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Abstract 

Huntington’s disease is a late onset neurodegenerative disease caused by a CAG trinucleotide repeat 

in the gene encoding the huntingtin protein. Despite its well defined genetic origin, the molecular 

and cellular mechanisms underlying the disease are unclear and complex. Here, we review some of 

the currently known functions of the wild type huntingtin protein and discuss the deleterious effects 

that arise from the expansion of the CAG repeats, which are translated into an abnormally long 

polyglutamine tract. Finally, we will outline some of the therapeutic strategies that are currently 

being pursued to slow down the disease.   

 1. Introduction to Huntington’s disease:  genetics and pathology  

Huntington’s disease (HD) is an autosomal dominant condition characterized by movement disorders 

and cognitive decline. Typically, the motor defects include chorea and loss of coordination.  

Psychiatric symptoms, such as depression, psychosis and obsessive-compulsive disorder, are also 

common in HD and are particularly distressing for patients (Rosenblatt 2007). The prevalence of the 

mutation is 4–10 cases per 100,000 in populations of Western European origin.  

HD is characterized by a general shrinkage of the brain and degeneration of  the striatum  (caudate 

nucleus and putamen), with specific loss of efferent medium spiny neurons (MSNs) (Reiner et al. 

1988). Although the striatum appears to be the most affected region of the brain, a regionally 

specific thinning of the cortical ribbon was found in patients with HD (Rosas et al. 2002). Such loss of 

cortical mass is an early event in the pathology of HD and proceeds from posterior to anterior 

cortical regions with disease progression. This regionally selective cortical degeneration may explain 

the heterogeneity of clinical expression in HD. Additional features are often present in HD patients, 

such as weight loss, skeletal-muscle wasting and cardiac failure (Aziz et al. 2008) (Arenas et al. 1998). 

Although generally less investigated than neurological signs, these additional signs might be due to 

the ubiquitous expression of mutant huntingtin (the toxic protein that causes HD).  

HD is due to mutations in the HTT gene encoding huntingtin, a ubiquitously expressed protein of 350 

kDa (1993). Huntingtin contains a polyglutamine tract encoded by uninterrupted CAG trinucleotide 

repeats in the first exon of HTT. Wild-type alleles contain up to 35 CAG repeats, whereas HD patients 

carry expansions of 36 or more repeats (Rubinsztein et al. 1996). Although complete penetrance of 
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HD is observed for CAG sizes of > or = 42, only a proportion of those with a CAG repeat length of 36-

41 show signs or symptoms of HD within a normal life span (Rubinsztein et al. 1996)( Brinkman et al. 

1997). 

There is a strong inverse correlation between the number of CAG repeats and the age of onset of 

symptoms: larger CAG repeat expansions are generally associated with earlier ages of onset (Andrew 

et al. 1993). However, the CAG repeat number only partially explains 65-71%  the variance in the age 

of onset, which also appears to be influenced by additional environmental and genetic factors, like 

modifier genes  (Rosenblatt et al. 2001).  Moreover, monozygotic twins have been reported to show 

different clinical symptoms, suggesting that epigenetic factors or tissue-specific variation in CAG 

repeats, due to somatic instability, may influence the disease (Georgiou et al. 1999). 

HD is also characterized by the phenomenon of anticipation, where the age of onset tends to 

decrease in successive generations. This is due to the unstable nature of the CAG repeats that tend 

to increase in size, particularly when passed through the male germline (Trottier et al. 1994). While 

germline instability can explain the phenomenon of anticipation, somatic instability has been 

proposed as mechanism underlying the tissue specificity of the disease. 

In order to study the pathophysiology of HD, several mouse models have been generated. For an 

exhaustive description of those models, refer to reviews: (Menalled and Chesselet 2002) (Lee et al. 

2013). 

2. Wild type huntingtin: structure and functions 

Huntingtin is a ~350 kDa protein containing the polyglutamine sequence at the NH2 terminus and 

multiple consensus sequences called HEAT (huntingtin, elongation factor 3, protein phosphatase 2A, 

and TOR 1) repeats that are important for protein-protein interactions. HEAT motifs have a helix-

turn-helix structure that is tightly packed to form a superhelix hydrophobic core that resists 

dissociation after proteolytic cleavage (Li et al. 2006). These motifs are often present in proteins 

involved in intracellular trafficking, such as clathrin adaptors and COP-I coatomer (Neuwald and 

Hirano 2000) and are possibly responsible for the scaffolding role of huntingtin in the formation of 

protein complexes (Takano and Gusella 2002).   

Huntingtin is a cytoplasmic protein with partial nuclear localization. Recently, its NLS (nuclear 

localization sequence) has been described in the amino terminus of the protein  (Desmond et al. 

2012). It spans between amino acids 174 and 207 and interacts with karyopherin β2, a protein that 

mediates nuclear import of proteins. This NLS comprises three consensus components: a basic 

charged sequence, a downstream conserved arginine, and a proline-tyrosine (PY) sequence. 

Huntingtin also contains a NES (nuclear export sequence) in the carboxy-terminus (Xia et al. 2003). 

Moreover the N-terminal sequence of huntingtin interacts with Tpr, a nuclear pore protein that is 

involved in nuclear export. Polyglutamine expansions decrease this interaction and increase the 

nuclear accumulation of huntingtin (Cornett et al. 2005).   

