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Summary 

Title: ERK1/2 signalling and protein ubiquitylation in the control of apoptosis. 

Name: Kate Stuart 

Programmed cell death, or apoptosis, is critical for normal developmental processes that involve cell 

turnover including embryogenesis and development and function of the immune system. It is preceded 

by classical changes in cell morphology, driven by biochemical changes including caspase activation. 

Apoptosis is deregulated in multiple human diseases, with suppression of apoptosis being critical for 

carcinogenesis. As such, proteins that regulate apoptosis are tightly regulated by cell fate signalling 

pathways.  

The ERK1/2 signalling pathway is a key regulator of cell intrinsic apoptosis, in part through regulation 

of the pro-apoptotic protein ‘BCL2-interacting mediator of cell death’ (BIM). BIM is phosphorylated by 

ERK1/2 and this serves to drive its K48-linked polyubiquitylation and proteasome-dependent 

degradation, thereby promoting cell survival. βTrCP, an F-box protein that acts in a larger SCF complex, 

is one of several E3 ligases that have been proposed to polyubiquitinate BIM. This study demonstrated 

that of the major isoforms of BIM only BIMEL interacts with βTrCP. ERK1/2-driven phosphorylation of 

BIMEL is essential for this interaction, leading to BIMEL destabilisation and degradation. As a 

consequence, tumour cells that are addicted to ERK1/2 signalling undergo BIM-dependent cell death 

in response to MEK1/2 inhibitors when combined with BH3-mimetics such as ABT263, small molecules 

that inhibit pro-survival proteins of the apoptotic pathway. 

The RSK1/2 protein kinases, immediate downstream targets of ERK1/2, have also been implicated in 

the destabilisation of BIMEL. Specifically phosphorylation of BIMEL by RSK1/2 is proposed to be required 

for βTrCP binding. This study revealed that whilst the putative RSK1/2 phosphorylation sites in BIMEL 

may be required for βTrCP binding, inhibition of RSK activity by three distinct RSK inhibitors does not 

block BIMEL:βTrCP binding or BIMEL turnover. Furthermore, tumour cells that are addicted to ERK1/2 

signalling for survival are not addicted to RSK activity, arguing against a role for RSK in the regulation 

of BIMEL. This suggests that ERK1/2 and an as yet unidentified kinase cooperate to drive BIMEL 

degradation.  

Deubiquitylating enzymes (DUBs) remove ubiquitin from target proteins. In the context of BIMEL, DUB 

activity might oppose E3 ligases and thus cause its accumulation. Until recently the DUB for BIM was 

unknown however, USP27x has now been suggested. Follow-up validation of the reported interaction 
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between BIMEL and USP27x was challenging but loss of BIMEL polyubiquitination was observed 

following overexpression of USP27x, suggesting that USP27x may serve as a DUB for BIM. 

Numerous DUBs control cellular processes that are dysregulated in cancer, including proliferation and 

apoptosis, making them attractive therapeutic targets. Recent interest in the DUB USP30 has increased 

as it has been shown to inhibit parkin-mediated mitophagy, with defective mitophagy being linked to 

Parkinson’s disease. USP30 has also been suggested to play a role in apoptosis and its depletion was 

shown to sensitise cells to BH3 mimetics. These findings suggest that USP30 depletion or inhibition 

could provide a means for inducing tumour cell death. Indeed, combining a novel USP30 inhibitor 

(MTX32), provided by Mission Therapeutics, with the BH3 mimetic, ABT-263, induced apoptotic 

tumour cell death that required BAX and caspase activation. However, this was not replicated by a 

more selective USP30 inhibitor (MTX48), suggesting that the observed apoptotic cell death reflected 

the off-target effects of MTX32 rather than specific inhibition of USP 30.  

Finally, an RNAi screen, targeting 94 DUBs, and 8 sentrin/SUMO-specific proteases (SENPs), in the 

human genome, was performed to identify DUBs that modulate cell death induced by MEK1/2 or 

mTOR inhibition. As such, inhibitors of identified ‘hit’ DUBs might be suitable as a combinatorial 

therapy with MEK1/2 or mTOR inhibitors in the treatment of cancer. The RNAi screen identified several 

DUBs, including USP10, YOD1, and VCIP135, that, when knocked down, sensitised HCT116 cells to 

MEK1/2 inhibitor treatment and enhanced MEK1/2 inhibitor induced cell death in a BAX-dependent 

fashion. 

This work is discussed in the context of the role of ERK1/2 signalling as a pro-survival pathway, its 

specific role in BIM regulation, the potential for co-targeting DUBs and the ERK1/2 pathway to inhibit 

the growth of ERK1/2 addicted tumour cells and suggestions for future work are outlined. 
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1. Chapter 1 

1.1. Cancer 

Cancer is the second leading cause of mortality worldwide, and was estimated to be responsible for 

9.6 million deaths in 2018 (WHO). In general, it is the name given to a group of over 200 related diseases 

characterised by dysregulated cell division and the enhanced invasive potential of cells. 

Tumourigenesis, the process of tumour development, is coupled with the acquisition of certain key 

competencies that enable cells to proliferate and disseminate. In 2000, Hanahan and Weinberg., 

described “the six hallmarks of cancer” attained during the neoplastic transformation of cells; sustained 

proliferation, evasion of cell death, development of replicative immortality, the induction of 

angiogenesis, insensitivity to growth-suppressing signals and the activation of invasion and metastasis 

(Hanahan and Weinberg, 2000). A decade later additional hallmarks were proposed; the evasion of 

immune surveillance and the reprogramming of energy metabolism (Hanahan and Weinberg, 2011, 

Kroemer and Pouyssegur, 2008, Luo et al., 2009), as well as two characteristics that enable tumour 

progression; genomic instability and tumour-promoting inflammation (Colotta et al., 2009, Hanahan 

and Weinberg, 2011, Negrini et al., 2010).  

During tumourigenesis cells acquire numerous genetic alterations, including mutational and epigenetic 

changes, that enable cells to attain and maintain the described characteristics. ‘Driver’ mutations can 

promote tumour initiation and progression, whilst ‘passenger’ mutations occur as a consequence of 

the genomic instability of cancer cell (Haber and Settleman, 2007). Some cancers can be dependent 

upon one or more ‘driver’ mutation for growth and metastasis, also known as “oncogene addiction” 

(Weinstein and Joe, 2008). Despite the numerous mutations that cancer cells acquire during 

tumourigenesis, studies have revealed that they are often dependent upon a single or a few oncogenes 

for their continued growth. Identification of the oncogene(s) and/or mutations driving cell proliferation 

is therefore fundamental for our understanding of cancer pathologies and development of targeted 

cancer therapies.  

The deregulation of cell cycle control, promotion of metastasis by epithelial to mesenchymal transition 

(EMT) and the evasion of apoptosis in cancer cells are of particular interest for this study and are 

discussed in more detail. 

 

1.1.1. Cell cycle control and cancer 

The cell-division cycle or cell cycle consists of a series of events, which enable a cell to replicate its DNA 

and divide. It is a tightly regulated process, which can be divided into four phases; G1 (growth or gap 



3 
 

phase), S (DNA synthesis), G2 (growth or gap phase 2) and M (mitosis) phase (Figure 1.1). Cell cycle 

controls are required to ensure only one DNA replication event occurs per cell cycle and that this is 

restricted to S phase.  

As cells move through the cell cycle there are numerous ‘checkpoints’ at which cell cycle progression 

can be halted until favourable conditions for cell division are restored. Passage through these 

checkpoints and into each phase of the cell cycle requires cyclin-dependent kinases (CDKs), activated 

by their cognate cyclin partners. The expression and degradation of cyclins fluctuates throughout the 

cell cycle and this correlates with activation of their respective CDKs (Jeffrey et al., 1995, Russo et al., 

1996). Active CDKs then phosphorylate their substrates allowing cell cycle progression. CDK activity is 

also regulated through the action of endogenous CDK inhibitors (CKIs), the INK4 family (p15INK4B, 

p16INK4A, p18INK4C and p19INK4D), which inhibit CDK4/6, and the CIP/KIP family (p21CIP1, p27KIP1 and 

p57KIP2), which inhibit CDK2 and CDK1 (Sherr and Roberts, 1999). 

In early G1, cells respond to extracellular signals, including mitogens, either resulting in progression 

towards cell division or withdrawal from the cell cycle into the quiescent G0 state (Malumbres and 

Barbacid, 2001). Once the cell progresses past the restriction point, in late G1, cell cycle progression is 

independent of growth factors (Planas-Silva and Weinberg, 1997). Committed entry into S phase and 

passage through the G1/S checkpoint requires active E2F, which is reliant on the sequential activity of 

CDK4/6-cyclin D and CDK2-cyclin E complexes. Expression of the D-type cyclins (cyclin D1, cyclin D2 and 

cyclin D3) stimulates activation of CDK4/6 in mid-G1, which hyperphosphorylate the retinoblastoma 

protein (RB) family of proteins (RB, p107 and p130). Phosphorylation of RB disrupts its interaction with 

E2F, enabling E2F-mediated S-phase gene transcription, such as the induction of expression of cyclin 

E/A, along with components required for DNA replication such as minichromosome maintenance 

protein complex (MCM) 2/3/5/7 (Sherr and McCormick, 2002, Stevaux and Dyson, 2002). In late G1, 

cyclin E binds to CDK2, which, via a positive feedback loop, further promotes the phosphorylation of 

RB and helps to accelerate S phase entry, once sufficient CDK2 is active.  

During the G1 phase of the cell cycle, CIP/KIP family proteins can bind to and promote the assembly of 

CDK4/6-cyclin D complexes, thereby inducing the activation of CDK4/6 (Sherr and Roberts, 1999). 

Additionally, the binding of CIP/KIP family proteins to CDK4/6 alleviates their inhibitory effect on CDK2, 

facilitating activation of CDK2 late in G1. Furthermore, CDK2 can phosphorylate p27KIP1, targeting it for 

degradation, thereby promoting its own activity. Together this acts to promote cell cycle progression. 

In contrast, INK4 family proteins can bind to and inhibit CDK4/6, displacing CIP/KIP family proteins, thus 

enabling them to bind to and inhibit CDK2, leading to cell cycle arrest at the G1/S checkpoint (Sherr 

and Roberts, 1999).  
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Once in S phase, cyclin A, binds to and activates CDK2. Activated CDK2 then phosphorylates numerous 

substrates, in addition to RB and p27KIP1, including replication factors A and C, required for DNA 

replication, and nucleophosmin (NPM), required for centrosome duplication (Asghar et al., 2015, 

Okuda et al., 2000). CDK1-cyclin A and CDK1-cyclin B complexes then regulate progression through G2 

and into M phase (Nurse, 1990), and abrupt degradation of cyclin A and cyclin B during mitosis is 

required for mitotic exit.  

DNA damage can activate cell cycle arrest at the majority of the cell cycle checkpoints. At the G2/M 

checkpoint damage can induce the activation of WEE1 which phosphorylates CDK1 inhibiting its 

function and causes cell cycle arrest. Arrest at this checkpoint requires the inhibition of CDC25 

phosphatases which, under normal conditions, dephosphorylate P-loop residues of CDK1 enabling ATP 

binding and activation of CDK1 (Kumagai and Dunphy, 1991, Lundgren et al., 1991, Strausfeld et al., 

1991). Of note, DNA damage can induce the nuclear accumulation of the deubiquitylating enzyme 

(DUB), USP50, which stabilises WEE1, counteracting CDC25B to promote cell cycle arrest (Aressy et al., 

2010). DNA damage can also induce longer-term cell cycle arrest mediated by the effects of p53 on 

gene expression. Through the activation of ATM and ATR kinases, and subsequent activation Chk1/2, 

p53 is stabilised. p53 can then repress the expression of multiple genes required for progression, 

including cyclin B1 and CDC25C and induce the expression of p21CIP1, which inhibits CDK1-cyclin B1 

(Taylor and Stark, 2001, Vousden and Lu, 2002). 

A hallmark of cancer is the sustained proliferation of tumour cells (Hanahan and Weinberg, 2000). One 

way in which cancer cells have evolved to evade cell cycle controls, acquire pro-proliferative signals 

and go through tumourigenesis is through the inactivation of RB. This can occur through homozygous 

mutation, or deletion or silencing of RB, which ultimately precludes RB from inhibiting E2F (Sherr and 

McCormick, 2002). Dysregulation of the CDK4/6-RB axis can also occur through oncogenic activation of 

CDK4/6 activity (Sherr and McCormick, 2002). Amplification of CCND1 (cyclin D1) and CDK4 as well as 

activating mutations within CDK4 have been observed to drive proliferation of cancer cells (Buckley et 

al., 1993, Ormandy et al., 2003, Sherr and McCormick, 2002, Wolfel et al., 1995). Genetic or epigenetic 

mutations of additional negative regulators of cell cycle progression have been observed, including 

members of the INK4 family and p53, which promote tumourigenesis. Despite this, the most common 

mechanism by which tumour cells attain constitutive pro-proliferative signals is through activating 

mutations of key mitogenic signalling pathways, including the RAF-MEK1/2-ERK1/2 signalling pathway.  
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Figure 1.1 Overview of cell cycle control by cyclin-dependent kinases (CDKs), cyclins and CDK inhibitors (CKIs) at cell cycle 
checkpoints 
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1.1.2. Epithelial-mesenchymal transition and cancer 

Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells stably or transiently 

acquire invasive and migratory traits characteristic of mesenchymal cells (Polyak and Weinberg, 2009, 

Yilmaz and Christofori, 2009). Epithelial cells typically exhibit tight cell-cell contacts and an apico-basal 

polarity, which enables them to form a semi-permeable barrier against the environment. In contrast, 

mesenchymal cells lack cellular polarisation, exhibit a spindly fibroblastic morphology and only interact 

with each other through focal points, thereby enabling them to have enhanced motility and invasive 

potential. At the molecular level, loss of E-cadherin (CDH1) and the presence of N-cadherin (CDH2) and 

vimentin (VIM) are hallmarks of EMT (Kalluri and Weinberg, 2009, Yang and Weinberg, 2008).  

Key transcription factors including SNAI1, SNAI2, TWIST1, ZEB1 and ZEB2 contribute to the repression 

of CDH1 and therefore facilitate the enhanced migratory phenotype associated with EMT. In addition, 

these transcription factors regulate numerous genes required for the mesenchymal phenotype, 

including claudins and desmosomes (Huang et al., 2012b, Lamouille et al., 2014).  

EMT is a critical process required during embryogenesis, wound healing, organ fibrosis and tissue 

regeneration (Hay, 1995, Kalluri, 2009, Thiery et al., 2009). However, it additionally contributes to 

tumour metastasis (Kalluri and Weinberg, 2009). Several signalling pathways (PI3K-PKB, ERK1/2, and 

TGFβ pathways) can contribute to the induction of EMT during tumourigenesis (Katsuno et al., 2013, 

Larue and Bellacosa, 2005, Tripathi and Garg, 2018, Weiss et al., 2012).  

 

1.2. Cell Death 

Regulated cell death (RCD) is an intracellular event that has evolved to play a central role in a diverse 

range of cellular developmental processes including embryogenesis, neuronal development, tissue 

homeostasis and immunity. This term has now evolved to include all forms of cell death that utilise a 

predestined molecular mechanism, including necrosis, necroptosis, pyroptosis, autophagy and 

apoptosis.  

 

1.2.1. Apoptosis 

The most prominent and well-studied form of RCD is apoptosis. In contrast to other mechanisms of 

RCD, apoptosis is characterised by distinct morphological changes including nuclear condensation, cell 

shrinkage, membrane blebbing and DNA fragmentation (Kerr et al., 1972). Apoptotic cells retain plasma 

membrane integrity and, to some extent, metabolic activity during the end of apoptosis, which enables 

their rapid clearance by phagocytosis, commonly termed efferocytosis (Green et al., 2016). There are 

two distinct apoptotic pathways, the cell-intrinsic and cell-extrinsic, which both converge to activate 
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effector caspases. Importantly, contrary to previous opinions, apoptosis and consequent efferocytosis 

has been demonstrated to induce an immunological response (Green et al., 2009, Yatim et al., 2017) 

The first insight into the mechanism underlying apoptosis came from the discovery that the BCL2 gene 

acts as an oncogene (Tsujimoto et al., 1984); BCL2 was later found to prevent haemopoietic cell death 

when overexpressed in the absence of cytokines (Vaux et al., 1988). This led to the current 

understanding that defects in apoptotic pathways can contribute to many human diseases, including 

cancer and degenerative disorders (Cory and Adams, 2002, Hotchkiss et al., 2009).  

 

1.2.1.1. Caspases 

Initially identified in C.elegans (Ellis and Horvitz, 1986), cysteine aspartic acid-specific proteases, or 

caspases, are the key effector molecules of apoptosis. They cleave numerous intracellular substrates 

to initiate and execute apoptosis (Parrish et al., 2013). Due to their destructive potential, caspases 

originate as inactive zymogens that are activated in response to an apoptotic signal. Caspases can be 

broadly categorised based on their role in apoptosis (caspase-2, -3, -6, -7, -8, -9 and 10) or the 

inflammation response (caspase-1, -4, -5, and -12). The caspases involved in the apoptotic response 

can be further sub-divided into two groups: the initiator caspases and the effector or executioner 

caspases (McIlwain et al., 2013, Riedl and Shi, 2004, Shalini et al., 2015).  

The initiator caspases (caspase-2, -8, -9, -10) have a long N-terminal pro-domain that contains either a 

death effector domain (DED) or a caspase-recruitment domain (CARD), depending upon the apoptotic 

pathway they are involved in. This pro-domain interacts with adaptor proteins providing a scaffold for 

the dimerisation and autocatalytic cleavage at aspartic acid residues in their linker regions leading to 

the formation of an active heterotetramer. This is termed activation by ‘induced proximity’ (Boatright 

et al., 2003, Oberst et al., 2010). Effector caspases (caspase-3, -6, -7) are expressed as inactive 

homodimers. Cleavage by activated initiator caspases results in a conformational change that 

generates a mature protease (McIlwain et al., 2013).  

 

1.2.1.2. Extrinsic Pathway of Apoptosis  

The extrinsic or ‘death receptor’ apoptotic pathway is initiated when ‘death ligands’ or cytokines such 

as tumour necrosis factor (TNF), FAS ligand or TRAIL (TNF-related apoptosis-inducing ligand) bind to 

their cognate ‘death receptors’ (TNF-R1, FAS or TRAIL-R1/2) at the plasma membrane. The resulting 

active death receptor oligomers recruit adaptor proteins, including FAS-associated protein with death 

domain (FADD) and TNF receptor-associated protein with death domain (TRADD/RIP1), via a death 

domain (DD)-DD interaction (Boldin et al., 1996, Guicciardi and Gores, 2009). Adaptor proteins possess 

an additional interacting domain, the death effector domain (DED), which provides a platform for the 
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activation of the initiator caspases, -8 and -10, via the formation of a death inducing signalling complex 

(DISC) (Boatright et al., 2003, Boldin et al., 1996, Strasser et al., 2009).The active initiator caspases can 

then cleave and activate the downstream effector caspases.  

 

1.2.1.3. Intrinsic Pathway of Apoptosis  

The cell intrinsic or mitochondrial apoptotic pathway is initiated by a variety of microenvironmental 

perturbations including DNA damage, endoplasmic reticulum (ER) stress, reactive oxygen species (ROS) 

and mitotic defects (Czabotar et al., 2014, Pihan et al., 2017, Vitale et al., 2017). In this pathway, 

apoptosis is regulated by the collaborative action of the BCL2 protein family (Youle and Strasser, 2008), 

which can be functionally divided into pro-survival and pro-apoptotic proteins (Figure 1.2). Collectively 

these proteins act to initiate mitochondrial outer membrane permeabilisation (MOMP) in response to 

pro-apoptotic signals (Figure 1.3).  

 

BCL2 protein family  

In mammals, all BCL2 family members contain at least one of four conserved BCL2-homology (BH) 

domains. The pro-survival BCL2 family members include BCL2, BCL-w, BCL-XL, MCL1 and A1. They all 

possess four BH domains (BH1-4) and harbour a C-terminal domain that targets them to intracellular 

membranes including the outer mitochondrial membrane (OMM), where they act to prevent apoptosis 

by binding to and inhibiting pro-apoptotic BH3-only proteins (BOPs) and the effector proteins BAK and 

BAX (Chipuk et al., 2010). In addition to those described, BCL-B (Nrh) has also been suggested to be a 

pro-survival BCL2 protein that selectively binds to BAX to suppress apoptosis (Ke et al., 2001, Zhai et 

al., 2003). Interestingly, some pro-survival proteins can promote cellular survival through regulation of 

Ca2+ homeostasis at the ER membrane (Rong and Distelhorst, 2008, Scorrano et al., 2003) or by 

promoting metabolism by interacting with the F1F0 ATP synthase (Chen et al., 2011b, Green et al., 

2014). However, these roles have been controversial and as such their principal role is to inhibit 

apoptosis through their interaction with ‘activator’ BH3-only and effector pro-apoptotic proteins 

(O'Neill et al., 2016).  

The effector proteins, BAK and BAX, as well as the lesser known BOK, possess structural components 

of all four BH regions, where an α-helix at their N-terminus structurally resembles the BH4 domain 

(Kvansakul and Hinds, 2015). BOK (BCL2-related ovarian killer) only appears to drive apoptosis under a 

specific set of circumstances, distinct from BAK and BAX, including disruption of the ER-associated 

degradation (ERAD) pathway (Llambi et al., 2016). However, its exact role as an effector protein 

remains unclear (Kalkavan and Green, 2017). Inactivation of either BAK or BAX can impair apoptosis by  
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Figure 1.2 Structure of the BCL2 family of proteins 

Figure 1.4 Selective binding between pro-survival and BH3-only BCL2 and effector pro-apoptotic family members. 
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Figure 1.3 The mitochondrial-mediated pathway for apoptosis. 
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select stimuli but inactivation of both abolishes apoptosis by the mitochondrial pathway, indicating 

some unique roles for each and underlining their importance in initiating MOMP and apoptosis (Wei 

et al., 2001).  

There are at least eight BH3-only proteins (BOPs) including BAD, BID, BIK, PUMA, BMF, HRK, NOXA and 

BIM. As their name suggests, the only region they share in common with other BCL2 family members 

is the BH3 domain. Similar to BAK and BAX, they can bind to and selectively inhibit pro-survival BCL2 

proteins. In addition, several have been shown to directly interact with the effector pro-apoptotic 

proteins, promoting their activation and enabling the initiation of intrinsic apoptosis (Kuwana et al., 

2005). Differences between the interaction profiles of these BOPs (Figure 1.3) is due to variations in 

their BH3 domain sequences (Certo et al., 2006). 

 

Activation of BAX, BAK and MOMP  

When the concentrations of BOPs reaches a critical level, sufficient to both neutralise pro-survival 

proteins and activate effector pro-apoptotic proteins, apoptosis is triggered. All BOPs and BAK/BAX can 

interact with at least one pro-survival BCL2 protein (Figure 1.3). However, different BOPs and BAX/BAK 

bind to the pro-survival proteins with differing affinities (Kuwana et al., 2005).  

The BH1, BH2 and BH3 domains of the pro-survival proteins combine to form a hydrophobic groove 

(BC groove) that can interact with the BH3 domain amphipathic α-helix of the pro-apoptotic proteins 

(Czabotar et al., 2007, Sattler et al., 1997). This interaction is thought to neutralise the pro-apoptotic 

proteins and inhibit apoptosis. In contrast, if an apoptotic signal is detected, BOPs can compete for 

binding to pro-survival proteins, initiating the release and activation of the pro-apoptotic proteins BAK 

and BAX. 

Two models have been proposed to explain how BAK and BAX are activated. The direct activation 

model suggests that BOPs can be grouped into ‘sensitiser’ BOPs; BAD, NOXA, BMF and HRK, and 

‘activator’ BOPs; BIM, tBID and PUMA. Interaction between ‘sensitiser’ BOPs and BCL2 pro-survival 

proteins results in the displacement of ‘activator’ BOPs, which can then activate BAK/BAX. Contrary to 

this, BMF and NOXA have also been shown to activate BAK (Du et al., 2011, Hockings et al., 2015), 

suggesting that this division may be more fluid than first thought.  

‘Activator’ BOPs bind to and induce conformational changes in BAK and BAX that lead to their activation 

and oligomerisation in the OMM (Brouwer et al., 2014, Czabotar et al., 2013, Kuwana et al., 2005, Letai 

et al., 2002, Lovell et al., 2008, Moldoveanu et al., 2013, Robin et al., 2015) (Figure 1.4). The BH3 

domain of ‘activator’ BOPs has been proposed to bind to a ‘rear’ or distal site (α1 and α6) on BAX 

(Gavathiotis et al., 2010, Gavathiotis et al., 2008, Kim et al., 2009) activating BAX and leading to MOMP. 

There is also evidence that ‘activator’ BOPs can interact with a ‘front’ or surface hydrophobic groove, 
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similar in structure to the BC groove found in BCL2 pro-survival proteins, in BAK and BAX (Czabotar et 

al., 2013, Dai et al., 2011, Moldoveanu et al., 2013) and that it is this site that is solely required for their 

activation (Czabotar et al., 2014, Okamoto et al., 2013, Peng et al., 2013). 

The second, indirect activation, model for the activation of BAK/BAX suggests BAK and BAX are ‘primed’ 

and bound to BCL2 pro-survival proteins, prior to induction of apoptosis (Willis et al., 2007). BOPs 

compete for binding to BCL2 pro-survival proteins via their BH3 domain, leading to the release of BAK 

and BAX. A combination of the ‘direct’ and ‘indirect’ model has been suggested to be the definitive 

mechanism for the activation of BAK and BAX. One suggested mechanism is a `priming-capture-

displacement’ model where BAK and BAX are primed and immediately captured by the BCL2 pro-

survival proteins. BAK and BAX are then displaced by BOPs, including BIM, allowing for their activation 

and oligomerisation (Strasser et al., 2011).  

BAK and BAX have globular structures in which an α5-helix is surrounded by 8 additional amphipathic 

helices. All studies and models have indicated that BAK and BAX must undergo a large conformational 

rearrangement to become active and initiate apoptosis. In healthy cells, monomeric BAX shuttles 

between the cytosol and the OMM. However, upon exposure of cells to apoptotic stimuli, BAX 

transiently engages with an ‘activator’ BOP at the distal site (α1 and α6), which enables the release of 

the transmembrane α9 helix of BAX from its ‘front’ hydrophobic groove, targeting it to and anchoring 

it in the outer mitochondrial membrane (OMM) (Adams and Cory, 2017, Gavathiotis et al., 2010, 

Gavathiotis et al., 2008, Suzuki et al., 2000). Interestingly, mitochondrial outer membrane (MOM)-

bound BAX has also been demonstrated to be ‘retro-transposed’ back into the cytosol via pro-survival 

proteins, including BCL-XL, which is crucial for preventing unwanted death (Edlich et al., 2011). Unlike 

BAX, the majority of BAK is found constitutively inserted in the OMM via its α9 helix . 

Further rearrangements in BAK and BAX are predicted to require ‘activator’ BOPs to engage with their 

‘front’ hydrophobic groove. Several structural rearrangements have been suggested including: the 

release of the N-terminal segment (including the α1 helix), exposure of their BH3 α2 helices, core (α2-

α5)/latch (α6-α8) dissociation and insertion of α5-α6 helices into the OMM (Alsop et al., 2015, Annis 

et al., 2005, Brouwer et al., 2014, Czabotar et al., 2013, Oh et al., 2010, Westphal et al., 2014b). 

Ultimately, this results in the release of ‘activator’ BOPs and the transient exposure of the BH3 domain 

of BAK or BAX. The BH3 domain can compete for binding to the groove of a neighbouring BAX, or BAK, 

monomer, enabling hetero- and homo- dimerisation and oligomerisation (Czabotar et al., 2013, 

Dewson et al., 2012, Ma et al., 2013, Zhang et al., 2010). ‘Symmetric’ (Dewson et al., 2008) and 

‘asymmetric’ dimers have been found (Gavathiotis et al., 2010, Kim et al., 2009), however the former 

is the more accepted mode for dimerisation.  
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How BAK and BAX oligomers interact with the OMM to form a pore to drive MOMP is not completely 

understood. Recent structural observations have suggested that the long established hairpin insertion 

or ‘umbrella’ model for pore formation (Annis et al., 2005) may not be correct. Instead of inserting into 

the membrane the α4 and α5 helices lie in-plane with the OMM and may insert shallowly into the 

membrane, in addition to the α6, α7 and α8 helices, to drive lipid rearrangements and pore formation 

(Uren et al., 2017, Westphal et al., 2014a, Westphal et al., 2014b). Preliminary high resolution images 

of the pore structures are beginning to emerge; however they fail to distinguish between structures in 

which BAX α-helices have shallowing inserted in the MOM generating a ‘lipid rim’ and ‘BAX-lined’ pores 

within the MOM (Adams and Cory, 2017, Grosse et al., 2016, Kuwana et al., 2016, Salvador-Gallego et 

al., 2016).  

The permeabilisation of the OMM by BAK/BAX releases components from the intra-mitochondrial 

space (IMS) including cytochrome c, which binds to the WD domains of APAF-1 triggering the activation 

of caspase-9 and the activation of downstream effector caspases (Riedl and Salvesen, 2007, Tait and 

Green, 2010). During MOMP, release of additional IMS proteins, including SMAC (Second 

mitochondria-derived activator of apoptosis)/DIABLO (Direct IAP-Binding Protein with Low pI) results 

in the disruption of the caspase-XIAP (inhibitor of apoptosis) interaction, thus relieving the inhibitory 

effect of XIAP to further promote caspase activation (Liu et al., 2000) (Figure 1.4). 

 

BH3 Profiling 

BH3 profiling utilises peptides derived from the BH3 domains of BOPs to predict cellular responses to 

stimuli including inhibitors. It measures changes in pro-apoptotic signalling, mitochondrial 

depolarisation and the induction of MOMP in response to exposure of mitochondria or cells to different 

BH3 peptides (Del Gaizo Moore and Letai, 2013).  

This approach can be used to determine the dependency of cells on different pro-survival proteins by 

exploiting the fact that different BOPs are capable of interacting with different pro-survival proteins, 

as depicted in Figure 1.4, with differing affinities. As shown here activator peptides BIM and BID would 

bind to all pre-survival proteins. However, NOXA is more selective and binds to MCL1 and A1 with high 

affinity and therefore if a response is observed with this peptide it suggests that these cells have a 

dependency on MCL1 and/or A1 for survival. This technique has been used to assess the dependency 

of tumour cells on different pro-survival proteins which can be used to predict the chemosensitivity of 

these cells and therefore could be used to guide treatment of patients (Butterworth et al., 2016, 

Touzeau et al., 2016).  
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1.2.1.4. Targeting apoptosis as a cancer therapy 

Aberrant or impaired apoptosis is considered a hallmark of cancer (Hanahan and Weinberg, 2000); as 

such the balance of pro-apoptotic and pro-survival BCL2 proteins is shifted in favour of survival in 

cancer cells. For example, the tumour suppressor p53 normally drives the expression of the pro-

apoptotic proteins, NOXA and PUMA, in response to DNA damage but is frequently inactivated by 

mutations in cancer (Nakajima and Tanaka, 2007). Cancer cells can also develop a dependency on 

elevated levels of pro-survival proteins to evade apoptosis whilst oncogenic signalling pathways can 

repress the expression of pro-death BOPs such as BIM, PUMA and BMF (Balmanno and Cook, 2009, 

Cook et al., 2017, Duronio, 2008). Several small drug-like molecules have been developed that aim to 

target the BCL2 pro-survival proteins and shift the balance from pro-survival towards pro-apoptotic, 

thereby providing a novel means to enhance tumour cell death (Letai, 2017, Montero and Letai, 2017). 

These compounds include the antisense oligonucleotide oblimersen that targets BCL2 pro-survival 

proteins (Klasa et al., 2002), BH3 peptides and BH3 mimetics that mimic the BH3 domain of the pro-

apoptotic proteins (Adams and Cory, 2017).  

 

BH3 mimetics  

Despite promising preclinical results oblimersen performed poorly in vivo as it was unable to reduce 

expression of pro-survival BCL2 proteins (O'Brien et al., 2009). As a result, BH3 mimetics have become 

a more favourable therapeutic approach and several are in clinical trials or clinically approved for the 

treatment of specific cancer lineages. The BH3 mimetics ABT-737 and ABT-263 (Navitoclax) have 

nanomolar affinity for BCL2, BCL-XL, and BCL-w, but negligible affinity for MCL1 or A1 (Anderson et al., 

2014, Oltersdorf et al., 2005, Tse et al., 2008). They are therefore most effective against tumours 

expressing high levels of BCL2, BCL-XL, and BCL-w and act by displacing BAK and BAX from pro-survival 

proteins to induce apoptosis (Del Gaizo Moore et al., 2007, Konopleva et al., 2006, van Delft et al., 

2006). Crystal structures of ABT-737, bound to BCL-XL (Lee et al., 2007), and ABT-263, bound to BCL2 

(Souers et al., 2013), revealed that the interaction between BH3 mimetics and pro-survival proteins 

differs from that between the BH3 domain of BIM and BCL-XL (Liu et al., 2003). Interestingly, it revealed 

that BH3 mimetics are able to penetrate the p2 hydrophobic pocket, of the pro-survival protein, much 

deeper than the BH3 domain of BIM.  

In early clinical trials, ABT-263 was shown to be effective in tumours with high levels of BCL2 including 

chronic lymphocytic leukaemia (CLL) and follicular lymphoma (FL) (Roberts et al., 2012); in contrast 

more modest effects were observed against solid tumours, which may require combinations of ABT-

263 with other cancer therapies to drive tumour cell death (Rudin et al., 2012, Sale and Cook, 2013). 

Unfortunately, patients treated with ABT-263 developed thrombocytopenia due to on-target BCL-XL 
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inhibition, therefore ABT-263 was re-engineered to generate ABT-199 (Venetoclax), a mimetic that 

selectively targets BCL2. ABT-199 exploits a difference between the p4 hydrophobic pocket of pro-

survival proteins, thereby preventing it from inhibiting BCL-XL, and thus protects patients from 

developing thrombocytopenia (Souers et al., 2013, Vandenberg and Cory, 2013). ABT-199 showed 

promising results in patients with CLL, small lymphocytic lymphoma (SLL) and acute myeloid leukaemia 

(AML) (Souers et al., 2013), and in 2016 was approved for the treatment of CLL.  

BH3 mimetics are not as effective against tumours that predominantly express the pro-survival protein 

MCL1, which is implicated in resistance to ABT-263 and ABT-199 (Leverson et al., 2015, van Delft et al., 

2006, Xiao et al., 2015, Yecies et al., 2010, Zhang et al., 2011). Pan et al. have shown that the pan-BCL2 

family inhibitor, (-)BI97D6, can overcome resistance to the BH3 mimetic ABT-737 in tumours that 

express MCL1 and induce apoptosis (Pan et al., 2015). In addition, preclinical trials with the MCL1 

inhibitor, S63845, have been promising (Kotschy et al., 2016, Merino et al., 2017). Ashkenazi et al. have 

described additional BH3 mimetics in development (Ashkenazi et al., 2017), including the BCL-XL 

specific mimetic WEHI-539 (Lessene et al., 2013, Leverson et al., 2015) as well as A-1155463 and 

A1331852, which may be of therapeutic benefit in the treatment of solid tumours, including colorectal 

cancers that have elevated BCL-XL expression (Zhang et al., 2015).  

 

Targeting BAK/BAX  

Recent modelling of the activation of BAK/BAX has meant that these pro-apoptotic proteins could 

potentially be targeted by small molecules to directly activate them, increasing intrinsic apoptosis and 

cell death. Small molecules could potentially target the distal site (α1 and α6) of BAX, the ‘front’ 

hydrophobic groove and the region that controls activation of BAX by release of the ‘latch’ domain 

from the ‘core’ domain (Gavathiotis et al., 2012, Zhao et al., 2014). Interestingly, Niu et al. have 

described small-molecule inhibitors of BAK/BAX, MSN-125 and MSN-50, which prevent BAK/BAX 

oligomerisation, inhibiting apoptosis and promoting neuroprotection (Niu et al., 2017). In addition, BAX 

inhibitor 1 (BI-1), an endogenous anti-apoptotic protein, could be a potential therapeutic target as it 

was demonstrated to inhibit BAX-dependent apoptosis, promote chemoresistance and tumour cell 

survival (Grzmil et al., 2006, Krajewski et al., 1999, Robinson et al., 2011, Xu and Reed, 1998). 

 

IAP antagonists  

There are eight known inhibitors of apoptosis (IAPs) including cellular IAPs (cIAPs); cIAP-1, cIAP-2, XIAP 

and SURVIVIN (Oberoi-Khanuja et al., 2013). In general they act to antagonise effector caspases, 

thereby inhibiting apoptosis. Protein levels of IAPs are elevated in many cancers and, as a result, small 

molecules are in pre-clinical trials that act to mimic SMAC/DIABLO, thereby antagonising IAPs and 
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relieving their inhibitory effect on effector caspases (Fulda and Vucic, 2012, Straub, 2011). Key small-

molecule IAP antagonists or ‘SMAC mimetics’ include Birinapant (TL32711), which is a bivalent small 

molecule SMAC mimetic that targets cellular cIAPs resulting in the inactivation of the the NF-ĸB 

pathway (Benetatos et al., 2014, Gyrd-Hansen and Meier, 2010). Recent data also suggests that 

Birinapant, and an additional ‘SMAC mimetic’ AT-406, could be used in combination with the BH3 

mimetic ABT-199 to drive apoptosis of tumour cells with high BCL2 expression (Perimenis et al., 2016).  

 

1.3. Ras-RAF-MEK1/2-ERK1/2 signalling 

Rat sarcoma (Ras) proteins were first identified to be encoded by retroviral oncogenes commandeered 

by Kirsten and Harvey rat sarcoma viruses from the host genome. Additional studies established ras 

genes to be transfectable oncogenes in human tumours. From these findings ras was demonstrated to 

be mutated in tumour cells and retroviruses and had the ability to regulate cell growth (Barbacid, 1987, 

Downward, 2003).  

There are multiple downstream effectors of Ras, the majority of which promote cell survival, cell cycle 

progression and cell motility. The main effectors of Ras are RAF, PI3K, RALGDS and PLCε, which contain 

a Ras-binding domain (RBD) that enables them to interact with the effector loop of Ras (Downward, 

2003).  

Ras can directly bind to class IA phosphoinositide 3’-kinases (PI3K) which phosphorylate 

phosphatidylinositol-4,5-bisphosphate (PIP2) at the plasma membrane to generate the second 

messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3). This process is opposed by the lipid 

phosphatase PTEN, which dephosphorylates PIP3 to PIP2 (Maehama and Dixon, 1998). PIP3 can then 

recruit and activate downstream effector proteins including PDK1 and AKT/PKB. Of note, AKT 

phosphorylates and negatively regulates or inhibits numerous factors implicated in cell proliferation 

and apoptosis such as p21CIP1, p27KIP1, FOXO1/3/4, BAD, BAX and caspase-9. Similar to that described 

for PI3K, the RAL guanine nucleotide dissociation stimulator (RALGDS) pathway contributes to the 

inhibition of FOXO transcription factors known to regulate the expression cell cycle regulatory proteins 

(p27KIP1) and apoptotic proteins (BIM and FAS ligand) (De Ruiter et al., 2001). Therefore, both pathways 

predominantly act to promote cell-cycle progression and inhibit apoptosis.  

The Ras regulated RAF-MEK1/2-ERK1/2 (ERK1/2) signalling pathway has also been shown to be 

important in promoting cell survival, particularly tumour cell survival (Balmanno and Cook, 2009). 

Furthermore, since the ERK1/2 signalling pathway is hyperactivated in a wide variety of cancers it has 

attracted significant interest as a therapeutic target. Indeed, BRAF and MEK inhibitors have now been 

approved for clinical use in certain cancers whilst ERK inhibitors are entering clinical trials (Caunt et al., 

2015, Downward, 2003, Holderfield et al., 2014, Kidger et al., 2018). 
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1.3.1. Overview of Ras-RAF-MEK1/2-ERK1/2 signalling pathway 

Depending upon the stimulus transmitted to Ras, at the plasma membrane, activation of the 

downstream Ras-dependent RAF-MEK1/2-ERK1/2 (ERK1/2) signalling cascade can result in cell survival, 

proliferation, differentiation or apoptosis (Figure 1.5). Ligand engagement of receptor tyrosine kinases 

(RTKs) at the plasma membrane results in the autophosphorylation of RTKs and recruitment of adaptor 

proteins, including GRB2 (growth factor receptor-bound protein) and SHC (src homolgy 2 domain 

containing transforming protein). Together these adaptor proteins recruit SOS (son of sevenless), a GEF 

(guanine nucleotide exchange factor), that promotes an active ‘on’ GTP-bound form of Ras (HRas, KRas 

and NRas), via the dissociation of GDP (Cherfils and Zeghouf, 2013, Takai et al., 2001). Both GEFs and 

GAPs (GTPase-activating proteins) regulate the activity of Ras where GAPs oppose GEF activity and 

inactivate Ras by promoting GTP hydrolysis (Bos et al., 2007, Cherfils and Zeghouf, 2013). Examples of 

GAPs include NF1, p120GAP (RasGAP) and SynGAP (Bos et al., 2007, Cherfils and Zeghouf, 2013). 

Scheffzek et al, demonstrated that RasGAP positions its ‘arginine finger’ within the phosphate-binding 

site of Ras, thereby neutralising the charge developed as a consequence of transition and enhancing 

GTP hydrolysis (Scheffzek et al., 1997). RasGAP is also important to stabilise the position of Q61 within 

Ras, which is frequently mutated in cancer. Additionally, Ras requires post-translational modification 

for its association with the plasma membrane. Farnesylation of Ras at its C-terminus, by 

farnesyltransferase (FT), results in the attachment of a hydrophobic farnesyl group to Ras that allows 

for its membrane-association (Chang et al., 2003).  

In its GTP-bound form Ras is in its active conformation, due to structural rearrangements in switches I 

and II; this enables it to bind to and activate downstream effector proteins. Ras-GTP binds to RAF 

(ARAF, CRAF and BRAF) and disrupts its interaction with 14-3-3 proteins. This generates a more ‘open’ 

form of RAF, which allows for additional activation events including phosphorylation of RAF by SRC 

(Leicht et al., 2007) and its homo- and hetero-dimerisation (Rushworth et al., 2006, Weber et al., 2001).  

The kinases downstream of RAF, MEK1/2 and ERK1/2, require phosphorylation for activation. Active 

RAF phosphorylates MEK1/2 at conserved serine (Ser or S) residues within their activation loops. This 

enables these active dual specificity kinases MEK1/2 to phosphorylate the threonine (Thr or T) and 

tyrosine (Y) residues, consecutively, within the activation loop T-E-Y sequences of ERK1/2, thereby 

enabling conformational changes required for its activation (Aoki et al., 2011, Roskoski, 2012). ERK1/2 

binds to its substrates via the docking domains D-domain and F-domain (DEF domain), and catalyses 

the phosphorylation of proline (P) directed Ser/Thr residues (Bardwell et al., 2003, Burkhard et al., 

2011, Jacobs et al., 1999). Translocation of active ERK1/2 to the nucleus results in the phosphorylation 

of ETS and AP-1 transcription factors that drive immediate-early and delayed-early gene expression 

(Yoon and Seger, 2006), ultimately leading to cell proliferation and survival.  
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Figure 1.5 Overview of the Ras-RAF-MEK1/2-ERK1/2 (ERK1/2) signalling pathway. 
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ERK1/2 signalling is regulated by negative, and to a lesser extent, positive feedback. Rapid negative 

feedback can occur via inhibitory phosphorylation of upstream components by ERK1/2, including RAF 

(Dougherty et al., 2005, Ritt et al., 2010) and MEK (Eblen et al., 2004). Thus, active ERK1/2 regulates its 

own activation indicative of a negative feedback loop.  

On a longer timescale, sprouty (SPRY), SPRED and the dual-specificity phosphatases (DUSPs) act to 

inhibit ERK1/2 signalling. Interestingly, ERK1/2 signalling has been proposed to induce the expression 

of SPRY and DUSP5/6 mRNA, thus resulting in a negative feedback loop regulating its own activity 

(Ekerot et al., 2008, Kucharska et al., 2009, Ozaki et al., 2001). SPRY inhibits ERK1/2 signalling at the 

level of RTKs, SOS and RAF (Masoumi-Moghaddam et al., 2014), whilst DUSPs, notably the MAP kinase 

phosphatases (MKPs), oppose MEK1/2 and dephosphorylate ERK1/2 at the T-E-Y motif, thereby 

terminating activation of ERK1/2 (Caunt and Keyse, 2013, Kidger and Keyse, 2016). As DUSPs are 

localised to different cellular compartments it enables the spatial regulation of ERK1/2 activation 

(Caunt et al., 2008). SPRED has been shown to block RAF activation by inhibiting the phosphorylation 

and therefore activation of RAF, potentially through the disruption of the Ras-RAF interaction (Cabrita 

and Christofori, 2008, Wakioka et al., 2001).  

Interestingly, DUSP1 (MKP-1), SPRY proteins and SPRED proteins have been demonstrated to be 

regulated through ubiquitylation. DUSP1 (MKP-1) has been shown to be phosphorylated by ERK, 

thereby driving its ubiquitylation, by the SKP2 (S-phase kinase-associated protein 2)/CKS1 (CD28 

protein kinase b1) E3 ligase complex, resulting in its degradation (Calvisi et al., 2008, Lin et al., 2003, 

Lin and Yang, 2006). In addition, the degradation of SPRY proteins, including SPRY2, was observed to 

occur as a consequence of interaction with the E3 ligases c-Cbl and Siah2 (Egan et al., 2002, Hall et al., 

2003, Nadeau et al., 2007, Rubin et al., 2003). SPRED proteins (SPRED-2) have been demonstrated to 

be ubiquitylated in response to cellular stimulation with EGF (Lock et al., 2006).  

 

1.3.1.1. p90 RSK 

As depicted in Figure 1.5, one of the downstream targets of ERK1/2 is RSK. p90 ribosomal S6 kinases 

(RSK1/2/3/4) are a family of Ser/Thr kinases that regulate multiple cellular processes including cell 

proliferation and cell cycle progression.  

All RSK isoforms are comprised of two kinase domains, an N-terminal kinase domain (NTKD) and a C-

terminal kinase domain (CTKD), which are connected via a linker region (Anjum and Blenis, 2008, 

Carriere et al., 2008, Romeo et al., 2012). Unlike the other RSK isoforms, RSK4, is constitutively active, 

predominantly found in the cytosol and acts independently of growth factors (Dummier et al., 2005). 

ERK1/2 can interact with the ERK1/2-docking D-domain in the C terminus of RSK (Roux et al., 2003). 

Once activated, ERK1/2 phosphorylates T573 in the activation loop of the CTKD of RSK (described amino 
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acids (aa) are for RSK1), and additionally may phosphorylate S363 and T359 within the linker domain. 

