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Abstract
In this paper we describe the design of a proof-of-concept wireless embedded sensor system for
continuous strain cycle monitoring as a method for fatigue life assessment on civil structures.
Monitoring of strain cycles is energy demanding, and therefore not suited to energy-constrained
devices, as it requires continuous acquisition of strain data with a high sampling rate, followed
by data processing using algorithms for peak-trough detection and cycle counting. To overcome
this drawback, at the core of our proposed design is a piezoelectric-based analogue sensor system
that can achieve as much as a factor of 9 increase in energy efficiency compared with the
conventional approach. The key component is an analogue peak-trough detector that offloads the
computation in peak-trough detection from the microcontroller, thus eliminating the need for
continuous sampling. The function of the detector is coupled with an energy-efficient interrupt-
driven software design for acquisition and strain cycles calculation, which is carried out by using
a standard form of the rainflow cycle counting algorithm. For wireless communication and
networking, LoRa and LoRaWAN are adopted as core modules. We illustrate the performance of
our proposed solution by way of simulation and laboratory experiments. Results show a good
agreement in measurement of strain cycles between our proposed system and the conventional
approach. Thus, our solution proves to be promising for real fatigue measurement applications.

Keywords: fatigue, strain cycles, PVDF, analogue peak-trough detector, interrupt-driven,
rainflow cycle counting algorithm, LoRa

(Some figures may appear in colour only in the online journal)

1. Introduction

In situ monitoring of mechanical strain is important in the study
of metal fatigue, where the objective is to understand the pro-
gressive failure and degradation mechanisms of civil structures
like steel bridges, offshore platforms, cranes, lighting poles,
gantries, or other high-profile engineering structures [1–5].
Although metal fatigue is a well-known engineering problem, its
complete understanding remains a challenging and unsolved
issue with much of the research looking at the effects of fatigue

in steel bridges [3, 6–15]. Steel bridges are subjected to a large
number of repetitive local strain concentrations of different
magnitude caused mainly by vehicle loads. These cycling strain
concentrations may lead to crack initiation and growth, corro-
sion, and eventual structural failure. The consequences of
structural failure may come in many different forms, for
example, material and structural damage, human injuries and
fatalities, loss of the functionality of the structure and environ-
mental damage. An example is the closure in November 2015 of
the 55 year old Forth Road Bridge in Scotland because of a
fatigue-induced crack found in the truss end linkage under the
carriageway during a routine visual inspection [16]. The bridge
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was completely closed for three weeks with traffic restrictions
imposed for several months while repairs were carried out,
provoking major travel disruptions and a significant cost
impact [17].

Several methods for assessing fatigue of civil structures
have been proposed in the literature [18], which include non-
destructuve testing (NDT) [19], piezoelectric actuators [6],
acoustic emission [20], surface-mount piezoelectric paint sensors
[21], vibration analysis [22], fibre Bragg grating sensing [23],
and computer vision-based methods [24]. However, deployment
cost and in most cases inability of these solutions to operate
autonomously and/or remotely for long periods of time are key
barriers to large-scale adoption in the civil engineering industry.

With merits of low cost sensing, ease of deployment and
operation, and timeliness of data, wireless sensor networks
(WSNs) have become a popular choice of remote instrumenta-
tion for civil engineering applications [25], including fatigue
strain-cycle sensing [4, 7, 8, 12]. Two common approaches are
wireless sensors that use either vibrating wire strain gauges
(VWSGs) or conventional electrical resistance metal foil strain
gauges. In either of these solutions, the conventional approach
for monitoring fatigue strain cycles requires continuous data
acquisition of strain by using a relatively high sampling fre-
quency of the order of tens of Hz, which is necessary for
achieving an effective strain cycles resolution [4, 12, 14, 24].
This draws substantial amounts of power, thus deeming VWSGs
and electrical resistance strain gauges inappropriate for long-
term monitoring unless compromises are made, such as wired
power, high capacity, high voltage batteries (which may need
regular replacement or recharging) or, if conditions are suitable,
using energy harvesting techniques, e.g. a solar panel.

In this paper, we introduce an original design of a
wireless sensor system for monitoring of fatigue strain cycles.
Our design uses a piezoelectric transducer to sense mechan-
ical strain continuously. A piezoelectric transducer is a device
which generates an electrical signal proportional to the
mechanical strain of the surface to which it is bonded. Unlike
electrical resistance strain gauges, piezoelectric transducers
do not need any external voltage excitation source in order to
operate. In addition, research has shown that the major
advantage of using piezoelectric sensors as opposed to elec-
trical resistance strain gauges lies in their superior perfor-
mance in terms of sensitivity, signal-to-noise ratio and high
frequency noise rejection [26].

The key novelty of our proposed solution lies in the
interaction between the built-in microcontroller (MCU) in the
wireless platform and a custom-built analogue sensor system
specifically designed for reducing sampling and computation
workload at the MCU while minimising the power consump-
tion of the whole system. As previously mentioned, the con-
ventional approach for monitoring fatigue strain cycles requires
continuous strain measurements at relatively high sampling
frequencies. Acquired data are then processed by extracting the
local maxima (peaks) and minima (troughs) and using such
points to obtain strain cycles by way of a standard-based cycle
counting method, such as the rainflow cycle counting algorithm
[2, 27]. Finally, obtained strain cycles are grouped in the form
of a histogram that reflects the number of strain cycles over the

period of time covered by all the sampled data. For energy-
constrained wireless devices, both sampling and computing
tasks can demand excessive energy consumption, which
adversely affects their operational lifetime and consequently the
success and application of this solution.

To overcome this issue, our analogue sensor system
design has the ability to detect peaks and troughs in the strain
signal sensed by the piezoelectric transducer with no invol-
vement of the MCU. The sought-after benefit of this approach
is the elimination of the need for continuous data acquisition.
Instead, the MCU remains in low-power energy saving mode
most of the time and is only activated by our analogue sensor
system to perform a single data acquisition of any detected
peaks or troughs. Sampled peak/trough data are then pro-
cessed by our embedded implementation of the rainflow cycle
counting algorithm, and the results used to create and/or
update a fatigue strain cycles histogram stored locally in our
system. Finally, our solution is designed to transmit the
generated histogram information using Long Range (LoRa)
and LoRaWAN technologies, thus allowing for connectivity
to other Internet of things (IoT) technologies [28].

Similar work—and also an example of a conventional
system—by Bai et al [7] describes a piezoelectric-based wire-
less sensor system for local computation of fatigue strain
characteristics using a digital signal processor. Although we
were unable to compare our power consumption results with
those of their experiments (not reported in their paper), we
demonstrate experimentally that it is possible to offload from
the processor in a uniprocessor system the computational bur-
den of continuous data acquisition and peak-trough detection,
achieving as a result as much as a factor of 9 reduction in power
consumption while having a reasonable measurement accuracy.

