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Abstract

We consider rumor spreading on random graphs and hypercubes in the quasirandom phone
call model. In this model, every node has a list of neighbors whose order is specified by an
adversary. In step i every node opens a channel to its ith neighbor (modulo degree) on that
list, beginning from a randomly chosen starting position. Then, the channels can be used for
bi-directional communication in that step. The goal is to spread a message efficiently to all
nodes of the graph.

For random graphs (with sufficiently many edges) we present an address-oblivious algorithm
with runtime O(log n) that uses at most O(n log log n) message transmissions. For hypercubes
of dimension log n we present an address-oblivious algorithm with runtime O(log n) that uses
at most O(n(log log n)2) message transmissions.

Together with a result of [9], our results imply that for random graphs the communication
complexity of the quasirandom phone call model is significantly smaller than that of the standard
phone call model.

1 Introduction

In this paper we consider rumor spreading (a.k.a. randomized broadcasting) in random graphs and
hypercubes. This problem is motivated by overlay topologies in peer-to-peer (P2P) systems, in
which each node possesses a list of neighboring peers. Our goal is to develop time-efficient ru-
mor spreading algorithms which produce a minimal number of message transmissions and use a
small amount of randomness. Since P2P networks are decentralized platforms for sharing data and
computing resources, it is very important to provide efficient, simple, and robust rumor spreading
algorithms for P2P overlays. Minimization of the number of transmission (communication com-
plexity) is important for applications such as the maintenance of replicated databases in which
often huge amounts of broadcasts are necessary to deal with frequent updates in the system.

We consider the quasirandom phone call model, a variant of the standard phone call model. Let
us first introduce the standard phone call model (also known as random phone call model, see
[6]). In this model, each node v may perform the following actions in every step: 1) create a new
rumor to be spread, 2) establish a communication channel between itself and one randomly chosen
neighbor, 3) transmit a message over incident channels (opened by v or by some neighbor of v)

∗An extended abstract of this paper appeared in the 18th Annual European Symposium (ESA’10) [3].
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and 4) close the channel opened in the current step. Note that open channels can be used for bi-
directional communications. Calling nodes (i.e., the nodes that opened the channels) can send their
messages to their neighbors. These are called push transmissions. Called nodes can also perform
so called pull transmissions, i.e., they send the message to the calling nodes. These transmissions
are simply called pull transmissions. If there are many rumors to be spread among the nodes,
then it is assumed that nodes can combine several rumors to one larger message. Following [17], we
therefore focus on the running time and message complexity produced by our algorithms w.r.t. one
single message. Nodes can send messages over all their open channels in one time step.

The major challenge for rumor spreading algorithms in the phone call model is to decide whether
or not a node should forward the rumor over an open communication channel. An algorithm is
called address-oblivious (see [17]) if the decision of node v to send a rumor over an open channel
(v, w) or (w, v) does not depend on w. However, this decision can depend on the communication
partners chosen in earlier rounds or on decisions made so far. Hence, according to such an algorithm
a node has to decide whether to use a channel without knowing if the rumor is already known by the
neighbor in question. If there are only very few rumors in the network, then many communication
channels may be established without ever being used for transmissions. Thus, the phone call model
is especially of interest in situations where rumors are frequently generated. Then, the cost of
establishing communication channels amortizes over all message transmissions.

In the case of the quasirandom phone call model it is assumed that every node has a cyclic list of
all its neighbors, numbered from 1 to d, whose order is specified by an adversary. At the beginning,
each node v chooses a random position in the list, independently of the other nodes. Assume that
1 6 ` 6 d is the random choice of node v, where d is the degree of v. Then v communicates in
step i with the neighbor ((i+ `− 2) mod d) + 1 from the list. To create the list we assume that the
adversary has total knowledge about the topology of the network, but cannot foresee any node’s
random choice such as the position selected at the beginning (cf. [7]).

1.1 Related Work

Due to space constraints, we mention only results which focus on the theoretical study of push and
push & pull algorithms.

Runtime. Most rumor spreading studies analyze the runtime of the push algorithm in the stan-
dard phone call model for different graph classes. For complete graphs of size n, Pittel [20] shows
that (with probability 1 − o(1)) it is possible to spread a rumor in time log2(n) + ln(n) + f(n),
where f(n) is a slowly growing function, improving a result of Frieze and Grimmett [13]. In [12],
Feige et al. determine asymptotically optimal upper bounds for the runtime on G(n, p) graphs (i.e.,
traditional Erdös-Rényi random graphs [11]), bounded degree graphs, and hypercubes, which all
hold w.h.p.1. Recently, Fountoulakis et al. [14] prove a tighter bound for the runtime on sufficiently
dense G(n, p) graphs, similar to the result of [20] for complete graphs. Also recently, Chierichetti et
al. [5] show that the runtime of the combined push & pull model is O(Φ−1 · log n · log2(Φ−1)) w.h.p.
for any graph G, where Φ denotes the conductance of G. This runtime bound has been recently
tightened in [15] who proved a runtime bound of O(Φ−1 · log n) for any graph G with conductance
Φ.

1W.h.p. or “with high probability” means with probability at least 1− n−c for some constant c > 0.
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In [7], Doerr et al. analyze the so called quasirandom rumor spreading. They show that for
hypercubes and G(n, p) graphs O(log n) steps suffice to inform every node, w.h.p. These bounds
are similar to the ones in the standard phone call model (push model). The results of [7] are
extended to further graph classes with good expansion properties in [8]. Observe that in [7, 8]
the authors mainly focus on the runtime efficiency, and the algorithms therein require Θ(n log n)
message transmissions for hypercubes and G(n, p) graphs.

Number of Message Transmissions. Karp et al. [17] observe that in complete networks the
pull approach is inferior to the push approach until roughly n/2 nodes receive the rumor. Then
the pull approach becomes superior. They present a push & pull algorithm, together with a
termination mechanism, which bounds the number of total transmissions to O(n log log n) (w.h.p.),
and show that this result is asymptotically optimal.

For sparser graphs and the standard phone call model it is not possible to get an oblivious
algorithm that usesO(n log logn) message transmissions, together with a runtime ofO(log n). In [9],
the second author considers random G(n, p) graphs and shows a lower bound of Ω(n log n/ log(pn))
message transmissions for oblivious rumor spreading algorithms with a runtime of O(log n). For
p > log2 n/n he develops an oblivious algorithm that spreads a rumor in time O(log n) using
O(n · (log log n+ log n/ log(pn))) transmissions, w.h.p.

In [10] the authors consider a simple modification of the standard phone call model, called
Random[4], where every node is allowed to open a channel to four different randomly chosen
neighbors in every time step. For G(n, p) graphs with p > log2 n/n, they show that this modification
results in a reduction of the number of message transmissions down to O(n log log n). Similar results
are shown for random d-regular graphs in [1].

The authors of [2] present an extension of Random[4] which they call Rr model. In their model
each node has a randomly ordered cyclic list with all its neighbors. In step i, the node opens a
communication channel to the ith neighbor in its list. The Rr model is the same as the quasirandom
model except that the adversarial order is replaced by the random order. The authors present an
oblivious algorithm for graphs with very good edge and node expansion properties which has a
runtime O(log n) and which uses O(n

√
log n) message transmissions, w.h.p. The authors establish

a lower bound of Ω(n
√

log n/ log d) on the number of message transmissions for oblivious rumor
spreading algorithms (assuming a runtime of O(log n)), showing that their upper bound is tight up
to a

√
log logn factor if d is polylogarithmic in n.

The algorithms of [2, 9, 10, 17] spread the rumor using push transmissions until a constant
fraction of the nodes receives the rumor (we call these nodes informed in the following). Then
the algorithms spread the rumor via pull transmissions until every node is informed. To save
on communications, the algorithms of [1, 2, 9, 10] only allow each node v a certain number of
transmissions which depends on the age the rumor had at the time v received it for the first time.