Phosphorylation of T573 activates the CTKD and results in the autophosphorylation of S380. This 

provides a platform for the recruitment of PDK1 to the linker region, which additionally phosphorylates 

S221 in the NTKD, resulting in the full activation of RSK and subsequent phosphorylation of a diverse 

set of cytoplasmic and nuclear substrates. Differences in the N-terminal sequence of the RSK isoforms 

could account for their varied substrates. In addition to ERK1/2, RSK can be activated by alternative 

kinases including p38 MAPK and ERK5 (Ranganathan et al., 2006, Zaru et al., 2007) and specifically RSK2 

can be phosphorylated by FGFR3 at Y529.  

Interestingly, the RSK isoforms are functionally different in the context of cancer. RSK1 and/or RSK2 

have been demonstrated to promote tumour cell growth and survival, whilst RSK3 and RSK4 have been 

reported to act as tumour suppressors; notably RSK4 has been demonstrated to contribute to p53-

dependent cell cycle arrest and oncogene-induced senescence (Berns et al., 2004, Bignone et al., 2007, 

Lopez-Vicente et al., 2009). Given this, inhibitors have been developed to target specific RSK isoforms 

which could be used as anti-cancer therapies (Casalvieri et al., 2017).  

 

1.3.1.2. ERK1/2-mediated regulation of pro-survival BCL2 proteins.  

Survival factors can activate the ERK1/2 signalling pathway to increase expression of pro-survival 

proteins including BCL2, BCL-XL and MCL1 (Figure 1.6). For example, activation of ERK1/2 and the 

downstream kinases RSK1/2 and MSK1/2 leads to the phosphorylation and activation of the 

transcription factor CREB (cAMP-response element-binding protein), which promotes the transcription 

of several pro-survival BCL2 proteins (Bonni et al., 1999, Boucher et al., 2000, Wilson et al., 1996).  

ERK1/2 signalling also regulates the stability of MCL1. ERK1/2 phosphorylates MCL1 at T163 within its 

N-terminal PEST (Proline (P), glutamic acid (E), serine (S) and threonine (T) rich sequence) domain, 

leading to increased protein stability (Domina et al., 2004). This pro-survival signal is counteracted by 

GSK3β, which phosphorylates MCL1 on S159, promoting its polyubiquitylation and proteasomal 

degradation (Maurer et al., 2006). 

 

1.3.1.3. ERK1/2-mediated regulation of pro-apoptotic BH3-only proteins (BOPs). 

At least six of the described BOPs have been proposed to be regulated by the ERK1/2 signalling pathway 

(Balmanno and Cook, 2009) (Figure 1.6). BAD, BIM, BMF, PUMA and BIK are all repressed or inhibited 

as a result of ERK1/2 signalling. Phosphorylation of BAD results in its sequestation by 14-3-3 proteins 

in the cytosol, which inhibits its pro-apoptotic activity at the mitochondria (Zha et al., 1996). 

Specifically, BAD is phosphorylated on S112, in a MEK1/2-dependent manner (Fang et al., 1999, Scheid 

et al., 1999) by RSK and MSK downstream of ERK1/2 (Bonni et al., 1999, She et al., 2002, Shimamura 
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et al., 2000). Phosphorylation of BAD at S112, in addition to S136, enables the cAMP-dependent PKA-

driven phosphorylation of BAD within its BH3 domain (S155) which prevents it interaction with BCL-XL 

(Datta et al., 2000). In addition to inactivation, ERK1/2 signalling has been suggested, in certain cell 

types, to promote the proteasomal degradation of BAD (Fueller et al., 2008, Howie et al., 2008). 

Phosphorylation of BIK by ERK1/2 has been demonstrated to induce its ubiquitin-dependent 

proteasomal degradation (Lopez et al., 2012). However, this is controversial and recent studies have 

suggested that these observations may have been an artefact of its cell cycle-dependent regulation 

rather than ERK1/2 activity (Cook et al., 2017, Sale and Cook, 2014).  

Inhibition of the ERK1/2 pathway, by MEK1/2 inhibitors, has been shown to induce the expression of 

BIM, BMF and PUMA (Balmanno and Cook, 2009, Sale and Cook, 2013).The mechanism by which 

ERK1/2 signalling represses BMF is unclear. However, ERK2 has been shown to phosphorylate and 

inhibit BMF (Shao and Aplin, 2012) and the ERK1/2 pathway can regulate the expression and 

localisation of BMF (Shao and Aplin, 2012, VanBrocklin et al., 2009). ERK1/2-dependent regulation of 

FOXO3 (Forkhead box O3) may block the expression of PUMA (Yang et al., 2008), however the exact 

mechanism is unclear.  

In contrast to the previously described BOPs, activation of the ERK1/2 signalling pathway induces NOXA 

mRNA and protein expression, which is thought to occur due to the CREB-driven transcription of NOXA 

(Liu et al., 2014). As a consequence of induction, NOXA has been suggested to bind to MCL1, and 

displace Beclin-1, thereby inducing autophagy (Elgendy et al., 2011, Liu et al., 2014). Conversely, RAF 

and/or MEK1/2 inhibition, in cancers driven by ERK1/2 signalling (BRAFV600E melanoma), caused the 

downregulation NOXA (Basile and Aplin, 2012).  

 

1.3.2. BIM 

BIM (BCL2 interacting mediator of cell death) was identified by its binding to BCL2 in a cDNA expression 

cloning screen and as BOD (BCL2-related ovarian death gene) in a yeast two-hybrid screen (Hsu et al., 

1998, O'Connor et al., 1998). BIM plays an important role in leukocyte homeostasis by promoting B 

and T cell apoptosis. It is also essential for preventing autoimmunity, by eliminating autoreactive 

lymphocytes.  

As a consequence of BIM being an important regulator of apoptosis, its expression is tightly regulated. 

Expression of BIM is upregulated at the transcription level via the transcription factor FOXO (Dijkers et 

al., 2000, Gilley et al., 2003). Following cytokine withdrawal in lymphocytes, transcription of BIM is 

promoted by FOXO3A (Dijkers et al., 2000). The activity of FOXO proteins is regulated through 

posttranslational modifications (PTMs) including phosphorylation and ubiquitylation. Phosphorylation 
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Figure 1.6 Regulation of apoptosis by ERK1/2 signalling. 
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of FOXO3A by active PKB has been shown to drive its nuclear export and therefore reduce the 

expression of BIM. PKB phosphorylation of FOXO3A has also been shown to promote its degradation 

by the proteasome (Huang et al., 2005). The ERK1/2 pathway also inhibits FOXO3A by causing its 

phosphorylation, consequent polyubiquitylation and degradation by the 26S proteasome (Yang et al., 

2008). As such, the expression of BIM is induced in response to withdrawal of cytokines, and survival 

factors, as a consequence of inactivation of the PKB or ERK1/2 signalling pathways (Dijkers et al., 2000, 

Weston et al., 2003). In addition, in sympathetic neurons, withdrawal of nerve growth factor (NGF) 

results in an increase in BIM mRNA in response to overexpression of FOXO transcription factors and 

activation of the JNK-c-Jun pathway (Gilley et al., 2003, Putcha et al., 2003, Whitfield et al., 2001).  

Other transcriptional and post-translational regulators of BIM include CHOP-C/EBPα and protein 

phosphatase 2A (PP2A) (Puthalakath et al., 2007). These both increase the expression and reduce the 

degradation (respectively) of BIM following ER stress. Recently CHOP-C/EBPα has been shown to 

cooperate with FOXO3A to induce expression of BIM in neuronal cells (Ghosh et al., 2012). In addition, 

the transcription factor RUNX3 increases expression of BIM in gastric cancer cell lines following 

treatment with TGF-β (Yano et al., 2006). BIM is also regulated at the post-transcriptional level by micro 

RNAs, including miR-17-92a and miR-494 (Guo et al., 2013, Romano et al., 2012).  

BIM can be found as multiple protein isoforms generated by alternative splicing (Adachi et al., 2005, 

Bouillet et al., 2001). The most common of these are BIMS, BIML and BIMEL, which vary in pro-apoptotic 

potency and abundance (O'Connor et al., 1998), with BIMS being the most toxic and least abundant 

isoform. The difference in potency can be partially attributed to the presence or absence of a dynein 

light chain 1 (DLC-1) domain (Puthalakath et al., 1999). The absence of a DLC-1 domain has been 

proposed to prevent the sequestration of BIMS at microtubules making BIMS a more cytotoxic isoform. 

In response to a pro-apoptotic signal BIML and/or BIMEL are phosphorylated by JNK at T116, resulting 

in their dissociation from microtubules (Lei and Davis, 2003).  

Structurally, BIM possesses a C-terminal sequence required for its targeting and anchorage in the 

OMM. Once attached to the membrane BIM is active and can recruit and activate pro-apoptotic BCL2 

proteins. Localisation to the OMM is independent of its BH3 domain and the presence of BCL2 proteins, 

but requires the rest of the protein to be intact (Wilfling et al., 2012). 

BIMEL is the largest (198 amino acids) and most abundant isoform and is proposed to have the lowest 

pro-apoptotic potency, although it is still a potent pro-death protein (O'Connor et al., 1998). Unlike 

BIMS and BIML, BIMEL contains a DEF domain that enables it to bind to ERK1/2 (Ley et al., 2005). BIMEL 

possesses multiple phosphorylation sites as well as two sites for ubiquitylation (K3 and K108) and these 

sites provide a means for the post-translational control of BIMEL abundance. ERK1/2 phosphorylates 

BIMEL on at least three Ser-Pro sites, including S69, targeting BIMEL for K48-linked polyubiquitylation 
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and subsequent degradation, via the 26S proteasome (Ewings et al., 2007, Ley et al., 2003, Ley et al., 

2004, Luciano et al., 2003, Marani et al., 2004, Wiggins et al., 2011). Studies have also shown that a 

mutant form of BIMEL, lacking both lysine residues required for K48-linked polyubiquitylation, can still 

be degraded upon activation of the ERK1/2 pathway independently of the canonical 26S proteasome 

(Wiggins et al., 2011). Others have suggested that phosphorylation of BIMEL, by ERK1/2, primes BIMEL 

for additional phosphorylation by RSK1/2, generating a binding site required for its polyubiquitylation 

and proteasomal degradation (Dehan et al., 2009). Interestingly, phosphorylation of BIMEL, by ERK1/2, 

has been demonstrated to drive its dissociation from pro-survival BCL2 proteins, including BCL-XL and 

MCL1, which enhanced its degradation (Ewings et al., 2007). Tumour cells addicted to ERK1/2 signalling 

are reliant upon the phosphorylation-dependent repression of BIM (Wickenden et al., 2008) and 

inhibitors of the ERK1/2 pathway induce the expression of BIM in multiple cancer cell lines (Faber et 

al., 2011).  

Many candidates have been suggested for the E3 ubiquitin ligase required for the polyubiquitylation 

of BimEL, however the majority of published data indicates that SCFβ-TrCP is the E3 ligase for BimEL. In 

addition to βTrCP, as part of a larger SCF complex, c-Cbl, a RING finger protein, has also been proposed 

to act as an E3 ligase for BIMEL in osteoclasts (Akiyama et al., 2003). However, this is controversial as, 

unlike that observed for BIMEL, the majority of c-Cbl substrates require phosphorylation of conserved 

tyrosine residues for substrate-E3 ligase interaction, polyubiquitination and degradation and, as such, 

there is no evidence of a direct interaction between BIMEL and c-Cbl (El Chami et al., 2005, Meng et al., 

1999, Wiggins et al., 2007).  

In response to paclitaxel treatment of cancer cells, RACK1 complexes with DLC1 and BIMEL and results 

in the CIS-mediated degradation of BIMEL by ElonginB/C-Cullin2-CIS (Zhang et al., 2008). In contrast to 

this, in renal cell carcinoma cells, Guo et al. demonstrated that pVHL, part of the elongins B and C and 

Cul2 family, stabilised BIMEL. This was predicted to be as a result of inhibition of ERK1/2-dependent 

phosphorylation of BIMEL or as a consequence of the interference between BIMEL and its E3 ligase (Guo 

et al., 2009). These two studies suggest that the same E3 ligase core can have opposing effects on the 

same protein. 

During mitosis APCCDC-20 has been shown to interact with BIMEL to promote its degradation. In this case, 

phosphorylation by ERK1/2 and RSK1/2 is not required for this interaction (Wan et al., 2014). Moustafa-

Kamal and colleagues demonstrated that during mitosis the degradation of BIMEL is regulated by the 

Aurora A kinase and protein phosphatase 2A (PP2A) (Moustafa-Kamal et al., 2013). Aurora A 

phosphorylates BIMEL within the recognised βTrCP binding motif at S93, S94 and S98, enabling 

interaction with βTrCP1, thus promoting its polyubiquitination and degradation. Indeed, mutation of 

S94/S98 but not S69, a known ERK1/2 phosphorylation site, resulted in defective polyubiquitination 

and stabilisation of BIMEL in mitosis. Similarly, inhibition of Aurora A by MLN8054, stabilised BIMEL 
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(Moustafa-Kamal et al., 2013). Mitotic phosphorylation of BIMEL by CDK1 has also been found to drive 

the polyubiquitination and degradation of BIMEL (Gilley et al., 2012). More recently, Thompson et al. 

identified, by mass spectrometry, that TRIM2, a RING-containing E3 ligase, interacts with ERK1/2-

driven phosphorylated BIM (Thompson et al., 2011). However, it still needs to be determined if TRIM2 

requires additional proteins to drive the ubiquitylation of BIM or acts alone. In murine B-ALL cells, the 

E3 ligase TRIM33 has been shown to prevent apoptosis by interfering with the activation of BIM (Wang 

et al., 2015a). In addition, increased expression of E3 ligase SIAH1 resulted in the induction of apoptosis 

as a consequence of increased expression of BIM, via the JNK pathway (Wen et al., 2010). Overall, given 

the various E3 ligases reported to ubiquitylate BIM, it suggests a level of redundancy in the E3 ligase-

driven regulation of BIM. It also implies that specific E3 ligases may play a role in the regulation of BIM 

under a specific set of conditions, including different drug treatments, cell lines and the stage of the 

cell cycle.  

The counteracting deubiquitylating enzyme (DUB) for BIM has recently been identified (Weber et al., 

2016). USP27x was shown to interact with BIM, dependent upon its ERK1/2-driven phosphorylation, 

resulting in its increased expression. Overexpression of USP27x also resulted in an increase in caspase-

dependent apoptosis.  

In addition to its role in apoptosis, BIM has been shown to inhibit autophagy by directly interacting 

with and mislocalising Beclin-1 (Luo et al., 2012). BIMEL is phosphorylated at S59 in response to 

activation of the ERK1/2 signalling pathway in inflammatory breast cancer which leads to BIMEL being 

sequestered by LC8 and Beclin-1 which protects cells from extracellular matrix (ECM)-detachment-

induced apoptosis (anoikis) (Buchheit et al., 2014).  

 

1.3.3. Ras-RAF-MEK1/2-ERK1/2 signalling in cancer 

Aberrations in the ERK1/2 signalling pathway are frequently found in cancer. Ras is mutated in ~20-

30% of all cancers (Bos, 1989, Karnoub and Weinberg, 2008). The most abundant mutations in KRas 

are at codon 12, 13 and 61, and mechanistically prevent GAPs from enhancing the GTPase activity of 

Ras, thereby rendering Ras constitutively active which drives inappropriate cell proliferation (Adari et 

al., 1988, Trahey and McCormick, 1987).  

More recently, mutations in RAF, MEK1/2 and ERK1/2 have also been identified in cancer (Caunt et al., 

2015, Davies et al., 2002, Kidger et al., 2018). BRAF mutations are found in ~66% of melanoma (Davies 

et al., 2002). The most common mutation is V600E and this alters its conformation alleviating inhibition 

by its N-terminal regulatory region (Tran et al., 2005, Wan et al., 2004). The first described mutation of 

MEK was MEK2P298L in lung cancer and since then several activating mutations have been identified in 

ovarian cancer, melanoma and colorectal carcinoma (CRC) (Arcila et al., 2015, Bansal et al., 1997, Estep 
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et al., 2007, Marks et al., 2008, Nikolaev et al., 2011). Primary disease causing mutations in ERK1/2 

appear to be rare, however some have been found including ERK2E322K in cervical carcinoma and head 

and neck squamous cell carcinoma (Arvind et al., 2005, Lawrence et al., 2014, Ojesina et al., 2013). 

 

1.3.3.1. Inhibition of ERK1/2 signalling as a cancer therapy. 

As a consequence of the dependence on ERK1/2 signalling for tumour proliferation there is significant 

interest in the development of potent small-molecule inhibitors of all components of the pathway.  

The discovery of activating BRAFV600E mutations (Davies et al., 2002) led the development of 

vermurafenib (PLX4032), and soon after dabrafenib, which are potent and highly selective BRAF 

inhibitors (BRAFi), only effective in tumours containing BRAFV600E driver mutations including melanoma 

and hairy cell leukaemia (Holderfield et al., 2014, Joseph et al., 2010, Tiacci et al., 2015). Unfortunately, 

these inhibitors drive paradoxical activation of MEK1/2 and ERK1/2 in tumours with wild-type BRAF, 

including those with Ras mutations (Holderfield et al., 2014, Poulikakos et al., 2011). As a consequence, 

attention has refocused on the development of MEK inhibitors (MEKi) to treat Ras mutant tumours 

(Caunt et al., 2015).  

The first MEKi to be assessed in vivo was PD184352, which was shown to inhibit the growth of CRC 

xenografts (Sebolt-Leopold et al., 1999). However due to low potency and poor bioavailability (Rinehart 

et al., 2004), more selective MEKis have since been developed. The outcome of MEKi treatment on 

tumour cells largely depends on its mechanism of action, namely whether its action abrogates the 

phosphorylation of MEK1/2 or not. In cells with wild-type BRAF, including those with Ras mutations, 

loss of ERK1/2 activity with allosteric MEKis (PD0325901, selumetinib and cobimetinib) relieves 

negative feedback on the pathway. This typically results in the accumulation of phosphorylated 

MEK1/2, activation of ERK1/2 and restoration of pathway output. As a result, these MEKis have been 

used to treat BRAFV600E tumour cells, as here BRAF acts as an active monomer independent of CRAF 

binding and is therefore insensitive to negative feedback (Caunt et al., 2015). In contrast, MEKis that 

also inhibit MEK1/2 phosphorylation by disrupting the conformation of its activation loop (feedback 

buster’ MEKis; trametinib and GDC-0623) suppress the rebound in ERK1/2 activation caused by the 

removal of negative feedback and therefore generate a more durable pathway inhibition 

(Hatzivassiliou et al., 2013, Lito et al., 2014). Both trametinib and cobimetinib are clinically approved 

for the treatment of BRAFV600E mutant tumours. MEKi treatment of tumour cells typically causes a G1 

arrest despite the induction of pro-apoptotic proteins including BIM, BMF and PUMA. This outcome is 

most likely due to the high expression of pro-survival proteins. This arrest provides an opportunity for 

tumour cells to adapt and develop acquired resistance to these drugs (Sale and Cook, 2013) (Figure 

1.7).  
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Figure 1.7 Combined treatment of ERK1/2-addicted tumour cells with MEK1/2 inhibitors and BH3 mimetics overcomes cell 
cycle arrest, observed with MEK1/2 inhibitor monotherapy, to induce apoptosis. 
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Acquired resistance to BRAFis emerges due to multiple mechanisms including the generation of 

alternative splice variants of BRAF, using alternative pathways involving ARAF, CRAF or alternative 

activators of MEK1/2, emergence of mutations in KRas and MEK1 and an up-regulation of RTKs 

(Johannessen et al., 2010, Montagut et al., 2008, Nazarian et al., 2010, Poulikakos et al., 2011, Wagle 

et al., 2011). Acquired resistance to MEKis arises due to amplification of the driving oncogene, KRas or 

BRAF (Little et al., 2011) and mutations in MEK1 (Emery et al., 2009). The common feature in most, if 

not all, of these studies is the re-activation or maintenance of ERK1/2 signalling in the presence of 

BRAFi or MEKi. Combining BH3 mimetics with BRAFi or MEKi is an effective way of harnessing ERK1/2 

pathway addiction to drive apoptosis and these combinations have proved very effective in killing 

tumour cells and delaying the onset of acquired resistance to ERK1/2 pathway inhibitors (Sale and 

Cook, 2013) (Figure 1.7). In part due to toxicity in normal tissue with MEKi monotherapy, BRAFi and 

MEKi have been used in combination (Long et al., 2014), however like that seen with BRAFi and MEKi 

monotherapy, cells with mutant BRAF quickly develop resistance and may require additional therapies 

to prolong responses including immunotherapies (Ahronian et al., 2015, Hu-Lieskovan et al., 2015).  

ERK1/2 inhibitors (ERKis) have been developed over the last 15 years (Kidger et al., 2018). The majority 

of the described ERKis are reversible and ATP-competitively target catalytic activity; however some 

inhibit the ability of ERK1/2 to be phosphorylated by MEK1/2 and are termed ‘dual mechanism’ 

inhibitors, including SCH772984 (Deng et al., 2014, Lim et al., 2016, Zhu et al., 2015). Allosteric 

inhibitors are in-development and have been shown to prevent ERK1/2 from interacting with its 

described binding partners (Chen et al., 2006, Hancock et al., 2005). Like MEKis, ERKis do not 

discriminate between mutant and wild-type ERK1/2 and they therefore have the potential to be toxic 

outside of a narrow therapeutic window. As such, ERKis may have limited use as a monotherapy (Goetz 

et al., 2014) and may be best used in combination with BH3 mimetics or to treat mutant BRAF tumour 

cells that have acquired resistance to BRAFi through reactivation of ERK1/2 signalling (Morris et al., 

2013).  

 

1.3.4. mTOR signalling  

mTOR (mechanistic target of rapamycin) is a Ser/Thr kinase in the PI3K-related kinase (PIKK) family. It 

is the catalytic subunit of two distinct protein complexes, mTOR Complex 1 (mTORC1) and mTOR 

complex 2 (mTORC2). mTORC1 is the better understood of the complexes and is in part activated 

through inhibition of the tuberous sclerosis 1 and 2 heterodimer (TSC1/2) by ERK1/2, PKB and RSK 

(Laplante and Sabatini, 2012). mTORC1 has been shown to repress autophagy, through 

phosphorylation of unc-51-like kinase 1 (ULK1), and promote protein synthesis, through 

phosphorylation of S6 kinase and 4E-BP (eIF (eukaryotic initiation factor) 4E-binding protein) 1 and 2 

(Ben-Sahra et al., 2013, De Benedetti and Graff, 2004, Kim et al., 2011a). Phosphorylation of 4EBP 
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results in the initiation of cap-dependent translation through the release of eIF4E. Of note, ERK1/2 and 

mTOR signalling have been found to converge at the level of eIF4E (Cope et al., 2014, Hou et al., 2012). 

Ultimately, the mTOR pathway senses environmental conditions and regulates cell growth, 

proliferation and survival.  

Deregulated mTOR signalling has been implicated in driving the progression of several diseases 

including cancer (Menon and Manning, 2008, Saxton and Sabatini, 2017). mTOR is hyperactivated in 

many cancers due to mutational activation of Ras, BRAF and PI3K and repression of LKB1, PTEN, and 

TSC1/2, in addition to mutations in mTOR itself (Gerlinger et al., 2012, Laplante and Sabatini, 2012). As 

such, ATP-competitive mTOR inhibitors are in-development for the treatment of cancer. Similar to that 

observed for inhibitors of the ERK1/2 pathway, cells can develop resistance mechanisms to mTOR 

inhibition. Predominantly, this has been shown to be through the maintenance or activation of cap-

dependent mRNA translation. Cope et al. observed that resistance to the mTOR inhibitor AZD8055 

occurred through the amplification of eIF4E which resulted in an increase in eIF4E responsive mRNA 

products including MCL1 and cyclin D1 (Cope et al., 2014). They also observed that these cells exhibit 

a cytostatic G1 arrest to acute mTOR inhibitor treatment. 

Due to the suggested limitations of mTOR inhibitors as a single agent, combinatorial treatments have 

been suggested to hold more promise (Conciatori et al., 2018). Treatment with mTOR inhibitors has 

also been demonstrated to activate autophagy and the UPS, both of which are required to degrade and 

recycle proteins. mTORC1 inhibition was shown to rapidly cause an increase in proteasome-dependent 

proteolysis, which Zhao et al. have suggested to be caused by an increase in protein ubiquitylation 

(Zhao et al., 2015). Given this, combination studies that have been used include the use of mTOR 

inhibitors and Bortezomib, the proteasome inhibitor, to prevent the degradation of IĸB and therefore 

activation of NF-ĸB signalling (Conciatori et al., 2018, Wang et al., 2012) 

 

1.4. Ubiquitin as a post-translational modification. 

Modification of a protein with functional groups, after translation, is a universal mechanism for altering 

its behaviour. Different types of PTM, including phosphorylation, acetylation, glycosylation and 

ubiquitylation, can alter the charge, hydrophobicity, conformation, stability and localisation of a given 

protein (Venne et al., 2014). Given this, changes in such post-translational modifications (PTMs) are 

linked to numerous diseases.  

Ubiquitylation of proteins is one of the most important regulatory PTMs and plays a central role in 

protein degradation as well as numerous non-degradative roles including protein trafficking, DNA 

damage response pathways and cell signalling (Chen and Sun, 2009, Hershko and Ciechanover, 1998, 

Komander and Rape, 2012, Swatek and Komander, 2016, Yau and Rape, 2016).  
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Ubiquitin (Ub) is conjugated to a protein in a series of catalytic reactions culminating in the E3 ligase-

driven formation of an isopeptide bond. However, ubiquitylation is reversible and a family of 

approximately 100 enzymes, deubiquitinating enzymes (DUBs), oppose E3 ligases and remove Ub from 

a target protein (Komander et al., 2009a, Nijman et al., 2005).  

 

1.4.1. Ubiquitylation. 

Ub is a compact 76 aa protein that possesses a flexible six-residue carboxy-terminal tail. It is covalently 

attached to a protein in a three-step enzymatic cascade conducted sequentially by; ubiquitin-activating 

enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligase enzymes (E3). These enzymes 

collectively act to covalently attach Ub, usually, via its carboxy terminus to lysine (K) residues within 

the target protein (Komander, 2009, Pickart, 2001) (Figure 1.8A). Interestingly, ‘E4 enzymes’ have also 

been described that collaborate with E1, E2 and E3 enzymes for multiubiquitylation of substrates 

(Hoppe, 2005). Examples of E4 enzymes include the yeast UFD2 (ubiquitin fusion degradation) and 

p300/CREB (Shi et al., 2009).  

 

Ubiquitin conjugation  

E3 ligases are capable of catalysing the initial ubiquitylation of the substrate and consequent formation 

of polyubiquitin chains. To achieve this, E3 ligases must be capable of interacting with an E2 enzyme, 

the ubiquitylation signal of a substrate and also of targeting individual lysine residues within an 

acceptor Ub molecule (Berndsen and Wolberger, 2014, Kulathu and Komander, 2012).  

Other post-translational modifications, including phosphorylation, may be required for the E3 ligase, 

or E2 enzyme, to recognise the target protein. This event provides additional regulation, particularly in 

signals that lead to protein degradation (Berndsen and Wolberger, 2014). E3 ligases can exist in an 

autoinhibited state predominantly as a consequence of intramolecular interactions. Release from 

inhibition can occur as consequence of post-translational modification, but also as a result of protein-

interactions including, SMURF2 (E3):SMAD7 (Kavsak et al., 2000) and HOIP (E3):HOIL-1L and/or 

SHARPIN (Ikeda et al., 2011, Tokunaga et al., 2011).  

There are more than 600 E3 ligases encoded by the human genome, which can be sub-divided 

according to the motif that is responsible for the mechanism of Ub transfer (Metzger et al., 2012) 

(Figure 1.8B). HECT (homologous to E6 associated protein C terminus) ligases attach Ub to the target 

protein in a two-step reaction, where Ub is transferred from an E2 enzyme to the active site cysteine 

within the C-lobe of the HECT domain, forming a thioester-linked HECT-Ub intermediate and from there 

to the substrate (Huang et al., 1999, Metzger et al., 2012). In contrast, RING (really interesting new 

gene) and U-box ligases act as scaffolds, binding the substrate and an E2 enzyme simultaneously which  
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 Figure 1.8 Overview of ubiquitylation. 
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orientates the E2-Ub thioester complex allowing for the direct transfer of Ub from the E2 enzyme to 

the substrate without the formation of covalent Ub-ligase intermediates (Budhidarmo et al., 2012, 

Deshaies and Joazeiro, 2009).  

RING domains act by coordinating two zinc ions between a series of cysteine and histidine residues. 

Several RING E3 ligases contain multiple proteins, these include the CRL ligases (Cullin-RING ligases), of 

which the SCF (Skp1-Cullin-F-box) family is the best characterised (Skowyra et al., 1997).  

A family of RBR (RING1-BRcat-Rcat or RING-betweenRING-RING) E3 ligases has also been described 

that contain a single canonical RING domain (RING1) and two further domains, one being the catalytic 

domain (Rcat) and a second that is structurally similar to Rcat but lacks ubiquitylation activity (BRcat) 

(Eisenhaber et al., 2007, Spratt et al., 2014). Interestingly, given their structural similarity to the RING 

E3 ligases, they behave mechanistically as a RING-HECT hybrid as they attach Ub to a substrate 

independently of an E2 ligase via a catalytic cysteine within its C terminus, but also recruit thioester-

bound E2 enzymes via their RING domain. An important example of this sub-class of RING E3 ligases is 

Parkin, the E3 ligase that mediates the clearance of defective mitochondria and whose mutation has 

been linked to Parkinson’s disease (Narendra and Youle, 2011). 

 

Forms of Protein Ubiquitylation  

Ub can be attached to a target protein as monomers, multi-monomers and as a polyubiquitin chain. 

For the latter one of eight internal residues (K6-, K11-, K27-, K29- K33-, K38-, K63- or Met1) can be used 

to form polyubiquitin chains (Komander, 2009, Peng et al., 2003) (Figure 1.8C). The type of chain 

linkage formed dictates the fate of the target protein. The most widely studied forms of polyubiquitin 

chains are K48-linked, which marks the protein for degradation by the proteasome, and K63-linked 

which plays a non-degradative role important in protein trafficking and cell signalling. Ub polymers can 

be heterotypic and contain a mixture of linkages within the same chain, or one Ub molecule can be 

modified on multiple sites to form a branched (forked) polyubiquitin chain (Komander and Rape, 2012, 

Swatek and Komander, 2016, Yau and Rape, 2016) (Figure 1.8C). Greater complexity is achieved by 

adding ubiquitin-like proteins and/or post-translational modifications (acetylation and 

phosphorylation) to Ub chains (Figure 1.8C) (Swatek and Komander, 2016).  

The different polyubiquitin chain types form contrasting structural conformations; ‘compact’ or ‘open’ 

(linear). K48-, K6- and K11-linked polyubiquitin chains adopt a compact conformation, whilst Met1- and 

K63- linked chains form a more ‘open’ or ‘linear’ conformation. Structural studies have revealed that 

K48-, K6- and K11-linked polyubiquitin chains rely upon interactions between surface hydrophobic 

patches (Ile44 and Ile36) on the Ub molecule to generate their compact structures. Overall, these 

conformations generate differing degrees of structural flexibility and positioning of functional surfaces. 
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This provides a means for binding partners to distinguish between the different types of polyubiquitin 

chain (Komander and Rape, 2012). 

 

1.4.1.1. Ubiquitin-mediated regulation of apoptosis.  

As previously described, ubiquitylation modulates a diverse range of cellular processes including 

apoptosis (Broemer and Meier, 2009). The ubiquitin-proteasome system (UPS) is comprised of the 26S 

proteasome and Ub-conjugation machinery and is the major extra-lysosomal pathway required for the 

degradation of proteins. The tagging of proteins with K48-, K11- and K29-linked chains, and more 

recently K48/K63 branched Ub chains (Ohtake et al., 2018), can direct proteins to the 26S proteasome 

(Swatek and Komander, 2016, Yau and Rape, 2016). Coordinated degradation of proteins, via the UPS, 

is important for appropriate apoptosis and has been demonstrated to be required for the degradation 

of key cell death proteins, including BCL2 proteins, IAPs and caspases (Jesenberger and Jentsch, 2002) 

and as such, failure of the UPS is linked to tumourigenesis and metastasis.  

Ubiquitin attachment can have an anti-apoptotic role and the classic example of this is in the regulation 

of p53. p53 is a tumour suppressor protein and, upon activation of various stresses, downregulates 

pro-survival proteins including BCL2 and upregulates pro-apoptotic proteins including APAF-1, BAX, 

PUMA, NOXA and Fas (Ryan et al., 2001). p53 has also been demonstrated to localise to the 

mitochondria, promoting BAK/BAX oligomerisation and inducing MOMP (Schuler et al., 2000). As such, 

p53 is tightly regulated and is often downregulated or mutated in tumour cells. Ubiquitylation of p53, 

by the E3 ligase MDM2, results in its nuclear export and degradation by the proteasome (Boyd et al., 

2000, Geyer et al., 2000, Haupt et al., 1997, Kubbutat et al., 1997). Given this, MDM2 is itself regulated 

through interactions with E3 ligases and p14ARF, which predominantly cause the degradation of MDM2, 

thereby stabilising p53 (Bernardi et al., 2004, Joo et al., 2011, Zhang et al., 1998). Additional E3 ligases 

have been suggested for p53 including PIRH, COP1, TRAF7 and Cullin4B which have all been 

demonstrated to drive the degradation of p53 (Gupta et al., 2018).  

Ubiquitylation is required to drive the activation of the NF-ĸB pathway. Unlike p53, activation of NF-kB 

predominantly results in the expression of several genes required for survival, including IAPs, BCL2 and 

A1, and inhibitors of extrinsic apoptosis. As such it is considered to play a pro-survival role (Kreuz et al., 

2001, Wang et al., 1998, Zong et al., 1999). Several components of the TNF-activated NF-kB pathway 

need to be ubiquitylated for activation of NF-kB; including components of the IĸB kinase (IKK) complex 

(IKKα, IKKβ and NEMO), inhibitors of NF-kB (IkBα) and RIP1 (Karin and Ben-Neriah, 2000). In contrast 

to that previously described, RIP1 and NEMO have been found to be polyubiquitylated with K63-linked 

and/or Met1-linked chains, which aids in recruiting downstream signalling components to activate NF-

ĸB (Ea et al., 2006, Rahighi et al., 2009, Tokunaga et al., 2009, Wertz et al., 2004). To add complexity, 
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NEMO has also been demonstrated to be polyubiquitylated with K29-linked chains, which has been 

shown to drive its degradation and leads to cell death (Zotti et al., 2011). Additionally, under certain 

circumstances, activation of NF-kB can induce apoptosis including in T cells where activation results in 

the expression of Fas ligand and TRAIL, required for extrinsic apoptosis.  

As described, members of the IAP family have been demonstrated to inhibit caspase activity. XIAP, 

cIAP1 and cIAP2 all bind to and block the activity of both initiator and effector caspases. However, IAP 

proteins have also been shown to act as E3 ligases (Vaux and Silke, 2005). XIAP, cIAP1 and cIAP2 all 

possess a RING domain at their carboxy-terminus and, in response to apoptotic stimuli, both XIAP and 

cIAP1 have been found to autoubiquitylate themselves, driving their degradation, and enabling cells to 

commit to apoptosis (Yang et al., 2000). In addition, XIAP has been shown to ubiquitylate caspase-3. 

However, the functional outcome of this modification has not been fully determined (Morizane et al., 

2005, Schile et al., 2008, Suzuki et al., 2001, Vaux and Silke, 2005) and as there was no decrease in 

caspase-3 following ubiquitylation it suggests that ubiquitylation may have a non-degradative function 

(Suzuki et al., 2001). Interestingly, cIAP1 and cIAP2 have also been demonstrated to catalyse the K63-

linked ubiquitylation of RIP1, thereby activating NF-ĸB signalling (Bertrand et al., 2008).  

BRUCE/Apollon, an IAP that contains a C-terminal E2 motif (Hauser et al., 1998), can inhibit SMAC-

induced apoptosis by promoting the Ub-driven degradation of SMAC (Hao et al., 2004) and also the 

cleavage of pro-caspase 9 (Qiu and Goldberg, 2005). Interestingly, BRUCE/Apollon is itself subject to 

Ub-dependent proteasomal degradation which results in the initiation of apoptosis (Qiu et al., 2004, 

Qiu and Goldberg, 2002). 

It is apparent that other BCL2 proteins are regulated via ubiquitylation and this can result in both the 

activation or inhibition of apoptosis. Following caspase cleavage and activation, tBID is 

polyubiquitylated at its N-terminus. This drives proteasomal degradation of the N-terminal fragment 

of tBID (tBID-N) enabling conformational changes freeing its C-terminal BH3 domain to interact with 

and inhibit pro-survival BCL2 proteins (Chou et al., 1999, McDonnell et al., 1999), thereby inducing 

apoptosis. Unusually, unconventional, non-lysine residues act as attachment points for K48-linked 

polyubiquitin attachment on tBID (Tait et al., 2007).  

In response to ubiquitylation the pro-survival protein BCL2 is degraded by the UPS (Dimmeler et al., 

1999, Kassi et al., 2009, Wang et al., 2008). Several proteins have been identified that regulate its 

degradation, including ARTS (Apoptosis-Related protein in the TGF-β Signalling pathway) (Edison et al., 

2017). ARTS has also been found to decrease XIAP protein levels (Gottfried et al., 2004), and Edison et 

al. recently demonstrated that ARTS binds both XIAP and BCL2 enabling XIAP to ubiquitylate BCL2 and 

drive its proteasomal degradation.  
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To date five E3 ligases have been suggested to regulate MCL1, dependent upon the cell type. An 

example is the BH3-containing E3 ligase MULE/ARF-BP1, which polyubiquitylates MCL1 resulting in its 

proteasomal degradation and the induction of apoptosis (Zhong et al., 2005). However, the interaction 

between MULE and MCL1 is weak and overexpression of BIM and PUMA has been demonstrated to 

displace MULE and stabilise MCL1 (Czabotar et al., 2007, Mei et al., 2005, Warr et al., 2011). In contrast, 

others have shown the interaction between NOXA and MCL1 can enhance the interaction between 

MCL1 and MULE and drive its degradation (Czabotar et al., 2007, Gomez-Bougie et al., 2011, Willis et 

al., 2005).  

Many of the pro-apoptotic BCL2 family members are also subject to ubiquitylation, including BAD, BAX 

and BAK, resulting in the inhibition of apoptosis. UPS-dependent degradation of BAX results in cell 

survival and the degradation of its most abundant isoform, BAXα, has been linked to poor prognosis in 

leukemia patients (Agrawal et al., 2008, Li and Dou, 2000). MOAP-1 (modulator of apoptosis-1), a 

binding partner of BAX, is also degraded as a consequence of ubiquitylation. Ub-driven degradation of 

MOAP-1 prevents the conformational changes required for activation of BAX, therefore its 

ubiquitylation is inhibited upon induction of apoptosis (Fu et al., 2007, Huang et al., 2012a, Matsuura 

et al., 2016).  

 

1.4.2. Deubiquitylation  

DUBs oppose E3 ligases and hydrolyse the isopeptide bond between a ‘distal’ and ‘proximal’ Ub 

molecule or between Ub and a target protein. DUBs encoded by the human genome can be divided 

into two distinct groups, metalloproteases and the more numerous cysteine proteases, based on their 

mechanism of catalysis (Komander et al., 2009a).  

In general, DUBs are multi-domain proteins, which, along with distinct catalytic domains, possess Ub 

binding domains (UBDs) which include zinc-finger ubiquitin binding domains (ZnF-UBP), ubiquitin-like 

domains (UBL) and ubiquitin-associated domains (UBA) (Komander et al., 2009a). There are 

approximately 20 different types of UBD, which employ diverse mechanisms to recognise Ub (Husnjak 

and Dikic, 2012). The majority of UBDs are α-helical and recognise the hydrophobic patch around Ile44 

on Ub (Kulathu and Komander, 2012).  

 

DUB Families  

The metalloproteases, classified as the JAMM/MPN + (JAP1/MPN/MOV34) domain superfamily, posses 

a catalytic site, which contains an aspartate residue and water, coordinated by two zinc molecules. The 

catalytic mechanism of this family was elucidated from the structure of STAM (AMSH)-like protease 

(AMSH-LP/STAMBPLI) bound to a K63-linked diUb molecule. It revealed that a zinc ion activates water 
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molecules to form hydroxide ions that then attack the carboxyl carbon of the isopeptide (Sato et al., 

2008).  

The cysteine proteases can be further subdivided into at least five families; the ubiquitin-specific 

proteases (USPs), the ubiquitin carboxy-terminal hydrolases (UCHs), the ovarian tumour proteases 

(OTUs), the Machado-Joseph disease domain (MJD) protein domain proteases (Clague et al., 2013, 

Komander et al., 2009a) and the motif interacting with ubiquitin (MIU)-containing DUB family (MINDYs) 

(Abdul Rehman et al., 2016). An additional cysteine protease superfamily, the MCPIP (monocyte 

chemotactic protein-induced protein) superfamily has also been reported (Fraile et al., 2012, Liang et 

al., 2010), however, it is unclear if they have DUB activity. Similar to cysteine protein papains (Storer 

and Menard, 1994), cysteine proteases catalyse the hydrolysis of an isopeptide bond using a catalytic 

diad or triad. Within the triad a histidine residue lowers the pKa of the catalytic cysteine, which enables 

the nucleophilic attack of the isopeptide bond. A potential third residue (Aspartate or Asparagine) is 

required for the polarisation and alignment of the histidine residue.  

Kwasna et al. have recently identified an additional DUB family, ZUFSP/ZUP1, which shares no 

homology to those described above (Haahr et al., 2018, Hermanns et al., 2018, Hewings et al., 2018, 

Kwasna et al., 2018). A high-resolution crystal structure of ZUFSP revealed that it possesses a unique 

catalytic domain, which contains unique UBDs; ZHA and UBZ. These bind to distal Ub molecules and 

polyubiquitin, respectively, and selectively cleave K63-linked polyubiquitin chains. ZUFSP was 

demonstrated to interact with several proteins required for DNA replication and repair and this 

suggests that it plays an important role in the regulation of genome stability (Kwasna et al., 2018).  

Additional proteases can cleave ubiquitin-like modifiers/proteins from target proteins and are 

therefore termed ubiquitin-like proteases (ULPs). Examples of ubiquitin-like modifiers include small 

ubiquitin-related modifiers (SUMOs), cleaved by sentrin/SUMO-specific proteases (SENPs) and 

deSUMOylating isopeptidases (DeSIs) families, and NEDD8, cleaved by NEDP1 (Nedd8-specific protease 

1) (Hickey et al., 2012, Shin et al., 2012). 

 

Ubiquitin-specific proteases (USPs) 

The USP family is the largest DUB family in mammalian cells, comprising ~56 members. The catalytic 

domain of USPs structurally resembles a hand and contains three sub-domains: the palm, the thumb 

and fingers (Hu et al., 2002). Their large catalytic domain resides in between the palm and the thumb, 

where fingers ‘grip’ the ‘distal’ Ub molecule and position the C-terminus of Ub between the palm and 

the thumb. In most USPs the catalytic domain contains extensions and insertions that fold to form 

additional domains. These can influence enzymatic ability and localisation. In general, USPs show very 

little linkage preference, however some USPs have been described that preferentially cleave one 
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linkage type; an example is USP30, which has recently been demonstrated to prefentially cleave K6-

linked polyubiquitin chains (Cunningham et al., 2015, Gersch et al., 2017).  

USPs are localised throughout the cell including the nucleus (USP1 and USP7), the nucleolus (USP36 

and USP39), endosomes (USP8), microtubules (USP21 and USP33) and the mitochondria (USP30) 

(Clague et al., 2013, Clague and Urbe, 2017, Urbe et al., 2012). To date USP19 and USP30 are the only 

known DUBs to contain transmembrane domains. 

 

1.4.2.1. General roles of DUBs 

Although there are around 100 human DUBs only a small number have been structurally and 

functionally characterised. Structural data, NMR and crystallography has increased our understanding 

of DUB activity, how they are regulated and what enables their specificity for a certain substrate/chain 

type.  

How DUBs select which modifier to cleave, how they target this modifier and where they cleave 

ubiquitin chains has been extensively studied (Mevissen and Komander, 2017). In general, DUBs have 

been demonstrated to recognise their specific target based on Ub chain type and/or the substrate itself 

(Komander et al., 2009b). The linkage specificity of DUBs can vary between families; for example, the 

majority of JAMM metalloproteases specifically cleave K63 chains (McCullough et al., 2004, Ritorto et 

al., 2014, Sato et al., 2008), whilst MINDY DUBs are specific for K48 chains (Abdul Rehman et al., 2016). 

The topological differences between the types of polyubiquitin chain and also the architecture of the 

DUB itself may explain how DUBs are capable of distinguishing between chain types and/or substrates.  

The majority of DUBs possess a primary recognition site (S1 site) for Ub within their catalytic domain. 

This site binds to and guides the C-terminus of Ub and the scissile bond into the DUB active site, thus 

driving hydrolysis. In doing so, DUBs can completely remove or edit the Ub chain, via endo- or exo-

cleavage (Komander et al., 2009b). In the case of polyubiquitin chains, the distal Ub will occupy the S1 

site, whilst the following Ub can occupy an additional S1' site. However, this is not always the case and 

may account for the general lack of chain specificity of USPs. The S1' site can also be occupied by the 

substrate, indicating the substrate specificity of select DUBs (Morgan et al., 2016). To add complexity, 

the S1' site can be provided by UBDs within the DUB or from additional binding partners, an example 

includes the DUBs AMSH and AMSH-LP which require the UBD, UIM (ubiquitin-interacting motif), of 

STAM to activate the DUB and create a larger S1' site to enable the DUB to directly bind to K63-linked 

substrates (McCullough et al., 2006). Outside of the described S1 and S1' Ub binding sites, additional 

UBDs within the DUB or accessory UBDs in cis have been described that are required to target DUBs 

specifically to select polyubiquitin chains (Abdul Rehman et al., 2016, Clague et al., 2013, Flierman et 

al., 2016, Mevissen and Komander, 2017). 
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Ub is encoded by four genes; UBA52, RPS27A, UBB and UBC. The UBA52 and RPS27A genes generate 

Ub that is fused to ribosomal proteins whilst the remaining two genes produce polyubiquitin chains. 

DUBs function to process these linear polyubiquitin precursor proteins to generate a ‘free’ ubiquitin 

pool within the cell. There are specialised DUBs, including USP5, that are responsible for the precursor 

processing of Ub (Kimura and Tanaka, 2010, Redman and Rechsteiner, 1989).  

USP14, UCHL5 (UCH37) and PSMD14 (RPN11/POH1) are three DUBs found within the proteasome. 

