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Abstract: Differential positivity of a dynamical system refers to the property that its
linearization along trajectories is positive, that is, infinitesimally contracts a smooth cone
field defined in the tangent bundle. The property can be thought of as a generalization of
monotonicity, which is differential positivity in a linear space with respect to a constant cone
field. Differential positivity induces a conal order which places significant constraints on the
asymptotic behavior of solutions. This paper studies differentially positive systems defined on
Lie groups, which constitute an important and basic class of manifolds with the structure of a
homogeneous space. The geometry of a Lie group allows for the generation of invariant cone
fields over the tangent bundle given a single cone in the Lie algebra. We outline the mathematical
framework for studying differential positivity of a nonlinear flow on a Lie group with respect
to an invariant cone field and motivate the use of this analysis framework in nonlinear control,
and, in particular in nonlinear consensus theory.
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1. INTRODUCTION

In differential analysis of a dynamical system, we seek to
derive statements about the global behavior of a nonlinear
system by studying the linearization of the system, also
known as the variational or prolonged system. The key idea
is that the local behavior of a system can often capture
important aspects of the global behavior. The prominent
illustration of this phenomenon in nonlinear control is
contraction theory, as proposed in the seminal work of
Lohmiller and Slotine (1998). Contraction analysis theory
exploits the property that a local or infinitesimal mea-
sure of contraction can be used to infer stability without
the need to present an explicit construction of distance
between converging trajectories. See also Sontag (2010);
Forni and Sepulchre (2014b); van der Schaft (2013); Forni
and Sepulchre (2013); Forni et al. (2013); Simpson-Porco
and Bullo (2014) for recent developments of this frame-
work.

One important motivation for a differential analysis is
when the state space of the system is not a vector space,
but a nonlinear manifold. In many applications, the man-
ifold is not arbitrary but has a homogeneous structure in
that it is a quotient manifold or a homogeneous space in
the sense of Lie theory. A homogeneous space is defined
as a manifold on which a Lie group acts in a transitive
way, meaning that any point on the manifold can be
mapped onto any other point by an element of a group
of transformations that act on the space. Such a space can
be endowed with the structure of a quotient manifold in
a natural way. A fundamental significance of such spaces
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is that the local window at each point can be made the
same everywhere. That is, local descriptions of laws can
be made independent of the locality of the data window.

There is a strong incentive in such situations to make
the differential analysis invariant, that is, to a priori
include the symmetry of the state-space in the analysis.
For instance, invariant contraction analysis would seek to
study contraction with respect to an invariant Riemannian
metric on a given homogeneous space. In this case, the
homogeneity of the metric ensures that local measures of
length are invariant over the manifold.

The present paper focuses on differentially positive dynam-
ical systems on Lie groups, which constitute an important
class of homogeneous spaces. The notion of differentially
positive systems was introduced by Forni and Sepulchre
(2015) as systems whose linearizations along trajectories
are positive. Recall that positive systems are defined as
linear behaviors that leave a cone invariant Bushell (1973).
Such systems find many applications in control engineer-
ing, including to stabilisation Muratori and Rinaldi (1991);
Farina and Rinaldi (2000), observer design Bonnabel et al.
(2011), and distributed control Moreau (2004). An impor-
tant feature of positivity is that it restricts the behavior of
a system, as seen in Perron Frobenius theory. To illustrate
these ideas, let the vector space V be the state space of
the system and consider the linear dynamics ẋ = Ax on
V. Such a system is said to be positive with respect to a
pointed convex solid cone K ⊆ V if eAtK ⊆ K, for all t > 0,
where eAtK := {eAtx : x ∈ K}. Perron Frobenius theory
demonstrates that if the system is strictly positive in the
sense that the transition map eAt maps the boundary of
the cone K into its interior, then any trajectory eAtx,
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x ∈ K, converges asymptotically to the subspace spanned
by the unique dominant eigenvector of A.

The study of differential positivity of a system defined on a
manifold necessitates the construction of a cone field which
assigns to each point a cone that lies in the tangent space
at that point. Naturally, we are interested in constructing
cone fields that capture some form of invariance with
respect to the underlying symmetries of the nonlinear
spaces of interest.