1.2 Model

In this paper we consider random graphs G(n, p) = (V,E) and hypercubes Hd of dimension d. A
random graph G(n, p) consists of n nodes. The probability that any pair of nodes is connected
is p, we assume that (log2 n)/n 6 p 6 2o(

√
logn)/n. The expected number of edges for G(n, p) is

pn · (n− 1)/2. Let d(v) be the degree of node v and N(v) be the set of neighbors in V . For S ⊂ V ,
let N(S) be the set of neighbors of nodes in S. Let α be the node expansion value of G(n, p). Then



1 INTRODUCTION 4

α = minS∈V,|S|6n/4N(S)/|S|. It is known that for our choice of p, α is a constant close to 1 w.h.p.
([4]).

The d-dimensional hypercube Hd consists of n = 2d many nodes. A binary string of length 2
is assigned to every node and two nodes are connected if their binary strings differ in exactly one
bit. Hence, the degree of any node of Hd is d. Note that hypercubes have much smaller expansion
than random graphs.

We assume that every node has an estimation of n which is accurate to within a constant factor.
We also assume that all nodes have access to a global clock, and that they work synchronously.
As communication model we assume a variant of the phone call model. In the standard phone call
model (see [6]) in each step t every node can create an arbitrary amount of rumors to be spread. To
measure the communication cost we only count the number of message transmissions, i.e., opening
a channel is not counted. Following [1, 2, 9, 17], we assume here that new pieces of information
are generated frequently in the network, and then the cost of establishing communication channels
amortizes over all message transmissions. However, we only concentrate on the distribution and
lifetime of a single rumor.

The quasirandom variant of the phone call model considered in this paper was introduced in
[7]. In the quasirandom phone call model every node v has a list L̃v = L̃v[0], L̃v[1], . . . L̃v[d(v)− 1]
of length d(v) with all its neighbors. The order of that list is arbitrary, i.e., it may be determined
by an adversary. We assume that the rumor is initiated on a node at step 0. For spreading the
rumor, every node v chooses a random position iv in the list, independently of the other nodes.
For its j-th communication v will open a channel to node Lv[(iv + j − 1) mod d(v)]. We define
Lv = Lv[0], Lv[1], . . . , Lv[d(v)] as the list beginning at neighbor iv.

Nodes that received the rumor will be called informed. By It (Ht) we denote the set of informed
(uninformed) nodes in step t. Furthermore, let I+

t be the set of nodes that reveive the rumor for
the first time in step t. These nodes will also be called newly informed nodes.

Note that we omit rounding of non-integers in our proofs but not in the statement of our
algorithms. Furthermore, we assume that log n is the logarithm with base 2.

1.3 Our Contribution

In this paper we show the following results. For random graphs with (log2 n)/n 6 p 6 2o(
√

logn)/n
we present an oblivious algorithm (in the quasirandom model) that spreads a rumor in time O(log n)
using O(n log log n) message transmissions, w.h.p. Compared to [7], we reduce the number of
message transmissions by a factor of log n/ log log n. Moreover, our upper bound in the quasirandom
model is significantly smaller than the lower bound for the standard phone call model (cf. [9]).

For the hypercube we show a result that is slightly weaker than our result for random graphs. We
present an oblivious algorithm (which is similar to the algorithm for random graphs) that spreads a
rumor in time O(log n) using O(n · (log log n)2) message transmissions, w.h.p. The communication
complexity on the hypercube has not been analyzed before, neither in the standard nor in the
quasirandom phone call model. Therefore the best known algorithms require O(log n) time, but
produce Ω(n log n) message transmissions. In comparison to that, we reduce the number of message
transmissions by a factor of log n/(log log n)2.

Our results demonstrate that on two important networks rumor spreading can be done much
more efficiently in the quasirandom phone model than in the standard phone call model. More-
over, the results provide evidence that avoiding previously chosen communication partners is more
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important than choosing all communication partners independently and uniformly at random.
Note that the conference version of this paper ([3]) contained a lower bound on the message

complexity for hypercubes. Unfortunately there is a mistake in the proof on the slower bound
which we were not able to repair.

2 Random Graphs

In this section we present an algorithm with runtime O(log n) and communication complexity
O(n log log n) for random graphs.

2.1 Our Algorithm

We assume that the rumor we want to spread is generated at time 0, i.e., at time t the age of
the rumor equals t. The algorithm describes the behavior of the nodes w.r.t. one specific rumor.
Depending on the age of the rumor, each node is in one of the following phases (in our algorithm,
ρ is a sufficiently large constant):

Phase 0: [age 6 dρ log ne] The node which generates the rumor performs push in each step of
this phase. No other node transmits the rumor in this phase.

Phase 1: [dρ log ne + 1 6 age 6 2 · dρ log ne + 320] Nodes that received the rumor in Phase 0
use the first 320 steps of this phase to perform push in each of these steps. If a node receives the
rumor for the first time in some step t ∈ {dρ log ne + 1, . . . , 2 · dρ log ne}, then the node performs
push in the steps t+ 1, . . . , t+ 320.

Phase 2: [2dρ log ne+ 321 6 age 6 2 · dρ log n+ρ log log ne] Every informed node performs push
in every step of this phase.

Phase 3: [2dρ log n+ ρ log logne+ 1 6 age 6 3 · dρ log ne] Every node that becomes informed in
some step of this phase performs pull transmissions for the rest of the phase, i.e., after receiving
the message it transmits over all incoming channels in every step of the phase. All other informed
nodes perform pull over all incoming channels with probability 1/ log n.

Phase 4: [3dρ log ne + 1 6 age 6 3 · dρ log n + ρ log log ne] All informed nodes perform pull

transmissions.

It is easy to see that at the end of Phase 0, exactly ρ log n+ 1 nodes are informed (Observation
2.2). In Phase 1 we inform half of the nodes (see Lemma 2.3). At the end of Phase 2 we have
n · (1− 2 log log n/ log n) informed nodes, w.h.p. (Lemma 2.5). Phase 3 and Phase 4 are analyzed
in Lemma 2.6. There we show that w.h.p. at the end of Phase 4 all nodes are informed.
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2.2 Analysis of the Algorithm

For a graph G(n, p) and our choice of p the degree of each node is in the range [np ·(1−1/ log n), np ·
(1 + 1/ log n)], with probability at least 1− n−3. In the following, we condition on this event, and
for simplicity we assume in our analysis that d = pn.

Theorem 2.1. Consider G = G(n, p) with (log2 n)/n 6 p 6 2o(
√

logn)/n. Then, the algorithm
above spreads a rumor in G in time O(log n) using O(n log logn) message transmissions, w.h.p.

In the rest of this section we will prove the above theorem. The proof is split into several
lemmas. It is easy to see that in Phase 0 the node that generated the rumor informs ρ log n
different neighbors, which results in the following observation.

Observation 2.2. At the end of Phase 0 there are ρ log n informed nodes.

Now we concentrate on Phase 1 and show the following lemma.

Lemma 2.3. With probability 1− n−2, at least n/2 nodes are informed at the end of Phase 1.

Proof. Assuming that the nodes all have degree d we show that

1. After the first ρ · (log n)/2 steps at least 6n/d nodes are informed, where ρ > 8.

2. After ρ · ((log n)/2− 320) additional steps we have at least n/40 informed nodes.

3. After the last 320 · ρ steps we have n/2 informed nodes for ρ large enough.

Part 1). The statement follows from the claim below we adapted from Claim A.1 of [2] with
expansion factor α > 0.6. This (node-)expansion holds for the random graphs considered here, if
the size of the set is bounded by n/d [4].

Claim 2.4. Let τ1, τ2, . . . be consecutive time intervals in this phase, each of them consisting of
160 time steps. Furthermore, let ti be the beginning of interval τi, and let I+

τi be the set of nodes,
which are informed in time interval τi for the first time. Assume that

|Iti | 6
n

d
and |Iti | >

8

α2
· |Iti−1 |

Then, with probability at least 1− n−3 we have

|I+
τi | >

8

α2
· |Iti |.

