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”Lessons must be learned” - but are they ?
Les Hatton and Anne Rutkowski

“Those who cannot  remember the  past are condemned to repeat it.”, George Santayana, 1863-1952

In spite of all the software systems we have seen both through these columns and also through our 
professional experience, periodically, something happens in the world of software engineering 
which really takes us by surprise.  The last time we were placed in this position was following the 
revelation of software “cheats”, algorithms deliberately introduced into a system with the specific 
purpose of misleading the general public and certification agencies on the nature of its emissions, 
(HvG (2016)).  This time, we feel we must make some comment over the equally startling 
revelations emerging over the interaction between software, management and requirements in the 
sad case of the two Boeing 737 MAX crashes.  We stress that it is early days in the diagnosis of 
what went wrong; the appropriate agencies will report in detail at some stage.  However, there is 
understandably an enormous amount of discussion in the media as the general public gradually 
become aware, through columns like the Impact series, of just how much software there is in 
commercial devices.  We won’t simply regurgitate other speculations but rather we will compare 
some disturbing patterns in these two crashes with past incidents in avionic and in other areas where
software is rife and is implicated in their failure.  What perhaps is most shocking is that the Boeing 
737 has a formidable record for safety in the 50 years since its first flight and an important question 
for the world of avionics is to ask is whether software is really capable of destabilising such an 
enviable record?

The forensic process of understanding something as traumatic as an aircraft crash is both 
thorough and time-consuming and investigators will go to extraordinary lengths to determine the 
nature of the crash.  At some stage, we will know precisely what went wrong.  As software 
engineering professionals, we are however more concerned with how resulting engineering lessons 
from failed systems are integrated into the software profession.  Historically, we have always 
considered safety-critical software to be necessarily deserving of higher standards at all phases of 
development from the extraction of its requirements, to its careful specification, to its 
implementation and a rigorous and as exhaustive as possible regime of testing as can be achieved in
the time and budget.  At the other end of the spectrum of software development, we have the rapid 
growth of methodologies intended to deliver something of value with as light a development 
footprint as possible to reduce costs , represented largely by agile technologies.  We did not expect 
there to be symptoms of these two polar opposites of development merging.  It is hard however to 
deny that this is happening in the rush to provide increasing amounts of software for example, in 
autonomous vehicles.  We have previously written that conventional software systems typically 
grow at 20% per annum with safety-related systems somewhat slower at around 10%, (HSvG 
(2017)), but are we now seeing efforts which perhaps unwittingly attempt to close this gap ?What is
really necessary in safety-critical engineering is to preserve vision and to have a detailed knowledge
of well-known failure modes so they can be avoided.  This is what we mean by good practice.  Even
a simple and apparently innocuous system can if used in a chain involving criticality, lead to life-
threatening circumstances.  For example, if a hospital information [system fails to contact a patient 
for a follow-up cancer check, this can lead to a potential delay in life-preserving treatment. As we 
have said, it is early days for us to comment on the Boeing 737MAX incidents but there is already 
some evidence that we have seen similar kinds of failure before, and similarity is an important clue 
in forensic engineering

First of all, for a safety-critical software system to rely on interpreting the input safely from a single
external sensor would be considered highly questionable at best, yet this appears to have been done 
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with the Boeing 737MAX MCAS system, (NIF (2019)), with a single “AoA” vane (Angle of 
Attack) which measures the plane’s angle between the airflow and the wing.  Single sensor reliance 
in software has long been a documented problem in the case of the pitot tube or air-speed indicator. 
Icing of pitot tubes followed by erratic behaviour has been encountered before in aircraft incidents, 
to the extent that following a number of occurrences between 2008 and 2009 and culminating in the
June 2009 Airbus 330 crash in the Atlantic, Airbus issued three Mandatory Service Bulletins 
requiring that all A330 and A340 aircraft be fitted with three pitot tubes, (AF447 (2019)), therefore 
satisfying one of the most fundamental principles of resilient engineering – redundancy.  Indeed this
can be carried over into the internal design of the software itself, (Hat (1997)).  Even modern fire 
alarms have redundancy, combining inputs from both visual and chemical sensors to reduce the 
frequency of false alarms.

