal genomic imprints. Science 2001;5551:2536–2539.

Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS,
Crawford GE. High-resolution mapping and characterization of open chromatin
across the genome. Cell 2008;2:311–322.

Braude P, Bolton V, Moore S. Human gene expression first occurs between the
four- and eight-cell stages of preimplantation development. Nature 1988;6163:
459–461.

Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis
CD. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell
growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 2001;24:
3286–3295.

Brind’Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC. An ultra-low-
input native ChIP-seq protocol for genome-wide profiling of rare cell popula-
tions. Nat Commun 2015;6:6033.

Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C,
Schubeler D, Stadler MB, Peters AH. Repressive and active histone methylation
mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol
2010;6:679–687.

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of
native chromatin for fast and sensitive epigenomic profiling of open chromatin,
DNA-binding proteins and nucleosome position. Nat Methods 2013;12:1213–
1218.

Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang
HY, Greenleaf WJ. Single-cell chromatin accessibility reveals principles of regula-
tory variation. Nature 2015;7561:486–490.

Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allo-
cation during early embryogenesis. Nat Rev Mol Cell Biol 2014;11:723–734.

Canovas S, Ross PJ, Kelsey G, Coy P. DNA methylation in embryo development:
epigenetic impact of ART (Assisted Reproductive Technologies). Bioessays 2017;
29: 1–11.

Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, Fazzio TG,
Rando OJ. High-resolution mapping of chromatin packaging in mouse embryonic
stem cells and sperm. Dev Cell 2014;1:11–22.

Carrell DT. Epigenetics of the male gamete. Fertil Steril 2012;2:267–274.
Cheng X. Structural and functional coordination of DNA and histone methylation.

Cold Spring Harb Perspect Biol 2014;8:a018747.
Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira

JC, Pinto D, Scherer SW, Shaffer LG et al. A novel approach identifies new dif-
ferentially methylated regions (DMRs) associated with imprinted genes. Genome
Res 2011;3:465–476.

Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C,
Krueger F, Sanguinetti G, Kelsey G, Marioni JC et al. scNMT-seq enables joint
profiling of chromatin accessibility DNA methylation and transcription in single
cells. Nat Commun 2018;1:781.

571Epigenetics in development



Clouaire T, Webb S, Skene P, Illingworth R, Kerr A, Andrews R, Lee JH, Skalnik D,
Bird A. Cfp1 integrates both CpG content and gene activity for accurate
H3K4me3 deposition in embryonic stem cells. Genes Dev 2012;15:1714–1728.

Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S,
Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the
Arabidopsis genome reveals DNA methylation patterning. Nature 2008;7184:
215–219.

Court F, Tayama C, Romanelli V, Martin Trujillo A, Iglesias-Platas I, Okamura K,
Sugahara N, Simon C, Moore H, Harness JV et al. Genome-wide parent-of-
origin DNA methylation analysis reveals the intricacies of human imprinting and
suggests a germline methylation-independent mechanism of establishment.
Genome Res 2014;24:554–569.

Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, Wang JR, Morgan
AP, Calaway JD, Aylor DL et al. Analyses of allele-specific gene expression in
highly divergent mouse crosses identifies pervasive allelic imbalance. Nat Genet
2015;4:353–360.

Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL,
Steemers FJ, Trapnell C, Shendure J. Multiplex single cell profiling of chromatin
accessibility by combinatorial cellular indexing. Science 2015;6237:910–914.

Dahl JA, Jung I, Aanes H, Greggains GD, Manaf A, Lerdrup M, Li G, Kuan S, Li B,
Lee AY et al. Broad histone H3K4me3 domains in mouse oocytes modulate
maternal-to-zygotic transition. Nature 2016;7621:548–552.

Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, Haan EA, Chan
A. Reproductive technologies and the risk of birth defects. N Engl J Med 2012;
19:1803–1813.

Decato BE, Lopez-Tello J, Sferruzzi-Perri AN, Smith AD, Dean MD. DNA methyla-
tion divergence and tissue specialization in the developing mouse placenta. Mol
Biol Evol 2017;7:1702–1712.

Denomme MM, McCallie BR, Parks JC, Schoolcraft WB, Katz-Jaffe MG. Alterations
in the sperm histone-retained epigenome are associated with unexplained male
factor infertility and poor blastocyst development in donor oocyte IVF cycles.
Hum Reprod 2017;12:2443–2455.

Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A.
The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides
DNA methylation. J Biol Chem 2010;34:26114–26120.

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological
domains in mammalian genomes identified by analysis of chromatin interactions.
Nature 2012;7398:376–380.

Docherty LE, Rezwan FI, Poole RL, Turner CL, Kivuva E, Maher ER, Smithson SF,
Hamilton-Shield JP, Patalan M, Gizewska M et al. Mutations in NLRP5 are asso-
ciated with reproductive wastage and multilocus imprinting disorders in humans.
Nat Commun 2015;6:8086.

Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schubeler D.
Competition between DNA methylation and transcription factors determines
binding of NRF1. Nature 2015;7583:575–579.

Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, Fulford
AJ, Guan Y, Laritsky E, Silver MJ et al. Maternal nutrition at conception modu-
lates DNA methylation of human metastable epialleles. Nat Commun 2014;5:
3746.

Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their
crosstalk with histone methylation. Nat Rev Mol Cell Biol 2015;9:519–532.

Du Z, Zheng H, Huang B, Ma R, Wu J, Zhang X, He J, Xiang Y, Wang Q, Li Y
et al. Allelic reprogramming of 3D chromatin architecture during early mamma-
lian development. Nature 2017;7662:232–235.

Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and
perspectives. Hum Reprod Update 2006;3:275–282.

Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schubeler D, van der Vlag J,
Stadler MB, Peters AH. Molecular determinants of nucleosome retention at
CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 2013;7:868–
875.

Ernst P, Fisher JK, Avery W, Wade S, Foy D, Korsmeyer SJ. Definitive hematopoi-
esis requires the mixed-lineage leukemia gene. Dev Cell 2004;3:437–443.

Fauser BC, Devroey P, Diedrich K, Balaban B, Bonduelle M, Delemarre-van de
Waal HA, Estella C, Ezcurra D, Geraedts JP, Howles CM et al. Health outcomes
of children born after IVF/ICSI: a review of current expert opinion and litera-
ture. Reprod Biomed Online 2014;2:162–182.

Flyamer IM, Gassler J, Imakaev M, Brandao HB, Ulianov SV, Abdennur N, Razin SV,
Mirny LA, Tachibana-Konwalski K. Single-nucleus Hi-C reveals unique chromatin
reorganization at oocyte-to-zygote transition. Nature 2017;7648:110–114.

Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, Lea R,
Elder K, Wamaitha SE, Kim D et al. Genome editing reveals a role for OCT4 in
human embryogenesis. Nature 2017;7674:67–73.

Frost JM, Moore GE. The importance of imprinting in the human placenta. PLoS
Genet 2010;7:e1001015.

Frost JM, Udayashankar R, Moore HD, Moore GE. Telomeric NAP1L4 and
OSBPL5 of the KCNQ1 cluster, and the DECORIN gene are not imprinted in
human trophoblast stem cells. PLoS One 2010;7:e11595.

Furlan G, Rougeulle C. Function and evolution of the long noncoding RNA circuitry
orchestrating X-chromosome inactivation in mammals. Wiley Interdiscip Rev RNA
2016;5:702–722.

Gahurova L, Tomizawa SI, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J,
Andrews SR, Chen T, Kelsey G. Transcription and chromatin determinants of de
novo DNA methylation timing in oocytes. Epigenetics Chromatin 2017;10:25.

Garcia-Peiro A, Martinez-Heredia J, Oliver-Bonet M, Abad C, Amengual MJ,
Navarro J, Jones C, Coward K, Gosalvez J, Benet J. Protamine 1 to protamine 2
ratio correlates with dynamic aspects of DNA fragmentation in human sperm.
Fertil Steril 2011;1:105–109.

Garg P, Borel C, Sharp AJ. Detection of parent-of-origin specific expression quanti-
tative trait loci by cis-association analysis of gene expression in trios. PLoS One
2012;8:e41695.

Geraghty AA, Lindsay KL, Alberdi G, McAuliffe FM, Gibney ER. Nutrition during
pregnancy impacts offspring’s epigenetic status-evidence from human and animal
studies. Nutr Metab Insights 2016;8:41–47.

Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopina J, Chen PY, Clark
AT. DNA demethylation dynamics in the human prenatal germline. Cell 2015;6:
1425–1436.

Glaser S, Schaft J, Lubitz S, Vintersten K, van der Hoeven F, Tufteland KR, Aasland
R, Anastassiadis K, Ang SL, Stewart AF. Multiple epigenetic maintenance factors
implicated by the loss of Mll2 in mouse development. Development 2006;8:
1423–1432.

Gougeon A. Dynamics of follicular growth in the human: a model from preliminary
results. Hum Reprod 1986;2:81–87.

Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG et al.
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.
Nature 2011;7366:606–610.

Guibert S, Forne T, Weber M. Global profiling of DNA methylation erasure in
mouse primordial germ cells. Genome Res 2012;4:633–641.

Guo H, Hu B, Yan L, Yong J, Wu Y, Gao Y, Guo F, Hou Y, Fan X, Dong J et al.
DNA methylation and chromatin accessibility profiling of mouse and human fetal
germ cells. Cell Res 2017b;2:165–183.