Huntingtin is widely expressed in humans and rodents, with highest levels in the neurons of the CNS, 

where it appears to localize predominantly in the cytoplasm and be associated to vesicle membranes 

(DiFiglia et al. 1995).  In particular, huntingtin is enriched in scattered striatal large neurons and in all 

corticostriatal neurons (Fusco et al. 1999). 
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Physiological functions of huntingtin  

Since the discovery of HTT as gene responsible for HD, efforts have been made to elucidate the 

function of wild type huntingtin and several roles have been described so far. Here we will 

summarize the most studied ones. 

Huntingtin is necessary for embryonic development 

Huntingtin is required for early embryonic development, as knockout mice show embryonic lethality 

around day 8.5, before the emergence of the nervous system (Nasir et al. 1995) (Zeitlin et al. 1995). 

Moreover, recent studies reveal that huntingtin plays a crucial role in neurogenesis. In fact, 

huntingtin was shown to be required for the maintenance of the lineage potential of primitive 

neuronal stem cells during the process of neural induction  (Nguyen et al. 2013). Furthermore, 

huntingtin has a crucial role in neurulation controlling homotypic interactions between 

neuroepithelial cells (Lo Sardo et al. 2012). This function is executed by inhibiting both the activity of 

the metalloprotease ADAM10 and N-cadherin cleavage. This also occurred in vivo, as defects in 

neural tube morphogenesis that were observed in huntingtin knockdown zebrafish embryos could 

be rescued after treatment with GI254023X, an ADAM10 inhibitor.  

Huntingtin acts as a protein scaffold  

Wild-type huntingtin is a well-characterised scaffolding protein. It interacts with β-tubulin and binds 

to microtubules (Hoffner et al. 2002). It also interacts with the dynein/dynactin complex (Caviston et 

al., 2007), regulating several intracellular trafficking processes. Recently, huntingtin has been shown 

to localize to spindle poles during mitosis controlling spindle orientation in mouse neuronal cells 

(Godin et al. 2010). In the absence of huntingtin, dynein/dynactin and NuMA were dispersed around 

the spindles poles. Therefore, huntingtin possibly functions as a scaffold molecule that orchestrates 

the assembly of the dynein/dynactin complex.  

Huntingtin as a transcriptional regulator 

The nuclear localization confers huntingtin a role in transcriptional regulation (Kegel et al. 2002). 

Although numerous transcription factors are known to interact with mutant huntingtin, less is 

known about the interactions with the wild-type protein. A well-known target of huntingtin-

mediated transcriptional regulation is the gene encoding BDNF (brain-derived neurotrophic factor) 

(Zuccato et al. 2003). In the cytoplasm, wild type huntingtin sequesters and inhibits the activity of 

REST/NRSF (repressor element-1 transcription factor/neuron restrictive silencer factor), a 

transcription factor that negatively regulates BDNF transcription.  Recently, it has been shown that 

huntingtin interacts with methyl-CpG binding protein 2 (MeCP2) in mouse and cellular models of HD. 

This interaction may also modulate the huntingtin-mediated expression of BDNF (McFarland et al. 

2014).  

Huntingtin in the synapse 

A new emerging role of huntingtin is in synaptic connectivity. Huntingtin is associated with synaptic 

vesicles in the presynaptic terminal (DiFiglia et al. 1995), as well as in the postsynaptic density 

(Marcora and Kennedy 2010), where it is associated with the scaffolding protein PSD95 (Sun et al. 
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2001). For many years, the role of huntingtin in this compartment was obscure. A recent study 

showed that huntingtin is required for a correct formation of cortical and striatal excitatory synapses 

(McKinstry et al. 2014). In particular, when huntingtin was silenced in developing mouse cortex, an 

increase in excitatory synapse formation in the cortex and striatum was observed at P21, followed 

by gliosis. 

 

3. Mechanisms of pathogenesis in Huntington’s disease  

Despite the well-known genetic origin of HD, the number and variety of molecular alterations 

reported in HD is broad and not completely understood. While it is known that toxicity in HD arises 

from a gain-of-function of the mutant protein, given that expression of an expanded polyglutamine 

is toxic itself, a contribution of a loss-of-function of the wild-type protein cannot be discarded 

because deletion or inactivation of wild-type huntingtin also leads to neurodegeneration (O’Kusky et 

al. 1999)(Dragatsis et al. 2000). 

We will outline here some of the mechanisms of pathogenesis described to date and focus in 

particular on those which are related to potential targets for therapy.  

Mutant huntingtin aggregation: is it protective or deleterious? 

The hallmark of HD, and common to other polyglutamine disorders, is the presence of aggregates in 

the brain. These were initially considered crucial in HD pathology. Similar to other polyglutamine 

containing proteins, mutant huntingtin aggregation proceeds by nucleated growth polymerization 

(Perutz and Windle 2001), leading to polyglutamine strands forming a beta-sheet held together by 

hydrogen bonds (Perutz et al. 1994) which results in an amyloid structure (Chen et al. 

2002)(McGowan et al. 2000). 