Liu et al [13] designed a prototype of an NDT and
piezoelectric-based wireless sensor for early detection of fati-
gue-induced cracks. The detection performance of their pro-
posed solution is shown to be very promising both in the
laboratory and by way of a case study on a real bridge structure.
However, reported power consumption values are significantly
higher (of the order of several hundreds of mW) than our results
(5mW on average). In fact, their design is intended to perform
individual readings only once every week (or certain number of
weeks), while our solution has the ability to sense continuously.

Finally, Alavi et al [9–11] presented a proof-of-concept
wireless sensor and a data interpretation framework for early
detection of distortion-induced fatigue cracks. The system is
based on a self-powered piezo-floating-gate sensor, initially
devised by Michigan State University for smart health mon-
itoring of pavement systems [29]. Their approach consists of
cumulatively measuring the duration of loading events whose
strain level exceeds pre-selected levels. These measurements
are stored internally and can only be retrieved by a service
vehicle equipped with a radio frequency identification scan-
ner. Our approach differs from the above in that we aim to
recover the strain time series history by solely sampling peaks
and troughs without any pre-defined thresholds and within the
framework of long-term operation of low-power systems. In
addition, our solution takes advantage of long-range wireless
IoT technology for remote data retrieval.
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1.1. Contributions

This paper makes three contributions:

• To our knowledge, this is the first attempt to apply the idea
of a hardware-based peak-trough detection to applications
such as fatigue strain-cycle monitoring that require
continuous information about the times and/or amplitudes
of the peaks and/or troughs in low frequency sensor signals.
Our approach is supported by mathematical formulation,
and can be validated both in simulation and experimentally.

• Through our hardware-based peak-trough detection approach,
we leverage on-board computational capacity of energy-
constrained data acquisition systems such as WSNs with the
aim of reducing power consumption, and thus achieving a
long operational lifetime. As such, we believe this paper both
expands the scope of wireless IoT sensor systems and
advances the field of fatigue monitoring and assessment.

• The paper also presents a study of the peak-trough detection
accuracy achieved by our system by way of extensive
computer simulations, followed by a system performance
evaluation through laboratory experiments that compare our
proposed solution with the conventional approach.

The remainder of this paper is organized as follows.
Section 2 provides background on fatigue strain-cycle mon-
itoring and analysis. Section 3 describes our solution, giving
implementation details on the main hardware and software
components. In section 4 we validate and show the perfor-
mance of our system by way of simulation and laboratory
experiments. Finally, section 5 concludes the paper.

2. Background on fatigue analysis

It is quite common for components of engineering structures
to be subjected to repeated cyclic loads. These loads induce
cyclic stresses within the material that result in microscopic
physical damage, even when the gross stresses are well below
the ultimate strength of the material. This microscopic
damage accumulates over time as the cyclic stress continues
until eventually a macroscopic crack or other visible damage
appears. The process of permanent damage accumulation due
to cyclic loading is known as fatigue.

While these discussions pertain to micromechanical pro-
cesses, phenomenological continuum approaches are widely
used to characterize the total fatigue life as a function of
variables such as the applied stress range, strain range, mean
stress and the environment. The fatigue life of a structure or a
component is defined as the total number of cycles or time to
induce fatigue damage and to initiate a dominant fatigue flaw
which is propagated to final failure. The general view is that in
a high-stress regime (commonly referred to as the low-cycle
fatigue, LCF), fatigue life is primarily determined by crack
propagation, whereas in a low-stress regime (referred to as the
high-cycle fatigue, HCF), fatigue life is mainly dominated by
crack initiation. This arbitrary division may vary from material
to material depending upon its mechanical properties. From
design viewpoint, the main concern for engineers is the high

cycle region. However, low cycle fatigue data can be advan-
tageous when only a short service life is required [1].

2.1. S–N curve and fatigue limit of stress-life approach

The widely used stress-life approach in fatigue analysis was
first introduced in the 1860s by Wöhler, mostly in HCF
applications [2, 3]. This method is adopted in our research.
The basis of the stress-life method is the Wöhler S–N dia-
gram, as schematically shown in figure 1, which plots the
nominal stress amplitude σa versus the number of cycles to
failure Nf. It can be expressed as s s= ¢ N2a f f

b( ) , where s¢f
and b are the fatigue strength coefficient and fatigue expo-
nent, respectively. There are numerous testing procedures to
generate the required data for a proper S–N diagram. S–N test
data are usually displayed on a log–log plot, with the actual
S–N line representing the mean of the data from several tests.
Under constant amplitude loading conditions, the specimen
under testing exhibits a plateau in the stress-life plot typically
beyond about 106 fatigue cycles. Below this plateau level, the
specimen may be cycled indefinitely without causing failure.
This stress amplitude is known as the fatigue limit or
endurance limit, σe, as indicated in figure 1. Definitions of
other key terms include stress range Δσ (the difference
between the maximum stress and minimum stress), mean
stress σm (the average of the maximum and minimum stres-
ses), stress amplitude σa (half of the stress range), and stress
ratio R (the ratio of minimum stress to maximum stress).

2.2. Mean stress effect

It is noted that most basic S–N fatigue data collected in the
laboratory is generated using a fully-reversed stress cycle,
where the mean stress of the fatigue cycle σm is zero
(R=−1). However, this is not always representative of
many applications. The mean level of the imposed fatigue
cycle is known to play an important role in influencing the
fatigue behaviour of engineering materials. To overcome this
issue, one can apply the modified Goodman relationship, as
expressed by:

s s
s
s

= -s = 1 , 1a a
m

0
TS

m ( )∣
⎛
⎝⎜

⎞
⎠⎟

Figure 1. S–N curve, cyclic stress versus number of cycles to failure
for fatigue characterisation.
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where sa is the stress amplitude denoting the fatigue strength
for a non-zero mean stress, s s =a 0m∣ is the stress amplitude for
fully-reversed loading (σm=0 and R=−1), and σTS is the
tensile strength of the material.

2.3. Varying amplitude

The principles of stress-based characterization of total fatigue
life are only relevant for constant amplitude fatigue loading.
In reality, however, engineering components are invariably
subjected to varying cyclic stress amplitudes, mean stresses
and loading frequencies. A simple criterion for predicting the
extent of fatigue damage induced by a particular block of
constant amplitude cyclic stresses, in a loading sequence
consisting of various blocks of different stress amplitudes, is
provided by the so-called Palmgren–Miner cumulative
damage rule [30]. Miner’s rule states that the cumulative
damage index, CD, is given by:

å= =CD
n

N
1, 2

i

i

i
( )

where ni is the specified number of cycles for the ith stress
range, Si, and Ni is the corresponding number of cycles to
failure for the ith stress range. This rule assumes that, when
CD is equal to one, the cumulative damage should cause
failure. Several structures design standards follow this meth-
odology, such as the British Standard EN 1993-1-9 [31] and
the American Association of State Highway and Transporta-
tion Officials (AASHTO) Bridge Design Specifications [32].