Guo F, Li L, Li J, Wu X, Hu B, Zhu P, Wen L, Tang F. Single-cell multi-omics
sequencing of mouse early embryos and embryonic stem cells. Cell Res 2017a;8:
967–988.

Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X, Wei Y et al.
The transcriptome and DNA methylome landscapes of human primordial germ
cells. Cell 2015;6:1437–1452.

Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of
mouse embryonic stem cells and early embryos analyzed using reduced
representation bisulfite sequencing. Genome Res 2013;12:2126–2135.

Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, Yan J, Ren X, Lin S, Li J et al. The DNA
methylation landscape of human early embryos. Nature 2014;7511:606–610.

Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA.
Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002;1-2:
15–23.

Hamada H, Okae H, Toh H, Chiba H, Hiura H, Shirane K, Sato T, Suyama M,
Yaegashi N, Sasaki H et al. Allele-specific methylome and transcriptome analysis
reveals widespread imprinting in the human placenta. Am J Hum Genet 2016;5:
1045–1058.

Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT.
Genome-wide analysis identifies changes in histone retention and epigenetic
modifications at developmental and imprinted gene loci in the sperm of infertile
men. Hum Reprod 2011;9:2558–2569.

572 Hanna et al.



Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chro-
matin in human sperm packages genes for embryo development. Nature 2009;
7254:473–478.

Hanna CW, Kelsey G. The specification of imprints in mammals. Heredity (Edinb)
2014;2:176–183.

Hanna CW, McFadden DE, Robinson WP. DNA methylation profiling of placental
villi from karyotypically normal miscarriage and recurrent miscarriage. Am J Pathol
2013;6:2276–2284.

Hanna CW, Penaherrera MS, Saadeh H, Andrews S, McFadden DE, Kelsey G,
Robinson WP. Pervasive polymorphic imprinted methylation in the human pla-
centa. Genome Res 2016;6:756–767.

Hanna CW, Taudt A, Huang J, Gahurova L, Kranz A, Andrews S, Dean W,
Stewart AF, Colome-Tatche M, Kelsey G. MLL2 conveys transcription-
independent H3K4 trimethylation in oocytes. Nat Struct Mol Biol 2018;1:73–82.

Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF
treatment: Part I – General health outcomes. Hum Reprod Update 2013;3:232–243.

Hendrich B, Bird A. Identification and characterization of a family of mammalian
methyl-CpG binding proteins. Mol Cell Biol 1998;11:6538–6547.

Hill PW, Amouroux R, Hajkova P. DNA demethylation, Tet proteins and 5-
hydroxymethylcytosine in epigenetic reprogramming: an emerging complex
story. Genomics 2014;5:324–333.

Hiura H, Obata Y, Komiyama J, Shirai M, Kono T. Oocyte growth-dependent pro-
gression of maternal imprinting in mice. Genes Cells 2006;4:353–361.

Hiura H, Okae H, Chiba H, Miyauchi N, Sato F, Sato A, Arima T. Imprinting methy-
lation errors in ART. Reprod Med Biol 2014;4:193–202.

Howe FS, Fischl H, Murray SC, Mellor J. Is H3K4me3 instructive for transcription
activation? Bioessays 2017;1:1–12.

Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA
methylation-independent imprinting. Nature 2017a;7664:419–424.

Inoue A, Jiang L, Lu F, Zhang Y. Genomic imprinting of Xist by maternal
H3K27me3. Genes Dev 2017b;19:1927–1932.

Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in
mouse preimplantation embryos. Science 2011;6053:194.

Ishida M, Moore GE. The role of imprinted genes in humans. Mol Aspects Med
2013;4:826–840.

Januar V, Desoye G, Novakovic B, Cvitic S, Saffery R. Epigenetic regulation of
human placental function and pregnancy outcome: considerations for causal
inference. Am J Obstet Gynecol 2015;4:S182–S196.

Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G, Ni B, Sklar J, Przytycka TM, Childs
R et al. Genome-wide detection of DNase I hypersensitive sites in single cells
and FFPE tissue samples. Nature 2015;7580:142–146.

Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and
beyond. Nat Rev Genet 2012;7:484–492.

Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, Huang Z,
Hoyo C, Midttun O, Cupul-Uicab LA et al. 450K epigenome-wide scan identifies
differential DNA methylation in newborns related to maternal smoking during
pregnancy. Environ Health Perspect 2012;10:1425–1431.

Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M. Replication-coupled passive
DNA demethylation for the erasure of genome imprints in mice. EMBO J 2013;
3:340–353.

Kajii T, Ohama K. Androgenetic origin of hydatidiform mole. Nature 1977;5621:
633–634.

Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role
for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprint-
ing. Nature 2004;6994:900–903.

Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, Yao X, Li F, Zhu W, Gao L et al. 3D
chromatin structures of mature gametes and structural reprogramming during
mammalian embryogenesis. Cell 2017;2:367–381.e20.

Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA. Genome-wide mapping of
nucleosome positioning and DNA methylation within individual DNA molecules.
Genome Res 2012;12:2497–2506.

Kelsey G, Stegle O, Reik W. Single-cell epigenomics: recording the past and pre-
dicting the future. Science 2017;6359:69–75.

Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, Suzuki R, Suzuki F,
Hayashi C, Utsunomiya T et al. DNA methylation errors at imprinted loci after
assisted conception originate in the parental sperm. Eur J Hum Genet 2009;12:
1582–1591.

Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S,
Nakabayashi K, Hata K, Sotomaru Y et al. Contribution of intragenic DNA
methylation in mouse gametic DNA methylomes to establish oocyte-specific
heritable marks. PLoS Genet 2012;1:e1002440.

Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta
and fetal growth (review). Mol Med Rep 2012;4:883–889.

Kupers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van Gemert S, Scholtens
S, Nolte IM, Richmond CL, Felix JF et al. DNA methylation mediates the effect
of maternal smoking during pregnancy on birthweight of the offspringInt J
Epidemiol. 2015;4:1224–1237.

Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3
lysine 9 creates a binding site for HP1 proteins. Nature 2001;6824:116–120.

Lewis A, Green K, Dawson C, Redrup L, Huynh KD, Lee JT, Hemberger M, Reik
W. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo.
Development 2006;21:4203–4210.

Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W, Walter J, Higgins M, Feil R, Reik
W. Imprinting on distal chromosome 7 in the placenta involves repressive his-
tone methylation independent of DNA methylation. Nat Genet 2004;12:1291–
1295.

Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene
results in embryonic lethality. Cell 1992;6:915–926.

Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC. A
maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal
imprints. Dev Cell 2008;4:547–557.

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A,
Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al. Comprehensive mapping of
long-range interactions reveals folding principles of the human genome. Science
2009;5950:289–293.

Liu X, Wang C, Liu W, Li J, Li C, Kou X, Chen J, Zhao Y, Gao H, Wang H et al.
Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-
implantation embryos. Nature 2016;7621:558–562.

Liu H, Zhang Y, Gu HT, Feng QL, Liu JY, Zhou J, Yan F. Association between
assisted reproductive technology and cardiac alteration at age 5 years. JAMA
Pediatr 2015;6:603–605.

Lu F, Liu Y, Inoue A, Suzuki T, Zhao K, Zhang Y. Establishing chromatin regula-
tory landscape during mouse preimplantation development. Cell 2016;6:
1375–1388.

Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P,
Firth HV, Goodship JA, Haemers AP et al. Hypomethylation of multiple
imprinted loci in individuals with transient neonatal diabetes is associated with
mutations in ZFP57. Nat Genet 2008;8:949–951.

Maenohara S, Unoki M, Toh H, Ohishi H, Sharif J, Koseki H, Sasaki H. Role of
UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in
preimplantation embryos. PLoS Genet 2017;10:e1007042.

Manzo M, Wirz J, Ambrosi C, Villasenor R, Roschitzki B, Baubec T. Isoform-
specific localization of DNMT3A regulates DNA methylation fidelity at bivalent
CpG islands. EMBO J 2017;36:3421–3434.

Margaritis T, Oreal V, Brabers N, Maestroni L, Vitaliano-Prunier A, Benschop JJ,
van Hooff S, van Leenen D, Dargemont C, Geli V et al. Two distinct repressive
mechanisms for histone 3 lysine 4 methylation through promoting 3’-end anti-
sense transcription. PLoS Genet 2012;9:e1002952.

Marques CJ, Joao Pinho M, Carvalho F, Bieche I, Barros A, Sousa M. DNA methyla-
tion imprinting marks and DNA methyltransferase expression in human sperma-
togenic cell stages. Epigenetics 2011;11:1354–1361.

Mattson BA, Albertini DF. Oogenesis: chromatin and microtubule dynamics during
meiotic prophase. Mol Reprod Dev 1990;4:374–383.

McGrath J, Solter D. Completion of mouse embryogenesis requires both the
maternal and paternal genomes. Cell 1984;1:179–183.

Messerschmidt DM. Should I stay or should I go: protection and maintenance of
DNA methylation at imprinted genes. Epigenetics 2012;9:969–975.

Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB.
Trim28 is required for epigenetic stability during mouse oocyte to embryo trans-
ition. Science 2012;6075:1499–1502.

Metsalu T, Viltrop T, Tiirats A, Rajashekar B, Reimann E, Koks S, Rull K, Milani L,
Acharya G, Basnet P et al. Using RNA sequencing for identifying gene imprinting
and random monoallelic expression in human placenta. Epigenetics 2014;10:
1397–1409.