These can hydrolyse the isopeptide bond between the target protein and the Ub chain before the 

protein is degraded, thereby recycling Ub. USP14 reversibly binds to the RPN1 subunit within the 19S 

regulatory subunit of the proteasome through an N-terminal UBL domain; this binding event activates 

USP14. Unlike USP14, PSMD14 is a constituent component of the 26S proteasome and unlike USP14 

and UCHL5 removes complete polyubiquitin chains from a target protein (Ristic et al., 2014). Once the 

Ub chain is removed, different DUBs process the Ub chain into its monomeric state. Both of these roles 

of DUBs are essential for maintaining Ub homeostasis within the cell.  

DUBs can regulate target activity and degradation of substrates by removing monoubiquitin or 

degradative or non-degradative polyubiquitin signals from the substrate. Removal of distal Ub 

molecules from a polyubiquitin chain can also result in chain editing leading to the target protein 

receiving a different Ub signal (Komander et al., 2009a) (Figure 1.9). 

 

Regulation of DUB abundance, localisation and catalytic activity.  

The activity of DUBs is often cryptic and requires the binding of its substrate to enable structural 

rearrangements required for its activity (Reyes-Turcu et al., 2009). To ensure that DUB activity is ‘on-

target’ many mechanisms exist that temporally and spatially restrict their activity. These include post-

translational modification of DUBs, alteration in their subcellular localisation, regulation of activity 

through association with E2/E3 enzymes or cofactors, as well as through their integration into larger 

protein complexes (Heideker and Wertz, 2015, Mevissen et al., 2013, Reyes-Turcu et al., 2009).  

The catalytic activity of DUBs can be positively and negatively regulated through phosphorylation, 

ubiquitylation, SUMOylation and oxidation of catalytic cysteine residues by reactive oxygen species. 

Phosphorylation of USP8 results in its inhibition via association with 14-3-3 proteins (Mizuno et al., 

2007). However, phosphorylation events activate TNFAIP3 and USP37 (Huang et al., 2011, Hutti et al., 

2007). Cezanne (OTUD7B) has been found to undergo post-translational control by reactive oxygen or 

nitrogen species, which inhibits Cezanne (OTUD7B) thereby relieving its negative regulation of the NF-

κB pathway (Enesa et al., 2008). Subcellular localisation of DUBs can also be regulated through 

phosphorylation. For example, USP10 localises to the nucleus upon ATM-driven phosphorylation (Yuan 

et al., 2010).  
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Figure 1.9 General roles of deubiquitylating enzyme (DUBs). 
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Some DUBs are incapable of binding to Ub with high affinity and rely upon binding partners or a 

complex of proteins to bind and catalyse the removal of Ub from their target protein (Sowa et al., 

2009). Several USPs, including USP1, USP12 and USP46, have been demonstrated to be activated 

through interaction with WD40 repeat-containing proteins (Cohn et al., 2009, Cohn et al., 2007). 

Interestingly, protein complexes often contain E3 ligases (Ventii and Wilkinson, 2008).  

 

1.4.2.2. DUBs in disease. 

DUBs have been demonstrated to play important roles in DNA repair, apoptosis, cell cycle control, 

growth factor signalling and immunity (Clague et al., 2012, Jacq et al., 2013). Given this, DUB 

deregulation, through overexpression and/or mutational defects, has been linked to numerous disease 

pathologies including neurological disorders, autoimmunity, inflammation, infectious diseases and 

cancer (Harrigan et al., 2017).  

Certain DUBs have been described to have intrinsic oncogenic or tumour suppressor characteristics, 

such as BRCA1-associated protein 1 (BAP1), whose mutation is linked to melanoma, mesothelioma and 

renal cell carcinoma (Murali et al., 2013, Sacco et al., 2010). DUBs can also act to regulate known 

oncogenes and tumour suppressors, including USP28, which stabilises c-Myc (MYC), a proto-oncogene, 

in colon and breast carcinoma (Cremona et al., 2016, Popov et al., 2007). DUBs can also regulate cellular 

pathways known to be therapeutically relevant in cancer, such as the DNA damage response and repair 

pathways, which, as described previously, are repressed as a hallmark of cancer (Jackson and Durocher, 

2013). An example is USP11, which was identified in an overexpression screen to deubiquitylate H2AX 

(Yu et al., 2016). Knockdown of USP11 resulted in an increase in 53BP1 and Ub formation at double 

strand breaks (DSBs) in addition to an increase in ubiquitylated H2AX, thereby suggesting a role for 

USP11 in DSB signalling and repair. In agreement with this, knockdown of USP11 sensitised cells to 

poly(ADP-ribose) polymerase (PARP) inhibition, via olaparib (Schoenfeld et al., 2004b, Wiltshire et al., 

2010). At the molecular level, USP11 was shown to regulate the interaction between BRCA1 and BRCA2, 

required for DNA repair, by controlling the ubiquitylation of partner and localizer of BRCA2 (PALB2) 

(Orthwein et al., 2015). Overall DUBs have been demonstrated to regulate all stages of metastasis, 

including resistance to apoptosis, discussed later (He et al., 2017).  

Mitochondria play a vital role in metabolism and energy production within the cell; as such 

mitochondrial dysregulation is associated with neurodegenerative disorders including Alzheimer’s 

disease and Parkinson’s disease. Removal of damaged or unnecessary mitochondria, also known as 

mitophagy, is regulated by ubiquitylation (Ross et al., 2015). Mitophagy is regulated by the Ser/Thr 

kinase PTEN-induced kinase 1 (PINK1) and the E3 ligase Parkin. Under basal conditions, PINK1 is 

imported into the mitochondria and undergoes proteolytic cleavage, which targets it for proteasomal 
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degradation. Lack of PINK1 at the mitochondria is indicative of functioning import machinery and of 

healthy mitochondria. Failure in this import mechanism, often as a consequence of mitochondrial 

dysfunction, results in the accumulation of PINK1 at the OMM resulting in its autophosphorylation, 

dimerization and activation. In this state, PINK1 is capable of interacting with and recruiting Parkin to 

the mitochondria. Parkin is autoinhibited and requires activation by PINK1, demonstrated to be 

through the phosphorylation of both S65 in Ub and the UBL domain Parkin (Iguchi et al., 2013, Kane et 

al., 2014, Kondapalli et al., 2012, Koyano et al., 2014, Shiba-Fukushima et al., 2012, Wauer et al., 2015a, 

Wauer et al., 2015b). The binding of phosphorylated Ub to Parkin results in conformational changes 

that enable its S65 phosphorylation by PINK1 (Kumar et al., 2017, Wauer et al., 2015a), which is 

required for full activation of Parkin (Gladkova et al., 2018). Activated Parkin ubiquitylates OMM 

proteins including MIRO, mitofusion and TOM20/22, marking mitochondria for degradation (Chan et 

al., 2011, Harper et al., 2018, Narendra and Youle, 2011, Sarraf et al., 2013).  

USP30 antagonises the E3 ligase Parkin by removing Ub from mitochondrially bound proteins and thus 

opposes Parkin-mediated mitophagy (Figure 1.10) (Bingol et al., 2014, Cunningham et al., 2015, Durcan 

and Fon, 2015, Liang et al., 2015). Under normal conditions, USP30 prevents inappropriate mitophagy; 

however, under conditions resulting in mitochondrial dysfunction, including as a result of defects in 

Parkin, USP30 can counteract the clearance of defective mitochondria through removal of Ub from 

MOM proteins. This would lead to the accumulation of metabolically and energetically-deficient cells 

(Bingol et al., 2014). Knockdown of USP30 improved mitochondria integrity and rescued defective 

mitophagy (Bingol et al., 2014, Nakamura and Hirose, 2008), suggesting that inhibiting USP30 should 

enhance mitophagy and drive the clearance of dysfunctional mitochondria. Therefore, USP30 could be 

a novel therapeutic target for treatment of Parkinson’s disease. USP30 inhibitors are in-development 

(Jones et al., 2016, Kemp and Jones, 2017, Yue et al., 2014) and described in more detail in Chapter 4.  

Further interrogation of the role in USP30 in mitophagy, in the absence of overexpression of Parkin and 

depolarising agents, has recently revealed that USP30 may play a more significant role upstream of 

PINK1, thereby predominantly acting to prevent the accidental activation of mitophagy under basal 

conditions (Ganley, 2018, Marcassa et al., 2018).  

USP30 has also been shown to play a role in BAX/BAK-dependent (Intrinsic) apoptosis, where its 

depletion sensitises cells to BH3 mimetics (Liang et al., 2015). These findings suggest that USP30 

depletion or inhibition could provide a means for inducing tumour cell death.  
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Figure 1.10 General diagram depicting the regulation of mitophagy by deubiquitylation via the deubiquitylating enzyme (DUB) 
USP30. 

 

  



44 
 

1.4.2.3. Role of DUBs in apoptosis. 

At least 14 DUBs have been found to play a role in multiple pathways involved in positively and 

negatively regulating apoptosis (Bhattacharya and Ghosh, 2014, Gupta et al., 2018, Ramakrishna et al., 

2011). The role of DUBs in apoptosis is complex and a single DUB can have opposing roles both 

promoting apoptosis or aiding survival. For example, USP2 has been found to cause cell death by 

deubiquitinating tAIF (apoptosis-inducing factor) (Oh et al., 2011), but has also been found to inhibit 

apoptosis by stabilising fatty acid synthase (FAS) (Graner et al., 2004).  

DUBs have been found that directly deubiquitylate pro-survival and pro-apoptotic proteins. In addition 

to that described for BIMEL, it has been demonstrated that USP9x can deubiquitylate and stabilise MCL1 

resulting in tumour cell survival (Schwickart et al., 2010). USP15 has been shown to activate caspase-3 

during Paclitaxel- (a microtubule-targeting cancer treatment) induced apoptosis (Xu et al., 2009), by 

regulating the interaction between pro-caspase-3 and the E3 ligase SCF complex. A complete 

understanding of how DUBs regulate cell death could validate pharmacological approaches to treating 

diseases, including cancer, where ubiquitylation and cell death is dysregulated.  

 

Inhibition of DUBs as a therapeutic strategy. 

It is increasingly apparent how manipulating components of the ubiquitin system would be of great 

therapeutic benefit (Cohen and Tcherpakov, 2010). Treatment of refractory multiple myeloma and 

mantle cell myeloma with Bortezomib, a proteasome inhibitor, resulted in the blockage of targeted 

proteolysis leading to cell cycle arrest and apoptosis (Chen et al., 2011a, Richardson et al., 2003). This 

focused attention on the UPS as a suitable target for cancer treatment. Indeed, VLX1570, an inhibitor 

that targets the proteasome-associated DUBs, USP14 and UCHL5, is currently the most advanced DUB 

inhibitor (D'Arcy et al., 2011, Wang et al., 2015b). The development of DUB inhibitors is a rapidly 

expanding field due, in part, to our greater understanding of DUB biology and the development of 

technologies to assess DUB activity/inhibition. DUBs are also readily druggable targets, with a well-

defined catalytic cleft. One such DUB of interest is USP7, several small molecule inhibitors of which 

have been described, including P22077 (P5091) and more recently FT671 and FT827 (Altun et al., 2011, 

Chen et al., 2017, Colland et al., 2009, Gavory et al., 2018, Kemp, 2016, Reverdy et al., 2012, Tian et al., 

2011, Turnbull et al., 2017, Weinstock et al., 2012). At the molecular level, inhibition of USP7 stabilises 

and increases p53 levels, via the increased degradation of its negative regulator MDM2, resulting in an 

increase in the transcription of p53 target genes, including p21 (Turnbull et al., 2017). Overall, inhibiting 

USP7 repressed tumour cell growth in mice (Turnbull et al., 2017) and has also been shown to drive 

apoptosis of tumour cells; however whether this was due to off-target effects is unknown (Chauhan et 



45 
 

al., 2012, Colland et al., 2009, Cummins and Vogelstein, 2004, Fan et al., 2013, Li et al., 2004, Li et al., 

2002).  

Targeting signalling pathways required for cancer cell survival, from receptor tyrosine kinases (RTKs) to 

downstream kinases, has proven to be successful in the treatment of cancer. Ubiquitylation of RTKs, 

including EGFR (epidermal growth factor receptor), serves as a signal to drive their internalisation, via 

the early and late endosomes, to lysosomes for degradation. As such, mutations that permit evasion 

of RTK degradation can drive tumour cell growth (Peschard and Park, 2003). USP8 has been shown to 

deubiquitylate EGFR at early endosomes, thereby rescuing EGFR from degradation (Mizuno et al., 2005, 

Niendorf et al., 2007). As EGFR has been demonstrated to be both amplified and mutated in cancer, 

there is a rationale for the development of USP8 inhibitors in the treatment of cancers. In accordance 

with this, inhibition of USP8 activity or knockdown of USP8 overcame resistance to EGF receptor-

tyrosine kinases inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC) in part through 

downregulation of EGFR, in addition to other RTKs, ERBB2 and MET (Byun et al., 2013).  

In addition to targeting DUBs as a cancer treatment, DUB inhibitors are being developed to treat 

neurodegenerative diseases. One of the hallmarks of neurodegenerative disorders is the accumulation 

or aggregation of ubiquitylated proteins within particular areas of the CNS (Ristic et al., 2014). Targeting 

DUBs that prevent the degradation of ubiquitylated proteins could be of therapeutic benefit in the 

treatment of these diseases. IU1, and additional analogues, are reversible small-molecule inhibitors 

that target USP14 and enhance the degradation of ubiquitylated proteins (Lee et al., 2010). In 

particular, an IU1 analogue enhanced the degradation of Tau and TAR DNA-binding protein 43 (TDP43), 

the accumulation of which is linked to neurodegenerative diseases in cultured cells (Lee et al., 2010). 

However, this failed to enhance proteasomal degradation of Tau in neurons and therefore the clinical 

relevance of IU1 in the treatment of Alzheimer’s disease is unclear (Kiprowska et al., 2017). Despite 

this, selectively targeting DUBs has the potential to treat a multitude of diseases with high unmet 

clinical need.  

 

1.5. Aims of this thesis 

Apoptosis is an essential process required for cell death and a hallmark of tumourigenesis is its evasion. 

Therefore, understanding the regulation of apoptosis could be of therapeutic benefit in a wide range 

of diseases, including cancer. ERK1/2 has been shown to regulate apoptosis by activating/supressing 

components of the apoptotic signalling cascade, but also inhibition of ERK1/2 signalling components 

can induce apoptosis in certain cancer cell lines. BIM, a potent pro-apoptotic protein, has been 

proposed to be regulated, cooperatively, by ERK1/2 and RSK1/2, and crucially they act to induce its 

proteasomal degradation. 
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To this end, the aims of my thesis were to: 

 Examine the role of ERK1/2 and RSK in the degradation of BIM. 

 Characterise the requirement of these kinases for the interaction between BIM and βTrCP. 

 Elucidate the role RSK plays in the regulation of BIM in tumour cells, particularly by observing if 

inhibition of RSK combines with BH3 mimetics to drive BIM-dependent cell death. 

 Investigate the counteracting DUB for BIM and evaluate the role of the USP27x in the regulation of 

BIM in our system. 

Ubiquitylation has also been demonstrated to regulate several signalling pathways linked to apoptosis, 

including ERK1/2 signalling, as well as apoptotic proteins themselves. Recently, Liang et al. 

demonstrated that the DUB USP30 may play an pro-survival role in cancer cells as knockdown of USP30 

combined with BH3-mimetics to induce tumour cell death (Liang et al., 2015). Thus, during this study 

an additional aim was to: 

 Evaluate if novel USP30 inhibitors combine with BH3 mimetics to drive apoptosis.  

There has been a recent effort to develop therapies that prolong tumour regression and/or delay 

acquired resistance to clinically available inhibitors, including MEKis. As the ERK1/2 pathway is closely 

integrated with Ub-regulated signalling processes, the final aims of my thesis were to: 

 Elucidate if knockdown of a DUB, by siRNA, combined with chosen inhibitors to drive tumour cell 

death. 

 If any ‘hits’ were identified to evaluate the role they play in regulating cell death
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Chapter 2: Material and Methods 
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2. Chapter 2 

2.1.  Equipment and reagents 

2.1.1. Laboratory suppliers 

Equipment and reagents were procured from the following companies: 

Sources of general laboratory equipment and reagents 

BD Biosciences  

LSRII Flow Cytometry  

BioRad  

20% Sodium dodecyl sulphate (SDS) 

30% v/v acrylamide/bis solution 

BioRad mini trans blot 

Bradford reagent (Protein assay reagent) 

Gel electrophoresis apparatus 

N,N,N’,N’-Tetramethylethylenediamine 
(TEMED) 

Precision Plus protein markers 

Protein G-horseradish peroxidase 

BMG Labtech  

PHERAstar microplate reader CLARIOstar microplate reader 

Calibiochem  

Q-VD-OPh  

Fisher Scientific  

Glycine 

Potassium hydroxide 
 

GE Healthcare  

Enhanced chemilluminescence system  

Hoefer  

Gel casting apparatus 

Mighty small II gel apparatus 
 

LI-COR  

Odyssey Imaging System  

Life Technologies  

DH5α competent cells 

Dulbecco’s Modified Eagles Medium 

Geneticin (G418) 

L-glutamine 

Lipofectamine 2000 

Lipofectamine RNAiMAX 

OptiMEM 

Penicillin/Streptomycin 

RPMI 

Secondary antibodies for 
immunofluorescence 

SYBR green PCR master mix 
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Trypsin 

Marvel  

Non-fat powder milk  

Melford  

4-(2-hydroxyethyl)-1- 
piperazineethanesulfonic acid (HEPES) 

5-Bromo-4-chloro-3-indolyl-β-D-
galactoside [X-gal] 

Tris 

Millipore  

Immobilon Western Chemiluminescent 

HRP substrate 
Immobilon-P PVDF membrane 

Panasonic  

CO2 Incubator  

Promega  

CellTiter-Glo® (CTG) Luminescent  

Cell Viability Assay 
Pfu DNA polymerase  

QIAGEN  

Plasmid plus mini kit 

Plasmid plus maxi kit 

QIAquick Gel Extraction Kit 

QIAquick PCR purification kit 

QuantiTect reverse transcriptase kit 

RNAeasy Minielute Cleanup kit 

Sartorius  

IncuCyte® ZOOM live-cell imaging system  

Sigma-Aldrich  

4-hydroxytamoxifen (4HT) 

Aprotinin 

Bovine serum albumin (BSA) 

Coomassie brilliant blue 

Dimethyl sulphoxide (DMSO) 

Ethidium bromide 

Ethylene glycol bis(2-aminoethyl ether)- 
N,N,N’N’-tetraacetic acid (EGTA) 

Ethylenediaminetetraacetic acid (EDTA) 

Leupeptin 

Magnesium chloride 

β-Mercaptoethanol 

Phenylmethylsulfonyl fluoride (PMSF) 

Propidium iodide 

Ribonuclease A 

Sodium fluoride 

Sodium orthovanadate 

Triton X-100 

Tween-20 

Thermo Scientific  

All tissue culture plasticware (Nunc) 

ND-1000 spectrophotometer (Nanodrop) 
YOYO®-1 Iodide (491/509) (Y3601) 

VWR BDH Prolabo  

Acetic acid Propan-2-ol 
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Calcium chloride 

Ethanol 

Glycerol 

Glucose 

Haemocytometer 

Magnesium chloride 

Methanol 

Orthoboric acid 

Potassium chloride 

Potassium dihydrogen phosphate 

Sodium azide 

Sodium bicarbonate 

Sodium chloride 

Sodium hydroxide 

Trichloroacetic acid 

Zymogen Research  

Direct-zol™ RNA Miniprep kit  
 

Table 2.1  

 

2.1.2. Pharmacological inhibitors 

Source and target of pharmacological inhibitors used 

Inhibitor Target Mechanism of action Supplier 
Catalogue  
number 

ABT-263 
(Navitoclax) 

BCL2, BCL-XL,  
BCL-w 

BH3 mimetic Selleckchem S1001 

Alisertib 
(MLN8237) 

Aurora A ATP competitive Selleckchem S1133 

AZ4216 GSK-3β ATP competitive AstraZeneca 

AZD8055 
(8055) 

mTOR ATP competitive Selleckchem S1555 

BI-D1870 RSK1/2/3/4 
ATP competitive inhibitor of 
the NTKD of RSK 

Selleckchem S2843 

CHIR-99021 GSK-3αβ ATP competitve Selleckchem S2924 

D4476 CK1 ATP competitive Tocris 2902/10 

Emetine Ribosome 
Binds to 40S subunit to inhibit 
protein translation 

Sigma-Aldrich E2375 

FMK RSK1/2/4 
Binds irreversibly to the ATP-
binding site of the NTKD 

Axon Mechem 
BV 

1848 

GDC-0623 MEK1/2 
Non-ATP-competitive; analog 
of CI-1040; stabilises a RAF-
MEK complex 

Astex 

GDC-0994 ERK1/2 ATP competitive AstraZeneca 

GSK2606414 PERK 
Binds inactive ATP-binding 
region 

MERCK 516535 

LJH685 RSK1/2/3 ATP competitve Selleckchem S7870 

MG132 Proteasome 
Competitive inhibitor at the 
chymotrypsin-like site 

Sigma-Aldrich C2211 
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MTX086432 
(MTX32) 

USP30 Unknown Mission Therapeutics 

MTX088748-
001-001 
(MTX48) 

USP30 Unknown Mission Therapeutics 

PF 670462 CK1δ/ε ATP competitive Tocris 3316/10 

PD0325901 
(PD901) 

MEK1/2 Non ATP-competitive Selleckchem S1036 

S63845 MCL1 
Binds to the BH3-binding 
groove of MCL1 

Selleckchem S8383 

SCH772984 ERK1/2 ATP competitive Selleckchem S7101 

Selumetinib/ 
AZD6244 

MEK1/2 
ATP and substrate 
uncompetitive allosteric 
inhibitor 

AstraZeneca 

Trametinib 
(GSK1120212) 

MEK1/2 
Allosteric non-ATP-
competitive inhibitor 

Selleckchem S2673 

 

Table 2.2  

 

2.1.3. Solutions 

All solutions were dissolved in MilliQ deionised water unless specified otherwise.  

General laboratory solutions 

Solution Components 

2 x Hepes buffered saline (HBS) 
50mM HEPES 
280mM NaCl 
1.5mM Na2HPO4 

Coomassie Brilliant Blue solution 
50% v/v methanol 
0.05% w/v Coomassie Brilliant Blue 

Luria Broth (LB) 
10g/L Tryptone 
10g/L NaCl 
5g/L Yeast extract 

Phosphate-buffered saline (PBS) 

137mM NaCl 
2.7mM KCl 
1.47mM KH2PO4 

8.1mM Na2HPO4 

siRNA buffer (GE Dharmacon) 
60mM KCL 
6 mM HEPES pH 7.5 
0.2 mM MgCl2 

Tris-buffered saline with Tween (TBST) 
50mM Tris-HCl, pH 7.6 
150mM NaCl 
0.1% v/v Tween 20 
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Western Blot Destain solution 
7% v/v acetic acid 
5% v/v methanol 

 

Table 2.3  

 

Solutions used for SDS-PAGE and Western blotting 

Solution Contents 

SDS running buffer pH 8.3 

192 mM glycine 

25 mM Tris base 

0.1% w/v SDS 

Western blot transfer buffer 

192 mM glycine 

25 mM Tris base 

20% w/v methanol 

Blocking buffer (5% milk/TBST) 

10 mM Tris-HCl, pH 8.0 

150 mM NaCl 

0.1% v/v Tween 20 

5% w/v Marvel 

Blocking buffer (5% BSA/TBST) 

10 mM Tris-HCl, pH 8.0 

150 mM NaCl 

0.1% v/v Tween 20 

5% w/v BSA 

4 x Laemmli buffer 

200 mM Tris-HCl, pH 6.8 

8% w/v SDS  

40% v/v Glycerol  

4% v/v β-mercaptoethanol 

0.04% w/v bromophenol 
blue 

TG Lysis Buffer 

20 mM Tris-HCl, pH 7.5 

137 mM NaCl 

1 mM EGTA 

1% v/v Triton X-100 

10% v/v glycerol 

1.5 mM MgCl2 

1 mM Na3VO4 

1 mM PMSF 

10 µg mL-1 aprotinin 

10 µg mL-1 leupeptin 

50 mM NaF 
 

Table 2.4  
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Solutions used for Subcellular Fractionation 

Solution Components 

Isotonic Fractionation Lysis Buffer  

250 mM Sucrose 

0.5 mM EDTA 

20 mM HEPES 

500 µM Na3VO4 

10 µg mL-1 aprotinin 

10 µg mL-1 leupeptin 
 

Table 2.5 

 

2.1.4. Antibodies 

The following primary and secondary antibodies were used for Western blotting experiments 

and LI-COR experiments. 

Primary antibodies, blocking solutions and dilutions used for Western blotting 

Antibody 
Blocking 
solution 

Dilution 
Species 
of origin 

Company 
Catalogue 
number 

β-actin 
5% 
milk/TBST 

1:10000 Mouse Sigma A5441 

BAK 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

sc-832 

BAX 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

sc-493 

BIM 
5% 
milk/TBST 

1:1000 Rabbit Millipore AB17003 

p-BIM (S69) 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

4581 

BCL2 
5% 
milk/TBST 

1:500 Mouse 
Santa Cruz 
Biotechnology 

sc-492 

BCL-XL 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

2762 

BCL-w 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

2724 

β-Catenin 
5% 
BSA/TBST 

1:1000 Mouse BD biosciences 610153 

p-β-Catenin 
(S33/S37/T41) 

5% 
BSA/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9561 

COXIV 
5% 
milk/TBST 

1:1000 Mouse Abcam ab33985 

ERK1 
5% 
milk/TBST 

1:3000 Mouse BD Biosciences 610031 

ERK1/2 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9102 
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p-ERK1/2 
(T202/Y204) 

5% 
milk/TBST 

1:1000 Mouse 
Cell Signalling 
Technology 

9106 

FLAG M2 
5% 
milk/TBST 

1:1000 Mouse Sigma F3165 

FOXO1A 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

2880 

p-FOXO1A 
(S322/S325) 

5% 
milk/TBST 

1:1000 Rabbit Abcam Ab60945 

G3BP2 
5% 
milk/TBST 

1:1000 Rabbit Abcam Ab86135 

HA-probe 
5% 
milk/TBST 

1:500 Mouse 
Santa Cruz 
Biotechnology 

sc-7392 

HA-probe 
5% 
milk/TBST 

1:500 Rabbit 
Santa Cruz 
Biotechnology 

sc-805 

MCL1 
5% 
milk/TBST 

1:1000 Rabbit 
Santa Cruz 
Biotechnology 

sc-819 

PARP 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9542 

PLK1 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

4513 

p-PLK1 (T210) 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9062 

RSK1/2/3 
5% 
BSA/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9355 

p-RSK (T380) 
5% 
BSA/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9341 

p-RSK 
(T359/S363) 

5% 
BSA/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9344 

S6K 
5% 
BSA/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9202 

p-S6K (T389) 
5% 
BSA/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

9205 

β-TrCP 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

4394 

UCHL3 
5% 
milk/TBST 

1:1000 Mouse 

Provided by MISSION 
Therapeutics Ltd 

N/A 

USP2 
5% 
milk/TBST 

1:1000 Rabbit N/A 

USP5 
5% 
milk/TBST 

1:1000 Rabbit N/A 

USP10 
5% 
milk/TBST 

1:2000 Rabbit Abcam Ab70895 

USP11 
5% 
milk/TBST 

1:4000 Rabbit Bethyl A301-613A 

USP16 
5% 
milk/TBST 

1:1000 Rabbit Proteintech 14055-1-AP 

USP30 
5% 
BSA/TBST 

1:250 Rabbit Atlas Antibodies HPA016952 

TNFAIP3 
(A20) 

5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

5630 
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TNFAIP3 
(A20) 

5% 
milk/TBST 

1:1000 Rabbit Novus 
NBP1-
77533 

VCIP135 
(VCPIP1) 

5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

88153 

YAP 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

4912 

p-YAP (S127) 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

13008 

YB-1 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

4202 

p-YB-1 (S102) 
5% 
milk/TBST 

1:1000 Rabbit 
Cell Signalling 
Technology 

2900 

YOD1 
5% 
milk/TBST 

1:1000 Rabbit Sigma HPA028400 

p53 
5% 
milk/TBST 

1:1000 Mouse Calbiochem OP43 

 

Table 2.6  

 

Secondary antibodies used for Western blotting 

Antibody 
Blocking 
solution 

Dilution Company 
Catalogue 
number 

Goat anti-mouse IgG-
HRP conjugate 

5% 
milk/TBST 

1:3000 BioRad 170-6516 

Goat anti-rabbit IgG-
HRP conjugate 

5% 
milk/TBST 

1:3000 BioRad 170-6515 

 

Table 2.7  

 

Secondary antibodies used for LI-COR experiments 

Antibody 
Blocking 
solution 

Dilution Company 
Catalogue 
number 

Goat anti-mouse IgG--
(H+L) Cross-Adsorbed 
Secondary Antibody, 
Alexa Fluor 568 

5% 
milk/TBST 

1:50000 
ThermoFisher  

Scientific 
A-11029 

Goat anti-rabbit IgG-
(H+L) Cross-Adsorbed 
Secondary Antibody, 
Alexa Fluor 568 

5% 
milk/TBST 

1:50000 
ThermoFisher  

Scientific 
A-11011 

 

Table 2.8  

 

2.1.5. siRNA oligonucleotides 

The following siRNA oligonucleotide sequences were used for RNA interference. 
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Sequences of oligonucleotides used for siRNA 

Target RNA Supplier 
Catalogue 
number 

Sense oligonucleotide sequence (5'-3')  
Antisense oligonucleotide sequence (3'-
5') 

BCL-XL 

Dharmacon  
(GE 
LifeSciences) 

siGenome 
Human 
SMARTpool: 
M-003458-06-
0005 

- (Purchased prior to start of PhD) 

BTRC 
Dharmacon  
(GE 
LifeSciences) 

ON-TARGETplus 
SMARTpool: 
L-0033463-00-
0005 

5'-UGACAACACUAUCAGAUUA-3' 

3'-ACUGUUGUGAUAGUCUAAU-5' 
5'-CACAUAAACUCGUAUCUUA-3' 
3'-GUGUAUUUGAGCAUAGAAU-5' 
5'-GACCUUAAAUGGACACAAA-3' 
3'-CUGGAAUUUACCUGUGUUU-5' 
5'-ACACCGAGCUGCUGUCAAU-3' 
3'-UGUGGCUCGACGACAGUUA-5' 

Non-
targeting 

Dharmacon  - 
5'-UAAGGCUAUGAAGAGAUAC(rUrU)-3'  

3'-(rUrU)AUUCCGAUACUUCUCUAUG-5'  

Non-
targeting 

Dharmacon  
(GE 
LifeSciences) 

siGENOME Non-
targeting siRNA 
pool (D-001206-
13-20) 

5'-UAGCGACUAAACACAUCAA-3' 
3'-AUCGCUGAUUUGUGUAGUU-5' 
5'-UAAGGCUAUGAAGAGAUAC-3' 
3'-AUUCCGAUACUUCUCUAUG-5' 
5'-AUGUAUUGGCCUGUAUUAG-3' 
3'-UACAUAACCGGACAUAAUC-5' 
5'-AUGAACGUGAAUUGCUCAA-3' 

3'-UACUUGCACUUAACGAGUU-5' 

Luciferase 
(siLUC) 

Eurofins 
MWG/Opero
n 

N/A, custom 
synthesis 

5'-CGUACGCGGAAUACUUCGA(dTdT)-3'  

3'-(dTdT)GCAUGCGCCUUAUGAAGCU-5' 

USP10 
(USP10_1) 

QIAGEN S100072989 5'-TCGCTTTGGATGGAAGTTCTA-3' 

USP10 
(USP10_5) 

QIAGEN S100302113 5'-AACACAGCTTCTGTTGACTCT-3' 

USP10 
(USP10_69) 

Ambion 
4427038/s1736
9 

5'-CAGUCAAGGUGAUCAACCA-3' 

USP11 (HS-
USP11_3) 

Eurofins 
MWG/Opero
n 

N/A, custom 
synthesis 

5'-
AAGGUCGAAGUGUACCCAGUA(dTdT)-3' 
3'-
(dTdT)UUCCAGCUUCACAUGGGUCAU-5' 

USP11 
(HS_USP11_
5) 

Eurofins 
MWG/Opero
n 

N/A, custom 
synthesis 

5'-
CUGCGUCGGGUACGUGAUGAA(dTdT)-
3' 
3'-(dTdT)GACGCAGCCCAUGCACUACUU-
5' 

USP11 
(HS_USP11_
6) 

Eurofins 
MWG/Opero
n 

N/A, custom 
synthesis 

5'-
ACCGAUUCUAUUGGCCUAGUA(dTdT)-3' 
3'-
(dTdT)UGGCUAAGAUAACCGGAUCAU-5' 
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USP16 
(USP16_02D) 

Dharmacon 
(GE 
LifeSciences) 

D-0060667-02 
5'-GGAACAAGGUAAUUUGAAA-3' 
3'-CCUUGUUCCAUUAAACUUU-5' 

USP16 
(USP16_03D) 

Dharmacon 
(GE 
LifeSciences) 

D-006067-03 
5'-GAACACAGUGGUACUAUGA-3' 
3'-CUUGUGUCACCAUGAUACU-5' 

USP16 
(HS_USP16_
11) 

QIAGEN S105021191 
5'-AAUGGCUGAAAUAACGAUAAA-3' 
3'-UUACCGACUUUAUUGCUAUUU-5' 

TNFAIP3 
Dharmacon 
(GE 
LifeSciences)  

ON-TARGETplus 
SMARTpool: 
L-027369-00-
0005 

5'-CUGCAGUACUUGCUUCAAA-3' 
3'-GACGUCAUGAACGAAGUUU-5' 
5'-CAACUCAUCUCAUCAAUGC-3' 
3'-GUUGAGUAGAGUAGUUACG-5' 
5'-UCUGGUAGAUGAUUACUUU-3' 
3'-AGACCAUCUACUAAUGAAA-5' 
5'-CAACGAAUGCUUUCAGUUC-3' 
3'-GUUGCUUACGAAAGUCAAG-5' 

VCIP135 
Dharmacon 
(GE 
LifeSciences) 

ON-TARGETplus 
SMARTpool: 
L-019137-00-
0005 

5'-GAGAAGCUCUGGUGAUUAU-3' 
3'-CUCUUCGAGACCACUAAUA-5' 
5'-GGGACAGACUUUAGUAAUA-3' 
3'-CCCUGUCUGAAAUCAUUAU-5' 
5'-GGAGAUGGGUCUAUUGUGU-3' 
3'-CCUCUACCCAGAUAACACA-5' 
5’-CGACAGAAUUACAAUAGAA-3' 
3'-GCUGUCUUAAUGUUAUCUU-5’ 

YOD1 Dharmacon  

ON-TARGETplus 
SMARTpool: 
L-009919-00-
0005 

5’-GCAAUAGAGAUAUCGAUUU-3' 
3'-CGUUAUCUCUAUAGCUAAA-5’ 
5'-CAUCCAAUCUGGUGACAUG-3' 
3'-GUAGGUUAGACCACUGUAC-5' 
5'-GAUCCAGACUUCUAUAGUG-3' 
3'-CUAGGUCUGAAGAUAUCAC-5' 
5’-GACAGGCCAUACCAACUUU-3' 
3'-CUGUCCGGUAUGGUUGAAA-5' 

 

Table 2.9  

 

2.1.6. Plasmids 

pcDNA3.1 HA–BIMEL (rat sequence) provided by Paul Coffer (University Medical Center, 

Utrecht, The Netherlands). All variants of this and the βTrCP overexpression vector were kindly 

provided by Rebecca Gilley (The Babraham Institute, Cambridge, UK) and Ceri Wiggins 

(previous PhD student, The Babraham Institute, Cambridge, UK). pFLAG_CMV_6c_USP30, 

pFLAG_CMV_6c_USP30 C77A, pFLAG_CMV_6c_USP2, pFLAG_CMV_6c_USP2 C267A, 

pFLAG_CMV_6c_Cezanne, pFLAG_CMV_6c_Cezanne C194S, pFLAG_CMV_6c_USP8, 

pFLAG_CMV_6c_USP8 C748A, pFLAG_CMV_6c_USP15 and pFLAG_CMV_6c_USP15 C269A 

provided by MISSION Therapeutics Ltd. (Babraham Research Campus, Moneta (Building 280), 
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Cambridge, UK). GST-Dsk2 UBA, wild-type and inactive M342R and F344A mutant (Ohno et al., 

2005), were provided by Nia Bryant (Institute of Molecular, Cell and Systems Biology, 

University of Glasgow).  

 

2.2. Cell lines and culture 

2.2.1. Colorectal cancer cell lines 

COLO205 

COLO205 cells are an epithelial-like colorectal adenocarcinoma cell line that was established 

in 1978 from an ascites metastasis in a 70 year old male Caucasian patient. These cells harbour 

an activating BRAF mutation (V600E) and were purchased from ATCC. 

 

HCT116 

HCT116 cells are an epithelial-like colorectal carcinoma cell line that harbours an activating 

KRas mutation (G13D) and an activating PI3KCA mutation (H1047R). They were a gift from Prof 

Bert Vogelstein (Johns Hopkins University, Baltimore, USA).  

 

2.2.2. Melanoma cell lines 

A375 

A375 cells are an epithelial-like malignant melanoma established from a 54 year old female. 

These cells habour an activating BRAF mutation (V600E).  

 

BIM-/- A375 cells 

BIM-/- A375 cells are derivatives of A375 cells (above) which have been edited, using CRISPR-

cas9 technology, to generate a double knockout of BIM. Cells were kindly provided by Rebecca 

Gilley (The Babraham Institute, Cambridge, UK).  

 

gRNA sequences designed to target BIM  

Guide RNA (gRNA) to BCL2L11 (encoding BIM) were designed using the Zhang lab gRNA 

designing tool (http://crispr.mit.edu/) and cloned into a pSpCas9(BB)-2A-GFP genome editing 

vector, kindly provided from Feng Zhang (Addgene plasmid 48138). Validation of the clones 

http://crispr.mit.edu/
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used in this thesis (data not shown) confirmed that all three major isoforms of BIM (BIMEL, 

BIML and BIMS) had been knocked-out. CRIPSR-cas9 performed by Rebecca Gilley (The 

Babraham Institute, Cambridge, UK). 

 

 

Table 2.10 

 

2.2.3. Additional cell lines 

HR1 

HR1 cells are a clonal derivative of HEK293 cells that have been engineered to stably express 

the pCMVneomycΔRAF-1:ER* construct (described Bougham et al 2006). This cell line was 

provided by Kathryn Balmanno (The Babraham Institute, Cambridge, UK).  

 

2.2.4. Cell culture medium 

The following medium was used for routine cell culture: 

Cell culture medium and medium supplements for each cell line 

Cell line Medium Supplementation 

A375 (BIM-/- A375 
cells) 
HCT116  

DMEM (Life Technologies 
41966) 

10% (v/v) foetal bovine serum 
2 mM L-glutamine 
100 U/mL penicillin 
100 µg/mL streptomycin 

COLO205 
RPMI 1640 (Life 
Technologies 21875) 

10% (v/v) foetal bovine serum 
2 mM L-glutamine 
100 U/mL penicillin 
100 µg/mL streptomycin 

HR1  
DMEM (Life Technologies 
41966) 

10% (v/v) foetal bovine serum 
2 mM L-glutamine 
100 U/mL penicillin 
100 µg/mL streptomycin 
400 µg/mL G418 

 

Table 2.11  

 

Target 
gRNA 

identifier 
gRNA sequence (5'-3') Exon targeted 

BIM BIMg2 
5'-caccGCAACCACTATCTCAGTGCAA-3' 
5'-aaacTTGTCACAACTCATGGGTGC-3' 

2 
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2.2.5. Routine cell culture 

Cells were cultured at 37 oC in a humidified incubator with 5% CO2 and split 2-3 times a week 

once they had reached 80% confluency. For passaging, growth medium was aspirated, cells 

were washed with PBS, treated with pre-warmed trypsin/EDTA solution and then incubated 

at 37 oC for 2-5 minutes, depending on the cell line. Detached cells were resuspended in fresh 

pre-warmed media and diluted to the desired dilution in a new tissue culture flask.  

 

2.2.6. Cell line storage 

Cells were trypsinised as above, resuspended in fresh medium and cell pellets collected by 

centrifugation. The medium was then aspirated and cells were resuspended in 10% v/v 

FBS/DMSO to yield a cell density of ~1-2 × 106 cells/mL. The resulting suspension was then 

aliquoted (1 mL per cryovial) and frozen slowly in an insulating box at -80 °C. For longer term 

storage of cells, cryovials were transferred to liquid nitrogen. As required, cells were rapidly 

thawed at 37 °C and placed into a fresh 25 cm3 culture flask containing 9 ml pre-warmed 

medium. The following day, this medium was replaced to remove traces of DMSO and fresh 

put back in its place. 

The cell lines were reanimated by thawing rapidly at 37 °C and resuspending in 9 mL fresh 

media. The cells were spun at 1500 x g for 3 minutes to pellet cells. The cell pellet was 

resuspended gently in 8 mL fresh media and placed into a T25 flask to grow until 80% 

confluent.  

 

2.3. Cell Treatments 

2.3.1. Drug Treatments 

Stock solutions of drugs were diluted in cell culture medium to yield the desired final drug 

concentrations. Vehicle-only containing medium was used as control samples. Treated cells 

were incubated at 37 oC for the length of time stated in the figure legend.  
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2.3.2. Calcium Phosphate Transfection of HR1 cells 

Cells were seeded at an appropriate density and allowed to settle overnight. After 24 hours 

plasmid DNA was diluted in sterile H2O and 2 M CaCl2 to a final concentration of 250 mM (1:8 

dilution). This solution was mixed and an equivalent volume of 2 x HBS was added dropwise. 

The complete solution was vortexed and left at room temperature for 10 minutes and then 

added drop wise to plated cells, at an approximate cell density of 50%.  

 

2.3.3. Lipofectamine 2000® Transfection of HCT116 cells 

Cells were seeded in antibiotic free media and allowed to settle overnight to reach an 

approximate density of 50%. After 18 hours plasmid DNA was mixed with pre-warmed Opti-

MEM® medium (1 mL for a 10 cm3 dish). In a separate tube an equivalent volume of Opti-

MEM® medium was mixed with Lipofectamine® 2000 reagent (1:100 dilution). Both tubes 

were allowed left for 5 minutes and then combined and left for 20 minutes. The transfection 

mix was added drop wise to the dish and left at 37 oC with 5% CO2 for 6 hours. After 6 hours, 

the medium was changed to fresh pre-warmed antibiotic free media and the cells were 

incubated for the required time at 37 oC with 5% CO2 prior to further treatment or analysis. 

 

2.3.4. RNA interference 

siRNA oligonucleotides were resuspended in 1 x siRNA buffer or sterile H2O to generate a 20 

µM stock solution. Any further lower dilutions were made on the day of transfection and 

discarded after use. siRNA oligonucleotides were mixed with an optimised ratio of Opti-MEM® 

medium to Lipofectamine® RNAiMAX (for a single well of a 6-well plate 2.2 µL of 

Lipofectamine® RNAiMAX to 500 µL of Opti-MEM®) and incubated for 20 minutes at room 

temperature. Cells were trypsinised and resuspended in antibiotic free media (2 mL for a single 

well of a 6-well plate) to an optimised cell density and then plated, together with siRNA-lipid 

complexes, to achieve a final siRNA concentration of 10-20 nM, or that stated in figure 

legends. Cells were incubated for the required time at 37 oC with 5% CO2 prior to further 

treatment or analysis. 
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2.4. DNA and RNA manipulation 

2.4.1. Plasmid preparation 

DH5α bacterial cells were transformed with plasmid DNA (10-100 ng of DNA), plated onto LB 

plates containing antibiotics (100 µg/mL ampicillin or 30 µg/mL kanamycin) and incubated 

overnight at 37 oC. Subsequent colonies were picked and used to inoculate LB solution plus 

antibiotics, and were left in a shaking (225 rpm) incubator at 37 oC overnight. Plasmid DNA 

was extracted using a QIAGEN Plasmid Plus Mini/Maxi kit, following manufacturer’s 

instructions. DNA concentration and A260/A280 ratio were subsequently determined using a 

NanoDrop spectrophotometer, sequenced and stored at -20 oC.  

 

2.4.2. Genomic RNA isolation 

Cells were lysed with 1 ml of TRI reagent per 10 cm3 of culture dish and homogenised by 

pipetting and vortexing. Samples were incubated for 5 minutes at room temperature to permit 

complete dissociation of nucleoprotein complexes. Lysates were transferred to sterile RNase 

free tubes, genomic RNA was isolated using Direct-zol RNA MiniPrep kit according to 

manufacturer’s instructions. Genomic DNA was removed from samples through and in-

column DNase I digestion. RNA eluted with DNase/RNase-free water and stored at -80oC for 

short-term storage.  

 

2.4.3. cDNA preparation 

cDNA was synthesised from 1 µg of purified RNA using the QuantiTect Reverse Transcription 

kit (QIAGEN), according to manufacturer’s instructions. cDNA was diluted 1:20 in RNase-free 

water and stored at -20oC.  

 

2.4.4. PCR reactions 

cDNA was used as the starting material for the PCR amplification of USP27x. For the 

amplification of DNA, PCR was performed using Pfu DNA polymerase, according to 

manufacturer’s instructions. The PCR primers used for this reactions were purchased from 

SIGMA and are shown below: 
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Sequences of USP27x primers 

Mutant Primer sequence (5'-3') 

USP27x 
Fwd - CGATCGGATCCATGTGTAAGGACTATGTATATG 
Rev - CGATCGAATTCTCAGTAGGCTTGTGTGTTC 

 

Table 2.12  

 

2.4.5. Restriction endonuclease digestion and ligation reactions 

Restriction digests were performed on 1-2 µg of plasmid DNA in a 50 µL reaction containing 1 

x Restriction buffer and 1 µL of restriction enzyme. Reactions were incubated at 37 oC for 2 

hours. All digested products were analysed by gel electrophoresis (1% agarose prepared in 1 

x TBE containing 0.01% Ethidium bromide).  

 

2.4.6. Gel electrophoresis 

DNA was analysed or separated by gel electrophoresis on 1% agarose gel prepared in 1 x TBE 

containing 0.01% Ethidium bromide. DNA samples were mixed with 5 x DNA loading buffer 

prior to loading onto the gels. Gels were visualised by UV transilluminator at 254 nM. Bands 

were excised using a clean scalpel blade and the DNA was purified using QIAquick Gel 

Extraction kit (QIAGEN) according to the manufacturer’s instructions.  

 

2.4.7. DNA ligation 

Consequent ligation reactions were carried out on digested DNA products, in a 1:3 

(vector:insert) ratio, using a T4 DNA ligase (Promega) at 16 oC overnight. Reactions were 

consequently transformed into DH5α bacterial cells. DNA extracted was reanalysed by DNA 

digestion and gel electrophoresis to confirm insertion of the required DNA sequence.  