A key motivating force behind the development of in-
variant differential positivity is to develop a theory of
consensus on nonlinear spaces Sepulchre et al. (2008). The
theory of consensus in linear spaces is well understood and
relies heavily on the ideas of order and positivity. Consen-
sus algorithms on linear spaces have been developed and
shown to be efficient and robust Moreau (2004); Olfati-
Saber (2006); Olfati-Saber et al. (2007); Jadbabaie and Lin
(2003). In many applications, the agents evolve on nonlin-
ear manifolds that are Lie groups Sarlette et al. (2010);
Tron et al. (2012) or homogeneous spaces Sarlette and
Sepulchre (2009). For example, oscillators evolve on the
circle S1, satellite attitudes on SO(3), and vehicles move in
SE(3). Exploiting suitable notions of order and positivity
on homogeneous spaces offers the possibility of adapting
the existing successful approaches of consensus theory on
linear spaces to consensus on homogeneous spaces.

2. POSITIVITY, MONOTONICITY, AND
DIFFERENTIAL POSITIVITY

2.1 Monotonicity as Differential Positivity

We briefly review the concept of differential positivity,
recently introduced in Forni and Sepulchre (2015), empha-
sizing its relationship to the classical notions of positivity
and monotonicity.

A cone in a vector space V is a subset K ⊂ V that satisfies
(i) K + K ⊆ K, (ii) λK ⊆ K for all λ ∈ R≥0, and
(iii) K ∩ −K = {0}. That is, we assume that a cone is
closed, convex, and pointed. Furthermore, we assume that
we are dealing with solid cones that contain n := dimV
linearly independent vectors. We define a conal manifold
as a smooth manifold M endowed with a cone field KM,
which smoothly assigns a cone KM(x) ⊆ TxM to each
point x ∈M.

A cone field KM gives rise to a conal order ≺ and
the manifold M is said to be an infinitesimally partially
ordered manifold when endowed with KM. A continuous
piecewise smooth curve γ : [t0, t1] → M is called a conal
curve if γ′(t) ∈ KM (γ(t)), whenever the derivative exists.
For points x, y ∈M, we write x ≺ y if there exists a conal
curve γ : [t0, t1] → M with γ(t0) = x and γ(t1) = y. If
the conal order is also antisymmetric, then it is a partial
order. It is clear that ≺ defines a global partial order when
M is a vector space and the cone field KM(x) = KM is
constant. Specifically, x ≺ y if and only if y−x ∈ KM, for
x, y ∈ M. In general, however, ≺ is not a global partial
order, since antisymmetry may fail. A simple example of
this is provided by any conal order defined on the circle
S1, which clearly fails to be global.

Let M be a smooth n-dimensional Riemannian manifold
whose metric tensor is given by the smoothly varying inner
product 〈·, ·〉x : TxM× TxM → R. Assume that (M, d)
is a complete metric space, where d : M ×M → R≥0
is the distance function on M induced by the norm
|δx| :=

√
〈δx, δx〉, for δx ∈ TxM. Given a smooth map

F : M1 → M2 between smooth manifolds M1, M2,
denote the differential of F at x by dF (x) : TxM1 →
TF (x)M2. Now consider a dynamical system Σ onM given
by ẋ = f(x), where f is a smooth vector field that assigns
a tangent vector f(x) ∈ TxM to each point x ∈ M . We
assume that the system is forward complete in the sense
that the domain of any solution x(·) is of the form [t0,∞).

Definition 1. The dynamical system Σ is said to be differ-
entially positive with respect to the cone field K if

dψt(x)K(x) ⊆ K(ψt(x)) ∀x ∈ X ,∀t ≥ 0 (1)

where ψt(x) denotes the flow at time t from initial con-
dition x. The system is said to be strictly differentially
positive if in addition the differential dψT (x) uniformly
maps the boundary of K(x) into the interior of K(ψT (x))
for some T > 0.