HD aggregates, initially found in the nucleus (DiFiglia et al. 1997)(Becher et al. 1998) and later also in 

the cytoplasm and neuronal processes in the brain of HD patients (Gutekunst et al. 1999), are 

composed mainly of the expanded mutant huntingtin but also of many other proteins including 

ubiquitin (Becher et al. 1998)(DiFiglia et al. 1997), proteasome subunits and chaperones (Cummings 

et al. 1998)(Warrick et al. 1999), transcription factors (Huang et al. 1998) (Steffan et al., 2000), or 

even the wild type form of huntingtin (Kazantsev et al. 1999)(Busch et al. 2003). Hence, the idea of a 

deleterious effect as a consequence of the loss of functional proteins sequestered into these 

aggregates was quite appealing. Another argument on behalf of their pathogenicity is that the 

number of polyglutamines correlates both with the rate of aggregation and with the onset of the 

disease (Becher et al. 1998) (Martindale et al. 1998) (Perutz and Windle 2001), which suggests a 

direct link between aggregation and cell toxicity (Hackam et al. 1998). 

Contrary to this intuitive hypothesis, there are also arguments supporting the idea that aggregation 

does not correlate with toxicity, and that aggregates  might be just coincidental or even protective in 

HD (Saudou et al. 1998), (Kim et al. 1999) and other polyglutamine disorders (Klement et al. 

1998)(Cummings et al. 1999). Single living neuron studies inferred an inverse correlation between 

the presence of aggregates and cell death (Arrasate et al. 2004) and suggested a protective role for 

these inclusions by sequestering  toxic soluble species. In this line, the toxicity of the different 

mutant huntingtin species is currently a matter of debate: monomeric huntingtin forms soluble 

oligomers that precede fibrils and inclusions (Poirier et al. 2002)(Mukai et al. 2005)(Legleiter et al. 
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2010) and many reports point at these oligomers as the toxic species (Takahashi et al. 2008)(Lajoie 

and Snapp 2010)(Lajoie and Snapp 2013). Understanding which are the genuine harmful species is 

crucial to design therapeutic strategies.  

The aggregates in adult-onset HD are typically cytoplasmic, while those in juvenile-onset disease 

were proposed to be more frequent in the nucleus (DiFiglia et al. 1997)(Becher et al. 1998). A recent 

study has suggested that some aggregates that appear to be nuclear may indeed be perinuclear, i.e. 

cytoplasmic. These perinuclear aggregates have been proposed to be the toxic species which appear 

to cause cell death by abnormally activating cell cycle (Liu et al. 2014). This study may resolve some 

of the controversy about the roles of aggregates in HD, as it appeared that the truly nuclear 

aggregates were relatively benign, compared to the perinuclear aggregates, and that diffuse mutant 

huntingtin does not impact on cell death. However, the conclusions are still somewhat at odds with 

previous studies that suggested that the mutant huntingtin was most toxic in its non-aggregated 

state  (Arrasate et al. 2004). 

Huntingtin is cleaved in toxic fragments 

Accumulation of pathogenic N-terminal fragments of huntingtin is characteristic in HD (Davies et al. 

1997)(Kim et al. 1999)(Mende-Mueller et al. 2001). These fragments come from diverse origins, 

including proteolysis by caspases (Hermel et al. 2004) (Wellington et al. 1998)(Wellington et al. 

2000) (Kim et al. 2001)(Wellington et al. 2002)(Graham et al. 2006), calpains (Gafni et al. 2004)(Bizat 

et al. 2003)(Kim et al. 2003) and other proteases. In addition, alternative mechanisms might 

contribute, such as the aberrant splicing of the first exon of huntingtin protein (Sathasivam et al. 

2013) 

Although both wild-type and expanded huntingtin get cleaved, the presence of mutant fragments 

correlate with increased toxicity, which might be due to their higher propensity to form nuclear 

versus cytoplasmic less toxic aggregates (Hackam et al. 1998)(Lunkes and Mandel 1998) (Kim et al. 

1999)(Lunkes et al. 2002). Also, the nature of these fragments may vary between tissues, which 

might contribute to differences in cell susceptibility (Mende Mueller 2001)(Toneff et al. 

2002)(Wellington et al. 2002). Hence, inhibiting the formation of these fragments has been pursued 

as a therapeutic strategy, which could be achieved also indirectly, for example by modifying the 

susceptibility of cleavage by phosphorylation of huntingtin by Cdk5 (Luo et al. 2005), or 

phosphorylation of a domain which impairs calpain cleavage (Schilling et al. 2006). 

Mutant huntingtin disrupts transcription 

Transcriptional dysregulation has long been considered as a major pathogenic mechanism in HD. 

DNA microarray studies have revealed that expression profiles of a number of genes are profoundly 

altered in HD (Luthi-Carter et al. 2000)(Luthi-Carter et al. 2002)(Sipione et al. 2002). The activation 

domains of many transcription factors are composed of glutamine-rich regions suggesting that they 

may interfere with expanded polyglutamines. Indeed, mutant huntingtin interacts with regulators of 

transcription such as p53, cAMP response element-binding (CREB) protein and CREB-binding protein 

(CBP), involved in cell proliferation and survival (Steffan et al., 2000)(Nucifora et al. 2001)(Sugars et 

al. 2004); PGC-1α, which is necessary for energy metabolism (Cui et al. 2006)(Chaturvedi et al. 2010); 

Sp1 and its coactivator TAFII130, affecting transcription of genes such as D2 dopamine receptor 