 

2.4.8. Site-directed mutagenesis 

The mutated pFLAG-CMV-6c-USP27x (C87A) was generated using the QuikChange II XL site-

directed mutagenesis kit according to manufacturer’s instructions. The following primers were 

purchased and used in site-directed mutagenesis:  
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Sequences of USP27x mutagenesis primers 

Mutant Primer sequence (5'-3') 

C87A 

Fwd - 
CAATCTTGGCAACACGGCCTTTATGAACTGCATTGTCC 
Rev - 
GGACAATGCAGTTCATAAAGGCCGTGTTGCCAAGATTG 

 

Table 2.13  

 

2.5. Preparation of whole cell lysates 

The cell culture medium is discarded or collected depending upon the cell line used. Cells were 

washed with ice cold PBS and harvested using TG lysis buffer (20 mM Tris-Cl pH 7.5, 137 mM 

NaCl, 1 mM EGTA, 1% v/v Triton X-100, 10% v/v glycerol, 1.5 mM MgCl2, 1 mM Na3VO4, 1 mM 

PMSF, 10 μg mL-1 leupeptin, 10 μg mL-1 aprotinin, 50 mM NaF). Collected lysates were cleared 

by centrifugation at 12,000 x g at 4 oC for 10 minutes and the supernatant protein 

concentration was measured using the Bradford protein assay. Samples were prepared for 

Western blotting by boiling for 5 minutes in 1 x Laemmli sample buffer and stored at -20 oC.  

 

2.5.1. Bradford Assay 

For each sample, 40 µL Bradford reagent was mixed with 158 μL water and 2 μL of cell lysate. 

The absorbance was read at 595 nm and the volume of protein lysate loaded to each well of 

the SDS-PAGE gel was adjusted accordingly to achieve equal protein loading. 

 

2.6. SDS-PAGE and Western blotting 

Resolving and stacking SDS-PAGE gels were assembled as described in the tables below: 

Resolving gel composition 

Component 
Resolving gel percentage (%) 

8 10 12 14 

30% Acrylamine/Bis 
(mL) 

16.2 19.8 24 27.6 

1.5 M Tris pH 8.8 (mL) 15 15 15 15 

ddH2O (mL) 27.6 24 19.8 16.2 

20% SDS (mL) 0.6 0.6 0.6 0.6 

10% APS (mL) 0.6 0.6 0.6 0.6 
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TEMED (µL) 60 60 60 60 
 

Table 2.14  

 

Stacking gel composition 

Component 
Stacking gel percentage (%) 

4 5 6 

30% Acrylamine/Bis 
(mL) 

2.67 3.33 4 

1.5 M Tris pH 6.8 (mL) 5 5 5 

ddH2O (mL) 11.93 11.27 10.6 

20% SDS (mL) 0.2 0.2 0.2 

10% APS (mL) 0.2 0.2 0.2 

TEMED (µL) 50 50 50 
 

Table 2.15  

Equivalent amounts of protein were resolved by SDS-PAGE at a constant voltage of 100 V for 

2-3 hours. At least one lane contains 8 µL of protein standard (Precision Plus Dual Colour 

Standard). Proteins were transferred to methanol-activated PVDF membrane at 300 mA for 

90-120 minutes. Membranes were blocked for 1 hour in 5% (w/v) milk/TBST or BSA/TBST at 

room temperature and then probed with primary antibodies at 4 oC overnight, with gentle 

agitation. After incubation the membranes were washed three times in TBST and then probed 

with the appropriate secondary antibodies diluted in TBST/5% (w/v) milk for 1 hour at room 

temperature. Following incubation membranes were washed three times in TBST and 

antibody-antigen complexes detected using the GE Healthcare enhanced chemiluminescent 

(ECL) system. For LI-COR Odyssey analysis, washed membranes were incubated for 1 hour at 

room temperature with a fluorophore conjugated secondary antibody diluted 1:50000 in 5% 

(w/v) milk/TBST. The blots were washed three times in TBST for 5 minutes and a final wash in 

water prior to detection on the LI-COR Odyssey imaging machine. The resulting bands were 

quantified using LI-COR Odyssey software.  

 

2.7. Crude subcellular fractionation analysis 

Cells were seeded and allowed to settle overnight. Media was aspirated and cells were washed 

in 1 x PBS. 500 µL of Isotonic Fractionation Lysis Buffer was added per 10 cm3 dish and cells 

were scraped and transferred into an 1.5 mL eppendorf tube. Cells were lysed by drawing 
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them through a 25-gauge needle 10 times. Cells were spun at 900 x g for 1 minute at 4 oC and 

the subsequent supernatant was spun at the maximum speed of the table-top refrigerated 

microcentrifuge (approximately 20,000 x g) at 4 oC for 20 minutes. The supernatant was 

removed and labelled as the cytosolic fraction and the pellet was resuspended in an equivalent 

volume of Isotonic lysis buffer plus 1% Triton X-100 and labelled the heavy membrane fraction. 

Concentrations of protein were measured using the Bradford assay and lysates were stored 

as previously described.  

 

2.8. Immunoprecipitation 

Cells were lysed in TG lysis buffer and precleared with Protein A-sepharose beads for 1 hour 

at 4 oC. A fraction of this lysate was retained for input blots. Mouse anti-HA monoclonal IgG2a 

(Kappa light chain) (sc-7392) was subsequently added to the remaining lysate. Each sample 

contained equivalent quantities of protein and were made to the same volume with additional 

TG lysis buffer. Antibody-antigen complexes were allowed to form at 4 oC for 1 hour, with end-

over-end rotation. Protein A-sepharose beads were then added to the lysates and were 

incubated for a further 3 hours at 4 oC, turning end-over-end. Following centrifugation, the 

beads were washed three times in ice cold TG lysis buffer, before eluting the beads in 4 x SB, 

followed by boiling for 5 minutes. Eluents and input fractions were then subjected to SDS-

PAGE and Western blotting.  

 

2.9. Polyubiquitination assay 

pGEX GST-Dsk2 UBA, wild type and inactive M34R and F344A mutant, were expressed in DH5α 

cells, purified and immobilised onto glutathione-sepharose beads and stored in storage buffer 

at 4 oC. A 20 mL overnight culture was used to inoculate 300 mL LB broth and grown at 37 °C 

with shaking at 225 rpm until the optical density of the cell suspension was 0.5-0.6 at 595 nm. 

Cells were then treated with 0.2 mM IPTG and grown for a further 3-4 hours at 30 °C. Cells 

were pelleted by centrifugation at 4,000 x g for 10 minutes and lysed in 30 mL bacterial lysis 

buffer for 30 minutes on ice. The cell lysate was spun at 15,000 x g for 20 minutes at 4 °C and 

1-2 mL washed glutathione-s-transferase (GST) beads were added to the resulting 

supernatant. The lysate/bead suspension was incubated end-over-end for 2 hour at 4 °C. The 
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beads were washed once in lysis buffer and twice in PBS and then spun down before being 

resuspended in 3 mL of storage buffer. Beads were then pipetted into 500 µL aliquots and 

stored at 4 oC.  

To assess BIMEL polyubiquitination, HR1 cells were transfected and treated as indicated in 

figure legends. Post treatment cells were washed in ice-cold PBS and lysed using ice-cold TG 

lysis buffer. Lysates were cleared by centrifugation (12,000 x g for 10 minutes at 4 oC) and 

protein levels determined by Bradford assay. Lysates were divided and either stored as input 

sample in 1 x Laemmli buffer or pre-incubated under rotation at 4 oC with GST-only beads for 

30 minutes. Following pre-incubation, the GST-only beads were pelleted at 2000 x g for 1 

minute at 4 oC and the lysate was removed, normalised for protein content and incubated 

under rotation with 20 µL of GST-Dsk2 ( or mutant Dsk2 (ΔDsk2)) bound sepharose beads at 4 

oC for 90 minutes. The beads were washed three times with 1 mL ice-cold TG lysis buffer and 

resuspended in 40 µL 1 x Laemmli buffer and stored at -20 oC.  

 

2.10. DUB activity probe assay 

Cells were lysed in ice-cold TG lysis buffer, which was supplemented with 5 mM β-

mercaptoethanol (BME), or the lysis buffer described in Table 2.15 and shown in Figure 4.1. 

Lysates were cleared by centrifugation (12,000 x g for 10 minutes at 4 oC) and protein 

concentrations determined using a standard protein concentration curve, utilising a Bradford 

assay. Following this, 20 µg of cell lysates were incubated with 0.5 µg of HA-UbVME probe for 

one hour at room temperature. The remaining lysate and the lysate incubated with the DUB 

activity probe were then prepared for Western blotting by boiling for 5 minutes in 1 x Laemmli 

sample buffer and stored at -20 oC. 

 

 

Components of Mission Therapeutics Lysis buffer 

Mission Therapeutics  

Lysis Buffer 

50 mM Tris-HCl, pH 7.5 

150 mM NaCl 

0.1% NP-40 
0.5% CHAPS 
5 mM MgCl2 

5 mM BME 

1 Roche mini-protease table (per 10 mL) 
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1 Roche mini-phosphatase tablet (per 10 mL) 
 

Table 2.16 

 

2.11. Propidium iodide staining and flow cytometry 

Following harvest, cells were pelleted by centrifugation at 1,500 rpm, at 4 oC, for 5 minutes, 

washed in PBS, and then resuspended in 0.2 mL PBS. Cells were vortexed and fixed in 2 mL 

ice-cold 70% (v/v) ethanol/PBS, and stored at 4 oC for at least 1 hour. On the day of analysis, 

samples were centrifuged, washed with PBS and resuspended in 0.25 mL PBS containing 25 

µg RNase and 12.5 µg of propidium iodide (PI) and incubated at 37 oC for 30 minutes. Prior to 

analysis, the cell suspension was passed through a 25-gauge needle to generate a single cell 

suspension. PI fluorescence was analysed with a FACS Calibur machine (BD Biosciences), using 

a 488 nm excitation laser line and a 670 nm long pass filter to measure binding of PI to DNA, 

and counting 10,000 cells per sample. Data was analysed using FlowJo X.  

 

2.12. Deubiquitylating enzyme (DUB) RNAi Screen 

Figures 2.1 and 2.2 depict how the RNAi screens were performed. Of note, all steps where 

possible were performed in a tissue-culture grade hood. The siRNA used in the screen were 

purchased by Mission Therapeutics prior to the start of my project from QIAGEN. In general, 

on the day the screen was performed, 8, 96-well plates were removed from the freezer, 

containing at least twice the required volume of pre-aliquoted DUB siRNA, one volume of 

siRNA required for inhibitor treated plates and the other for control non-treated plates. These 

were labelled L1a-d and L2a-d, where plates L1a-d were spotted with 4 different siRNA for the 

same DUB, one on each plate, for a set of DUBs and plates L2a-d were spotted with 4 different 

siRNA for the same DUB, one on each plate, for a different set of DUBs (Figure 2.2). These 

plates were spun down and the positive (siBCL-XL) and negative (siLUC, 4 per plate) controls 

were aliquoted onto these plates.  

The optimised concentration of RNAiMAX and pre-warmed Opti-MEM®, required for 

transfection of both treated and non-treated plates, were mixed. The RNAiMAX:OptiMEM mix 

was aliquoted into each well of the 8, 96-well plates and placed to mix on a shaker for 5 
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minutes and then then removed from the shaker and placed on the side, unstacked, for 20 

minutes. Whilst lipid:siRNA complexes were forming, HCT116 cells were trypsinised, counted 

and diluted to the optimised concentration with antibiotic free media. YOYO-1® dye was 

added, at a dilution factor of 1:20000, to the HCT116 cells. The RNAiMAX/OptiMEM/siRNA 

mix in each of the 8, 96 well plates was split into two plates, one to be treated and the other 

left untreated to give a total of 16, 96-well plates. The optimised concentration of cells were 

then plated into these wells to give a total volume of 135 µL per well.  

Cells were left to settle for ~24 hours. Following this, all plates were removed from the 

incubator. One set of plates (8, 96-well plates) were left untreated, but treated with DMSO, 

and the other set of plates (8, 96-well plates) were treated with the optimised concentration 

of the inhibitor, diluted to this concentration in antibiotic-free media. In addition, positive 

drug controls were pipetted onto plates, for example ABT-263 + inhibitor (Figure 2.2).  

At the end of the screen all plates were removed from the incubator and placed in the 

IncuCyte® ZOOM. This captured images of each well, which could then be analysed for 

confluency, ‘phase’ and cell death (fluorescent YOYO®-1 dye). Cells were then lysed and CTG 

viability assay was performed, according to manufacturer’s instructions, and illuminescence 

was measured on the CLARIOstar microplate reader.  

Further analysis of the data was performed using sensitivity index (SI) analysis. Prior to 

performing SI analysis, all end-point assay measurements were normalised to the average 

siLUC value for the plate the DUB of interest was spotted on.  

The following calculation was used to determine SI values: 

SI = (Rc/Cc*Cd/Cc)-(Rd/Cc) 

Rc is the average ‘value’ in drug-untreated wells transfected with active siRNA against a select 

DUB, Rd is the average ‘value’ in drug-treated wells with active siRNA against a select DUB, Cc 

is the average ‘value’ in drug-untreated wells with control siRNA (siLUC averaged across all 

plates), and Cd is the average ‘value’ in drug-treated wells with control siRNA (siLUC averaged 

across all plates). As three end-point assays were performed on the RNAi screen, the ‘value’ 

would be representative of the end-point analysis used for SI analysis. Once SI values for each 

DUB are determined, a ‘hit’ was identified if 3 more siRNA for that DUB generated an SI value 
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above or below the set threshold (determined by the end-point assay used). The ‘threshold’ 

was determined using this calculation: 

Threshold = SI mean for siLUC (across all plates) + (std*z value) 

For the work performed here the z value was set at a constant of 3, recommended on 

conversation with Mission Therapeutics.  

Further siRNA work validating ‘hits’ described in Chapter 6 was performed according to section 

2.3.4.  
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Figure 2.1 Schematic representation of how the deubiquitylating enzyme (DUB) RNAi screen was performed. 
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Figure 2.2 Overview of the siRNA plate plans used during the deubiquitylating enzyme (DUB) RNAi screens. 
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Chapter 3: Characterising the ubiquitylation and 

deubiquitylation of BIM 
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3. Chapter 3 

3.1. Introduction 

BIM is a pro-apoptotic BH3-only protein that is a major determinant, along with other BCL2 proteins, 

for the initiation of cell-intrinsic apoptosis. As a consequence of its importance in the initiation of cell 

death, the transcription, expression and activity of BIM are tightly regulated and alterations in its 

expression are associated with disease.  

Tumour cells that possess RTK, Ras or BRAF oncogenes are addicted to ERK1/2 signalling for survival, 

and this in part reflects suppression of BIM expression. As a consequence, BIM has been shown, in 

multiple settings, to induce tumour cell death in response to drugs targeting the ERK1/2 pathway (Sale 

and Cook, 2013). Therefore, detailed information regarding the regulation of BIM may guide the use 

of oncogene-targeted cancer therapies (Gillings et al., 2009).  

Alternative splicing of BIM results in at least 18 different isoforms, of which three, BIMs, BIML and 

BIMEL, are the major variants. BIMEL, the least potent but most abundant isoform, undergoes ERK1/2-

driven phosphorylation, on at least three Ser-Pro sites, including S69 (S65 in Rat), targeting it for K48-

linked polyubiquitylation and subsequent degradation via the 26S proteasome (Ewings et al., 2007, Ley 

et al., 2003, Ley et al., 2004, Luciano et al., 2003, Marani et al., 2004, Wiggins et al., 2011).  

In addition to regulation by ERK1/2, Dehan et al. demonstrated that RSK1/2 co-operates with ERK1/2 

to phosphorylate BIMEL. They showed that activation of RSK1/2, by ERK1/2, resulted in the 

phosphorylation of BIMEL on S93, S94 and S98, providing a binding site for the F-box protein βTrCP1/2, 

as part of a larger E3 ligase SCF complex, allowing for the polyubiquitylation and degradation of BIMEL. 

This study suggested a significant role for RSK1/2 in the post-translational regulation of BIMEL. If RSK1/2 

is a regulator of BIMEL turnover one could reason that this would validate the use of RSK inhibitors in 

the treatment of cancer. Since RSK is just one of >200 described substrates of ERK1/2, RSK inhibition 

might result in an increase in BIMEL protein with fewer side effects than direct inhibition of ERK1/2 

activity. As such, it could provide a means to drive BIM-dependent tumour cell death in a more 

selective manner (Dehan et al., 2009).  

In most cases, βTrCP specifically recognises a conserved phosphodegron within its substrates, 

DpSGX(n)pS, or variants on this, where pS represents phospho-serine and X represents any amino acid. 

Indeed, phosphorylation of serine residues, within this motif, is the major regulatory mechanism 

controlling substrate-βTrCP interaction (Fuchs et al., 2004). The described sequence has been found in 

a large number of proteins, summarised in Coyaud et al., which have all been shown to be regulated 
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in response to βTrCP binding (Coyaud et al., 2015). These include β-catenin (Hart et al., 1999, Latres et 

al., 1999, Liu et al., 2002), yes-associated protein (YAP) (Zhao et al., 2010b), NF-ĸB1 p105 (Lang et al., 

2003, Orian et al., 2000), and cell division cycle 25 homologue (CDC25A) (Busino et al., 2003, Jin et al., 

2003). Thus, βTrCP regulates a diverse set of signalling pathways. Recently Shimizu and colleagues have 

described a novel technique using the described phosphodegron as a means for isolating novel 

substrates of βTrCP, using βTrCP-phosphodegron-motif specific antibodies for immunoprecipitation of 

phospho-peptides, followed by mass spectrometry (Shimizu et al., 2017), thus, demonstrating that this 

degron in sufficient for substrate recognition.  

As previously described, alternative E3 ligases have been suggested for BIMEL. However to date the 

most convincing candidate is SCFβTrCP. As seen by Dehan et al., Moustafa-Kamal et al. confirmed the 

requirement for phosphorylation of BIMEL at S93, S94 and S98 for interaction with βTrCP1 during 

mitosis (Moustafa-Kamal et al., 2013). They showed that, in mitosis, Aurora A was required for the 

phosphorylation and consequential degradation of BIMEL and that mutation of S94/S98 but not S69, a 

known ERK1/2 phosphorylation site, resulted in defective polyubiquitylation and stabilisation of BIMEL.  

Until recently, the DUB responsible for the deubiquitylation of BIMEL was unknown. Weber et al. used 

mass spectrometry to identify BIMEL interacting proteins and found that the DUB, USP27x, bound to 

BIMEL resulting in its deubiquitylation, stabilisation and accumulation. Like βTrCP, the binding of 

USP27x to BIMEL was reliant upon the ERK1/2-driven phosphorylation of BIMEL (Weber et al., 2016).  

Work in this chapter sets out to examine the role of ERK1/2 and RSK in the degradation of BIM and to 

fully characterise the described interaction between βTrCP and BIM. In addition, work was performed 

to investigate the DUB for BIM including studying the involvement of USP27x in our system.  

 

3.2. Results 

3.2.1. Regulation of BIMEL by the ERK1/2 pathway.  

Preliminary experiments aimed to confirm that BIMEL was dynamically regulated by the ERK1/2 

pathway (Figure 3.1A). The HR1 cell line used for the following experiments is a model system for 

studying the effects of ERK1/2 signalling on a given protein as the cells stably express the conditional 

protein kinase ΔRAF-1:ER* so that treatment with 4-hydroxytamoxifen (4HT) selectively activates the 

ERK1/2 signalling pathway.  
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Figure 3.1 Regulation of BIMEL by the ERK1/2 pathway 
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Serum starvation of HR1 cells led to the inactivation of the ERK1/2 signalling pathway as shown by a 

reduction in the phosphorylated, active form of ERK1/2. As a consequence of this, BIMEL was 

dephosphorylated, as shown by the increased mobility of BIMEL on SDS-PAGE. Re-introduction of FBS 

to serum starved cells resulted in the reactivation of the ERK1/2 pathway, retarding the mobility of 

BIMEL on SDS-PAGE, indicative of the re-phosphorylation of BIMEL. Finally complete inhibition of ERK1/2 

signalling, using the MEK1/2 inhibitor selumetinib, led to the dephosphorylation of ERK1/2 and BIMEL 

and a corresponding increase in BIMEL protein levels, presumably due to a reduction in its proteasomal 

degradation (Ley et al., 2003).  

As previously described by Wiggins et al., data presented here confirmed that K48-linked 

polyubiquitylated BIMEL could be detected using the immobilised UBA domain Dsk2 as an affinity 

capture resin (Figure 3.1B) (Wiggins et al., 2011). Here, following incubation of cell lysates with GST-

Dsk2, GSH-agarose pull-downs were able to isolate polyubiquitylated BIMEL; the amount of 

polyubiquitylated BIMEL was enhanced upon activation of the ERK1/2 signalling pathway (Figure 3.1B).  

 

3.2.2. Tumour cells addicted to ERK1/2 signalling for survival are not addicted to RSK activity. 

The Cook Lab previously demonstrated that tumour cells addicted to ERK1/2 signalling undergo BIM-

dependent cell death in response to combined treatment with MEK1/2 inhibitors and BH3 mimetics, 

such as ABT-263 (Sale and Cook, 2013). As it has been previously suggested that RSK1/2 is required 

downstream of ERK1/2 to regulate the stability of BIMEL, an aim of this study was to investigate if the 

same trend was observed when RSK inhibitors and ABT-263 were used in combination.  

COLO205 and A375 cells were chosen for these experiments. Both cell lines harbour a BRAFV600E 

oncogene and are addicted to ERK1/2 signalling. Previous reports have demonstrated that combined 

treatment of these cell lines with the MEK1/2 inhibitor, selumetinib, and ABT-263 showed a significant 

increase in cell death, which, at least in the case of COLO205 cells, was found to be dependent on BIM 

(Sale and Cook, 2013). As well as this, several tools within the Cook lab could be used to further dissect 

the cell death response induced as a result of inhibitor treatment, including CRISPR-Cas9 BIM knockout 

A375 cells.  

Treatment of COLO205 cells with the MEK1/2 inhibitor selumetinib blocked ERK1/2 phosphorylation 

and inhibited RSK activity as judged by the dephosphorylation of YB1, a transcription factor and 

recognised RSK substrate (Figure 3.2A). Selumetinib treatment in turn increased BIM expression, with 

this BIM protein being the hypophosphorylated stabilised form. Despite this increase in BIM, 

selumetinib treatment failed to drive apoptosis as judged by modest levels of PARP cleavage (Figure 
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3.2A) and the accumulation of cells in G1 of the cell cycle with no evidence of dead cells with sub-G1 

DNA content (Figure 3.2B). However, combination of selumetinib with ABT-263 resulted in a striking 

apoptotic cell death (Figure 3.2B), whereas treatment with ABT-263 alone was ineffective, confirming 

previous observations (Sale and Cook., 2013). In contrast to this, the selective RSK inhibitor LJH685, 

used at two different doses, completely blocked YB1 phosphorylation, so was active against RSK, but 

failed to increase BIM protein levels and failed to combine with ABT-263 to drive COLO205 cell death, 

arguing against a role for RSK in the regulation of BIM.  

To investigate this further the A375 melanoma cell line was studied using three different RSK inhibitors, 

LJH685, FMK and BI-D1870. Pan-RSK inhibitors, BI-D1870 and LJH685 are competitive inhibitors of the 

ATP-binding site of the NTKD of RSK. Fluoromethylketone (FMK) irreversibly binds to the active 

cysteine in the ATP-binding site of the CTKD of RSK1/2/4, so is unable to target RSK3 due to it lacking 

the key cysteine within the CTKD required for inhibition (Aronchik et al., 2014, Casalvieri et al., 2017, 

Cohen et al., 2005). However, despite target engagement, BI-D1870 has been described to have a large 

number of off-target interactions (Edgar et al., 2014, Roffe et al., 2015, Sapkota et al., 2007).  

As previously seen in COLO205 cells, treatment of A375 cells with selumetinib alone resulted in an 

increase in BIM protein but minimal induction of cell death, as judged by sub-G1 DNA (Figure 3.2C and 

Figure 3.2D). Similarly, combined treatment with selumetinib and ABT-263 resulted in the 

accumulation of hypophosphorylated BIM but instead of an increase in the percentage of cells in G1 

phase of the cell cycle seen with selumetinib treatment alone, the combined treatment led to an 

increase in sub-G1 DNA indicative of an increase in cell death (Figure 3.2C and Figure 3.2D). In contrast, 

treatment with any of the given RSK inhibitors resulted in the on-target loss of phosphorylated YB1, 

but failed to prevent the phosphorylation and degradation of BIM (Figure 3.2C). As observed in 

COLO205 cells, treatment of A375 cells with the RSK inhibitors, LJH685 and FMK, in combination with 

ABT-263, failed to drive an increase in the percentage of cells with sub-G1 DNA (Figure 3.2D). 

Treatment of A375 cells with BI-D1870, alone, as well as in combination with ABT-263, induced a 

comparable increase in sub-G1 DNA to that seen with combined selumetinib and ABT-263 treatment, 

which could be due to the known off-target effects of this inhibitor (Figure 3.2D). However, it was 

certainly unrelated to changes in BIMEL abundance. Indeed, none of the RSK inhibitors increased BIMEL 

abundance in either COLO205 or A375 cells, whereas selumetinib consistently did.  

  



79 
 

Figure 3.2 Dynamic regulation of BIMEL in tumour cells by ERK1/2 but not RSK. 
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Finally to confirm that cell death in this system was dependent on BIM, A375 cells were used in which 

BIM had been knocked out by CRISPR-Cas9. Deletion of BIM in three different clones led to a reduction 

in cell death in response to treatment with selumetinib and ABT-263. However, there was no observed 

difference in cell death between parental and BIM-/- A375 cells treated with a combination of LJH685 

and ABT-263 (Figure 3.2E). Western blot analysis of the three CRIPSR/cas9 clones confirmed that BIM 

had been successfully knocked-out in all clones, and that inhibition of MEK1/2 and RSK, with or with 

ABT-263, resulted in the corresponding inhibition of phosphorylation of target proteins (Figure 3.2F).  

Overall, data in Figure 3.2 demonstrated that inhibitors of MEK1/2 but not RSK increased the 

abundance of BIM and combined with a BH3 mimetic to kill cancer cells in a BIM-dependent manner. 

More than this, the data began to suggest that RSK might not regulate the stability of BIM.  

 

3.2.3. A domain unique to BIMEL is required for interaction with βTrCP. 

For this study a reliable βTrCP antibody was required and as a consequence initial experiments, in 

which HR1 cells were transfect with siRNA against βTrCP or a vector over-expressing βTrCP, were 

performed to validate the chosen antibody. (Figure 3.3). βTrCP is expressed as two paralogs, βTrCP1 

(FBXW1) and βTrCP2 (FBXW11), related by duplication within the genome. These two proteins share 

~80% sequence homology, particularly within their WD40 domains (Butticaz et al., 2007, Frescas and 

Pagano, 2008). The siRNA used here targets βTrCP1 and the antibody used here specifically recognises 

βTrCP1 at ~60 kDa. Herein the term βTrCP will refer to βTrCP1 unless stated otherwise.  

As described, there are three major isoforms of BIM, shown in Figure 3.4A, with BIMEL being the largest, 

most abundant and least potent isoform. Overexpression of HA-tagged versions of these isoforms in 

HR1 cells, followed by HA-immunoprecipitation, confirmed that of the major isoforms only BIMEL 

interacted with βTrCP, suggesting a domain unique to this isoform was required for the observed 

interaction (Figure 3.4B). As well as this, a control BIMEL construct with mutations within the known 

BH3 domain did not prevent the interaction between BIMEL and βTrCP.  

 

3.2.4. Phosphorylation of BIMEL is required for interaction with βTrCP. 

Exon 3, unique to BIMEL, contains phosphorylation sites for ERK1/2 as well as those proposed for 

RSK1/2. Potential phosphorylation sites for ERK1/2 also exist within exon 4 of BIMEL. A schematic  
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Figure 3.3 Validation of the βTrCP antibody. 
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Figure 3.4 A ‘unique’ domain to BIMEL is required for interaction with βTrCP 

.  
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of exons 1-4 of BIMEL is shown in Figure 3.5A, with the ERK1/2 and putative RSK1/2 phosphorylation 

sites mapped to exons 3 and 4. Mutation of these sites enabled the requirement for phosphorylation 

at these residues for the interaction between BIMEL and βTrCP to be assessed. Thus, this data would 

help deduce if RSK was required for the regulation of BIMEL.  

Mutation of the three ERK1/2 phosphorylation sites in exon 3 reversed the ERK1/2-induced mobility 

shift in BIMEL and abolished βTrCP binding (E1-3 mutant, Figure 3.5B). Additional mutation of three 

other ERK1/2 phosphorylation sites caused a further enhancement in mobility of BIMEL in SDS-PAGE 

but no additional reduction in βTrCP binding (E1-6 mutant, Figure 3.5B). Thus, the ERK1/2 

phosphorylation sites in exon 3 were absolutely required for βTrCP binding.  

In contrast, mutation of the proposed RSK1/2 phosphorylation sites minimally reduced the mobility 

shift of BIMEL but abolished the interaction between βTrCP and BIMEL (R1-3 mutant, Figure 3.5C). As 

expected, the combination of mutating the ERK1/2 and RSK1/2 phosphorylation sites yielded the same 

outcome as that seen with mutating the ERK1/2 phosphorylation sites alone, complete 

dephosphorylation and accumulation of BIMEL and loss of interaction with βTrCP (E1-6 and R1-3 

mutant, Figure 3.5C). Overall immunoprecipitation of overexpressed HA-BIMEL revealed that both 

ERK1/2 and RSK1/2 phosphorylation sites were required for the interaction between BIMEL and βTrCP, 

but only mutation of ERK1/2 phosphorylation sites resulted in the accumulation of de-phosphorylated 

BIMEL (Figure 3.5B and Figure 3.5C).  

In accordance with Figure 3.5B and Figure 3.5C, mutation of ERK1/2 phosphorylation sites resulted in 

a reduction in BIMEL polyubiquitylation (E1-6 mutant, Figure 3.5D). A similar polyubiquitylation pattern 

was observed following mutation of putative RSK1/2 phosphorylation sites, with or without mutated 

ERK1/2 phosphorylation sites, despite minimal enhancement of mobility of BIMEL following the 

mutation of putative RSK1/2 phosphorylation sites alone (R1-3 mutant, Figure 3.5D). This suggested 

that both ERK1/2 and RSK1/2 phosphorylation sites were required for the polyubiquitylation of BIMEL.  

R3, S94 (S98 in Human), mutated in the HA-BIMEL R1-3 expression vector, is located within the ERK1/2 

docking domain on BIMEL (Ley et al., 2005). Binding of ERK1/2 to this domain is required for BIMEL 

phosphorylation and degradation. Therefore, evaluating the effect of mutating the putative RSK1/2 

sites on the ERK1/2-driven phosphorylation of BIMEL was warranted. Addition of 4HT to HR1 cells, 

transfected with wild-type BIMEL, resulted in the phosphorylation of BIMEL on S65 (S69 in Human) and 

the binding of βTrCP (Figure 3.5E). Following mutation of putative RSK1/2 phosphorylation sites, a 

modest reduction in the phosphorylation of BIMEL at S65 was observed. However, BIMEL was no longer 

able to interact with βTrCP (Figure 3.5E). Thus suggesting that mutating the R1-3 sites might influence 

the docking of ERK1/2 to BIMEL. Indeed, a previous PhD student in the Cook lab demonstrated that 
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mutating suggested RSK1/2 phosphorylation sites substantially reduced the ability of BIMEL to interact 

with ERK1 (C. Wiggins, PhD Thesis). GST pulldown using wild-type and mutant BIMEL revealed that GST-

BIMEL precipitated far more ERK1, from 4HT-treated lysates, than GST-BIMEL R1-3. Prior treatment with 

the MEK1/2 inhibitor, U0126, prevented either construct from interacting with ERK1, probably due to 

the inhibition of ERK1/2 activity (Figure 3.5F). To further elucidate whether mutating residues R1-3 

impacted the ability of ERK1/2 to interact with BIMEL, BIMEL phosphorylation was examined over a 

range of phosphorylated ERK1/2 levels by titrating in increasing concentrations of the MEK1/2 inhibitor 

selumetinib (Figure 3.5G and Figure 3.5H). Quantitative LI-COR analysis revealed that whilst 

phosphorylated S69 on wild-type and BIMEL R1-3 was equally inhibited at maximal doses of 

selumetinib, at intermediate or ‘limiting’ levels of phosphorylated ERK1/2, the BIMEL R1-3 phospho-

mutant exhibited a strong reduction in phosphorylated BIMEL at S69. This suggests that the R1-3 RSK1/2 

phosphorylation site mutant does indeed impact ERK1/2 binding in cells making it challenging to draw 

conclusions, using the R1-3 mutant, regarding the necessity of RSK1/2 phosphorylation sites in the 

regulation of the degradation of BIMEL. As an alternative approach, selective RSK inhibitors were again 

used to assess the role of RSK activity in the regulation of BIMEL.  

 

3.2.5. RSK activity is not required for BIMEL polyubiquitylation and turnover. 

To investigate the role of ERK1/2 and RSK phosphorylation in the degradation of BIMEL several 

pharmacological inhibitors of the ERK/RSK signalling cascade were used. Throughout these 

experiments HR1 cells were used which express a ΔRAF-1:ER* construct to drive the activation of 

ERK1/2 and therefore RSK1/2, a downstream target of ERK1/2, following the addition of 4HT.  

Activation of ERK1/2 signalling resulted in a shift in mobility of BIMEL, indicative that ERK1/2 signalling 

drives the phosphorylation of BIMEL. Following treatment with the MEK1/2 inhibitor, trametinib, or the 

ERK1/2 inhibitors, GDC-0994 and SCH772984, BIMEL protein accumulated in its hypophosphorylated 

form (Figure 3.6A). This correlated with the inability of BIMEL to interact with βTrCP (Figure 3.6A). In 

contrast, treatment with any of the given RSK inhibitors, FMK, BI-D1870 or LJH685, had no effect on 

the phosphorylation and degradation of BIMEL, but successfully blocked the phosphorylation of a 

known substrate, YB1 (Figure 3.6A and Figure 3.6B). In accordance with this, inhibition of RSK did not 

prevent the interaction between βTrCP and BIMEL (Figure 3.6A and Figure 3.6B).  

  



87 
 

Figure 3.5 Investigating the requirement of ERK1/2 and RSK phosphorylation sites in the regulation of BIMEL. 
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Activation of the ERK1/2 signalling pathway resulted in the polyubiquitylation of BIMEL, as judged using 

the previously described GST-Dsk2 pulldown shown in Figure 3.1B (figure 3.6C). Treatment with the 

MEK1/2 inhibitor, trametinib, but not the RSK inhibitor, LJH685, abolished the polyubiquitylation of 

BIMEL (Figure 3.6C), indicating that RSK activity was not required for the K48-linked polyubiquitylation 

of BIMEL. Together the data suggests that phosphorylation by ERK1/2 but not RSK is required for the 

interaction between BIMEL and βTrCP and therefore for the polyubiquitylation and turnover of BIMEL.  

 

3.2.6. Investigating the ability of alternative kinases to regulate the stability of BIMEL. 

The preceding results suggested whilst the putative RSK1/2 phosphorylation sites might be required 

for the interaction between BIMEL and βTrCP, RSK activity was not required for this interaction and 

therefore the turnover of BIMEL. This suggested that an alternative kinase could cooperate with ERK1/2 

to drive the polyubiquitylation and degradation of BIMEL, by phosphorylating BIMEL at S89, S90 and S94 

(S93, S94 and S98 in Human), within the βTrCP binding motif or BIMEL degron.  

Aurora A has been proposed to phosphorylate BIMEL during mitosis at the putative RSK1/2 

phosphorylation sites (Moustafa-Kamal et al., 2013). Therefore experiments were performed to 

evaluate if Aurora A activity was responsible for regulating BIMEL under these conditions. Treatment 

with Aurora A inhibitors impedes the phosphorylation of the well-characterised Aurora A 

phosphorylation site, T210, on Polo-like kinase-1 (PLK1) (Macurek et al., 2008, Seki et al., 2008). HR1 

cells, overexpressing HA-BIMEL, were treated with the Aurora A inhibitor, alisertinib (MLN8237), at 

increasing concentrations, which led to the loss of phosphorylated PLK specifically at T210. As with 

inhibition of RSK, treatment with alisertinib did not prevent the phosphorylation of BIMEL, abrogate 

the interaction between BIMEL and βTrCP and as such did not protect BIMEL from degradation (Figure 

3.7A). Thus, suggesting that under these conditions Aurora A did not regulate the stability of BIMEL.  

Given this, the ability of alternative Ser/Thr protein kinases to target BIMEL for phosphorylation-driven 

degradation was assessed. The Phospho-(Ser/Thr) Kinase Substrate Antibody kit, purchased from Cell 

Signalling Technology, can be used to evaluate whether specific phospho-motifs for a given kinase are 

present within a chosen substrate. Comparing lysates from HR1 cells transfected with BIMEL or the 

BIMEL R1-3 mutant should reveal if any of these kinases could phosphorylate wild-type BIMEL but not 

mutant BIMEL. Unfortunately, analysis using this kit did not suggest any kinases  

  



91 
 

Figure 3.6 Phosphorylation by ERK1/2 but not RSK promotes the ubiquitination and turnover of BIMEL. 
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that were only capable of phosphorylating wild-type BIMEL alone. Interrogation of immunoprecipitated 

lysates, with the PKA consensus motif recognition antibody, showed an increase in the presence of 

phosphorylated PKA consensus motifs in wild-type compared to mutant BIMEL suggesting that 

mutation of putative RSK1/2 phosphorylation sites reduced the ‘amount’ of potential PKA 

phosphorylation sites (Figure 3.7B). However, there was no complete loss of phosphorylated PKA 

consensus motif following R1-3 mutation. Interestingly interrogation with AMPK and CDK consensus 

motif recognition antibodies revealed that unlike wild-type BIMEL, mutant BIMEL possessed 

phosphorylated consensus motifs for these kinases. Thus, implying potential conformational changes 

in this mutant allowing for AMPK and CDK to phosphorylate BIMEL (Figure 3.7B). 

Using data generated from proximity-based biotinylation or BioID, multiple substrates have been 

confirmed and identified for SCFβTrCP1/2 (Coyaud et al., 2015). Numerous βTrCP substrates harbour the 

sequence DSGX(n)S, or variants on this, where, as stated previously, phosphorylation of serine residues 

is required for interaction with SCFβTrCP1/2, ultimately regulating the stability of these proteins (Frescas 

and Pagano, 2008, Winston et al., 1999).  

Comparing the sequence of BIMEL, with known substrates, confirmed that BIMEL possesses the 

described βTrCP binding motif and is therefore capable of undergoing polyubiquitylation under the 

control of βTrCP (Figure 3.7C) consistent with the interaction that was observed herein. Similar to that 

described by Dehan et al., where cooperative phosphorylation of BIMEL by ERK1/2 and RSK1/2 is 

required for interaction with βTrCP, both YAP and β-catenin are reliant upon ‘priming’ phosphorylation 

events for interaction with βTrCP. Degradation of β-catenin, in response to interaction with βTrCP, is 

reliant upon phosphorylation by CK1α at S45, which allows for protein phosphorylation by GSK3 within 

its βTrCP binding motif (Liu et al., 2002). In the case of YAP, phosphorylation of key serine residues, 

including S381, by Lats primes the protein for additional phosphorylation by CK1δ/ε within the βTrCP 

binding motif (Zhao et al., 2010b). Similarities to β-catenin led to the discovery of the cooperative 

phosphorylation of Snail (SNAI1), by CK1ε and GSK3β leading to its interaction with βTrCP1 and 

subsequent degradation (Xu et al., 2010).  

Using a PhosphoMotif database, based on Amanchy et al., several kinases were identified that might 

have the potential to phosphorylate BIMEL within the βTrCP binding motif in the BIMEL degron 

(Amanchy et al., 2007) (Figure 3.7D). Both CK1 and GSK3 are conserved Ser/Thr protein kinases and, 

from the described consensus motifs, might be capable of phosphorylating BIMEL at conserved serine 

residues within the described BIMEL degron, in a similar manner to that described above for YAP and 

β-catenin. To this end, inhibitors active against GSK3α/β (CHIR 99021 and AZ4216) and CK1 ((D4476 

(CK1α/δ/ε) and PF 670462 (CK1δε)) were used to see if inhibition of these kinases prevented the 
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phosphorylation of BIMEL, abolished the interaction between BIMEL and βTrCP and therefore rescued 

BIMEL from degradation (Figure 3.7E and Figure 3.7F).  

Previously, GSK3 inhibitors, CHIR 99021 and AZ4216, have been shown to regulate the stability of β-

catenin, with increasing concentrations of inhibitor resulting in a decrease in the phosphorylation of 

β-catenin at S33, S37 and T41 and an increase in protein stability (Ashford et al., 2014, Yost et al., 

1996). Treatment of HEK293 cells with CK1 inhibitor, D4476, was found to inhibit the phosphorylation 

of FOXO1a on S322 and S325, thereby retarding its nuclear exclusion (Rena et al., 2004, Rena et al., 

2002). These were used as markers of successful GSK3 or CK1 inhibition.  

Activation of the ERK1/2 pathway resulted in the phosphorylation of BIMEL, as judged from its 

decreased electrophoretic mobility on SDS-PAGE. As previously described, treatment with the MEK1/2 

inhibitor, trametinib, resulted in the inhibition of BIMEL phosphorylation, the loss of interaction 

between BIMEL and βTrCP, resulting in the increased stability of BIMEL. Treatment with the RSK inhibitor 

LJH685, did not affect the phosphorylation of BIMEL, the interaction between BIMEL and βTrCP and 

therefore the degradation of BIMEL, despite strong inhibition of RSK (Figure 3.7E and Figure 3.7F).  

CHIR 99021 and AZ4216 treatment of HR1 cells led to the inhibition of phosphorylation and resultant 

accumulation of β-catenin, indicating target inhibition. At the chosen concentrations of CHIR99021 and 

AZ4216, there was no effect on the phosphorylation or degradation of BIMEL or on the interaction 

between BIMEL and βTrCP (Figure 3.7E).  

Similarly, treatment with the CK1 inhibitors, PF 670462 and D4476, did not prevent the 

phosphorylation or degradation of BIMEL, and did not abolish the interaction between βTrCP and BIMEL 

(Figure 3.7F). Addition of CK1 inhibitors did not visibly reduce phosphorylation of FOXO1A at 

S322/S325, however there was a reduction in phosphorylation and a slight accumulation of FOXO1A 

following treatment, indicative that these inhibitors were working at the chosen concentrations (Figure 

3.7F). These experiments suggest that more work needs to be done to identify an alternative kinase 

that is responsible for regulating the degradation of BIMEL, via phosphorylation of the βTrCP binding 

site in the BIMEL degron.  

To investigate if βTrCP is required to regulate the polyubiquitylation of BIMEL in our system, the effect 

of knockdown of βTrCP on the polyubiquitylation pattern of BIMEL was investigated. Interestingly 

targeted knockdown of βTrCP did not alter the polyubiquitylation of BIMEL (Figure 3.7G), which could 

indicate that additional E3 ligases can interact with BIMEL and drive its polyubiquitylation. Additionally 

activation of ERK1/2 signalling resulted in the induction of βTrCP protein levels (Figure 3.7G).  
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Figure 3.7 Investigating alternative kinases responsible for the interaction with βTrCP and degradation of BIMEL. 
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3.2.7. Despite residing at the mitochondria, USP30 is not the DUB for BIMEL. 

As shown by previous results presented in this chapter, and those of others, BIM is degraded in 

response to activation of the Ras-RAF-MEK1/2-ERK1/2 pathway, indicating that both the 

polyubiquitylation and deubiquitylation of BIM will affect survival and therefore tumour development. 

As previously described multiple E3 ubiquitin ligases for BIMEL have been suggested, however until 

recently the DUB for BIMEL has not been found. Therefore, a candidate approach was employed in an 

attempt to find the DUB for BIMEL.  

BIM contains a hydrophobic tail that results in its localisation to the OMM (O'Connor et al., 1998, 

Wilfling et al., 2012). This OMM localisation is independent of its BH3 domain suggesting that it does 

not need to be bound to BCL2 proteins for OMM localisation. The following fractionation experiments 

were designed to determine if BIMEL translocates from the mitochondria to the cytosol upon 

phosphorylation and polyubiquitylation. This might indicate if potential DUBs for BIMEL would need to 

reside at or have the ability to translocate to the mitochondria. Of note, to date, USP30 is the only 

known DUB to contain a transmembrane domain targeting it to the OMM (Nakamura and Hirose, 

2008). 

Crude sub-cellular fractionation analysis of HR1 cells revealed endogenous BIMEL was localised to the 

heavy membrane (HM) fraction (Figure 3.8A), which contained mitochondrial membranes, with COXIV 

used as a mitochondrial marker. Serum withdrawal resulted in an increase in the amount BIMEL protein 

found in the HM fraction, which correlates with an increase in the total BIM protein. Activation of 

ERK1/2 resulted in the phosphorylation of BIMEL and a decrease in total levels of BIMEL. Addition of the 

proteasome inhibitor MG132 led to a small accumulation of phosphorylated BIMEL at the mitochondria. 

Very little BIMEL could be detected in the cytosolic fraction, shown by the cytosolic marker ERK1, from 

serum starved cells. However, overexposure of blots did reveal a small amount of phosphorylated 

BIMEL in the cytosolic fraction from cells in which the ERK1/2 pathway had been activated (Figure 3.8A). 

These findings mimic that already seen by Putcha et al. and Weston et al. and further suggest the post-

translational modification of BIMEL occurs at the mitochondrial membrane. Based on these findings a 

candidate approach was adopted to investigate the DUB for BIMEL beginning with USP30 and other 

DUBs that are known to regulate mitochondrial proteins (Putcha et al., 2001, Weston et al., 2003).  

In common with previous reports, endogenous and overexpressed USP30 was primarily located in the 

HM fraction (Nakamura and Hirose, 2008). However, in contrast to this report, data presented here 

suggested that in complete media USP30 localised to the cytosolic fraction, and upon serum starvation 

either translocated to the HM fraction and/or was modified, within the cytosol, resulting in an increase 

in its molecular weight (shown by asterix in Figure 3.8B). This raises the interesting possibility that 
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USP30 may be regulated by nutrient conditions. Overexpressed BIMEL and USP30 localised to both 

fractions but the majority of both proteins were localised to the HM fraction (Figure 3.8B). Given this 

colocalisation, USP30 had the potential to deubiquitylate BIMEL.  