There are actually two AoA vanes on a Boeing 737MAX but it is reported that the software was 
designed to take a reading from only one of them, (NIF (2019)).  Unfortunately, software engineers 
tend not to do very well dealing with absurd input values and it has been a well-known source of 
error in software systems for decades, (Whit (2002)).  Worse still, adding an additional AoA vane 
with software to warn the pilots if there was a disagreement was apparently an optional extra, 
requiring further payment, (NIF (2019)).  We find this an unusual practice to say the least for a 
safety-critical system whereby the customer has to pay extra to buy redundancy, a feature which has
been considered good and some would argue indispensable practice in safety-critical software 
systems for 25 years, (see Mell (1994) for a comprehensive discussion of the contributory role of 
software in aircraft crashes).  We should note that apparently, both of the crashed 737MAXes were 
delivered without this option, a decision that has now been reversed with the March update of the 
737MAX software (WSJ 2019b).

Interpreting external inputs safely with software is a recurrent theme in safety-critical system 
failures, even with multiple sensors.  This was for example a factor in the first Tesla fatality where 
the software failed to distinguish a large white 18-wheel truck and trailer crossing the highway 
against a bright spring sky in May 2016, (Tesl (2016)). 

There is another thread in the 737MAX crashes we would like to address.  How does software in a 
safety-critical system convey both unequivocally and quickly to the operator why it is doing what it 
is doing?  Justification of behaviour to its operator is a sine qua non in a safety-critical system.  We 
are accustomed to arguments about software being “more reliable” than human operators, but there 
are enough incidents involving unexpected software behaviour to justify much more attention to the
information flow between software and operator.  In 1994, an Airbus A340 displayed a gnomic 
“Please Wait” message on its Flight Management System during an emergency landing at London’s 
Heathrow airport, (AAIB (1994));  a test pilot described the operating manuals of the MD-11 as 
having been written “by creatures from another planet” (Drur (1997)), (it is reported that the pilots 
of the preceding ill-fated Lion Air 737MAX were consulting the aircraft manuals shortly before 
they crashed, Guar (2019)); in the 1994 Nagoya Airbus crash, the pilots were fighting the TOGA 
(Take Off Go Around) software which they had inadvertently engaged – the plane was trying to go 
round whilst the pilots were trying to land, (AvSa (1994)).  If we find it so difficult to include the 
human operator in software-based decisions currently, what then is the future of AI based systems 
where such justification is much more difficult to realise?

Apparently, a design consideration has been to prevent information overload in the cockpit. Indeed, 
“One senior Boeing official said the company had decided against disclosing details about the 
system that it felt would inundate the average pilot with too much information—and significantly 
more technical data—than he or she needed or could realistically digest.” [WSJ 2019b],  
Information overload is a known problem in our IT dominated world. As we have learned, 



information overload is not about the amount of information but about the relevance [RutkS 2019]. 
The next statement from the same WSJ article is more shocking: American Airlines pilots did not 
experience the problems that Lion Air and Ethiopian Air experienced because “American paid for 
an additional cockpit warning light that would have alerted them to the problem, while Lion Air and
most other airlines didn’t.” Why indeed was this an optional extra ? 