(Dunah et al. 2002) (Zhai et al. 2005); and cystathionine γ–lyase (CSE), the biosynthetic enzyme for 

cysteine (Paul et al. 2014), among many others.  
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The increased susceptibility of the striatum in HD has been attributed to a reduction in the levels of 

the brain-derived neurotrophic factor (BDNF), a pro-survival factor produced cortically to promote 

survival of striatal neurons. Impairment in transcription (Zuccato et al. 2001) or in axonal transport 

of BDNF (Gauthier et al., 2004) or its receptor TrkB  (Liot et al., 2013) are all mechanisms that have 

been proposed to contribute to this deficit. In addition, corticostriatal synaptic defects in mouse 

models have been recently attributed to defects in BDNF signalling, rather than reduce BDNF levels, 

through an impact on postsynaptic p75 neurotrophin receptor (Plotkin et al. 2014), which along with 

TrkB binds to BDNF and is also implicated in HD (Brito et al. 2013)(Simmons et al. 2013)(Jiang et al. 

2013). 

Alterations in gene expression beyond transcription: epigenetics and non-coding RNAs 

Gene expression dysregulation in HD might also arise from variations in the epigenetic landscape, as 

well as in the regulation of non-coding RNAs. A first hint of deregulation of histone modification in 

HD came from the study of CBP, a transcriptional co-activator with histone acetyltransferase (HAC) 

functions. Expanded polyglutamines can bind to the HAC domain of CBP as well as other HACs, which 

disrupts their histone acetylation activity. Likewise, histone deacetylase (HDAC) inhibitors prevent 

neurodegeneration in cells, Drosophila or mouse models of HD (Steffan et al. 2001)(McCampbell et 

al. 2001)(Hockly et al. 2003)(Ferrante et al. 2003). More recently, genetic inhibition of HDAC4 has 

been shown to restore neurological dysfunction and extend life span in HD mouse models 

independently of its histone deacetylase function but due to reduced aggregate formation through 

decreased interaction between expanded polyglutamines and its glutamine-rich domain (Mielcarek 

et al. 2013).  

In an effort to determine chromatin structural modifications in the genes downregulated in HD, a 

genome-wide approach identified a specific H3K4me3 pattern, a mark of active chromatin and 

transcription initiation, which correlated with transcriptional dysregulation in the R6/2 HD mouse 

and human HD brain (Vashishtha et al. 2013). Along similar lines, DNA methylation in promoter 

regions, which results in gene repression or silencing, was changed in a significant fraction of the 

genes altered in HD (Ng et al. 2013), although how mutant huntingtin triggers DNA methylation is 

currently unknown.  

Gene expression is also influenced by non-coding RNAs. In HD human brain, miRNA deregulation has 

been reported (Johnson et al. 2008)(Packer et al. 2008) (Martí et al. 2010). Moreover, huntingtin has 

been found in RNA structures such as P bodies (Savas et al. 2008), stress granules (Ratovitski et al. 

2012) or dendritic RNA granules (Savas et al. 2010), where it could influence protein expression at a 

post-transcriptional level. In Drosophila models of the related polyglutamine disease spinocerebellar 

ataxia type 3, expression of an untranslated CAG triplet expansion was sufficient  to confer toxicity 

(Li et al. 2008). RNA toxicity mechanisms include aberrant protein-RNA interactions and 

sequestration of proteins but also the hairpin secondary structure formed by CAG RNAs resemble 

dsRNA structures that are substrates for Dicer (Handa et al. 2003), cleaving them into shorter repeat 

that silence specific genes (Krol et al. 2007). Cleaved RNAs from CAG-expanded huntingtin may also 

become neurotoxic through Ago2-mediated gene silencing of CTG-containing genes (Bañez-Coronel 

et al. 2012). 

Impairment of protein degradation systems: UPS and autophagy 
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Two major degradation pathways exist to degrade intracellular proteins: the ubiquitin proteasome 
system (UPS), that efficiently degrades wild-type huntingtin; and the autophagy-lysosome system 
which seems to be important in degrading the expanded mutant forms (Ravikumar et al. 
2002)(Ravikumar et al. 2004)(Shibata et al. 2006). 

Although most efforts have focused on finding strategies to upregulate these systems in order to 

reduce the levels of mutant protein, the influence that mutant huntingtin has in UPS and autophagy 

has been also a matter of research.  

Early reports described an impairment in proteasome activity as a consequence of the expression of 

polyglutamine-expanded huntingtin (Bence et al. 2001)(Jana et al. 2001)(Bennett et al. 

2005)(Verhoef et al. 2002), a phenomenon  that might be explained by either the sequestration of 

components of the UPS into inclusions (DiFiglia et al. 1997)(Davies et al. 1997)(Waelter et al. 2001), 

or by the interaction between the proteasome and aggregation-resistant forms of huntingtin 

(Holmberg et al. 2004)(Venkatraman et al. 2004).  

Conversely, some groups did not observe deficits in UPS activity in HD (Bett et al. 2009)(Maynard et 

al. 2009)(Schipper-Krom et al. 2014a). Studies in single neurons and in mouse models have 

addressed this contradiction by revealing that an initial UPS impairment is followed by its 

normalization coinciding with the appearance of inclusions, suggesting an adaptive mechanism 

(Mitra et al. 2009)(Ortega et al. 2010). More recently, it was shown that proteasomes can 

completely degrade expanded polyglutamines (Juenemann et al. 2013) which, together with the 

observation that proteasomes can be dynamically recruited to inclusions without affecting their 

activity (Schipper-Krom et al. 2014b), are in favour of a competent UPS in HD.  