During this study, USP2 was used as a positive control as it is a known ‘promiscuous’ DUB, which, when 

overexpressed, should cleave polyubiquitin chains irrespective of their chain linkage (Komander et al., 

2009b). The catalytic domain of Cezanne specifically cleaves K11 chains, which BIMEL is not known to 

possess, thus overexpression of Cezanne should have no effect on the polyubiquitylation of BIMEL and 

therefore acts a negative control (Mevissen et al., 2013). From probed lysates, USP2 and USP30 

exhibited DUB activity in vitro. Addition of the HA-UbVME probe (described in more detail in Chapter 

4) resulted in a band shift of catalytically active DUBs as compared to catalytically inactive DUBs, 

indicative of the probe irreversibly binding to the cysteine residue present within the catalytic triad of 

the DUB (Figure 3.8C and Figure 3.8D). It was more challenging to observe whether overexpressed 

Cezanne was catalytically active as there was no obvious band shift, however both catalytically active 

and inactive Cezanne were shown to be overexpressed by a large increase in Cezanne protein 

compared to all other sample lanes (Figure 3.8D). Using the described Dsk2 pulldown (Figure 3.1B), the 

effect of USP2, Cezanne or USP30 overexpression on the polyubiquitylation pattern of BIMEL could be 

assessed. Overexpression of USP30 did not affect the polyubiquitylation of overexpressed or 

endogenous BIMEL, despite the overexpression of USP2 greatly reducing its polyubiquitylation and the 

overexpression of Cezanne having no affect. This indicated that this assay could not only detect DUB 

activity against BIMEL but that USP30 was unable to deubiquitylate BIMEL (Figure 3.8C and Figure 3.8D).  

 

3.2.8. Neither USP8 nor USP15 is the DUB for BIMEL.  

USP8 and USP15 both regulate mitochondrial-associated proteins. Like USP30, USP15 overexpression 

resulted in impaired mitophagy by deubiquitinating known PARKIN substrates, whereas USP15 

knockdown led to the enhanced clearance of defective mitochondria (Cornelissen et al., 2014). In 

contrast to this, USP8 directly deubiquitylates PARKIN, thus delaying recruitment of PARKIN to the 

mitochondrial membrane thereby also preventing mitophagy (Durcan et al., 2014). 
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Figure 3.8 USP30, located at the mitochondria, is not the DUB for BIMEL. 
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Therefore, experiments were performed to assess if overexpressing these DUBs altered the ability of 

Dsk2 to pulldown polyubiquitylated BIMEL. 

The HA-UbVME probe was used to confirm that USP8, USP15 and USP2 were all active when expressed 

in cells and assayed in vitro. Overexpression of USP8 and USP15 did not result in any significant 

alteration in the polyubiquitylation of BIMEL, compared to the lane in which catalytically active USP2 

was overexpressed (Figure 3.9). However, this data was less convincing than that presented in Figure 

3.8.  

 

3.2.9. Investigating the regulation of BIMEL by USP27x. 

Whilst attempting to find the DUB for BIMEL Weber et al. proposed that USP27x interacts with BIMEL, 

resulting in its deubiquitylation (Weber et al., 2016). Despite numerous attempts, of which only one is 

shown, immunoprecipitation of HA-BIMEL failed to detect an interaction with FLAG-tagged USP27x. 

Regardless of this, an interaction between BIMEL and βTrCP was still observed (Figure 3.10A).  

Despite this, transfection of HR1 cells with increasing amounts of USP27x resulted in a decrease in the 

polyubiquitylation of BIMEL which was not observed with catalytically inactive USP27x (Figure 3.10B). 

Thus, despite not being able to observe a direct interaction between BIMEL and USP27x, the catalytic 

activity of USP27x was capable of removing polyubiquitin chains from BIMEL. Therefore, in agreement 

with Weber et al. USP27x is able to deubiquitylate BIMEL. Interestingly, overexpression of catalytically 

inactive USP27x resulted in the accumulation of polyubiquitylated BIMEL (Figure 3.10B).  

 

3.3. Discussion 

3.3.1. ERK1/2, but not RSK, is required for BIMEL polyubiquitylation and degradation. 

Tumour cells that possess BRAFV600E mutations are addicted to ERK1/2 for survival and undergo BIM-

dependent apoptosis when MEK1/2 or ERK1/2 are inhibited in combinaton with ABT-263 treatment. 

In contrast, data presented in this chapter demonstrated that they are not addicted to RSK activity and 

thus inhibition of RSK, in combination with ABT-263 did not drive cell death. CRISPR-Cas9 knockout of 

BIM was revealed to rescue cells from cell death driven by ERK1/2 but not RSK inhibition. This suggests 

that RSK activity was not required to suppress BIM expression to drive tumour cell survival. Given this, 

the role of RSK, in the regulation of BIM, was investigated further and compared to regulation by 

ERK1/2.  
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Figure 3.9 Neither USP8 nor USP15 are the DUB for BIMEL. 
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Figure 3.10 Despite reduction in polyubiquitylation of BIMEL following overexpression of USP27x, no interaction between the 
two can be detected. 
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BIM is a potent pro-apoptotic BH3-only protein and its deregulated expression has been linked to 

numerous diseases, in particular cancer. As such, a complete understanding of the regulatory 

mechanisms driving/opposing the degradation of BIMEL are vital. It is well established that ERK1/2 

phosphorylates BIMEL leading to its polyubiquitylation and degradation (Ley et al., 2003, Ley et al., 

2004). Dehan et al. demonstrated that the F-box protein βTrCP1/2, as part of an SCF ubiquitin ligase 

complex, could act as an E3 ligase for BIMEL (Dehan et al., 2009). Results presented in this chapter 

confirmed and extended aspects of the Dehan et al. study by showing that βTrCP interacted with BIMEL, 

that this was dependent on ERK1/2 activity and ERK1/2 phosphorylation sites, identified previously in 

the Cook lab. 

Dehan et al. also proposed that phosphorylation of S93, S94 and S98, by RSK1/2 was prerequisite for 

binding of the SCFβTrCP1/2 (Dehan et al., 2009). They observed that mutating S69 inhibited 

phosphorylation of the βTrCP binding motif within the BIMEL degron, and suggested that this indicates 

that ERK1/2-driven phosphorylation of S69 was required for phosphorylation at S93, S94 and S98 by 

RSK1/2 and βTrCP binding. To look into the role of RSK phosphorylation, the previously described 

RSK1/2 phosphorylation sites within the suggested BIMEL degron were mutated. As suggested by 

Dehan et al., mutating these sites abrogated the interaction between BIMEL and βTrCP. However, 

further examination of these phosphorylation sites revealed that all three residues lie around or within 

the ERK1/2 docking domain, with S94 (S90 in Rat) lying directly within this FSF domain (Ley et al., 2005). 

As a consequence of this, mutating this site could disrupt the ability of ERK1/2 to interact with BIMEL, 

and would thus prevent ERK1/2 from phosphorylating BIMEL. As shown in multiple experiments, this 

would, by itself, prevent βTrCP from interacting with BIMEL and this could provide an explanation as to 

why the loss of the putative RSK1/2 phosphorylation sites resulted in the inability of βTrCP to interact 

with BIMEL. Indeed, mutating the three putative RSK1/2 phosphorylation sites resulted in a decrease 

in the phosphorylation of BIMEL at the critical ERK1/2 phosphorylation site (S65 in Rat and S69 in 

Human); this was most apparent at intermediate or limiting levels of phosphorylated ERK1/2 imposed 

by low concentrations of a MEK1/2 inhibitor. Overall, it can be assumed that mutating the R1-3 sites is 

likely to reduce ERK1/2 docking and phosphorylation of BIMEL and, as a consequence, will artificially 

reduce the interaction between BIMEL and βTrCP. This could also imply that conclusions drawn using 

the R1-3 mutant (Dehan et al., 2009) could be misleading and that the BIMEL-βTrCP interaction is not 

lost due to the inability of RSK1/2 to phosphorylate BIMEL.  

Mutation of the putative RSK1/2 phosphorylation sites led to a reduction in the polyubiquitylation of 

BIMEL to a similar level seen with loss of all ERK1/2 phosphorylation sites. Indeed, the observed 

reduction in the ability of ERK1/2 bind to and phosphorylate BIMEL could explain the reduced 

polyubiquitylation of BIMEL. However, it is also known that βTrCP binds to its substrate via 
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phosphorylated serine residues within their phosphodegron, where a crystal structure revealed that 

both the serine residues within the described phosphodegron are required to form hydrogen bonds 

and electrostatic interactions with the WD40 domains of βTrCP (Wu et al., 2003). Therefore, a simpler 

explanation could be that mutating these residues will prevent βTrCP from binding to BIMEL and 

therefore would reduce the polyubiquitylation of BIMEL regardless of the kinase responsible for 

phosphorylating these residues.  

As a consequence of reduced confidence in the phosphorylation site mutants of RSK1/2, the role of 

RSK activity in the regulation of BIMEL was investigated using pharmacological inhibitors. Inhibition of 

RSK with three different inhibitors did not affect the turnover BIMEL, despite loss of YB1 

phosphorylation. Indeed, no evidence was found to support a role for RSK activity in the interaction 

between BIMEL and βTrCP, and inhibition of RSK did not affect the polyubiquitylation of BIMEL. As 

phosphorylation at the described BIMEL degron is suggested to be prerequisite for βTrCP binding, an 

alternative Ser/Thr kinase downstream of ERK1/2 could be responsible for phosphorylating BIMEL 

resulting in its reduced stability. Using PhosphoMotif databases, as well as examples of known βTrCP 

substrates, several kinases were predicted to be capable of phosphorylating BIMEL within its degron at 

the suggested βTrCP binding motif, including GSK3 and CK1. These kinases have previously been shown 

to require prior ‘priming’ phosphorylation to phosphorylate their substrates enabling the binding of 

βTrCP. Unfortunately, inhibitors of GSK3 and CK1 did not yield any alteration in the phosphorylation 

or degradation of BIMEL.  

Interestingly, MSK1/2 shares a similar substrate specificity to RSK1/2, where its general substrate 

consensus has been suggested to be RXXpS/pT (Deak et al., 1998). Indeed, both require 

phosphorylation by ERK1/2 for activation and function (Deak et al., 1998). However, unlike RSK1/2, the 

majority of identified MSK1/2 substrates are nuclear (Arthur, 2008, Reyskens and Arthur, 2016). 

Interestingly, both RSK1/2 and MSK1/2 can phosphorylate the transcription factor CREB, however a 

lower Km value was observed for MSK1 suggesting that despite both kinases being capable of 

phosphorylating CREB, MSK rather than RSK is responsible (Cargnello and Roux, 2011). This suggests 

that MSK1/2 could function, downstream of ERK1/2, as kinase for BIMEL and phosphorylated BIMEL 

within its described degron.  

To identify additional kinases required to phosphorylate BIMEL within its degron, a less targeted, more 

global approach may be required, treating HR1 cells with broad spectrum inhibitors at high 

concentrations to look for changes in the degradation of BIMEL, alterations in its interaction with βTrCP 

and reduction in the polyubiquitylation of BIMEL.  
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Alternatively ERK1/2 may act alone to promote the binding of BIMEL to βTrCP, despite the inability of 

ERK1/2 to phosphorylate the given serine residues within the βTrCP binding motif. Interestingly, 

Kanemori and colleagues have described a non-phosphorylated motif, DDGφXD, where φ represents 

a hydrophobic amino acid, for βTrCP binding in Xenopus Cdc25A; this was also found to act as a 

functional binding site for βTrCP in humans (Kanemori et al., 2005). Despite BIMEL not containing the 

described sequence it does present the possibility that βTrCP could interact with BIMEL independently 

of phosphorylation at the conventional degron and solely rely upon ERK1/2 activity for interaction with 

βTrCP and degradation. Under these conditions the role of ERK1/2 phosphorylation could be to drive 

the dissociation of BIMEL from the pro-survival proteins, MCL1 and BCL-XL, previously demonstrated by 

Ewings et al., rather than to provide a platform for βTrCP binding. This idea was further supported by 

the observation that phosphorylation of S69 is not only required for the degradation of BIMEL but is 

prerequisite for the dissociation of BIMEL from pro-survival proteins (Ewings et al., 2007, Ley et al., 

2004, Luciano et al., 2003). Here dissociation from MCL1 and BCL-XL could unmask the binding site for 

βTrCP, enabling βTrCP to interact with BIMEL resulting in its polyubiquitylation and degradation. In 

keeping with findings presented in this chapter, Ewings and colleagues went on to show that mutating 

the BH3 domain of BIMEL, thus preventing BIMEL from interacting with MCL1 and BCL-XL, resulted in 

accelerated turnover of BIMEL (Ewings et al., 2007). Thus, indicating that dissociation from pro-survival 

proteins is sufficient to promote the degradation of BIMEL, perhaps by revealing an E3 ligase binding 

site.  

Interestingly, in accordance with that previously shown by Wiggins et al., targeted knockdown of βTrCP 

did not affect the polyubiquitylation and turnover of BIMEL (Wiggins et al., 2011). This suggests that 

there could be a redundancy in the E3 ligase responsible for the polyubiquitylation of BIMEL. Validated 

βTrCP siRNA used in these experiments specifically targets βTrCP1, therefore the lack of reduction in 

the polyubiquitylation of BIMEL could be as a consequence of βTrCP2 binding to and targeting BIMEL for 

polyubiquitylation. In the literature there are conflicting opinions with regards to the redundancy of 

these two paralogs. Some studies identified that both paralogs can perform the same function, and 

that loss of both is required to supress down modulation of a protein (Butticaz et al., 2007), whilst 

others have identified unique roles for βTrCP2 suggesting that they are functionally different 

(Nakagawa et al., 2015). Dehan et al. did not look into the functional redundancy of these two proteins 

in the context polyubiquitylation of BIMEL, they only demonstrated that BIMEL interacts, in vitro with 

FLAG-tagged βTrCP2 (Dehan et al., 2009).  

An additional theory could be that an alternative F-box protein, in complex with SCF, could interact 

with BIMEL, driving its polyubiquitylation in the absence of βTrCP. Indeed, this has been shown by 

Vinas-Castells et al. where, under conditions were SNAIL1 is unable to bind βTrCP, it is still 
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polyubiquitylated and degraded (Vinas-Castells et al., 2010). Under these conditions the F-box protein 

FBXl14 interacts with SNAIL1 (SNAIL/SNAI1) regulating its degradation. However, Wiggins et al. 

demonstrated that targeted knockdown of Cul1, a key component of the larger SCF complex, and 

overexpression of interfering mutants of Cul1 or interfering mutants of Ubc12, a protein required for 

the conjugation of NEDD8 to all cullin proteins, did not alter the turnover of BIMEL (Wiggins et al., 

2011). They went on to suggest that an alternative E3 ligase is responsible for the polyubiquitylation 

of BIMEL, when SCFβTrCP1/2 is unable to do so. An example of E3 ligase redundancy is shown in the 

regulation of the substrates of Hsp70 and Hsp90. Under ‘normal’ conditions CHIP, an RING E3 ligase, is 

responsible for the regulation of Hsp70/Hsp90 substrates (Morishima et al., 2008). However, in mouse 

embryonic fibroblasts (MEFs) lacking CHIP, neuronal nitric oxide (nNOS), an established CHIP substrate, 

is still ubiquitylated. Further examination revealed that the RBR E3 ligase Parkin was able to modify 

nNOS, establishing a redundancy of CHIP in these cells. Not only this, it suggests that two types of 

ubiquitin ligases were able to act on the same substrate. Therefore, it presents the possibility that 

BIMEL could be regulated by multiples families of E3 ligases. Given that BIM is one of the most potent 

BOPs it perhaps makes sense to have redundant mechanisms to ensure its degradation.  

 

3.3.2. Overexpression of USP27x resulted in the reduction in the polyubiquitylation of BIMEL.  

Initial attempts, to identify a DUB for BIMEL, using a candidate approach, were unsuccessful. Despite 

USP30, USP8 and USP15 being located within or having the ability to translocate to the mitochondria 

overexpression of these DUBs did not reduce the polyubiquitylation of BIMEL. Whilst investigating the 

DUB for BIMEL, Weber and colleagues demonstrated that USP27x was capable of interacting with BIMEL, 

thereby reducing its polyubiquitylation and increasing its stability (Weber et al., 2016). 

The interaction between a DUB and its substrate is transient and/or weak, and therefore, despite 

multiple attempts and overexpression of proteins, this could be the underlying reason why the 

described interaction between BIMEL and USP27x was not observed. As previously described, 

overexpression of catalytically active USP27x resulted in the reduction in the polyubiquitylation of 

BIMEL. Interestingly overexpression of catalytically inactive USP27x resulted in the accumulation of 

polyubiquitylated BIMEL. McCullough et al. have previously demonstrated that the catalytically inactive 

mutant of the DUB AMSH induced the accumulation of the ubiquitylated form of its substrate STAM 

(McCullough et al., 2004) One explanation for the observed increase in polyubiquitylated BIMEL is that 

catalytically inactive USP27x exerts a dominant negative effect on BIMEL. Thus, the interaction of 

catalytically inactive USP27x with BIMEL would prevent endogenous USP27x from interacting with 

BIMEL, thereby protecting polyubiquitylated BIMEL. This is analogous to catalytically inactive mutants 
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of tyrosine phosphatases (Flint et al., 1997) in that catalytically inactive USP27x would displace 

endogenous USP27x that would share the same binding site on BIMEL. Several DUBs have also been 

shown to interact with E3 ligases, indeed, Weber et al. indicated that βTrCP forms a complex with 

USP27x and BIMEL (Weber et al., 2016). Therefore, one could speculate that USP27x could recruit 

βTrCP, to polyubiquitylated BIMEL, aiding its ubiquitylation and that this ubiquitylated form of BIMEL is 

stabilised by catalytically inactive USP27x.  

As with the E3 ligase for BIMEL, the DUB for BIMEL would play a vital role in the regulation of a key 

apoptotic protein and as BIM has been shown to induce tumour cell death, in response to targeted 

treatment, information regarding the DUB for BIMEL may play a role in oncogene-targeted cancer 

therapies. Despite a reduction in the polyubiquitylation of BIMEL, following overexpression of USP27x, 

it is possible that USP27x is not the only DUB for BIMEL. Indeed multiple DUBs have been found to 

regulate the same cellular process, suggesting a level of redundancy in the DUB protein families 

(Vlasschaert et al., 2017). Functional redundancy is likely related to their sequence homology. Indeed, 

USP4, USP15 and USP11 are known paralogous DUBs in that they are related by duplication within the 

genome and have been shown to play redundant roles based on their substrates and interacting 

partners, including TGFBR1 and SMAD7 (Vlasschaert et al., 2015). An alternative example is that 

numerous DUBs have been found to target histones, with BAP1 and USP16 both deubiquitylating H2A-

Ub, under different DNA damaging conditions (Joo et al., 2007, Sahtoe et al., 2016).  

In summary, using pharmacological inhibitors, the data presented in this chapter has established that 

RSK is not required for the regulation of the BIMEL. Thus suggesting that an alternative kinase or indeed 

ERK1/2 alone is sufficient to drive the degradation of BIMEL. Additionally data here has suggested that 

there is a redundancy in the E3 ligase and DUB for BIMEL, thus emphasising the importance for the 

regulation of this potent pro-apoptotic protein. 
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Chapter 4: Investigating the potential for combining 

USP30 inhibitors and the BH3 mimetic, ABT-263, to drive 

apoptosis
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4. Chapter 4 

4.1. Introduction 

Mitochondria are highly dynamic organelles that play an essential role in cellular energy production, 

metabolism and cell death (Nunnari and Suomalainen, 2012). Ubiquitylation of key mitochondrial 

proteins is required for the maintenance of mitochondrial morphology and for the maintenance of a 

healthy mitochondrial network (Chan, 2012). Damaged or dysfunctional mitochondria are degraded 

by mitophagy, a discrete form of autophagy, regulated by the concerted action of PINK1, a ubiquitin 

kinase, Parkin, an E3 ligase, and the DUB, USP30 (Bingol et al., 2014, Cunningham et al., 2015, Kane et 

al., 2014, Kazlauskaite et al., 2014, Kondapalli et al., 2012, Koyano et al., 2014, Narendra et al., 2008, 

Narendra and Youle, 2011, Sarraf et al., 2013, Vives-Bauza et al., 2010, Wauer et al., 2015b). Mutation 

of both the PINK1 and Parkin genes, and therefore mitochondrial dysfunction, is associated with early-

onset recessive Parkinson’s disease, a neurodegenerative disorder characterised by a loss of 

dopaminergic neurons in the substantia nigra (Corti et al., 2011, Hauser and Hastings, 2013, Kitada et 

al., 1998, Valente et al., 2004). Here, mutation of PINK1 or Parkin results in impaired Parkin 

recruitment, ubiquitylation of mitochondria targets and/or mitophagy. This could account for the 

synaptic dysfunction, associated with reduction in dopamine release and synaptic plasticity, observed 

in Parkinson’s disease (Gispert et al., 2009, Goldberg et al., 2003, Matsuda et al., 2010, Narendra and 

Youle, 2011, Rakovic et al., 2011, Reeve et al., 2018, Vives-Bauza et al., 2010, Winklhofer and Haass, 

2010).  

Indeed, promoting mitophagy could provide a therapeutic basis for the treatment of Parkinson’s 

disease. Inhibition of USP30 provides a novel means for improving the rate of mitophagy, due to the 

removal of an enzymatic activity that opposes Parkin-mediated mitophagy, resulting in an increase in 

the lysosomal clearance of dysfunctional mitochondria. Thus, USP30 has become an attractive target 

for the treatment of diseases driven by the accumulation of defective mitochondria.  

Several MEK1/2 inhibitors have been approved for the treatment of cancer cells harbouring mutations 

within BRAF and KRas oncogenes. The use of MEK1/2 inhibitors typically results in the rapid emergence 

of acquired resistance and disease progression (Little et al., 2011). Despite an increase in the 

expression of pro-apoptotic proteins, including BIM, tumour cells typically exhibit a G1 cell cycle arrest 

providing an opportunity for cells to develop acquired resistance (Sale and Cook, 2013). Combination 

therapies have shown promising results in transforming the observed cytostatic response into a 

cytotoxic response. An example is the synergistic combination of the MEK1/2 inhibitor, selumetinib, 

and BH3 mimetics, including ABT-263, leading to the induction of a BAK/BAX-dependent cell death 
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response (Sale and Cook, 2013). BAK/BAX-dependent apoptosis or mitochondrion-mediated apoptotic 

cell death is regulated by pro-apoptotic and pro-survival BCL2 proteins. Oligomerisation of the 

activated pro-apoptotic effector proteins BAK and BAX within the OMM generates a pore allowing for 

the release of apoptotic factors, notably cytochrome c, ultimately initiating a series of events leading 

to caspase-dependent cell death (Adams and Cory, 2007, Tait, 2010). BH3 mimetics act to initiate the 

described apoptotic response by mimicking pro-apoptotic BH3-only proteins and inserting their BH3 

domain into the corresponding groove of pro-survival BCL2 protein, releasing pro-apoptotic factors to 

drive the activation of BAK and BAX resulting in apoptosis (Baell and Huang, 2002, Lessene et al., 2008). 

A recent study proposed that knocking down the mitochondrial-associated DUB, USP30, sensitises 

cancer cells to BH3 mimetics, where this combination resulted in the induction of BAK/BAX-dependent 

cell death. This suggested an anti-apoptotic role for USP30, making it a potential target in 

combinatorial anti-cancer therapies (Liang et al., 2015).  

Dodecapeptides and aptamers have previously been described as inhibitors of USP30 (Bingol, Corn and 

Zhang 2014, Yue et al., 2014). As well as this, 15-oxospiramilactone (S3) is in preclinical trials as a USP30 

inhibitor in the treatment for neurodegenerative diseases (Harrigan et al., 2017, Yue et al., 2014). 

Administration of S3 in cells lacking one of the key mitochondrial fusion proteins (MFN1-/- and MFN2-

/- MEFs) significantly increased the percentage of cells containing elongated mitochondria, suggesting 

S3 has the potential to restore mitochondrial function to cells defective in mitochondrial fusion (Yue 

et al., 2014). Kluge and colleagues have recently compared two structurally similar USP30 compounds, 

MF-094 and MF-095, as a means of assessing the implications of selective USP30 inhibition (Kluge et 

al., 2018). The compounds developed by Kluge and colleagues were based on racemic phenylalanine 

derivatives found to inhibit USP30 through a high-throughput screen. Inhibition of USP30, using the 

more selective and potent compound, MF-094, resulted in an increased rate of mitophagy, when 

compared to treatment with MF-095 the less potent USP30 inhibitor (Kluge et al., 2018).  

Mission Therapeutics have also published several patents detailing USP30 inhibitors in-development 

for the treatment of mitochondrial disorders including Parkinson’s disease (Jones et al., 2016, Kemp 

and Jones, 2017). Here, in collaboration with Mission Therapeutics, KRas G13D mutant HCT116 cells 

were treated with novel USP30 inhibitors, MTX32 and MTX48, and the BH3 mimetic ABT-263 to 

investigate whether these agents could combine to drive apoptosis.  
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4.2. Results 

4.2.1. MTX32 rapidly enters cells and inhibits USP30. 

The use of a USP30 inhibitor required an appropriate cell based assay to confirm that USP30 was 

successfully inhibited. Activity-based probes (ABPs) mimic their substrate, covalently interacting with 

the active site of the enzyme in an enzyme-catalysed reaction. To this end, ubiquitin-based activity 

probes have aided in the discovery of novel DUBs and also in the development of DUB inhibitors, due 

to their ability to monitor the potency and selectivity of a given inhibitor (Balakirev et al., 2003, 

Borodovsky et al., 2001, Borodovsky et al., 2002, Kramer et al., 2012, McGouran et al., 2012, Niphakis 

and Cravatt, 2014). The HA-tagged UbVME probe, HA-Ahx-Ahx-Ub-VME, possesses a C-terminal VME 

warhead designed to react with the active site cysteine present in the majority of DUBs, including the 

USP and UCH DUB families (Borodovsky et al., 2002). A schematic of this is shown in Figure 4.1A. 

Specifically, the UbVME ABP can be an effective tool for confirming and profiling target engagement 

of DUB inhibitors (Figure 4.1B) and has been shown to target a wide range of DUBs with very little 

cross-reactivity to other proteases (Altun et al., 2011, Ward et al., 2016). 

To test the ability of the HA-UbVME probe to interact irreversibly with USP30, in our chosen lysis 

conditions, HCT116 cells were treated post-lysis with the ABP and fractionated by SDS-PAGE gel 

electrophoresis. Addition of the probe resulted in a visible band shift in USP30, as well as two other 

highly expressed DUBs, USP5 and UCHL3, in HCT116 cells, indicative of a DUB-probe interaction (Figure 

4.1C). 

Target engagement of the USP30 inhibitor, MTX32, was analysed using the UbVME probe. MTX32 

rapidly entered HCT116 cells and inhibited USP30. ~10 minutes post-treatment with MTX32, USP30 

was maximally inhibited, as indicated by the shift of the ‘active’ USP30 band to a lower molecular 

weight. Inhibition of USP30 was maintained throughout the 48 hr time course. However, at longer time 

points, the abundance of ‘probed’ USP30 decreased whilst unprobed USP30 protein levels remained 

constant, suggesting probed USP30 was being degraded (Figure 4.2). To investigate the specificity of 

MTX32 in HCT116 cells, probed lysates were also interrogated for the inhibition of two alternative 

DUBs, USP5 and UCHL3, chosen based on their molecular weight, their endogenous protein levels in 

HCT116 cells as well as their known ability to interact with the UbVME probe.  
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Figure 4.1 Competitive ubiquitin probe labelling for DUB inhibitor profiling. 
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Figure 4.2 Rapid inhibition of USP30 and UCHL3 by MTX32 

.  
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MTX32 treatment rapidly inhibited UCHL3 and partially inhibited USP5, at longer time-points, 

suggesting that MTX32, at this chosen concentration, inhibits additional DUBs (Figure 4.2).  

 

4.2.2. Combining MTX32 and ABT-263 treatment induces cell death in KRas mutant HCT116 cells. 

MTX32 inhibited USP30 in a dose-dependent manner with maximal inhibition of USP30 at 10 µM 

(Figure 4.3A). MTX32 inhibited UCHL3 over a similar concentration range to USP30, but higher 

concentrations of MTX32 were required to inhibit USP5 (50 µM) (Figure 4.3A). 

MTX32 and the BH3 mimetic, ABT-263, combined to induce cell death (Figure 4.3B and Figure 4.3C). 

The control of DMSO, as well as single inhibitor treatments showed minimal increase in the percentage 

of cells with sub-G1 DNA. However, combining the two inhibitors led to a significant increase in cell 

death (Figure 4.3C). The observed synergistic increase in cell death was only apparent over a narrow 

concentration range, with the greatest synergy observed at 10 µM MTX32 (Figure 4.3B). At this 

concentration MTX32 as a single agent resulted in ~10% of cells with sub-G1 DNA, which was increased 

to ~30% following introduction of 1 µM ABT-263. Western blot analysis confirmed that ABT-263 had 

no effect on the ability of MTX32 to inhibit USP30 (Figure 4.3A). 

 

4.2.3. MTX32 and ABT-263 combine to induce BAX-dependent apoptosis.  

Caspase inhibition using the pantropic caspase inhibitor Q-VD-OPh abolished the cell death response 

previously seen in Figure 4.3B and Figure 4.3C, demonstrating that MTX32 and ABT-263 combine to 

induce a caspase-dependent cell death (Figure 4.4A). Compared to the combination of MTX32 and 

ABT-263, the addition of Q-VD-OPh reduced cleaved PARP confirming a reduction in the cell death 

response following caspase inhibition. Western blot analysis confirmed that the addition of Q-VD-OPh 

and ABT-263 did not interfere with the inhibition of USP30 (Figure 4.4B). 

To further investigate the mechanism by which MTX32 and ABT-263 induced caspase-dependent cell 

death, genetically engineered isogenic HCT116 cells lacking the effector pro-apoptotic proteins BAK, 

BAX or BAK/BAX were utilised (Figure 4.4C). HCT116 cells lacking BAK showed no defect in the 

apoptotic response to MTX32, ABT-263 or the combination. In contrast, HCT116 cells lacking BAX, and 

BAK-/- BAX-/- HCT116 cells, showed a significant reduction in the percentage of cells with sub-G1 DNA 

and were, as a consequence, resistant to cell death (Figure 4.4D), demonstrating that MTX32 and ABT-

263 combined to induce BAX-dependent apoptosis. Similar to that shown in Figure 4.4B, knockout of 

BAX-/- did not interfere with the inhibition of USP30 following treatment with MTX32 (Figure 4.4E). 
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Figure 4.3 MTX32 and ABT-263 combine synergistically to induce cell death in HCT116 cells. 
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Figure 4.4 MTX32 and ABT-263 combine synergistically to induce BAX-dependent apoptosis in HCT116 cells. 
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In accordance with others, treatment with ABT-263 resulted in an increase in MCL1 protein levels, 

most likely due to the enhanced protein stability of the MCL1 driven by phosphorylation of MCL1 by 

ERK and JNK, and Akt-mediated inhibition of GSK3β (Wang et al., 2014). Elevated MCL1 protein levels 

were maintained in all conditions tested. Compared to control and single treatment ABT-263 samples, 

treatment with MTX32 with or without ABT-263 and Q-VD-OPh resulted in an increase in BAX 

expression (Figure 4.4E).  

 

4.2.4. RNAi-mediated knockdown of USP30, in combination with ABT-263, does not yield a 

consistent increase in cell death. 

To confirm if the genetic ablation of USP30 phenocopies the synergy observed between USP30 

inhibition, with MTX32, and ABT-263, siRNA knockdown of USP30 was combined with 1 µM of ABT-

263 (Figure 4.5A and Figure 4.5B). Treatment of HCT116 cells with MTX32, in combination with ABT-

263, led to an increase in PARP cleavage and a corresponding increase in the percentage of cells with 

sub-G1 DNA (Figure 4.5B and Figure 4.5C). In accordance with published data, USP30 knockdown led 

to an increase in PARP cleavage, which was not due to transfection as shown from the non-targeting 

control (siLUC). However, knockdown of USP30, with all four siRNA, led to minimal cell death, which, 

when compared to the synergy observed with MTX32 and ABT-263, did not yield a significant, 

consistent increase in cell death (Figure 4.5C). This suggests that the synergy previously observed 

between MTX32 and ABT-263 could be due to off-target effects of MTX32.  

 

4.2.5. MTX48 is a more selective inhibitor than MTX32.  

HCT116 cells were treated with a related derivative of MTX32, MTX48, to test its ability to selectively 

inhibit USP30 and combine with ABT-263 to induce a cell death response (Figure 4.6. and Figure 4.7.). 

Increasing concentrations of MTX48 were added to HCT116 cells and treated, post-lysis, with the HA-

UbVME probe. MTX48 maximally inhibited USP30 at 3 µM, initially indicating an increased potency of 

MTX48, compared to MTX32. As seen with MTX32, MTX48 rapidly entered HCT116 cells and inhibited 

USP30 over a 48 hr time course (Figure 4.6A). However, unlike MTX32, MTX48 was unable to 

completely inhibit UCHL3 activity and did not affect the activity of USP5 (Figure 4.6A and Figure 4.6B). 

Maximal inhibition of UCHL3 was observed after 4 hrs of treatment; however, this inhibitory effect was 

not sustained and after 48 hrs UCHL3 was inhibited to a similar level seen after one hr of MTX48 

treatment.  
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Figure 4.5 siRNA targeting USP30 did not combine with ABT-263 to induce an increase in cell death. 
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Figure 4.6 MTX48 rapidly inhibits USP30 from a concentration of 1 µM. 
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Combined treatment of MTX48 and ABT-263 did not result in a synergistic cell death (Figure 4.7). 

Despite inhibition of USP30 (Figure 4.7A), combining MTX48 and ABT-263 did not lead to an increase 

in the percentage of cells with sub-G1 DNA, compared to single drug treatment controls (Figure 4.7B), 

except at doses > 30 µM at which UCHL3 was inhibited. Comparing inhibition of MTX32 to MTX48 

confirmed that the two USP30 inhibitors combined with ABT-263 to cause differing cell death 

responses. Whilst MTX32 combined with ABT-263 to promote cell death, MTX48 was unable to cause 

a similar response under any conditions tested (Figure 4.7C and Figure 4.7D).  

To compare the selectivity of MTX32 and MTX48, HCT116 cells were treated with the USP30 inhibitors 

at increasing concentrations, lysed, probed with the ubiquitin activity-based probe, fractionated by 

SDS-PAGE electrophoresis and subjected to anti-HA immunoblotting. By interrogating lysates with an 

HA antibody, which will interact specifically with the N-terminus of the UbVME probe, a global view of 

the number of DUBs inhibited by MTX32 and MTX48 can be determined. The more selective the 

inhibitor, the fewer DUBs the inhibitor will bind to, and the more active DUBs the probe will irreversible 

interact with. Thus, a greater number of high molecular weight bands, representing active DUBs, will 

be present in the probed lysate HA blots. In contrast less selective inhibitors will have fewer 

representative active DUB bands in the probed lysates interrogated with the HA antibody (Schematic 

shown in Figure 4.8A). From Figure 4.8B, as the concentration of MTX32 was increased above 3 µM 

the number of HA reactive bands decreased, where the number of bands began to decrease at 3 µM 

of MTX32, specifically at ~37 KDa or above. At 30 µM MTX32 there were very few bands present 

indicating the non-specific binding of MTX32 to other active DUBs. In contrast, there are no obvious 

differences in the number of bands present in the HA blots of probed lysates from cells treated with 

increasing concentrations of MTX48. These results suggest that MTX48 is a much more selective DUB 

inhibitor than MTX32.  

 

4.3. Discussion 

4.3.1. Synergy between MTX32 and ABT-263 results in a BAX-dependent apoptotic response. 

Results presented here indicate that MTX32 and ABT-263 combine synergistically to induce cell death 

(Figure 4.3). This confirms data previously shown by Liang et al., using USP30 siRNA in combination 

with BH3 mimetics in U2-OS and MCF7 cells (Liang et al., 2015).  

BH3 mimetics prime tumour cells for apoptosis by targeting BCL2 pro-survival proteins, however they 

have been shown to have minimal effects as single agents. Thus, if inhibitors combine with BH3 

mimetics to shift the balance from pro-survival towards pro-apoptotic BCL2 proteins, thereby  
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Figure 4.7 Despite inhibition of USP30, MTX48 does not combine with ABT-263 to induce cell death in HCT116 cells. 
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Figure 4.8 MTX48 is a more selective DUB inhibitor with fewer off-target effects at high concentrations. 
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lowering the apoptotic threshold, a synergistic cell death response is observed. This effect has been 

extensively seen using a variety of inhibitors, including MEK1/2, ERK1/2 and BRAF inhibitors, in 

combination with BH3 mimetics, in several cell types (Corcoran et al., 2013, Sale and Cook, 2013, 

Wroblewski et al., 2013). More recently Faber and colleagues have investigated the effect of ABT-263 

across >500 cancer cell lines, where they found in general that cell death was observed in cell lines 

that possessed high expression of the pro-apoptotic protein BIM and lower expression of pro-survival 

protein MCL1 (Faber et al., 2015). This theory was realised in small-cell lung cancer cells, which require 

the addition of a mTORC1/2 inhibitor to reduce MCL1 expression, to sensitise cells to ABT-263. Further 

to this, cervical cancer cell lines, overexpressing MCL1, treated with a combination of an MCL1 inhibitor 

and the BH3 mimetic ABT-263, led to synergistic cell death response (Lian et al., 2018).  

In HCT116 cells, Sale and Cook observed that the underlying mechanism responsible for the synergy 

between the MEK1/2 inhibitor, selumetinib, and ABT-263 was reliant upon the upregulation of the pro-

apoptotic protein BIM, as well as BMF and PUMA, and the activation and expression of BAX (Sale and 

Cook, 2013). As a comparison to this, Liang and colleagues observed that combining knockdown of 

USP30 with the BH3 mimetic, ABT-737, in U2-OS cells, resulted in a significant increase in BAK protein 

levels (Liang et al., 2015). Consistent with the data presented in Figure 4.4D, where loss of BAX 

protected HCT116 cells from cell death, they observed a cell death response that was partially rescued 

by BAX knockdown but was significantly reduced by the dual knockdown of BAK and BAX. The rescue 

effect observed during this study was more significant with BAX-/- HCT116 cells than that observed by 

Liang et al. and this could be due to incomplete knockdown of BAX or the different cell types used in 

these two studies (Liang et al., 2015). Unlike Liang and colleagues, an increase in BAX expression 

following combination treatment was observed, which could explain the dependency these cells have 

on BAX for the observed death response and would further explain why the loss of BAX protects 

HCT116 cells from cell death (Liang et al., 2015).  

 

4.3.2. MTX32 and MTX48 have different activity-based probe profiles.  

During this study, the HA-UbVME probe was used to isolate active DUBs following inhibitor treatment 

of cells. Probed lysates were interrogated for specific inhibition of USP30 and used to provide a 

“competition profile” of MTX32 and MTX48. Activity-based probe profiling (ABPP) has been used 

successfully in the development of the DUB inhibitor VLX1570, which until recently was in clinical trials 

for the treatment of multiple myeloma (Wang et al., 2016). In this study, combining the use of HA-

UbVS, an alternative warhead to VME, with SDS-PAGE analysis revealed that VLX1570 inhibits 

proteasomal DUBs, more specifically, USP14.  
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The novel USP30 inhibitor, MTX32, and siRNA-mediated knockdown of USP30, in combination with 

ABT-263, resulted in vastly different sub-G1 DNA profiles (Figure 4.3 and Figure 4.5). Whilst the use of 

MTX32 in combination with ABT-263 resulted in an increase in cell death, knockdown of USP30 in 

combination with ABT-263 did not. Further to this, western blot interrogation of probed lysates 

showed that alternative highly expressed DUBs in HCT116 cells were rapidly inhibited post-treatment 

with MTX32, with or without ABT-263 (Figure 4.2 and Figure 4.3A). Together this indicates that the cell 

death response seen in HCT116 cells, with MTX32 and ABT-263, was not due to inhibition of USP30 but 

due to off-target inhibition of alternative DUBs.  

Combining the use of the ABP, HA-UbVME, with HA immunoblotting enables ABPP of a chosen 

inhibitor. From Figure 4.8B higher concentrations of MTX32 resulted in the reduced ability of the probe 

to react with active DUBs due to increased levels of general DUB inhibition. This implies that MTX32 is 

a less selective USP30 inhibitor than MTX48, with more off-target inhibition of active DUBs. Given this, 

it should be noted that there are caveats associated with the use of ABPP experiments to assess the 

specificity of a given DUB inhibitor. The mode of action of a chosen inhibitor can influence the outcome 

of the ABPP assay, in particular the reversibility of the inhibitor. In general, irreversible DUB inhibitors 

will be affected by the time between inhibitor treatment of cells and post-lysis probe labelling, whilst 

reversible inhibitors will be affected by changes in inhibitor concentrations between inhibitor 

treatment and post-lysis probe labelling (Farshi et al., 2015).  

As there is a lack of structural information of the chosen inhibitors, they could have different 

reversibility profiles that could account for the different HA banding patterns (Figure 4.8B). Indeed, 

cells treated with MTX48 over 48 hrs and probed post-lysis with the ABP revealed that, unlike USP30, 

the inhibition of UCHL3 was not sustained (Figure 4.6B). This could be because the binding of MTX48 

to UCHL3 is reversible, or newly synthesised UCHL3 may not be inhibited by MTX48. Results suggest 

that MTX32 irreversibly binds to UCHL3 in cells over the same time course (Figure 4.2), suggesting that 

the two inhibitors bind to given DUBs with differing modes of action and/or different binding affinities. 

In addition, the HA-UbVME probe may preferentially label certain families of DUBs which may bias the 

HA immunoblot read-out towards a small subset of DUBs, ultimately leading to incorrect conclusions 

being made about the specificity of a chosen inhibitor. Indeed, others have shown the HA-UbVME 

probe preferentially labels UCHL3, USP5/16 and USP9/24 over short periods of time (Altun et al., 2011).  

Overall, HA profiling was unable to identify the active DUBs targeted by MXT32 and MTX48, as many 

are of a similar molecular weight. Quantitative analysis of the DUBs inhibited by MTX32 and MTX48 

could be performed using mass spectrometry (Altun et al., 2011), and would ultimately confirm the 
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specificity of the chosen USP30 inhibitors. This would reveal how these DUBs differ in their off-target 

effects and may confirm that MTX32 is a less specific inhibitor than MTX48. 

Based on the data presented here, and given the suggested off-target nature of MTX32, the synergy 

observed with the combined treatment of MTX32 and ABT-263 in HCT116 cells is not due to MTX32-

driven inhibition of USP30. Instead, the increase in cell death is most likely due to the inhibition of 

additional DUBs that are vital for HCT116 cell survival. Candidates for this might include UCHL3, which, 

from our data, was rapidly and irreversibly inhibited by MTX32. Previous reports have demonstrated 

that UCHL3 is upregulated in a number of cancer cell types including breast and cervical cancers 

(Miyoshi et al., 2006, Rolen et al., 2006), where its expression has been linked to oncogenesis (Fang et 

al., 2010). Inhibition of UCHL3, as well as other select DUBs, notably USP5, with chalcone-based small 

molecules resulted in cellular changes, including downregulation of cyclin D1 and upregulation of 

p27KIP1, associated with the onset of apoptosis in several cancer cell lines (Issaenko and Amerik, 2012); 

suggesting here that UCHL3 could be a potential therapeutic target to drive tumour cell death. Other 

essential DUBs, in HCT116, have been summarised in Hart et al., where CRISPR-Cas9 knockout of 

numerous DUBs alone resulted in a decrease in ‘fitness’ of these cells (Hart et al., 2015). Interestingly 

examples from this study include USP5 and UCHL3, with USP5 having a consistently high Bayer factor 

value over several cell lines, including HCT116, indicative of a high confidence that USP5 is an important 

‘fitness’ gene for cell survival. Therefore, inhibition of USP5 and UCHL3 alone could result in cell death 

of HCT116 cells and could explain the induction of apoptosis observed with MTX32 treatment of 

HCT116 cells. 
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Chapter 5: siRNA screens to identify deubiquitylating 

enzymes that regulate cell death driven by inhibitors of 

MEK1/2 or mTOR
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5. Chapter 5 

5.1. Introduction 

Tumour cells with BRAFV600E mutations are now treated with a combination of BRAF inhibitors 

(vemurafenib and debrafenib) and MEK inhibitors (trametinib) and future development of this 

therapeutic regimen will involve intermittent dosing schedules, as well as combination with immune 

checkpoint blockade (CTLA-4 and PD-1/PD-L1), to prolong response times. However, BRAF inhibitors 

cannot be employed against tumours with wild-type BRAF, including those with Ras mutations, as BRAF 

inhibitors cause paradoxical activation of wild type RAF dimers and activation of ERK1/2 (Poulikakos et 

al., 2011). This has refocused attention on the use of MEK inhibitors to treat Ras mutant tumour (Caunt 

et al., 2015). Unfortunately, MEK inhibitors as a monotherapy have had limited success due to the 

collapse of feedback inhibition loops, pathway re-activation and adaptive pathway re-modelling 

through the de novo expression of ERK phosphatases (DUSPs) and inhibitors of ERK signalling 

(SPRY/SPRED proteins). In addition, monotherapy causes a cytostatic cell cycle arrest rather than a cell 

death response (Sale and Cook, 2013), allowing cells to adapt and acquire resistance (Little et al., 2011). 

Notably, the majority of these limiting factors are regulated by protein ubiquitylation. DUSPs and 

SPRY/SPRED, regulated by de novo expression, have also been shown to be regulated by 

phosphorylation and ubiquitylation (Caunt and Keyse, 2013, Edwin et al., 2010, Lin et al., 2003, Lin and 

Yang, 2006). Additionally, the ability of MEK inhibitors to elicit cell death is arbitrated by expression of 

members of the BCL2 family, including BIM, PUMA, BMF, MCL1, BCL2 and BCL-XL, all of which have 

been demonstrated to be regulated by ubiquitylation.  

mTOR activity is de-regulated in up to 70% of cancers due to a variety of genetic lesions including 

RasMUT, PIK3CAMUT and loss of PTEN. As a result of this, ATP-competitive mTOR kinase inhibitors are 

undergoing clinical evaluation for the treatment of cancer. mTOR inhibitors face some of the same 

challenges as MEK inhibitors, including adaptation and the emergence of acquired resistance, 

demonstrated by the amplification of the eIF4E gene (Cope et al., 2014). Additionally mTOR inhibitors 

typically promote cell cycle arrest rather than cell death (Cope et al., 2014). Notably, one of the most 

prominent responses to mTOR inhibition is the induction of autophagy, as well as the ubiquitin 

proteasome system (UPS), which both act to degrade and re-cycle proteins within the cell. Indeed, 

Zhao and colleagues demonstrated that inhibition of mTOR rapidly resulted in an increase in K48-linked 

ubiquitylated proteins, known to be degraded by the UPS (Zhao et al., 2015). In addition, many of the 

mRNAs translated in an mTOR-dependent manner encode cancer-relevant proteins that are also 
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regulated by the UPS, namely Cyclin D1 (CCND1), MCL1 and MYC (Dowling et al., 2010, Farrell and 

Sears, 2014, Mojsa et al., 2014, O et al., 2009, Rosenwald et al., 1995).  