573Epigenetics in development



Migeon BR, Do TT. In search of non-random X inactivation: studies of fetal mem-
branes heterozygous for glucose-6-phosphate dehydrogenase. Am J Hum Genet
1979;5:581–585.

Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P,
Brockman W, Kim TK, Koche RP et al. Genome-wide maps of chromatin state
in pluripotent and lineage-committed cells. Nature 2007;7153:553–560.

Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more
than the sum of its parts? DNA, histones, protamines and epigenetics.
Reproduction 2010;2:287–301.

Minoux M, Holwerda S, Vitobello A, Kitazawa T, Kohler H, Stadler MB, Rijli FM.
Gene bivalency at Polycomb domains regulates cranial neural crest positional
identity. Science 2017;6332:eaal2913.

Miura F, Enomoto Y, Dairiki R, Ito T. Amplification-free whole-genome bisulfite
sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 2012;17:e136.

Molaro A, Hodges E, Fang F, Song Q, McCombie WR, Hannon GJ, Smith AD.
Sperm methylation profiles reveal features of epigenetic inheritance and evolu-
tion in primates. Cell 2011;6:1029–1041.

Monk D, Sanchez-Delgado M, Fisher R. NLRPs, the subcortical maternal complex
and genomic imprinting. Reproduction 2017;6:R161–R170.

Montjean D, Zini A, Ravel C, Belloc S, Dalleac A, Copin H, Boyer P, McElreavey K,
Benkhalifa M. Sperm global DNA methylation level: association with semen para-
meters and genome integrity. Andrology 2015;2:235–240.

Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero
S, Frost JM, Stafford JL, Chaoqun Y et al. The role and interaction of imprinted
genes in human fetal growth. Philos Trans R Soc Lond B Biol Sci 2015;1663:
20140074.

Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, Kircheisen R,
Ao A, Ratti B et al. Mutations in NALP7 cause recurrent hydatidiform moles and
reproductive wastage in humans. Nat Genet 2006;3:300–302.

Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED,
Tanay A, Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome
structure. Nature 2013;7469:59–64.

Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, Sekimoto
T, Ikawa M, Yoneda Y, Okabe M et al. PGC7/Stella protects against DNA
demethylation in early embryogenesis. Nat Cell Biol 2007;1:64–71.

Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M,
Ogura A, Shinkai Y, Nakano T. PGC7 binds histone H3K9me2 to protect against
conversion of 5mC to 5hmC in early embryos. Nature 2012;7403:415–419.

Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, Maldotti M,
Anselmi F, Oliviero S. Intragenic DNA methylation prevents spurious transcrip-
tion initiation. Nature 2017;7643:72–77.

Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W, Hemberger M.
Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat
Cell Biol 2008;11:1280–1290.

Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE,
Cavaille J. The primate-specific microRNA gene cluster (C19MC) is imprinted in
the placenta. Hum Mol Genet 2010;18:3566–3582.

Novakovic B, Ryan J, Pereira N, Boughton B, Craig JM, Saffery R. Postnatal stability,
tissue, and time specific effects of AHRR methylation change in response to
maternal smoking in pregnancy. Epigenetics 2014;3:377–386.

O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The
polycomb-group gene Ezh2 is required for early mouse development. Mol Cell
Biol 2001;13:4330–4336.

Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. Developmental acquisi-
tion of genome-wide DNA methylation occurs prior to meiosis in male germ
cells. Dev Biol 2007;2:368–379.

Okae H, Chiba H, Hiura H, Hamada H, Sato A, Utsunomiya T, Kikuchi H,
Yoshida H, Tanaka A, Suyama M et al. Genome-wide analysis of DNA methy-
lation dynamics during early human development. PLoS Genet 2014;12:
e1004868.

Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and
Dnmt3b are essential for de novo methylation and mammalian development.
Cell 1999;3:247–257.

Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P,
Lin SP, Allis CD et al. DNMT3L connects unmethylated lysine 4 of histone H3
to de novo methylation of DNA. Nature 2007;7154:714–717.

Palma-Gudiel H, Cordova-Palomera A, Eixarch E, Deuschle M, Fananas L. Maternal
psychosocial stress during pregnancy alters the epigenetic signature of the

glucocorticoid receptor gene promoter in their offspring: a meta-analysis.
Epigenetics 2015;10:893–902.

Parry DA, Logan CV, Hayward BE, Shires M, Landolsi H, Diggle C, Carr I, Rittore
C, Touitou I, Philibert L et al. Mutations causing familial biparental hydatidiform
mole implicate c6orf221 as a possible regulator of genomic imprinting in the
human oocyte. Am J Hum Genet 2011;3:451–458.

Penaherrera MS, Ma S, Ho Yuen B, Brown CJ, Robinson WP. X-chromosome
inactivation (XCI) patterns in placental tissues of a paternally derived bal t(X;20)
case. Am J Med Genet A 2003;1:29–34.