In the algorithm considered in [2], we assume that each node transmits the message for 80/α2

steps; in our algorithm we assume that the nodes transmit for 320 time steps, and therefore the
claim applies here too. In order to have at 6n/d informed nodes at the end of Phase 1, we apply
the claim to a time interval which starts right after n/d− 1 nodes are informed.
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Part 2). In this case the number of informed nodes lies in the range [6n/d, n/40]. We show
inductively that with a very high probability the number of informed nodes grows by a factor of
2.1 every 160 steps. To do so we divide the time into ` = (ρ · ((log n)/2− 320)/160 subphases. For
0 6 i 6 `, subphase τi starts in step ρ · (log n)/2+160i+1 and ends in step ρ · (log n)/2+160(i+1).
Let I+

τi be the newly informed nodes in Subphase τi, and Iτi are the informed nodes at the beginning
of Subphase τi. Note that all nodes in I+

τi perform a push transmissions in Subphase τi+1.
We show by induction that for 0 6 i 6 ` we have |I+

τi | > 2.1 · |Iτi |, which then implies that
|I+
τi | > |Iτi+1 |/2.

Fix a subphase τi+1. From Lemma 4.5 (Part 1) we know that there are n/6 uninformed nodes
at the beginning of the subphase so that, with probability at least 1 − εn, all of these nodes have
at least |I+

τi | · d/(2n) neighbors in the set of nodes I+
τi . Hence, such an uninformed node remains

uninformed in the time interval τi+1 with probability at most (1 − 160/d)|I
+
τi
|·d/(2n). This holds

since the first positions are chosen independently and uniformly at random, and a neighbor misses
a specific node in 160 steps with probability 1− 160/d. Thus,

E
[
|I+
τi+1
|
]

>

(
1−

(
1− 160

d

)|I+τi |·d/(2n)
)
· n

6

>

(
1−

(
1

e

)80|I+τi |/n
)
· n

6
>

(
1−

(
1

e

)40·|Iτi+1 |/n
)
· n

6

>

(
1−

(
1− 1

n/(40 · |Iτi+1 |) + 1

))
· n

6
> 2.2 · |Iτi+1 |

Here, the third equation uses the induction hyphothesis. Now, we can construct a Martingale
sequence Y0, Y1, . . . , Yn/6 on these n/6 uninformed nodes, where Yj is the expected value on the
number of newly informed nodes in time interval τi+1 after the first j uniformed nodes are exposed.
Since this Martingale sequence satisfies the 160-Lipschitz condition, applying the Azuma-Hoeffding
bound (see e.g. [18])

Pr
[
|Yn/6 − Y0| > 0.1 ·E

[
|I+
τi+1
|
] ]

6 2 exp

0.01 ·
(
E
[
|I+
τi+1
|
])2

(160)2 · 2n/6

 (1)

we obtain with probability 1− o(n−3) that |I+
τi+1
| > 2.1 · |Iτi+1 |.

Part 3). Now the number of informed nodes lies in the range [n/40, n/2]. We divide the time
into ` = 2ρ subphases. For 0 6 i 6 `, subphase τi starts in step ρ · (log n− 320) + 160i+ 1 and ends
in step ρ · (log n− 320) + 160(i+ 1). Our goal is to show inductively that for all but the last phase
|I+
τi | > 2.1 · |Iτi |. In the last phase we inform enough nodes so that half of the nodes are informed

at the end of this phase.
Similar to Part 2) we fix a subphase τi+1 and define Hτi+1 as the number of uninformed nodes at

the beginning of Subphase τi+1. From Lemma 4.5 (Part 2) it follows that |Hτi+1 |/2 of the uninformed
nodes have at least |I+

τi |d/(2n) neighbors in the set of nodes I+
τi , with probability 1− εn. Such an
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uninformed node remains uninformed in τi+1 with probability at most (1− 160/d)|I
+
τi
|d/(2n). Thus,

E
[
|I+
τi+1
|
]

>

(
1−

(
1− 160

d

)|I+τi |d/(2n)
)
·
|Hτi+1 |

2

>

(
1−

(
1

e

)80|I+τi |/n
)
·
|Hτi+1 |

2
>

(
1−

(
1

e

)40|Iτi+1 |/n
)
·
|Hτi+1 |

2
.

The remainder of the proof is a case analysis depending on |Iτi+1 |. If n/40 6 |Iτi+1 | 6 n/10, then(
1−

(
1

e

)40|Iτi+1 |/n
)
·
|Hτi+1 |

2
>

(
1−

(
1

e

))
· 9n

20
>

2.2 · n
10

.

Using the method of bounded independent differences [18] as in inequality (1) (with the adapted
length of the Martingale to |Hτi+1 |/2) one can show that with probability 1 − o(n−3) we obtain
|I+
τi+1
| > 2.1 · |Iτi+1 |. For n/10 < |Iτi+1 | 6 n/6(

1−
(

1

e

)40|Iτi+1 |/n
)
·
|Hτi+1 |

2
>

(
1−

(
1

e

)4
)
· 5n

12
>

2.2 · n
6

.

Then, with probability 1− o(n−3) we have |I+
τi+1
| > 2.1 · |Iτi+1 | [18].

For |Iτi+1 | > n/6 we get

|Iτi+1 |+

(
1−

(
1

e

)40|Iτi+1 |/n
)
·
|Hτi+1 |

2

> |Iτi+1 |+

(
1−

(
1

e

)40/6
)
·
(
n− |Iτi+1 |

2

)
>

41n

80
. (2)

Again, we obtain with probability 1− o(n−3) that |Iτi+2 | > n/2.

Lemma 2.5. Assume ρ > 30. With probability at least 1−n−2, there are at most (n·2 log log n/ log n)
uninformed nodes at the end of Phase 2.

Proof. Note that in this phase every informed node performs a push transmission in every step. Let
T be a random variable defined as the first time step directly after the subphase τ of the previous
phase, for which |Iτ ∪ I+

τ | > n/2 for the first time (this happens w.h.p. in Phase 1). For the sake
of this proof we assume that only the nodes of I+

τ perform push transmissions in this phase. Due
to the second term in the left hand side of inequality (2), we have |I+

τ | > n/5 with probability at
least 1− n−3.

According to Lemma 4.6, with probability 1 − εn (ε > 0 is a constant) there are at most
n · log log n/ log n nodes in HT which have fewer than d/10 neighbors in I+

τ . After ρ log logn
additional steps each of the other (uninformed) nodes remains uninformed with probability at least(

1− ρ log log n

d

)d/10

6 e−ρ log logn/10 6 log−3 n,
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for ρ > 30. Thus, if there are at most n · log logn/ log n nodes in HT which have fewer than d/10
neighbors in I+

τ , the expected number of newly informed nodes in Phase 2 is at least(
|HT | −

n log log n

log n

)
· (1− log−3 n).

Then, using [18] one can show that with probability at least 1−n−2, the number of newly informed
nodes in this phase is at least (

|HT | −
2n log logn

log n

)
.

Hence with probability at least 1−n−2, the number of uninformed nodes after this phase is at most
n · 2 log log n/ log n.

Finally, we concentrate on Phases 3 and 4.

Lemma 2.6. Assume ρ > 30. With probability at least 1− n−2 all nodes are informed at the end
of Phase 4.

Proof. For a node u and time interval τ = [t, t′], let Lu(τ) be the set of nodes chosen by u in steps
τ = t, t + 1, . . . , t′. Define t2 = 3ρ · (log n + log log n) as the end of Phase 4, t1 = 3 · ρ log n as the
beginning of Phase 4, and t0 = 2ρ(log n+ log log n) as the beginning of Phase 3.

First we consider Phase 4 and divide the time interval [t1 + 1, t2] into k′ = (t2 − t1)/320
subintervals of length 320. For any 0 6 i 6 k′ − 1 we define

τ̃i = [t2 − 320i, t2 − 320 · (i+ 1) + 1].

For a node v, let
U0(v) = Lv(τ̃0) and Ui(v) = ∪w∈Ui−1Lw(τ̃i).