The general definition of differentially positive systems
requires the definition of a smooth cone field. The special
case of differential positivity on a linear space with respect
to a constant cone field is important for this paper in that
it highlights the fact that invariant differential positivity
in a linear space is precisely the local characterization of
monotonicity. Indeed, recall that a dynamical system Σ on
a vector space V endowed with a partial order � induced
by some cone K ⊆ V is said to be monotone if for any
x1, x2 ∈ V the trajectories ψt0 satisfy

x1 �K x2 ⇒ ψt0(t, x1) �K ψt0(t, x2), (2)

for all t ≥ t0. Now endow the manifold V with the
constant cone field KV(x) := KV and note that the
infinitesimal difference δx(·) := x̂(·) − x(·) between two
ordered neighbouring solutions x(t) �KV x̂(t) satisfies
δx(t) ∈ KV(x(t)), ∀t ≥ t0. Since (x(·), δx(·)) is a trajectory
of the prolonged or variational system δΣ, this shows that
the system is monotone if and only if it is differentially
positive. That is, the system is monotone if and only if for
any initial time t0 and all t ≥ t0,

δx(t0) ∈ K ⇒ δx(t) ∈ K. (3)

A linear space is of course a Lie group with the group
operation given by linear translations. A constant cone
field thus has the direct interpretation of a cone field first
defined at identity and then translated at every point in
an invariant manner, see Section 3 for details.

2.2 The Hilbert Metric

Given a cone K in RN , let MK(v1, v2) := inf{λ ∈ R≥0 :
λv2−v1 ∈ K}, mK(v1, v2) := sup{λ ∈ R≥0 : v1−λv2 ∈ K},
and MK(v1, v2) :=∞ when {λ ∈ R≥0 : λv2−v1 ∈ K} = ∅.
The Hilbert metric dK induced by K is defined as

dK(v1, v2) = log

(
M(v1, v2)

m(v1, v2)

)
, (4)

for all v1, v2 ∈ K\{0}. Note that dK is a projective metric
with the invariance property dK(λ1x1, λ2x2) = dK(x1, x2)
for all x1, x2 ∈ K and λ1, λ2 > 0 Bushell (1973). The
following important theorem due to Birkhoff establishes



a link between positivity and contraction of the Hilbert
metric Birkhoff (1957).

Theorem 2. Let F be a map defined on a cone K which
satisfies: (i) F maps the cone K to its interior, (ii) F is
homogeneous of degree p in intK, i.e. F (λx) = λpF (x),
and (iii) F is monotone with respect to the order induced
by K: x � y ⇒ F (x) � F (y). Then F is a contraction for
the Hilbert metric dK. Furthermore, for each x1, x2 ∈ K,

dK(F (x1), F (x2)) ≤ tanh

(
1

4
∆(F )

)
dK(x1, x2), (5)

where ∆(F ) := supx1,x2∈K dK(F (x1), F (x2)), is known as
the projective diameter of F .

In particular, note that a linear map A that is positive
monotone with respect to a cone K satisfies all three
conditions of Theorem 2. The Banach contraction mapping
theorem applied to Birkhoff’s theorem yields a powerful
generalization of the Perron-Frobenius theorem. In the
following ∼ denotes the equivalence relation on intK
defined by x1 ∼ x2 if and only if there exists λ > 0 such
that x2 = λx1.

Theorem 3. If (intK/ ∼, dK) is a complete metric space
and ∆(F ) < ∞, then there exists a unique eigenvector of
F in K.

2.3 Consensus Theory in Linear Spaces

Continuous time linear consensus algorithms result in
time-varying systems of the form

ẋ = A(t)x, (6)

where A(t) is a Metzler matrix. That is, its rows sum to
zero and its off-diagonal elements are non-negative:

A(t)1 = 0, and Aij(t) ≥ 0 for i 6= j, (7)

where 1 = (1, . . . , 1)T . Protocols of the form (6) arise from
N nodes exchanging information about a scalar quantity
xi(t) along communication edges (i, j) weighted by non-
negative scalars aij :

ẋk =
∑
i∈Nk

aki(xi − xk), (8)

where Nk denotes the set of all neighboring nodes of node
k in the communication graph (V, E).

