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SHARP ESTIMATES FOR OSCILLATORY INTEGRAL
OPERATORS VIA POLYNOMIAL PARTITIONING

LARRY GUTH, JONATHAN HICKMAN, AND MARINA ILIOPOULOU

ABSTRACT. The sharp range of LP-estimates for the class of Hérmander-type
oscillatory integral operators is established in all dimensions under a positive-
definite assumption on the phase. This is achieved by generalising a recent
approach of the first author for studying the Fourier extension operator, which
utilises polynomial partitioning arguments.

1. INTRODUCTION

1.1. Statement of results. Let B¢ denote the unit ball in R¢ and ¥: B"~! — R"
be a smootH] parametrisation of a hypersurface. Further let a C*(R™1) be non-
negative and supported in B"~! and suppose ¥ has of non-vanishing Gaussian
curvature on the support supp a of a. Analytically, this means that X satisfies the
following conditions:

El) rank 0,3 (w) = n — 1 for all w e B 1.
E2) Defining the Gauss map G: B"~ ! — S"~1 by G(w) := \gZEZ;\ where

n—1
Go(w) := /\ O, 2 (w),

the curvature condition
det 02,,(3(w), G(wo))|w=wy # 0

holds for all wg € supp a.

Here the wedge product of n — 1 vectors in R™ is identified with a vector in the
usual manner.

A central problem in harmonic analysis is to understand the Lebesgue space
mapping properties of the extension operator F associated to such a parametrised
hypersurface. This operator is defined by the formula

(1.1) Ef(z) := /Bn4 2K E@D g (W) f (w) dw

for all integrable f: B"~! — C. Thus, E is an oscillatory integral operator with
associated phase function

(1.2) o(z;w) =z, L(w)).

1n view of the methods of the present article it is convenient to work in the C® category,
but the forthcoming definitions and questions certainly make sense at lower levels of regularity
(in particular, in the C? class).
1
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Observe that the parametrisation ¥ can be recovered from the phase by differenti-
ation; that is,

Oz (z;w) = X(w).
Typically, one is interested in proving local estimates for ([II]) of the form

(13) HEfHLP(B(O,)\)) <e A® HfHLp(Bn—l);

here the left-hand norm has been localised to a ball of radius A > 1 and the right-
hand constant is allowed some weak dependence on A. In particular, the Fourier
restriction conjecture asserts that (3] should hold for any £ > 0 in the range
p=2n/(n—1).

In this article the natural variable coefficient generalisations of such extension
operators (1)) and estimates (IL3]) are studied. In particular, here more general os-
cillatory integral operators are considered whose associated phase function ¢(x;w)
shares the property of the extension operator that for each « the map w — 0,¢(x; w)
parametrises a hypersurface of non-vanishing Gaussian curvature. Crucially, how-
ever, the choice of hypersurface is now allowed to smoothly vary with x.

To formalise this discussion, let n > 2, a € C%(R" x R""1) be non-negative
and supported in B” x B"~! and ¢: B" x B"~! — R be a smooth function which
satisfies the following conditions:

H1) rank 02, ¢(z;w) = n — 1 for all (z;w) € B x B L.

H2) Defining the map G: B" x B! — §"~! by G(n;w) := % where

n—1
Go(iE;W) = /\ (%,J.(?mgb(x;w),

j=1
the curvature condition
det 02,,(02p(w; W), G(2; w0 ))lw=wo # 0
holds for all (x;wg) € supp a.

Clearly H1) and H2) agree with E1) and E2) when one restricts to phases of the
form (IZ), and this definition therefore leads to a generalisation of the operator E
introduced above.

Suppose ¢ satisfies H1) and H2), for any A > 1 let a*(z;w) = a(z/\;w),
&N(z;w) := A\é(x/\;w) and define the operator T by

(1.4) T f(z) == / e%iw(w;“)a’\(x;w)f(w) dw
B’nfl

for all integrable f: B"~! — C. In this case T is said to be a Hérmander-type
operator. Note that the spatial localisation featured in (I3)) is now built into the
operator.

Theorem 1.1 (Stein [I8], Bourgain-Guth [8]). Suppose T* is a Hormander-type
operator. For all € > 0 the estimate

(1.5) IT* fl Loy Se A\ Lr(pn-1

2Given a (possibly empty) list of objects L, for real numbers Ap, By, > 0 depending on some
Lebesgue exponent p the notation A, <7 Bp or By X1 Ap signifies that A, < CB) for some
constant C' = Cf, ,, p = 0 depending on the objects in the list, n and p. In addition, Ay ~, By is
used to signify that A, < Bp and Ap 21 Bp.
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holds uniformly for A = 1 whenever p satisfies

1
(1.6) p=2. ”+1 if n is odd;
" —
2
p>2~nJr if n is even.
n

The odd dimensional case is due to Stein [18], who in fact showed that the above
estimates are valid for p > 2(n+1)/(n—1) in all dimensions without the A*-loss. The
strengthened results in even dimensions were established much later by Bourgain
and the first author [S]E A detailed history of this problem is provided later in the
introduction. It is remarked that Theorem [[.I]is sharp in the sense that there are
examples of Hérmander-type operators for which (L) fails whenever p does not
satisfy (LG).

The majority of this work concerns the case where the phase satisfies a strength-
ened version of H2), namely:

H2%) For all (z;wp) € supp a the matrix
02020 (w;w), G (3 w0))lw=w

is positive-definite.

If ¢ satisfies H1) and H2%), then T* is said to be a Hormander-type operator with
positive-definite phase. Geometrically, this condition implies that the principal cur-
vatures of the hypersurface parametrised by w — 0,¢(x;w) are everywhere positive.
A hypersurface satisfying this condition is said to be positively-curved.

Lee [I7] observed that for positive-definite phases one may prove estimates be-
yond the range of Theorem [LT1 The main result of this article provides sharp
estimates in this setting.

Theorem 1.2. Suppose T is a Hérmander-type operator with positive-definite
phase. For all € > 0 the estimate

(1.7) 1T fll Lowny Se A fLo(mn-1)

holds for all X\ = 1 whenever p satisfies

3 1

(1.8) p>2. 32:}) if n is odd;
3n+2

p>2-3zt2 if n is even.

This result settles a recent conjecture of the first author [I3] and improves upon
the previous best results of Lee [17] and Bourgain and the first author [8]. It is sharp
in the sense that there are examples of Hormander-type operators with positive-
definite phase for which (7)) fails whenever p does not satisfy (IL8]). Furthermore,
away from the endpoint values one may apply e-removal techniques to establish
([T1) without the A°-loss in the constant (see §12 below).

3Strictly speaking, in [8] weaker L®® — L? bounds are proven, but the methods can be used to
establish the LP — LP strengthening.
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1.2. Historical remarks. The problem of determining L estimates for Hérmander-
type operators has an interesting history. Hormander [16] conjectured that (L)
should hold for p > 2n/(n — 1) (without e-loss) under the hypotheses H1) and H2)
only and proved that this is indeed the case when n = 2. This numerology agrees
with the Fourier restriction conjecture and also the Bochner—Riesz multiplier prob-
lem, both of which would follow as simple consequences of Hormander’s conjecture
Stein [18] provided further evidence for this conjecture by proving the estimate

IT* flony S [flezn-1y  forallp=>2(n+1)/(n—1).

It was therefore somewhat surprising when Bourgain [5] showed that, in general,
Stein’s theorem is sharp. In particular, he demonstrated that for every odd dimen-
sion n > 3 there exists a Hormander-type operator for which

(1.9) IT* £l ogny S £ Leo(n-1)

fails to hold uniformly in A > 1 whenever p < 2(n + 1)/(n — 1). Aside from dis-
proving Hérmander’s original conjecture, Bourgain’s work hinted at an interesting
divergence between the odd and even-dimensional theory. Moreover, it was demon-
strated in [7] that in even dimensions the L* — LP estimates always hold in a wider
range than that of Stein’s theorem. Thus, in general, the even-dimensional case
is better behaved than the odd-dimensional case. This was further highlighted by
Bourgain and the first author [§] who showed that in even dimensions (9] holds
for p > 2(n+2)/n. Furthermore, in [§] and also the work of Wisewell [25], examples
were found in even dimensions which show that (L9) can fail for p < 2(n + 2)/n.
Thus, Hérmander’s original conjecture is valid only when n = 2.