We can visualize ∪i6k′−1Ui(v) as tree of depth k′−1 rooted in v (cf. Lemma 4.7). The level i nodes
are the nodes in Ui(v). Then, according to Lemma 4.7 |Uk′−1(v)| = Ω(log3 n) with probability
1− o(n−3).

In the following we consider two cases. In the first case, we assume that ∪i6k′−1Ui(v) ∩ It1 6= ∅
for some node v. Then v is informed in Phase 4 since all informed nodes perform pull transmissions
in that phase. In the second case, let Uk′−1(v) ∩ It1 = ∅. For this case we know from Lemma 4.7
that in Phase 4 v will be the root of a communication tree consisting of nodes which are still all
uninformed in step t1. Then we will show that w.h.p. at least one of the leaves of the tree will be
informed in Phase 3. The rumor will be propagated to v via the path between v and the informed
leaf.

Now we need some additional definitions. We divide the time interval [t0 + 1, t1] into k′′ =
(t1 − t0)/160 rounds of length 160. For any 0 6 i 6 k′′ − 1

τ̃ ′i = [t1 − 160i, t1 − 160 · (i+ 1) + 1].

For 0 6 i 6 ρ log n, let

ŨH−1(v) = Uk′−1(v)

ŨHi (v) = ∪w∈ŨHi−1(v)Lw(τ̃ ′i) ∩Ht0

Ũ Ii (v) = ∪w∈ŨHi−1(v)Lw(τ̃ ′i) ∩ It0 .
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A node w̃i ∈ Ũ Ii (v) is connected to a node w̃−1 ∈ ŨH−1(v) by a path P = (w̃i, . . . , w̃0, w̃−1),
where w̃i−1, . . . , w̃0, w̃−1 ∈ Ht0 , and for j = −1, . . . , i− 1 we have w̃j+1 ∈ Lw̃j (τ̃ ′j+1). Now define

ŨH0→i(v) = ∪ij=0Ũ
H
j (v) and Ũ I0→i(v) = ∪ij=0Ũ

I
j (v).

Since |ŨH−1(v)| = Ω(log3 n), we can apply the same techniques as in Lemma 2.3 and obtain that

|ŨHi (v) ∪ Ũ Ii (v)| 6 2.1 · |ŨHi−1(v)|

for any i > 1 as long as |Ũ Ii−1(v)| = O(log2 n) and |ŨHi (v)| < n/40. However, since |Ht0 | 6
2n log log n/ log n, there exists some i < k′′ such that |Ũ I0→i(v)| > ρ log2 n. Then, we can argue
that every node u ∈ Ũ I0→i(v) performs pull transmissions with probability 1/ log n. Since for every
u there is a s < k′′ such that a path (u, w̃s, . . . , w̃0, . . . , v) exists, that consists of nodes of Ht0 that
perform pull transmissions in the corresponding rounds. Hence, there is a node u ∈ Lw̃s(τ̃

′
s+1)

which transmits the rumor at the right time, with probability at least

1−
(

1− 1

log n

)ρ log2 n

= 1− o(n−3),

if ρ is large enough.

Let us now prove Theorem 2.1. The correctness (every node gets informed w.h.p.) follows
from the lemmas above. It remains to analyze the total number of message transmissions. In
Phase 0, the algorithm uses O(log n) message transmissions. In Phases 1, 2 and 4, the algorithm
uses O(n log log n) message transmissions. By Lemma 2.5, we know that after Phase 2 at most
O(n log log n/(log n)) uninformed nodes remain. These nodes generate at most O(n log log n) mes-
sage transmissions in Phase 3. Using a Chernoff bound, we can show that the nodes that are
informed at the end of Phase 2 use at most O(n) message transmissions. Hence the total number
of message transmissions is O(n log log n).

3 Hypercubes

In this section we present an algorithm with runtime O(log n) and communication complexity
O(n(log log n)2 for hypercubes.

3.1 Our Algorithm

In the algorithm below, the total number of message transmissions is O(n(log log n)2), which can
be shown as in the proof of Theorem 2.1 above (ρ > 0 is a sufficiently large constant).

Phase 1: [1 6 age 6 dρ log ne] If a node receives a rumor for the first time in step t ∈
{1, . . . , dρ log ne}, then the node performs push for the next C log log n consecutive steps, where
C > 0 is a sufficiently large constant.

Phase 2: [dρ log ne+ 1 6 age 6 2 · dρ log ne] Every node which becomes informed in this phase
performs pull over each incoming channel. All other informed nodes perform pull with probability
1/ log n over each incoming channel.
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Phase 3: [2dρ log ne + 1 6 age 6 2 · dρ log n + ρ(log log n)2e] All informed nodes perform pull

transmissions in every step of this phase.

3.2 Analysis of the Algorithm

Theorem 3.1. Assume that Hd is a hypercube of dimension d = log n. The algorithm above spreads
a rumor in Hd in time O(log n) using O(n(log log n)2) message transmissions, w.h.p.

The analysis of the above theorem is similar to the one for random graphs. However, the lack
of strong expansion properties makes it more difficult and one has to resort to the special structure
and the symmetries of hypercubes.

For any integer 0 6 k 6 d, let Nk(0) be the set of nodes with distance k to the node 0d, i.e.
the set of nodes with k ones. Sometimes we also simply write Nk for Nk(0) if the reference to 0d

is clear from the context. In addition, we define N>k := ∪dj=kNj . For any node v and any subset
S ⊆ V , we denote by dS(v) the number of neighbors of v within the set S.

3.2.1 Analysis of Phase 1

For the analysis we first subdivide this phase into two intervals [1, t1), [t1, t2), where t1 := (C2/2)(log log n)2,
t2 := t1 + K · (log n/2 − (C/2) log log n), where K > 0 is a sufficiently large constant. We further
define `1 := (C/2) log log n.

Lemma 3.2. For all possible lists ∪v∈V Lv we have

|I+
t1
∩N`1 | > (log n)C/2.

Proof. To prove this lemma we consider a delayed version of our algorithm. We assume that a node
in level Ni does not transmit before timestep iC log log n. Observe that any node in Ni has exactly
d − i neighbors in Ni+1 and i neighbors in Ni−1. Let ` := (C/2) log log n. Any informed node in
Ni informs at least C log logn− i nodes in Ni+1 and any node in Ni+1 is informed by at most i+ 1
nodes in Ni. Hence we obtain that the number of informed nodes in N` within ` ·C log logn rounds
is at least

`−1∏
i=0

(
C log log n− i

i+ 1

)
>

((C/2) log log n)(C/2) log logn

((C/2) log log n)!
> 2(C/2) log logn = (log n)C/2,

where we have used the fact that n! 6 (n/2)n for every integer n.

Lemma 3.3. Let ε > 0 be a constant. Assume that an adversary (who knows all random choices
of the protocol) is allowed to choose a set of nodes of size log3 n so that these nodes never transmit
a rumor within the time-interval [t1, t2]. Then there exists a constant δ = δ(ε) > 0 and `2 :=
(1/2− δ) · d, so that with probability 1− n−ω(1),

|I+
t2
∩N`2 | > 2(1−ε)·d,

and It2 ∩N>`2 = ∅.



3 HYPERCUBES 12

Proof. The proof is similar to the one of [7, Theorem 2]. From Lemma 3.2 we get

|I+
t1
∩N`1 | > (log n)C/2.

In the following we consider a slowed-down version of our algorithm. The algorithm works in
phases of K steps each, where K is a sufficiently large constant to be determined later. In phase i,
only nodes communicate that are in level Ni+`1 . Fix an arbitrary phase i with 0 6 i 6 log n − t1
and a timestep t = t1 +K · i (first round of phase i). Let us denote by Ĩt+K the nodes that would
get informed if there was no adversary. Consider Nj with j = i + `1 and 1 6 j 6 `2 6 d/2. Our
goal is to show that a large subset of the nodes in Nj+1 will be informed in phase i. The probability
that a node v ∈ Nj+1 is still uninformed at the end of phase i is

Pr
[
v 6∈ Ĩt+K

]
6

∏
u∈Γ(v)∩It∩Nj

(
1− K

d

)
=

(
1− K

d

)dĨt∩Nj (v)

.