Going from information underload to information overload within seconds is also a known risk 
[RutkS 2019]. It is  for example, experienced in robotic surgery when a surgeon has to grab control 
from the robot in case of complications. Conversion from robotic surgery to laparotomy (open 
surgery) occurs in about 4 to 7% percent of the operations [reference to be provided by Anne]. 
Some wrongly argue that training for surgical conversion can be minimized since it is expected to 
happen less and less.  This approach seems  similar to the one Boeing took: “The company had 
promised Southwest Airlines Co. , the plane’s biggest customer, to keep pilot training to a minimum
so the new jet could seamlessly slot into the carrier’s fleet” [WSJ2019b]. However, as the WSJ 
noted; “amid the chaos of an aircraft lurching into a steep dive with emergency warnings blaring, it 
is unrealistic to expect pilots to recognize what is happening and respond almost instantaneously”. 
Although surgeons should receive additional training for laparotomy, we must remember that a 
surgical team is typically available to respond to such a crisis; in other words there is fallback 
position, another essential feature of a safety-critical system.  This is not always the case in an 
aircraft in trouble since an emergency team cannot be brought into the cockpit and even connecting 
experts on the ground via an audio or data conection with the cockpit may not be possible. 

A further vital link in the chain of safety critical systems is their certification.  In certification, an 
independent body with great experience in assessing such systems is tasked with assessing their 
safety or otherwise.  These bodies include the FAA for aircraft registered in the USA and EASA for 
those registered in Europe. The whole idea of independence is that it is free of the usual commercial
pressures and timelines so it can assess the system and documentation as presented as sufficiently 
safe for its intended use.   However, the FAA delegated some certification tasks for the 737MAX to 
Boeing itself, (WSJ (2019)).

Finally, what do you do when a safety-critical software system is deemed unsafe or is involved in a 
fatal incident?  The software must of course be patched.  We as software engineers are used to 
patches.  Indeed in the world of truly “agile” development, they are a never-ending part of not only 
the development cycle but the active use cycle also.  Mobile phone apps are endlessly patching 
themselves, and the same is true for all commercially used systems, whether they be browsers, word
processors or whatever.  Frequent patching like this is highly beneficial to the user (who sees a more
reliable and perhaps more secure product), and also to the developer, because it allows them to 
overlap development with active use giving quicker time to market.  However is it really 
appropriate for safety-critical systems and under what conditions ?  In short, we probably don’t 
know.  Unlike normal software patch delivery times which might be measured even in hours, 
changing safety-critical software would normally expect to re-engage the certification cycle, 
particularly after a fatal accident.  It is most decidedly not a quick fix.  In the case of the 737MAX, 
Boeing are however promising in an open letter from Boeing’s chairman Dennis Mullenberg, “Soon
we'll release a software update and related pilot training for the 737 MAX that will address 
concerns discovered in the aftermath of the Lion Air Flight 610 accident”, (Boe (2019)).  No doubt 
the fact that its fleet is grounded is concentrating their minds appropriately, but this seems unusually
quick for avionics software.  Isn’t this at risk of breaking another golden rule of software 
engineering ?  Even in the VW emissions scandal, disabling the software “cheat” appears to have 
destabilised at least some automobiles, (Mass (2017), just as we predicted in HvG (2016)).  
Unintended side-effect is an inevitable feature when attempting to update complex software 
systems.  This is a lesson we seem incapable of learning.



Having said that, on the fly fixing of potentially critical systems has already become a feature of 
autonomous software in motor vehicles such as Tesla, where updates are delivered on a regular 
basis over the net.  We do not know how updates to vehicle software are certified, who by and under
what conditions and invite somebody from the motor industry to tell us in one of these columns.  
When does a patch reduce the risk of re-occurrence of failure ?  How was it certified or was this 
bypassed ?  Does rapid incremental patching make things better or worse ?  Will we as users be told
these important details or are we to be blinded by technology or worst of all, told that all will be 
well, AI will save us all ?

It is really important for the software engineering community to appreciate how we are to live with 
the benefits and potential risks of incremental and increasingly frequent updating in safety critical 
software systems, just as we have had to with commercial non safety-related systems.  Yes, we are 
indeed wallowing in software but blindly trusting a system to keep us safe is not the way forward.  
We invite anybody working at the coal face in such systems to tell us how they balance the polar 
extremes of quick response for commercial opportunity against the careful and hard won lessons 
needed to build systems on which peoples lives depend, and which we so easily seem to forget.
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