At this point it is useful to describe the nature of the counter-examples of [5],
[25] and [8] and provide some explanation for the difference between the odd and
even-dimensional cases. Roughly speaking, in the odd-dimensional case T* and f
can be chosen so that [T f| is concentrated in the 1-neighbourhood of a low degree
algebraic variety Z of dimension (n + 1)/2. This is the smallest possible dimension
for which such concentration is possible. In the even-dimensional case (n + 1)/2 is
no longer an integer, and it transpires that |7 f| can only be concentrated into the
1-neighbourhood of a variety of relatively large dimension (n + 2)/2. These obser-
vations are related to Kakeya compression phenomena for sets of space curves (see
[25] for a thorough introduction to this topic). They also hint at some underlying
algebraic structure in the problem.

So far the discussion has focused on operators satisfying the original H1) and
H2) hypotheses of Hormander. Lee [I7] observed that under the positive-definite
hypothesis H21) one can establish improvements over the range given by Stein’s
theorem in all dimensions. In particular, he showed that for any Hérmander-type
operator with positive-definite phase (7)) holds for p > 2(n + 2)/2. This coincides
with Theorem when n = 3, but is weaker in higher dimensions. Wisewell [25]
produced examples (again relying on Kakeya compression phenomena) to show that
this result is sharp when n = 3 (see also [§]).

Comparing the sharp examples under the H2) and H2%) hypotheses highlights
another important consideration in addition to Kakeya compression phenomena.
This feature relates to how the mass of |T* f| can be distributed in neighbourhoods

4The connection with Bochner—Riesz multipliers is made via the classical reduction of Carleson—
Sjslin 9 [16).
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n odd n even

1 2

H2) 2'n+ 2'n+
n—1 n

3n+1 9 3n + 2
3n—3 3n —2

H2+)

FIGURE 1. Endpoint values for p for Héormander-type operators
under various hypotheses.

of low degree varieties. It accounts for the improved behaviour demonstrated by
operators with positive-definite phase and is described in detail in §2

Given the results of this article, the sharp range of estimates for this problem
are now understood under either the H2) or H2") hypothesis. The corresponding
endpoint values for p are concisely tabulated in Figure [I1

It is remarked that it is possible to prove estimates beyond the range of Theorem
under additional assumptions on the phase function. For example, the first
author [I4] has shown that for n = 3 and all ¢ > 0 the extension operator F
associated to the paraboloid satisfies

IEflzrBo.n) Se A flrr2)

for all p > 13/4. Furthermore, the aforementioned restriction conjecture asserts
that the above inequality should be valid in the wider range p > 3.

1.3. Multilinear estimates. The proof of Theorem follows the strategy in-
troduced by the first author in [I3]. The argument relies on establishing (weakened
versions of) multilinear estimates for Hormander-type operators. The multilinear
approach was introduced in the late 1990s to study oscillatory integral operators
(although it was arguably already implicit in many earlier foundational works in
the subject [12} @]) and has proven an invaluable tool. To describe the k-linear
setup one first requires the notion of transversality.

Definition 1.3. Let 1 < k < nand T* = (T}, ..., T}) be a k-tuple of Hormander-
type operators, where Tj)‘ has associated phase (b‘;\, amplitude a‘;\ and generalised
Gauss map G, for 1 < j < k. Then T? is said to be v-transverse for some 0 < v < 1
if
k
‘/\Gj(:zr;wj)’ >v for all (z;w;) esuppa; for 1 <j <k
j=1

The following conjecture is a natural generalisation of an existent conjecture of
Bennett [3] for Fourier extension operators.

Conjecture 1.4 (k-linear Hormander conjecture). Let 1 < k < n and suppose
(T, ... 7T,;\) 18 a v-transverse k-tuple of Hérmander-type operators which all share
the same positive-definite phase function ¢*. For all p = p(k,n) := 2(n + k)/(n +
k—2) and € > 0 the estimate

k k
(1'10) H H |Tj)\fj|1/kHLp(Rn) Sevd A 1_[ Hf] H1L/2k(Bn71)

j=1 j=1
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holds for all A = 1.

Techniques have been developed by Tao—Vargas—Vega [24] and Bourgain and the
first author [8] to convert k-linear into linear inequalities. There are a number of
features of the multilinear theory which suggest that it is more approachable than
directly tackling the linear estimates. For instance, here the desired inequalities are
L2-based, giving greater scope for orthogonality methods.

Some instances of the conjecture are known.

e The k = 1 case corresponds to Stein’s theorem [I8] (which holds without
the positive-definite hypothesis).

e The k = 2 case was established by Lee [I7], who then used the method
of Tao—Vargas—Vega [24] to derive estimates for the linear problem. This
approach yields Theorem[[.2in the n = 3 case, but produces strictly weaker
results in higher dimensions (see the discussion in §T.2I).

e The k = n case was established by Bennett—Carbery—Tao [4] who also gave
partial results at all levels of multilinearity (see also [3] for further discussion
of this work). Bourgain and the first author [8] later developed a method
to deduce improved linear estimates from these multilinear inequalities.

The precise statement of the Bennett—Carbery—Tao theorem [4] is as follows.

Theorem 1.5 (Bennett—Carbery-Tao [4]). Let 2 < k < n and suppose that
(T, ... ,T,?) is a v-transverse k-tuple of Hormander-type operators. For all p =
2k/(k —1) and e > 0 the estimate

k k
H H |Tj/\fj|1/k HLP(R") S57(¢j)5:1 PN n HfjﬂlLék(B"*l)
Jj=1 j=1

holds for all A = 1.

The positive-definite assumption does not appear in the hypotheses of Theorem
IHA Combining Theorem [[F with the method of [8] leads to the sharp estimates
for Héormander-type operators stated in Theorem[[LIl For completeness, the details
of this argument are given in IT]

1.4. k-broad estimates. In [I3] it was observed that, in the context of Fourier
extension operators, the method of [8] does not require the full power of the k-linear
theory, but rather can take as its input inequalities of a weaker form than (II0)
known as k-broad estimates. By applying polynomial partitioning techniques, the
first author [I3] was further able to prove the sharp range of k-broad estimates
for the Fourier extension operator associated to the paraboloid. This led to an
improvement on the known range of estimates for parabolic restriction in dimensions
n = 4. The main goal of this paper is to extend the theory of k-broad estimates to
the more general context of Hérmander-type operators with positive-definite phase.
The k-broad setup involves the notion of a k-broad norm, which was introduced
in [13]. Decompose B"~! into finitely-overlapping balls 7 of radius K !, where K
is a large constant. These balls will be frequently referred to as K~ '-caps. Given
a function f: B"! — C write f = >, f, where f, is supported in 7. In view of
the rescaling ¢* of the phase function, define the rescaled generalised Gauss map

GMzw) == G(z/\;w) for (x;w) € supp a™.

5In particular, of the results mentioned above only Lee’s bilinear estimate [17] exploits the
positive-definite hypothesis.
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For each x € B(0, A) there is a range of normal directions associated to the cap 7
given by

GMaz;7) = {GMz;w) s we T, (x;w) € suppa’}.
If V € R” is a linear subspace, then let £ (G*(x;7),V) denote the smallest angle
between any non-zero vector v € V and v’ € G*(z; 7).

The spatial ball B(0,)) is also decomposed into relatively small balls Bgz of
radius K2. In particular, fix Bx2 a collection of finitely-overlapping K ?-balls which
are centred in and cover B(0,\). For By € Bg= centred at some point & € B(0, \)
define
(1.11)

prxp(Bg2) i= min

A p
max Tf )
Vigoss VaeGr(k—1,n) (T:i(G*(i;T),Va)>K*1 for 1<a<A H THLP(BK2) ’

here Gr(k —1,n) is the Grassmannian manifold of all (k — 1)-dimensional subspaces
in R®. It will often be notationally convenient to write 7 ¢ V, to mean that
A(GM@;7),V,) > K~! (the choice of centre # should always be clear from the
context); with this notation the above expression becomes

|‘TAfT|‘Z£p(BK2))'
For U < R"™ the k-broad norm over U is then defined to be

/
(112) T sy o= (Y] wrp(Brn))

BK2€BK2
BKgf\U?&Q

prxp(Bgz) = min ( max
f( ) Vi,...,Va€Gr(k—1,n) \ 7:7¢V, for 1<a<A

It is remarked that HT)‘fHBLi ,(u) 18 not a norm in the traditional sense, but it does
satisfy weak variants of certain key properties of LP-norms, as discussed below in
46l

Theorem [L2lwill be a consequence of certain estimates for k-broad norms. These
estimates are proved under a further technical assumption that the phase is of
reduced form. The details of this condition are postponed until §4l

Theorem 1.6. For2 < k <n and all € > 0 there exists a constant C. > 1 and an
integer A such that whenever T is a Hormander-type operator with positive-definite
reduced phase the estimate

(1.13) HTAJIHBL?A(]R") Se KX fll2 oy
holds for all A\ =2 1 and K = 1 whenever p = p(k,n) :=2(n+k)/(n+ k — 2).