Tsitsiklis (1984) observed that the Lyapunov function

V (x) = max
1≤i≤N

xi − min
1≤i≤N

xi (9)

is never increasing along solutions of (6). Under suitable
connectedness assumptions, it decreases uniformly in time.
The non-quadratic nature of the Lyapunov function (9) is
a key feature in the analysis of consensus algorithms. This
property is intimately connected to the Hilbert metric. It
is easy to show that the linear system (6) is positive with
respect to the positive orthant K := RN+ in RN as A(t) is
Metzler. Since A(t)1 = 0, Birkhoff’s theorem implies that

dK(x(t),1) ≤ dK(x(0),1), (10)

for all t. Thus, Birkhoff’s theorem yields the Lyapunov
function

VB(x) = dK(x,1) = log
maxi xi
mini xi

= max
i

log xi −min
i

log xi,

(11)
which is clearly the same as the Tsitsiklis Lyapunov
function in log coordinates. Furthermore, the contraction

of the Hilbert metric (10) is strict provided that the
positivity of ẋ = A(t)x is strict, which is the case if the
off-diagonal elements Aij(t) are positive.

The seminal paper of Moreau (2005) highlights the under-
lying geometry of the consensus algorithm (6), which is
that the convex hull of the states {x1, x2, . . . , xn} never
expands under the consensus update. The Lyapunov func-
tion (9) is a measure of the diameter of the convex hull.
This insight leads to a number of nonlinear generalizations
of consensus theory. For instance, the linear update (6)
can be replaced by an arbitrary monotone update, without
altering the convergence analysis.

A key contribution of Forni and Sepulchre (2015) is the
generalization of Perron-Frobenius theory to the differen-
tial framework, whereby the Perron-Frobenius eigenvec-
tor of linear positivity theory is replaced by a Perron-
Frobenius vector field w(x) whose integral curves shape
the attractors of the system. The main result on closed
differentially positive systems is that the asymptotic be-
havior is either captured by a Perron-Frobenius curve γ
such that

γ′(s) = w(γ(s)) (12)

at every point on γ; or is the union of the limit points
of a trajectory that is nowhere aligned with the Perron-
Frobenius vector field, which is a highly non-generic situ-
ation.

It is insightful to revisit nonlinear consensus theory in
linear spaces through invariant differential positivity. Con-
sider the consensus model where the linear coupling im-
plicit in (6) is replaced by a nonlinear protocol of the form

ẋk =
∑
i∈Nk

fki(xi − xk), (13)

where Nk denotes the set of all neighboring nodes of node
k in the communication graph (V, E), and the functions
fki : R → R are odd, locally Lipschitz and strictly
increasing for all edges (i, k) ∈ E . Note that the variational
or prolonged system associated with the nonlinear protocol
(13) can be expressed as{

ẋ = F (x)1,
˙δx = J(x)δx

(14)

where x = (x1, . . . , xN )T ∈ RN , 1 = (1, . . . , 1)T ∈ RN ,
Fki(x) = fki(xi − xk), and

Jkk(x) = −
∑
i∈Nk

f ′ki(xi − xk),

Jki(x) = f ′ki(xi − xk) if (k, i) ∈ E ,
Jki(x) = 0 if (k, i) /∈ E .

(15)

Note that the identity J(x)1 = 0 captures the invariance
of the consensus subspace {x ∈ RN : x1 = . . . = xN}.
Since the nonlinear coupling functions fik are assumed to
be strictly increasing, the Jacobian matrix J(x) has non-
negative off-diagonal elements. Indeed, it is easy to see
that the system is differentially positive with respect to
the invariant cone field generated by the positive orthant
K = RN+ = {x ∈ RN : xi ≥ 0, i = 1, . . . , N}. This is
made clear by observing that on each face of the cone
given by Fi := {δx : δxi = 0}, we have ˙δx = J(x)δx ≥ 0
if and only if Jij(x) ≥ 0 for all i 6= j. Moreover, in
the case of a strongly connected graph, the differential



positivity is strict. The attractor of the system is precisely
the consensus subspace, which coincides with the Perron-
Frobenius curve generated by the invariant vector field
w(x) = 1.