By linearity of expectation we get

E
[
|Ĩt+K ∩Nj+1|

]
=

∑
v∈Nj+1

Pr
[
v ∈ Ĩt+K

]

>
∑

v∈Nj+1

1−
(

1− K

d

)dIt∩Nj (v)

>
∑

v∈Nj+1∩N(It)

1− exp

(
−K
d
· dIt∩Nj (v)

)

= |Nj+1 ∩N(It)| −
∑

v∈Nj+1∩N(It)

exp

(
−K
d
· dIt∩Nj (v)

)
.

Applying Lemma 4.3 with |E(It ∩Nj , Nj+1)| =
∑

v∈Nj+1
dIt∩Nj (v) = |It ∩Nj | · (d− j) and for any

v ∈ Nj+1, dIt∩Nj (v) ∈ [0, j + 1], we get

E
[
|Ĩt+K ∩Nj+1|

]
> |Nj+1 ∩N(It)| −

|E(It ∩Nj , Nj+1)|
j + 1

· exp

(
−K
d
· (j + 1)

)
−(

|Nj+1 ∩N(It)| −
|E(It ∩Nj , Nj+1)|

j + 1

)
· 1

=
|E(It ∩Nj , Nj+1)|

j + 1
·
(

1− exp

(
−K
d
· (j + 1)

))
> |It ∩Nj | ·

d− j
j + 1

·

(
1− 1

K(j+1)
d + 1

)
,

where we have used in the last inequality the fact that exp(−x) 6 1
x+1 for any x ∈ R.

Let the nodes in It∩Nj be u1, u2, . . . , u|It∩Nj |. Consider the random variable |Ĩt+K ∩Nj+1| as a
function of iu1 , iu2 , . . . , iu|It∩Nj | , where iuj is the randomly chosen starting point of the list of node
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uj . Since the iuj are independent random variables and changing one iuj can change Ĩt+K ∩Nj+1

by at most K, Lemma 4.8 gives

Pr

[
|Ĩt+K ∩Nj+1| 6

(
1− 1

log n

)
·E
[
|Ĩt+K ∩Nj+1|

] ]

6 exp

−
(

1
logn ·E [ |It+K ∩Nj+1| ]

)2

K · |It ∩Nj |



6 exp

−
1

log2 n

(
|It ∩Nj | ·

(
1− 1

K(j+1)
d

+1

))2

K · |It ∩Nj |


6 exp

(
−Ω

(
1

log4 n
|It ∩Nj |

))
= exp

(
−Ω(log2 n)

)
,

provided that |It ∩ Nj | = Ω(log6 n) (which holds initially for timestep t1 by assumption). Recall
now that the adversary is allowed to choose log3 n nodes that never transmit the rumor within the
time-interval [t1, t2]. Since |It+K ∩Nj+1| > |Ĩt+K ∩Nj+1| − log3 n,

Pr

[
|It+K ∩Nj+1| 6

(
1− 2

log n

)
·E [ |It+K ∩Nj+1| ]

]
= exp(−Ω(log2 n)).

Let us now compute how many nodes are finally informed in N`2 , provided that |It+K ∩
Nj+1| is always close to its expectation. Taking the union bound, it holds with probability
1− exp

(
−Ω(log2 n)

)
that, for sufficiently large constant δ = δ(ε) > 0,

|It0+K·(`2−(C/2) log logn)|

>
`2∏

j=(C/2) log logn

(
1− 2

log n

)
· d− j
j + 1

·

(
1− 1

K(j+1)
d + 1

)
· |It1 ∩N`1 |

>

(
1− 1

log n

)logn

·
∏`2
j=1

d−j
j+1∏(C/2) log logn

j=1
d−j
j+1

·
d/2∏
j=1

(
1− 1

K(j+1)
d + 1

)
· 1

>
1

16
·

(
d
d/2

)∏d/2−`2−1
r=0

d/2−r
d/2+(r+1)(

d
(C/2) log logn

) ·
d/2∏
j=1

(
1− 1

K(j+1)
d + 1

)

>
1

16
·

1
2

n√
πd/2
· 2−(ε/2)n

dO(log logn)
·
d/2∏
j=1

(
K(j+1)

d

1 + K(j+1)
d

)

=
1

32
·

n√
πd/2
· 2−(ε/2)n

dO(log logn)
· 1∏d/2

j=1

(
1 + d

K(j+1)

)
>

1

32
·

n√
πd/2
· 2−(ε/2)n

dO(log logn)
· 1

2(ε/3)d

> 2(1−ε)d,
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where the penultimate inequality holds by Lemma 4.2.

Lemma 3.4. Let ε > 0 and δ(ε) > 0 be the constant from Lemma 3.3. Let w be an arbitrary node,
`2 := (1/2− δ) · d and `3 := (1/2− δ/2) · d > `2. Suppose that there is a time step t2 and a subset
U ⊆ V satisfying the following three conditions:

• |I+
t2
∩N`2 | > n1−ε,

• It2 ∩N>`2 = ∅,

• |U ∩N>`3 | > n1−ε.

Assume further that ε is chosen small enough so that 3/2 − 2ε − log(e) > 0. Then in step t2 + d,
there exists an informed node in U with probability at least 1− 2n−3.

Proof. We define a relation between random walks starting randomly chosen vertices and the spread
of the information. The idea is that, if a random walk does not collide with another random walk
(or with itself) and it starts from an informed node, then the random walk follows a path by which
the message is spread. Note that the assumptions that the random walks start at random nodes is
for technical reasons only; it allows us to conveniently bound the number of collisions while there
will be still enough random walks that start from an uniformed node. We continue to define this
relation precisely.

Set x := n1/2−γ (γ > 0 is a sufficiently small constant) and choose x vertices Xt2
1 , X

t2
2 , . . . , X

t2
x

independently and uniformly at random from V . From each Xj with Xt2
j ∈ It2 we consider a walk

of maximum length log n that is defined recursively for t > t2 as follows. If Xt
j transmits to a node

v ∈ Ht ∩N>`2 then we set Xt+1
j := v. Otherwise the walk Xj terminates at step t. Our goal is to

prove that with high probability there is at least one walk Xj that reaches U before step t2 + d,
implying that U contains at least one informed node at step t2 + d.

Note that it follows that with probability 1− n−Ω(1), at least

x

2
· n

1−ε

n
=

1

2
n1/2−γ−ε

random walks start from I+
t2
∩N`2 .

Let us first consider the number of collisions between the random walks. Here, a collision occurs
if two different random walks visit the same node. Let us expose the x random walks one after
the other to estimate their collision probability. We say that a failure occurs if the random walk
collides with a previously exposed one. Note that in order to have more than C2 failures (C > 0 is a
constant to be specified later), there must be at least C different random walks which are involved
in a (not necessarily the same) collision. Therefore, we can upper bound the probability for having
more than C2 failures by (

n1/2−γ

C

)
·

(
(C − 1) · log n · n1/2−γ

n

)C
.

This bound holds since (i) we have
(
n1/2−γ

C

)
possibilities to choose the C random walks which should

be involved in a collision, (ii) a random walk involved in a collision has to collide with one of the at
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most (C − 1) log n · n1/2−γ nodes of the previous random walks and (iii) each random walks starts
from a randomly chosen vertex. Let us define the constant C := d2/γe and let A be the event that
there are at most C2 collisions among the n1/2−γ random walks. It follows that

Pr [¬A ] 6

(
n1/2−γ

d 2
γ e

)
·

(
(d 2
γ e − 1) · log n

n1/2+γ

)d 2
γ
e

6

(
e · n1/2−γ

d 2
γ e

)d 2
γ
e

·

(d 2
γ e − 1)

d 2
γ
e

log
d 2
γ
e
n

n
(1/2+γ)·d 2

γ
e


= O

(
n
d 2
γ
e·(−2γ) · log

d 2
γ
e
n
)

= O
(
n−3.5

)
.