The range of p is sharp for this theorem, as can be seen by considering the exten-
sion operator associated to the (elliptic) paraboloid (see [13]). As explained in §0l
below, the k-broad estimate ([LI3)) is weaker than the corresponding k-linear esti-
mate (LI0), and so Theorem [[.6l can be viewed as a weak substitute for Conjecture

L4
Theorem [0 implies that for every ball By one can find a collection of (k — 1)-
dimensional subspaces Vi, ..., V4 for which

A
gy, Max_ 1T frlLr (o) Ske A°[ fllLzpn-1y-

Thus, the contribution to |7 f|| Lr(B,.,) arising from caps 7 whose directions lie
away from all of the V, can be effectively controlled. The problem of estimating
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|7 f]l o B,.») is therefore reduced to studying expressions of the form

|22 T el o,

TeV

where the sum is over caps 7 which make a small angle with some (k—1)-dimensional
subspace V. This term can then be controlled using a combination of ¢?-decoupling
and an induction-on-scale argument, leading to the proof of Theorem The full
details of this argument are given in 11

Structure of the article. The structure of this article is as follows:

e In §2 sharp examples for Theorem [[LT] and Theorem are discussed in
detail.

o In §3the key features of the problem are identified in order to motivate the
forthcoming analysis.

e In 4 some basic reductions are described which allow one to assume the
phase is of a certain reduced form in the proof of Theorem

e In §0] and §0] some basic analytic tools are introduced. In particular, the
wave packet decomposition for Héormander-type operators is defined and
studied, some elementary aspects of the L?-theory for Hérmander-type op-
erators are reviewed, and there is also a discussion of the basic properties
of the k-broad norms and their relation to k-linear estimates.

o In {7l certain algebraic tools from combinatorial geometry are introduced.
In particular, polynomial partitioning techniques are reviewed and some
important geometric lemmas are proved; these techniques will play a fun-
damental role in the proof of Theorem

e In land 0 transverse equidistribution estimates for T are introduced and
studied. These estimates rely heavily on the positive-definite hypothesis
and partially account for the improved behaviour exhibited by operators
satisfying the H2%) hypothesis.

e In {10 the proof of k-broad estimates of Theorem is given.

e In §ITlthe linear estimates of Theorem [[.2] are deduced as a consequence of
the k-broad estimates of Theorem[I.6l For completeness, the same methods
are also applied to deduce Theorem [[.1] as a consequence of Corollary 6.5

e In 2 standard e-removal lemmas are generalised to the variable coefficient
setting. This allows one to strengthen Theorem [[L2] away from the endpoint
by removing the A®-dependence in the constant.

Acknowledgment. The second author would like to thank David Beltran for
engaging discussions on topics related to this article. The first author is supported
by a Simons Investigator Award. This material is based upon work supported by
the National Science Foundation under Grand No. DMS-1440140 while the second
and third authors were in residence at the Mathematical Sciences Research Institute
in Berkeley, California, during the Spring 2017 semester.

2. NECESSARY CONDITIONS

2.1. An overview of the sharp examples. In this section examples of Hormander-
type operators are studied in view of establishing the necessity of the conditions
on the p exponent in the linear estimates of Theorem [[.1] and Theorem This



SHARP ESTIMATES FOR OSCILLATORY INTEGRAL OPERATORS 9

n odd n even

1
H2) (”; ,0) (ngl,O)
+ ntl 1 n 1
)| (Fg) | (54 1)

FIGURE 2. Optimal values of (m, o) for the sharp examples.

analysis will also identify some key features of operators with positive-definite phase
which will later be exploited in the proof of Theorem

All the examples considered here are of the following general form: for a fixed
operator T, a function f is chosen so that |f| is constant whilst |7 f| is concen-
trated in Nx-(Z)n B(0, A) for some low-degree algebraic variety Z with dim Z = m;
here Ny (Z) is the A?-neighbourhood of Z. In particular, one has

(2.1) IT* £l p2ny ~ | T fllL2(Nyo (2)nB(0,2)-
The examples will further be chosen so that
(2.2) 1T fllz@ny ~ X2 fL2(snr);
note that, by Hormander’s generalisation of the Hausdorfl-Young inequality [16],
the inequality |72 f|p2(rn) < A2 f]12(pn-1) always holds (see also §5], below).

Playing [2.1)) and (22) off against one another yields the necessary conditions
on p. Indeed, for f as above

| flzrsn-1y ~ I flL2(mn-1y ~ AV T flp2ny ~ A2 T 2 (vae (2)0BOA) -
Now, assuming the estimate | T2g|zo®n) <c A°|g]rr(pn-1) holds for all £ > 0 and
applying Holder’s inequality, it follows that

| flzesn-1) Se [Na=(Z) 0 BO, )[V27PAT208 £ o)

By a simple computation one concludes that

on—m)+m
on—m)+m-—1

(2.3) p=2-

This condition depends on the two parameters m and o, which one wishes to
minimise to obtain the strongest possible restriction on p.

o The optimal choice of m is n — L%J This value arises directly from the
theory of Kakeya sets of curves, and will be discussed in more detail in the
next subsection.

e The optimal choice of ¢ depends on the signature of the phase. For general
Hormander-type operators, one may find examples for which ¢ = 0. If
one assumes the positive-definite condition H2%), then o = 1/2 is the low-
est possible value. This difference in behaviour is governed by transverse
equidistribution estimates for T, which were introduced in the context of

Fourier extension operators in [I3]. This will be discussed in detail in §2.4

The optimal pairs (m, o) under the various hypotheses are tabulated in Figure

Plugging these values into (2.3)) gives the corresponding sharp range of estimates
for T*.
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2.2. Model operators. The examples described above will arise from operators
with phase of the relatively simple form

(2.4) d(zyw) ==/, w) + %(A(a:n)w,c@

where A: R — Sym(n — 1,R) is a polynomial function taking values in the class of
real symmetric matrices which satisfies A(0) = 0. For such a phase the condition
H1) always holds whilst H2) (respectively, H2%)) holds if and only if the component-
wise derivative A’(x,) € GL(n — 1,R) (respectively, A’(x,) is positive-definite)
for all relevant =, € [—1,1]. Observe that if A(z,) := z,A for some fixed A €
Sym(n —1,R) n GL(n — 1, R), then the resulting operator is the extension operator
associated to the graph of the non-degenerate quadratic form w — %<Aw, w). For
the present purpose, one is interested in examples with higher-order dependence on
T

Let T* be an operator associated to the phase function (2.4]) for some A. Cover
B! by finitely-overlapping balls 6 of radius A='/2; these balls will frequently be
referred to as A™'/2-caps. Let g be a smooth partition of unity adapted to this
cover. Consider a wave packet of the form

f@,ve (W) = e—27ri>\<v9,w—w9>w0 (W)

for some choice of v9 € R~ ! and wy the centre of the cap . To obtain the necessary
conditions for LP-boundedness of T?, the operator will be tested against functions
given by superpositions of these basic wave packets.

A simple stationary phase analysis shows that T f ,, is concentrated on a tubu-
lar region in R™. In particular, define the curve

(2.5) V0,00 (1) 1= v9 — A(t)wo for t e (—1,1)
and let Ty ,, be the curved tube
To,vy 1= {x € B(0, ) : |2" — Mg, (2 /N)] < A2}
for some choice of constant ¢ > 0. It is not difficult to show that
T fo.mp ()| 2 A= D2xq, (2)  for all 2 € B(0, ),

provided that ¢ is chosen suitably small.

2.3. Kakeya sets of curves. By studying the geometry of the family of tubes
Ty, one may construct sharp examples for Theorem These examples arise
owing to Kakeya compression phenomena, whereby the tubes are arranged to lie
in a neighbourhood of a low-dimensional set. For n = 3, the following example
appears in Bourgain-Guth [8]. Let ¢ be of the form ([2.4]) where A(t) is taken to
be the (n — 1) x (n — 1) block-diagonal matrix

t 2 t
Alt) = <t2 t+t3)@"'@(t2 t+t3)@(t)'

[ 251 )-fold

Here it is understood that the final 1 x 1 block appears only when n is even. Observe
that the resulting phase (2.4) satisfies H1) and H2¥) on B™ x B"~L.
Suppose that T is the associated oscillatory integral operator. The estimate

(2.6) IT* fl Loy Se A\ Lrpn-1
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is tested against a superposition of wave packets

o= ) € fou

0:\—1/2—cap

where the ey € {1, —1} are uniformly distributed independent random signs. By
Khinchine’s theorem (see, for instance, [I9, Appendix D]), the expected value of
|T*f(x)| is given by

E[ |T)\f($)|] N ( Z |T>\f9,v9 ($)|2)1/2 > )\7(”,1)/2( Z XTg,Ue (,T))l/Q

0:A—1/2—cap 9:\—1/2—cap

for all z € B(0,\). Thus, by Holder’s and Minkowski’s inequalities,

—(n— 1/2 1/2-1/
([ )5 U el PRI e )
0:\—1/2_cap 0:\—1/2—_cap

The hypothesis (Z.8) together with a direct computation now gives

1/2—1 _
(2.7) 1 fleegy S| | Towl 2y V22| £l Lo (-1,

9:\—1/2_cap

since | f||Lr(pn-1) ~ 1 is independent of the outcomes of the €.