Peters J. The role of genomic imprinting in biology and disease: an expanding view.
Nat Rev Genet 2014;8:517–530.

Pliushch G, Schneider E, Weise D, El Hajj N, Tresch A, Seidmann L, Coerdt W,
Muller AM, Zechner U, Haaf T. Extreme methylation values of imprinted genes
in human abortions and stillbirths. Am J Pathol 2010;3:1084–1090.

Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation,
and nucleosome phasing in single cells. Elife 2017;6:e23203.

Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C,
Otte AP, Koseki H, Orkin SH et al. PRC1 and Suv39h specify parental asymmetry at
constitutive heterochromatin in early mouse embryos. Nat Genet 2008;4:411–420.

Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S,
Baglivo I, Pedone PV, Grimaldi G, Riccio A et al. In embryonic stem cells,
ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and
DNA methylation of imprinting control regions. Mol Cell 2011;3:361–372.

Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev
Genet 2001;1:21–32.

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G,
Bernier B, Varhol R, Delaney A et al. Genome-wide profiles of STAT1 DNA
association using chromatin immunoprecipitation and massively parallel sequen-
cing. Nat Methods 2007;8:651–657.

Robinson WP, Price EM. The human placental methylome. Cold Spring Harb
Perspect Med 2015;5:a023044.

Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term conse-
quences for adult health. Early Hum Dev 2006;8:485–491.

Rossant J, Sanford JP, Chapman VM, Andrews GK. Undermethylation of structural
gene sequences in extraembryonic lineages of the mouse. Dev Biol 1986;2:567–573.

Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE.
Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat
Biotechnol 2015;11:1165–1172.

Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifica-
tions. Biochim Biophys Acta 2014;8:627–643.

Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V, Mumbach MR, Howard I,
Kim DS, Boxer LD, Cairns J, Spivakov M et al. Lineage-specific dynamic and pre-
established enhancer-promoter contacts cooperate in terminal differentiation.
Nat Genet 2017;10:1522–1528.

Rugg-Gunn PJ, Cox BJ, Ralston A, Rossant J. Distinct histone modifications in stem
cell lines and tissue lineages from the early mouse embryo. Proc Natl Acad Sci U
S A 2010;24:10783–10790.

Sanchez-Delgado M, Court F, Vidal E, Medrano J, Monteagudo-Sanchez A, Martin-
Trujillo A, Tayama C, Iglesias-Platas I, Kondova I, Bontrop R et al. Human
oocyte-derived methylation differences persist in the placenta revealing wide-
spread transient imprinting. PLoS Genet 2016a;11:e1006427.

Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D,
Monk D. Causes and consequences of multi-locus imprinting disturbances in
humans. Trends Genet 2016b;7:444–455.

Santoni FA, Stamoulis G, Garieri M, Falconnet E, Ribaux P, Borel C, Antonarakis
SE. Detection of imprinted genes by single-cell allele-specific gene expression.
Am J Hum Genet 2017;3:444–453.

Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methy-
lation in the early mouse embryo. Dev Biol 2002;1:172–182.

Schroeder DI, Blair JD, Lott P, Yu HO, Hong D, Crary F, Ashwood P, Walker C,
Korf I, Robinson WP et al. The human placenta methylome. Proc Natl Acad Sci
USA 2013;15:6037–6042.

Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C,
Thienpont B, Dean W, Reik W. The dynamics of genome-wide DNA methyla-
tion reprogramming in mouse primordial germ cells. Mol Cell 2012;6:849–862.

Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly
reprogramming of genome-wide chromatin modifications associated with specifi-
cation and early development of germ cells in mice. Dev Biol 2005;2:440–458.

574 Hanna et al.



Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty
NNM, Campbell A, Devito L, Ilic D et al. Self-organization of the human embryo
in the absence of maternal tissues. Nat Cell Biol 2016;6:700–708.

Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J,
Mizutani-Koseki Y, Toyoda T, Okamura K et al. The SRA protein Np95 med-
iates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature
2007;7171:908–912.

Sharp GC, Arathimos R, Reese SE, Page CM, Felix J, Kupers LK, Rifas-Shiman SL,
Liu C. Cohorts for Heart and Aging Research in Genomic Epidemiology plus
(CHARGE +) methylation alcohol working group, Burrows K et al. Maternal
alcohol consumption and offspring DNA methylation: findings from six general
population-based birth cohorts. Epigenomics 2018;1:27–42.

Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H. Mouse
oocyte methylomes at base resolution reveal genome-wide accumulation of
non-CpG methylation and role of DNA methyltransferases. PLoS Genet 2013;4:
e1003439.

Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, Cohen T,
Xia J, Suderman M, Hallett M et al. Disruption of histone methylation in devel-
oping sperm impairs offspring health transgenerationally. Science 2015;6261:
aab2006.

Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high
efficiency for low cell numbers. Nat Protoc 2018;5:1006–1019.

Smallwood SA, Kelsey G. Genome-wide analysis of DNA methylation in low cell
numbers by reduced representation bisulfite sequencing. Methods Mol Biol 2012;
925:187–197.

Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR,
Stegle O, Reik W, Kelsey G. Single-cell genome-wide bisulfite sequencing for
assessing epigenetic heterogeneity. Nat Methods 2014;8:817–820.

Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S,
Hata K, Andrews SR, Kelsey G. Dynamic CpG island methylation landscape in
oocytes and preimplantation embryos. Nat Genet 2011;8:811–814.

Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, Eggan K,
Meissner A. DNA methylation dynamics of the human preimplantation embryo.
Nature 2014;7511:611–615.

Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A. A
unique regulatory phase of DNA methylation in the early mammalian embryo.
Nature 2012;7394:339–344.

Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat
Rev Genet 2013;3:204–220.

Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H, Tomizawa S, Smallwood SA,
Chen T, Kelsey G. Dynamic changes in histone modifications precede de novo
DNA methylation in oocytes. Genes Dev 2015;23:2449–2462.

Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests
imprinting of the genome during gametogenesis. Nature 1984;5959:548–550.

Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda
N, Niida H, Kato H et al. G9a histone methyltransferase plays a dominant role
in euchromatic histone H3 lysine 9 methylation and is essential for early embryo-
genesis. Genes Dev 2002;14:1779–1791.

Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T,
Kodama T, Hamakubo T, Shinkai Y. Histone methyltransferases G9a and GLP
form heteromeric complexes and are both crucial for methylation of euchroma-
tin at H3-K9. Genes Dev 2005;7:815–826.

Takagi N, Sasaki M. Preferential inactivation of the paternally derived X chromo-
some in the extraembryonic membranes of the mouse. Nature 1975;5519:640–
642.

Tang Q, Chen Y, Wu W, Ding H, Xia Y, Chen D, Wang X. Idiopathic male infertil-
ity and polymorphisms in the DNA methyltransferase genes involved in epigen-
etic marking. Sci Rep 2017;1:11219.

Tomizawa S, Nowacka-Woszuk J, Kelsey G. DNA methylation establishment dur-
ing oocyte growth: mechanisms and significance. Int J Dev Biol 2012;10-12:
867–875.

Tomizawa S, Sasaki H. Genomic imprinting and its relevance to congenital disease,
infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet 2012;
2:84–91.

Torregrosa N, Dominguez-Fandos D, Camejo MI, Shirley CR, Meistrich ML,
Ballesca JL, Oliva R. Protamine 2 precursors, protamine 1/protamine 2 ratio,
DNA integrity and other sperm parameters in infertile patients. Hum Reprod
2006;8:2084–2089.

Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers
of histone and DNA methylation. Curr Opin Struct Biol 2015;35:68–75.

Urdinguio RG, Bayon GF, Dmitrijeva M, Torano EG, Bravo C, Fraga MF, Bassas L,
Larriba S, Fernandez AF. Aberrant DNA methylation patterns of spermatozoa in
men with unexplained infertility. Hum Reprod 2015;5:1014–1028.

Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit-
Mehouas S, Arnaud P, Tomizawa S, Andrews S, Kelsey G. Deep sequencing and
de novo assembly of the mouse oocyte transcriptome define the contribution of
transcription to the DNA methylation landscape. Genome Biol 2015;16:209.

Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health
and disease: brief history of the approach and current focus on epigenetic
mechanisms. Semin Reprod Med 2009;5:358–368.

Wang C, Lee JE, Lai B, Macfarlan TS, Xu S, Zhuang L, Liu C, Peng W, Ge K.
Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition.
Proc Natl Acad Sci U S A 2016;42:11871–11876.

Wang X, Moore SC, Laszckzak M, Ausio J. Acetylation increases the alpha-helical con-
tent of the histone tails of the nucleosome. J Biol Chem 2000;45:35013–35020.

Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects
on epigenetic gene regulation. Mol Cell Biol 2003;15:5293–5300.

Weimar CH, Post Uiterweer ED, Teklenburg G, Heijnen CJ, Macklon NS. In-vitro
model systems for the study of human embryo-endometrium interactions.
Reprod Biomed Online 2013;5:461–476.

White CR, Denomme MM, Tekpetey FR, Feyles V, Power SG, Mann MR. High fre-
quency of imprinted methylation errors in human preimplantation embryos. Sci
Rep 2015;5:17311.

Wright SJ. Sperm nuclear activation during fertilization. Curr Top Dev Biol 1999;46:
133–178.

Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, Zhang B, Liu B, Wang Q, Xia W
et al. The landscape of accessible chromatin in mammalian preimplantation
embryos. Nature 2016;7609:652–657.