Next we compute the probability that a particular walk Xj with starting node v := Xt2
j ∈ It2

reaches a node in U . Note that there is a subset U ′ ⊆ U with |U ′| > |U |/d such that for all u′ ∈ U ′,
dist(v, u′) is fixed (independent of u′). Let us set D := dist(v, u′). Let pv,u′ be the probability that
the walk Xt2

j reaches the node u′ at step t2 + D and let pv,U ′ be the probability that the walk

Xt2
j reaches any node in U ′ at step t2 +D. By disjointness of events, pv,U ′ =

∑
u′∈U ′ pv,u′ , and by

symmetry of the hypercube, pv,u′ is the same for each u′ ∈ U ′. Let us now lower bound pv,u′ for a
fixed u′ ∈ U ′. Certainly, the path Xj reaches u′ from v if it follows a shortest path from v to u′

that does not return to N6`2 . Note that since by assumption |It2 ∩N>`2 | = 0, a shortest path from
v to u′ will not contain any node in It2 (except the starting node v) provided that the path always
uses nodes in N>`2 .

Let us now ignore all other paths (which could possibly result in a premature termination of
Xj) and focus on the event that the path never visits a node in N6`2 (except for the starting node
v). Let ` be the number of ones in u′ and recall that D = dist(v, u′). Hence, v has exactly (1/2−δ)d
ones and u′ has at least `3 = (1/2− δ/2)d ones. It follows that any shortest path from v to u′ has
to change α ones into a zero, and has to change β = α + ` − (1/2 − δ)d zeros into a one. Since
` > (1/2− δ/2)d, it follows that β > α+ (1/2)δd. Clearly, the number of shortest paths between v
and u′ equals D!. Using Bertrand’s ballot theorem ([19, pages 299–300]), it follows that the number
of shortest paths between v and u′ for which only the starting vertex v lies in N6`2 equals

D! · β − α
β + α

> D! · (1/2)δd

d
= D! · (1/2)δ.

Hence if we were to ignore all other paths (which could result in the termination of Xj), then we
would get a lower bound on the probability that the path Xj reaches u′ of

pv,u′ > D! · (1/2)δ · d−D > d! · (1/2)δ · d−d,

since D 6 d. For sufficiently large integer n ∈ N, Stirling’s formula gives n! > 1
2

√
2πn · (n/e)n >

(n/e)n and thus

pv,u′ > (1/2)δ · e−d.

Consequently, ∑
u′∈U ′

pv,u′ > |U ′| · (1/2)δe−d >
|U |
d
· (1/2)δe−d > (1/2)δ

n1−ε

d
· e−d.
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Define now a random variable Z that counts the number of paths from I+
t2
∩N`2 to U , if we were

to ignore that paths could terminate due to a collision. Linearity of expectation yields

E [Z ] >
1

2
n1/2−ε−γ · (1/2)δ

n1−ε

d
· e−d =

δ

4d
· n3/2−2ε−log(e)−γ .

Let B := {Z > (1/2) ·E [Z ]}. Using a Chernoff bound, we obtain that

Pr [¬B ] 6 exp

(
−1

8
·E [Z ]

)
= exp (−Ω(poly(n))) ,

as 3/2 − 2ε − log(e) > 0 by assumption and γ > 0 can be made arbitrarily small. Note that the
event A ∧ B implies that at least one random walk starting from a node in I+

t2
∩ N`2 will reach a

node in U ′ ⊆ U before terminating. Taking a union bound, we obtain

Pr [A ∧ B ] > 1−Pr [¬A ]−Pr [¬B ] > 1− n−3 − exp (−Ω(poly(n))) > 1− 2n−3.

This completes the proof.

3.2.2 Analysis of Phase 2 and Phase 3

Lemma 3.5. With probability at least 1− n−2 all nodes are informed at the end of Phase 3.

Proof. The proof is similar to the proof of Lemma 2.6. Again, define t5 := 2ρ·(log n+(log log n)2) as
the end of Phase 3, t4 := 2·ρ log n as the beginning of Phase 3, and t3 := ρ log n > t2 as the beginning
of Phase 2 (we ignore the +1 at the beginning of Phases 2 and 3). We set σ := ρ(log log n)2.

First we concentrate on Phase 3 and divide the time interval [t4 + 1, t5] into k′ = (t5 − t4)/
√
σ

subintervals of length
√
σ. For any 0 6 i 6 k′ − 1 we define

τ̃i = [t5 −
√
σi, t5 −

√
σ · (i+ 1) + 1].

We assume w.l.o.g. that node v = 0d is uninformed at the end of Phase 3, and show that then there
are log3 n uninformed nodes in N√σ/2 at the beginning of Phase 3. For this, for 1 6 i 6

√
σ/2 we

define
U0(v) = Lv[τ̃0] and Ui(v) = ∪w∈Ui−1(v)Lw[τ̃i].

Then, according to Lemma 3.2, we have |U√σ/2(v)| > logC/2 n, if ρ is large enough. Now, all nodes
of U√σ/2(v) must be uninformed at the beginning of Phase 3, since otherwise v becomes informed
in the time-interval [t4 + 1, t5].

Now we consider the channels opened by the nodes of U√σ/2(v) in Phase 2. Recall that in this
phase, the nodes informed in Phase 1 perform pull with probability 1/ log n. The nodes which
become informed in this phase, perform pull with probability 1 in each step of this phase. For the
analysis of Phase 2, we divide the time interval [t3 + 1, t4] into k′′ = (t4− t3)/φ rounds of length φ,
where φ is a large constant. For any 0 6 i 6 k′′ − 1

τ̃ ′i = [t4 − φi, t4 − φ · (i+ 1) + 1].

For 0 6 i 6 ρ log n, let

ŨH−1(v) = U√σ/2(v)

ŨHi (v) = ∪w∈ŨHi−1(v)Lw[τ̃ ′i ] ∩Ht3

Ũ Ii (v) = ∪w∈ŨHi−1(v)Lw[τ̃ ′i ] ∩ It3 .
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Note that a node w̃i ∈ Ũ Ii (v) is connected to a node w̃−1 ∈ ŨH−1(v) by a path P = (w̃i, . . . , w̃0, w̃−1),
where w̃i−1, . . . , w̃0, w̃−1 ∈ Ht3 , and w̃j+1 ∈ Lw̃j [τ̃ ′j+1]. Assume that there is some i 6 ρ log n/φ for

which |Ũ Ii (v)| > ρ log2 n. Then, for every u ∈ Ũ Ii (v) there is a path (u, w̃i, . . . , w̃0, . . . , v), where all
nodes w̃i, . . . , w̃0, . . . , v ∈ Ht3 . If u performs pull when w̃i opens a channel to u, then v becomes
informed at the end of Phase 3. However, there are more than ρ log2 n such nodes u, and at least
one of them performs pull at the right time with probability

1−
(

1− 1

log n

)ρ log2 n

= 1− o(n−3),

if ρ is large enough.
If there is no i 6 ρ log n/φ for which |Ũ Ii (v)| > ρ log2 n, then we can apply Lemma 3.3, and

obtain that |ŨHρ logn(v)| > n1−ε′ , where ε′ can be made an arbitrarily small constant by choosing
ρ large enough. Since the hypercube is vertex-transitive, the same result holds for any v that is
uninformed at the end of Phase 3.

Our goal is now to apply Lemma 3.4. In that notation, we let U = ŨHρ logn(v). Using Lemma 3.2

and Lemma 3.3, it follows that |I+
t2
∩ N`2 | > n1−ε and It2 ∩ N>`2 = ∅, so that the first two

preconditions of Lemma 3.4 are satisfied. We now choose ε′ := min{ε/2, δ/2}, where ε > 0 and
δ = δ(ε) > 0 are the constants from Lemma 3.3. By Lemma 4.4, |U∩N>(1/2−δ/2)d| > 1

2n
1−ε′ > n1−ε,

so that the third precondition of Lemma 3.4 also holds. Applying now Lemma 3.4 we obtain that,
with probability 1 − n−3, at least one node in U = ŨHρ logn(v) becomes informed in Phase 1, and
thus v cannot be uninformed by the end of Phase 3.