Although an increased number of autophagosomes was described in HD models (Kegel et al. 2000), 

autophagosome formation is not affected by either mutant or wild type huntingtin (Zheng et al. 

2010). A closer look to the autophagic machinery revealed that, although formed, HD 

autophagosomes cannot optimally sequester substrates (Martinez-Vicente et al. 2010). This might 

be explained by the recently hypothesised role of wild type huntingtin as a protein scaffold to recruit 

the autophagy machinery in selective autophagy, although the consequences of the triplet 

expansion in this scaffold function has not been addressed (Ochaba et al. 2014). Additionally, it has 

been proposed that HD autophagosomes have impaired axonal transport (Wong and Holzbaur 

2014), which leads to inefficient autophagosome-lysosome fusion and decreased degradation of 

autophagosome content (Ravikumar et al. 2005)(Jahreiss et al. 2008). 

Altered synaptic plasticity and neuronal homeostasis in HD 

Neuronal and synaptic abnormalities are early pathological events in HD (Usdin et al. 

1999)(Milnerwood et al. 2006)(Cummings et al. 2006). Neuronal homeostasis might be compromised 

by decreased transcription of essential genes in neurotransmission and signalling but also by defects 

in the delivery of proteins and organelles along their axons. Pathogenic huntingtin inhibits fast 

axonal transport of organelles (Li et al. 2001)(Szebenyi et al. 2003)(Lee et al. 2004)(Gunawardena et 

al. 2003)(Trushina et al. 2004), a phenomenon that has been explained by aggregates blocking axons 

(Li et al. 2001)(Lee et al. 2004), aggregate sequestration of motor proteins (Gunawardena et al. 

2003)(Trushina et al. 2004) or loss of function of wild type huntingin (Gunawardena et al. 

2003)(Trushina et al. 2004). Huntingtin facilitates vesicle trafficking by serving as a scaffold between 

cargoes, microtubules and motor proteins, such as dyneins or kinesins (Caviston et al. 2007)(Colin et 
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al. 2008), an interaction mediated through huntingtin associated protein 1 (HAP1) which appears to 

be disrupted in disease (Gauthier et al. 2004)(McGuire et al. 2006). Polyglutamine-expanded 

huntingtin may also have an indirect effect by enhancing JNK3 phosphorylation of kinesin heavy 

chain, which disrupts its binding to microtubules in cellular and animal models of HD thereby 

perturbing fast axonal transport (Morfini et al. 2009).  

Axonal transport is required to correct delivery to neuronal membranes to ensure synaptic 

transmission. In HD, a failure delivery of receptors such as GABA(A) or AMPA receptors, inhibits 

synaptic excitability. HAP1 is the scaffold linking these receptors to the kinesin motor KIF5 and this 

interaction is interrupted by mutant huntingtin (Twelvetrees et al. 2010)(Mandal et al. 2011)(Yuen et 

al. 2012). Mutant huntingtin also inhibits cortical transport and release of BDNF (Gauthier et al. 

2004), or the retrograde transport in the striatum of its receptor TrkB (Liot et al., 2013), necessary to 

promote survival signals in the cell body.  

Medium-sized spiny neurons in the striatum experience the most prominent degeneration in HD. 

The observation that MSN were selectively affected by glutamatergic signals (Coyle and Schwarcz 

1976)(McGeer and McGeer 1976)(Beal et al. 1986)(Beal et al. 1991) led to the hypothesis that 

striatal neurons in HD could be harmed by excessive neurotransmission, mainly through glutamate 

stimulation of NMDA receptors, resulting in neuronal cell death via a process termed excitotoxicity.  

Alterations in the levels of the different subunits of postsynaptic NMDAR in striatum could explain 

their aberrant activity in HD (Cepeda et al. 2001)(Ali and Levine 2006)(Fan et al. 2007)(Benn et al. 

2007), which may predispose striatal neurons to excitotoxic damage (Laforet et al. 2001)(Zeron et al. 

2002). In addition, mutations in HD might also affect trafficking of NMDAR in striatal neurons (Fan et 

al. 2007)(Marco et al. 2013). But also, the balance between synaptic (pro-survival) and extrasynaptic 

(detrimental) NMDAR activity is altered in HD (Okamoto et al. 2009)(Milnerwood et al. 2010). 

Excitoxicity might result from an increase glutamate release or from impaired uptake and clearance, 

as downregulation of GLT1 glial glutamate transporter has been observed in HD (Liévens et al. 

2001)(Shin et al., 2005)(Estrada-Sánchez et al. 2009). Therapeutic agents targeting excitotoxicity may 

act directly act on NMDAR, such as memantine (Okamoto et al. 2009)(Milnerwood et al. 2010), or 

modulate levels of excitatory neurotransmitters, such as 3-hydroxikynurenine and quinolinic acid, 

both metabolites of the kynurenine pathway, the major tryptophan degradative pathway, which is 

perturbed in HD (Giorgini et al. 2005)(Guidetti et al. 2006)(Zwilling et al. 2011)(Campesan et al. 

2011). 

