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Abstract

We consider the random phone call model introduced by Demers et al.,which is
a well-studied model for information dissemination in networks. One basic protocol
in this model is the so-called Push protocol that proceeds in synchronous rounds.
Starting with a single node which knows of a rumor, every informed node calls in
each round a random neighbor and informs it of the rumor. The Push-Pull protocol
works similarly, but additionally every uninformed node calls a random neighbor
and may learn the rumor from it.

It is well-known that both protocols need Θ(log n) rounds to spread a rumor
on a complete network with n nodes. Here we are interested in how much the
spread can be speeded up by enabling nodes to make more than one call in each
round. We propose a new model where the number of calls of a node is chosen
independently according to a probability distribution R. We provide both lower
and upper bounds on the rumor spreading time depending on statistical properties
of R such as the mean or the variance (if they exist). In particular, if R follows
a power law distribution with exponent β ∈ (2, 3), we show that the Push-Pull
protocol spreads a rumor in Θ(log log n) rounds. Moreover, when β = 3, the Push-
Pull protocol spreads a rumor in Θ( logn

log logn) rounds.
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1 Introduction

Randomized rumor spreading is an important primitive for spreading information in net-
works. The goal is to spread a piece of information, the so-called rumor, from an arbitrary
node to all the other nodes. Randomized rumor spreading protocols are based on the
simple idea that every node picks a random neighbor and these two nodes are able to
exchange information in that round. This paradigm ensures that the protocol is local,
scalable, and robust against network failures (cf. [13, 15]). Therefore, these protocols have
been successfully applied in other contexts such as replicated databases [8], failure detec-
tion [30], resource discovery [23], load balancing [3], data aggregation [25], and analysis
of the spread of computer viruses [2].

The most basic variant of randomized rumor spreading is the Push protocol. At the
beginning, there is a single node who knows of some rumor. Then in each of the following
rounds every informed node calls a random neighbor chosen independently and uniformly
at random and informs it of the rumor. The Pull protocol is symmetric, here every
uninformed node calls a random neighbor chosen independently and uniformly at random,
and if that neighbor happens to be informed the node becomes informed. The Push-Pull
protocol is simply the combination of both protocols. Most studies in randomized rumor
spreading concern the runtime, which is the number of rounds required until the rumor
reaches all other nodes, and the communication overhead, which is the total number of
information exchanges, produced by these protocols (see e.g. [24]).

In one of the first papers in this area, Frieze and Grimmett [19] proved that if the
underlying graph is a complete graph with n nodes, then the runtime of Push is log2 n+
log n ± o(log n) with high probability1, where log n denotes the natural logarithm of n.
This result was later strengthened by Pittel [29]. For the standard Push-Pull protocol,
Karp et al. [24] proved a runtime bound of log3 n+O(log log n). In order to overcome the
large number of Θ(n log n) calls, Karp et al. also presented an extension of the Push-Pull
protocol together with a termination mechanism that spreads a rumor in O(log n) rounds
using only O(n log log n) messages. Doerr and Fouz [9] proposed a new protocol using
only Push calls that achieves a runtime of (1 + o(1)) log2 n using only O(n · f(n)) calls
(and messages), where f(n) is an arbitrarily slowly growing function.

Besides the complete graph, randomized rumor spreading protocols have been shown
to be efficient also on other topologies. In particular, their runtime is at most logarithmic
in n for topologies ranging from basic networks, such as random graphs [15, 14, 16] and hy-
percubes [15], random regular graphs [1, 17], graphs with constant conductance [27, 6, 20],
constant weak conductance [4] or constant vertex expansion [22, 21], to more complex
structures including preferential attachment graphs modeling social networks [5]. In par-
ticular, recent studies establishing a sub-logarithmic runtime on certain social network
models [10, 11, 18] raise the question whether it is possible to achieve a sub-logarithmic
runtime also on the complete graph. In addition to analyses on static graphs, there are
also studies on mobile geometric graphs, e.g., [7, 28].

1with probability 1− o(1) as n→∞. For simplicity, we sometimes omit the “with high probability”
in the introduction.
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Since all aforementioned protocols require Θ(log n) rounds to spread the rumor on a
complete graph, we equip nodes with the possibility of calling more than one node in each
round. Specifically, we assume that the power of a node u, denoted by Cu, is a random
variable, which has the same distribution as a random variable R with support on the
positive integers and which is independent of u. In order to keep the overall communication
cost small, we focus on distributions R satisfying

∑
u∈V Cu = O(n) with high probability

– in particular, R has bounded mean. Our aim is to understand the impact of the
distribution of R on the runtime of randomized rumor spreading. In particular, we seek
for conditions on R which are necessary (and/or sufficient) for a sublogarithmic runtime.

Our first result concerns the Push protocol for the case where R has bounded mean
and bounded variance, which is the most basic setting. Let Ttotal be the first round in
which all nodes are informed.

Theorem 1.1. Consider the Push protocol and assume that R is a distribution with
E [R] = O(1) and Var [R] = O(1). Then |Ttotal − (log1+E[R] n+ logeE[R] n)| = o(log n).

Note that by putting R ≡ 1, we retain the classic result by Frieze and Grimmett.
Our next result addresses the case where we drop the assumption on the variance, and it
provides a lower bound of Ω(log n) on the number of rounds. Although this result is less
precise than Theorem 1.1, it demonstrates that it is necessary to consider the Push-Pull
protocol in order to achieve a sub-logarithmic runtime.

Theorem 1.2. Assume that R is any distribution with E [R] = O(1). Then with proba-
bility 1− o(1), the Push protocol needs at least Ω(log n) rounds to inform all nodes.

We point out that the lower bound in Theorem 1.2 is tight up to constant factors, as
the results in [19, 29] for the standard Push protocol imply an upper bound of O(log n)
rounds. We now consider the Push-Pull protocol and extend the lower bound of Ω(log n)
from Theorem 1.1.

Theorem 1.3. Assume that R is any distribution with E [R] = O(1) and Var [R] = O(1).
Then for any constant ε > 0, with probability 1 − ε the Push-Pull protocol needs at least
Ω(log n) rounds to inform all nodes.

Theorem 1.3 establishes that an unbounded variance is necessary to break the Ω(log n)
lower bound. An important distribution with bounded mean but unbounded variance is
the power law distribution with exponent β 6 3, i.e., there are constants 0 < c1 6 c2

such that c1z
1−β 6 Pr [R > z] 6 c2z

1−β for any z > 1, and Pr [R > 1] = 1. We are
especially interested in power law distributions, because they are scale invariant and have
been observed in a variety of settings. Our main result below shows that this natural
distribution achieves a sublogarithmic runtime.

Theorem 1.4. Assume that R is a power law distribution with 2 < β < 3. Then the
Push-Pull protocol informs all nodes in Θ(log log n) rounds with probability 1− o(1).
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Notice that if R is a power law distribution with β > 3, then Theorem 1.3 applies
because the variance of R is bounded. Hence our results reveal a dichotomy in terms
of the exponent β: if 2 < β < 3, then the Push-Pull protocol finishes in O(log log n)
rounds, whereas for β > 3 the Push-Pull protocol finishes in Θ(log n) rounds 2. While
a very similar dichotomy was shown in [18] for random graphs with a power law degree
distribution, our result here concerns the spread of the rumor from one to all nodes.

In the case β = 3 we show that the runtime is close to the one in the β > 3 case.

Theorem 1.5. Assume that R is a power law distribution with β = 3. Then the Push-Pull

protocol informs all nodes in Θ
(

logn
log logn

)
rounds with probability 1− o(1).

Finally, we also argue that it is necessary that the Cu’s are chosen once and for all at
the beginning, and they are not updated in each round. Indeed, suppose we generate in
the tth round a new variable Ct

u, which is the number of calls made by u in that round.
Then we prove the following lower bound.

Theorem 1.6. Assume that R is any distribution with E [R] = O(1). Then with proba-
bility 1− o(1), the Push-Pull protocol needs Ω(log n) rounds to inform all nodes.

2 Notations and Preliminaries

We introduce some notation that will be used throughout the paper without further ref-
erence. In our setting, the Push, Pull and Push-Pull protocols proceed like the classic
ones except that in each round, every (un)informed node u calls Cu node(s) chosen in-
dependently and uniformly at random and sends (requests) the rumor. For any of these
protocols, we let It be the set of informed nodes at the end of round t and Ut the set of
uninformed nodes. We write V = It ∪ Ut for the vertex set of the graph, and we assume
|V| = n. The size of It and Ut is denoted by It and Ut. We indicate the set of newly
informed nodes in round t + 1 by Nt and its size is Nt. Let St be the number of Push
calls in round t + 1, so St =

∑
u∈It Cu > It. Let us define N Pull

t and N Push
t to be the set

of newly informed nodes by Pull and Push calls in round t + 1, respectively. The size of
N Pull
t and N Push

t are denoted by NPull
t and NPush

t . The size of every set divided by n will
be denoted by the corresponding small letter, so it, nt and st are used to denote It/n,
Nt/n, and St/n, respectively. Further, let

L(z) := {u ∈ V : Cu > z} and set L(z) = L(z).