4 Applied Results

In this section we first state some technical results (Section 4.1) that were used for the analysis
of the algorithm for hypercubes. In Section 4.2 we show some properties of random graphs that
were used for the analysis of the random graph algorithm. Finally, in Section 4.3 we state two tail
estimates which we applied in this paper.

4.1 Technical Claims

Lemma 4.1. There is a sufficiently large constant K, such that for any d ∈ N and for any
1 6 j 6 d/

√
K,

d+Kj

Kj
6

d− j
K2/3j

.

Proof. The claim is equivalent to

dK2/3 +K5/3j 6 Kd− jK,

and further rearranging gives

j 6 d · K −K
2/3

K5/3 +K
6

d√
K
,

if K is sufficiently large.
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Lemma 4.2. Let ε > 0 be any small constant. Then there is a sufficiently large constant K > 0,
so that it holds for any d ∈ N that

d/2∏
j=1

(
1 +

d

Kj

)
6 2(ε/3)d.

Proof. For sufficiently large K we have,

d/2∏
j=1

(
1 +

d

Kj

)
6

d/
√
K∏

j=1

(
1 +

d

Kj

)
·

d/2∏
j=d/

√
K+1

(
1 +

d√
Kd

)

6
d/
√
K∏

j=1

(
d+Kj

Kj

)
·
(

1 +
1√
K

)d/2−d/√K

6
d/
√
K∏

j=1

(
d− j
K2/3j

)
·
(

1 +
1√
K

)d/2−d/√K
(by Lemma 4.1)

6

(
d

d/
√
K

)
·K−(2/3)·(d/

√
K) ·

(
1 +

1√
K

)d/2
6
(√

Ke
)d/√K

·K−(2/3)·(d/
√
K) ·

(
1 +

1√
K

)d/2
6 2(1/100)·d.

Lemma 4.3. Let x1, x2, . . . , xn ∈ [0,M ] and X :=
∑n

i=1 xi. Then it holds for any λ > 0,

n∑
i=1

λ−xi 6
X

M
· λ−M +

(
n− X

M

)
· λ0.

Proof. As the function x 7→ λ−x is convex, we have that

λ−xi = λ−(xi/M)·M−(1−xi/M)·0 6
xi
M
· λ−M +

(
1− xi

M

)
· λ−0.

This implies

n∑
i=1

λ−xi 6
n∑
i=1

xi
M
· λ−M +

n∑
i=1

(
1− xi

M

)
· λ−0 =

X

M
· λ−M +

(
n− X

M

)
· λ0,

as needed.

Lemma 4.4. Let U ⊆ {0, 1}d be any subset of the hypercube. For any 0 6 i 6 d, let N>i := {v ∈
{0, 1}d : |v|1 > i}. If |U | > n(1−ε) for a constant ε > 0, then it follows that |U ∩ N>(1/2−ε)d+1| >
(1/2)n1−ε for sufficiently large d.
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Proof. We first upper bound the size N6(1/2−ε)d. In order to do that, we use the probabilistic
method. More specifically, let X1, . . . , Xd be independent 0/1-random variables with Pr [Xi = 1 ] =
Pr [Xi = 0 ] = 1/2. Let X :=

∑d
i=1Xi and µ := E [X ] = d/2. Then by the Hoeffding bound,∣∣N6(1/2−ε)d

∣∣ 6 2d ·Pr [X > E [X ]− εd ] 6 2d · e−
(εd)2

d 6
1

2
· 2(1−ε)d.

Hence,

|U ∩N>(1/2−ε)d+1| > |U | −
∣∣N6(1/2−ε)d

∣∣ > 1

2
n1−ε.

4.2 Random Graph Properties

In this section we show some combinatorial properties of random graphs. Some of these properties
(Lemmas 4.5 and 4.6) are also derived (in a modified form) in [8] for (almost) Ramanujan graphs.
Recall that we consider G = G(n, p) with (log2 n)/n 6 p 6 2o(

√
logn)/n.

Lemma 4.5. Let ε < 1 be a suitably chosen constant, and fix x ∈ [6n/d, n/2]. Let X =
{(X,Y )| Y ⊂ X ⊂ V, |X| = x, and |Y | = x/4}, and let N(u, S) := {v ∈ S | (u, v) ∈ E} for
some u ∈ V and S ⊆ V .

1. For x 6 n/40 let A be the event that for all (X,Y ) ∈ X there exists Y ′ ⊂ V \X such that 1)
|Y ′| = n/6, and 2) for all y′ ∈ Y ′ : |N(y′, Y )| > |Y | · d/(2n). Then

Pr [A ] > 1− εn.

2. For n/40 < x 6 n/2 let B be the event that for all (X,Y ) ∈ X there exists Y ′ ⊂ V \X such
that 1) |Y ′| = (n− x)/2, and 2) for all y′ ∈ Y ′ : |N(y′, Y )| > |Y | · d/(2n). Then

Pr [B ] > 1− εn.

Proof. We define y = |Y |. Now fix two subsets Y1 of size y and X1 of size x with Y1 ⊂ X1. For
1 6 i 6 n − x, let Zi = 1 if the ith node of V \ X1 has at most yd/(2n) neighbors in Y1 and 0
otherwise. Define Z = Z1 +Z2 · · ·+Zn−x. Every node of V \X1 is connected to a fixed node of Y1

with probability p, independently form all other nodes. With d = pn we get for 1 6 i 6 n− x

Pr [Zi = 1 ] 6
y∑

i=y−yd/(2n)

(y
i

)
· (1− p)i · py−i

6

(
1− p

1− d/(2n)

)y(1−d/(2n))

·
(

p

d/(2n)

)yd/2n
6

(
1− d

2n

)y(1−d/(2n))

· 2yd/2n 6

(
1

e

)y· d
2n
·(1−d/(2n))

· 2yd/2n

6

(
2

e · (1− o(1))

)yd/(2n)

6

(
2 · (1 + o(1))

e

)yd/(2n)

Now we consider two cases, depending on x.
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Case 1: x 6 n/40. In this case we have

Pr [Zi = 1 ] 6

(
2 · (1 + o(1))

e

)3

< 1/2.

This gives us E[Z] 6 (n− x)/2. Now we can use Chernoff bounds (Equation (12) in [16]) and
show that with x 6 n/40 we get

Pr [Z > 5n/6− x ] 6

(
(n− x)/2

5n/6− x

)5n/6−x
·
(

(n− x)/2

n− x− (5n/6− x)

)n/6
6

(
(n− n/40)/2

5n/6− n/40

)5n/6−n/40

·
(

(n)/2

n− (5n/6)

)n/6
6

(
117

194

)5n/6−n/40

· 3n/6 6

(
4

5

)n

Now we can conclude that, with probability 1− (4/5)−n we have at least n/6 nodes in V \X with
yd/(2n) (or more) neighbors in Y1.

There are
(
n
x

)
different ways to choose the nodes for the set X1. Furthermore, there are

(
x
x/4

)
possible ways to choose Y1 as subsets of size x/4 from the nodes of X. Thus, for every subset Y of
size x/4 of an arbitrary set X there exists a subset Y ′ ⊂ V \X of size n/6 such that each node of
Y ′ has at least yd/2n neighbors in Y with probability at least

1−
(
n

x

)
·
(
x

x/4

)
·
(

4

5

)n
> 1−

(n · e
x

)x
·
(
x · e
x/4

)x/4
·
(

4

5

)n
> 1−

(
n · e
n/40

)n/40

·
(
n/40 · e
n/160

)n/160

·
(

4

5

)n
= 1− (40e)n/40 · (40e)n/160 ·

(
4

5

)n
6 1− εn.