3. INVARIANT DIFFERENTIAL POSITIVITY ON
LIE GROUPS

3.1 Invariant Cone Fields on Lie Groups

Let G be a Lie group with Lie algebra g. Recall that a
cone field KG smoothly assigns a cone KG(g) ⊂ TgG to
each point g ∈ G. We say that the cone field KG is left-
invariant if

KG(g1g2) = dLg1
∣∣
g2
KG(g2), ∀g1, g2 ∈ G, (16)

where Lg : G → G denotes left translation, Lg(a) := ga,
and dLg1 |g2 is the push-forward or differential of Lg1 at
g2. Note that a left-invariant cone field is characterised by
the cone in the tangent space at identity TeG = g. That
is, given a cone K in g, the corresponding left-invariant
cone field is given by KLG(g) = dLg|e (K), for all g ∈ G.
Similarly, one can define right-invariant cone fields on a
Lie group. A right-invariant cone field is characterised by
the cone at identity according to KRG(g) = dRg|e (K), for
all g ∈ G, where Rg denotes right-translation.

Now recall that one method of describing cone fields KG
on G is using a suitable collection of smooth functions
ki : TG→ R, i ∈ I as

KG(g) := {δg ∈ TgG : ki (g, δg) ≥ 0,∀i ∈ I}. (17)

Suppose that we are given a cone in TeG characterised by
K = {δg ∈ TeG : ki (δg) ≥ 0,∀i ∈ I}. The corresponding
left-invariant cone field on G is given by KLG(g) = {δg ∈
TgG : ki

(
dLg−1 |gδg

)
≥ 0,∀i ∈ I}.

3.2 Invariant Differential Positivity of Equations of the
form ġ = gΩ(g)

Consider the dynamical system

d

dt
g = gΩ(g) (18)

on a Lie group G where Ω : G → g. We identify g = TeG
with Rn via the ∨ map Ω 7→ Ω∨ ∈ Rn, where n = dimG.
Thus, the system (18) is characterized by the map Ω∨ :
G→ Rn. The push-forward of this map takes the form

dΩ∨
∣∣
g

: TgG→ Rn (19)

and maps tangent vectors δg ∈ TgG to vectors in Rn. The
linearization of (18) takes the form

d

dt
δg = dLg

∣∣
e
◦ dΩ∨

∣∣
g
δg = g dΩ∨

∣∣
g
(δg). (20)

Since we are working with a (left) invariant cone field, we
can equivalently consider the linear map

A(g) := dΩ∨
∣∣
g
◦ dLg

∣∣
e

: Rn → Rn (21)

for each g ∈ G, where Rn is identified with g through the ∨

map. Differential positivity of the system (18) with respect
to an invariant cone field generated by a cone K ⊂ Rn
reduces to the positivity of the linear map

ẋ = A(g)x, x ∈ Rn (22)

with respect to K for all g ∈ G.

3.3 Example: Nonlinear Pendulum

Here we briefly review the differential positivity of the
classical nonlinear planar pendulum equation which takes
the form of a flow on the cylinder G = S1 × R Forni and
Sepulchre (2014a). Thinking of S1 as being embedded in
the complex plane, we can represent elements of the Lie
groupG by (eiθ, v). The pendulum equation can be written
in the form ġ = dLg|eΩ(g), where Ω : G→ g is specified by
Ω∨ = (Ω1,Ω2)T , where Ω1 is a purely imaginary number
and Ω2 is real. We have:

d

dt

(
eiθ

v

)
=

(
eiθ 0
0 1

)(
Ω1

Ω2

)
(23)

where {
Ω1 = iv,

Ω2 = − sin θ − kv + u,
(24)

k ≥ 0 is the damping coefficient, and u is a constant torque
input. Thus, the linearized dynamics at point (eiθ, v) is
governed by the linear map A(g) : R2 → R2 given by

A(g) =

(
0 1

− cos θ −k

)
(25)

It is easy to verify that the map A(g) : R2 → R2 is strictly
positive with respect to the cone

K := {(x1, x2) ∈ R2 : x1 ≥ 0, x1 + x2 ≥ 0}, (26)

for k ≥ 2 by showing that at any point on the boundary of
the cone K, the vector A(g)(x1, x2)T is oriented towards
the interior of the cone for any g ∈ G.