Moreover, let ∆ = maxu∈V Cu.
We will use extensively the following two concentration inequalities. The first one is

a Chernoff-type bound.

2We do not consider the case β 6 2, since then there exists at least one node with degree Ω(n) and
the rumor is spread in constant time. Additionally, E [R] is no longer bounded.

the electronic journal of combinatorics 22(1) (2015), #P1.23 5



Theorem 2.1 ([12]). Suppose that X1, X2 . . . , Xn ∈ {0, 1} are independent and identically
distributed random variables and let X :=

∑n
i=1Xi. Then for any λ > 0

Pr [|X − E [X] | > λ] 6 2 · e−
λ2

2(E[X]+λ/3) .

In particular,

Pr [|X − E [X] | > E [X]/2] 6 2 · e−
E[X]2

8(E[X]+E[X]/6) < 2 · e−
E[X]
10 .

The next inequality is known as the Bounded Difference inequality.

Theorem 2.2 ([26]). Suppose that X1, X2 . . . , Xn are independent random variables and
every Xi, 1 6 i 6 n, takes a value from a finite set Ai. Let f :

∏
16i6nAi → R be a

real-valued function so that there exist c1, c2, . . . , cn with

sup
x1,x2,...,xn,x′i

|f(x1, x2, . . . , xi, . . . , xn)− f(x1, x2, . . . , x
′
i, . . . , xn)| 6 ci, for every 1 6 i 6 n.

Then, for every λ > 0,

Pr [|f(X1, X2, . . . , Xn)− E [f(X1, X2, . . . , Xn)] | > λ] 6 2 · e
− λ2

2
∑n
i=1

c2
i .

3 Some Useful Facts for Power Law Distributions

Let R be a power law probability distribution with exponent β, i.e., there are constants
0 < c1 < c2 so that for every integer z > 1,

c1 · z1−β 6 Pr [Cu > z] 6 c2 · z1−β,

and Pr [Cu > 1] = 1. In this section we collect some basic properties of R.

Fact 3.1. If R is a power law distribution with β > 3, then Var [R] = O(1).

Proof. Since β > 3

Var [R] 6 E
[
R2
]

=
∑
z>1

Pr
[
R2 > z

]
6 1 +

∑
z>2

√
c2 · z1−β <∞.

Fact 3.2. Let β > 2. Let Cu, u ∈ V be independent, power-law distributed random
variables with exponent β. Then, with probability 1− o( 1

logn
),

∆ := max
u∈V

Cu 6 n
1

β−1 · log n.
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Proof. By definition,

Pr
[
Cu > n

1
β−1 log n

]
6 c2 · n−1 · log1−β(n).

Applying the union bound yields the claim.

Recall that L(z) := {u ∈ V , Cu > z} and L(z) := |L(z)|.

Proposition 3.3. Let β > 2. Let Cu, u ∈ V be independent, power-law distributed

random variables with exponent β. Then, for every z = O(n
1

β−1/ log n), with probability
1− o(1/n)

n · c1 · z1−β

2
6 L(z) 6

3 · n · c2 · z1−β

2
.

Proof. For u ∈ V let Iu be the indicator random variable for the event Cu > z. Since
the Cu’s are independent and identically distributed, so are the Iu’s. By linearity of
expectation

n · c1 · z1−β 6 E [L(z)] 6 n · c2 · z1−β.

Applying Theorem 2.1 to the random variable X :=
∑

u∈V Iu yields that

Pr [|L(z)− E [L(z)] | > E [L(z)]/2] < 2 · e−
E[L(z)]

10 6 2 · e−
n·c1·z

1−β
10

Since z = O(n
1

β−1/ log n), the claim follows.

4 Push Protocol

In this section we will show two general lemmas for the Push protocol that are valid for
any R with support on the positive integers. They will be used when analyzing the Push
and the Push-Pull protocols.

Lemma 4.1. Consider the Push protocol and suppose that St 6 logc n, where c > 0 is an
arbitrary constant. Then with probability at least 1−O(n−1 log2c n) we have

It+1 = It + St.

Proof. Recall that St is the number of Push calls in round t + 1. By applying the union
bound, the probability that an informed node receives a call in round t + 1 is bounded
by StIt

n
. So, with probability at least 1 − StIt

n
, none of the calls are sent to a node in It.

Conditioning on this event, consider all calls one by one in an arbitrary order; then the
probability that the i−th call informs a different node from the previous i − 1 calls is
1− i−1

Ut
. Therefore the conditional probability that St calls inform St different nodes is at

least
St−1∏
i=1

(
1− i

Ut

)
>

(
1− St − 1

Ut

)St
> 1− S2

t

Ut
.
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So the probability that St calls inform St different uninformed nodes is at least(
1− StIt

n

)
·
(

1− S2
t

Ut

)
= 1−O

(
S2
t

n

)
,

where the above equality holds because It 6 St 6 logc n and Ut = n(1− o(1)). The claim
follows.

Lemma 4.2. Consider the Push protocol. Then with probability at least 1− o( 1
logn

)

st − 2s2
t − 2

√
st log log n

n
6 nt 6 st.

Proof. Since Nt is always bounded by St, nt 6 st. To see the lower bound, let for v ∈ Ut
Zv be the indicator random variable for the event v ∈ It+1. Then Nt =

∑
v∈Ut Zv. Since

the Zv’s are identically distributed random variables,

E [Nt] = Ut ·Pr [Zv = 1] .

Let Xi ∈ V , 1 6 i 6 N = St, denote the target of the i-th call. Define

f(X1, X2, . . . , XN) := Nt

to be the function counting the number of newly informed nodes in round t + 1. Then
E [f(X1, X2, . . . , XN)] = E [Nt]. For each change in just one coordinate of f , the following
statement holds:

sup
x1,x2,...,xi,x′i∈V

|f(x1, x2, . . . , xi, . . . , xN)− f(x1, x2, . . . , x
′
i, . . . , xN)| 6 1.

Therefore by applying Theorem 2.2, we obtain

Pr
[∣∣Nt − E [Nt]

∣∣ >√4 · St · log log n
]
6 2 · e−4St log logn/2St = o (1/log n) .

So with probability 1− o(1/log n) we have

Nt > E [Nt]− 2
√
St log log n = Ut ·Pr [Zv = 1]− 2

√
St log log n. (1)

Now we estimate Pr [Zv = 1]. By the definition of Push

Pr [Zv = 1] = 1−
∏
u∈It

(
1− 1

n

)Cu
.

Using that 1− x 6 e−x 6 1− x+ x2 for any x > 0

Pr [Zv = 1] > 1− e−
∑
u∈It

Cu/n = 1− e−st > st − s2
t .
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We now plug the value obtained by the above formula into (1) and normalize it. So we
obtain

nt > (1− it) ·
(
st − s2

t

)
− 2

√
st log log n

n

= st − s2
t − it ·

(
st − s2

t

)
− 2

√
st log log n

n
> st − 2s2

t − 2

√
st log log n

n
,

where the last inequality comes from the fact that it 6 st.

Corollary 4.3. Consider the Push protocol. Then with probability at least 1− o(1/log n)
for any round t in which St 6 n/8 we have that It+1 > It + St/2.

Proof. If 1 6 St 6 log n, then Lemma 4.1 yields that with probability 1 − o(1/log n) we
have Nt = St. If log n 6 St 6 n/8, then 2s2

t 6 st/4 and 2
√
stn−1 log log n 6 st/4. Thus,

Lemma 4.2 guarantees that with probability at least 1− o(1/log n)

nt > st − 2s2
t − 2

√
st log log n

n
>
st
2
.

Corollary 4.4. Consider the Push protocol. For any round t and positive integer k =
O(log n) in which St+k = o(n), with probability 1− o( k

logn
)

It+k > It · (3/2)k .

Proof. By assumption we have for every 1 6 i 6 k that St+i = o(n). Applying Corollary
4.3 shows that with probability 1− o( 1

logn
)

It+i > It+i−1 +
St+i−1

2
> It+i−1 ·

3

2
.

Using an inductive argument and the union bound for k implies the statement.

5 Push Protocol with Bounded Mean and Bounded Variance

This section is devoted to the proof of Theorem 1.1. Recall that Ttotal := min{t | It = n},
i.e., the first round in which all nodes are informed. We claim that if E [R] = O(1) and
Var [R] = O(1), then |Ttotal−(log1+E[R] n+logeE[R] n)| = o(log n). To prove this result, we
study the protocol in three consecutive phases. In the following we give a brief overview
of the proof.