2.4. Strain monitoring and rainflow cycle counting

Prior to calculation of fatigue life, it is necessary to monitor
strain over a significant period of time (of the order of days or
even weeks). A cycle counting algorithm, such as the rainflow
cycle counting algorithm [27], is then used to process the
strain time series and extract a stress range histogram. A stress
range histogram presents the occurrence of stress cycles in
terms of the number of cycles for each stress range magnitude
captured during the measurement period. Then, this variable
amplitude loading in the histogram is converted to an effec-
tive constant amplitude stress cycle using Miner’s rule. This
effective stress is used to calculate the total number of cycles
that the structural (or mechanical) component could experi-
ence through all its lifetime by using the aforementioned S–N
curves. Finally, the total number of cycles to failure is con-
verted to the remaining lifetime in years.

The authors are aware of a number of sources of uncer-
tainty in the analysis of fatigue results, in general, and in the
use of the stress-life approach, including the estimation of
material properties, service conditions and environment. Such
uncertainties could be analysed using known statistical
approaches to derive the level of reliability or probability of
failure. These factors are beyond the scope of the current
work, but will be considered in future analytical work on
fatigue data captured using our proposed approach.

Other commonly used methods are the strain-life and the
fracture mechanics methods. The strain-life method is used for

the study of the process of crack initiation, whereas the fracture
mechanics method is used for the study of crack propagation
mechanisms over time. The latter may be combined with the
strain-life method in order to consider crack initiation.

3. Proposed architectural design

Figure 2 shows the block diagram of our proposed wireless
sensor system for fatigue strain-cycles monitoring consisting of
three distinct components: a piezoelectric transducer, an analo-
gue sensor system, and a wireless sensor platform. The piezo-
electric sensor is to be attached to a structural element where
fatigue damage is likely to occur. At this attachment point, any
mechanical strain would be converted by the piezoelectric sensor
into an alternating current (AC), and passed through the analo-
gue sensor system. The analogue sensor system converts the
output current from the sensor into a measurable voltage signal,
and then generates a hardware interrupt whenever it detects a
peak or trough (local maximum or minimum) in such voltage
signal. For every signal interrupt, the MCU embedded in the
wireless sensor platform triggers an analogue-to-digital converter
(ADC) reading. The measured data point is input to the rainflow
cycle counting algorithm [27]. Results from the algorithm are
used to create and/or update a histogram that represents the
cumulative strain distribution over time.

The final step is the wireless transmission of the generated
histogram information. The transmission interval is application-
specific, e.g. hourly, daily or even weekly. In our work, wireless
communication and networking are based on Long Range
(LoRa) and LoRaWAN [33], respectively, but other wireless
technologies, such as Narrowband IoT (NB-IoT) [34], may be
adopted. LoRa is a proprietary radio modulation technology
developed by Semtech Corporation. LoRa has become the
underlying physical layer technology proposed for use in LoR-
aWAN, an open-source PHY and MAC protocol stack actively
supported by the LoRa Alliance. Compared to other low-power
wireless systems (e.g. IEEE 802.15.4-based radios), LoRa brings
many sought-after benefits for outdoor monitoring applications,
which include: longer communication range (of the order of
several km in rural areas) with similar power consumption,
increased robustness against interference and noise, and higher
multipath, fading and Doppler resistance [35].

In the following subsections, we describe each comp-
onent in detail.

Figure 2. System overview.
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3.1. Piezoelectric thin film sensor

The fundamental operating principle of piezoelectric materials is
that they generate an electrical charge or electrical polarization in
response to an external force, i.e. a mechanical stress. This
phenomenon is known as the direct piezoelectric effect. When
the material is compressed, it creates a charge of the same
polarity as the polar axis. When the force is reversed, i.e., the
material is stretched, it outputs a charge of opposite polarity.
Thus, a reciprocating mechanical force results in an alternating
output current, whose amplitude and frequency are directly
proportional to the mechanical deformation of the material.
There is also a converse effect, called the indirect piezoelectric
effect, whereby an applied electrical field produces a propor-
tional deformation of the material. For measuring strain, we take
advantage of the direct piezoelectric effect.

From the electrical point of view, a piezoelectric ceramic
thin film sensor, such as a Polyvinylidene fluoride (PVDF)-based
sensor, can be modelled by two types of equivalent circuits:
either a current source in parallel with a capacitance, or a voltage
source in series with a capacitance. As shown in figure 3(a),
we choose to use the second circuit type consisting of a voltage
source, vp, representing the induced voltage across the sensor
terminals, and a series capacitance, Cp, indicating the capacitance
of the film. In such model, we also consider a capacitance Cc in
parallel with vp, to model the capacitance of the cables which
carry the output signal of the sensor. The vp is related to Cp and
the charge generated by the film sensor, q, as vp=q/Cp.

The mathematical expression of the generated charge
q can be found by integrating the electrical displacement,
D, over the area of the film, Ap (=lpbp, where lp and bp are
the length and width of the film, respectively), as =vp

D Ad
A p

p
∬ , where d is the coefficient of proportionality.

Rigorous definitions of the electrical displacement and the
coefficient of proportionality, as well as their relation to the
strain ε may be found elsewhere [26, 37]. Considering
the effects of longitudinal (1-direction) and transverse (2-
direction) strains, the actual definition of the electrical dis-
placement is e e= +D d Y d Y31 11 1 32 22 2, where » »Y Y Y11 22

is the Young’s modulus of the piezoelectric material. For a
longitudinal stress, there will be a lateral strain due to the
Poisson’s effect at the location of the sensor, such that
ε2=−vε1, where v is the Poisson’s ratio of the material to
which the sensor is attached (typically 0.2 for steel). To
account for the Poisson’s effect in the total strain, a correction
factor Kp may be applied. For PVDF, this correction factor is

=Kp - vd d1 31 32( ).
Shear lag effects caused by finite thickness bond may

also be accounted for by way of the derivation of another
correction factor Kb. The value of Kb is dependent only on the
geometry of the sensor. For PVDF, it has been shown that Kb

is very close to unity and therefore the shear lag effect could
be neglected [26].

The relation between the strain and voltage generated by
the sensor, considering the Poisson’s and shear lag effects, is
given by the equation (3). In this equation, =S d Y Aq p31 11 is
defined as a sensitivity parameter, whereas the capacitance Cp

is given by e e=C A tp r p p0 , where tp is the thickness of the

sensor, ε0 is the vacuum permittivity and εr is the relative
permittivity of the piezoelectric material.

e =
v C

S K K
. 3

p p

q p b
( )

Piezoelectric sensors have typically a very high output
impedance that results in a very small electrical charge, which is
difficult to measure using ordinary oscilloscopes and voltmeters.
To measure vp the output signal of the piezoelectric sensor needs

Figure 3. Sensor signal conditioning: (a) equivalent electrical circuit;
(b) example of operation, where the top side shows the sensor’s
output and the bottom side the output from the signal conditioning
circuit. For this example, the sensor model is based on the PVDF
sensor DT1-028K from TE Connectivity [36], =C 4nF1 , R2=1GΩ
and Vcc=3.3V. Conversion from strain to voltage output, and
vice versa, is based on equation (4).
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to be passed through some signal conditioning electronics with
sufficient high impedance (of the order ofMΩ or even GΩ) in its
input and low impedance in its output. With this configuration, it
is possible to produce an output voltage that is large enough to
be measured with most ADCs. Details of the signal conditioning
design used in this work are given below.