4. MONOTONICITY AND CONSENSUS THEORY ON
LIE GROUPS

4.1 Consensus in Nonlinear Spaces

An interpretation of the classical continuous time linear
consensus algorithm on RN with update

ẋk =

N∑
j=1

ajk(t)(xj(t)− xk(t)). (27)

is that the state of agent k evolves at each instant in time
towards the arithmetic mean or average of its neighbors.
Moreover, the linear coupling in (27) can be viewed as
the gradient of a quadratic (i.e. Euclidean) distance. The
linear coupling can be replaced by a nonlinear monotone
coupling function, which can be thought of as the gradient
of a convex distance function instead.

With this geometric interpretation, consensus algorithms
can be defined on arbitrary Riemannian manifolds M,
where the average of neighboring points relies on the
definition of the Riemannian metric and the notion of
updating a point towards a new point is achieved by
moving along a well-defined minimal geodesic connecting
the two points.

4.2 Monotonicity on Lie Groups

The definition of monotonicity of a dynamical system relies
on the existence of a well-defined partial order on the state
space. Generally, unlike in Rn, an invariant cone field on a



Lie group G does not necessarily yield a partial order on G,
as is clear in the example of S1 where the conal order fails
to satisfy antisymmetry. Nonetheless, a dynamical system
can be seen to exhibit a well-defined notion of monotonic
behavior on a Lie group if it is (i) differentially positive
with respect to an invariant cone field, and (ii) is defined
on an invariant subset S ⊂ G that is geodesically convex
in the sense that for any two points p1, p2 ∈ S, there exists
a unique minimal geodesic contained in S which connects
p1, p2.

In particular, in the case of consensus dynamics on a Lie
group G, where the nonlinear coupling of the agents evolv-
ing on G is inherited from some possibly non-invariant Rie-
mannian distance on G, the above notion of monotonicity
on a Lie group can be used to analyse the convergence of
the dynamics. This is illustrated in the next section using
an example of consensus dynamics on S1, where we will
make use of the following result from Forni (2015).

In the following theorem, we assume that(
K(x) ∩ {δx ∈ TxM : |δx|x = 1}, dK(x)

)
(28)

is a complete metric space for all x ∈ C.
Theorem 4. Let Σ be a strictly differentially positive sys-
tem with respect to a cone field K(x) in a compact and
forward invariant region C ⊆ M. If there exists a complete
vector field w satisfying w(x) ∈ intK(x) \ {0} such that
lim supt→∞ |∂ψt(x)w(x)|ψt(x) < ∞, and for all x ∈ C and
t ≥ 0:

w(ψt(x)) =
∂ψt(x)w(x)

|∂ψt(x)w(x)|ψt(x)
, (29)

then there exists an integral curve of w(x) whose image is
an attractor for all the trajectories of Σ from C.

4.3 Example: Kuramoto Flow on N -Torus TN

First we consider the consensus dynamics on S1

θ̇k =
1

N

N∑
i=1

sin(θi − θk) (30)

arising from the homogeneous Kuramoto flow generated by
the interconnection of N agents θk ∈ S1. The Kuramoto
model can be thought of as a consensus model on the circle
S1 (see e.g. Sepulchre et al. (2005); Jadbabaie and Lin
(2003); Sarlette and Sepulchre (2011)).

The synchronization manifold can be expressed as

Msync = {ϑ ∈ S1 × . . . S1 : ϑ1 = . . . = ϑN}, (31)

where ϑ = (ϑ1, . . . , ϑN ). Note that the synchronization
manifold Msync corresponds to a single point on the
quotient manifold S1 × . . . × S1/S1. Now the variational
dynamics of (30) takes the form

ϑ̇ =
1

N
F (ϑ),

˙δϑ =
1

N
A(ϑ)δϑ,

(32)

where 1 = (1, . . . , 1)T , andAkk(ϑ) = −
∑
i 6=k

cos(ϑi − ϑk),

Aki(ϑ) = cos(ϑi − ϑk) for k 6= i.