Wu J, Xu J, Liu B, Yao G, Wang P, Lin Z, Huang B, Wang X, Li T, Shi S et al.
Chromatin analysis in human early development reveals epigenetic transition
during ZGA. Nature 2018.

Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function
and beyond. Nat Rev Genet 2017;9:517–534.

Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S,
Hawkins RD, Leung D et al. Epigenomic analysis of multilineage differentiation of
human embryonic stem cells. Cell 2013;5:1134–1148.

Xue L, Cai JY, Ma J, Huang Z, Guo MX, Fu LZ, Shi YB, Li WX. Global expres-
sion profiling reveals genetic programs underlying the developmental diver-
gence between mouse and human embryogenesis. BMC Genomics 2013;
14:568.

Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J et al.
Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic
stem cells. Nat Struct Mol Biol 2013;9:1131–1139.

Yang X, Hu B, Hou Y, Qiao Y, Wang R, Chen Y, Qian Y, Feng S, Chen J, Liu C
et al. Silencing of developmental genes by H3K27me3 and DNA methylation
reflects the discrepant plasticity of embryonic and extraembryonic lineages. Cell
Res 2018.

Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D, Bronson RT, Li E,
Livingston DM, Eckner R. Gene dosage-dependent embryonic development and
proliferation defects in mice lacking the transcriptional integrator p300. Cell
1998;3:361–372.

Yu B, Dong X, Gravina S, Kartal O, Schimmel T, Cohen J, Tortoriello D, Zody R,
Hawkins RD, Vijg J. Genome-wide, single-cell dna methylomics reveals increased
non-CpG methylation during human oocyte maturation. Stem Cell Reports 2017;
1:397–407.

Yuen RK, Jiang R, Penaherrera MS, McFadden DE, Robinson WP. Genome-wide
mapping of imprinted differentially methylated regions by DNA methylation pro-
filing of human placentas from triploidies. Epigenetics Chromatin 2011;1:10.

Zenk F, Loeser E, Schiavo R, Kilpert F, Bogdanovic O, Iovino N. Germ line-
inherited H3K27me3 restricts enhancer function during maternal-to-zygotic
transition. Science 2017;6347:212–216.

Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications – writers
that read. EMBO Rep 2015;11:1467–1481.

Zhang Y, Xiang Y, Yin Q, Du Z, Peng X, Wang Q, Fidalgo M, Xia W, Li Y, Zhao
ZA et al. Dynamic epigenomic landscapes during early lineage specification in
mouse embryos. Nat Genet 2018;1:96–105.

575Epigenetics in development



Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y, Xu
Q et al. Allelic reprogramming of the histone modification H3K4me3 in early
mammalian development. Nature 2016;7621:553–557.

Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone mod-
ifications. Cold Spring Harb Perspect Biol 2015;9:a025064.

Zheng H, Huang B, Zhang B, Xiang Y, Du Z, Xu Q, Li Y, Wang Q, Ma J, Peng X
et al. Resetting epigenetic memory by reprogramming of histone modifications in
mammals. Mol Cell 2016;6:1066–1079.

Zheng HY, Tang Y, Niu J, Li P, Ye DS, Chen X, Shi XY, Li L, Chen SL. Aberrant
DNA methylation of imprinted loci in human spontaneous abortions after

assisted reproduction techniques and natural conception. Hum Reprod 2013;1:
265–273.

Zhu P, Guo H, Ren Y, Hou Y, Dong J, Li R, Lian Y, Fan X, Hu B, Gao Y et al.
Single-cell DNA methylome sequencing of human preimplantation embryos. Nat
Genet 2018;1:12–19.

Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi CA. Chromatin organiza-
tion during mouse oocyte growth. Mol Reprod Dev 1995;4:479–485.

Zylicz JJ, Dietmann S, Gunesdogan U, Hackett JA, Cougot D, Lee C, Surani
MA. Chromatin dynamics and the role of G9a in gene regulation and enhan-
cer silencing during early mouse development. Elife 2015;4:e09571.

576 Hanna et al.


	Epigenetic regulation in development: is the mouse a good model for the human?
	Introduction
	Recent advances in epigenetic profiling technologies
	Epigenetic regulation of gene expression
	Mechanistic insights from mouse models
	Gametogenesis
	From germ cells to the embryo
	Lineage specification in post-implantation development
	Dynamics of genomic imprinting during embryonic development

	Human development: how conserved are mechanisms between mouse and human?
	Gametes
	From germ cells to the embryo
	Post-implantation development
	Genomic imprinting

	Wider implications for human disease and fertility
	Infertility
	Pregnancy complications
	Environmental and physiological influences on epigenetic reprogramming events

	Concluding remarks
	Authors’ roles
	Funding
	Conflict of interest
	References