Varying vg corresponds to translating the tube Ty ,, in space. In view of (271,
one wishes to choose the vy in order to arrange the tubes so that their union has
small measure. For the above choice of phase it is in fact possible to select the vy
so that the tubes all lie in the A\/?-neighbourhood of a low-dimensional, low degree
algebraic variety. In particular, let m :=n — |251| and Z := Z(Pi,..., Po_y) be
the common zero set of the polynomials

PJ(,T) = )\,ng — X2j-1Tn for1 <j< [%J
Thus, Z is an algebraic variety of dimension m and degree 2. If one defines

. -1
V9,2j—1 ‘= —Wp 25 and V9,25 = Vgn—1 = 0 for 1 < 7 < I.nTJ

for each cap 6, then a simple computation shows that the curve t — (Avyp,y, (t/N), 1)
lies in Z. Thus,
U Tow € Naue(2) 0 BO,N)
0:A—1/2—cap
and the desired necessary conditions on p follow from (27]).

In conclusion, here the necessary conditions arise due the fact that it is possible
to compress an (n — 1)-dimensional family of curves into a set of small dimension
m. The value m = n—| 25| is optimal for this kind of behaviour, in view of known
estimates for associated Kakeya maximal functions: see [25] and [8].

2.4. Mass concentration. It will be useful to contrast the behaviour in the positive-
definite and indefinite cases by considering sharp examples for Theorem [[T] (that
is, for the class of operators satisfying H1) and the weaker hypothesis H2)). As
before, Kakeya compression plays a significant role in the argument, but one can
introduce additional interference between the wave packets which leads to stronger
necessary conditions. In particular, this interference causes the mass of |T*f]| to
concentrate in a tiny O(1)-neighbourhood of a variety Z; such tight concentration
is not possible under the H2") hypothesis (as demonstrated by Theorem [L.2]).
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SO
‘\\Wg\g‘.“.‘&?\"@;’:’ \N
A \w

) \'(! W ‘

A
?\‘\

FiGURE 3. The Kakeya compression phenomenon for the curves
arising from the matrix (Z38]).

The following example was introduced by Bourgain [5] (see also [7]). Once again,
the phase is taken to be of the form (24]). This time A(t) is defined to be the
(n—1) x (n — 1) block-diagonal matrix

23) a0 = (7 pleo(] 4w,

[ 252 )-fold

Clearly, the corresponding phase satisfies H1) and H2), but H2") fails. Define the
curves g v, as in (23] so that

(2.9) T fo.m0 ()| 2 A~ D 2xq, () for all 2 € B(0,\).
If one takes

Vg2j—1 = —wgaj—1 and vg2; =vg,—1 =0  for1<j<|%L],
then it follows that the curve ¢+ (Mg, (t/)\), 1) lies in Z for all \=/2-caps 6, where
Z is the same variety as that appearing in the previous subsection (see Figure [3]).
One may repeat the analysis of §2.3 by taking f to be a linear combination of
wave packets fg ., with random signs. This leads to the same necessary conditions
as in the positive-definite case. However, certain deterministic choices of f lead to
stronger conditions on p. In particular, consider the function

(2.10) Fi= Z 2Nl g,

9:\—1/2—cap
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where the vy are as defined above and @ is the quadratic polynomial

122

Sl

j=1

Each modulated wave packet appearing in (2Z.10) has a phase given by

)\ ln;lJ

AMQ(wp) — (vg,w — wp)) = AQ(w) — 5 Z (waj—1 — wa,2j—1)%

Jj=1

N =

Qw) :=

Since the A(w2j—1 — wp,2j—1)? terms are bounded functions on the support of )y,
they do not contribute any significant oscillation. One may therefore heuristically
identify f with the function

fw) = ey ()

where 9 is a bump function supported in B"~!. Using a simple stationary phase
argument, it was shown in [5] (see also [7) [8]) that

(2.11) T f(2)] 2 )\_l"/2j/2xNC(Z) (x) for all x € B(0, ).

Here 0 < ¢ < 1 is some small, fixed constant (which is independent of ) and Z is
as defined in §2.31 With this estimate, one readily deduces the desired necessary
conditions on p.

Comparing 29) and ZII) (in view of the heuristic identification between f and
f) suggests that there is significant constructive interference between the various
T*fo.0, in a region very close to Z. This forces the mass of |T*f(z)| to concen-
trate around a tiny neighbourhood of the variety and results in stronger necessary
conditions for the LP-boundedness of T

For completeness we briefly detail the argument used in [B [7] to prove ZII)).
Observe that T2 f(z) is an oscillatory integral with smooth amplitude ¢ and phase

"5+ A "
(2.12) Z Toj—1W25—1 +:E2jw2j+5(o.)gj_1+)\*1xno.)2j)2+6e(xn_lwn_l—i-?nwi_l)
j=1
where d. = 0 if n is odd and d. = 1 if n is even. Introduce new variables z; :=
waj—1 + A pwe; for 1 < j < [";1J If 2 € Z, then the phase function (212 can
be expressed as

L=z \ -
Toj—-1%5 + 52’]2 + 56(1?",160"71 + 7”&1,21_1).

j=1

The integral T*f can now be reduced to a product of ["T_lj +de = [%J integrals,
each in a single variable. For x € Z the inequality (2.I1]) follows as a consequence
of standard stationary phase estimates applied to each of these integrals (see, for
instance, [20, Chapter VIII, Proposition 3]). This lower bound can then be extended
to some c-neighbourhood of Z via a simple estimate on the gradient of T f ().

3. KEY FEATURES OF THE ANALYSIS

The examples of the previous section highlight several key features of Hérmander-
type operators. All these features are exploited in the proofs of the linear and
k-broad estimates.
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Algebraic structure. The sharp examples were given by arranging collections
of wave packets to lie in a relatively small neighbourhood of a low degree, low
dimensional algebraic variety Z. It turns out that this is an essential feature
of both the linear and k-broad problems. To exploit this underlying algebraic
structure, the proof of Theorem will rely on a variant of the polynomial
partitioning method introduced by Katz and the first author [I5]. Roughly
speaking, this method allows one to reduce to the case where |T* f| concentrates
around some low degree, low dimensional variety, as in the sharp examples.
This can be thought of as a dimensional reduction and, indeed, the proof of
Theorem [T .6 will proceed by an induction on dimension. Polynomial partitioning
has played an increasingly important role in the theory of oscillatory integral
operators, beginning with the work on the restriction problem in [14] [13] and,
more recently, in [I1].

Non-concentration/transverse equidistribution. Suppose one does not
assume the phase is positive-definite. The example of §2.4] then shows that
interference between the wave packets can cause |T*f| to be concentrated in a
tiny neighbourhood of Z. In order to prove the sharp range of estimates in the
positive-definite case one must rule out the possibility of such concentration.
This is achieved by extending the theory of so-called transverse equidistribution
estimates introduced in [I3] to the variable coefficient setting. These estimates
can be interpreted as showing that |7 f(z)| is morally constant along transverse
directions to Z in a A!/2-neighbourhood of the variety. Consequently, |T* f(z)|
cannot concentrate in a smaller neighbourhood.

Parity of the dimension. Another key feature of the examples discussed in
the previous section is their dependence on the parity of the ambient dimension
n. Recall that this is directly related to the minimal dimension

{ "T“ if n is odd

n+2
2

d(n) :=
if n is even

of Kakeya sets of curves in R™. The parity of the dimension does not play an
overt role in the proof of the k-broad estimates, but it becomes a noticeable
feature when one wishes to pass from k-broad to linear estimates in the proof
of Theorem In particular, for each fixed value of 2 < k < n, the method
of §IT shows that the k-broad estimates imply a (possibly empty /trivial) range
of linear estimates. It transpires that to optimise the range of linear estimates
obtained in this manner one should choose k to correspond to the dimension
d(n) from the Kakeya problem.

The proof of the k-broad estimates follows the same general scheme as that used

to study Fourier extension operators in [I3], and heavily exploits the the features 1)
and 2) of the problem highlighted above. A detailed sketch of the argument in the
extension context is provided in [I3]; this sketch is likely to be beneficial to readers
new to these ideas.