3.2. Analogue sensor system

Our analogue sensor system design has one input, i.e. the AC
current output signal from the piezoelectric film, and two
outputs: (i) a hardware interrupt to signal the occurrence of
peaks and troughs, and (ii) a voltage signal that is propor-
tional to the current signal of the piezoelectric sensor and that
can be measured using an ADC The two main building blocks
of our analogue sensor system are signal conditioning and
peak-trough detection. The first block allows matching of
the output impedance and range of the piezoelectric film to
the input impedance and measurement range requirements
of the ADC that is to be used, while the second building block
implements our analogue circuit design for continuous peak-
trough detection. Please note that, in our wireless sensor
system design, we consider the ADC to be part of the wireless
sensor platform rather than being integrated into the analogue
sensor system itself, such that the dimensions and power
requirements of the system are kept to a minimum. An
additional benefit of this approach is that our design can be
easily interfaced with any MCU with an on-chip ADC, such
as the ARM Cortex-M3-based MCUs, which are becoming
commonplace in most IoT low-power embedded systems. In
this work, we use the NZ32-L151 platform from Modtronix
Engineering [38], which uses the ST Microelectronics ARM
Cortex-M3-based STM32L151RC MCU featuring a 12 bit
successive-approximation-register (SAR) ADC, but other
MCU chips and/or ADC types could be adopted.

3.2.1. Signal conditioning stage. The circuit shown in
figure 3(a) represents the input signal conditioning for the
piezoelectric film sensor. The circuit collects the charge input
signal from the film and produces a measurable voltage that is
proportional to the input charge.

To be able to convert the input current from the film, a
charge-mode amplifier is used. The charge-mode amplifier
consists of an operational amplifier (‘op-amp’ for short)
(component OA1 in the figure), with a negative feedback loop
based on a feedback resistor (R2) and a feedback capacitor (C1)
in parallel. The op-amp is required to have a high input
resistance and low bias current. The former avoids bleed-off of
the charge on the feedback capacitor, while the latter prevents
the capacitor from charging and discharging at excessive rates
[39]. LPV811 [40] from Texas Instruments is a single-supply
op-amp with nano-current consumption (∼450 nA) that fulfils
these requirements and is chosen for this circuit. The resistor R1
is also added in series with the op-amp inverting input to
improve the stability of the circuit and further increase its input
resistance by limiting input currents due to accidental high input
voltage [41]. On the other hand, the output voltage of the
charge-mode amplifier, vo1, is shifted to the middle of the input

range of the ADC by using a DC reference voltage. This
reference voltage is equal to half of the input supply voltage, i.e.
+Vcc/2, which is obtained by halving the input supply voltage
using a voltage divider (resistors R8 and R9). Note that the circuit
design, which also includes the peak-trough detection and
sampling stages described later, allows single supply operation.
In our design, the supply source is taken from the same power
source as the wireless platform. Figure 3(b) illustrates an
example of operation.

From [26, 41], the output voltage of the charge amplifier
can be derived as:

w
w

e

e

=
+

-
+

=
+

-

v
V j R C

j R C

S

C

V
H jw

S

C

2 1

2
, 4

o
cc q

cc q

1
2 1

2 1 1

1
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where H( jw) is the complex transfer function of the charge
amplifier and ω is the angular frequency of operation. One
important advantage of the charge amplifier circuit is that its
transfer function, and hence its output, are neither affected by the
capacitance of the film Cp nor of the connecting cable Cc. This
fact is reflected in equation (4). As seen, the output of the circuit
depends only on the value of the feedback capacitor C1. Thus,
with the appropriate choice of C1 (while assuming a fixed value
of the feedback resistance R2) it is possible to adjust the
sensitivity of the circuit and provide the required measurement
range. However, it is to be noted that the circuit exhibits a low
cut-off frequency, p=f R C1 2l

H
2 1( ). As stated in [26], this sets

a design trade-off between the achievable sensitivity and the
values that can be selected for R2 and C1 mainly due to
operational constraints.

3.2.2. Peak detection and sampling stages. Our proposed peak-
trough detector consists of a non-inverting op-amp comparator
with positive feedback, also called non-inverting Schmitt trigger,
and a linear resistor-capacitor (RC) delay circuit connected to the
inverting input terminal of the op-amp comparator. Figure 4(a)
(top) shows the equivalent electrical circuit. The basic
functionality of the op-amp comparator (op-amp OA2 in the
figure) is to compare two input analogue signals (one at each op-
amp’s input terminal) and give a binary output signal as a result
of the comparison. The output signal vo2 has two possible levels,
VOH and VOL (where VOH>VOL), representing the high-level
and low-level outputs of the comparator, respectively. The circuit
requires a rail-to-rail op-amp such that its output swings closer to
the positive (VOH≈+Vcc) and negative (VOL≈Vee; in our
design Vee is tied to ground) rails, and thus output state
transitions can be better identified and used to trigger hardware
interrupts. OPA333 [42] from Texas Instruments is a fast rail-to-
rail, single-supply op-amp with micro-current consumption and
is chosen for both op-amps OA2 and OA3 in figure 4(a).

The operation of the circuit is as follows. The analogue
output signal from the charge amplifier circuit vo1 is applied to
the non-inverting terminal of the op-amp comparator. The same
signal vo1 is also applied to the RC delay circuit formed by the
resistor R5 and the capacitor C2. The output signal, that we
denote as fvo1, lags behind vo1 in phase, and is applied to the
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inverting terminal of the op-amp. The signal vo2 results from the
comparison between vo1 and fvo1. Transitions from low to high
and high to low are used to signal the occurrence of a peak or
trough, respectively. For every transition, an interrupt to the
MCU followed by a single ADC conversion of the signal vo3 is
generated. The signal vo3 is effectively fvo1 after being passed
through a buffer amplifier, also called voltage follower (op-amp
OA3). The buffer amplifier is used to avoid loading effects
arising from the direct connection of fvo1 to the ADC, which can
significantly affect the reliability of the peak-trough detection. A
single-pole low-pass RC filter (R7/C3) follows the buffer
amplifier to further reduce out-of-band noise.