Mitochondrial dysfunction in HD 

Altered mitochondrial function resulting in defects in ATP production, Ca2+ buffering capacity and 

apoptosis is associated with neurodegeneration in HD (Sawa et al. 1999)(Panov et al. 2002). Some 

evidence suggests that mutant huntingtin can interact with the outer mitochondrial membrane 

resulting in mitochondrial calcium abnormalities (Panov et al. 2002)(Choo et al. 2004). Mutant 

huntingtin also interferes with normal organellar axonal transport and can therefore reduce 

transport of mitochondria to synapses, as well as ATP production (Orr et al. 2008)(Song et al. 

2011)(Shirendeb et al. 2012). 

Decreased transcription of mitochondrial genes may also contribute to mitochondrial defects, such 

as repression of PGC1-α, a nuclear co-activator that regulates the expression of genes that mediate 

mitochondrial biogenesis and respiration (Cui et al. 2006), or depletion of the enzyme necessary for 
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synthesizing cysteine which maintains mitochondrial homeostasis (Paul et al. 2014). Also, transport 

of proteins into mitochondria could be defective, since huntingtin interacts and inhibits TIM23, a 

component of the inner mitochondrial membrane transport complex and this may contribute to 

respiratory dysfunction and neuronal cell death (Yano et al. 2014). 

Mitochondria are dynamic organelles that undergo fusion-fission cycles in response to stimuli and 

metabolic demands. Fragmentation leads to caspase activation and apoptosis, and therefore 

inhibiting mitochondria fission delays cell death (Youle and Karbowski 2005). Expanded huntingtin 

interfere with mitochondrial dynamics and interacts with a central regulator of protein fission, 

dynamin-related protein 1 (Drp-1), increasing its enzymatic activity and mitochondrial 

fragmentation. Conversely, overexpression of a negative form of Drp-1 or fusion-promoting enzymes 

inhibit mutant huntingtin-induced mitochondrial fragmentation and toxicity (Wang et al. 2009)(Song 

et al. 2011)(Shirendeb et al. 2012) and selective Drp1 inhibitors have proven beneficial to slow down 

disease progression in several HD models (Guo et al. 2013). 

A consequence of mitochondrial malfunction is the aberrant production of reactive oxygen species 

(ROS), which, in turn causes more damage to mitochondria. Post-mortem brain of HD patients and 

experimental models of HD show evidence of oxidative damage (Perluigi et al. 2005)(Stoy et al. 

2005)(Sorolla et al. 2008). Therefore, antioxidants are currently being tested to ameliorate levels of 

ROS and to help in mitochondrial dysfunction. 

Cell-to-cell transmission of aggregates 

Emerging evidences suggest that prion-like transmission from cell to cell of proteins like tau or 

alpha-synuclein spreads these disease-associated proteins to different brain regions (Lee et al. 

2010)(Guo and Lee 2014). This “infectious” property has been also associated with polyglutamine 

proteins, where internalization of exogenous polyglutamine aggregates serves as seeds for 

nucleating aggregation of cytoplasmic soluble polyglutamines (Ren et al. 2009). This first report 

suggested that aggregates are internalized from the extracellular space but more recently, cell-to-

cell transfer of aggregates through tunnelling nanotubes, actin-rich membrane bridges that connect 

cells and mediate the transfer of cytoplasm content (Rustom et al. 2004), such as prions (Gousset et 

al. 2009), were suggested as an alternative route (Costanzo et al. 2013).  

In vivo studies have shed some light into this hypothesis. hESC-derived neurons that were integrated 

into corticostriatal organotypic brain slices of a R6/2 mouse or injected into the cortex, acquired 

mutant huntingtin aggregates after 2 and 4 weeks respectively, which correlated with alterations in 

neuron integrity. Further, corticostriatal co-cultures revealed that mutant huntingtin spread from 

R6/2 cortex to wild type MSNs in the striatum, but not  in the opposite direction (Pecho-Vrieseling et 

al. 2014), suggesting that propagation occurred in a pre- to post-synaptic path,  which was confirmed 

by using inhibitors of synaptic vesicle fusion (Pecho-Vrieseling et al. 2014). 

Astrocyte and microglial dysfunction in HD 

Although huntingtin aggregates are more prominent in neurons than in non-neuronal glial cells (Shin 

et al., 2005), probably due to the lack of cell division in neurons or to a less efficient protein 

homeostasis system (Tydlacka et al. 2008), glial cells also contribute to disease in HD and reactive 

gliosis is observed in many HD mouse models (Reddy et al. 1998)(Lin et al. 2001)(Yu et al. 2003) and 

postmorten brains of HD patients (Myers et al. 1991)(Sapp et al. 2001). 
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Astrocytes are the major type of glia. They provide support to neurons and enable uptake of 

extracellular glutamate preventing excitotoxicity. In an effort to discern the role of astrocytes in HD 

pathology, an N-terminal huntingtin with 160Q was selectively expressed in astrocytes. Despite no 

obvious degeneration of glia or neurons, these mice developed late-onset neurological symptoms, 

which correlated with reduced levels of the GLT-1 glutamate transporter (Bradford et al. 2009). 

When mutant huntingtin was expressed in both astrocytes and neurons, it worsened the phenotype 

relative to neuronal-only expression, confirming the contribution of astroglia to disease (Bradford et 

al. 2010).  