4. REDUCTIONS

4.1. Basic reductions. The prototypical example of a positive-definite phase func-
tion is given by

2
bpar (T;w) 1= (&', w) + xn%
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This is the phase associated to the extension operator for the (elliptic) paraboloid.
In general, to prove Theorem [[.2] it suffices to only consider phases which are given
by small perturbations of ¢pa,. To see why this is so, first recall that the class of
operators under consideration are those of the form

(4.1) T f(x) := / 2mid (@iw) g r (z;w) f(w) dw
Rn—1

where ¢ satisfies H1) and H21). In addition, one may assume a number of fairly
stringent conditions on the form of ¢ on the support of a.

Lemma 4.1. To prove Theorem [L.Q it suffices to consider the case where a is
supported on X x Q where X := X' x X,, and X' « B»', X,, c B! and Q c B!
are small balls centred at 0 upon which the phase ¢ has the form

(4.2) d(zyw) = & W) + rph(w) + E(z;w).

Here h and £ are smooth functions, h is quadratic in w and £ is quadratic in x
and wl Furthermore, letting cpar > 0 be a small dimensional constant, one may
assume

(4.3) Hag/w(b(x?“’) - In—lﬂop < Cpar and Haiwawk(b(x?“’) - 5kn1n—1|‘op < Cpar

forall (z;w) e X x Q and 1 <k < n.

Here I,_1 denotes the (n — 1) x (n — 1) identity matrix, d;; the Kronecker 4-
function and | - |op the operator norm.

The proof of the lemma is based upon three elementary principles.
Localisation. If a property P of a phase holds locally on supp a, then typically one
may assume P holds on the whole of suppa by applying a partition of unity, the
triangle inequality and shifting co-ordinates.

Parametrisation invariance. By the change of variables formula, one may compose
¢ with a smooth change of either the x or w variables.
Modulation invariance. One is free to add smooth functions to the phase which
depend only on either the x or on the w variables. In particular, ¢ can be replaced
by

p(a;w) + ¢(0;0) — ¢(0;w) — (3 0)

and therefore one may assume that
(4.4) %p(2;0) =0 and °¢(0;w) =0

for all multi-indices (o, 8) € Nj x Ny~

The following argument provides an example of these three principles working
together. Rotating the z-coordinates, one may assume that 0,,0,, ¢(0;0) = 0. By
H2) it follows that

det 0%,,6(0;0) # 0.

The inverse function theorem now implies the existence of local inverses to the
functions w — 0y ¢(z;w) and 2’ — d,¢(x;w) in a neighbourhood of 0. Thus, by
localisation, one may assume supp a is contained in X x Q where X = X' x X, for

6Explicitly, if (e, B) € Ng x NSHI is a pair of multi-indices, then:
i) 82h(0) = 656;‘6(32;0) = 0 whenever z € X and |3| < 1;
ii) 656;‘6(0;w) = 0 whenever w €  and |a| < 1.
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X' < B! X, B and Q < B"! small balls centred at 0 and that there exist
smooth functions ® and ¥ taking values in X and €2, respectively, such that

(4.5) Owd(x;V(z5u)) =u and 0o (P(2, 2p;w), Tpjw) = 2.

The former identity can be thought of as a generalisation of the fact that any
hypersurface can be locally parametrised as a graph. The latter identity features
in the proof of Lemma [£.1] and it is useful to highlight some further properties of
®. For each (2,,w) € X,, x Q the map 2z’ — &(2/, 2,;w) is a diffecomorphism from
its domain onto X’; this provides a useful change of variables on X’. Furthermore,
it is easy to see that O lies in the domain of this map when z,, = 0, w = 0 and that

(4.6) ®(0;0) =0, 0,,®(0;0)=0 and 0pP(0;0) = Oprep(0;0)7.

Indeed, the first identity follows directly from (44 whilst the remaining identities
are obtained by differentiating the defining expression for ® from (@3H]).

Proof (of Lemma[{.1). By (£4)) one may assume that

(4.7) P(x;w) = (0ud(2;0),w) + p(z;w)

where p(0;w) = 0 for all w € Q. Let ® be the function defined in ([@H) and,
using localisation and parametrisation invariance, perform the change of variables
' — ®(x',x,;0) on X’ so that the phase becomes

d(z;w) = &', w) + p(®(z;0), zn;w).
By (6] one has 0, ®(2’,0;0) = O(|z|) and, taking a Taylor expansion of p in x,,
p(@(20), 2;w) = p(®(2’,0;0),0;w) + (z,, p)(P(2”,0;0), 0; W)y, + O(||*).
Note that the first expression on the right-hand side satisfies
p(@(x',0;0),0;w) = (Barsd(0;0) ', (0 p) (0;w)) + O(|z[?)
whilst, Taylor-expanding now in z’, it follows that
(0,,p)(2(2",0;0),0;w) = (0z,p)(0;w) + O(|]).

Combining these observations, and noting, for instance, that (@4]) implies that
0%p(x;0) = 0 for all @ € N} and x € B™, one deduces that

$a;w) = (@', w + Owrwd(0;0) ™ (0w p) (0;0) ) + 23 (0a,, p) (0; ) + O[] |w]?);

Here the symbol T is used to denote the matrix transpose and —T the inverse
matrix transpose.

Since p is quadratic in w, it follows that w — w + 9uwd(0;0)~ T (0w p)(0;w) is
a well-defined change of variables in a neighbourhood of the origin and so, once
again by localisation and parametrisation invariance, the problem is reduced to
considering phase functions of the from ([@2)). By the construction h and £ are
quadratic. Finally, the condition H2%) implies that the matrix 02 0, ¢(0;0) is
positive definite. Applying a linear coordinate change, one may therefore suppose
that 02,0z, #(0;0) = I,—1. On the other hand, clearly 02 0., #(0;0) = 0,1 for
1 <k <n—1land d?,¢(0;0) = I,_;. By continuity, if the support of a is sufficiently
small, then the conditions of ([£3)) are valid on the support of a. O
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4.2. Parabolic rescaling. In addition to the reductions of Lemma [T} it will
be useful to have control over higher order derivatives of the phase, and also the
amplitude function.

Lemma 4.2. To prove Theorem[LZ for some fixed € > 0 it suffices to consider the
case where, in addition to the properties described in Lemmalf.1], the phase satisfies

Hagag(bHLOO(XXQ) < Cpar fOT |OZ| < Npar; 3 < |ﬂ| < Npar

for some small dimensional constant cpar and large integer Npar € N, which can be
chosen to depend on n and €. Furthermore, one may assume that the amplitude
satisfies

|0203allex ko) Sap 1 for all (o, ) € N~ x N

Henceforth cpar > 0 and Npar € N are assumed to be fixed constants, chosen
to satisfy the requirements of the forthcoming arguments. A phase satisfying the
properties of Lemma [£.2] for this choice of cpar and Npa, is said to be reduced. This
notion of reduced phase is precisely that which appears, then undefined, in the
statement of the k-broad estimates of Theorem [0l

Proof (of Lemma[4.3). The proof of Lemma relies upon a standard parabolic
rescaling. One may assume that the phase of T? is given by ¢*(7;w) 1= Ap(z/A;w)
where
d(z;w) = (&', w) + zh(w) + E(z;w)  for (z;w) € X x Q.
Let p > 1, f € LY(B"!) and cover B! by finitely-overlapping p~!-balls. Pro-
vided p is chosen to depend only on ¢ and € > 0, by the triangle inequality one
may assume that f is supported on one such ball, say B(w, p~!) where @ € B" 1.
Thus, by a linear change of variables,
|T>\f($)| _ ‘ 627ri(¢’\(m;d)-&—p*lw)—d)’\(m;w))a)\(:E;CD + p—l )f(w) dw’
Bn—1

where f(w) := p~ (U f(@ + p~'w). The phase function appearing in the above
oscillatory integral may be expressed as

p (0wt (;@),w) + p2 (wah(w) + A1 (2/X;w))
where ~

hw) = 72 (h(@ + plw) — h(@) — p~HAuh(@), w))
and R

E1(zyw) = p*(E(z;0 + p~'w) — E(230) — p~ {0uE(2;0), w)).
Defining € (z;w) := & (®(p~ 2/, &p; @), 2n;w) where ® is the function introduced
in ([@3), it follows that under a change of the = variables the phase and amplitude
are transformed into ¢ P (z;w) and @ P (x; w), respectively, where
bla;w) = (@', W) + zph(w) + E(x;w)
and
a(z;w) = a(®(p™ "2, 20; @), 20; @ + p~ ' w).