As demonstrated above, the ubiquitin system is involved in the regulation of almost every cellular 

signalling pathway, either through the UPS or non-proteolytic events. Deubiquitylating enzymes 

(DUBs) hydrolyse ubiquitin from a target protein and in doing so can rescue target proteins from 

various fates including degradation. Numerous studies have identified DUBs that regulate cellular 

processes required for cell proliferation, genome stability and cell survival and mutation and/or 

dysfunction of DUBs is often linked to disease. Of note, DUBs have been identified that regulate 

pathways frequently altered in tumourigenesis including those that regulate DNA damage responses 

and cell cycle checkpoints. Therefore, a subset of DUBs have become attractive drug targets for the 

treatment of cancer (Kemp., 2016, Tsukamoto., 2016), aided by the fact that proteases are readily 

druggable.  

The emergence of resistance to new cancer therapeutics, including MEK1/2 or mTOR inhibitors, 

demands the development of novel drug combinations to prevent or delay its onset. Since both the 

ERK1/2 and mTOR pathways are so closely integrated with ubiquitin-regulated signalling processes it 

speculated that inhibition of one or more DUBs might uncover key vulnerabilities in tumour cells 

treated with MEK1/2 or mTOR inhibitors, a situation analogous to synthetic lethality (Hartwell et al., 

1997). To investigate this a DUB focused RNAi screen was performed to identify DUBs which, when 

knocked down, transformed MEK1/2 or mTOR inhibition from a cytostatic to a cytotoxic response.  

 

5.2. Results 

5.2.1. Optimisation of DUB RNAi screens. 

All screens were chosen based on the knowledge and ongoing projects in the Cook Lab with the aim to 

identify DUBs that, when knocked down, combined with MEK1/2 or mTOR inhibitors to drive 

apoptosis. Therefore, several aspects of the screen needed to be optimised to maximise the difference 

between cell death observed following knockdown of the DUB/inhibitor treatment alone and 

combined knockdown with inhibitor treatment. Screens were performed over 3- and 5-days, (detailed 

in Chapter 2 and Figure 2.1). A 5-day screen was chosen over longer screens based on the limits of the 

longevity of the effects of siRNA transfection.  

Technical considerations required to perform the DUB RNAi screens included, choice of cell line, the 

method of siRNA-delivery, the choice and concentration of inhibitor, the selection of appropriate 
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positive and negative controls, the choice of ‘end-point’ assay and the method to define the initial 

‘hits’ from the screen.  

 

5.2.1.1. Choice of cell line for RNAi screen. 

The colorectal carcinoma cell line HCT116 was chosen for the DUB RNAi screens. These cells were 

chosen based on the knowledge that they were readily transfectable and based on prior data, 

generated by the Cook Lab, showing that they were sensitive to MEK1/2 inhibitors and mTOR 

inhibitors. Additionally, the Cook Lab possessed genetically engineered, isogenic HCT116 cells lines 

lacking the BCL2 effector proteins, BAK and BAX, which would be used as a secondary triage assay to 

assess the biological mechanisms underlying the cell death response observed with key ‘hit’ DUBs.  

 

5.2.1.2. Confirmation that inhibitors have on-target effects in HCT116 cells. 

Preliminary experiments were undertaken to confirm the relevant drugs were acting on-target (Figure 

5.1). It was also important to define doses at which these inhibitors alone did not cause a significant 

increase in cell death, as judged by the sub-G1 DNA fraction from cell cycle analysis, compared to 

DMSO controls (Figure 5.1). For these experiments the MEK1/2 inhibitor PD0325901 (PD901) and the 

mTOR inhibitor AZD8055 (8055) were chosen to treat transfected HCT116 cells.  

Active MEK1/2 has been demonstrated to phosphorylate ERK1/2 at T202/T204 leading to its activation 

(Butch and Guan, 1996). Subsequently ERK1/2 phosphorylates RSK at T573, within the activation loop 

of the CTKD of RSK. It is also believed to phosphorylate RSK at T359/S363 within its linker region. 

Phosphorylation within the activation loop results in the autophosphorylation at S380 of RSK (Dalby et 

al., 1998, Kidger et al., 2018). HCT116 cells were treated with increasing concentrations of the MEK1/2 

inhibitor, PD901, for 48 hours. The efficacy of PD901 was then confirmed by western blot analysis, 

demonstrating that PD901 inhibited the phosphorylation of ERK1/2 (T202/T204) and RSK (S380) and 

that inhibition correlated with an accumulation of BIMEL (Figure 5.1A). Flow cytometry data 

demonstrated that MEK1/2 inhibition by PD901 alone, resulted in a minimal increase in cell death over 

the concentration range tested. However, as previously shown (Sale and Cook, 2013), when combined 

with the BH3 mimetic ABT-263, this resulted in a considerable increase in cell death (Figure 5.1B).  

Figure 5.1A and Figure 5.1B depict inhibition of MEK1/2 over 48 hrs, required for the 3-day RNAi 

screens, whilst Figure 5.1C and Figure 5.1D depict inhibition of MEK1/2 over 4-days, required for the 

5-day RNAi screen. As previously seen, low concentrations of PD901 resulted in loss of phosphorylated 

ERK1/2 and RSK and an accumulation of BIMEL protein (Figure 5.1C). Treatment of HCT116 cells with 
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increasing concentrations of PD901, over 4-days, resulted in an increase in sub-G1 DNA, with low 

concentrations of PD901 generating the required low sub-G1 populations (<30 %). Additionally PD901 

combined with ABT-263 to cause a substantial increase in cell death (Figure 5.1D). Thus, treatment of 

HCT116 cells with PD901, for the two different time points, resulted in on-target loss of 

phosphorylation of downstream targets, but low concentrations of the inhibitor were required to 

prevent high levels of cell death when used alone.  

Comparing cell cycle profiles of cells treated with PD901 for two days and four days revealed that 

treatment of cells with PD901 for four days induced a greater fraction of cells with sub-G1 DNA (Figure 

5.1B and Figure 5.1D). This could be because of the toxic nature of this inhibitor at longer time points 

or that inhibition of ERK1/2 activity for an increased amount of time is required to observe death of 

HCT116 cells. This could be because it takes longer for pro-apoptotic proteins, including BIM, to 

accumulate.  

Treatment of HCT116 cells with 8055, an ATP-competitive inhibitor of mTOR, resulted in the loss of 

T389 phosphorylated p70 ribosomal S6 kinase and phosphorylated T37 and T46 on 4EBP1, as 

previously described (Chresta et al., 2010) (Figure 5.1E). Interestingly flow cytometry cell cycle analysis 

revealed that treatment with 8055 alone did not cause an increase in sub-G1 DNA with any of the 

inhibitor concentrations tested. However, combined treatment with 8055 and PD901 resulted in a 

substantial increase in cell death (Figure 5.1F). Thus, in theory, for the 3-day RNAi screen any of the 

tested concentrations of 8055 could be used as they inhibited downstream mTOR targets without 

causing a substantial increase in cell death.  

 

5.2.1.3. Selection of appropriate controls for the RNAi screens.  

Appropriate and robust controls were required to determine the quality and validity of the DUB RNAi 

screens. All output values were also normalised to selected controls and as such were used to 

determine the ‘hit’ DUBs from the screens. Positive and negative siRNA controls were also used to 

optimise the primary screens to determine the RNAiMAX volumes and also further assess optimal 

inhibitor concentrations to be used for the 3-day and 5-day screens.  

For the DUB RNAi screens, positive and negative controls were added to all plates along with 

experimental DUB siRNA (Figure 2.2) and the consistency of these controls over each plate and  
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Figure 5.1 Optimisation of inhibitor concentrations of the chosen MEK1/2 and mTOR inhibitors in HCT116 cells. 
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across all plates was examined. siLUC was used as a negative siRNA control, designed to target the 

Photinus pyralis (firefly) luciferase gene and as such was used to look at the effect of transfection on 

HCT116 cells alone. siEg5/siKIF11 and siBCL-XL were used as positive siRNA controls, as knockdown of 

these genes should result in cell death. Kinesin family member 11 (KIF11, also known as Eg5) is an 

essential motor protein in mitosis and is essential for centromere segregation. Knockdown of KIF11 or 

inhibition of KIF11 resulted in an early accumulation of mitotic cells in G2 phase of the cell cycle and 

induced cell death (Martens-de Kemp et al., 2013, Pau et al., 2013). B-cell lymphoma-extra large (BCL-

XL) is a key pro-survival BCL2 protein which, as previously described, acts to prevent MOMP and cell 

death. Knockdown of BCL-XL alone was found to inhibit cell proliferation and combine with other 

therapies to induce cell death (Bai et al., 2005, Lee et al., 2014, Takahashi et al., 2013). Negative and 

positive inhibitor controls for cell death, DMSO and combined inhibitor treatments, respectively, were 

also added to each plate as Figure 5.1B demonstrated that treatment of HCT116 cells with PD901 and 

ABT-263 resulted in the induction of cell death (Figure 2.2).  

 

5.2.1.4. Selection of experimental read-out for the RNAi screens.  

For the DUB RNAi screens, the CellTiter-Glo® (CTG) luminescent cell viability assay was used as an end-

point assay. The CTG assay quantifies intracellular ATP, which is an indicator of metabolically active 

cells. As such the higher the CTG value the more viable, active cells present in a select well, and the 

loss of CTG value is indicative of a reduction in metabolic activity and loss of viable cells. Additional 

end-point analysis was performed using the fluorescent dye YOYO®-1. YOYO®-1 is a cell impermeant 

cyanine dimer nucleic acid fluorescent stain that binds to double-stranded (ds) DNA and therefore 

enables evaluation of membrane integrity. High YOYO®-1 values, compared to controls, are indicative 

of a cytotoxic response or an induction of cell death. As a consequence of the YOYO®-1 dye being cell 

impermeant, it was added to cells at the same time as cell seeding and enabled the multiplexing of the 

two described end-point assays. Additionally YOYO®-1, unlike the CTG assay, did not require cell lysis 

to measure changes in fluorescence. As the output of the CTG viability assay is luminescence, CTG 

values were measured on a CLARIOstar® microplate reader. In contrast YOYO®-1 values were 

measured, prior to performing the CTG viability assay, on live cells using the IncuCyte® ZOOM live-cell 

imaging system. Additionally, this instrument measured ‘phase’ values, an estimate of total cell 

number, from all wells of plates that YOYO®-1 measurements were taken from. As an additional 

measure, cell death, measured from YOYO®-1 values, was divided by the confluency, either using CTG 

or phase values, to assess the cytotoxic effect of the knockdown of a DUB in combination with the 

chosen inhibitor, normalised to cell number. This would help to eliminate low confluency values that 

occurred as a consequence of a cytostatic effect rather than as a consequence of induced cell death 
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and in addition removes false negative data generated as a consequence of cells rapidly dying without 

having a chance to grow (for example seen with siEg5 data). Overall, these assays were chosen based 

on their availability and cost to Mission Therapeutics.  

 

5.2.1.5. Optimising cell seeding. 

Whilst at Mission Therapeutics, prior to the beginning of the complete DUB RNAi screens, pilot 

experiments were performed to optimise the concentration of HCT116 cells and the RNAiMAX volume 

added to the 96-well plates. Cells were seeded at increasing concentrations, from 500 cells/well to 

30000 cells/well in triplicate (Figure 5.2A). These were then loaded into the IncuCyte® ZOOM and left 

to grow for 3 days. Live cell images of each well were taken every four hours and, using phase values, 

a growth curve for each well was compiled and additionally shown in Figure 5.2A. At the end of the 3-

day time course, an estimation of cell growth was made using the CTG assay values. From the raw data 

generated, a density of cells that would give a final cell density of ~75 %, at the end of the 3-day screen, 

was chosen. Using the equation of the line, generated from the log growth phase, this was 

approximately 7000 cells/well for the 3-day screen (Figure 5.2B). The above method was repeated for 

the 5-day screen and determined that approximately 1000 cells/well should be seeded to give a final 

cell density of ~75 %.  

 

5.2.1.6. Optimising RNAiMAX volume and inhibitor concentrations.  

LipofectamineTM RNAiMAX (RNAiMAX) was used to transiently transfect siRNA molecules into HCT116 

cells. The volume of RNAiMAX was optimised, as high volumes of RNAiMAX alone can result in cell 

death. All siRNA were reverse transfected into HCT116 cells, as cells were seeded at the same time as 

siRNA and transfection reagents were added to wells.  

Primary screening with three different volumes of RNAiMAX was performed, based on those suggested 

for a 96-well plate. These three volumes of RNAiMAX were tested with three different cell densities, 

around the optimised cell density determined above, as transfection can affect cell growth and/or 

result in cell death. Each of the cell density/RNAiMAX concentration combinations were tested with 

the non-targeting siRNA control, siLUC, and one of the positive siRNA controls, siEg5. 
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Figure 5.2 Optimisation of cell seeding for the 3-day DUB RNAi screens. 

  



142 
 

For optimisation of the 3-day screens, HCT116 cells were reverse transfected with the control siRNA 

and left for 3 days in the IncuCyte® ZOOM (Figure 5.3A). As previously described live-cell images of 

each well were taken every four hours and, based on phase data, growth curves were compiled for 

each well and shown in Figure 5.3A. At the end of the 3-day time course, cell viability was assessed 

using CTG analysis. Comparing all data sets, 7000 cells/well remained the best cell density, as again 

~75 % of maximal cell density was reached after 3 days. All of the RNAiMAX volumes successfully 

transfected HCT116 cells, at a cell density of 7000 cells/well, as judged by the reduction in cell viability 

following knockdown of Eg5 (Figure 5.3B). Based on this, 0.15 µL of RNAiMAX was chosen for further 

3-day experiments. Transfection of HCT116 cells with this volume of RNAiMAX at this cell density 

resulted in ~20 % loss of cellular viability, comparing average raw untransfected CTG values and siLUC 

CTG values, which is below the 30 % cell death limit set for these screens. Figure 5.3C depicts 

representative images of total cell number or phase values at the end of the 3-day time course for the 

transfection controls using 0.15 µL RNAiMAX. These images revealed that knockdown of Eg5 in HCT116 

cells resulted in a visible loss of cell number compared to transfection of siLUC, as judged by the ‘phase 

mask’ mapped onto IncuCyte® ZOOM images. Post optimisation of the 5-day screen, using the above 

method, resulted in a volume of 0.075 µL RNAiMAX being chosen for a cell density of 1000 cells/well.  

Further optimisation of the concentration of the chosen inhibitors was required to confirm that the 

chosen concentration, previously found to cause on-target inhibition and minimal cell death, had the 

same affect at Mission Therapeutics in a 96-well plate format. For the 3-day DUB RNAi screen , HCT116 

cells were seeded at a cell density of 7000 cells/well and reverse transfected with siLUC and left to 

settle for ~24 hours, then treated with increasing concentrations of PD901, as shown in Figure 5.3D. 

All plates were kept in the IncuCyte® ZOOM for the 3-day time course, and live-cell images were taken 

every four hours and at the end of the time course a composite growth curve was drawn using phase 

values (Figure 5.3D). Along with siLUC transfection controls, HCT116 were transfected with siEg5 and 

treated with the inhibitor controls of DMSO and PD901 and ABT-263. Analysing phase data, generated 

by the IncuCyte® ZOOM, revealed that as predicted transfection of siEg5 resulted in a reduction in 

confluency, whilst transfection of siLUC alone had very little effect and was comparable to the 

untransfected control (NT) (Figure 5.3E). The addition of PD901, in combination with transfection of 

siLUC, resulted in a moderate loss of confluency across all concentrations tested, compared to 

transfection of siLUC alone (Figure 5.3E).  

Additionally, changes in cell death that occurred as a consequence of transfection and/or PD901 

treatment, were examined using the YOYO®-1 dye. Figure 5.3F depicts images generated by the 

IncuCyte® ZOOM, at the end of the 3-day time course, demonstrating that transfection, as well as  
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Figure 5.3 Optimisation of RNAiMAX volumes and PD0325901 concentrations for the 3-day DUB RNAi screens. 

  



144 
 

  



145 
 

  



146 
 

increasing concentrations of PD901 resulted in small increases in cell death, as shown by the number 

of fluorescent cells compared to the positive inhibitor control, ABT-263 and PD901. Comparing YOYO®-

1 data, CTG data, as well as ‘normalised cell death’, measured by dividing YOYO®-1 by ‘confluency’, 

concentrations of the inhibitor were selected that caused minimal increases in cell death (<30 %) over 

the time course of the DUB RNAi screen (Figure 5.3G). As such, based on the data presented here 0.2 

µM of PD901 was chosen for the 3-day RNAi screen. The above experiments were repeated to optimise 

the concentration of PD901 required for the 5-day screen and the concentration of 8055 required for 

the 3-day screen (Data not shown). Given this, 0.03 µM of PD901 was chosen for the 5-day RNAi screen 

and 0.2 µM of 8055 was chosen for the 3-day screen.  

 

5.2.1.7. Selection of siRNA for the DUB RNAi screens. 

A graph depicting the classification of the DUBs used in the screen is shown in Figure 5.4. The DUB 

RNAi screening panel was purchased from QIAGEN and aliquoted into 96-well plates in-house. 

Additional siRNA targeting USP1, UCHL1, UCHL3, BAP1, SENP2, SENP7, FAM105A, FAM105B, as well as 

the additional control siRNA, siLUC, Eg5/KIF11 and siBCL-XL were spotted onto the 96-well plates. All 

siRNA were aliquoted to give a final concentration of 10 nM. Four individual siRNA were used to target 

each DUB, giving a total of eight 96-well daughter plates, labelled L1a-d and L2a-d, depending upon 

the DUB targeted by the select siRNA (Figure 2.2)  

 

5.2.1.8. Selection of method to define the initial ‘hit’ DUBs from the RNAi screens.  

‘Hits’ from the screen were determined using Sensitivity Index (SI) values, generated from normalised 

CTG viability, phase or YOYO-1/confluency values for treated and untreated siRNA transfected cells 

compared to mean siLUC values, normalised to all siLUC values, treated or untreated, across all plates 

(more detailed description in Chapter 2).  

In general, for SI values generated from CTG or phase values, positive SI values, above a set threshold, 

indicated that knockdown of that particular DUB, in combination with the chosen inhibitor resulted in 

a significant reduction in cell viability or cell number, and had a sensitisation effect, compared to siLUC 

controls and knockdown of the DUB alone. In contrast, for SI values generated from YOYO-

1/confluency values, negative SI values, below a set threshold, indicated that knockdown of that 

particular DUB in combination with the chosen inhibitor resulted in a significant increase in cell death. 
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Figure 5.4 Deubiquitylating enzyme (DUB) RNAi screen overview. 
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Therefore combined knockdown of that DUB and inhibitor treatment resulted in a cytotoxic effect, 

compared to siLUC controls or knockdown of the DUB alone. A DUB was defined as a ‘hit’ when three 

or more of the siRNA targeting that DUB combined with the inhibitor to give a significant SI value, 

above or below the set threshold.  

The validity of the screen was assessed by confirming that all CTG and phase values for all siLUC 

controls were comparable both within the plates and across all plates. In addition, for a valid screen, 

knockdown of siLUC should not result in a >30 % reduction in cell viability or cell number. Along with 

analysis of negative controls, positive controls should cause a substantial decrease in normalised CTG 

and phase values and, from SI values, should be classed as ‘hits’ from the screen and cause a significant 

cytotoxic response following knockdown.  

 

5.2.2. RNAi screen to identify DUBs that cooperate with the MEK1/2 inhibitor, PD0325901, to 

induce a cell death response. 

5.2.2.1. Analysis of data generated from the 3-day combined DUB RNAi and PD0325901 screen. 

Two 3-day DUB RNAi screens were performed in combination with MEK1/2 inhibition. To assess the 

validity of the two 3-day DUB RNAi screens, CTG values from HCT116 cells transfected with the 

negative control, siLUC, with or without PD901, were compared across all plates (Figure 5.5A). As 

previously demonstrated (Figure 2.2), four siLUC controls were spotted into the four corners of each 

plate. Analysis of these CTG values revealed that across all plates CTG values for siLUC controls were 

comparable and that treatment with PD901 resulted in ~35% reduction in cell viability across both 

screens  

Transfection of HCT116 cells with the positive siRNA controls, siEg5 and siBCL-XL, resulted in 80-85% 

loss of cell viability, across both screens performed, with or without treatment with PD901 (Figure 

5.5B). In addition, combined treatment of HCT116 cells with PD901 and ABT-263, the positive inhibitor 

control, resulted in a loss of cell viability across both screens, with ABT-263 treatment alone not 

substantially reducing CTG values (Figure 5.5B). Despite a greater decrease in cell viability following 

treatment with PD901 than expected, the screens were deemed valid and, based on CTG data, further 

analysed to look for ‘hit’ DUBs.  

Comparative analysis of all SI values generated from CTG data from the two 3-day RNAi screens, 

revealed that SI values were evenly distributed over a range of both positive and negative SI values 

with positive and negative inhibitor controls generating SI values at the extremes of the scale (Figure 

5.6A). As previously described, positive SI values were associated with a sensitisation effect  
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Figure 5.5 Analysis of RNAi screen controls using CTG viability assay values generated from two, 3-day DUB RNAi screens 
combined with PD0325901 treatment. 
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as knockdown of that select DUB resulted in a significant reduction in cell viability following treatment 

with PD901. 

A ‘hit’ DUB was denoted as one in which three or more targeting siRNA caused an increase in SI value, 

above a set threshold, as a consequence of treatment with PD901. Unfortunately very few ‘hit’ DUBs 

were identified from either screen (Figure 5.6B). Comparing both screens only USP29 could be 

described as ‘hit’ DUB. However, two out of the four siRNA targeting seven DUBs combined with PD901 

to reduce cell viability and generate SI values that were above a set threshold in both screens (Figure 

5.6C). Further analysis of normalised CTG values revealed that there was minimal reduction in cell 

viability following treatment with PD901 compared to knockdown of USP29 alone (Figure 5.6D). 

Knockdown of USP37 (siRNA1 and siRNA2) and YOD1 (siRNA2 and siRNA3) generated an increase in SI 

value, when knocked down with two targeting siRNA, in both screens (Figure 5.6D). These are not ‘hits’ 

as defined by the original definition however these DUBs are important as they appeared in additional 

screens described later in this chapter and YOD1 is described in more detail in Chapter 6.  

In addition to analysis of the 3-day screens using CTG assay values, the screens were assessed using 

phase or confluency values, using live cell images generated by the IncuCyte® ZOOM. As previously 

seen with CTG values, phase values for siLUC were comparable across all plates and combined 

transfection of HCT116 cells with siLUC and treatment with PD901 resulted in ~34 % reduction in cell 

density (Figure 5.7A). Transfection of HCT116 cells with the positive siRNA control, siEg5, resulted in a 

reduction in normalised phase values, with or without PD901 treatment (Figure 5.7B). Additional 

positive controls, both siBCL-XL and inhibitor treatment of PD901 and ABT-263, did not cause a 

significant reduction in confluency (Figure 5.7B). This could be because phase values did not take into 

account dead cells and as such, data was further analysed as a measure of ‘normalised death’ or 

YOYO®-1 value normalised to phase data (Figure 5.7C and Figure 5.7D). As a consequence of YOYO®-1 

measuring ‘dead’ cells it was expected that treatment of transfected HCT116 cells with PD901 would 

result in an increase in YOYO®-1/Phase value. Indeed controls revealed that treatment of siLUC 

transfection HCT116 cells with PD901, resulted in an increase in YOYO-1/Phase value for both screens, 

over all plates (Figure 5.7C). Additionally, transfection of HCT116 with positive siRNA controls, siEg5 

and siBCL-XL, resulted in a substantial increase in YOYO®-1/Phase value indicative of an induction of 

cell death. Interestingly, a decrease in YOYO®-1/Phase value was observed following treatment with 

PD901 suggesting that MEK1/2 inhibition rescued HCT116 cells from siEg5-induced cell death. This 

could be because PD901 treatment induced a G1 cell cycle arrest, stalling cells and preventing them 

from going through mitosis, thus protecting them from the deleterious effect of Eg5 knockdown 
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Figure 5.6 Overview of ‘hit’ DUBs from the 3-day DUB RNAi screens, combined with MEK1/2 inhibitor treatment, generated 
from SI values from CTG data. 
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Figure 5.7 Analysis of RNAi screen controls using phase and YOYO-1/Phase values generated from the 3-day DUB RNAi screens, 
combined with MEK1/2 inhibitor treatment. 
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which, under normal circumstances, is required for centrosome separation and spindle assembly 

during mitosis.  

Treatment of HCT116 cells with PD901 and ABT-263 resulted in an increase in cell death compared to 

treatment with ABT-263 alone or transfection with siLUC (Figure 5.7D). Despite an increase in YOYO®-

1/Phase following treatment with PD901 the screens were deemed valid and based on YOYO®-

1/Phase, was further analysed to look for ‘hit’ DUBs.  

The distribution of all SI values generated from YOYO®-1/Phase data for the two 3-day screens were 

comparable to that seen from SI values generated from CTG values (Figure 5.8A). For SI values 

generated from YOYO®-1/Phase data, negative SI values, below a set threshold, indicated that targeted 

knockdown of the DUB resulted in sensitisation of HCT116 cells to PD901 treatment and resulted in 

significant induction in cell death. As previously seen from CTG data, very few ‘hit’ DUBs were identified 

from the two 3-day screens (Figure 5.8B). Comparing ‘hit’ DUBs, from screen 1, to DUBs, from screen 

2, in which two out of four siRNA resulted in a significant reduction in SI value, revealed that USP37 

and USP43 were found to cause a cell death response following knockdown and PD901 treatment in 

both screens (Figure 5.8C). Further analysis of USP37 and USP43 normalised phase and YOYO®-1/Phase 

values revealed that it matched that seen from SI analysis, as knockdown of USP37 and USP43 with at 

least two siRNA combined with PD901 to cause a marginal increase in YOYO®-1/Phase value or an 

induction of cell death(Figure 5.8D).  

To complete the analysis of this screen changes in ‘normalised cell death’ were analysed using SI values 

generated from YOYO®-1/CTG values (Figure 5.9). As previously seen, very few ‘hit’ DUBs were 

observed using YOYO®-1/CTG data (Figure 5.9B). Several DUBs were found to be ‘hit’ DUBs in both 3-

day screens (Figure 5.9C). However, comparing ‘hit’ DUBs from YOYO®-1/CTG data to DUBs in which 

at least 2 siRNA combined with MEK1/2 inhibition to cause a significant decrease SI value revealed that 

knockdown of USP37 was the only DUB to sensitise HCT116 to PD901 treatment (Figure 5.9D). Further 

analysis of normalised CTG and YOYO®-1/CTG data for knockdown of USP37, with or without PD901 

treatment is shown in Figure 5.9E.  

Unfortunately very few and no consistent ‘hit’ DUBs were identified from the 3-day DUB RNAi screens, 

in combination with MEK1/2 inhibition. There were several DUBs in which two siRNA for a select DUB 

combined with PD901 to induce a cell death response, however ideally for further experiments at least 

three siRNA, in combination with PD901, were required to cause a significant increase in cell death. 

Thus, a longer screen was performed to assess if an extended period of siRNA knockdown and inhibitor 

treatment was required to induce a cytotoxic effect in HCT116 cells.  
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Figure 5.8  Overview of ‘hit’ DUBs from the 3-day DUB RNAi screen, combined with MEK1/2 inhibitor treatment, generated 
from SI values from YOYO-1/Phase data. 
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Figure 5.9 Overview of ‘hit’ DUBs from the 3-day DUB RNAi screen, combined with MEK1/2 inhibitor treatment, generated 
from SI values from YOYO-1/CTG data. 
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5.2.2.2. Analysis of data generated from the 5-day combined DUB RNAi and PD0325901 screen. 

Analysis of the CTG assay values, from one 5-day DUB RNAi screen, revealed that the CTG values for 

the transfection control, siLUC, were consistent across all plates and that knockdown of siLUC in 

combination with PD901 resulted in a 36 % reduction in cell viability (Figure 5.10A). Similar to this, 

analysis of confluency, using phase values, were consistent for knockdown of siLUC across all plates 

and that combined knockdown of siLUC and inhibition of MEK1/2 resulted in a 30 % reduction in 

confluency (Figure 5.10C). All positive controls, including the siRNA controls, siEg5 and siBCL-XL, with 

or without PD901 treatment, and the inhibitor control, PD901 and ABT-263, showed a reduction in 

CTG value (Figure 5.10B) as well as phase value (Figure 5.10D), compared to siLUC controls. Given all 

of this, this screen was considered reliable and as such ‘hits' generated from this screen could be used 

for further analysis. 

YOYO®-1 data, normalised to phase values, was analysed to see if knockdown of a DUB, in combination 

with PD901, induced a cell death response. For a ‘hit’ DUB, knockdown of a DUB should result in low 

YOYO®-1/Phase values and be comparable to transfection controls, however, following treatment with 

PD901 there should be a substantial increase in YOYO®-1/Phase values. Reanalysis of controls using 

YOYO®-1/Phase values revealed similar trends to that seen in the 3-day DUB RNAi screens (Figure 5.10E 

and Figure 5.10F). As expected transfection or treatment of HCT116 cells with positive controls, both 

siRNA and inhibitor controls, resulted in an increase in YOYO®-1/Phase values, compared to siLUC 

controls, indicative of a cytotoxic effect (Figure 5.10E). As a result of this ‘hit’ DUBs were evaluated 

using this SI values generated from YOYO®-1/Phase values.  

An overview of all SI values, generated from YOYO®-1/Phase values, from the 5-day DUB RNAi screen 

revealed that SI values were evenly distributed, with the positive controls possessing the most negative 

SI values and conversely the negative controls possessing the most positive SI values (Figure 5.11A). 

Consolidating all SI values from all four siRNA against a select DUB, in combination with PD901, a ‘hit’ 

was classed as one in which three or more siRNA combined with PD901 to generate a significant 

decrease in SI value, below a set threshold, compared to siLUC controls as well as knockdown of the 

DUB alone. For the 5-day DUB RNAi screen, 20 DUBs were classed as ‘hit’ DUBs and knockdown of 

these DUBs combined with PD901 to induce cell death (Figure 5.11B and Figure 5.11C).  

Further analysis of these 20 ‘hit’ DUBs, revealed that several hits induced a substantial reduction in 

phase value following knockdown of that DUB alone. Therefore, these DUBs could be described as 

‘essential’ for the survival of HCT116 cells and that combined knockdown of the DUB and MEK1/2  
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Figure 5.10 Analysis of RNAi screen controls using CTG viability assay, phase and YOYO-1/Phase values generated from the 5-
day DUB RNAi screen, combined with MEK1/2 inhibitor treatment.  
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inhibition induced cell death in already ‘dying’ cells. An example of this was seen with knockdown of 

PSMD14. Here, all siRNA targeting PSMD14 caused a considerable reduction in confluency, or phase, 

compared to siLUC controls. In accordance with this, knockdown of PSMD14 resulted in high YOYO®-

1/Phase values and combining knockdown with PD901 only resulted in a marginal increase in cell death 

(Supplementary Information). Interestingly, results were inconsistent with different siRNA targeting 

the same DUB. For example, one siRNA targeting BRCC3 did not cause a reduction in cell number, 

whilst knockdown of BRCC3, alone, with the remaining three siRNA caused a substantial reduction in 

normalised phase values (Supplementary Information). Based on SI analysis several ‘hit’ DUBs, 

including USP10, USP16, TNFAIP3, VCIP135, and YOD1, were taken forward for further analysis, 

described in Chapter 6 (Figure 5.11D and Supplementary Information). For these ‘hit’ DUBs all siRNA 

targeting these DUBs should be consistent and ideally cause minimal reduction in phase value when 

transfected into HCT116 cells without inhibitor treatment.  

Again, as a final analysis of ‘normalised cell death’, following knockdown of a DUB, in combination with 

PD901, SI values were generated and evaluated using YOYO®-1/CTG data (Figure 5.12A and Figure 

5.12B). Comparing ‘hit’ DUBs generated from YOYO®-1/Phase SI values with ‘hit’ DUBs generated from 

YOYO®-1/CTG SI values revealed that several DUBs overlapped from both analysis approaches (Figure 

5.12C). Further analysis of several overlapping ‘hit’ DUBs are shown in Figure 5.12D. For these ‘hit’ 

DUBs treatment of transfected HCT116 cells with PD901 resulted in a reduction in CTG value and an 

increase in YOYO®-1/CTG value, compared to values generated from knockdown of the DUB alone. 

This suggested that knockdown of these DUBs sensitised HCT116 cells to PD901 treatment. These DUBs 

were chosen and they are later described in more detail, and the effect of knockdown of these DUBs, 

in combination with PD901 is shown in Chapter 6. Due to the lack of ‘hits’ generated from the 3-day 

DUB RNAi screens it was challenging to compare ‘hits’ from the 3-day and 5-day DUB RNAi screen and 

define DUBs that sensitise HCT116 cells at ‘early’ and ‘late’ time points.  

 

5.2.3. RNAi screen to identify DUBs that synergise with the mTOR inhibitor, AZD8055, to induce a 

cell death response. 

Analysis of the phase values for controls generated, from one 3-day DUB RNAi screen with the mTOR 

inhibitor AZD8055 (8055), revealed that the phase values for the transfection control, siLUC, were 

consistent across all plates and that knockdown of siLUC, in combination 8055, resulted in a 33 % 

reduction in cell confluency (Figure 5.13A). Similar to that seen in the other DUB RNAi screens, 

knockdown of positive siRNA controls, either alone or in combination with 8055 resulted in a  
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Figure 5.11 Overview of ‘hit’ DUBs from the 5-day DUB RNAi screen, treated with a MEK1/2 inhibitor, generated from SI values 
from YOYO-1/Phase data. 
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Figure 5.12 Overview of ‘hit’ DUBs from the 5-day DUB RNAi screen, treated with a MEK1/2 inhibitor, generated from SI values 
from YOYO-1/CTG data, and comparing these ‘hits’ to those generated from YOYO-1/Phase data. 

  



174 
 

  



175 
 

reduction in phase value. Treatment of HCT116 cells with 8055 and ABT-263 resulted in minimal 

decreases in confluency, that were only observed when treated with high concentrations of 8055 

(Figure 5.13B). Additionally analysis of YOYO®-1/Phase controls revealed that transfection of siLUC, in 

HCT116 cells, resulted in minimal changes in YOYO®-1/Phase values and were consistent over all 

plates, with or without treatment with 8055 (Figure 5.13C). Interestingly combined knockdown of 

siLUC and treatment with 8055 resulted in a 10 % reduction in YOYO®-1/Phase value, indicative that 

treatment with 8055 reduced cell death in HCT116 cells, compared to transfection with siLUC alone. 

Transfection or inhibition, with high concentrations of ABT-263 and 8055, of HCT116 cells with positive 

controls resulted in an induction of cell death as shown by an increase in YOYO®-1/Phase values, 

compared to siLUC controls (Figure 5.13D).  

Given the results from controls, this screen was considered reliable and further analysis of SI values, 

based on YOYO®-1/Phase values, was performed (Figure 5.14). Analysis of SI values across the 

complete screen revealed that SI values were evenly distributed (Figure 5.14A). Additionally 

knockdown of eight DUBs were revealed to sensitise HCT116 cells to 8055, resulting in the induction 

of cell death (Figure 5.14B and Figure 5.14C). Further analysis of these ‘hit’ DUBs revealed that, as 

predicted from SI values, knockdown of these DUBs combined with inhibition of mTOR to increase 

normalised YOYO®-1/Phase values with at least three targeting siRNA, compared to knockdown of the 

DUB alone. Several of these DUBs were also identified as ‘hits’ from the 5-day DUB RNAi screen in 

combination with MEK1/2 inhibition. This might suggest a shared common effector pathway of both 

signalling pathways. 

Of note, analysis of SI values from the 3-day DUB RNAi screen, combined with mTOR inhibition, using 

CTG values was not shown as analysis did not generate any ‘hit’ DUBs, despite analysis of controls 

indicating that the screen was valid. This could suggest that knockdown of DUBs doesn’t further 

sensitise cells to mTOR inhibition in HCT116 cells.  
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Figure 5.13 Analysis of RNAi screen controls using phase and YOYO-1/Phase values generated from the 3-day DUB RNAi screen, 
combined with mTOR inhibitor treatment.  
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Figure 5.14 Overview of ‘hit’ DUBs from the 3-day DUB RNAi screen, treated with the mTOR inhibitor, AZD8055, generated 
from SI values from YOYO-1/Phase data. 
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5.3. Discussion 

5.3.1. Is RNAi the best screening method to assess the cytotoxic effect of inhibitor treatment 

sensitisation to DUB knockdown in HCT116 cells? 

RNAi technologies have been invaluable in assessing the role that genes play in a multitude of biological 

processes as well as in disease (Falschlehner et al., 2010). In cancer, RNAi can be used, along with 

inhibitor treatments, in synthetic lethality or synthetic sensitisation screens to assess genes required 

for cell viability or fitness. 

One of the major challenges with RNAi is identifying siRNA which can completely ablate gene 

expression and therefore the downstream effects of target genes. In certain circumstances, residual 

expression of functional transcripts could be sufficient to disguise any loss-of-function phenotypes 

resulting in false negative results. This is especially true when the targeted RNA encodes an enzyme 

where 10% residual expression may be sufficient to maintain cellular functions (Lefloch et al., 2008). 

In addition, one of the major issues associated with RNAi is off-target effects, which can generate false 

positive results and often leads to a lack of reproducibility of RNAi screen results (Brass et al., 2008, 

Echeverri et al., 2006, König et al., 2008, Zhou et al., 2008). As a consequence, several strategies have 

been developed to combat the ‘off-target’ nature of RNAi technologies, including chemical 

modification of siRNA.  

The QIAGEN library of DUB siRNAs, used in the screen, were not validated at Mission Therapeutics 

prior to performing the screens, and thus there was no confirmation that gene expression of the DUBs 

had been abolished for the time periods examined. Secondary analysis of ‘hit’ DUBs, generated from 

the 5-day DUB RNAi screen, in combination with MEK1/2 inhibition, including western blot analysis is 

shown in Chapter 6. As siRNA only transiently ablate gene expression, and requires viral delivery 

platforms for stable and heritable knockdown of a gene, it was vital to confirm that 5-day siRNA 

transfection of HCT116 cells maintained the knockdown of gene expression of select DUBs. In addition 

to this, the sensitisation effects seen could not be confirmed to be due to on-target effects of the 

siRNA. During this study a pre-designed QIAGEN library was used to target all DUBs in the human 

genome and, as a consequence of this, the selected siRNA should have been assessed by QIAGEN and 

modified to minimalise ‘off-target’ effects therefore aiding in reducing the number of false-positive 

results generated from the screens. Moreover, the use of four individual siRNA and only describing a 

‘hit’ DUB as one in which at least three of the siRNA combined with the inhibitor to cause an effect 

minimises the probability that an observed sensitisation effect was due to off-target effects of the 

chosen siRNA.  
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Advances in gene editing technologies, including CRISPR/Cas9 technologies, could overcome the 

majority of the described problems associated with RNAi technologies and could be a better means to 

assess the effect of genome-wide ablation of DUBs in combination with inhibitor treatments (Cong et 

al., 2013, Mali et al., 2013). Despite this, RNAi technologies are able to supress gene expression rapidly 

with high efficiency as it has been demonstrated that optimised siRNA can offer >70 % knockdown of 

intended mRNA upon delivery into target cells. In contrast, the ability of CRISPR/Cas9 to edit 

mammalian genes is variable and has an efficiency between 1 and 79 %, depending on the DNA damage 

response pathway that results from excision and as a consequence CRISPR/Cas9 treated cells need to 

be selected for gene modifications prior to use in screens and this increase in selection time may allow 

cells to adapt to gene loss (Unniyampurath et al., 2016). Given this as well as time constraints and cost, 

RNAi screening was selected as was the best way to assess the cytotoxic effect of genome-wide 

knockdown of DUBs in combination with inhibition of select proteins. 

 

5.3.2. Analysis of DUB RNAi screens using cell-based assays. 

It is important to choose the right cell-based assay for the biological question that needs to be 

answered. Two analysis methods, the CellTiter-Glo® (CTG) Luminescent Cell Viability Assay and the 

YOYO®-1 fluorescent dye, were chosen to measure changes in cell fitness by observing changes in 

cellular viability and cell death following combined knockdown of a DUB and inhibitor treatment. These 

were chosen based on ease of use, cost and the ability of the two assays to be multiplexed.  

Apoptosis and necrosis are associated with loss of specific markers related to cellular viability, including 

ATP, MTS and Resazurin, and an increase in apoptotic markers including an increase in LDH release 

and, in the case of apoptosis, an increase in activated caspases. These factors can be utilised by end-

point assays to assess cellular viability and cytotoxicity. The first assay chosen for this study was the 

CTG assay, which measures changes in ATP levels. The amount of ATP present in cells is directly 

proportional to cellular viability and cell death is associated with loss of the ability of cells to produce 

ATP. The CTG reagent lyses cell membranes, releasing ATP, inhibits ATPases and provides luciferin and 

luciferase to measure the amount of ATP in a bioilluminescent reaction. The rapid nature of this assay 

should reduce artefacts that could occur as a consequence of interactions between inhibitors and assay 

components. Given this, problems associated with measuring intracellular ATP as an end-point assay 

have been well documented. das Neves and colleagues demonstrated that, within a genetically 

identical population of cells, there was significant cell-to-cell variability in mitochondrial mass as a 

consequence of uneven distribution of mitochondria during cell division (das Neves et al., 2010). As a 

result of this, one could assume that intracellular ATP could vary between cells in the same well as well 
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as between wells seeded from the same cellular population. Different cell types have different 

amounts of ATP, and in tumour cells this has been linked to chemoresistance (Andreotti et al., 1995, 

Kangas et al., 1984, Zhou et al., 2012). If HCT116 cells had a relatively low basal level of ATP it could be 

challenging to observe significant reduction in ATP levels following treatment. Additionally anchorage-

dependent cells that undergo contact inhibition at high densities may show a difference in ATP content 

per cell at high densities and as a consequence there might be a non-linear relationship between cell 

number and luminescence. In addition, the cytoplasmic volume or cellular physiology of the cells can 

influence the intracellular ATP content. For example, oxygen depletion is liked to a rapid decrease in 

ATP (Crouch et al., 1993).  

Despite siRNA and inhibitor controls, from raw and normalised CTG data, generating graphs that match 

the expected trends, SI values generated from CTG analysis of the DUB RNAi screens, did not 

consistently show that positive controls were ‘hits’ from the screens and knockdown of very few or no 

DUBs sensitised HCT116 cells to inhibition using CTG analysis. This could suggest that DUB knockdown 

did not sensitise HCT116 cells to inhibition. In addition, it could suggest that the SI analysis method 

was not appropriate for the screen (discussed later). However, contrary to this, additional assessment 

of cell death, using the YOYO®-1 dye, did indicate that knockdown of a much larger set of DUBs in 

HCT116 cells combined with inhibitor treatment to induce a cytotoxic effect. HCT116 cells have been 

demonstrated to clump following seeding and have the potential to change morphology following 

inhibitor treatment and this could influence ATP content and cause the lack of ‘hit’ DUBs generated 

from CTG values from the screens. In general, intracellular ATP concentrations are a good estimate of 

cellular viability but the limitations of this measurement need to be taken into consideration when 

evaluating and interpreting data based on the CTG assay.  

Additionally YOYO®-1, a cell impermeant stain that binds to dsDNA, was used to kinetically evaluate 

cytotoxicity from the screens, using the IncuCyte® ZOOM live-cell imaging system. A decrease in 

membrane integrity, associated with cell death, allows YOYO®-1 to enter cells and associate with 

dsDNA resulting in an increase in fluorescence. As previously described, the advantage of this dye was 

that it could be directly added to live cells and, as it did not require cell lysis to measure changes in 

fluorescence, it could be multiplexed with CTG data analysis.  

Images taken by the IncuCyte® ZOOM capture cells at the centre of the well and, as HCT116 cells have 

been demonstrated to preferentially grow at the edges of the well, measurements using these images 

may not represent a complete picture of changes in phase or confluency, as well as cytotoxicity, 

YOYO®-1 fluorescent value, following inhibitor treatment. Additionally the IncuCyte® ZOOM camera 

was focused to capture images of adherent cells, therefore it would fail to image all non-
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adherent/floating cells which could have ‘died’ as a consequence of combined DUB knockdown and 

inhibitor treatment. Therefore, again, IncuCyte® ZOOM images may not represent an accurate picture 

of the well and as a result of using these images may under representation of the cell death effect 

observed with combined treatment.  

Alternative assays to assess the apoptotic or cytotoxic effect of combined knockdown of DUBs with 

inhibitor treatment include the Caspase-GloTM 3/7 Assay as well as the MTS assay. The appearance of 

some apoptotic markers, including caspases, are transient and may only be detectable over a limited 

window of time. Therefore, assays that measure caspase activity including the Caspase-GloTM 3/7 Assay 

would only be effective over a very select period of time and so would most likely not be appropriate 

for use as an end-point assay in a longer RNAi screen. Comparable to the CTG assay, the MTS cell 

viability assay measures the reduction of the tetrazolium salt, MTS, to a formazan compound. In viable 

cells, cell metabolism results in the production of NADH or NADPH, and these reducing products pass 

electrons to an intermediate electron transfer reagent that can reduce MTS into the formazan product. 

In contrast, cell death results in the inability of cells to generate formazan products. However 

compared to the CTG assay, which can detect a minimum of 15 cells, the MTS assay is less sensitive 

and requires approximately 1000 cells to detect changes in the formazan product.  

Dyes and/or assays used to quantify cell fitness are inherently biased as they assess very specific yet 

different biological properties of a cell, which often only partially and indirectly reflect cellular viability. 

As such, the lack of reproducibility in ‘hits’ and the large number of false positive results generated 

from the different end-point assays reflects real biological differences observed during the screens.  

Gilbert et al. evaluated the advantages of multiplexing end-point assays to analyse RNAi screens 

(Gilbert et al., 2011). Using a biochemical approach, the CTG assay, with two fluorescence–based assay 

methods, Calcein and Hoeschst dyes, they assessed changes in cell fitness following knockdown of 

human kinome components. Specifically they observed that there was a ~50-58 % overlap between 

the observed genes required for fitness using two assay methods and that this was further reduced to 

40-48 % following introduction of a third assay. Overall, they concluded that multiplexing, with at two 

or more fitness indicators, is vital to reduce false positive results and should increase the confidence 

of data required for ‘hit’ selection. Thus, the use of two ‘fitness’ measurements, as done for each of 

the screens, should increase the quality and robustness of hits generated from the screen. Alternative 

end-point assays could be considered and multiplexed with YOYO®-1 to evaluate if this reduced false 

positive results by comparing it to the end-point analyse methods used during this study.  
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5.3.3. Evaluation of ‘hit’ DUBs generated from 3-day and 5-day DUB RNAi screens. 