(33)

The identity A(ϑ)1 = 0 captures the invariance of the
synchronization manifold Msync. Now consider the cone
field KTN on the N -torus TN defined by

KTN (ϑ, δϑ) := {δϑ ∈ TϑTN : 1T δϑ ≥ 0, Q(δϑ) ≥ 0},
(34)

where Q is the quadratic form

Q(δϑ) = δϑT11T δϑ− δϑT δϑ
= (δϑ1 + . . .+ δϑN )

2 −
(
δϑ21 + . . .+ δϑ2N

)
.

Note that (34) is clearly an invariant cone field since
the defining inequalities in each tangent space TϑTN are
independent of ϑ ∈ TN . On the boundary of the cone
K(ϑ, δϑ), we have Q(δϑ) := δϑT11T δϑ − δϑT δϑ = 0 and
using A(ϑ)1 = 0, we see that the derivative of Q(δϑ) along
the trajectories of the prolonged dynamics satisfies

d

dt
Q(δϑ) = − 1

N
δϑT (A(ϑ)T +A(ϑ))δϑ > 0 (35)

for

ϑ ∈ TNπ/2 := {ϑ ∈ TN : |ϑk − ϑi| <
π

2
, i, k = 1, . . . , N}.

(36)
That is, for ϑ ∈ TNπ/2, the system is strictly differentially

positive with respect to the invariant cone field KTN . Note
that the invariant vector field

w(ϑ) =
1√
N

1 ∈ intKTN (ϑ, δϑ) (37)

clearly satisfies the conditions in Theorem 4. Therefore, all
trajectories from a compact and forward invariant region
C ⊆ TNπ/2 asymptotically converge to the synchronization

manifold Msync.

Moreau observed that his convergence analysis applies to
the nonlinear model (30) provided that all initial condi-
tions lie in the same semi-circle. The dynamics can then
be mapped to a monotone system on the real line through
a nonlinear change of coordinates. It is not difficult to see
that (36) implies that assumption not just for the complete
graph in (30) but also if the graph is strongly connected.
The argument can be extended to an arbitrary subset of
the circle by modifying the coupling function; that is, by
changing the underlying metric. This trick has been used
in Sarlette and Sepulchre (2011) and Tron et al. (2012).
In the limit of the entire open circle (−π, π), one obtains
a monotone discontinuous coupling, which connects the
Kuramoto model to pulse-coupled models of integrate-
and-fire oscillators Mauroy and Sepulchre (2012). The
differential viewpoint adopted in this paper provides a
geometric interpretation of those results and suggests that
they extend to arbitrary Lie groups.

Modify the synchronization model (30) to

ϑ̇k =
1

N

N∑
i=1

f(ϑi − ϑk), (38)

where the coupling function f : [−π, π] → R is a twice
differentiable function on (−π, π) which satisfies f(0) = 0,
and f ′(ϑ) > 0 for all ϑ ∈ (−π, π). The variational
dynamics is modified to (32) withAkk(ϑ) = −

∑
i 6=k

f ′(ϑi − ϑk),

Aki(ϑ) = f ′(ϑi − ϑk) for k 6= i.

(39)



In this case, the system is strictly differentially positive for
all

ϑ ∈ TNπ := {ϑ ∈ TN : |ϑk−ϑi| < π, i, k = 1, . . . , N}. (40)

It follows that the modified consensus dynamics (38),
where the 2π-periodic coupling function f is strictly in-
creasing on (−π, π) and discontinuous at π, is almost
globally asymptotically convergent.

5. CONCLUSION

The study of consensus algorithms in linear spaces has
historically received considerable attention due to numer-
ous applications in distributed computation and control
science. In recent years, consensus problems defined on
state spaces that are not linear but instead are highly sym-
metric nonlinear spaces, such as Lie groups, have attracted
increasing interest due to the ubiquity of such spaces in
applications. In this work, we have formulated a framework
for invariant differential positivity on Lie groups, discussed
its relation to monotonicity, and outlined how invariant
differential positivity can be used to study synchronization
on Lie groups, including an extended example involving
synchronization on S1. Future work will seek to apply the
theory of invariant differential positivity to study consen-
sus on more complicated Lie groups such as SO(3).
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