• The Preliminary Phase. This phase starts with just one informed node and ends
when It > log5 n. Similar to the proof of the birthday paradox we show that in each
round every Push call informs a different uninformed node and thus the number of
informed nodes increases by St > It. Hence after O(log log n) rounds there are at
least log5 n informed nodes. Further, since E [R] = O(1), after O(log log n) rounds
we also have St 6 logO(1) n for all these rounds.
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• The Middle Phase. This phase starts when log5 n 6 It 6 St 6 logO(1) n and ends
when It > n/log log n. First we show that the number of Push calls St increases
by a factor of approximately 1 + E [R] as long as the number of informed nodes
is o(n). Then we prove that the number of newly informed nodes in round t + 1
is roughly the same as St. Therefore an inductive argument shows that it takes
log1+E[R] n± o(log n) rounds to reach n/log log n informed nodes.

• The Final Phase. This phase starts when It > n
log logn

and ends when all nodes

are informed with high probability. In this phase, we first prove that after o(log n)
rounds the number of uninformed nodes decreases to n/log5 n. Then we show the
probability that an arbitrary uninformed node remains uninformed is e−E[R]±o(1/logn).
Finally, an inductive argument establishes that it takes logeE[R] n± o(log n) rounds
until every node is informed.

In the following we present the detailed proofs for these phases. Before that we show
the following proposition.

Proposition 5.1. Let ε > 0 and let R be a random variable with support on the positive
integers such that E [R] = O(1) and Var [R] = O(1). Let δ > 0 be such that Ut = n1−δ,
for some round t. Then, with probability 1− o(1/log n),∑

u∈Ut

Cu = O(n1−δ/2 · log1+ε n).

Proof. For k ∈ N let us define a random variable

Wk :=
∑
u∈V

Cu · 1(Cu > k).

By linearity of expectation

E [Wk] =
∑
u∈V

E [Cu1(Cu > k)]

= n · E [Cu1(Cu > k)] = n ·
∑
l>k

l ·Pr [Cu = l] 6
n

k
·
∑
l>k

l2 ·Pr [Cu = l] .

Since Cu has bounded variance the last sum is in O(1). Thus, E [Wk] = O(n/k). Markov’s
inequality implies that with probability 1 − o(1/log n), Wk = O(n · log1+ε n · k−1). If we
set k = nδ/2, then∑
u∈Ut

Cu =
∑

{u∈Ut : Cu>k}

Cu +
∑

{u∈Ut : Cu<k}

Cu 6 Wk +O(n1−δ · k) = O(n1−δ/2 · log1+ε n).
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5.1 The Preliminary Phase

This phase starts with one informed node and ends when It > log5 n and St 6 logO(1) n.
Let T0 be the first round in which the number of informed nodes exceeds log5 n.

Lemma 5.2. For any t = O(log log n), with probability at least 1 − log−3 n, we have
St = logO(1) n.

Proof. We will bound the expected number of calls in each round t as follows:

E [St |St−1] = St−1 + E

 ∑
u∈Nt−1

Cu

∣∣∣ St−1

 = St−1 +Nt−1 · E [R] 6 St−1 · (1 + E [R]),

where the last inequality comes from the fact that Nt−1 6 St−1. Since the origin of the
rumor is chosen before determining the Cu’s we have E [S0] = E [R]. Applying the law of
total expectation yields

E [St] = E [. . .E [E [St |St−1] |St−2] . . . |S0] 6 (1 + E [R])tE [S0] = (1 + E [R])tE [R] .

By using Markov’s inequality we have that

Pr
[
St > (1 + E [R])t · E [R] · log3 n

]
6 log−3 n.

and the claim follows for any t = O(log log n).

Corollary 5.3. With probability 1− o(1) we have T0 = O(log log n).

Proof. Lemma 5.2 asserts that with probability at least 1 − O(log−3 n), St = logO(1) n
for any t = O(log log n). Conditioning on this event, Lemma 4.1 guarantees that with
probability 1− (n−1logO(1) n), for any t = O(log log n),

It+1 = It + St > 2It,

where the inequality comes from the fact that St > It. So, with probability at least(
1− 1

log3 n

)(
1−O(log log n) · logO(1) n

n

)
= 1− o(1),

there exists a round T0 = O(log log n) such that IT0 > log5 n and ST0 6 logO(1) n.

5.2 The Middle Phase

The phase starts when log5 n 6 It 6 St 6 logO(1) n and ends when It > n/log log n. Let
T1 be the first round so that IT1 > n/log log n. The main result of this subsection is that
|T1 − log1+E[R] n| = o(log n) with high probability.
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Lemma 5.4. Suppose for a round t we have st = Ω(n−1 · log5 n) and st = o(1). Then for
any k = O(log n) with (1 + E [R])kst = o(1), with probability 1− o(k/log n),

for all 1 6 i 6 k, (1 + E [R])i · st · (1− o(1)) 6 st+i 6 (1 + E [R])i · st · (1 + o(1)). (2)

Proof. Consider the random variable
∑

u∈Nt Cu. Since Nt is fixed and the random vari-

ables Cu, u ∈ Nt are independent we obtain that E
[∑

u∈Nt Cu
]

= Nt · E [R]. Moreover,

Var

[∑
u∈Nt

Cu

]
= Nt ·Var [R] .

Chebychev’s inequality implies that

Pr

[∣∣∣ ∑
u∈Nt

Cu −NtE [R]
∣∣∣ >√Nt log2 n

]
6
NtVar [R]

Nt log2 n
= o

(
1

log n

)
.

Since St+1 = St +
∑

u∈Nt Cu, it follows that with probability 1− o(1/log n),

St +Nt · E [R]−
√
Nt log2 n 6 St+1 6 St +Nt · E [R] +

√
Nt log2 n. (3)

Using the above formula and the fact that Nt 6 St we have

St+1 6 St + St · E [R] +

√
St log2 n 6 St ·

1 + E [R] +

√
log2 n

St

 .

Since St is a non-decreasing function in t and log5 n 6 It 6 St, with probability 1 −
o(1/log n)

st+1 6 st · (1 + E [R])

(
1 +

√
log2 n

(1 + E [R])2 log5 n

)
< st · (1 + E [R])

(
1 +

1

log
3
2 n

)
.

An inductive argument and the union bound for all k events that violate the above
inequality shows that for any k = O(log n) with probability 1− o(k/log n),

for all 1 6 i 6 k, st+i 6 st · (1 + E [R])i (1 + o(1)) . (4)

In order to prove the left hand side of (2), we use Lemma 4.2 which states with probability
1− o(1/log n),

nt > st − 2s2
t − 2

√
st log log n

n
.
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Using the lower bound in (3) and the above formula implies that with probability 1 −
o(1/log n),

st+1 > st + nt · E [R]−

√
nt log2 n

n

> st + st · E [R]− 2s2
t · E [R]− 2

√
st log log n

n
· E [R]−

√
st · log2 n

n

> (1 + E [R])st − 2E [R] s2
t − 2

√
st log2 n

n

> (1 + E [R])st − F (st),

where F (st) = 2E [R] s2
t + 2

√
n−1 · st · log2 n. An inductive argument and the union

bound for all k events that violate the above inequality show that for any integer k for
which (1 + E [R])k · st = o(1) with probability 1− o(k/log n),

for all 1 6 i 6 k, st+i > (1 + E [R])ist −
i−1∑
j=0

(1 + E [R])jF (st+i−j). (5)

Inequality (4) yields that with probability 1− o(k/log n),

for all 1 6 i 6 k = O(log n), st+i 6 a · st · (1 + E [R])i,

where a := 1+o(1). F (st) is a non-decreasing function in st and hence for any k = O(log n)
and 1 6 j 6 k,

F (st+i−j) 6 F (a · (1 + E [R])i−jst)

6 2E [R] (1 + E [R])2(i−j)(a · st)2 + 2(1 + E [R])
i−j
2

√
a · st log2 n

n
.

Hence by combining the above inequality and (5), we conclude that for any integer k,
where (1 + E [R])kst = o(1) and k = O(log n) with probability 1 − o(k/log n), for all
1 6 i 6 k

st+i

> (1 + E [R])ist − 2E [R]
i−1∑
j=0

(1 + E [R])2i−j(c · st)2 − 2
i−1∑
j=0

(1 + E [R])
i+j
2

√
c · st log2 n

n

> (1 + E [R])ist − d1 · (1 + E [R])2is2
t − d2 · (1 + E [R])i ·

√
st log2 n

n

= (1 + E [R])ist ·

1− d1 · (1 + E [R])ist − d2 ·

√
log2 n

stn

 ,
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where d1 and d2 are constants which do not depend on i. Since (1 +E [R])kst = o(1) and

st = Ω( log5 n
n

), for any 1 6 i 6 k,

st+i > (1 + E [R])i · st · (1− o(1)).