From the analysis of data generated from the 3-day screens, very few DUBs were identified that 

robustly combined, when knocked down, with MEK1/2 inhibition to drive loss of cell viability and/or 

cell death. However, the two 3-day screens performed were valid as all controls, both negative and 

positive, for siRNA and inhibitors, generated raw data from multiple end-point analyses that matched 

the expected trend. Therefore, this could suggest that the original hypothesis may not be correct, and 

that despite the screen being valid, knockdown of DUBs do not combine with MEK1/2 inhibition to 

drive tumour cell death. Alternatively, it could suggest that the method used to analyse the screen, SI 

analysis, may not have been the best method to test the hypothesis. This method of analysis is used 

by Mission Therapeutics to assess the sensitivity of DUB RNAi screens to inhibitor treatments and 

values are based on the difference between the expected and observed combined effect of RNAi and 

drug treatment on cellular fitness. However, there are multiple alternative means for analysing RNAi 

screens which are often easier to perform and interpret including, those looking for fold-change, often 

combined with percentage cell viability, as well as additional parametric two-sample tests, including t-

test and Z-factor. Ye et al., has also described the use of a linear model, which is thought to overcome 

problems associated with SI analysis including cross-plate variation, which is averaged during SI 

calculations (Ye et al., 2012). Alternative analysis should be performed to clarify if any of the DUBs 

observed by SI analysis to cause a significant effect on cell viability and cell death are identified by 

additional analysis and if SI analysis was limiting the number of ‘hits’ obtained from the screens.  

USP29 was identified as a ‘hit’ from CTG data from both 3-day DUB RNAi screens, in combination with 

PD901. In addition, USP37 was identified to be a ‘hit’ from YOYO-1/CTG data from both 3-day screens 

and consistently two siRNA knocked down USP37 and combined to MEK1/2 inhibition to cause 

substantial decrease in cell viability or increase in cell death.  

To date very little is known about USP29. Martin et al. demonstrated that USP29 regulates the stability 

of Claspin, an adaptor protein required to mediate cell cycle arrest at the ATR-Chk1 DNA damage 

checkpoint; thus, loss of USP29 resulted in defective S-phase progression (Martin et al., 2015). The 

oncogenic transcription factor E2F1 induces the expression of USP37, which, following activation by 

CDK2, deubiquitylates and stabilises cyclin A and therefore regulates S-phase entry (Huang et al., 

2011). Delayed or defective entry into S-phase results in reduced cell progression and replication and 

could cause a cytostatic effect. How knockdown of USP29 or USP37 combines with MEK1/2 inhibition 

to induce a cytotoxic response rather than a cytostatic response is not presently known.  

Kim et al., demonstrated that USP37 expression contributed to cancer phenotypes by stabilising 14-3-

3γ and conversely knockdown of USP37 resulted in loss of cell viability. Additionally they demonstrated 
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that levels of phosphorylated ERK gradually decreased as a consequence of USP37 depletion and 

suggested that this indicated that USP37 was involved in the MAPK signalling pathway (Kim et al., 

2015). As USP37 was identified as combining with MEK1/2 inhibition to induce cell death the concept 

that USP37 regulates the ERK1/2 pathway is plausible, however, further evaluation would be needed 

to confirm this.  

The lack of reproducibility of ‘hit’ DUBs between the two 3-day DUB screens treated with the MEK1/2 

inhibitor PD901, could have been caused by variations in cell seeding rather than changes in the assay 

chemistry. Variations in the plating of cells could have been amplified as HCT116 cells have a tendency 

to form clumps. In addition, it could suggest that in order to observe a ‘hit’ from this screen, 

irrespective of end-point assay analysis, statistical analysis and differences caused by experimental 

variability, the DUB must regulate, or be, the key gene driving tumour cell growth. Therefore, its 

knockdown would combine with MEK1/2 inhibition to drive a reproducible cell death phenotype. In 

addition, there might be functional redundancy between DUBs, therefore in order to observe a desired 

phenotype multiple DUBs may need to be targeted simultaneously. 

USP29 and USP37 were not identified as ‘hit’ DUBs from the 5-day screen. It could therefore be 

suggested that USP29 and USP37 sensitise HCT116 cells to short PD901 treatments, whilst the DUBs 

identified during the 5-day screen require longer periods of transfection to sensitise HCT116 to 

inhibition of MEK1/2. However, the majority of these ‘hits’ were identified from a single screen and so 

additional screens need to be performed to reduce false-positive results and increase confidence in 

identified important DUBs.  

Of the ‘hits’ identified in the mTOR inhibitor RNAi screen, USP7 and BAP1 have been well characterised 

for their roles in tumour progression. Previous reports have also demonstrated that knockdown of 

USP7 overcame resistance to bortezomib, by repressing NF-ĸB signalling in multiple myeloma (Yao et 

al., 2018). In this case both bortezomib treatment and USP7 knockdown act to stabilise IĸBα.  

Recently USP7 has been demonstrated to be the DUB for c-Myc in neural stem cells (Nicklas et al., 

2018). As previously described Myc is regulated by mTOR signalling. mTORC1, one mTOR containing 

complex, regulates protein synthesis through the regulation of eIF4F assembly, where eIF4F has been 

demonstrated to stimulate the translation of Myc. The expression of Myc is frequently dysregulated in 

cancer and, as it regulates all characteristics associated with the hallmarks of cancer, over expression 

of Myc is linked to poor prognosis for patients. Targeting Myc stability could therefore result in tumour 

suppression. Pourdehnad et al. identified a link between Myc and mTOR, demonstrating that inhibiting 

mTOR-dependent 4EBP1 phosphorylation was required for tumour regression of Myc-driven cancers 

(Pourdehnad et al., 2013). They demonstrated that Myc regulates the activity of 4EBP1 during tumour 
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initiation and enhances protein synthesis throughout tumour development through its regulation of 

4EBP1. As shown in section 5.2.1.2., AZD8055 (8055) inhibits phosphorylation of 4EBP1 at the mTORC1 

sites, indicative of inhibition of cap-dependent translation. Therefore, knockdown of USP7 and mTOR 

inhibition could combine to significantly reduce the phosphorylation of 4EBP1 and decrease the 

stability/protein synthesis of Myc resulting in tumour cell death where knockdown of USP7 or mTOR 

inhibition alone is not sufficient to cause such an effect.  

The identified ‘hit’ DUBs from the DUB RNAi screen, in combination with 8055, would need to go 

through additional secondary analysis to assess if knockdown of these DUBs sensitise HCT116 cells to 

mTOR inhibition and to assess the downstream effects of combined knockdown and inhibition. 

However, in general, few ‘hits’ were identified from this screen. It could therefore be suggested again 

that knockdown of DUBs does not combine with mTOR inhibition to induce a cytotoxic response.  

The ‘hit’ DUBs generated from the 5-day DUB RNAi screen, in combination with MEK1/2 inhibitor 

treatment, are further described in Chapter 6. In an ideal scenario the screen would have been 

performed twice and ‘hits’ would have been taken forward that overlapped between the two screens. 

However, as controls for the screen were convincing the screen was deemed valid and ‘hits’ from this 

screen were taken forward for further validation (Chapter 6).  
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Chapter 6: Validation of ‘hits’ from a deubiquitylating 

enzyme RNAi screen performed in combination with 

MEK1/2 inhibition
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6. Chapter 6 

6.1. Introduction 

As previously described, the use of MEK1/2 inhibitors as a monotherapy for the treatment of Ras 

mutant tumour cells has had varying success, due in part to collapse of feedback loops or amplification 

of BRAF, KRas or activating mutations of MEK1/2 (Caunt et al., 2015, Little et al., 2011). Thus, the 

predominant mechanism of resistance to these inhibitors is re-activation of the ERK1/2 signalling 

pathway.  

ERK1/2 signalling regulates multiple components of the apoptotic cell death pathway. Consequently, 

tumour cells with Ras, BRAF or MEK mutations are addicted to ERK1/2 signalling to promote cell 

survival through the repression/inactivation of pro-apoptotic proteins and the increased expression of 

pro-survival proteins (Balmanno and Cook, 2009). Inhibition of the ERK1/2 pathway, for example 

through MEK1/2 inhibition, results in the opposite effect causing an increase in pro-apoptotic proteins, 

such as BIM, BMF and PUMA (Sale and Cook, 2013). Despite this, monotherapy ERK1/2 pathway 

inhibition causes a cytostatic effect rather than a cytotoxic cell death response, allowing cells to adapt 

and acquire resistance to these inhibitors as described above (Little et al., 2011, Sale and Cook, 2013). 

The observed cytostatic response is believed to be as a consequence of pro-survival proteins buffering 

the effect of the increased expression of pro-apoptotic proteins (Sale and Cook, 2013). Therefore, 

combining MEK1/2 inhibition with an inhibitor capable of reducing the expression of pro-survival 

proteins should induce apoptosis. Indeed, dual inhibition of MEK1/2 and BCL2/BCL-XL, with BH3 

mimetics, tips the balance towards a cytotoxic response leading to cell death (Sale and Cook, 2013).  

The emergence of resistance to new cancer therapeutics, including MEK1/2 inhibitors, necessitates 

the need for the development of novel therapeutic combinations to drive the death of ERK1/2-

addicted tumour cells. Notably, many of the limiting factors hindering cell death of these tumour cells 

are regulated through protein ubiquitylation, including DUSPs (Caunt and Keyse, 2013). Pro-survival 

proteins described to obstruct the cytotoxic effect of MEK1/2 inhibition are also regulated by 

ubiquitylation, including BCL2 and MCL1 (Edison et al., 2017, Mojsa et al., 2014). Additionally, as 

different thresholds of ERK1/2 signalling can promote cell survival or cell death it is possible that E3 

ligases or DUBs regulating ERK1/2 components might push the magnitude of ERK1/2 signalling towards 

apoptosis (Hong et al., 2018, Mebratu and Tesfaigzi, 2009). Therefore, it is likely that regulating 

ubiquitylation, via inhibition, in combination with MEK1/2 inhibition could drive tumour cell death, 

thereby transforming a cytostatic response observed with MEK1/2 inhibitor monotherapy to a 

cytotoxic response.  
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The aim of this study was to determine whether an induction in apoptosis, similar to that seen with 

combined treatment of a MEK1/2 inhibitor and a BH3 mimetic, would be achieved by combining 

knockdown of ‘hit’ DUBs, identified in Chapter 5, with MEK1/2 inhibition in HCT116 cells.  

 

6.2. Results 

6.2.1. Identification of key DUBs that combine with a MEK1/2 inhibitor (PD0325901) to induce a 

cell death response. 

A 5-day DUB RNAi screen was performed to systematically identify DUBs that when knocked down 

combine with the MEK1/2 inhibitor PD0325901 (PD901) to induce cell death in HCT116 cells (Chapter 

5). For follow up validation of the screen further experiments focused on six DUBs, which when 

knocked down, with three or more siRNA, showed, a significant increase in cell death following MEK1/2 

inhibitor treatment.  

Initially the 5-day RNAi screen identified 20 DUBs that when knocked down combined with PD901 to 

induce cell death using YOYO®-1/Phase analysis. From this list any DUBs that were found to be 

‘essential’ for HCT116 cell ‘fitness’ or survival, using published data (Hart et al., 2015) or from the 5-

day screen itself were eliminated. Hart et al.performed a CRISPR-Cas9 screen to identify genes 

essential for ‘fitness’ in multiple tumour cell lines, including HCT116 cells, where a more positive log 

Bayes factor (BF) value is representative of increased confidence that knocking out that gene reduces 

‘fitness’ of these cells. Of note, this screen did not investigate the corresponding phenotype associated 

with positive BF values. From the 5-day screen, an essential DUB was classified as one that when 

knocked down lowered the cell confluency below 30 % (phase). Using both BF values and information 

from the 5-day screen, this eliminated 11 DUBs from the generated list of ‘hit’ DUBs (Figure 6.1A and 

Figure 6.1B). In accordance with that found in the 5-day screen in HCT116 KRasG13D cells, Fraile and 

colleagues observed that USP39 was essential for KRas-driven cancer, where expression of USP39 in 

lung and colon carcinoma correlated with poor prognosis (Fraile et al., 2017).  

Further to this, an additional four DUBs, EIF3F, USP31, USP32P2 and USP51 and SENP5, a 

sentrin/SUMO-specific protease were excluded. These were eliminated because on further inspection, 

knockdown of these proteases alone with at least two siRNA, resulted in a large reduction in total cell 

number, as shown from normalised phase data, suggesting that these proteases may be essential for 

proliferation in HCT116 cells.  
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Figure 6.1 Elimination of essential DUBs leaves four key hit DUBs for further investigation. 
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Consistent with this, several studies have shown that SENP5 (sentrin/SUMO-specific protease 5) is 

essential for tumour cell growth. Ubiquitin-like proteases (ULPs), and a select set of DUBs, cleave 

ubiquitin-like molecules including small ubiquitin-like modifiers (SUMO1/2/3), neuronal precursor cell 

expressed, developmentally down-regulated 8 (NEDD8) and interferon-stimulated gene 15 (ISG15) 

from target proteins. SENP5 is an example of a ULP known to be essential for the processing of SUMO3 

to generate its mature form, and is also involved in the removal of SUMO2 and SUMO3. Knockdown 

or inhibition of SENP5 resulted in cell cycle arrest at the G2/M checkpoint and apoptosis suggesting 

that it plays an important role in cell proliferation (Di Bacco et al., 2006, Wang and Zhang, 2014, Zunino 

et al., 2007). Wee et al.also identified SENP5 as a key prognosis-related gene in cancer, where it was 

upregulated in approximately 304 tumour samples (Wee et al., 2018). Indeed, Cashman and colleagues 

demonstrated that low expression of SENP5 correlated with an improved prognosis in breast cancer 

(Cashman et al., 2014).  

Based on the phase data, as well as YOYO1/Phase data, and from discussions with colleagues at Mission 

Therapeutics, USP16, USP10, VCIP135 and TNFAIP3 were taken forward as ‘hits’ from this screen 

(Figure 6.1C).  

 

6.2.2. Knockdown of USP11 with three independent siRNA confirms that USP11 is an essential gene 

in HCT116 cells.  

To further validate and assess the reliability of the screen, experiments were performed to confirm 

that a DUB shown to be essential for survival of HCT116 cells did indeed induce cell death following its 

knockdown. Based on data generated from the 5-day screen, USP11 appeared to be an essential DUB 

and phase data revealed that knockdown of USP11 alone, with three siRNA, resulted in a dramatic loss 

of cell number. Data from the 5-day screen showed that 11.4 % of cells survived when USP11 was 

knocked down, using phase data normalised to the non-targeting control (siLUC) (Figure 6.1B). 

USP11 has been found to modulate numerous signalling pathways including DNA damage response 

pathways, Notch and NF-ĸB signalling pathways (Schoenfeld et al., 2004a, Sun et al., 2010, Wu et al., 

2014) and multiple studies have identified a link between USP11 expression and tumorigenesis. For 

example, USP11 was required for TGFβ-induced EMT and metastasis in breast cancer (Garcia et al., 

2018). In addition, siRNA knockdown of USP11 resulted in reduced proliferation of several adherent 

cancer cell lines, including HCT116 cells (Saei et al., 2018). In terms of mechanism, USP11 was found 

to deubiquitylate XIAP, resulting in its stabilisation, thereby inhibiting anoikis and apoptosis to 

promote cancer cell survival (Zhou et al., 2017). Moreover, USP11 was found to promote the stability 

of p21, critical for the inhibition of cyclin-dependent kinases and control of cell cycle progression (Deng 
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et al., 2017). Additionally, upon DNA damage, USP11 interacts with BRCA2, resulting in the enhanced 

survival of breast cancer cells (Schoenfeld et al., 2004b). Together, this suggests that USP11 could be 

a promising therapeutic target for treatment in several cancers and might be an essential DUB for 

HCT116 cell survival.  

To investigate whether knockdown of USP11 had an effect on cell death, three USP11 siRNAs were 

transfected into HCT116 cells and the fraction of cells with sub-G1 DNA was analysed by flow 

cytometry. Western blot analysis revealed that the transfection was successful as all three siRNAs 

caused a loss of USP11 protein (Figure 6.2A). Knockdown of USP11 resulted in an increase in cell death 

in HCT116 cells (Figure 6.2B). An increase from ~10 % to ~50% of cells with sub-G1 DNA was observed 

following transfection of USP11 siRNAs (Figure 6.2B). The percentage of cells with sub-G1 DNA only 

marginally increased following treatment with PD901, thus not only confirming that indeed USP11 is 

an essential DUB in HCT116 cells but also increases confidence in the reliability of the 5-day screen. 

Loss of phosphorylated ERK1/2 following treatment with PD901 confirmed that PD901 successfully 

inhibited MEK1/2. In addition, it should be noted that knockdown of BCL-XL was lethal confirming its 

use as a positive control in the screen.  

 

6.2.3. USP16 is a partial hit with two independent siRNA showing a small increase in the fraction 

of cells with sub-G1 DNA following treatment with PD0325901.  

The initial screen identified USP16 as a ‘hit’ DUB as knockdown of USP16 combined with the MEK1/2 

inhibitor PD901 to induce cell death (Figure 5.11D). USP16 has been previously shown to regulate 

histone H2A, where knockdown of USP16 resulted in an increase in ubiquitinated H2A and a decrease 

in mature and progenitor cells without altering the number of hematopoietic stem cells (Cohen et al., 

2005, Gu et al., 2016, Joo et al., 2007, Yang et al., 2014), thus, revealing a role for USP16 in the 

regulation of haematopoiesis. Interestingly, USP16 is found on chromosome 21 and is triplicated in 

Down’s syndrome, which is characterised in part by haematopoietic disease (Adorno et al., 2013). 

Multiple studies have implicated H2A deubiquitylation in the control of chromosomal condensation, 

consistent with the role of USP16 in this process (Joo et al., 2007, Kouzarides, 2007). In addition, mass 

spectrometry data demonstrated that USP16 interacts with PLK1; this interaction resulted in the 

deubiquitylation of PLK1 and its recruitment to kinetochores allowing for correct chromosome 

alignment (Zhuo et al., 2015). 
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Figure 6.2 USP11 is an essential gene for HCT116 survival. 
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Interestingly, USP16 is phosphorylated at the start of mitosis and dephosphorylated during the 

metaphase-anaphase transition (Clague et al., 2008). Further work has shown that USP16 is required 

for cell-cycle progression. Deubiquitylation of H2A enables phosphorylation of Histone H3 at S10, by 

Aurora B, enabling G2/M transition. Therefore, in accordance with USP16 regulating H2A 

ubiquitylation, knockdown of USP16 resulted in the reduction of the percentage of cells in M phase 

and correlated with a delayed entry into mitosis (Clague et al., 2008, Joo et al., 2007). Thus, overall, 

USP16 regulates chromosomal condensation and progression through the G2/M checkpoint.  

In HCT116 cells, despite all three siRNA knocking down USP16 with equal efficiency, knockdown of 

USP16 alone showed variable results (Figure 6.3A and Figure 6.3B). Knockdown of USP16 using 

siUSP16_03D resulted in a large increase in cell death, which only marginally increased further 

following MEK1/2 inhibition, shown by loss of ERK1/2 phosphorylation (Figure 6.3A and Figure 6.3B). 

In contrast, very little cell death was seen with transfection of the remaining two siRNA (Figure 6.3B). 

The large increase in the fraction of cells with sub-G1 DNA as a consequence of siUSP16_03D 

transfection could be due to off-target effects of this siRNA as compared to the other siRNAs used.  

Following addition of PD901 to HCT116 cells transfected with siUSP16_O2D and siUSP16_11, a minor 

increase in the fraction of cells with sub-G1 DNA was seen. A maximum increase of ~25 % (siUSP16_11) 

was observed, compared to the positive control of PD901 and ABT-263, where ~80 % of the cells had 

sub-G1 DNA (Figure 6.3B), thus, USP16 is a weak hit. Data presented here demonstrated that USP16 

knockdown failed to induce a consistent cytotoxic effect in combination with PD901. These 

experiments also emphasised the importance of choosing a variety of siRNA, targeting different 

regions of the gene, as although all three siRNAs successfully knocked down USP16, only two resulted 

in a comparable cell death response.  

 

6.2.4. Knockdown of VCIP135 in combination MEK1/2 inhibition induces apoptosis.  

VCIP135 was identified as a ‘hit’ from the 5-day DUB RNAi screen, described in Chapter 5, as three 

siRNAs against VCIP135 combined with MEK1/2 inhibition to induce cell death (Figure 5.11D).  

Golgi membrane fusion is regulated, in part, by p97, an ATPase, that forms a complex with the cofactor 

p47 and the SNARE protein, syntaxin5, a receptor in the golgi membrane. Valosin-containing protein 

p97/p47 complex-interacting protein, p135 (VCIP135) acts as an additional cofactor for this complex; 

interaction of VCIP135 with this complex results in p97-driven ATP hydrolysis, dissociation of 
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Figure 6.3 Further analysis revealed that, in HCT116 cells, USP16 is not a ‘hit’ DUB. 
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the p97/p47/syntaxin5 complex and postmitotic membrane fusion (Uchiyama et al., 2002). The 

deubiquitylating activity of VCIP135 is required for fusion events, although its exact target is unknown 

(Wang et al., 2004). p37, like p47, can also form a complex with p97 and requires VCIP135 for Golgi 

and ER membrane fusion during interphase and at the end of mitosis (Uchiyama et al., 2006). However, 

unlike p97/p47, p97/p37 does not rely upon the deubiquitylating activity of VCIP135 for membrane 

fusion and organelle maintenance during interphase (Totsukawa et al., 2011, Uchiyama et al., 2006). 

The activity of VCIP135 is tightly regulated throughout cell cycle progression. During mitosis, CDK1 

phosphorylates VCIP135, thereby inhibiting its activity, preventing p97/p47-mediated Golgi 

reassembly (Zhang and Wang, 2015, Zhang et al., 2014).  

Like VCIP135, ERK1/2 signalling has been shown to regulate membrane fusion. The ERK1 isoform ERK1c 

translocates from the cytosol to the Golgi to regulate the fragmentation of the Golgi membrane during 

mitosis (Aebersold et al., 2004). More importantly, ERK1/2 signalling plays a significant role in 

regulating mitochondrial morphology. Recently ERK1/2 have been shown to regulate mitochondrial 

fission machinery, DRP1, in cancer cells as well as induced pluripotent stem cells (Cook et al., 2017, 

Kashatus et al., 2015, Prieto et al., 2016).  

Further analysis of VCIP135 as a ‘hit’ revealed that siRNA knockdown of VCIP135, using a SMARTpool 

siRNA reagent, resulted in the successful loss of VCIP135 protein (Figure 6.4A). Additionally treatment 

of HCT116 cells with PD901, either in combination with VCIP135 knockdown or alone, resulted in loss 

of phosphorylated ERK1/2 indicative of MEK1/2 inhibition (Figure 6.4A). Knockdown of VCIP135, in 

combination with PD901 treatment, resulted in a significant increase in the fraction of cells with sub-

G1 DNA, compared to knockdown of VCIP135 alone as well as knockdown of siLUC in combination with 

PD901 (Figure 6.4B). Results indicated that combining knockdown of VCIP135 with MEK1/2 inhibition 

led to a greater than additive effect, resulting in an induction of cell death.  

To assess if cell death arising from VCIP135 knockdown in PD901 treated cells was indeed apoptosis, 

the cell death observed in response to knockdown and treatment was compared in WT and BAK/BAX 

DKO HCT116 cells. Knockout of BAK and BAX resulted in a substantial reduction in cell death (Figure 

6.5A). Thus, combined VCIP135 siRNA transfection and PD901 treatment induced BAK/BAX-dependent 

apoptosis in HCT116 cells. Transfection of HCT116 cells with VCIP135 siRNA and treatment with PD901 

did not cause any significant changes in the protein levels of pro-survival and pro-apoptotic BCL2 

proteins, compared to control samples (Figure 6.5B). BIM and PUMA protein were observed to 

accumulate, but this was due only to treatment with the MEK1/2 inhibitor alone and not due to the 

combined knockdown of VCIP135 with PD901 treatment (Figure 6.5B).  
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Figure 6.4 Combination of VCIP135 knockdown with PD0325901 resulted in an increase in the fraction of cells with sub-G1 
DNA. 
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Figure 6.5 Cell death observed with the combination of VCIP135 knockdown and PD0325901 is BAK/BAX-dependent. 
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6.2.5. Knockdown of TNFAIP3 in combination with MEK1/2 inhibition did not induce a cell death 

response.  

TNFAIP3 was identified as a ‘hit’ from the 5-day DUB RNAi screen in combination with MEK1/2 

inhibition (Figure 5.11D). The OTU deubiquitylating enzyme, tumour necrosis factor-alpha-induced 

protein 3 (TNFAIP3), also known as A20, has been shown to have numerous cellular functions, but 

primarily it plays a vital role in the regulation of inflammation. TNFAIP3 inhibits the canonical NF-ĸB 

signalling pathway, a pro-inflammatory signalling pathway, in which NF-ĸB transcription factors drive 

the effects of pro-inflammatory cytokines (Vucic et al., 2011). Failure to regulate this pathway results 

in chronic inflammation and cell death (Lee et al., 2000). Indeed, mice lacking TNFAIP3 have a severe 

defective inflammatory phenotype (Lee et al., 2000). In humans, single nucleotide polymorphisms 

(SNPs) in TNFAIP3 are linked to numerous disease states including rheumatoid arthritis, Crohn’s 

disease and systemic lupus erythematosus (SLE) (Graham et al., 2008, Hammer et al., 2011, Musone 

et al., 2008, Plenge et al., 2007, Shimane et al., 2010, Thomson et al., 2007).  

TNFAIP3 can function as both an E3 ligase and a DUB in the NF-ĸB pathway. Specifically, TNFAIP3 

cleaves K63 polyubiquitin chains from RIP1, a positive regulator of the pathway, and catalyses, via its 

ZnF4 (Zinc finger 4), the addition of K48-linked chains to RIP1, resulting in the proteasomal degradation 

of RIP1 (Wertz et al., 2004). TNFAIP3 also inactivates several E2/E3 ligase complexes required for 

activation of canonical NF-ĸB signalling (Shembade et al., 2010). However, there is additional evidence 

that TNFAIP3 can inhibit NF-ĸB signalling independently of its deubiquitylating activity (Skaug et al., 

2011). Interestingly, TNFAIP3 has also been shown to promote the stability of NIK, and in doing so 

activates non-canonical NF-ĸB signalling (Yamaguchi et al., 2013). Consequently, Yamaguchi and 

colleagues concluded that TNFAIP3 activity can regulate the switch between canonical and non-

canonical NF-ĸB signalling (Yamaguchi et al., 2013).  

NF-ĸB is constitutively activated in a variety of cancers, promoting the survival of these cells. This has 

been linked to the loss of negative regulators of NF-ĸB signalling, including TNFAIP3. Several studies 

have identified somatic mutations, deletions and alterations in the expression of TNFAIP3 in cancer 

(Fujii et al., 2018). Interestingly re-expression of TNFAIP3 in tumour cells with mutated TNFAIP3 

induced cell-cycle arrest and/or apoptosis, indicating a role for TNFAIP3 in promoting cell death 

(Compagno et al., 2009, Kato et al., 2009). In addition, down regulation of TNFAIP3 is also associated 

with metastasis, by regulating expression of E-cadherin and vimentin, and therefore EMT in 

nasopharyneal carcinoma cells (NPC) (Huang et al., 2017b). Ultimately, one could predict that 

knockdown of TNFAIP3 could alleviate inhibition of canonical NF-ĸB signalling resulting in cell survival.  
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Knockdown of TNFAIP3, with or without PD901, in HCT116 cells, did not cause an increase in the 

fraction of cells with sub-G1 DNA, despite effective knockdown of TNFAIP3 protein (Figure 6.6A and 

Figure 6.6B). A small increase in the fraction of cells with G1 DNA was observed following treatment 

with PD901, indicative of cell cycle arrest, expected as a consequence of MEK1/2 inhibition in HCT116 

cells (Figure 6.6B) (Sale and Cook, 2013). Therefore, TNFAIP3 was no longer considered a ‘hit’ since 

knockdown of TNFAIP3 did not combine with PD901 to induce cell death.  

Interestingly, inhibition of MEK1/2, in general, was associated with a reduction of TNFAIP3 protein 

(Figure 6.6A), although the reason for this is unknown. 

 

6.2.6. Knockdown of YOD1 in combination with MEK1/2 inhibition promotes cell death.  

YOD1 was also identified as a ‘hit’ from the 5-day DUB RNAi screen, promoting cell death when 

combined with MEK1/2 inhibition (Figure 5.11D). Further analysis suggested that, at least from the 5-

day DUB RNAi screen, it might be an essential DUB for survival of HCT116 cells. However, the effect of 

dual knockdown of YOD1 and MEK1/2 inhibition was investigated further, given that it had been 

identified as a ‘hit’ in the 3-day DUB RNAi screen and also when analysing data from the 5-day screen 

using different end-point assays. 

First discovered in Drosophilia, the Hippo signalling pathway controls organ size by regulating cell 

proliferation, apoptosis and stem cell renewal. The biological relevance of the conserved Hippo 

signalling cascade was supported through studies of transgenic (Camargo et al., 2007, Dong et al., 

2007) and knockout mice (Lu et al., 2010, Song et al., 2010, Zhou et al., 2009) additionally indicating 

that activation of YAP/TAZ can induce tumourigenesis (Lei et al., 2008, Zhao et al., 2010a). 

At the molecular level, activation of the Hippo kinase cascade results in the activation of LATS1/2, 

which phosphorylates YAP/TAZ, transcriptional coactivators that regulate gene expression through 

their interaction with TEAD1-4. This induces the cytoplasmic sequestration of YAP/TAZ and/or its 

ubiquitin-driven proteasomal degradation (Meng et al., 2016, Pan, 2010, Zhao et al., 2010a, Zhao et 

al., 2007). In contrast to the above, inactivation of Hippo signalling results in the nuclear accumulation 

of unphosphorylated YAP/TAZ resulting in TEAD-mediated gene expression leading to cell proliferation 

and inhibition of apoptosis (Koontz et al., 2013) (Figure 6.7).  
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Figure 6.6 Combination of YOD1 knockdown, but not TNFAIP3 with PD0325901 resulted in an increase in cell death. 
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Figure 6.7 Schematic model for the role of YOD1 in the regulation of Hippo signalling. 
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Several components of the Hippo signalling pathway are regulated through post-translational 

modification, including ubiquitylation. The E3 ligase ITCH was found to promote the ubiquitin-driven 

degradation of LATS1/2, activating YAP/TAZ and inducing the expression of YAP/TAZ target genes 

(Salah et al., 2011). Recently YOD1 was identified to be the DUB for ITCH (Kim and Jho, 2017, Kim et 

al., 2017). Deubiquitylation of ITCH, by YOD1, results in its increased stability again activating YAP/TAZ 

and inducing cell proliferation (Figure 6.7). Kim et al., demonstrated that overexpression of YOD1 

enhanced the migratory phenotype of HCT116 cells and that this was dependent on YAP (Kim et al., 

2017). By extrapolation, knockdown of YOD1 would induce the degradation of ITCH, preventing the 

ubiquitin-driven degradation of LATS1/2, resulting in the phosphorylation and degradation of YAP/TAZ 

and activation of the Hippo signalling pathway, restricting cell growth.  

Hippo signalling is regulated by cell-cell contacts to link cell density to cell proliferation (Das Thakur et 

al., 2010, Kim et al., 2011b). The same seems to apply to YOD1. For example, miR-21 is regulated in a 

density-dependent manner and controls YOD1 expression. Cells grown to a high density have a high 

level of miR-21 which down regulates YOD1 and therefore activates the Hippo signalling pathway (Kim 

et al., 2017) (Figure 6.7).  

Interestingly, in the context of the DUB RNAi screen, ERK1/2 signalling can regulate the Hippo signalling 

pathway component YAP. Reduction in ERK1/2 activity by siRNA or small molecule inhibitors resulted 

in reduced YAP protein, due to increased rates of degradation, and a reduction in the mRNA levels of 

downstream Hippo signalling genes. Indeed, treatment of non-small cell lung cancer (NSLC) cells with 

the MEK1/2 inhibitor trametinib reduced YAP protein, which resulted in a reduction in the migration 

and invasion of these cells (You et al., 2015). Additionally, Li et al, demonstrated that MEK1 and YAP 

directly interact and this is essential for tumourigenesis in liver cancer (Li et al., 2013). Overall, this 

data supports the idea that knockdown of YOD1 in combination with ERK1/2 pathway inhibition has 

the potential to inhibit cell proliferation and induce apoptosis through the regulation of YAP. On this 

basis, YOD1 was followed up as a ‘hit’.  

Transfection of siYOD1 into HCT116 cells, using a SMARTpool siRNA reagent, resulted in the loss of 

YOD1 protein (Figure 6.6A). Treatment of HCT116 cells with PD901, either in combination with YOD1 

knockdown or alone, resulted in loss of phosphorylated ERK1/2 indicative of MEK1/2 inhibition (Figure 

6.6A). Interestingly, knockdown of YOD1 prevented the accumulation of BIM protein in PD901 treated 

cells; this was not seen with control siRNA (Figure 6.6A). Knockdown of YOD1 combined with PD901 to 

induce an increase in PARP cleavage indicative of an induction of apoptosis. The cell death response 

induced by combination treatment was confirmed from flow cytometry data. Knocking down YOD1 or 

treating HCT116 cells with PD901 alone resulted in little cell death; however, the combination resulted 
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in a statistically significant, synergistic increase in cell death (Figure 6.6B). To test whether, as predicted 

from western blot data in Figure 6.6A, the combination induced apoptosis, HCT116 cells lacking BAK 

and BAX were used. Knockout of BAK/BAX significantly reduced the fraction of cells with sub-G1 DNA 

therefore combined knockdown of YOD1 and PD901 treatment caused apoptosis of HCT116 cells 

(Figure 6.8A).  

Of note, the significance of the increase in cell death observed with combined knockdown of YOD1 and 

inhibition of MEK1/2 in Figure 6.8 was different from that observed in Figure 6.6, which is discussed 

later on. 

Knockdown of YOD1 did not result in the expected reduction in YAP protein. Interestingly, loss of YOD1 

alone appeared to cause an increase in YAP protein and additionally resulted in a marginal increase in 

the phosphorylation of YAP at S127 (Figure 6.8B). Phosphorylation at this site, by LATS1/2 is known to 

drive the cytoplasmic localisation of YAP and is required for its interaction with 14-3-3 proteins, 

thereby inhibiting its biological function (Zhao et al., 2007). This therefore suggests that knockdown of 

YOD1 could drive an increase in inactive phosphorylated YAP protein. In combination with PD901 

treatment, YOD1 knockdown did result in a reduction in phosphorylated and total YAP compared to 

controls (Figure 6.8B). This could be due to an increase in the proteasomal degradation of YAP. 

However, additional analysis would have to be performed to confirm these findings.  

 

6.2.7. Combining USP10 siRNA with PD0325901 treatment causes an increase in sub-G1 DNA.  

In addition to the DUBs previously described, USP10 was also identified as a ‘hit’ from the 5-day DUB 

RNAi screen, promoting cell death when combined with MEK1/2 inhibition (Figure 5.11D). 

In the literature, USP10 has been demonstrated to regulate p53 signalling, via G3BP2, in prostate 

cancer (Takayama et al., 2018). p53 primarily acts as a tumour suppressor, and inactivation of the p53 

pathway is linked to carcinogenesis (Kruse and Gu, 2009). G3BP2 (GTPase-activating protein-binding 

protein 2) is an androgen-responsive (AR) gene that regulates the localisation of p53, promoting its 

nuclear export and inhibiting p53 signalling (Ashikari et al., 2017). Ashikari and colleagues have also 

demonstrated that knockdown of G3BP2 resulted in p53-mediated apoptosis (Ashikari et al., 2017). 

USP10 interacts with G3BP2, in prostate cancer cells and in stress granules (SG), resulting in the 

increased stability of G3BP2, nuclear export of p53 and enhanced cell proliferation.  

  



208 
 

Figure 6.8 YOD1 siRNA in combination with PD0325901 induces a BAX/BAK-dependent cell death. 
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Conversely, knockdown of USP10 resulted in the reduction of G3BP2 protein levels, relieving inhibition 

of p53 activity and resulting in impaired cell growth (Takayama et al., 2018). Overall, data from these 

studies suggests an oncogenic role for USP10, in part by repressing p53 activity (Figure 6.9). In addition 

to prostate cancer, G3BP2 is associated with poor prognosis in breast cancer patients and is required 

for tumour initiation (French et al., 2002, Gupta et al., 2017). However, the role of USP10 may be 

context dependent as it has also been found to act as a tumour suppressor in cancer including lung 

cancer (Sun et al., 2018).  

Recently, Ouchida and colleagues demonstrated that USP10 was the DUB for the transcription factor 

SLUG/SNAI2 (Ouchida et al., 2018). SLUG is a marker for cells undergoing epithelial-to-mesenchymal 

transition (EMT); SLUG represses E-cadherin expression and as result enhances EMT and metastasis in 

cancer (Puisieux et al., 2014). Deubiquitylation of SLUG by USP10 stabilised SLUG protein in tumour 

cells, and, in contrast, knockdown of USP10 decreased expression of SLUG and Vimentin, consequently 

reducing the migratory phenotype of these cells (Ouchida et al., 2018). Interestingly, EMT-transcription 

factors, including SLUG, have also been demonstrated to promote malignant transformation via the 

inhibition of p53 signalling (Puisieux et al., 2014).  

Further examination of USP10 as a ‘hit’, revealed that knockdown of USP10, resulted in loss of USP10 

protein with three siRNAs (Figure 6.10A). Treatment of HCT116 cells with PD901, either in combination 

with USP10 knockdown or alone, resulted in loss of phosphorylated ERK1/2 indicative of MEK1/2 

inhibition (Figure 6.10A). Knockdown of USP10, with siUSP10_1 resulted in a significant increase in the 

fraction of cells with sub-G1 DNA (Figure 6.10B). In contrast, knockdown of USP10 (siUSP10_5 and 

siUSP10_69) alone resulted in minimal cell death, which when combined with PD901 treatment 

resulted in a significant increase in cell death (Figure 6.10B). Interestingly, siUSP10_1 also combined 

with MEK1/2 inhibition to induce a significant increase in the fraction of cells with sub-G1 DNA, when 

compared with knockdown of USP10 alone or knockdown of siLUC, combined with PD901 treatment 

(Figure 6.10B). Synergy between knockdown of USP10 and PD901 treatment was only observed with 

siUSP10_5, whilst additional USP10 siRNA combined with MEK1/2 inhibition to cause an additive 

effect.  

Combined treatment of siUSP10 and PD901 in HCT116 cells lacking BAK and BAX showed a significant 

reduction in the fraction of cells with sub-G1 DNA compared to WT cells. Thus, combined knockdown 

of USP10 and PD901 treatment induced BAK/BAX-dependent apoptosis of HCT116 cells. (Figure 6.11A). 

The cooperative effect of siUSP10 and MEK1/2 inhibition was much less obvious in Figure 6.11 than in 

Figure 6.10. As a consequence, the significance of the increase in cell death observed following  
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Figure 6.9 Schematic model for the role of USP10 in the regulation of p53 signalling in prostate cancer 
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Figure 6.10 Knockdown of USP10 in combination with PD0325901, in HCT116 cells, resulted in an increase in cell death. 

  



212 
 

Figure 6.11 USP10 siRNA, with or without PD0325901, induces a BAK/BAX-dependent cell death. 
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combination in Figure 6.10 was different from that observed in Figure 6.11. This is discussed further in 

the Chapter. 

As predicted from previous studies knockdown of USP10 resulted in a reduction in G3BP2 protein 

levels, as well as p53 protein levels (Figure 6.11B). It also resulted in the reduced expression of PUMA 

(p53 upregulated modulator of apoptosis), a pro-apoptotic BH3-only protein which is a known p53 

target gene (Nakano and Vousden., 2001). Expression of these proteins was only examined for data 

generated in Figure 6.11 and should be evaluated in additional experiments to confirm these 

observations.  

Additionally, the increase in cell death observed with all three USP10 siRNA, either alone, in the case 

with USP10_1, or in combination with PD901, was BAK/BAX-dependent (Figure 6.12A). Interestingly, 

the largest rescue from cell death, as a consequence of BAK/BAX knock out, was observed with 

USP10_1 siRNA, as shown by a dramatic reduction in the fraction of cells with sub-G1 DNA (Figure 

6.12A). All three USP10 siRNA caused a comparable knockdown of USP10, however they caused 

varying effects on pro-survival and pro-apoptotic protein levels, discussed in 6.2.9. (Figure 6.12B). The 

difference in the effects on HCT116 cells, following transfection with siUSP10_1, compared to 

siUSP10_5 and siUSP10_69, could be because of off-target effects of siUSP10_1.  

Overall of the five DUBs identified as ‘hits’ from the 5-day DUB RNAi screen, combined with PD901 

treatment, only three DUBs, when knocked down, reproducibly combined with PD901 to induce 

apoptosis. These were VCIP135, YOD1 and USP10. The additional DUBs, USP16 and TNFAIP3, were 

excluded as they were only a partial ‘hit’ or did not combine, when knocked down, with PD901 to 

induce a cell death response, respectively.  

 

6.2.8. Alternative MEK1/2 inhibitors phenocopy the cytotoxic effect observed with PD901 and 

YOD1 or USP10 knockdown.  

As previously demonstrated, siUSP10 combined with the MEK1/2 inhibitor PD901 to induce apoptosis 

of HCT116 cells. To investigate if this response was robust HCT116 cells were treated with two 

alternative MEK1/2 inhibitors, post siUSP10_5 transfection, to see if they combined to reproduce the 

cell death response seen with PD901 treatment. GDC-0623 and trametinib are MEK1/2 inhibitors in 

clinical trials or clinically approved, respectively, for the treatment of cancer. Both these inhibitors 

have been demonstrated to block MEK1/2 phosphorylation and consequently prevent the feedback 

phosphorylation of MEK1/2 observed with alternative MEK1/2 inhibitors,  
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Figure 6.12 An increase in the fraction of cells with sub-G1 DNA was observed with all USP10 siRNA in combination with 
PD0325901. 
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including selumetinib (Friday and Adjei, 2008, Gilmartin et al., 2011, Hatzivassiliou et al., 2013, Pratilas 

et al., 2009).  

Based on western blot and flow cytometry analysis, comparable concentrations of the MEK1/2 

inhibitors trametinib and GDC-0623 were chosen, that alone, resulted in minimal cell death of HCT116 

cells, ~20 %, but still inhibited ERK1/2 signalling, as judged by a reduction in phosphorylated ERK1/2 

(Figure 6.13A and Figure 6.13B).  

Knockdown of YOD1 or USP10, in combination with trametinib or GDC-0623, resulted in a statistically 

significant increase in the fraction of cells with sub-G1 DNA, compared to siLUC controls (Figure 6.14A). 

Knockdown of USP10 or YOD1 synergised with trametinib to induce cell death in HCT116 cells. In 

contrast, the effect observed with knockdown of USP10 or YOD1 and GDC-0623 appeared more 

additive. Indeed knockdown of USP10 resulted in a significant increase in the fraction of cells with sub-

G1 DNA compared to siLUC transfection (Figure 6.14A). Western blot analysis of these experiments is 

discussed in section 6.2.9 (Figure 6.14B). Overall, the cell death response observed with PD901 was 

phenocopied with two further MEK1/2 inhibitors.  

 

6.2.9. USP10 knockdown increases MCL1 protein expression but reduces BCL2 protein expression. 

Western blot analysis of pro-survival and pro-apoptotic BCL2 proteins revealed that knockdown of 

USP10 resulted in an increase in MCL1 protein levels and a decrease in BCL2 protein levels, irrespective 

of MEK1/2 inhibition (Figure 6.11B and Figure 6.14B).  

MCL1 is a key pro-survival BCL2 protein whose stability is regulated through post-translational 

modification, including ubiquitylation. The stability of MCL1 has been demonstrated to be regulated 

by two different DUBs, USP9x and USP13. USP9x binds to MCL1 resulting in the loss of K48-linked 

polyubiquitin and an increase in its stability. This has been linked to tumour cell survival and as such 

USP9x was deemed to be an oncogene (Schwickart et al., 2010). However, in contrast to this, USP9x 

has also been shown to suppress tumour cell growth in a mouse model of pancreatic ductal 

adenocarcinoma (PDC), with loss of USP9x resulting in tumourgenesis (Perez-Mancera et al., 2012). In 

addition to USP9x, USP13 regulates MCL1 stability in lung and ovarian tumour cells. Depletion of USP13 

resulted in the reduction of MCL1 and suppression of tumour cell growth (Zhang et al., 2018). 

Additionally, they identified USP10 as a candidate DUB for MCL1 in HEK293T cells; however, they 

demonstrated that knockdown of USP10 resulted in a decrease in MCL1 protein levels (Zhang et al., 

2018). Interestingly in HEK293T cells, knockdown of USP9x did not alter MCL1 protein levels. Together  
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Figure 6.13 Optimisation of alternative MEK1/2 inhibitors, trametinib and GDC-0623, in HCT116 cells. 
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Figure 6.14 The use of alternative MEK inhibitors phenocopy the affect seen previously with PD0325901. 
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these studies highlight that multiple DUBs can act on the same substrate, MCL1, in a context-

dependent manner. 

In contrast to that published with USP9x and USP13, knockdown of USP10, alone and in combination 

with a MEK1/2 inhibitor, resulted in an increase in MCL1 protein (Figure 6.11B and Figure 6.14B). Thus, 

one could speculate that USP10, rather than directly deubiquitylating MCL1, could act to 

deubiquitylate a negative regulator of MCL1. Therefore, knockdown of USP10 would result in the 

decreased stability or inactivation of the regulatory protein resulting in an increase in MCL1 protein 

levels. Of note, it would also be important to observe if knockdown of USP10 results in an increase in 

the mRNA levels of MCL1. This would provide indicate at what level USP10 affects MCL1 expression.  

In contrast to that seen with MCL1, knockdown of USP10 resulted in a decrease in BCL2 protein in 

HCT116 cells (Figure 6.11B and Figure 6.14B). Aberrant expression of BCL2 is characteristic of many 

cancers, including colorectal cancer (Huang et al., 2017a). BCL2 has been shown to be degraded by the 

proteasome in response to oxidative stress, and S-Nitroyslation of BCL2 inhibited this degradation 

(Azad et al., 2006, Breitschopf et al., 2000). In addition, Edison and colleagues demonstrated that 

ubiquitin-driven proteasomal degradation of BCL2 promotes apoptosis (Edison et al., 2017). At the 

molecular level, as a result of apoptotic stimuli, ARTS (Sept4_i2) accumulates in the cytosol and binds 

to both XIAP (X-linked inhibitor of apoptosis), an E3 ligase, and BCL2, resulting in the polyubiquitylation 

and degradation of BCL2, as well as activation of caspases, promoting cell death (Bornstein et al., 2011, 

Edison et al., 2017, Edison et al., 2012). Interesting, mono-ubiquitylation of BCL2, by Parkin, enhances 

the stability of BCL2 (Chen et al., 2010). BCL2 interacts with Beclin1, inhibiting autophagy, under 

normal and starvation conditions, promoting cell survival (Chen et al., 2010, Pattingre et al., 2005). To 

date, there was no evidence of a DUB for BCL2 in the literature.  