It is important to note that the series RC delay circuit in
our design is in fact another first-order low-pass filter, with

cut-off frequency:

p
=f

R C

1

2
5l

F

5 2( )
( )

and no signal gain. This has the following two implications.
First, the circuit only passes unaltered low frequency signals
from 0Hz to its cut-off frequency, while attenuating or
weakening others. This means that R5 and C2 must be
appropriately chosen such that those frequencies of interest to
fatigue strain monitoring (typically from 1 to 20 Hz
[4, 7, 14, 15, 24, 29]) pass through the RC circuit unaffected.
Second, as the filter contains a capacitor, there exists a
lagging phase difference between vo1 and fvo1 determined by
f p= - f R Carctan 2 v 5 2o1

( ), where fvo1
is the signal frequency of

vo1. This phase lag is important in our case to find peaks and
troughs. The op-amp looks at any voltage value of vo1 and
compares it with the voltage level at fvo1, which corresponds to
an earlier level of vo1. Thus, we can determine whether the
polarity of slope of vo1 is either positive (i.e. the signal
voltage is increasing thus approaching to a peak), negative
(i.e. the signal voltage is decreasing thus approaching to a
trough), or whether the polarity changes (a peak or trough has
been reached). One disadvantage of this circuit is that the
phase lag is not constant over the range of frequencies of vo1,
being smaller at lower values. Nonetheless, with the
appropriate choice of R5 and C2, it is possible to design an
RC circuit with the desired phase lag at the sensor signal
frequencies of monitoring interest. The impact of selection of
R5 and C2 on performance is discussed in section 4.

We next describe the operation of our peak-trough
detector circuit analytically [43]. The comparator’s output
signal vo2 is given by:

= -+ -v A v v , 6o2 OA2 ( ) ( )

where v+ and v− are the voltage signals at the non-inverting
and the inverting terminals, respectively, and AOA2 is the
circuit’s gain.

The signal v+ at the non-inverting terminal is a
combination of the op-amp’s output vo2, its input vo1, and
the voltage divider formed by resistors R3 and R4:

=
+

+
+

+v v
R

R R
v

R

R R
. 7o o1

4

3 4
2

3

3 4
( )

The signal v− at the inverting terminal corresponds to the
voltage output of the preceding passive low-pass RC filter,
fvo1. The governing equation for fvo1 can be found to be [44]:

w
w=

+
=fv

j R C
v F j v

1

1
, 8o o o1

5 2
1 1( ) ( )

⎛
⎝⎜

⎞
⎠⎟

where F( jω) is the transfer function of the RC filter.
From expression 6, we see that the transitions will occur

when v+ crosses fvo1, then:

=
+

+
+

f
v V

R

R R
v

R

R R
, 9o T o1

4

3 4
2

3

3 4
( )

where VT is the transition voltage. From [43], the transition
voltage from VOH to VOL, and vice versa, can be derived,

Figure 4. Peak-trough detection: (a) equivalent electrical circuit; (b)
example of operation, where the top side shows the input to the op-
amp OA2, i.e. vo1 and

fvo1, and the bottom side the output signal vo2,
resulting from comparing vo1 and

fvo1. For this example, the two
possible states of vo2 depend on the supply voltage for the op-amp
OA2, i.e. VOH=+Vcc=3.3 V while VOL=Vee=0 V.

7

Smart Mater. Struct. 28 (2019) 095004 D Rodenas-Herráiz et al



respectively, as:

= -V V V
R

R
a, 10T s OH

3

4
OH OL ( )

= -V V V
R

R
b, 10T s OL

3

4
OL OH ( )

where = +fV v R R1s o1 3 4( ).
The non-inverting Schmitt trigger circuit inherently

exhibits hysteresis, which depends on the values for resistors
R3 and R4 (equation (11)) but also on the frequency of the
input signal vo1. This characteristic can be used to ignore any
noise introduced in vo1, as well as very small peak-to-peak
strain signals with limited or no contribution to fatigue strain-
range calculation. This has an advantage that interrupt triggers
for sampling and subsequent strain range cycle computation,
and hence the overall power consumption, can be further
reduced.

= - = - V V V V V
R

R
. 11hyst T T OH OL

3

4
OL OH OH OL ( ) ( )

Figure 4(b) illustrates an example of the operation of our
peak-trough detector circuit. For ease of explanation, let us
assume that the voltage levels of vo1 and fvo1 are both
increasing and thus approaching a peak. As seen, in this case
the polarity of the slope of vo1 is positive. In addition, the op-
amp comparator’s output vo2 is at its high voltage state, VOH,
and will remain at this state as long as the voltage of both
signals is the same. At the moment in time where the voltage
of vo1 reaches its peak and starts decreasing towards the next
trough, the voltage level of fvo1 is still increasing. When vo1
crosses fvo1, the op-amp immediately changes its output from
high to low (i.e. from VOH to VOL). Shortly after, fvo1 is also at
its peak value and starts decreasing. The voltages of both
signals are now the same and therefore the op-amp’s output
remains at its low state. The same reasoning, in reverse,
applies to the occurrence of a trough.

3.3. Software architecture

We designed the software architecture to be easily extendable
to other embedded platforms that may be programmed with a
C-based operating system (OS) such as Contiki OS [45] or
freeRTOS [46]. In our work, all software modules including
the firmware for the NZ32-L151 platform and the LoRa
transceiver module used (i.e. SX1276-based module also
from Modtronix Engineering), as well as the LoRaWAN
endpoint protocol stack [47], were implemented and/or por-
ted for the Contiki OS. Source code is available online [48].

Data acquisition and wireless transmission tasks are exe-
cuted in an interrupt-driven manner. Data acquisition is pri-
marily triggered by external interrupts from the analogue
sensor system, whereas wireless transmission may be triggered
by internal interrupts generated by the running application. For
data acquisition, the GPIO line connected to the output signal
vo2 of the analogue sensor system is set as input to the MCU
and configured to detect changes in vo2 from low to high

(trough) and from high to low (peak). In this way, an interrupt
to the MCU is generated when a peak or trough occurs. This
interrupt wakes up the MCU from low-power mode (we use
the stopmode in our implementation [49]) and then triggers the
acquisition of a single data point using the MCU’s built-in
ADC The acquired data point is stored in a buffer in the RAM
memory for later analysis by using the rainflow cycle counting
algorithm. Such analysis will be carried out when the buffer is
full. Results from the algorithm will then be grouped in the
form of a histogram that will be updated as new results are
obtained. Finally, the MCU is allowed to go into low-power
mode to save energy when there are neither any interrupt calls
to be serviced nor any computation tasks in progress.

Details of the rainflow cycle counting algorithm are
given next.

3.3.1. The rainflow cycle counting algorithm. Our
implementation of the rainflow cycle counting algorithm is
based on the three-point algorithm presented by Bannantine
et al [2]. However, our implementation differs from
Bannantine et al in that no re-arrangement of the series of
peaks and troughs is necessary prior to analysis. Our
implementation also differs in that it requires an extra point
to be considered at each iteration of the algorithm in order to
discern between one-half and full cycles, as described in
section 5.4.4 of the ASTM E1049-85 standard [27].