Lemma 5.5. Suppose that log5 n
n

6 it 6 st 6
logO(1) n

n
. Then for any k = O(log n) with

(1 + E [R])kst = o(1), with probability 1− o(1),

it + f2 · (1 + E [R])k · st · (1− o(1)) 6 it+k 6 it + f1 · (1 + E [R])k · st · (1 + o(1)),

where f1 > 0 and f2 > 0 are constants.

Proof. It is easy to see that

it+k = it +
k−1∑
i=0

nt+i 6 it +
k−1∑
i=0

st+i.

Applying Lemma 5.4 implies that for any integer k for which (1 +E [R])k · st = o(1), with
probability 1− o( k

logn
) the following upper bound holds:

it+k 6 it +
k−1∑
i=0

st+i 6 it + st · (1 + o(1)) ·
k−1∑
i=0

(1 + E [R])i

= it + f1 · (1 + E [R])k · st · (1 + o(1)),

where f1 > 0 is a constant. On the other hand, Lemma 4.2 yields that with probability
1− o( 1

logn
),

nt > st − 2s2
t − 2

√
st log log n

n
.

Another application of Lemma 5.4 shows that with probability 1−o( k
logn

), for all integers

1 6 i 6 k in which (1 + E [R])kst = o(1) and st >
log5 n
n

,

(1 + E [R])i · st · (1− o(1)) 6 st+i 6 (1 + E [R])i · st · (1 + o(1)).

Using these two inequalities, as long as (1 + E [R])kst = o(1), we have with probability

the electronic journal of combinatorics 22(1) (2015), #P1.23 14



1− o( k
logn

),

it+k = it +
k−1∑
i=0

nt+i

> it +
k−1∑
i=0

st+i −
k−1∑
i=0

{
2s2

t+i + 2

√
st+i log log n

n

}

> it + (1− o(1))
k−1∑
i=0

(1 + E [R])ist

− (2 + o(1))
k−1∑
i=0

{
(1 + E [R])2is2

t + (1 + E [R])i/2
√
st log log n

n

}

> it + f2 · (1 + E [R])k · st − d ·

(
(1 + E [R])2ks2

t + (1 + E [R])k/2
√
st log log n

n

)

> it + f2 · (1 + E [R])k · st ·

(
1− f · (1 + E [R])k · st − d · (1 + E [R])−k/2

√
log log n

stn

)
,

(6)

where f2 > 0 and d > 0 are constants. Since log5 n
n

6 it 6 st, we obtain that

it+k > it + f2 · (1 + E [R])k · st · (1− o(1)). (7)

By combining equations (7) and (6) we infer that with probability 1− o( k
logn

),

it + f2 · (1 + E [R])k · st · (1− o(1)) 6 it+k 6 it + f1 · (1 + E [R])k · st · (1 + o(1)).

Corollary 5.6. With probability 1− o(1) we have |T1 − log1+E[R] n| = o(log n).

Proof. Applying Corollary 5.3 shows that with probability 1 − o(1), T0 = O(log log n),

where T0 is the first round in which log5 n
n

6 iT0 6 sT0 6 logO(1) n
n

. Now we can apply
Lemma 5.5 and set k = log1+E[R] n− o(log n) such that with probability at least 1− o(1)

we have 1
log logn

6 iT0+k 6 A
log logn

, where A > 1 is a constant. Then we conclude that with

probability 1− o(1), |T1 − log1+E[R] n| = o(log n).

5.3 The Final Phase

This phase starts with at least n
log logn

informed nodes and ends when all nodes get in-
formed. Let T1 be the first round in which IT1 > n

log logn
and let T2 be the first round in

which all nodes are informed with probability 1−o(1). We will show that with probability
1− o(1), |(T2 − T1)− logeE[R] n| = o(log n).
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Lemma 5.7. With probability 1− o(1),

|(T2 − T1)− logeE[R] n| = o(log n).

Proof. We define the indicator random variable Zv for every v ∈ Ut and any round t > T1:

Zv =

{
1 if v does not get informed in round t+1,
0 otherwise.

Thus,

E [Ut+1 |Ut] = E

[∑
v∈Ut

Zv

]
= Ut ·Pr [Zv = 1] ,

where for simplicity we omit the conditioning of Ut+1 on Ut when dealing with the Zv’s.

Using the fact that 1 − 1
n

= e−
1
n
−O( 1

n2
), we can approximate the value Pr [Zv = 1] as

follows,

Pr [Zv = 1] =
∏
u∈It

(
1− 1

n

)Cu
=
∏
u∈It

e−
Cu
n
−O(Cu

n2
)

= e−
∑
u∈It

(Cu
n

+O(Cu
n2

)) = e−st−O(
st
n

).

Since st
n

= O( 1
n
) for any round and e−O( 1

n
) = 1−O( 1

n
),

E [Ut+1 |Ut] = Ute
−st · e−O( 1

n
) = Ute

−st −O
(
Ut
n

)
. (8)

Since for every u, v ∈ Ut,

Pr [Zu = 1 ∩ Zv = 1] = Pr [Zu = 1 | Zv = 1] ·Pr [Zv = 1] 6 Pr [Zv = 1] ·Pr [Zu = 1] ,

we have that
E [Zu · Zv] 6 E [Zu] · E [Zv] .

Therefore,

Var

[∑
v∈Ut

Zv

]
=
∑
v∈Ut

E
[
Z2
v

]
+
∑
u6=v

(E [Zu · Zv]− E [Zu] · E [Zv])

6
∑
v∈Ut

E
[
Z2
v

]
= Ut ·Pr [Zv = 1] = E [Ut+1 | Ut] 6 Ut.

Applying Chebychev’s inequality implies that with probability 1− o( 1
logn

),∣∣∣Ut+1 − E [Ut+1 |Ut]
∣∣∣ 6√Ut log2 n. (9)
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Combining inequalities (8) and (9) yields that with probability 1− o( 1
logn

),

∣∣Ut+1 − Ute−st
∣∣ 6√Ut log2 n+O

(
Ut
n

)
6 2

√
Ut log2 n. (10)

According to the value of Ut, we consider two cases.

• Suppose that Ut > n
log5 n

. Note that st > it > 1
log logn

by the assumption of the

lemma. Since st is a non-decreasing value in t and Ut < n the recursive formula (10)
implies that with probability 1− o( 1

logn
),

Ut+1 6 Ut · e
−1

log logn + 2

√
n log2 n.

Using an inductive argument shows that with probability 1− o( k
logn

),

Ut+k 6 Ut · e
−k

log logn +
k−1∑
i=0

e
−i

log logn ·
(

2

√
n log2 n

)
.

Hence after at most k0 = 6 log log2 n rounds with probability 1 − o(1) the number

of uninformed nodes decreases to n
log6 n

+O(
√
n log2 n), where c > 0 is a constant.

• Suppose that Ut 6 n
log5 n

. If we set nδ = log5 n, then applying Proposition 5.1 implies

that for any t for which Ut = O( n
log5 n

) with probability 1− o( 1
logn

),

∑
u∈Ut

Cu = o

(
n

log n

)
. (11)

On the other hand, using Chebychev’s inequality yields that with probability 1 −
o( 1

logn
), ∣∣∣∣∣∑

u∈V

Cu − n · E [R]

∣∣∣∣∣ 6
√
n · log2 n.

Combining the above equality and equality (11) results into an approximation for
st which is not best possible but it suffices for our purpose. We know that

st =
∑
u∈V

Cu −
∑
u∈Ut

Cu.

So,

E [R]−

√
log2 n

n
− o

(
1

log n

)
6 st 6 E [R] +

√
log2 n

n
.
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Therefore, st can be replaced by E [R] ± o( 1
logn

) with probability 1 − o( 1
logn

). In-

equality (10) implies that

α · Ut − 2

√
Ut log2 n 6 Ut+1 6 α · Ut + 2

√
Ut log2 n, (12)

where α = e−E[R]±o(1/ logn). So as long as Ut > log5 n with probability 1− o( 1
logn

),

Ut+1 6 α · Ut + 2

√
Ut log2 n = α · Ut

1 + 2

√
log2 n

α2Ut


6 α · Ut

1 + 2

√
log2 n

α2 log5 n

 6 α · Ut

(
1 +

2

α log
3
2 n

)
.