From the data presented here, knockdown of USP10 alone, or in combination with MEK1/2 inhibition, 

resulted in the loss of BCL2 protein (Figure 6.11B and Figure 6.14B). This suggests USP10 could be the 

DUB for BCL2, as knockdown of this DUB would prevent the deubiquitylation of BCL2, resulting in its 

increased degradation. Alternatively, a decrease in USP10 protein could prevent the deubiquitylation 

of an additional protein that is required to drive BCL2 expression. Therefore, knockdown of USP10 

would result in the increased degradation of this regulatory protein and a decrease in BCL2 protein 

levels. In addition, knockdown of USP10 could act as an apoptotic stimulus, causing the XIAP-driven 

polyubiquitylation and degradation of BCL2.  

Interestingly, knockdown of USP10, using siUSP10_1, appeared to alter the expression of MCL1 and 

BCL2 in a different manner to that seen with siUSP10_5 and siUSP10_69 (Figure 6.12B). Knockdown of 

USP10, using siUSP10_69, resulted in a marginal loss of BCL2 and an increase in MCL1 (Figure 6.14B), 
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thereby phenocopying that seen for knockdown of USP10 using siUSP10_5 (Figure 6.11B, Figure 6.12B 

and Figure 6.14B). Interestingly, this corroborates data presented in Figure 6.10, were both siRNAs 

(siUSP10_5 and siUSP10_69) produced a similar cell death response, with or without PD901. In 

contrast, knockdown of USP10, using siUSP10_1, resulted in a marginal increase in BCL2 and very little 

changes to MCL1 protein levels. Again, as previously described, siUSP10_1 could have off-target effects 

following transfection in HCT116 cells and this could account for the contradictory results.  

 

6.2.10. Combined knockdown of USP10 and MCL1 inhibition did not result in an increase in cell 

death. 

Since USP10 knockdown increased MCL1 protein levels it was speculated that this might protect cells 

from death. Therefore, the effect of inhibition of MCL1, in combination with USP10 siRNA, was 

investigated to see if it would result in a greater increase in cell death, than seen with PD901. For these 

experiments the potent and selective MCL1 inhibitor S63845 (S45) was used, which is currently in 

Phase I clinical trials for the treatment of patients with AML (Acute Myeloid Leukaemia) or MDS 

(Myelodysplastic Syndrome) (Kotschy et al., 2016).  

Treatment of HCT116 cells with increasing concentrations of the MCL1 inhibitor, S63845 (S45), resulted 

in a dose-dependent increase in MCL1 protein (Figure 6.15A), with minimal induction of cell death 

(Figure 6.15B). An increase in MCL1 protein following treatment with S45 has already been observed 

and was shown to be a consequence of an increased half-life of MCL1 (Kotschy et al., 2016). Therefore, 

an increase in MCL1 protein was a good marker of S45 target engagement. Compared to the increase 

in cell death seen with the combined knockdown of USP10 and MEK1/2 inhibition, minimal cell death 

was observed with combined knockdown of USP10 and MCL1 inhibition (Figure 6.15C and Figure 

6.15D). This suggests that the increase in MCL1 protein seen with USP10 knockdown was not hindering 

the cell death response in HCT116 cells.  

 

6.2.11. Knockdown of YOD1 and USP10 in A375 cells did not combine with MEK1/2 inhibition to 

induce cell death. 

A panel of colorectal carcinoma (CRC) and melanoma cell lines was screened to determine the 

endogenous protein levels of USP10 and YOD1. Western blot analysis revealed that the expression of 

these DUBs varied between the cell lines (Figure 6.16). Analysis revealed that YOD1 expression was 

generally higher in melanoma cell lines and expression of USP10 appeared to be highest in CRC cell 

lines that have an oncogenic KRas G13D mutation, such as HCT116 and LOVO cells. Analysis of the 

expression of pro-survival BCL2 proteins demonstrated that MCL1 expression was marginally lower in 
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CRC cell lines compared to melanoma cell lines, whilst expression of BCL2 was considerably higher in 

melanoma cell lines, compared to CRC cell lines, with the exception of the LOVO and SW48 cell lines. 

The melanoma cell line, A375, had comparable expression of USP10 and YOD1 to HCT116 cells and as 

such, the effect of knockdown of these DUBs in A375 cells was investigated, following MEK1/2 

inhibition with PD901, and compared to the cell death response observed in HCT116 cells.  

The concentration of PD901, required to inhibit MEK1/2 activity with minimal cell death, in A375 cells, 

for 5-days was demonstrated to be 0.01 µM (Figure 6.17A and Figure 6.17B). Neither knockdown of 

YOD1 nor USP10, in combination with PD901, resulted in a significant increase in cell death (Figure 

6.17C). However, similar to that seen in HCT116 cells, knockdown of USP10, resulted in a marginal 

increase in MCL1 and a loss of BCL2 protein (Figure 6.17D). Additionally, knockdown of USP10, in A375 

cells, resulted in an increase in PUMA and a loss of BCL-XL protein. High basal expression of MCL1 in 

A375 cells could be the reason why only a marginal increase in MCL1 protein level was observed, as 

compared to that seen in HCT116 cells. Overall, this indicated that the increase in cell death seen in 

HCT116 with combined knockdown of YOD1 or USP10 with MEK1/2 inhibition was perhaps cell line 

dependent.  

 

  



223 
 

Figure 6.15 Inhibition of MCL1 and knockdown of USP10 did not result in an increase in the fraction of cells with sub-G1 DNA. 
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Figure 6.16 Screen of Colorectal carcinoma and Melanoma cell lines for expression of USP10 and YOD1. 
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Figure 6.17 Despite no increase in cell death, knockdown of USP10 in A375 cells resulted in an decrease in BCL2 and an increase 
in MCL1 protein. 
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6.3. Discussion 

Tumour cells addicted to ERK1/2 signalling can adapt to monotherapy with MEK1/2 inhibitors (Caunt 

et al., 2015). Thus, additional treatments that synergise with MEK1/2 inhibition to induce cell death 

are of therapeutic benefit. Based on RNAi screening, Chapter 5, and further validation, Chapter 6, 

several DUBs, USP10, YOD1 and VCIP135, were identified that combine and even synergise with 

MEK1/2 inhibition to induce apoptosis of HCT116 cells. Of note, this effect was observed to be context 

dependent and may differ depending upon the driving oncogene.  

 

6.3.1. Limitations and shortcomings of RNAi screens. 

RNAi screens are widely used to interrogate gene function, typically utilising siRNA or shRNA to silence 

target gene expression, and are a powerful tool for analysing loss-of-function phenotypes in 

mammalian cells. However, one of the major limitations of RNAi screens is the off-target effects of 

siRNA (Jackson et al., 2003, Jackson and Linsley, 2010). siRNA have the ability to bind to several mRNA, 

in addition to their intended target mRNA, with partial complementarity. In the majority of cases, 

partial sequence complementarity occurs between the 5’ end (seed sequence) of the siRNA, and the 

3’UTR of the off-target mRNA (Jackson et al., 2003). Thus careful consideration needs to be made when 

designing siRNA, particularly within the seed sequence. Interestingly, some studies identified that the 

number of off-target genes silenced was proportional to the concentration of siRNA transfected into 

cells (Persengiev et al., 2004). Therefore, it is advantageous to test multiple concentrations of siRNA 

and to choose the minimum required for knockdown of your target gene. The technology used to 

deliver the siRNA can also trigger off-target effects and induce a non-specific innate inflammatory 

response (Bridge et al., 2003). Additionally transfection of siRNA can overwhelm the endogenous RNAi 

machinery, which might result in alterations to the processing of endogenous miRNA, known to 

regulate a wide variety of processes within the cell (Khan et al., 2009). Ultimately, this can lead to 

unexpected phenotypes and complicates the interpretation of RNAi screen data. One off-target 

phenotype caused as a result of transfection of select siRNAs is a reduction in cell growth. This often 

correlates with the inability of this siRNA to target its intended mRNA (Jackson et al., 2006). This off-

target effect is relevant for this study as cell viability was used as an end point assay.  

During initial experiments to validate ‘hits’ identified from the 5-day RNAi screen, three different 

siRNAs, with distinct sequences, were chosen to knockdown USP16 and USP10. Interestingly, the three 

different siRNAs targeting USP16 and USP10 generated different phenotypes. A large increase in the 

fraction of cells with sub-G1 DNA was observed with siUSP10_1 and siUSP16_O3D, alone, compared 

to the other siRNAs tested. As the two additional siRNAs generated comparable phenotypes to each 
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other one could conclude that the observed effect with siUSP10_1 and siUSP16_O3D was due to off-

target effects of these siRNA. Indeed, observing the same phenotype using several siRNA with distinct 

sequences, particularly at the 5’ end of the siRNA, targeting the same gene, increases confidence that 

the observed phenotype was as a consequence of silencing the intended target gene (Cullen, 2006, 

Echeverri et al., 2006). Additional siRNAs or further validation of the phenotype may be required to 

confirm the cell death response observed with the remaining siRNAs.  

There are multiple strategies to reduce off-target effects of siRNA. Chemical modification of the siRNA, 

such as 2’-O-methyl modification, within the 5’ end of the siRNA has been shown to mitigate off-target 

effects of siRNA (Jackson et al., 2006). Pooling of siRNA has been demonstrated to reduce off-target 

effects as a consequence of competition between the siRNA for knockdown of the target mRNA, 

providing a selective reduction of off-target events. In addition, if overexpression of a resistant form 

of the targeted mRNA ‘rescues’ cells from the observed phenotype this would confirm that this 

phenotype was not due to off-target gene silencing (Whither., 2003). Genome editing technologies, 

such as the CRISPR-cas9 system, could also be used to validate the observed phenotype. However, 

these technologies are not without caveats themselves.  

In addition to off-target effects, siRNA transfection with the same siRNA, did not reproducibly generate 

the same statistically significant or synergistic effect when combined with MEK1/2 inhibition. For this 

study, a synergistic effect is one in which knockdown of a DUB and MEK1/2 inhibition combine to cause 

a greater increase in cell death than the sum of the cell death responses from these separate 

‘treatments’, at the same doses. In contrast, an additive effect is one in which the effect of the two 

‘treatments’ combined is the same as the sum of the cell death response from the ‘treatments’ 

separately, at the same doses. A synergistic effect is a more favourable outcome to combinatorial 

treatments as it would imply that knockdown of a DUB or MEK1/2 inhibition causes minimal cell death 

but combined to generate a significant, and therapeutically beneficial, increase in cell death.  

During this study it was observed that knockdown of VCIP135/YOD1/USP10 combined with MEK1/2 

inhibition with PD901 to promote BAK/BAX-dependent apoptosis of HCT116 cells. Unfortunately, the 

synergistic effect observed with knockdown of USP10 or YOD1, in combination with MEK1/2 inhibition, 

was not always reproducible and cell death observed following combination treatment was not always 

consistent or significant. In the case of USP10, the irreproducibility of the data was often as a result of 

an increase in cell death following knockdown of USP10 alone. For both USP10 and YOD1, variations 

in cell death observed following transfection of siLUC and PD901 treatment, aided in the inconsistency 

of the significance of data produced. Numerous factors could account for the observed effects, 

including culturing drift causing epigenetic changes, rendering cells more or less susceptible to siRNA 
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transfection as well as treatment with PD901. The age of the cells and therefore the proliferative state 

of the cells could also account for the different phenotypes observed, in addition to the health of the 

cells at the time of transfection. Batch-to-batch variability of any of the reagents, including PD901, 

used during these experiments could cause variable and inconsistent results.  

 

6.3.2. Identification of key ‘hits’ from the DUB RNAi screen, in combination with MEK1/2 

inhibition. 

Of the ‘hits’ identified from the 5-day RNAi screen, the most promising were USP10, YOD1 and 

VCIP135. These three ‘hits’ are discussed in more detail below. Of note, knockdown of USP10 and YOD1 

combined with three different MEK1/2 inhibitors to induce cell death, aiding in the validation of the 

initial results obtained using PD901.  

 

6.3.2.1. VCIP135. 

Transfection of siRNA against VCIP135 alone did not induce cell death of HCT116 cells. This therefore 

suggests that VCIP135 is functionally redundant, meaning an additional protein can play the role of 

VCIP135 in these cells, or that its function is not essential for viability. Alternatively, the siRNA 

knockdown of VCIP135 may not be sufficient to completely abolish VCIP135 activity. To assess if 

knockdown of VCIP135, in this system, was sufficient to impair function Golgi fragmentation could be 

assessed by examining the length of the Golgi cisternae, by electron microscopy, which should 

significantly reduce following VCIP135 depletion (Zhang et al., 2014).  

siVCIP135 combined with MEK1/2 inhibition to induce a significant increase in apoptosis. However, the 

underlying mechanism behind this combinatorial effect was not deduced. As previously described 

treatment of HCT116 cells with MEK1/2 inhibitors failed to cause a cytotoxic response, despite an 

induction of pro-apoptotic proteins due, in part, to residual pro-survival activity. Consequently it 

required inhibition of these pro-survival proteins to induce cell death (Sale and Cook, 2013). 

Knockdown of VCIP135 could result in the disruption of membrane fusion and defective distribution 

of pro-survival proteins. Thus, loss of VCIP135 could result in the inability of the ‘inhibitory’ pro-survival 

proteins to interact with pro-apoptotic proteins. Therefore, MEK1/2 inhibition, inducing pro-apoptotic 

proteins, and knockdown of VCIP135 would combine to induce cell death, comparable to that seen 

with MEK1/2 inhibition and BH3 mimetic treatment.  

Additionally, as previously described both VCIP135 and ERK1/2 signalling regulate organelle 

morphology therefore one could speculate that the observed cell death, as a consequence of 
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knockdown of VCIP135 and MEK1/2 inhibition could be due to incomplete membrane fusion of 

multiple organelles resulting in detrimental changes to global organelle morphology. However further 

work needs to be done in order to decipher the mechanism underlying the cell death seen with 

combined knockdown of VCIP135 and PD901 treatment.  

 

6.3.2.2. YOD1. 

From the literature, YOD1 acts as a negative regulator of the Hippo signalling pathway; a pathway 

known to restrict cell proliferation and organ size (Kim et al., 2017, Yu et al., 2015, Zhao et al., 2011). 

At the molecular level, YOD1 acts, via ITCH, to drive the degradation of LATS1/2, a negative regulator 

of the transcription co-activators YAP/TAZ. This results in the nuclear accumulation of YAP/TAZ, which 

interacts with TEAD/TEF transcription factors, to turn on transcription of cell cycle-promoting genes, 

thereby inducing cell proliferation (Kim and Jho, 2017, Kim et al., 2017). In contrast to this down-

regulation of YOD1, via miR-21, resulted in a decrease in ITCH, an increase in LATS1, overall significantly 

reducing YAP/TAZ transcriptional activity (Kim et al., 2017). Therefore, it was speculated that 

knockdown of YOD1 would result in loss of YAP protein. Despite this, in HCT116 cells, knockdown of 

YOD1 resulted in a marginal increase in YAP protein compared to controls. In addition, a marginal 

increase in phosphorylated YAP (S127) was observed, following loss of YOD1, indicative of LATS1/2 –

driven phosphorylation and inactivation of YAP. This suggests that knockdown of YOD1 could cause 

the cytoplasmic accumulation of inactive YAP which would fit with the idea that loss of YOD1 results 

in the reduction of YAP/TAZ transcriptional activity (Kim et al., 2017).  

Analysis of the expression of alternative proteins regulated by YOD1 may be required to confirm that 

knockdown of YOD1 in these experiments sufficiently impaired its function. To confirm that YAP/TAZ 

activity was reduced following knockdown of YOD1 the activity of the Hippo signalling pathway could 

be analysed using a reporter assay in which a luciferase gene is under the control of TEAD responsive 

elements. Under these conditions, one would expect that knockdown of YOD1 would result in nuclear 

export of YAP, loss of YAP-dependent gene transcription, and therefore a reduction in expression of 

the TEAD luciferase reporter, compared to basal conditions. This would also confirm if the observed 

increase in YAP resulted in an increase in activity.  

Interestingly, ITCH has been demonstrated to be involved in multiple signalling pathways, including 

Notch signalling (Qiu et al., 2000, Rossi et al., 2006). Therefore, in addition to Hippo signalling, and its 

role independent of ITCH, in the regulation of the ER-associated protein degradation (Ernst et al., 

2009), YOD1 could control a much larger set of cellular processes and so knockdown of YOD1 could 

have a much wider impact on cell signalling pathways in addition to activation of Hippo signalling.  
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In HCT116 cells, knockdown of YOD1 combined with MEK1/2 inhibition, to induce BAK/BAX-dependent 

cell death. As previously stated both YOD1 and ERK1/2 signalling regulate components of the Hippo 

signalling pathway. Indeed, the deubiquitylating activity of YOD1 acts to activate YAP/TAZ signalling, 

inhibiting Hippo signalling and therefore inducing cell proliferation (Kim et al., 2017) and ERK1/2 

inhibition resulted in the reduction of YAP protein levels (You et al., 2015). Data presented here 

demonstrated, in HCT116 cells, that knockdown of YOD1, in combination with PD901, resulted in the 

reduction of YAP protein. One could speculate that MEK1/2 inhibition has a dominant effect over YOD1 

knockdown for the regulation of YAP expression, as knockdown of YOD1 alone was unable to reduce 

YAP protein.  

However, why this combination induces a cell death response rather than a severe reduction in cell 

proliferation is not known. This could be as, in addition to its role in Hippo signalling, YAP has been 

shown to regulate apoptosis. Contrary to that already described, YAP can promote the transcription of 

pro-apoptotic proteins, including BAX, via binding to p73. Phosphorylation of YAP was required to 

disrupt this interaction and reduce the expression of apoptotic proteins (Basu et al., 2003, Levy et al., 

2008). Interestingly, phosphorylation of YAP, by LATS1/2, has been shown to enhance the binding of 

p73 and resulted in apoptosis (Kawahara et al., 2008, Strano and Blandino, 2007). As knockdown of 

YOD1 should alleviate inhibition of LATS1/2, LATS1/2, in this system, could phosphorylate YAP, 

suggested from Figure 6.8B, which could interact with p73 and induce the expression of pro-apoptotic 

proteins including BAX. Interestingly a marginal increase in BAX was observed following knockdown of 

YOD1. Therefore, it could be suggested that loss of YOD1 combined with inhibition of MEK1/2 to 

further drive the induction of apoptotic proteins and tip the balance towards cell death.  

In contrast, inhibition of YAP, in ECA-109 cells, induced apoptosis and this correlated with a reduction 

in the BCL2/BCL-XL protein ratio and phosphorylated ERK1/2 and an increase in p53 and caspase 3 

levels (Cui and Li., 2017). Thus, they concluded that YAP was an oncogene in this cellular context. 

Interestingly, loss of BCL2 protein or phosphorylated ERK1/2 was not observed following knockdown 

of YOD1. However, similar to that previously described, one could conclude that combined knockdown 

of YOD1 and inhibition of MEK1/2 is required to reduce ERK1/2 phosphorylation and reduce YAP 

protein to drive apoptosis.  

 

6.3.2.3. USP10.  

Knockdown of USP10, in HCT116 cells (Figure 6.11) resulted in the loss of the G3BP2 protein, suggesting 

that the observed knockdown of USP10 was sufficient to impair a known function of USP10 (Takayama 

et al., 2018). In addition to this, loss of p53 and PUMA protein was observed following knockdown of 
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USP10. However, the effect of knocking down USP10 on the p53 pathway needs to be further 

validated.  

As previously described, under certain conditions, USP10 can act as an inhibitor of p53 signalling by 

increasing the expression of G3BP2, ultimately stimulating cell proliferation (Takayama et al., 2018). In 

contrast, knockdown of USP10 enhanced the degradation of G3BP2, inhibiting G3BP2-driven nuclear 

export of stabilised p53 and p53 activity. This resulted in an increase in BAX protein and reduced 

cellular proliferation in part due to p53. Therefore, overall one could predict that loss of USP10 would 

cause the polyubiquitin-driven degradation of G3BP2 resulting in enhanced p53 signalling, reduced 

proliferation and apoptosis. Indeed, in some cases loss of USP10 resulted in the induction of cell death, 

which could have been caused by the observed loss of G3BP2.  

Unlike that expected from above, knockdown of USP10 resulted in a loss of p53. Oi et al.demonstrated 

that G3BP1, an additional member of the G3BP family, interacts with USP10 and disrupts the 

interaction between USP10 and p53, thereby inhibiting the ubiquitin-driven degradation of p53 (Oi et 

al., 2015). This could provide an explanation for the observed decrease in p53 following USP10 

knockdown, as loss of USP10 would be similar to inhibition of its activity which would drive the 

polyubiquitylation and degradation of p53. This would also be consistent with the loss of PUMA 

observed following knockdown of USP10 (Figure 6.11B). However, contrary to that observed in this 

study, Oi et al.observed that knockdown of G3BP1 results in an accumulation p53. Overall, the 

underlying reason why loss of G3BP2 and/or p53 would synergise with PD901 to induce cell is unknown 

and requires further investigation.  

Inhibition or downregulation of G3BP have been demonstrated to induce apoptosis (Zhang et al., 

2012). G3BP are involved in numerous signalling pathways required for tumourigenesis, including Ras 

signalling, via interaction between G3BP and RasGAP (Barnes et al., 2002, Bos et al., 2007). 

Downregulation of G3BP has been demonstrated to cause a reduction in RasGTP, impairing Ras 

signalling pathways, including ERK1/2 and PI3K signalling (Zhang et al., 2012). Additionally, 

downregulation of G3BP sensitised cells to CDDP (cisplatin) treatment and resulted in a reduction in 

BCL2 protein, an increase in activated caspases and an increase in the fraction of cells with sub-G1 

DNA, ultimately inducing apoptosis (Zhang et al., 2012). Therefore, knockdown of USP10, via loss of 

G3BP2, has the potential to inhibit several Ras signalling pathways including PI3K signalling in addition 

to signalling via RAF. Thus, together with inhibition of ERK1/2 signalling, through MEK1/2 inhibition, 

the two treatments combined could act to significantly reduce Ras signalling and potentially overcome 

redundancy observed with either two alone to induce apoptosis.  
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Alternatively, the deubiquitylating activity of USP10 on G3BP2 and p53 may be unrelated and USP10 

could act to stabilise additional oncogenic proteins whose loss would have a dominant effect and 

combine with MEK1/2 inhibition to drive apoptosis. Screening to identify USP10-binding partners 

would aid in fully understanding the effects of USP10 knockdown in HCT116 cells.  

Interestingly, in A375 cells, knockdown of USP10 resulted in an accumulation of PUMA. This increase 

would support some of literature previously described, as loss of USP10 would result in enhanced 

degradation of G3BP2, inducing p53 activity and therefore expression of PUMA (Ashikari et al., 2017, 

Takayama et al., 2018). One could predict this would drive apoptosis, however, an increase in the 

fraction of cells with sub-G1 DNA following loss of USP10, or in combination with MEK1/2 inhibition 

was not observed.  

Interrogation of the p53 status of HCT116 and A375 cells revealed that both are wild-type for p53, 

therefore the variation in cellular responses was not due to variation of p53 background. Instead, an 

additional protein, under the control of USP10, could be differentially expressed in these cells. 

Increased expression of an oncogenic protein, under the control of USP10, in HCT116 cells, compared 

to A375 cells, could mean that HCT116 cells have a higher dependency on this protein for 

proliferation/survival. Therefore, loss of USP10, alone or in combination with MEK1/2 inhibition, could 

affect the stability of this protein and would cause different effects on cell proliferation in these two 

cell lines.  

In addition to loss of G3BP2, p53 and PUMA, knockdown of USP10 resulted in an increase in MCL1 

protein in HCT116 cells. To investigate the effect of MCL1 protein levels on HCT116 cells, following 

USP10 knockdown, USP10 siRNA was combined with an MCL1 inhibitor. This combination failed to 

significantly enhance the cytoxicity of USP10 knockdown. Thus, unlike that seen by Wang et al., 2014, 

where the increase in stability of MCL1 contributed to resistance to ABT-263, MCL1 upregulation was 

not the limiting factor for the induction of cell death. 

Along with alteration in MCL1 protein levels, there was a decrease in BCL2 protein levels following 

USP10 knockdown. Knockdown of USP10 sensitised HCT116 cells to MEK1/2 inhibition and combined 

to induce apoptosis. Sale and Cook, revealed that the shift from a cytostatic to a cytotoxic response, 

seen with MEK1/2 inhibitor treatment followed by treatment with BH3 mimetics, was reliant upon the 

removal of pro-survival BCL2 protein activity (Sale and Cook, 2013). This is consistent with the theory 

that cell death seen with MEK1/2 inhibition and USP10 knockdown is reliant upon the combined 

increase of pro-apoptotic protein levels, as a consequence of MEK1/2 inhibition, and a decrease in the 

pro-survival protein, BCL2, seen with USP10 knockdown.  
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Overall, knockdown of several DUBs, such as VCIP135, YOD1 and USP10, have been identified that 

combine with MEK1/2 inhibition to induce apoptosis of HCT116 cells. More work needs to be done to 

identify the molecular mechanisms that underlie the observed cell death. This study would benefit 

from inhibitors that specifically target USP10, YOD1 and VCIP135. In addition, it would be worthwhile 

profiling additional cell lines that harbour KRas or NRas mutations in order to determine whether 

combined MEK1/2 inhibition and knockdown of these select DUBs induces cell death. 
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Chapter 7: Final discussion
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7. Final Discussion 

Regulated cell death (RCD) plays a major role in development, tissue homeostasis, inflammation, 

immunity and multiple pathophysiological conditions. There a multiple modes of RCD, which are 

activated and propagated through various molecular mechanisms. These include necroptosis, 

ferroptosis, immunogenic cell death (ICD), autophagy-dependent cell death (ADCD) and as discussed 

further apoptosis. In disease, RCD can cause irreversible loss of post-mitotic tissues, associated with 

myocardial infarction and neurodegeneration, and defects in RCD are associated with pathologies 

predominantly characterised by uncontrollable cell proliferation, including cancer (Galluzzi et al., 

2018).  

Over the last 20 years there has been a huge effort to develop cytoprotective strategies aimed at 

targeting and disrupting RCD, however none have to date been approved for clinical trials. In contrast, 

inhibitors targeting pro-survival proteins to induce death, including BCL2 and MCL1, are clinically 

approved for the treatment of CLL patients (Ashkenazi et al., 2017, Kotschy et al., 2016). Targeted 

activation of RCD is suggested to be a much simpler clinical approach in part due to the emerging 

evidence that multiple RCD pathways are connected by key signalling molecules (Ashkenazi and 

Salvesen, 2014, Green and Llambi, 2015, Lalaoui et al., 2015), thereby inhibitors may have to target 

multiple pathways simultaneously to reduce RCD.  

Apoptosis is a mode of RCD, historically suggested to be a form of programmed cell death (PCD), 

characterised by morphological changes including nuclear fragmentation and membrane blebbing. 

This process is regulated through the action of the BCL2 protein family, grouped into pro-survival and 

pro-apoptotic proteins, which regulate MOMP and cell death. The discovery of interactions between 

pro-survival and pro-apoptotic proteins had major therapeutic implications and as such led to the 

development of BH3 mimetics which exploit this interaction and inhibit pro-survival proteins to drive 

apoptosis (Baell and Huang, 2002, Lessene et al., 2008).  

Recently, the historical view that apoptosis was a non-immunogenic response has been challenged. 

Instead, apoptotic cancer cell death, due to treatment with chemotherapeutic agents, including 

oxaplatin and cisplatin, and oncolytic viruses, was demonstrated to be immunogenic, due in part to 

release of danger-associated molecular patterns (DAMPs) (Inoue and Tani, 2014). As such, our 

understanding of apoptosis and the downstream cellular responses it causes appears to be evolving 

and therefore continued evaluation of how RCD, including apoptosis, is controlled is essential for 

understanding how RCD pathways can be targeted for therapeutic benefit.  
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7.1. Regulation of apoptosis by the Ras-RAF-MEK1/2-ERK1/2 signalling pathway  

The Ras-regulated RAF-MEK1/2-ERK1/2 (ERK1/2) pathway regulates several components of the 

apoptotic signalling pathway. Predominantly, activation of ERK1/2 signalling results in the 

downregulation or inhibition of pro-apoptotic proteins and the upregulation of pro-survival proteins, 

thereby ultimately promoting cell survival (Cook et al., 2017). Given this, tumour cells can develop 

numerous mechanisms to activate and maintain ERK1/2 signalling, thus evading apoptosis, to sustain 

cell proliferation and tumourigenesis. In contrast, inhibition of ERK1/2 signalling in these tumour cells 

has been demonstrated to drive the accumulation of pro-apoptotic proteins including BIM (Sale and 

Cook, 2013). Therefore, information regarding the regulation of BIM may play a role in oncogene-

targeted cancer therapies (Gillings et al., 2009). 

 

7.1.1. ERK1/2-dependent regulation of BIMEL – is there a role for RSK? 

The phosphorylation status of BIM influences its pro-apoptotic function and stability. Multiple kinases 

have been shown to phosphorylate BIMEL including p38 MAPK, JNK and ERK1/2. Whilst 

phosphorylation of BIMEL by JNK has been demonstrated to potentiate its pro-apoptotic activity, 

ERK1/2-driven phosphorylation of BIMEL induces its degradation (Ley et al., 2003, Putcha et al., 2003).  

ERK1/2 phosphorylates BIMEL on at least three Ser/Pro residues, including S69, resulting in its K48-

linked polyubiquitylation and degradation (Hubner et al., 2008, Ley et al., 2003, Luciano et al., 2003, 

Wiggins et al., 2011). Results presented in Chapter 3 confirm these findings, using both mutagenesis 

studies and pharmacological inhibitors of MEK1/2 and ERK1/2. More recently, RSK1/2 has been 

proposed to regulate the interaction between BIMEL and the E3 ligase SCFβTrCP, thereby targeting BIMEL 

for degradation (Dehan et al., 2009); it was suggested that ERK1/2 cooperates with RSK1/2 to 

phosphorylate the BIMEL degron, enabling the binding of βTrCP, thus driving the degradation of BIMEL. 

Contrary to this, work presented in Chapter 3 conclusively demonstrated that RSK is not required to 

regulate the degradation of BIMEL in HR1 cells, in addition to ERK1/2-addicted tumour cells. 

Mutagenesis of the serine residues within the BIMEL degron did appear to increase the stability of 

BIMEL, abolish its interaction with βTrCP and reduce its polyubiquitination. However, further analysis 

revealed that there was overlap between the ERK1/2 docking domain and the BIMEL degron, therefore 

mutagenesis of the BIMEL degron could stabilise BIMEL by decreasing the ability of ERK1/2 to interact 

with BIMEL. Indeed, the RSK1/2 phosphorylation site mutant was confirmed to impact the ability of 

ERK1/2 to bind to BIMEL (Chapter Figure 3.5G and Figure 3.5H), thereby bringing into question the 

reliance on mutagenesis to assess the role of RSK in the degradation of BIMEL. Conclusions drawn from 
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Chapter 3 were based on the use of three RSK inhibitors, all of which showed no role for RSK in the 

regulation of BIMEL. As a whole, these results argue firmly against a role for RSK in the regulation of 

BIMEL stability and further highlights the requirement of ERK1/2-dependent phosphorylation of BIMEL 

to enable its interaction with βTrCP, thereby driving its degradation. 

 

7.1.2. Is there an alternative kinase that cooperates with ERK1/2 to regulate the degradation of 

BIMEL? 

The main questions arising as a consequence of the findings from Chapter 3 are: Is an alternative kinase 

required for phosphorylation of BIMEL within the BIMEL degron, and therefore responsible for 

regulating the stability and degradation of BIMEL, or is ERK1/2 sufficient, alone, to drive the degradation 

of BIMEL.  

Multiple proteins are polyubiquitylated and degraded as a consequence of βTrCP binding to a defined 

phospho-degron motif, DSGX(n)S, where X represents any amino acid. In the majority of cases, 

phosphorylation of serine residues within this degron is prerequisite to βTrCP binding. Additionally, 

the stability of multiple proteins has been demonstrated to be regulated by the cooperative action of 

two kinases. A classic example of this is the regulation of β-Catenin, which, as a consequence of 

phosphorylation by CK1α, is also phosphorylated by GSK3 within the described βTrCP binding motif, 

resulting it its targeted degradation. As ERK1/2 is a proline-directed Ser/Thr kinase it is unlikely to be 

able to phosphorylate BIMEL at the suggested βTrCP binding motif (BIMEL: SSGYFS); therefore an 

alternative kinase could phosphorylate BIMEL within the described degron to cooperate with ERK1/2 

to drive BIMEL degradation. Several candidate kinases were considered that could be able to 

phosphorylate BIMEL within the degron; however, inhibitors against these kinases failed to increase 

the stability of BIMEL or abolish its interaction with βTrCP. Therefore, identifying alternative kinases for 

BIMEL may require a large-scale approach, including treating HR1 cells with broad-spectrum inhibitors 

at high concentrations to see if any alter the interaction between βTrCP and BIMEL and therefore 

regulate the stability of BIMEL. An alternative approach might be to extract BIMEL from cells by affinity 

purification and then employ mass spectrometry to identify interacting partners. Co-

immunoprecipitation experiments would be required to confirm that the identified kinase(s) interacts 

with BIMEL.  

Alternatively, phosphorylation at the βTrCP binding motif may not be required for interaction between 

BIMEL and βTrCP. Indeed, Kanemori et al. demonstrated that βTrCP can interact with CDC25A and 

CDC25B independent of phosphorylation within their βTrCP binding motifs (Kanemori et al., 2005). 

Therefore, this presents the possibility that βTrCP could bind and polyubiquitylate BIMEL, independent 
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of phosphorylation at the degron, and that ERK1/2 activity alone could regulate the stability of BIMEL. 

Interestingly, Ewings et al. provided an alternative theory, which could corroborate the idea that 

phosphorylation at the BIMEL degron is not required for βTrCP binding. Instead, ERK1/2-dependent 

phosphorylation of BIMEL drives its dissociation from pro-survival proteins, BCL-XL and MCL1, which 

renders BIMEL susceptible for degradation (Ewings et al., 2007). As such, the ability of βTrCP to interact 

with BIMEL might not be dependent on phosphorylation per se, but instead rely upon phosphorylation 

for dissociation from pro-survival proteins to reveal the βTrCP binding motif. This is supported by 

findings by Ewings et al., where mutation of the BH3 domain of BIMEL drives its dissociation from pro-

survival proteins and accelerates its degradation, suggesting that dissociation is a prerequisite for 

degradation (Ewings et al., 2007). In addition, mutation of proline-directed Ser/Thr residues, known to 

be targeted by ERK1/2, stabilised BIMEL, as demonstrated in Chapter 3, and have previously been 

shown to prevent the dissociation of BIMEL from pro-survival proteins following ERK1/2 activation 

(Ewings et al., 2007). This provides some evidence supporting the theory of dissociation-driven 

degradation. Given this, several questions still remain unanswered, including how phosphorylation 

drives dissociation from pro-survival proteins and does phosphorylation induce conformational 

changes that induce this dissociation and aid in revealing the βTrCP binding site of BIMEL.  

 

7.2. Regulation of apoptosis by ubiquitylation 

Post-translational modifications regulate all aspects of a protein’s existence, including its activity and 

stability. Ubiquitylation predominantly results in the degradation of a protein, however non-

degradative roles for ubiquitylation have also emerged. Ubiquitylation is regulated by E1, E2 and E3 

ligases; the latter catalyses the final enzymatic reaction required for ubiquitin (Ub) attachment. 

Ubiquitylation is opposed by deubiquitylating enzymes (DUBs), which remove Ub from its substrate.  

Established in 1990 by Schwartz et al. there is now conclusive evidence linking ubiquitylation to 

apoptosis (Jesenberger and Jentsch, 2002, Orlowski, 1999, Schwartz et al., 1990, Wojcik, 1999). Several 

substrates of the ubiquitin-proteasome system (UPS) are key regulators of apoptosis including, BCL2 

proteins, IAPs and p53, thereby highlighting the critical role the UPS plays in the execution of apoptosis. 

In addition, ubiquitylation can play a non-degradative role in regulating apoptosis; for example, the 

K63-polyubiquitylation of RIP1 is required to recruit additional complexes resulting in the activation of 

TNFα-mediated NF-ĸB signalling and cell survival (Wertz et al., 2004).  

Studying the role of ubiquitylation in the regulation of apoptosis is important for establishing the 

signalling networks that balance life and death. In addition, dysregulation of apoptosis has been linked 

to multiple diseases including Alzheimer’s disease, Parkinson’s disease, cancer and autoimmune 
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diseases. As such unravelling the link between apoptosis and ubiquitylation could be of therapeutic 

benefit.  

 

7.2.1. DUBs as therapeutic targets 

The importance of Ub-targeted degradation was first highlighted following a Nobel Prize being 

awarded for the discovery of the ubiquitin-proteasome system (UPS) (Ciechanover et al., 1980, 

Hershko et al., 1980). This resulted in the development of proteasome inhibitors, which, in the majority 

of cases, induced apoptosis (Drexler, 1997, Shinohara et al., 1996) and identified the potential 

therapeutic benefit of targeting ubiquitylation machinery. To date, inhibitors are being or have been 

developed that target several components of the ubiquitin system including DUBs (Cohen and 

Tcherpakov, 2010, Harrigan et al., 2017).  

Recognition that the dysregulation of DUBs contributes to multiple diseases including cancer and 

neurodegenerative diseases highlighted the possibility that DUBs could be a therapeutic target. 

However, it is not until recently that first generation DUB inhibitors have reached clinical trials.  

The development of selective DUB inhibitors has been hindered by insufficient understanding of DUB 

biology and also the lack of tools to screen and assay DUB activity and inhibition. DUB activity-based 

probes (ABPs), such as the HA-UbVME probe described in Chapter 4, has enabled researchers to 

monitor DUB activity and inhibition of DUBs by small molecules, thereby assisting in characterising the 

selectivity of a DUB inhibitor (Hewings et al., 2017). Indeed, ABPs have aided in identifying the 

selectivity of the USP7 inhibitor, P22077, and have been used to demonstrate that HBX19818 is 

selective for USP7, against a panel of DUBs (Altun et al., 2011, Reverdy et al., 2012).  

Recently, Liang et al. suggested that the DUB USP30 regulates BAK/BAK-dependent apoptosis in cancer 

cells (Liang et al., 2015). They demonstrated that knocking down USP30 sensitised cancer cells to BH3 

mimetics and the combination resulted in cell death. Thus, inhibitors against USP30 have the potential 

to be used, in combination, to treat cancer. Inhibition of USP30, using the USP30 inhibitors MTX32 and 

MTX48, provided by Mission Therapeutics, together with the BH3 mimetic ABT-263, yielded varying 

results. Using the ABP, HA-Ub-VME, both inhibitors were found to rapidly and irreversibly inhibit 

USP30. Whilst MTX32 combined with ABT-263 to induce apoptosis of HCT116 cells, MTX48 did not. 

Further examination of the general inhibitor profiles of MTX32 and MTX48, using the ABP, highlighted 

the off-target nature of MTX32, thus indicating that apoptosis, induced as a consequence of combined 

treatment with MTX32 and the BH3 mimetic, was due to MTX32 inhibiting multiple, potentially 

essential, DUBs. Data generated in Chapter 4 highlights the need for tools such as ABPs to evaluate the 
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selectivity of DUBs. However, these technologies still have limitations, including the number of DUBs 

that can be labelled, as such further advancements in probe design and assay technologies would aid 

in driving the development of clinically relevant DUB inhibitors.  

 

7.2.2. Identifying DUBs that regulate cell death driven by MEK1/2 inhibitors 

The emergence of resistance to new cancer therapies, including MEK1/2 inhibitor monotherapy, 

necessitates the development of alternative strategies to delay and/or prevent its onset. As a 

consequence of the ERK1/2 pathway being closely integrated with ubiquitin signalling, it was 

hypothesised that knockdown of one or more DUBs could combine with MEK1/2 inhibition to drive 

tumour cell death. Therefore, inhibition of this DUB could be used in combination with MEK1/2 

inhibitors for targeted treatment of ERK1/2 addicted tumour cells.  

Given this, a DUB focused RNAi screen was undertaken to identify DUBs which, when knocked down, 

transformed MEK1/2 inhibition from a cytostatic to a cytotoxic response. With the shorter 3-day 

screen, very few DUBs were identified that robustly combined, when knocked down, with MEK1/2 

inhibition to drive loss of cell viability and/or cell death. The two 3-day screens performed were valid 

as all controls, both negative and positive, for siRNA and inhibitors, generated raw data from multiple 

end-point analyses that matched the expected trend. Therefore, this could suggest that the original 

hypothesis may not be correct, and that despite the screen being valid, that knockdown of DUBs do 

not combine with MEK1/2 inhibition to drive tumour cell death. However, it could suggest that the 

method used to analyse the screen, sensitivity index (SI) analysis, may not have been the best method 

to test the hypothesis. Alternative analyses should be performed to clarify if the chosen analysis 

method was the limiting factor preventing the identification of ‘hits’ and if additional ‘hits’ would be 

obtained using an alternative method. Interestingly, Ye et al. concluded that RNAi screening is capable 

of identifying novel drug targets that can sensitise cancer cells to treatment however, if an 

inappropriate statistical method or model was applied to the screen data it could decrease the ability 

to detect ‘true’ hits and will increase false positive and negative results (Ye et al., 2012). An example 

of an alternative method of analysis includes the use of a linear model, which describes both the effect 

of siRNA and drug individually, as well as the combined effect, and is thought to overcome problems 

associated with SI analysis including cross-plate variation, which is averaged during SI calculations (Ye 

et al., 2012).  

In addition, an RNAi screen may not be the best method to address the suggested hypothesis. 

Alternative approaches include a CRISPR-cas9 screen, which would knockout DUBs of interest, rather 

than knock them down, and would eliminate the risk that residual DUB activity could mask the 
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phenotype. Interestingly, information generated by DepMap (DepMap, 2019) suggests that there is 

limited overlap between the phenotype observed from siRNA knockdown and CRISPR knockout of the 

same gene in the same cancer cell line. In addition, small molecule DUB inhibitors may cause a similar 

effect to siRNA knockdown of a DUB as both rarely completely abolish the activity of their targets. 

Thus, siRNA may be more biologically relevant than CRISPR-cas9 for assessing the phenotype 

associated with loss of DUB activity.  

Overall, it could be suggested that in order to observe a ‘hit’ for the designed DUB RNAi screen, 

irrespective of end-point assay analysis, statistical analysis and differences caused by experimental 

variability, the DUB must regulate, or be, the key gene driving tumour cell growth. Therefore, its 

knockdown would combine with MEK1/2 inhibition to drive a robust cell death phenotype. In addition, 

there might be functional redundancy between DUBs, therefore in order to observe a desired 

phenotype multiple DUBs may need to be targeted simultaneously.  

 

7.2.3. Knockdown of USP10, YOD1 or VCIP135 combines with MEK1/2 inhibition to induce 

apoptosis of HCT116 cells 

Data generated from the 5-day screen identified USP10, YOD1 and VCIP135 as ‘hits’. Further analysis 

revealed that these DUBs repeatedly, when knocked down, combined with MEK1/2 inhibition, to drive 

cell death, in a BAK/BAX-dependent manner. However, combined knockdown of USP10 or YOD1 with 

MEK1/2 inhibition failed to cause cell death in A375 melanoma cells, therefore suggesting a cell line-

specific phenotype. It would be interesting to see if knockdown of these DUBs combined with inhibitors 

that target different components of the ERK1/2 signalling pathway including RAF or ERK1/2 to induce 

apoptosis of HCT116 cells.  

The exact molecular mechanism underlying how these DUBs aid in regulating apoptosis is unknown 

and requires further examination. The use of DUB-specific inhibitors in future work would be 

invaluable and would help reduce variability in phenotype caused as a consequence of transfection. In 

addition, CRISPR-cas9 USP10, YOD1 and VCIP135 knockout cells would be a useful tool to help 

elucidate the role these DUBs play in the regulation of apoptosis. In terms of large-scale future 

experiments, it would be interesting to perform affinity proteomics to identify substrates or binding 

partners of USP10, YOD1 and VCIP135. Proximity-dependent biotin identification (BioID) should enable 

the identification of proteins that interact with these DUBs in living cells. USP10, YOD1 or VCIP135 

would be fused in-frame to an E. coli biotin conjugating mutant (BirA*) and expressed in cells. The 

enzyme would biotinylate proximal interacting proteins of these DUBs, which could then be affinity 

purified using streptavidin and identified using mass spectrometry. As this method does not require 
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protein-protein interactions to be maintained post-lysis, weak or transient interactors may be 

identified. It would be interesting to compare the interacting partners identified for catalytically active 

and catalytically inactive mutants of the DUBs, as some catalytically inactive mutants can ‘trap 

substrates’ analogous to the technique used to identify targets of protein-tyrosine phosphatases 

(PTPs) and ‘ligase trapping’ used to identify substrates of the E3 ligase SCF (Saf1) (Blanchetot et al., 

2005, Mark et al., 2016, Mark et al., 2014). Again, this may aid in identifying substrates that may bind 

transiently or weakly to catalytically active DUBs.  

Of note, USP10 was found to regulate BCL2 protein stability. It would be interesting to evaluate how 

USP10 regulates the stability of BCL2, either directly or indirectly, whether knockdown of USP10 also 

resulted in loss of BCL2 mRNA and conversely whether overexpression of USP10 promotes the stability 

of BCL2. The regulation of BCL2 by USP10 does provide one explanation as why combined knockdown 

of USP10 and MEK1/2 inhibition resulted in tumour cell death; loss of BCL2, as a consequence of USP10 

knockdown, would lower the pro-survival response and combine with MEK1/2 inhibitors, known to 

induce pro-apoptotic proteins, to drive apoptosis (Sale and Cook, 2013). 

 

7.3. Conclusions 

Since the definition of apoptosis by Kerr in 1972, a vast body of work has established that apoptosis is 

a critical process required for cell death and as such is subject to tight regulation. Therapeutic 

manipulation of pathways regulating apoptosis has the potential to drive cell death, including cancer 

cell death. This study focused on the regulation of a key pro-apoptotic protein BIMEL and established 

that RSK is not required to regulate the stability of BIMEL. However further work will be required to 

confirm if ERK1/2 alone is required to regulate BIMEL turnover.  

The ubiquitin-proteasome system plays a pivotal role in the regulation of apoptosis. Given this, 

understanding the role that ubiquitin system components, including DUBs, play in the regulation of 

apoptosis could be exploited therapeutically to drive cell death. Recent advances in the development 

of DUB inhibitors will likely prove invaluable in the treatment of multiple diseases. Work performed in 

this thesis highlights that technologies aimed at assessing the selectivity of DUB inhibitors are critical 

and advances, aimed at improving assays and screens to identify and confirm the selectivity of DUBs, 

will be critical for DUB drug discovery and development. Finally this study identified several DUBs that, 

when knocked down, combine with MEK1/2 inhibition to enhance tumour cell death. Dependent on 

further evaluation, these DUBs could be targeted for therapeutic benefit to overcome resistance to 

MEK1/2 inhibitor monotherapy and drive tumour cell death.  
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