In particular, defining

. N
(4.8) T’\/”2g(:1c) = / e2mid” (@iw) g A/ p? (z;w)g(w) dw

Rn—1
it follows that o
HT’\fHLP(R") < pn /AP fllze@n)-
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It is easy to verify that the phase gz~5 satisfies the conditions of Lemma 4] and, pro-
vided p is chosen appropriately, it also satisfies the additional conditions described
in Lemma This facilitates the desired reduction. O

4.3. Geometric consequences. Henceforth all phase functions ¢ are assumed to
be reduced in the sense described above. The strategy is to obtain uniform estimates
over this class of phases.

By the definition of Héormander-type operators, for each x € X the map w —
0, ¢(x;w) parametrises a smooth hypersurface ¥,. In many respects, these hyper-

2
surfaces are geometrically very similar to the paraboloid w — (w, %) To see this,
recall that U: U — ) is a smooth function which satisfies

(4.9) O $(; W (25 1)) = u

for all (z;u) € U < X x R""1. On each of the fibres U, := {u e R"! : (z;u) € U}
of the domain U, the map u — ¥(z;u) is a diffeomorphism. Thus, ([£9) implies
that 3, is the graph of the function

he(u) 1= g, d(z; ¥(z;u))
over the fibre U,. Each h, is a perturbation of # in the following sense.
Lemma 4.3. The function h, satisfies h;(0) =0, 0,h;(0) = 0 and
|05 (1) = Tnotop = O(cpar)
for all uw e U,.

Before proving the lemma, some simple properties of ¥ are recorded. By (£4)) it
follows that ¥(z;0) = 0. The implicit function theorem implies that 0,V (x;u) =
02,,0(z; ¥ (x;u)) ! so that, by (@3) and the local Lipschitz continuity of taking
matrix inverses,

(4.10) 1000 (@3 0) ~ Lo-top = Olcpar):
As a consequence of this identity (and choosing cpar to be sufficiently small),
(4.11) | U (x;u) — V(z;u)| ~ |u— o] for all u,u' € Uy,

where the implied constant depends only on n. In addition, if 1 <k <n — 1, then
by twice differentiating 0, ¢(x; ¥(z;u)) = wuy in the u variables one may deduce
that

(4.12) Haiuq}k(x?u)ucm = O(Cpar)'

The stated properties of h, now easily follow.

Proof (of Lemma[{.3). By (@4) one has
he(0) = Og, ¢(; ¥ (230)) = 0a, p(2;0) = 0.
Similarly, 0,h.(0) = 0 since 0,05, ¢(2;0) = 0. Finally,
b (u) = (0,9) " (250) (02,00, 0) (25 ¥ (25 w)) 0u ¥ (5 u) + E(; )
where E(z;w) is the n — 1 x n — 1 matrix whose (i, j)th entry is given by

Eij(w;u) = {(0w0z, 9)(x; ¥ (z; 1)), Ousu,; V(x5 0)).
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By (£3) and (I2)) it follows that |E(z;u)|op = O(cpar), whilst (£3) and multiple
applications of (AI0) imply that

(@) (2310) (02,0, 8) (3 0 3 0)) 00 W (5 1) — Tt o = Ocpa)-
This concludes the proof. (Il

Similar reasoning can be used to provide useful uniform estimates for the gener-
alised Gauss map associated to T*. To state the result, let X* := {zx e R" : z/\
X} denote the M-dilate of X, so that a* is supported in X* x Q.

Lemma 4.4. For all x,2' € X* and w,w' € Q the estimates
£(GMa;w), Gz W) ~ [w — '] and A (GMz;w), GMa';w)) S ANz — o)
hold with implied constants which depend only on the dimension.

The proof, which is an elementary calculus exercise in the style of the proof of
Lemma [4.3] is omitted.

5. BASIC ANALYTIC PRELIMINARIES

5.1. Wave packet decomposition. Throughout the following sections € > 0 is a
fixed small parameter and ¢ > 0 is a tiny number satisfyinéj 0 «eandd ~. 1.

A wave packet decomposition is carried out with respect to some spatial param-
eter 1 « R « \. Cover B"~! by finitely-overlapping balls 6 of radius R~/ and let
1y be a smooth partition of unity adapted to this cover. These 6 will frequently
be referred to as R™Y2-caps. Cover R"~! by finitely-overlapping balls of radius
CR(+9)/2 centred on points belonging to the lattice R +9/2z7=1 By Poisson
summation one may find a bump function adapted to B(0, R1*9/2) so that the
functions 7, (z) := n(z — v) for v € RA*+9/2Z7=1 form a partition of unity for this
cover. Let T denote the collection of all pairs (§,v). Thus, for f: R*"~! — C with
support in B"~! and belonging to some suitable a priori class one has

F= 20 @)= > s (of).
(0,0)eT (6,0)eT
For each 1?_1/2-cap 0 let wy € B"tl denote its centre. Choose a real-valued smooth
function ¢ so that the function 1g(w) := ¥(RY?(w — wy)) is supported in # and

o (w) = 1 whenever w belongs to a cR~'/? neighbourhood of the support of ¢, for
some small constant ¢ > 0. Finally, define

fo. =P - [ * (o f)].
The function 7, (w) is rapidly decaying for |w| = R~
| fo,0 — 1w * (o f)| Lo @n-1y < RapDec(R)|| f|L2(pn-1)-

Here the notation RapDec(R) is used to denote any quantity Cr which is rapidly
decaying in R; that is, any Cr € R such that |Cr| <.y RN for all N e N. It
follows that

149)/2 and, consequently,

If - Zfe,vHLOO(Rnfl) < RapDec(R)| f|2(n-1)-
6,v

"For A, B = 0 the notation A « B or B » A is used to denote that A is ‘much smaller’ than
B; a more precise interpretation of this is that A < C= !B for some constant Ce > 1 which can
be chosen to be large depending on n and ¢.
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The functions fp , are almost orthogonal: if S € T, then

H Z f@,’U|iQ(Rnfl)~ Z Hf@,vl

(6,v)eS (6,v)eS

2
L2(Rn—1)

Let T» be an operator with reduced phase ¢ and amplitude a supported in
X x Q as in Lemma BTl For (6,v) € T define the curve g ,: I, — R"™' by
setting 74, (t) := ®(v, t;wp), where ® is the function introduced in §4l and

Ielw = {t € Xy, : 0wop(a',t;wp) = v for some z’' € X'}.
Thus, 0,¢(V4,,(t),t;we) = v for all t € I . Moreover, the rescaled curve 3, (t) :=
M, o/ (t/A) satisfies
8w¢)‘(”y§‘)v(t),t;we) =v forallte Ig‘)v ={teR:t/xe 1‘91,1;/)\}-

Let Fé\,v: Ié\w — R™ denote the graphing map Fé\)v(t) = (*y(;\w(t), t); by an abuse of
notation I‘é\)v will also be used to denote the image of this mapping. It is remarked
that one may easily verify that the tangent vector to the curve l"g‘)v at I‘g\ﬁv(t) is
parallel to GA(Fjﬁv(t); wp) for all t e Ie)\,u-

Define the curved R'/?*9-tube

Tow = {(2', ) € B(O,R) : ay, € I&v and |2/ — *y(iv(xn)I < R1/2+5}.
The curve Fg,v is referred to as the core of Ty ,. Observe that, since ¢ is of the
reduced form defined in §l one has
(5.1) | =75 ()| ~ 1000* (23w5) — v,
for all z = (2/,z,) € X with z,, € IeA,v-
Example 5.1. Let ¢*(z;w) := (2/,w) + x,h(w) and observe that 5, (t) = v —

t0,h(wy) parametrises a straight line through v in the direction of d,h(wg). The
tube is given by

Tpo = {x € B(0,R) : |2 + ,0,h(wy) — v| < RY2T0},
which agrees with those studied in the case of the extension operator.
Lemma 5.2. If1 « R« X and xz € B(0, R)\Tp ., then
T fo.o(@)| < (1+ R™2|0,6™ (a;we) — o)~ "V RapDec(R)| f| 2 (pn-1).
Proof. Observe that

T)\ v = /;1* G_;E
foula) = [ s (o)

where

Gy (w) = e‘zmw(m;w)a)‘(w;w)@bg (w)
and so, by Plancherel,

A = : Y. G,
T fG,v(x) /]Rni1 Mo - (Yo f) z

By a simple change of variables, if one defines the phase function ¢} (w) :=
RY2¢* (x;wp + R™Y2w) — (z,w), then one has

|GI(Z)| _ R—(n—l)/2| 6_2”R71/2¢$,z(“)a’\(:c;w9 + R1/2w)7j](w) dw|.
Rn—l
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This integral is analysed using (non-)stationary phase. Computing the derivative
of the phase function,

anb;\,z(w) = 0™ (w9 + R™Y%0) — 2
= [0u6* (@3 w0) — 0] + [ = 2] + [0u6 (w300 + B™Y2w) — 00" (@5 w)].