Additional defects might contribute to pathology, such as impaired secretion from HD astrocytes of 

the chemokine CCL5 (Chou et al. 2008) or BDNF (Wang et al. 2012). Also, striatal astrocytes from 

R6/2 and Q175 HD mouse models showed reduced levels of Kir4.1 K+ channels, which led to 

increased extracellular K+ and neuronal excitability, while viral delivery of Kir4.1 attenuated R6/2 

mice phenotype (Tong et al. 2014). 

Growing evidence implicates neuroinflammation in neurodegeneration. In HD, increased secretion 

of pro-inflammatory cytokines and chemokines has been reported in late but also in early 

presymptomatic gene carriers (Tai et al. 2007)(Björkqvist et al. 2008)(Wild et al. 2011), suggesting 

that this is not only a reactive process but an active player in disease progression.  

Huntingtin is expressed in immune cells resulting in cell-autonomous microglial activation and 

secretion of pro-inflammatory cytokines, as a consequence of elevated transcription of myeloid 

lineage-determining factors PU.1 and C/EBPs (Crotti et al. 2014). In the peripheral immune system, 

mutant huntingtin also impacts on inflammatory responses through inhibition of NF-kappa B 

signalling (Trager 2014). Signalling through CB2 cannabinoid receptors might also explain 

inflammation in HD (Palazuelos et al. 2009)(Bouchard et al. 2012). In addition, both microglia and 

peripheral cells expressing mutant huntingtin showed reduced migration in response to chemotactic 

signals (Kwan et al. 2012b). Moreover, bone marrow transplantation with wild type cells restored 

the levels of cytokines and chemokines, and partially suppressed pathology in HD mouse models 

(Kwan et al. 2012a).  

Interplay between mutant huntingtin and other aggregate prone proteins 

Mutant huntingtin is also associated with other brain pathologies. α-synuclein, the component of 

Lewy bodies in Parkinson’s disease, is found close to huntingtin aggregates (Charles et al. 2000) and 

excess α-synuclein expression is associated with increased mutant huntingtin aggregation (Furlong 

et al. 2000)(Herrera and Outeiro 2012). In agreement with these findings, when α-synuclein was 

knocked out in a R6/1 mouse, the number of inclusions was reduced and the disease progression 

attenuated (Tomás-Zapico et al. 2012). Overexpression of α-synuclein has a negative effect on 

autophagy (Winslow et al. 2010) and worsens the disease phenotype in R6/1 and N171-82Q mouse 

models (Corrochano et al. 2012). Conversely, its depletion was beneficial and correlated with an 

increase in autophagy in these mice which explains the crosstalk between these two diseases 

(Corrochano et al. 2012). Since mutant huntingtin is an autophagy substrate, these observations are 

a likely major contributor to the cross-talk between α-synuclein and huntingtin aggragation, as  

opposed to any obvious cross-seeding.  

An imbalance in the levels of tau isoforms containing either three or four microtubule binding 

repeats (3R or 4R) with an increased in the 4R/3R ratio is sufficient to cause neurodegeneration. This 
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relation is increased in HD mice as a consequence of splicing defects and enhances HD pathology 

(Fernández-Nogales et al. 2014). Tau phosphorylation is also affected by HD mouse models, which 

might have consequences in HD progression (Blum et al. 2014).  

 

4. Therapy for Huntington’s Disease 

HD as a tractable therapeutic problem 

Though Huntington’s disease is rare, it does receive a great deal of research attention. One reason 

for this is that it has some features which make it more likely to be a tractable problem than other 

neurodegenerative conditions. Firstly, the autosomal dominant nature of the condition means that 

the diagnosis is almost definitive and can be made prior to death. This means that it is possible to 

accurately model and study the disease in vitro and in vivo.  Perhaps more importantly, one can be 

sure the patients are suffering from a reasonably homogeneous condition. This is not the case in 

other dementing illnesses where the diagnosis is seldom definitive and post mortem analysis often 

shows a mix of pathologies. Secondly, the familial nature of the condition means that diagnosis can 

be made prior to symptom onset. This is a potentially crucial advantage as it means therapy can 

begin prior to major neuronal loss, by which point in the illness it may be more difficult to slow 

progression and impossible to correct existing deficits. Lastly, the Huntington’s community of 

patients, their families and their doctors have a history of co-operation which has made large scale 

clinical trials possible. This is clear not only from trials that have taken place but also long term 

longitudinal studies of disease progression which have provided rich data sources to inform the 

design of future trials, particularly with regards to appropriate trial endpoints (Tabrizi et al., 2013). 

Current treatment for HD 

There are no known disease-modifying drugs currently available for HD. Treatment is symptomatic 

only. The only drug with a licensed indication for HD in the UK is tetrabenazine, where it is used to 

treat choreaform movements. Trials of cholinesterase inhibitors used to treat the cognitive problems 

seen in Alzheimer’s disease have been largely negative in HD (Cubo et al., 2006). Psychiatric 

symptoms, which are often the most troubling for patients, are often treated with standard drug 

treatments used in non-HD patients. For example, psychosis is treated with atypical antipsychotics 

and depression with SSRI or SNRI antidepressants (Phillips et al., 2008). With the exception of one 

open label trial with venlafaxine, these treatments are supported largely by case studies or small 

series (Holl et al., 2010). The current care of people with HD involves many paramedical disciplines, 

including speech and language therapy, physiotherapy, nursing and social care. 