In each iteration, a sequence s[ ] containing the three most
recently acquired consecutive points in the series of peaks and
troughs S (i.e. the buffer stored in the RAMmemory) is analysed.
The storage data size of S is limited to a vector length of NS

values in order to minimise memory overheads of the algorithm.
The parameter NS can be configured at compile time (as a power
of two) and is specific to the deployment in which the wireless
sensor system is used. Each iteration of the algorithm involves
comparing the magnitude of two strain ranges Xn and Yn formed
by the sequential strain values s[n−2, n−1, n], such that

= - -
= = - - --

X s n s n
Y X s n s n

1
1 2 , 12

n

n n 1

∣ [ ] [ ]∣
∣ [ ] [ ]∣ ( )

where n is an index to the series S. As aforementioned, our
implementation requires an extra point K, which is always the
first element in the series. A cycle is identified if Xn�Yn, being
Yn its strain range. If the sequence s contains K (i.e. K=
s[n−2]), the cycle is counted as a one-half cycle; otherwise, the
cycle is a full cycle. For each one-half cycle, the point K=
s[n−2] is removed from the series, in which case K points to
s[n−1] and the algorithm proceeds, in a similar manner, with
the sequence of three points s[n−1, n, n+1]. Conversely for
each full cycle, the points s[n−2] and s[n−1] are removed
from the series, and the algorithm proceeds with the sequence
s[n−4, n−3, n]. If no cycle is identified, then the next iteration
of the algorithm considers the sequence s[n−1, n, n+1] and
so on until the entire series is processed. Our implementation of
the rainflow cycle counting algorithm runs in O(NS) time and
requires O(NS) space. Algorithm 1 shows the pseudo-code of our
implementation of the rainflow cycle counting algorithm.
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Algorithm 1. Rainflow cycle counting algorithm

Initialization : Set three-point sequence s={0}, n=0, K=0
Data: Vector S containing peaks and troughs
1if (At the end of S) then
Go to 6;
else
Assign next peak or trough from S to s, n=n+1;
Set K to point to the first element in S;
2if (n<3) then
Go to 1;
else
 = - -X s n s n 1n ∣ [ ] [ ]∣;
 = - - -Y s n s n1 2n ∣ [ ] [ ]∣;
3if (Xn�Yn) then
Go to 4;
else
Go to 1;
4if ( ÌK Yn) then
Go to 5;
else
Store Yn as one cycle for later histogram creation/update;
Remove s[n−2, n−1] from S so that s only contains s

[n], n=n−2;
Go to 2;
5Store Yn as one-half cycle for later histogram creation/update;
Remove s[n−2] from S so that s only contains s[n−1, n],

n=n−1;
Go to 2;
6Store each range that has not been previously counted as one-half

cycle, then STOP;

3.3.2. Histogram representation and wireless transmission of
strain cycles. A histogram with equally sized bins is
constructed and continuously updated with the strain cycle
values computed using the rainflow cycle counting algorithm.
More specifically, we build and maintain two unsigned 32 bit
integer arrays, one per each cycle type, that map from a strain
range interval to its associated number of cycles. This allows
us to count up to 232−1 strain cycles per bin, or
equivalently, per strain range interval. Given a cycle with
strain range rε, we find the bin i it belongs to by dividing rε by
the histogram’s bin width. This approach has O(1) runtime
performance and requires O(nbins) space, where nbins is the
number of bins or strain range intervals in the histogram.

The lower and upper range values (minimum and
maximum strain range values of monitoring interest) of the
histogram, as well as the bin width are application-specific
parameters and should be chosen such that the distribution of
strain cycles over any desired period of time (e.g. an hour, a
day or a week) can be observed clearly from the histogram. In
particular, cycles with a strain range falling below the lower
bound of the histogram are discarded and hence not
transmitted via wireless. This lower bound may be chosen
simply by applying engineering judgement based on prior
knowledge of the strain ranges that are typically encountered
in the monitored asset, including their relevance to potential
fatigue damage. Our current software implementation allows

specification of these parameters only at compile time. Future
work considers providing support for over-the-air parameter
configuration to adapt to potential changing strain conditions
over time as well as to civil engineer(s) requirements for
strain data collection and information processing.

An important choice to make is the number of histogram
bins. A trade-off exists between this and the maximum
possible data payload of a LoRa/LoRaWAN data frame,
which in turns depends on the selected transceiver settings.
These settings include the modulation type (i.e. either LoRa or
frequency-shift keying (FSK) modulation), carrier frequency,
transmit power, spreading factor, coding rate and channel
bandwidth. Selection of these parameters can be made to meet
end application requirements, but the link between these poses
an important performance-related trade-off between transmis-
sion throughput, energy consumption, communication range
and resilience to noise [50]. Therefore, if the application
message size, which is dependent on the number of histogram
bins, exceeds the maximum available data payload in the
resulting LoRa data frame, more transmissions are required in
order to send the entire histogram. This choice can lead to
increased energy consumption, possibly compromising opera-
tional lifetime where the power source relies on the sole use of
batteries.

4. Results

In this section we use extensive computer simulation and
laboratory experiments on real hardware to validate our pro-
posed solution. All the simulation scripts, the scripts for data
analysis, and the generated simulation and experimental data
are available online [48].

4.1. Simulation: evaluation of detection performance

An important consideration in the operation of our proposed
system is the inherent short time lag that exists between when
a signal peak (or trough) occurs and when the ADC obtains
the subsequent strain reading from the signal vo3. The first
source of lag is in the peak-trough detection since peaks and
troughs are signalled shortly after the actual points occur.
Lags in the electronics, interrupt latency and the latency and
settling time of the ADC also add to the total time lag. The
above adversely affects the detection performance of our
system in terms of measurement accuracy, which is defined as
the closeness of the measured value to the true value of the
signal peak or trough. Therefore, our initial objective is to
evaluate the detection performance of our system and the
influence of choosing different hardware components, such as
the resistances R3 and R5 and the capacitance C2, on the
measurement accuracy.

While the operation of the entire analogue sensor system
including signal conditioning can be simulated at once, in this
part we only consider the peak-trough detector circuit. We do
so in order to have full control of the characteristics (i.e.
signal amplitude and frequency) of the signal vo1 that is input
to the circuit. The evaluation is performed using extensive
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transient simulations with Tina-TI by Texas Instruments and
DesignSoft, a SPICE-based simulation tool designed to build
and simulate analogue circuits.

We first study the effect of having different R5C2 delay
network configurations. For the sake of brevity, we will only
show the results for different capacitor sizes, from 1to 10μF,

while the rest of circuit parameters including R5 remain fixed.
The applied input signal vo1 is sinusoidal with varying
amplitude Avo1

, from 0.2to 1.6V in individual steps of 0.2V,
and frequency fvo1

, from 1to 20Hz, in 1Hz steps. The
selected amplitudes were chosen to match the ADC input
range (it is worth remarking that the zero of the circuit is
shifted to the middle of the ADC input range, using a refer-
ence of Vcc/2), whereas the selected frequencies cover the
range of frequencies of interest for typical applications of
fatigue damage monitoring.

In figure 5 we plot the average absolute and relative
measurement error, defined as the average absolute (in Volts)
and the percentage difference between the peak/trough
amplitudes when post processing vo1 with both a standard
peak-trough detection software algorithm, and with our
hardware-based peak-trough detector circuit. Since our hard-
ware is simulated, the latter are obtained using a post-

Figure 5. Measurement error when varying C2: (a), (c), (e) absolute and (b), (d), (f) percentage difference. R3 is set to 47 kΩ. Conversion to
strain units is done considering C1 equal to 2.5nF.