Observe that |v — z| < R*9/2 whenever z € suppn,. Moreover,
1
|6wj¢’\(:1c;W9+R_1/2w)—6wj¢’\(:t;w.g)| < R_1/2/ |<3w3wj¢’\(;v;oJ9+tR_1/2w),w>|dt.
0

Since 351,%_ P (O;w) =0 forallwe Qand 1 <i,j < n— 1, it follows that

wiw

1
|02 jgb)‘(aj;we +tR™2w)| = / |<8zaiiwj¢)‘(sx;w9 +tR™V2w), 2| ds
0

< 10203 0, 0™ e (xr w2 < R

for x € B(0, R) n X*. Combining these estimates,

|000™ (25 w9 + R™Y%w) — 0,0 (25 wp)| S RY.
On the other hand, for z € B(0, R)\Ty,, it is claimed that
(5.2) 0w (3 we) — v| = R,

If 2, € I(;\ﬂ), then (5.2) follows directly from the definition of Ty, and (5. Tem-
porarily assuming (5.2)) holds in general, it follows that the 0,,¢*(x;wg) — v term
dominates in the above expansion of 8w¢;‘7z(w). In particular, for all z € supp 7y,
one concludes that

R0, . () 2 R™%0,0 (w5 wp) — 0| 2 R?
whenever R » 1. Thus, by repeated integration by parts,
G2 (2)] = (1 + R7Y2]0,¢™ (2;w0) — v]) """ RapDec(R).

The desired inequality is now an immediate consequence of Young’s inequality and
Plancherel’s theorem.
It remains to establish (52) for = € B(0, R)\Tp,, with z,, ¢ IeA,v- The condition

on x, implies that v ¢ X’ where X’ is defined to be the image of X’ under the
diffeomorphism z’ — Ao ,d(2, 2 /A;wp). The set X’ will contain a ball centred
at A0, d(0, x,/A;wp) of radius 2¢A for some dimensional constant ¢ > 0. Since
|zn| < R and 0,¢(0;wy) = 0, one observes that A|d,¢(0,z,/A;we)| < R and so
B(0,¢\) € X', provided R « \. Consequently, [v| = X\ whilst, on the other hand,
10,0 (2;we)| < R and so, again provided R « ), the estimate (5.2)) immediately
follows i O

8This argument can also be used to show that for |v] < A, the domain Ig‘v contains an interval
about 0 of length ~ .
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5.2. An L? estimate. The following standard L?-bound, which has been men-

tioned previously in §2] will play a significant role in the forthcoming analysis.

Lemma 5.3 (Hormander [16]). If 1 < R < A and Bg is any ball of radius R, then
1T ez € RV f L2 nr-

This lemma is a direct corollary of the following lemma which, in turn, is a
consequence of Hormander’s generalisation of the Hausdorff-Young inequality [16].

Lemma 5.4. For any fixed x,, € R, the estimate

IT* fll L2 gr-1x gany) < | FlL2(Bn-1

holds.
Proof. Defining Sf(z') := T*f(\z’, z,,), the problem is to show that
(5.3) IS fllL2@n-1y) S ATV fl L2n-y.

Observe that
Sf(z') = / 2T /N g (0 A w) f (w) dw.
Rn—1

The original hypotheses on the phase ¢ imply that
| det 02,0 (a", 20/ Asw)| 2 1

whilst (2/;w) — a(2’, r,/\;w) has support in some bounded subset of R~ x R"~1,
Both these conditions hold uniformly in z,, and A. Thus, the operator S satisfies
the conditions of Hérmander’s generalisation of the Hausdorff-Young inequality [16]
(see also, for instance, [20, p. 377]) uniformly in z,, and A. Applying Hérmander’s
theorem immediately yields (53)). O

5.3. The locally constant property. As a final analytic preliminary, some sim-
ple consequences of the uncertainty principle are discussed. It is remarked that the
results of this subsection (that is, Lemma and Corollary 57 only play a role
in the proof of Theorem much later in the argument (namely, in the parabolic
rescaling argument in §I1). They do, however, feature in an independent discussion
in the following section.

Definition 5.5. A function ¢: R™ — [0,00) is said to be locally constant at scale
p for some p > 0 if ((z) ~ {(y) for all z,y € R™ with |z — y| < p.

Owing to the uncertainty principle, heuristically one expects the following: if f is
supported on a p~'-cap, then |T™ f| is essentially constant at scale p. For extension
operators this is due to the fact that, under the support hypothesis on the input
function, Ef has (distributional) Fourier support inside a p~!-ball. For general
Hérmander-type operators T the Fourier transform of T f does not necessarily
have compact support. It will, however, be concentrated in some p~!-ball and
this is sufficient to ensure the locally constant property holds. This discussion is
formalised by the following lemma and its corollary.

Lemma 5.6. Let T be a Hormander-type operator. There exists a smooth, rapidly
decreasing function n: R™ — R with the following property: if 6 > 0 and 1 < p <
M0 then

(5.4) MO CERITAF = [ 72T CETA fl g, + RapDec(A)| f] 2oy
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holds whenever f is supported in a p~t-ball B(w,p~t) for some & € Q. Here
1p(x) := p~"n(x/p).

The identity (5.4) can be roughly interpreted as saying that e 27" (@& TA f (1) is
equal to an average of itself over a p-ball centred at . This is a rigorous formulation
of the locally constant heuristic discussed above.

Proof (of Lemmal5.6). Suppose that supp f < B(w, p~1) where @ € Q and observe
that

(55) 2 CATANE) = [ KNG w)f(w)dw
Rn—1
where the function K* is given by
K’\(§;w) _ )\n/ e—27ri)\(<z,5>—¢(m;w)+¢(m;w))a(x;w) dz.

This oscillatory integral is estimated via (non-)stationary phase, using the simple
estimate

|0pp(2;w) — 0p0(2;@)| < pt for (x;w) € X x Q with w € supp f.

In particular, if [§] > Cp~! for a suitably large constant C' > 1, then repeated
integration-by-parts shows that

|K)\(§§w)| < RapDec(M)(1 + |§|)7(n+1).

Let  be a Schwartz function on R"™ with 7(¢) = 1 for all |{] < C for a suitable
constant C' = 1 and support in B(0,2C). Such a function can further be chosen

to be locally constant at scale 1. From the above observations it follows that the
left-hand side of (5] can be expressed as

—27ip™ (5@ ~ ~ —(n
[e2m " COTAF17(€)77,(€) + RapDec(A) (1 + [€) " V| f] a1
and the desired identity is now immediate. O
In order to apply the locally constant property effectively in k-linear settings, it
is useful to establish a variant of the above lemma involving expressions of the form

|T> f|*/*. This can be achieved by combining Lemma [5.6] together with Bernstein’s
inequality.

Corollary 5.7. Let T* be a Hérmander-type operator and 1 < k < n. There exists
a smooth, rapidly decreasing function ¢: R™ — [0, 00) with the following properties:

1) ¢ is locally constant at scale 1.
2) If 6 >0 and 1 < p < A9, then the pointwise inequality

(5.6) T f1M% < | T FVE % G, + RapDec(A) | f] i gus
holds whenever f is supported in some p~'-ball. Here ,(z) := p~"((x/p).
The locally constant property of ¢ implies that

T FIVE 5 Go) ~ [T fIMF % Goly) for all z,y € R™ with & —y| < p;

namely, |Tf|V/* « (p is locally constant at scale p. This is again consistent with
uncertainty principle heuristics.
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Proof (of Corollary[5.7 ). From the proof of Lemmal[5.6lit is clear that the function
7 may be chosen so that |77|1/ k admits a smooth, non-negative, rapidly decreasing
majorant ¢ which is locally constant at scale 1. Iterating the formula (&4]), one
deduces that

@) < | [ 1S Lo = )y ) Aol + RapDec(N)] 2.

Observe that the above integrand has Fourier support in a ball of radius O(p~!).
Bernstein’s inequalitylg may therefore be applied to dominate the right-hand side
by

) . k
( / 2T f (@ = ) [5G (y) dy )+ RapDec(N) |l 2.

A final application of (54) allows one to replace |[e 27?3 TA f]x 1, | with [T f]
in this expression, concluding the proof. (I

6. PROPERTIES OF THE k-BROAD NORMS

6.1. k-broad triangle inequality and logarithmic convexity. The functional
f - HT)\fHBLiA(U) is not a norm in a literal sense, but it does exhibit some

properties similar to those of LP-norms. For instance, the map U — HTAfH%Lp )
k,A

behaves similarly to a measure.
Lemma 6.1 (Finite (sub)-additivity). Let U1,Us € R™ and U := Uy v Us. If
1 <p< o and A is a non-negative integer, then

A A A
HT f“BLP HT f“BLP U1) + HT fHBLi,A(Uz)
holds for all integrable f: B"i1 — C.