Therapeutic trials based on potential pathogenic mechanisms 

 

i) Gene silencing  

Silencing the expression of the mutant huntingtin gene is attractive, as one might expect 

it to provide an effective treatment by dealing with the pathology at source. Indeed, 

trials in rodents have found the approach to be efficacious in ameliorating symptoms 

and pathology either using RNA interference (Drouet et al., 2009)(Stanek et al. 2014) or 

antisense oligonucleotides (Kordasiewicz et al. 2012). Though attractive, this approach 
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has a number of potential difficulties. These include allele specificity, off target effects 

and delivery. Recent non-human primate trials have shown promising safety data, and a 

small safety trial of antisense oligonucleotides in HD patients is planned for 2015 

(Grondin et al. 2012)(McBride et al. 2011). 

ii) Anti-apoptotics / caspase inhibition 

The tetracycline antibiotic minocycline is a caspase inhibitor, though like many of the 

compounds described here has pleiotropic mechanisms of action, including antioxidant 

and cytokine modulating properties. It was initially shown to prolong life expectancy in a 

mouse model of Huntington’s disease, though subsequent work in the same mouse 

model was not encouraging (Chen et al., 2000, Menalled et al., 2010). Nevertheless, 

following small safety trials, a larger trial of patients with an endpoint of change in total 

functional capacity compared to historical controls suggested no benefit of minocycline.  

This highlights the importance of careful reproduction of preclinical data before moving 

in to clinical trials.  

iii) Transglutaminase inhibition 

The glutamine residues in huntingtin are cross linked by transglutaminase.  

Transglutaminase inhibitors such as cystamine have produced promising results in 

mouse models of the disease (Dedeoglu et al., 2002)(Karpuj et al. 2002).  A safety and 

dose finding study of a cystamine dimer, cysteamine, has been carried out (Dubinsky 

and Gray, 2006) and a larger trial involving 96 HD patients  is underway. 

iv) Mitochondria, oxidative stress and excitotoxicity 

Using antioxidants to decrease oxidative stress has been a putative therapeutic strategy 

for a number of neurodegenerative diseases. This is another example where treatment 

of mouse models suggested benefit, in this case with the NMDA receptor antagonist 

remacemide and the antioxidant coenzyme Q10 (Ferrante et al., 2002).  Unfortunately 

these results were not recapitulated in large clinical trials of patients (2001). More 

recently, in the largest proposed trial in HD to date, the 2CARE study of high dose 

coenzyme Q10, was stopped early due to a combination of futility and safety concerns. 

Other clinical trials with other NMDA receptor antagonists have also been disappointing 

(Kremer et al., 1999) as have trials of creatine, a potential antioxidant with previous 

positive results in mice. Trials of creatine in symptomatic patients have been 

disappointing, but further trials have been undertaken in at-risk individuals with some 

more positive findings on imaging (Rosas et al., 2014). 

v) Up-regulating autophagy 

 

Autophagy up-regulation using a variety of drugs have shown amelioration of the HD 

phenotype and pathology in cellular, fly, fish and mice models, reviewed in (Hochfeld et 

al., 2013). Conversely, inhibition of autophagy has been shown to worsen phenotypes, 

including using antioxidants which are autophagy inhibitors, and this may provide an 

explanation for the relative failure of antioxidant based strategies (Underwood et al., 

2010). The repertoire of drugs which up-regulate autophagy has been expanded and 

includes compounds such as rilmenidine which have a benign side effect profile and long 
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records of safe human use. A safety trial of rilmenidine is currently underway in HD 

patients in Cambridge, UK. 

 

vi) Transplantation 

 

Once symptoms are manifest, it may be difficult to reverse deficits with drug treatment 

as neurons have been lost. One approach to correcting this is to transplant new 

neuronal tissue. This approach is another where some promise has been shown in 

animal models of the disease (Dunnett et al., 1998). Early human studies have shown 

potential for graft survival, though a recent long term follow up was less encouraging 

and mutant huntingtin is found in transplanted tissue (Barker et al., 2013, Cicchetti et 

al., 2014). The variable results in terms of graft survival, safety and outcome may reflect 

differences in protocol and procedure which may lead to more successful trials now 

proof of principle has been established. 

 

vii) Other clinical trials 

Other large trials have been reported in HD. Latrepirdine (Dimebon) was originally 

synthesised as an antihistamine and showed some early promise as a treatment for 

Alzheimer’s disease. Results from the relatively large DIAMOND trial in HD patients 

suggested some improvement in cognition, but the subsequent larger HORIZON trial 

showed no benefit and the company involved is no longer taking this compound 

forwards as a potential therapy (Kieburtz et al., 2010). Other compounds which may 

help with symptoms but which may not be disease modifying have also been studied in 

large scale trials. Pridopidine is a drug which may have a beneficial effect on movement 

via its effect on dopamine signalling. A large recent trial did not reach statistical 

significance for the primary motor endpoint, but did suggest some promise in motor 

scores overall. Non-drug strategies are also being pursued, for example recent trials of 

physical activity and rehabilitation in HD patients have been reported (Busse et al., 

2013). 

 

The increase in understanding of the basic science of HD has yet to translate into an effective 

disease modifying therapy. Feasibility of large scale trials of various sorts has been demonstrated 

and a wide variety of approaches are currently being pursued, which one hopes will start to bring 

benefits in the near future. 
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Figure Legend: 

 

Figure 1: Schematic of selected mechanisms of pathogenesis in Huntington’s disease 
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