Table 1. Capacitor C2 selection: simulated capacitor sizes and related
cut-off frequency, for R5 equal to 1kΩ.

C2 (μF) f Fl (Hz) C2 (μF) f Fl (Hz)

1 159.15 6 26.53
2 79.58 7 22.74
3 53.05 8 19.89
4 39.79 9 17.68
5 31.83 10 15.92
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processing algorithm that computes peaks and troughs from
the simulated values of vo2 and fvo1 signals as output from
Tina-TI simulator. These results represent a best-case per-
formance in real-world deployments since other factors such
as interrupt latency and the latency and settling time of the
ADC are not captured.

In the first instance, the measurement error increases
almost linearly with frequency as the capacitor size is
increased. This behaviour is expected of an RC delay circuit
—given a fixed resistance R5, the bigger the capacitance C2,
the smaller the cut-off frequency f Fl of the circuit (see table 1),
and consequently, the more attenuated the amplitude of fvo1
becomes as fvo1

approaches f Fl . It is to be noted that the signal

to be sampled, vo3, is
fvo1 after a voltage follower and another

series RC network with a much higher low cut-off fre-
quencyhence with no significant influence over fvo1 for the
range of frequencies of interest. Therefore, the detection error
at higher fvo1

is effectively due to the fact that the system is
sampling a signal whose amplitude has been lowered because
of the proximity of fvo1

to f Fl .
A priori, it appears that smaller capacitor sizes, e.g. of the

order of 2–5μF allow only measurement over a wider range of
frequencies with relatively low error. However, one problem that
is encountered is that for small input signals (low amplitude and
low frequency), which may be of monitoring interest, the
Schmitt trigger toggles at an undesired value or does not toggle
at all. The reason for this has been found to be related to the
hysteresis of the circuit, as illustrated in the simulation results of

figure 6. The peak detector is driven with a synthetically gen-
erated input signal vo1 which may reflect a typically encountered
strain signal on a real application. In this case, different R3
values are evaluated while all remaining circuit parameters are
fixed. It can be observed that for certain small amplitude signal
variations the Schmitt trigger stops toggling as R3 is increased.
The figure also depicts the case where the hysteresis is too high
(for R3 equal to 300 kΩ) and the circuit fails in accurately tog-
gling at the right peak or trough.

The final set of simulation experiments considers that all
circuit parameters are fixed. This implies that the circuit
performance will only depend on the amplitude and frequency
of the input signal. Similarly to the previous experiments, we
consider different voltage amplitudes and oscillation fre-
quencies. The results are plotted in figure 7, which presents
the same variation of measurement error with increasing
frequency as discussed above. It also shows that the variation
in relative measurement error is proportional to the amplitude
of the applied input signal, which could be useful for cali-
bration and data post-processing purposes.

4.2. Validation on real hardware

Next, we describe the experimental procedure used in our
validation, followed by a discussion on the performance
evaluation results for our system.

Figure 6. Measurement error when varying R3. R4, R5 and C2 are
10 WM , 1kΩ and 5μF, respectively. Figure 7. Measurement error when varying the voltage amplitude of

vo1: (a) absolute and (b) percentage difference. C1, C2 and R3 are set
to 2.5nF, 4μF, and 47kΩ, respectively.
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4.2.1. Laboratory experimental setup. Figure 8(a) illustrates
the experimental procedure, whereas figure 8(b) shows a
picture of the experimental setup. A prototype of the analogue
sensor system was assembled on a solderless breadboard with
the electrical scheme of figures 3(a) and 4(a), and connected
to a NZ32-L151 device using the ADC channel 0 (PA0-
WKUP1 pin) and GPIO line 1 (PA1 pin) for vo2 and vo3
signals, respectively. Table 2 lists the components and circuit
parameters of the prototype. The NZ32-L151 device is

programmed with a specific application developed in the
Contiki OS and based on the software architecture described
in subsection 3.3. However, for these experiments, RF
transmissions are disabled. In addition, the NZ32-L151
device sends all the ADC readings as well as the output of
the rainflow cycle counting algorithm to a laptop via a serial-
to-usb connection. All the arriving data at the laptop are
timestamped and logged on files for later data analysis. It is
worth remarking that this is for evaluation purposes; in a real-
world application, only strain-cycle information would be
transmitted.

For comparison, an alternative prototype, representing a
conventional system was created utilizing the same signal
conditioning block from our previous setup. The output signal
vo1 is passed through an additional op-amp in a voltage
follower configuration followed by a low-pass RC filter (of
similar R7/C3 values), and its output connected to the ADC
channel 0 of a separate NZ32-L151 device. This device is
programmed with specific application software that has also
been developed in Contiki OS and which takes samples
continuously at a sampling frequency of 64Hz. All the
sampled data is stored in a temporal buffer and later pre-
processed using a C-based implementation of a typical peak-
trough detection algorithm [51] prior to executing our
implementation of the rainflow cycle counting algorithm.
Similarly, all the obtained ADC readings as well as the output

Figure 8. Laboratory experimental setup: (a) schematics and
(b) photo of the experimental setup.

Table 2. Components and circuit parameters of the analogue sensor
system prototype.

Parameter Value Parameter Value

Op-amp (OA1) LPV811 R5,R7 1kΩ
Op-amp (OA2/3) OPA2333 R6 50Ω
Vcc 3.3V R8,R9 10kΩ
Vee 0V C1 4nF
R1,R3 47kΩ C2 4μF
R2 1GΩ C3 2μF
R4 10MΩ

Figure 9. Test specimen used for laboratory experiments:
(a) dimensions (mm); (b) modelling of strain distribution across the
specimen using Abaqus version 6.12 [53].
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of both algorithms are sent to a laptop for further data
analysis.

Both prototypes are connected to a single PVDF DT1-
028K sensor [36]. The sensor is bonded onto the surface of a
dog-bone shaped steel specimen (mild steel EN 3B) using a
cyanoacrylate-based (super glue) adhesive. The specimen,
whose geometric characteristics are given in figure 9(a), has
been specifically manufactured for fatigue testing and its
design is specified to reduce the residual stress and work-
hardening. Figure 9(b) shows the distribution of longitudinal
strain (along x axis) of the specimen with 1mm of
displacement in the shaker. As shown in the figure 8(b), the
specimen is both fixed onto a steel beam with base attached to
the laboratory bench as well as onto a vibration shaker
system. An Agilent 33522A waveform generator is used to
drive the shaker while a digital oscilloscope records the signal
outputs from vo1, vo2 and vo3. Finally power consumption
measurements of each individual prototype were performed
using a power monitor from Monsoon Solutions [52]. Power
consumption results are given later in section 4.2.3.