Case 2: n/40 6 |X| 6 n/2. In this case we have

Pr [Zi = 1 ] 6

(
2

e · (1− o(1))

)yd/(2n)

6

(
2 · (1 + o(1))

e

)yd/(2n)

6

(
2 · (1 + o(1))

e

)d/(320)

6
1

n2

and

Pr [Z > (n− x)/2 ] 6

(
n− x

(n− x)/2

)
·
(

1

n2

)(n−x)/2

6

(
2e

n2

)(n−x)/2

.

With the same probability there are at least (n − |X|)/2 nodes in V \ X with yd/(2n) or fewer
neighbors in Y1. Again, for every subset Y of size x/4 of an arbitrary set X there exists a subset
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Y ′ ⊂ V \X of size n/6 such that each node of Y ′ has at least yd/2n neighbors in Y with probability
at least

1−
(
n

x

)
·
(
x

x/4

)
·
(

2e

n2

)(n−x)/2

> 1− 2n · (4e)x/4 ·
(

2e

n2

)(n−x)/2

> 1− 2n · (4e)n/8 ·
(

2e

n2

)n/4
> 1− εn

Next, we consider the connectivity between two very large sets.

Lemma 4.6. Let ε < 1 be a suitably chosen constant, and let

X = {(X,Y )| Y ⊂ X ⊂ V, |X| = n/2, and |Y | = n/5}.

Let C be the event that for all (X,Y ) ∈ X there exists Y ′ ⊂ V \ X such that 1) |Y ′| = n/2 −
n log logn/ log n, and 2) for all y′ ∈ Y ′ : |N(y′, Y )| > d/10. Then

Pr [ C ] > 1− εn.

Proof. The proof is similar to the proof of Lemma 4.5. Let X1 and Y1 ⊆ X1 be two sets of size n/2
and n/5, respectively. For 1 6 i 6 n − x, let Zi = 1 if the ith node of V \ X1 has at most d/10
neighbors in Y1 and 0 otherwise. Define Z = Z1 + Z2 · · ·+ Zn−x. Similar to Lemma 4.5 we get for
1 6 i 6 n− x

Pr [Zi = 1 ] 6

(
2(1 + o(1))

e

)d/10

.

Thus, there are more than n log logn/ log n nodes in V \X1 with fewer than d/10 neighbors in Y1

with probability

n/2∑
i=n log logn

logn

(
n/2

i

)
p′d/10(1− p′)n/2−i

6

(
p′

log log n/ log n

)n log logn
logn

(
1− p′

1− log log n/ log n

)n
2

(
1− log logn

logn

)
,

which equals e−Ω(n log logn). Now there are
(

n
n/2

)
different subdivisions of V into two subsets of size

n/2 and there are
(
n/2
n/5

)
different subsets of size n/5 in a subset of size n/2. Thus, the statement

of the lemma holds with probability

1−
(

n

n/2

)
·
(
n/2

n/5

)
· e−Ω(n log logn)

> 1− (2e)n/2 ·
(

5e

2

)n/5
e−Ω(n log logn) > 1− e−Ω(n log logn).
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The next lemma deals with the local neighborhood-structure around a node in a G(n, p) graph.

Lemma 4.7. Let v ∈ V be an arbitrary node in G(n, p) and let T (v) be the graph induced by the
nodes at distance at most ρ log log n from v. Then, with probability 1 − o(n−3), the graph T (v) is
either a tree, or there are at most 4 edges which violate the tree property in T (v).

Proof. In the following we denote v as the root of T (v). The nodes at distance ` from v are called
nodes on level ` in the following. Then v is on level 0. For w,w′ ∈ T (v), w is called ancestor of
node w′ iff dist(v, w) < dist(v, w′). For 6 i 6 ρ log logn, Ni will be the set of nodes on level i.

We can assume that G(n, p) is constructed by the following procedure. In the first step v = v0
1

draws an edge to every other node with probability p. This gives our level 1 nodesN1 = {v1
1, v

1
2, . . . }.

In the second step the edges between v1
1 and V \ {N0, N1} are chosen in the same way. Then we

choose the edges between v1
2 and V \ {N0, N1}, v1

3 and V \ {N0, N1}, . . ., until all nodes in N1

are considered. The nodes that are connected to nodes in N1 in this way are the nodes of N2 =
v2

1, v
2
2, . . .. We do the same for the nodes nodes in N2 (considering only nodes in V \ {N0, N1, N2})

, which gives us the set N3 = v3
1, v

3
2, . . ., and so on. For 1 6 i 6 ρ log log n− 1 we use the nodes in

Ni to create Ni+1 = vi+1
1 , vi+1

2 , . . .. For vij ∈ Ni we consider only the nodes in V \ {N0, N1, . . . Ni}.
So far we created a tree with some additional edges. Two different nodes on level j can be

connected to the same node on level j+1. So far we did not evaluate all events for the nodes in the
tree, since a node on level j can also be connected to other nodes on the same level. We evaluate
these events at the end of the process. In the following we call these edges cycle edges and our goal
is to upper bound the number of cycle edges in the tree.

First we calculate the maximum number of nodes of T (v). Recall that p 6 2o(
√

logn)/n. We
know that with probability 1− o(n−5) the maximum degree of G is 2 · pn [4]. Hence, w.h.p. T (v)
has at most

(2 · pn)ρ log logn 6 (2 · 2o(
√

logn))ρ log logn 6 logO(1) n.

many nodes. Hence, the probability that there are more than 4 cycle edges is at most(
(logO(1) n)2

5

)
· p5 6 (log n)O(1) ·

(
2o(
√

logn)

n

)5

6
1

n4

4.3 Probabilistic and Combinatorial Tools

Lemma 4.8 (Method of Bounded Independent Differences, [18]). Let Xi : Ωi → R, 1 6 i 6 n, be
mutually independent random variables. Let f :

∏n
i=1 Ωi → R satisfy the Lipschitz condition

|f(x)− f(x′)| 6 ci

where x and x′ differ only in the i-th coordinate, 1 6 i 6 n. Let Y be the random variable
f(X1, . . . , Xn). Then for any t > 0,

Pr [Y > E [Y ] + t ] 6 exp

(
−2t2

/ n∑
i=1

c2
i

)
,
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and

Pr [Y < E [Y ]− t ] 6 exp

(
−2t2

/ n∑
i=1

c2
i

)
,

We need the following standard Chernoff bound.

Lemma 4.9. Consider some fixed 0 < δ < 1. Suppose that X1, . . . , Xn are independent geometric
random variables on N with Pr [Xi = k ] = (1 − δ)k−1δ for every k ∈ N. Let X =

∑n
i=1Xi,

µ = E [X ]. Then it holds for all ε > 0 that

Pr [X > (1 + ε)n/δ ] 6 e−ε
2n/2(1+ε)

5 Conclusions

In this paper we consider rumor spreading on random graphs and hypercubes in the quasiran-
dom phone call model. We show two results. For random graphs we present an address-oblivious
algorithm with runtime O(log n) that uses at most O(n log logn) message transmissions. For hy-
percubes of dimension log n we present an address-oblivious algorithm with runtime O(log n) that
uses at most O(n(log log n)2) message transmissions. Together with a result of [9], our results imply
that for random graphs the communication complexity of the quasi random phone call model is
significantly smaller than that of the standard phone call model.

Open problems include a generalisation of our results for general random graphs where the
nodes can have very different degrees. Also, it might be interesting to show results for additional
deterministic graphs like star graphs or grids. And, of course, another open problem is to show
(this time a correct proof) of the lower bound of that is stated in [3].

Acknowledgements. We would like to thank the reviewers of this journal version for their
helpful comments.
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[1] P. Berenbrink, R. Elsässer, T. Friedetzky. Efficient Randomised Broadcasting in Random Regular
Networks with Applications in Peer-to-Peer Systems. In Proc. of PODC’08, pages 155–164, 2008.
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