Now for any k for which Ute
−kE[R] > log5 n, with probability 1− o( k

logn
),

Ut+k 6 αk · Ut ·

(
1 +

2

α log
3
2 n

)k

= αk · Ut · (1 + o(1)). (13)

In order to lower bound Ut+k we apply the lower bound (12) inductively. So we have
that with probability 1− o( k

logn
),

Ut+k > αk · Ut −
k−1∑
i=0

2 · αi ·
√
Ut+k−i−1 log2 n.

Applying inequality (13) yields that with probability 1− o( k
logn

),√
Ut+k−i log2 n 6 α

k−i
2 ·
√
Ut(1 + o(1)) log2 n.

Thus,

Ut+k > αk · Ut − (1 + o(1))
k−1∑
i=0

α
k−i−1

2 ·
√
Ut log2 n

> αk · Ut − c · α
k
2 ·
√
Ut log2 n, (14)

where c > 0 is a constant and the last inequality holds because
∑k−1

i=0 α
k−i−1

2 =

O(α
k
2 ). Combining the inequalities (13) and (14) yields for any k satisfying

Ute
−kE[R] > log5 n

with probability 1− o( k
logn

),
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αk · Ut(1− o(1)) 6 Ut+k 6 αk · Ut(1 + o(1)).

Hence by taking k = logeE[R] n − o(log n), with probability 1 − o(1), the number of
uninformed nodes after T1 + k0 + k rounds decreases to log5 n, so we have at most
log5 n uninformed nodes. Using the fact that for every x > 0, 1 − x 6 e−x, the
probability that a node does not get informed after k1 additional rounds is bounded
from above by ∏

u∈It

(
1− 1

n

)Cu·k1
6 e−k1

∑
u∈It

Cu .

We already know that st = E [R]± o( 1
logn

) and st is an non-decreasing value in t so

∑
u∈It

Cu = st >
E [R]

2
.

Thus the union bound implies that the probability that every node in Ut does not get

informed is bounded by log5 n · e
−k1·E[R]

2 . By choosing k1 = Θ(log log n) we conclude
that with probability 1− o(1) all nodes get informed. So we have with probability
at least 1− o(1) that T2 6 T1 + k0 + k + k1, and k0 + k + k1 = logeE[R] n+ o(log n).

6 Push Protocol with Bounded Mean

This section is devoted to the proof of Theorem 1.2.

Proof. In the Push protocol, in round t + 1, at most St randomly chosen uninformed
nodes are informed. This implies that E [St+1 |St] increases by at most E [R] · St. Since
the origin of the rumor is chosen without knowing Cu , E [S0] = E [R]. Using the law of
total expectation yields that

E [St] = E [. . .E [E [St|St−1] |St−2] . . . |S0] 6 (1 + E [R])t · E [R] .

By applying Markov’s inequality, we conclude that

Pr [It > n] 6 Pr [St > n] 6
(1 + E [R])t · E [R]

n
.

Hence Ω(log n) rounds are necessary to inform all nodes with probability 1− o(1).

7 Lower Bound for Push-Pull

Before we present our results about the Push-Pull protocol we show the following general
lemma. Recall that S0 = Cu, where u is the single node that is aware of the rumor at the
beginning of the protocol.
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Lemma 7.1. Consider the Push-Pull protocol and {Cu : u ∈ V} be a sequence of positive
integers. Then with probability 1− o(1), the Push-Pull protocol needs at least

Ω

(
log n− logS0

log
∑

u∈V C
2
u/n

)
rounds to inform all nodes.

Proof. We know the probability that an uninformed node u gets informed by Pull in round
t+ 1 is bounded by It · Cu/n. Therefore using this bound we have∑

u∈Ut

E [Cu1(u gets informed by Pull) | St]

=
∑
u∈Ut

Cu ·Pr [u gets informed by Pull in round t+ 1]

6
∑
u∈Ut

Cu ·
It · Cu
n

6 It ·
∑
u∈V

C2
u

n

On the other hand the probability that a node u ∈ Ut gets informed by Push in round
t+ 1 is at most St/n. So we get that∑

u∈Ut

E [Cu1(u gets informed by Push) | St]

=
∑
u∈Ut

Cu ·Pr [u gets informed by Push in round t+ 1]

6
∑
u∈Ut

Cu ·
St
n

6 St ·
∑
u∈V

C2
u

n
,

where the last inequality follows by Cu 6 C2
u. Combining the above inequalities implies

that

E [St+1 |St] 6 St + (St + It) ·

(∑
u∈V

C2
u/n

)
· 6

(
1 + 2 ·

∑
u∈V

C2
u/n

)
· St,

Applying the law of total expectation yields that

E [St] = E [. . .E [E [St|St−1] |St−2] . . . |S0] 6

(
1 + 2 ·

∑
u∈V

C2
u/n

)t

· S0.

Using Markov’s inequality implies that

Pr [It = n] 6 Pr [St > n/2] 6
E [St]

n/2
6

(
1 + 2 ·

∑
u∈V C

2
u/n
)t · S0

n/2
,

and the claim follows.
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8 Push-Pull Protocol with Bounded Mean and Bounded Vari-
ance

This section is devoted to the proof of Theorem 1.3.

Proof. {Cu : u ∈ V} be a sequence of positive integers each of which is generated inde-
pendently according to some distribution R with E [R] = O(1) and Var [R] = O(1). We
call {Cu : u ∈ V} a good sequence if

∑
u∈V C

2
u = O(n) and S0 = O(1). Since the origin of

the rumor is chosen without knowing Cu, E [S0] = E [R]. Applying Markov’s inequality
implies that for any constant ε > 0 with probability at least 1 − ε/2, S0 = O(1). Since
R is a probability distribution with bounded variance,

∑
u∈V E [C2

u] = O(n). Another ap-
plication of Markov’s inequality implies that with probability 1− ε/2,

∑
u∈V C

2
u = O(n).

Therefore using a union bound for failure probability of two mentioned events implies
that for fixed ε > 0 with probability at least 1 − ε, {Cu : u ∈ V} is a good sequence.
Conditioning on the event that {Cu : u ∈ V} is a good sequence, using Lemma 7.1 implies
that with probability at least 1 − o(1) the Push-Pull protocol needs Ω(log n) rounds to
inform n nodes and the result follows.

9 Push-Pull Protocol with Power Law Distribution 2 < β < 3

In this section we analyze the Push-Pull protocol where R is a power law distribution with
2 < β < 3 and show that it only takes Θ(log log n) rounds to inform all with probability
1 − o(1). To prove the upper bound of O(log log n), we study the protocol in three
consecutive phases and show that each phase takes only O(log log n) rounds. After that
we show the lower bound Ω(log log n).

9.1 Proof of the Upper Bound

The Preliminary Phase.

This phase starts with just one informed node and ends when It > n
1

β−1/(2 · log n). Let T1

be the first round where IT1 > n
1

β−1/(2 log n). We will show that T1 = O(log log n). First
we claim that O(log log n) rounds are sufficient to have logO(1) n informed nodes. Then
we will show that in round t+ 1 with probability 1− e−Ω(logn) there exists a node u with
Cu > I1+γ

t , γ := 3−β
2(β−2)

> 0, which pulls the rumor and consequently St+1 > I1+γ
t . Then

considering only Push calls it follows that with probability 1− o( 1
logn

),

It+2 = It+1 +Nt+1 > It+1 + St+1(1− o(1)) >
1

2
I1+γ
t .

So in every two rounds, It is increased by a factor of 1
2
Iγt and hence after O(log log n)

rounds the phase ends. For a complete proof see the following lemma.

Lemma 9.1. With probability 1− o(1), T1 = O(log log n).
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Proof. At first we only consider Push calls and apply Lemma 4.1 which states that as long

as St 6 log
2

3−β n, with probability 1−O( log
4

3−β n
n

),

It+1 = It + St > 2It.

Thus as long as St 6 log
2

3−β n, in each round the number of informed nodes is at least
doubled. So we conclude that with probability 1− o(1), O(log log n) rounds are sufficient

to inform log
2

3−β n nodes. Let T0 be the first round when IT0 > log
2

3−β n. Let us define
the constant γ := 3−β

2(β−2)
> 0. Let T be the first round such that

I
(1+γ)
T−1 6 n

1
β−1/ log n < I

(1+γ)
T .

Now for any T0 6 t 6 T , we can apply Proposition 3.3 and conclude that with probability
1− o( 1

n
),

∑
u∈L(I1+γt )

Cu > L(I1+γ
t ) · I1+γ

t >
n · c1 · I(1+γ)(2−β)

t

2
. (15)

So,

It
n

∑
u∈L(I1+γt )

Cu >
c1 · I1+(1+γ)(2−β)

t

2
=
c1 · I3−β+γ(2−β)

t

2
.