4.2.2. Performance results under sinusoidal excitation. The
performance of the analogue peak-trough detection was first
characterised under varying sinusoidal excitation. Following a
similar procedure as in our simulations, a series of driving
waveforms, each with a different peak-to-peak voltage (Vpp)
and oscillation frequency, were generated by the signal
generator in turn. We chose Vpp to be 600mV and 1.6V,

which yielded strain amplitudes of approximately
25–35μεand 100–130μεdepending on the signal
frequency. For each Vpp, the frequency was varied from
1to 20Hz, in steps of 1Hz. For each setting, data generated
by both prototypes were recorded for over 1 min and later
analysed to show the average absolute and relative
measurement error between them.

Results are depicted in figure 10. It can be seen that both
experimental and simulation results are in good agreement
with each other, which help us validate and benchmark our
design. It is also worth noting that our proposed system
seemed to reach its performance limit at the frequency of
20Hz. In investigating this issue further, it was found that the
latency that is introduced in transferring the sampled data to
the laptop caused an unintended behaviour in our system.
This was to have been expected since our system operates
using hardware interrupts whereas operations such data
transfer via serial are known to be non-re-entrant and non-
thread-safe when used in a real-time OS. Due to the difficulty
of accurately synchronising both prototype systems, we have
disregarded the computation of the measurement error at such
frequency for figure 10.

While previous experimental work provides a framework to
quantify the performance of our peak-trough detector, the goal
of this experiment is to evaluate the performance and
applicability of our entire system in a reasonably realistic
scenario. We illustrate this by comparing the number of strain
cycles that are captured by both approaches over a sufficiently
long period of time. In order to do so, the vibration shaker
system is driven with the synthetically generated signal of
figure 11(a) for a total duration of 2 hours. The distribution of
signal frequencies over time is shown by way of the short-time
Fourier transform (STFT) in figure 11(b). The circuit parameters
from the previous setup remain the same (see table 2). It is worth
noting that the strain cycle data captured by our system can
immediately be plotted (only conversion from voltage to strain
units is necessary). For the conventional method, the exper-
imental procedure has been to collect all sampled data as in
previous experiments and post-processing them using a peak-
trough detection algorithm followed by our implementation of
the rainflow cycle counting algorithm. For both systems, the
latter has been configured with a buffer size NS equal to 256,
although no significant variation was found with other sizes.

Histograms of full strain cycles versus strain range
obtained by both systems are plotted in figure 11(c). The
number of half cycles was very small for both systems and is
therefore not presented here for the sake of brevity. A
comprehensive comparative analysis of these data, along with
a fatigue test-bed study that seeks to predict the level of
damage and the closeness to failure of a similar test specimen
using our sensor solution, is the subject of ongoing work.

Figure 11(c) shows a good agreement between the
histograms of full cycles for both systems. It can be seen that
for strain ranges bigger than 140μεour system progressively
reports smaller numbers of full cycles or does not report any
values. This difference is due to the peak-trough measurement
error that our system has with respect to the conventional
approach. As suggested at the end of section 4.1, it could be

Figure 10. Experimental results: average (a) absolute and (b) relative
measurement error. The error bars denote 95% confidence intervals.
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possible to apply a data correction factor on the strain cycle
data (thus accounting for any peak-trough measurement
errors) given prior knowledge of the signal frequencies that
will be encountered at the location where the sensor is being
installed. In practical applications—and not exclusive to
fatigue monitoring—such knowledge is usually obtained prior
to installation of any sensing instrumentation [25], therefore it
is possible to obtain similar results as if using the
conventional approach of fatigue measurement. This is
demonstrated in figure 11(d), where a simple correction
factor of +10% strain range has been chosen and linearly
applied to the data. Equivalently, this factor means that
a+5% increase in strain amplitude is applied to peaks and
troughs, according to our previous simulation and exper-
imental study.

4.2.3. Power profiling. Power consumption measurements
were obtained for each prototype individually. Because our
solution is not exclusively intended for use with LoRa/
LoRaWAN, for these experiments the LoRa transceiver is
turned off and therefore no power consumed in LoRa/
LoRaWAN transmissions are captured by our measurements.
We refer to Casals et al [54] for a comprehensive power
consumption study of LoRa and LoRaWAN for several
transceiver and protocol settings, which include the spreading

factor, coding rate, the duration of reception windows and the
number of retransmission attempts.

Figure 12(a) shows a snapshot of the instantaneous
consumption for different oscillation frequencies of the
sinusoidal input signal generated with the oscilloscope,
whereas figure 12(b) presents the average results. The latter
figure also includes an estimation of battery life considering a
single 19Ah-3.6V lithium battery (although we consider
sustained operation at 3.3 V). We chose this battery based on
our previous experience with WSN deployments in the civil
engineering field [25, 55, 56]. As observed, the improvement
concerning power consumption is correlated to a reduction in
the computational workload of the MCU, which allows it to
switch to low-power saving mode in between consecutive
hardware interrupts. This boosts the operational lifetime of
our proposed system as much as a factor of 9 (approximately
up to 2 years of operation) as compared to the conventional
approach.

Finally, the experimental average power consumption of
our analogue sensor system when disconnected from the
NZ32-L151 platform is 0.58mW, approximately eight times
smaller than our reported system power consumption. This
suggests that the overall power consumption of the entire
prototype including the wireless platform and the analogue
sensor system could be further reduced with hardware and
software improvements in the wireless platform in use.

Figure 11. Rainflow cycle counting performance: (a) synthetically generated input signal and (b) its distribution of frequencies over time; full
cycle histograms over a 2 h test (c) with no measurement error correction and (d) with a 10% error correction applied over all strain range
values. The bin size is 10με.
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5. Conclusions

This paper proposes a potential solution to deploy WSNs for
long-term fatigue life assessment of civil engineering structures,
which uses a power-efficient design of a LoRa-based embedded
sensor system having the ability to measure fatigue strain cycles
in a continuous manner. At the core of our design is a hardware
module which uses analogue electronics to condition and find
both peaks and troughs of a strain signal measured with a
piezoelectric sensor. Peaks and troughs are signalled by way of
hardware interrupts to the MCU, which is configured to remain
in low-power mode most of the time to efficiently reduce overall
power consumption. The MCU then wakes up and triggers a
single ADC measurement corresponding to the voltage level of
the signalled peak or trough. These measurements are processed
locally using the rainflow cycle counting algorithm, a standard
method for counting fatigue strain cycles. With appropriate
hardware parameter settings, our design provides a power-
efficient alternative to the conventional approach for fatigue
strain-cycle measurement, which requires continuous acquisition
of strain data with a high sampling rate, followed by data

pre-processing using standard peak-trough detection algorithms
before actual strain-cycle measurement. Extensive computer
simulation and laboratory experiments showed good agreement
between the strain-cycle histograms obtained for both our sys-
tem and an embedded prototype of similar hardware and soft-
ware characteristics that was built based on the conventional
approach. Our proposed solution achieved a 9×reduction in
power consumption thereby enabling almost up to two years of
continuous operation on a single battery. Therefore, our pro-
posed solution proves to be promising to be applied in real-
world civil engineering deployments. For our immediate future
research, we plan to perform a comprehensive long-term fatigue
study both in the laboratory, and through the placement of a
large number of wireless sensor devices based on our design on
a real structure.
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