We will bound the probability that none of u ∈ L(I1+γ
t ) gets informed by Pull calls in

round t+ 1 as follows,

∏
u∈L(I1+γt )

(
1− It

n

)Cu
=

(
1− It

n

)∑
u∈L(I1+γt )

Cu

6 e−c1·I
3−β+γ(2−β)
t = e−c1·I

3−β
2

t .

Since for any t > T0, It > log
2

3−β n, we have that with probability at least 1 − n−c1 , at
least one node in L(I1+γ

t ) gets informed by Pull in round t+ 1. Hence we have that

St+1 > I1+γ
t .

Let us now consider the Push calls in round t+ 2. By applying Lemma 4.1 we know that
as long as St+1 = o(n) with probability 1− o( 1

logn
),

St+1(1− o(1)) 6 Nt+1.

Thus,

It+2 > It+1 + St+1(1− o(1)) >
I1+γ
t

2
.
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An inductive argument shows that for any integer k > 1 as long as I1+γ
T0+2k−2 6 n

1
β−1/ log n,

with probability 1− o( k
logn

)

IT0+2k >

(
1

2

)∑k−1
i=0 (1+γ)i

I
(1+γ)k

T0
=

(
IT0
2γ

)(1+γ)k

· 21/γ >

(
log

2
3−β n

C ′

)(1+γ)k

,

where C ′ = 2γ = O(1). So we conclude that after T0+2k rounds, where k = o(log1+γ log n),

there are two cases: either IT0+2k > n
1

β−1/(2 log n) which means T1 6 T0+2k = O(log log n)
and we are done, or

IT0+2k < n
1

β−1/(2 log n) < n
1

β−1/ log n < I1+γ
T0+2k.

In the latter case, we change the value γ to γ′ which satisfies I1+γ′

T0+2k = n
1

β−1/ log n and a
similar argument shows that

IT0+2k+2 > n
1

β−1/(2 log n).

The Middle Phase.

This phase starts with at least n
1

β−1/(2 log n) informed nodes and ends when It > n
logn

.
Let T2 be the first round in which n

logn
nodes are informed. We will show that T2 − T1 =

O(log log n). In contrast to the Preliminary Phase where we focus only on an informed
node with maximal Cu, we now consider the number of informed nodes u with a Cu above
a certain threshold Zt+1 which is inversely proportional to It.

Lemma 9.2. Suppose that It > n
1

β−1/(2 log n) for some round t. Then with probability
1− o( 1

n
),

|L(Zt+1) ∩ It+1| >
1

4
L(Zt+1),

where Zt+1 := n log logn
It

.

Proof. We consider two cases. If at least 1
4

of the nodes in L(Zt+1) are already informed
(before round t+1), then the statement of the lemma is true. Otherwise |L(Zt+1)∩Ut+1| >
3
4
L(Zt+1). In the latter case, we define

L′(Zt+1) := L(Zt+1) ∩ Ut+1.

Let Xu be an indicator random variable for every u ∈ L′(Zt+1) so that

Xu :=

{
1 if u gets informed by Pull in round t+ 1,
0 otherwise.
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Then we define a random variable X to be X :=
∑

u∈L′(Zt+1) Xu. Since for every u ∈
L′(Zt+1), Cu > Zt+1 = n log logn

It
, it follows that

Pr [Xu = 1] = 1−
(

1− It
n

)Cu
> 1−

(
1− It

n

)Zt+1

= 1− e−Ω(log logn) = 1− o(1).

Thus Pr [Xu = 1] > 3
4

and E [X] =
∑

u∈L′(Zt+1) Pr [Xu = 1] > 3
4
|L′(Zt+1)|. Since

|L′(Zt+1)| = |L(Zt+1) ∩ Ut+1| >
3

4
L(Zt+1),

it follows that

E [X] >
9

16
L(Zt+1).

We know that It > n
1

β−1/(2 log n) and also It is a non-decreasing function in t, so

Zt+1 =
n log log n

It
6 2 · n

β−2
β−1 log n log log n < n

1
β−1/log n,

where the last inequality holds because β < 3. Now we can apply Proposition 3.3 (see
appendix) to infer that with probability 1− o( 1

n
),

L(Zt+1) >
n · c1 · Z1−β

t+1

2
>
c1 · logβ−1 n

2
.

Therefore,

E [X] >
9 · c1 · logβ−1 n

32
.

Then applying Theorem 2.1 results into

Pr

[
X <

E [X]

2

]
6 Pr

[
|X − E [X] | > E [X]

2

]
< 2e−

E[X]
10 6 2e−Ω(logβ−1 n). (16)

So with probability 1− o( 1
n
), we have that

|L(Zt+1) ∩ It+1| > X >
E [X]

2
>

3|L′(Zt+1)|
8

>
1

4
L(Zt+1),

where the last inequality holds because |L′(Zt+1)| > 3
4
L(Zt+1).

Lemma 9.3. With probability 1− o(1), T2 − T1 = O(log log n).

Proof. Since It > n
1

β−1/(2 log n), Zt+1 = n log logn
It

< n
1

β−1/ log n, using Proposition 9.2

results into a lower bound for |L(Zt+1) ∩ It+1|. So with probability 1− o( 1
n
),

St+1 =
∑
u∈It+1

Cu > |L(Zt+1 ∩ It+1)| · Zt+1 >
1

4
L(Zt+1) · Zt+1.
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By applying Proposition 3.3, we conclude that with probability 1 − o( 1
n
), L(Zt+1) >

n·c1·Z1−β
t+1

2
. Therefore, with probability 1− o( 1

n
),

St+1 >
n · c1 · Z2−β

t+1

8
.

As long as St+1 = o(n), we can apply Lemma 4.2 for the Push protocol to round t + 2
implying that with probability 1− o( 1

logn
),

It+2 = It+1 +Nt > It+1 + St+1(1− o(1)).

Thus,

It+2 >
St+1

2
>
c1

16
n · Z2−β

t+1 =
c1

16
· n3−β · log log2−β n · Iβ−2

t .

By an inductive argument, we obtain that for any integer k > 1 with St+k = o(n), it holds
with probability 1− o( k

logn
),

It+2k >
( c

16
n3−β · log log2−β n

)∑k−1
i=0 (β−2)i

I
(β−2)k

t =
( c

16
n3−β · log log2−β n

) 1−(β−2)k

3−β
I

(β−2)k

t .

Therefore there exists k = O(log 1
β−2

log n) such that

It+2k >
( c

16
n3−β · log log2−β n

) 1−O(1/ logn)
3−β

I
1/ logn
t

= Ω

(
n1−O(1/ logn)

( c
16
· log log2−β n

) 1−O(1/ logn)
3−β

)
= Ω

(
n

log logδ n

)
,

where δ = β−2
3−β (1 − O(1/ log n)) > 0. Hence T2 6 T1 + 2k = T1 + O(log log n) with

probability 1− o(1).

The Final Phase.

This phase starts with at least n
logn

informed nodes. Since the runtime of our Push-Pull

protocol is stochastically smaller than the runtime of the standard Push-Pull protocol (i.e.
Cu = 1 for every u ∈ V ), we simply use the result by Karp et. al in [24, Theorem 2.1] for
the standard Push-Pull protocol which states that once It > n

logn
, additional O(log log n)

rounds are with probability 1− o(1) sufficient to inform all n nodes.

9.2 Proof of the Lower Bound

Since increasing the number of informed nodes can only decrease the runtime of the
protocol, we may assume that at the beginning there are logb n random informed nodes,
where b := max{4, 2 + 3(3−β)

β−2
}. Applying Markov’s inequality to the random variable S0
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implies that with probability 1−o( 1
logn

), logb n 6 S0 6 log2+b n. In the following we lower

bound the number of rounds to reach n
1

log logn informed nodes. We do this by keeping
track of the largest value of Cu among all informed nodes and show that this value does

not exceed I
1

β−2

t log
3

β−2 n with high probability.

By Fact 3.2, with probability 1 − o( 1
logn

) we have maxu∈V Cu 6 n
1

β−1 log n. Let i∗ be

the smallest positive integer so that 2i
∗
> n

1
β−1/ log n. Then i∗ < log n. Let us define the

set Mi := {u ∈ V : 2i−1 6 Cu < 2i} for 1 6 i 6 i∗ − 1 and Mi∗ := {u ∈ V : 2i
∗−1 6

Cu 6 n
1

β−1 log n}. We denote the size of Mi with Mi. By definition, for any 1 6 i 6 i∗,
Mi 6 L(2i−1). Applying Proposition 3.3 implies that with probability 1 − o( 1

n
) for any

1 6 i 6 i∗ we have Mi 6 3
2
· c2 · n · 2(i−1)(1−β). Let us define the indicator random variable

Zi
u for every u ∈ Ut ∩Mi as follows:

Zi
u :=

{
1 if u gets informed by Pull in round t+1,
0 otherwise.

Hence, Pr [Zi
u = 1] 6 Cu · Itn 6 It·2i

n
. Let Pi be the probability that at least one node in

Ut ∩Mi gets informed by Pull in round t+ 1. Then, for any 1 6 i 6 i∗ − 1,

Pi 6
∑

u∈Ut∩Mi

Pr
[
Zi
u = 1

]
6Mi ·

It
n
· 2i 6 3 · c2 · It · 2(i−1)(2−β).

Since 2i
∗
> n

1
β−1/log n and Cu 6 n

1
β−1 log n with probability 1− o( 1

logn
),

Pi∗ 6
∑

u∈Ut∩Mi∗

Pr
[
Zi
u = 1

]
6

3

2
· c2 · n · 2(i∗−1)(1−β) · It

n
· n

1
β−1 log n

6 6 · c2 · It · n
2−β
β−1 logβ−1 ·n.

So as long as It 6 n
1

log logn , Pi∗ = o( 1
log3 n

). We define ∆t := S
1

β−2

t log
3

β−2 n. Let 1 6 it 6 i∗

be the smallest integer so that 2it > ∆t. Then for any it 6 i 6 i∗ we have,

Pi 6 3 · c2 · 2β−2 · It · 2i(2−β) 6 6 · c2 · It ·∆2−β
t 6 6 · c2 · log−3 n.

Let Et be the event that no node with Cu > ∆t gets informed by Pull in round t + 1.
Then we have

Pr [Et] > 1−
i∗∑
i=it

Pi > 1− o
(

1

log n

)
. (17)

Let us define S
(1)
t+1 :=

∑
u∈NPull

t
Cu. Conditioning on the event Et we obtain that

E
[
S

(1)
t+1 | St

]
6

it∑
i=1

∑
u∈Ut∩Mi

Cu ·
Pr [Zi

u = 1]

Pr [Et]

6 (1 + o(1)) ·
it∑
i=1

2i ·Mi ·
It
n
· 2i 6 (1 + o(1)) · St

n
·

it∑
i=1

2i ·Mi · 2i.
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By definition of it, we have 2it 6 2·∆t and also we have Mi 6 L(2i−1) 6 3
2
·c2 ·2(i−1)(1−β) ·n.

Hence the last sum is bounded by

(1 + o(1)) ·
it∑
i=1

22i · It · 2(i−1)(1−β) 6 24 · c2 · It · 2it(3−β) 6 24 · c2 · It · (2 ·∆t)
3−β

6 24 · c2 · S
1+ 3−β

β−2

t log
3(3−β)
β−2 n.

Conditioning on the event Et and applying Markov’s inequality imply that with proba-
bility 1− o( 1

logn
),

S
(1)
t+1 6 log2 n · E

[
S

(1)
t+1 | St

]
6 24 · c2 · S

1+ 3−β
β−2

t log2+
3(3−β)
β−2 n. (18)

Let us define the indicator random variable Yu for every u ∈ Ut as follows:

Yu :=

{
1 if u gets informed by Push in round t+1,
0 otherwise.

Then we have Pr [Yu = 1] 6 St/n. Let A denote the event that
∑

u∈V Cu 6 n · log2 n.
Since E [R] = O(1), applying Markov’s inequality implies that Pr [A] > 1 − o(1/log n).

Let us define S
(2)
t+1 :=

∑
u∈NPush

t
Cu. Conditioning on the event A we have

E
[
S

(2)
t+1 | St

]
=
∑
u∈Ut

Cu ·
Pr [Yu = 1]

Pr [A]
6 (1 + o(1)) ·

∑
u∈V

Cu ·
St
n

6 (1 + o(1)) · St · log2 n.

Conditioning on A and applying Markov’s inequality implies that with probability 1 −
o(1/log n),

S
(2)
t+1 6 log2 n · E

[
S

(2)
t+1 | St

]
6 St · log4 n (19)

Combining inequalities (18) and (19) implies that with probability 1−o(1/log n) for every
0 6 t 6 log log n

St+1 6 St + S
(1)
t+1 + S

(2)
t+1 6 St + 24 · c2 · S

1+ 3−β
β−2

t log2+
3(3−β)
β−2 n+ St · log4 n

6 St + 24 · c2 · Sb+1
t + S2

t 6 Sb+2
t ,

where the last inequality holds because b = max{4, 2 + 3(3−β)
β−2
} and logb n 6 It 6 St. We

know that with probability 1− o(1/log n) we have S0 6 logb+2 n. An inductive argument

shows that for every 1 6 t 6 log log n with probability 1− o(1), St 6 S
(b+2)t

0 6 log(b+2)t+1

.
If we set T := 1

2
· logb+2 log n, then with probability 1−o(1) we have ST < n1/log logn. Thus

T = Ω(log log n) rounds are necessary to inform all nodes with probability 1− o(1). This
finishes the proof of the lower bound of Ω(log log n).
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10 Push-Pull Protocol with Power Law Distribution β = 3

In this section we analyse the Push-Pull protocol where R is a power law distribution

with β = 3 and show that the Push-Pull protocol takes Θ
(

logn
log logn

)
rounds to inform all

n nodes. Throughout this section we assume that the power law distribution with β = 3
has an additional property in which for every positive integer z

Pr [R = z] > c · z−3, (20)

where c > 0 is fixed. Let us define L∗(z) = {u : Cu = z} and L∗(z) = |L∗(z)|. Also
we define It(z) = It ∩ L∗(z) and Nt(z) = Nt ∩ L∗(z), whose sizes are denoted by It(z)
and Nt(z) respectively. NPush

t (z) and NPull
t (z) are denoted the size of the newly informed

nodes with Cu = z by Push and Pull transmissions respectively. In the following we show
a useful fact about the L∗(z).

Fact 10.1. Let R be a power law distribution with β = 3. Then for every z = O(n1/4),
with probability 1− o( 1

n
) we have that

n ·Pr [R = z]

2
6 L∗(z) 6

3 · n ·Pr [R = z]

2
.

Proof. We know that E [L∗(z)] = n · Pr [R = z]. By using the inequality (20) we have
that for any z = O(n1/4), Pr [R = z] = Ω(n−3/4). Then we have that E [L∗(z)] = Ω(n2/5)
and using a Chernoff bound 2.1 yields that with probability 1− o( 1

n
) the inequality in the

statement holds.

10.1 Proof of Lower Bound

Theorem 10.2. With probability 1−o(1), the Push-Pull needs at least Ω
(

logn
log logn

)
rounds

to inform all n nodes.

Proof. Let {Cu : u ∈ V} be a sequence of positive integers where every Cu is generated
independently according to a power law distribution with β = 3. We call a sequence
{Cu : u ∈ V} is good if it fulfills three conditions:

1. For every u ∈ V , Cu < n.

2. S0 = O(log n).

3.
∑

u∈V
C2
u

n
= O(log2 n).

In the following we show that with probability 1 − o(1) every sequence {Cu, u ∈ V} is
good. By definition of power law distribution for β = 3 we have that

Pr [Cu 6 n] > 1− c1

n2
= 1− o(1).
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We know that E [R] = O(1), so Markov’e inequality implies that with probability 1 −
O( 1

logn
), S0 = O(log n). Conditioning on the event that for every u ∈ V , Cu < n we get

E
[
C2
u|Cu 6 n

]
6

∑n
z=1 Pr [R2 > z]

Pr [Cu 6 n]
6 (1 + o(1)) · c1

n∑
z=1

1

z
= (1 + o(1)) · c1 · log n.

So applying Markov’s inequality yields that with probability 1−O( 1
logn

),∑
u∈V

C2
u

n
= O

(
log2 n

)
.

Therefore we have that with probability 1 − o(1), the sequence {Cu : u ∈ V} is good.
Conditioning on this event and then applying Lemma 7.1 shows that with probability
1− o(1) the Push-Pull needs at least

Ω

(
log n− logS0

log
∑

u∈V C
2
u/n

)
= Ω

(
log n

log log n

)
rounds to inform n nodes.

10.2 Proof of Upper Bound

Before we present a proof for the upper bound we show following two lemmas.

Lemma 10.3. Suppose that St 6 n
log6 n

and z 6 min{ n
It·log6 n

,O(n
1
4 )}. Then with proba-

bility 1− o( 1
logn

), for any round t = O(log n) we have that

|Ut(z) ∩ L∗(z)| > L∗(z)

2
>
n ·Pr [R = z]

4
.

Proof. By considering the Push call we have that the size of newly informed nodes is
bounded by St. Since they are chosen randomly, we have that

E
[
NPush
t (z)|St

]
6 St ·Pr [R = z] . (21)

On the other hand we have that

E
[
NPull
t (z)|It

]
6

∑
u∈Ut∩L∗(z)

Pr [u gets informed by Pull in round t+ 1]

6 L∗(z) ·Pr [u gets informed by Pull in round t+ 1] , since |Ut ∩ L∗(z)| 6 L∗(z).

= L∗(z) ·
(

1−
(

1− It
n

)z)
6 L∗(z) · 2 · It · z

n

where the last inequality holds because we assume that It
n

6 St
n
< 1

2
and for any 0 6

a 6 log 2
2

, e−2a 6 1 − a 6 e−a. Applying Fact 10.1 shows that for any z = O(n
1
4 ) with

probability 1− o( 1
n
) we have

n ·Pr [R = z]

2
6 L∗(z) 6

3 · n ·Pr [R = z]

2
. (22)
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Thus,

E
[
NPull
t (z)|St

]
6 3 · It · z ·Pr [R = z]. (23)

Combining (21) and (23) implies that

E [Nt(z)|St, It] 6 St ·Pr [R = z] + 3 · It · z ·Pr [R = z]

We know that It+1(z) = I0(z) +
∑t

i=1Ni(z). Using the linearity of expectation we have
that

E [It+1(z)|Si, Ii, 0 6 i 6 t] = I0(z) +
t∑
i=0

E [Ni(z)|Si, Ii]

6 I0(z) + Pr [R = z] ·
t∑
i=0

(Si + 3 · Ii · z)

6 1 + Pr [R = z] · (t+ 1) · (St + z · 3 · It),

where the last inequality comes from the fact that Si and Ii are non-decreasing function
in t. By assumption z 6 min{ n

It·log6 n
,O(n

1
4 )} and St 6 n

log6 n
, for any round t = O(log n)

we have that

E [It+1(z)|Si, Ii, 1 6 i 6 t] 6 2 · (t+ 1) · (St + 3 · It · z) ·Pr [R = z] 6
n ·Pr [R = z]

log4 n
.

Applying Markov’s inequality shows that with probability 1 − o( 1
logn

) for any round t =

O(log n),

It+1(z) 6 log2 n · E [It+1(z)|Si, Ii, 0 6 i 6 t] 6
n ·Pr [R = z]

log2 n
6
L∗(z)

2
,

where the last inequality follows from inequality (22). Therefore we infer that with prob-

ability 1− o( 1
logn

), |Ut(z) ∩ L∗(z)| > L∗(z)
2

.

Lemma 10.4. Suppose that It = eΩ( logn
log logn) and St 6 n

log6 n
. Then with probability 1−o(1),

the Push-Pull protocol needs O
(

logn
log logn

)
rounds to inform at least elogn− logn

log logn nodes.

Proof. Let Xu be an indicator random variable for every u ∈ Ut(z) ∩ L∗(z) so that

Xu :=

{
1 if u gets informed by Pull in round t+ 1,
0 otherwise.

Then we define the random variable Xt(z) :=
∑

u∈Ut(z)∩L∗(z)Xu. Let us define zt =

min{I1/4
t , n

It·log6 n
}. Using the approximation e−2·a 6 1 − a 6 e−a, 0 6 a 6 1/2, results

that for any z 6 zt we have

Pr [Xu = 1] = 1−
(

1− It
n

)z
> 1− e−

It·z
n >

It · z
2 · n

,
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Applying Lemma 10.3 shows that with probability 1 − o( 1
logn

) for any z 6 zt and any

round t = O(log n),

E [Xt(z)] =
∑

u∈Ut(z)∩L∗(z)

Pr [Xu = 1] >
L∗(z) · It · z

4 · n
>
It · z ·Pr [R = z]

8
>
c · It
I

3
4
t

, (24)

where the last inequality holds because Pr [R = z] > c
z3

. Since It = eΩ( logn
log logn) and Xu’s

are independent, applying a Chernoff bound 2.1 implies that with probability 1− o( 1
n
),

Xt(z) >
E [Xt(z)]

2
.

Using the above inequality and inequality (24) shows that that with probability 1−o( 1
logn

)
there exists a constant C so that

St+1 >
zt∑
z=1

Xt(z) · z > It
16

zt∑
z=1

z2 ·Pr [R = z] >
c · It
16

zt∑
z=1

1

z
= It · C · log zt.

For any positive integer k in which It+k ∈ [eΩ( logn
log logn), elogn− logn

log logn ], we have that

eΩ( logn
log logn) 6 zt.

Hence from the above inequality we conclude that here exists a constant C1 so that

St+1 > C1 · It ·
log n

log log n
> C1 · It ·

√
log n.

Considering only Push transmission for St = o(n) and applying Lemma 4.2 implies that
with probability 1− o( 1

logn
)

It+2 >
St+1

2
>
C1 · It ·

√
log n

2

An inductive argument shows that for any integer k as long as St+2k = n
log6 n

with proba-

bility 1− o(1),

It+2k > It ·
(
C1 ·
√

log n

2

)k
.

Thus there is a k = O
(

logn
log logn

)
so that after t+ 2k rounds there are at least elogn− logn

log logn

informed nodes.

Corollary 10.5. let R be a power law distribution with β = 3. Then with probability

1− o(1), the Push-Pull protocol in informs all n nodes in O
(

logn
log logn

)
rounds.
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Proof. Applying Corollary 4.4 results that as long as St = o(n) with probability 1− o(1),
for any round t = O(log n),

It >

(
3

2

)t
· I0.

So after O
(

logn
log logn

)
rounds there are at least eΩ( logn

log logn) informed nodes. Now we apply

Lemma 10.4 and conclude that after O
(

logn
log logn

)
rounds we have at least elogn− logn

log logn

informed nodes. Another application of Corrolarry 4.4 implies that afterO( logn
log logn

) rounds
we have at least n

log logn
informed nodes. Since we have enough number of informed nodes

using the result by Karp et. al in [24, Theorem 2.1] for the standard Push-Pull protocol
shows that once It > n

logn
, with probability 1 − o(1) additional O(log log n) rounds are

sufficient to inform all n nodes.

11 Generating a New Ct
u in Each Round (Theorem 1.6)

In this section we analaysis the Push-Pull protocol for a new model. In this model according
to some distribution R, at the beginning of each round t, every node u generates a random
natural number Ct

u > 1 independent of all other nodes. Then in round t, the Push-Pull
protocol disseminates the information according to {Ct

u : u ∈ V}, i.e., node u calls Ct
u

random nodes. In the following we show that if we have E [R] = O(1). Then with
probability 1− o(1), the Push-Pull protocol needs Ω(log n) rounds to inform all nodes.

Proof. The probability that a node u ∈ Ut gets informed by Pull is as follows:

Pr [u gets informed by Pull in round t+ 1]

=
∞∑
x=1

Pr
[
u gets informed by Pull in round t+ 1 | Rt+1

u = x
]
·Pr

[
Rt+1
u = x

]
=

b n
2It
c∑

x=1

(
1−

(
1− It

n

)x)
·Pr

[
Rt+1
u = x

]
+

∞∑
x=b n

2It
c+1

(
1−

(
1− It

n

)x)
·Pr

[
Rt+1
u = x

]

6
It
n

b n
2It
c∑

x=1

x ·Pr
[
Rt+1
u = x

]
+

∞∑
x=b n

2It
c+1

Pr
[
Rt+1
u = x

] (
since 1−

(
1− It

n

)x
6
It · x
n

)

6
It
n
· E [R] + Pr

[
Rt+1
u >

⌊
n

2It

⌋]
6
It
n
· E [R] +

2It
n
· E [R] ,

where the last inequality is due to Markov’s inequality. Recall that NPull
t and NPush

t are
the number of newly informed nodes by Pull and Push calls in round t + 1 respectively.
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Hence,

E
[
NPull
t | It

]
=
∑
u∈Ut

Pr [u gets informed by Pull in round t+ 1]

6
Ut · It · 3 · E [R]

n
< 3 · It · E [R] .

Recall that St is the number of Push calls by informed nodes in round t + 1. Therefore,
NPush
t 6 St and

E
[
NPush
t | It

]
6 E [St | It] =

∑
u∈It

E
[
Ct+1
u

]
= It · E [R] .

Hence,

E [It+1 | It] 6 It + E
[
NPull
t | It

]
+ E

[
NPush
t | It

]
6 (1 + 4 · E [R]) · It.

By using the law of total expectation, we conclude that E [It] < (1 + 4 ·E [R])t. If we set
T = c · log n, where c > 0 is a small constant, then

Pr
[
IT >

√
n
]
6

E [IT ]√
n

6
(1 + 4 · E [R])T√

n
= o(1).

So with probability 1− o(1), we need at least c · log n rounds to inform all nodes.
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