This is an immediate consequence of the definition of the k-broad norms. A
slightly less trivial observation is that |7 f HBLP L, () also satisfies weak versions of

the triangle and logarithmic convexity 1nequahtles

Lemma 6.2 (Triangle inequality [I3]). If U € R", 1 < p < and A := Ay + As
for A1, Ay non-negative integers, then

17 (F1 + f)lBey @) < 1T fillsey , @) + 1T fellBer @)
holds for all integrable fi, fo: B»~ 1 — C.

Lemma 6.3 (Logarithmic convexity [13]). Suppose that U € R", 1 < p,p1,p2 < ©
and 0 < ay,as < 1 satisfy a1 + g =1 and
L_o,

p P11 P2
If A:= Ay + Ay for Ay, Ay non-negative integers, then

A A a A a
HT f“BL%A(U) < HT fl‘B}-‘i,lAl(U) HT f2‘Bii,2A2(U)

9More precisely, here the proof uses a general form of Bernstein’s inequality, valid for exponents
less than 1. In particular, if 0 < p < ¢ < o0 and g is an integrable function on R™ satisfying
supp g € By, then
lgllLagny < v P79 g| Lo (gn).
This extension follows from the classical Bernstein inequality (that is, the above estimate in the
restricted range 1 < p < ¢ < ) in a rather straight-forward manner.
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holds for all integrable f: B"~1 — C.

These estimates are proven in the context of Fourier extension operators in [13].
The arguments are entirely elementary and readily generalise to the variable coef-
ficient case. It is remarked that the parameter A appears in the definition of the
k-broad norm to allow for these weak triangle and logarithmic convexity inequali-
ties.

6.2. k-broad versus k-linear. A relationship between k-broad and k-linear esti-
mates is given by the following proposition.

Proposition 6.4. Let T be a class of Hormander-type operators which is closed
under tmnslation@ 2 <p< o, 2<k<nande > 0. Suppose that for all
1« R< A and R-balls Br the k-linear inequality

H n T il ¥ Lo () <, (65 VTR f Loy
Jj=1
holds whenever (T7,... 7T,;\) € T* is a v-transverse k-tuple of Hoérmander-type

operators. Then for all 1 « R < A\ and R-balls Br the k-broad inequality
1T flsez | (3r) Se0 KR flL2(pn-)
holds for any T € T

The parameter K in the above theorem is the same as that which appears in
the definition of the k-broad norms; the C. denote constants, which may vary from
line to line, which depend only on n and e.

The (local version of the) Bennett—Carbery—Tao theorem [4] therefore implies
a version of Theorem which holds for all Hérmander-type operators (that is,
without the positive-definite hypothesis) with a restricted range of p.

Corollary 6.5. Let T* be a Hormander-type operator. For all2 < k < n, p >
2k/(k —1) and € > 0 the estimate

| fleLy  (Br) Seo K Re||f|p2(pn-1)
holds for all A =1

For completeness the proof of Proposition is given; the result itself will not
be used in the proof of Theorem [[.2] and is included mainly for expository purposes.
Thus, readers interested only in the proof of Theorem may safely skip to the
next section.

Proof (of Proposition [6.4]). Let Z — Br be a maximal set of points with the prop-

erty that the balls B(z, R/2CK) for z € Z are pairwise disjoint. Here C' > 1
is a suitable constant, chosen to meet the forthcoming requirements of the proof.
Letting B, := B(z, R/CK) for z € Z, it follows that #Z < K™ and

Hj AfHBLP (Br E HI )\fHBLP
)
z2€EZ

Fixing z € Z it therefore suffices to show that
| flerz  (5.) e KO Re||f|p2(pn-1),

10That is, if 7> € T and a € R", then the translated operator T defined by T f(z) :=
T* f(x + a) also belongs to 7.
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since summing the contributions from each choice of z € Z only introduces an
acceptable K™ factor into the estimate. By introducing a bump function into the
definition of the operator, one may further assume that the amplitude a* has -
support in the ball concentric to B, with twice the radius.

Fix a ball B> = B(z, K?) € By with Bg2 n B, # ¢ and suppose that V is a
(k — 1)-dimensional subspace with realises the minimum in pps ¢(Bg2). Thus, by
definition, if 7 is a K ~!-cap for which

HTAfTH;Zp(Bkz) > /LT”\f(BK2)a

then 7 € V| where the inclusion symbol is used in the non-standard sense described
in the introduction. Amongst all such subspaces V' choose one which maximises
the cardinality of the set

TWV):={reV: HTAfTHip(Bkz) > pirs p(Bi2) -

By definition there exists some cap 7* ¢ V such that ||T f,« HZP(BKQ) = ppsp(Bgz).

Suppose there exists a (k — 2)-dimensional subspace W < R™ such that 7 € W
for all 7 € T(V). Then defining V' := span (W U {G*(Z,w,*)}) where w.« is the
centre of 7*, it follows that 7* € V' and 7 € V’ for all 7 € T(V). On the other
hand, V"’ also realises the minimum in the definition in ppap(Bg=2): to see this it
suffices to show that

(6.1) \|TAf\|§p(BK2) < ppag(Bgz)  forall 7 ¢ V/ with 7€ V;
if 7¢ V', then 7 ¢ W so that 7 does not belong to 7 (V) and so (G.I) is immediate.

These observations contradict the maximality of V' and, consequently, no such
subspace W can exist.

By the preceding discussion, one may find a family of caps 7/*,..., 7" ; € T(V)
satisfying
k
(6.2) | N\ G a,w))| 2 KD forallwjerf, 1<j <k
j=1
Thus,
u k
(6.3) pr(Bie2) < [lui“fﬁw%gBKﬂ
=

for ;¥ := 7*. To apply the hypothesised multilinear estimate one wishes to exchange
the order of taking the norm and product on the right-hand side of the above
expression; that is, one wishes to prove an estimate of the form
k p k
A P o A 1/k|P
[T s ) < K )||1_[1|T L
j=

j=1
This is achieved by exploiting the locally constant property of the T f,, as discussed
in §5.31 In particular, by Corollary 5.7 and Holder’s inequality there exists a non-
negative, rapidly decreasing, locally constant function ¢ such that

(6.4) [TAFo[P% 1T P % e + RapDecN)| £ o)

holds for all K~ !-caps 7. Since rapidly decaying error terms are entirely harm-
less, henceforth they will be suppressed in the notation. Observe that for all
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r € B(z,K?) and y € R" one has (x(z —y) S K°Dwg(z — y) where wi (y) :=
(1 + |y|/K)~% for some choice suitable of large exponent N satisfying N = O(1).
Combining these observations with a second application of (6.4)) yields

©5) T S KOO [P G (e - )

Fix € B(0, K) and note that the locally constant property of ¢ implies that
(6.6) T o P7% % Cie (y) < T f |P7% 5 Cie (22 + ) for all y € R™.
Thus, by ([63), (68) and (66), one deduces that

> ¢ (Bg2) < K9 1)/ n|T)‘f «[P* s Ce (2 + yi)wi (Z — y;)dy.

Taking the average of both sides of this estimate over all x € B(0, K) and shifting
the y; variables,

prx§(Bg2) S KO / n T f, * 00y, 2 (2)|P/* dzZk (y, z)dydz
(R™)2+ B(z,K) 7

where Zk(y,z) := H_I;:l wr (y;)Cx (25) and oy, .. (x) := = + y; — z;. Since both
wg and (i decay (at least) as rapidly as |y|~" away from B(0,K), one may
restrict the integral in y and z from the whole space (R™)?* to the bounded region
B(0,)\/CK)?* at the expense of an additional harmless error term.

Given a K ~'-cap 7, let T} be a Hérmander-type operator given by replacing the
amplitude a” in the definition of 7* with some amplitude a} which has w-support
in a 2K ~!-cap concentric to 7 and which satisfies T} f, = T*f,. One now wishes
to bound

(6.7) / /]1de%wUW®%ww®®
B(0,)\CK)?* B(z,K) =1
For the purposes of this proof a k-tuple (71,...,7%) of K l-caps is said to be

transverse if (TTA1 yen ,Tﬁk ) is a cK~ = D_transverse k-tuple of Hormander-type op-

erators, for a suitable choice of small constant ¢ > 0. If the constant C' from the
original decomposition is sufficiently large, then using the estimate

|Gz, w) — GA(;vw|<| ) |<C 'K=! for (x,w) € suppa,

it is clear that, in addition to (6.2), one may assume that (77", ..., 7;) is transverse.
The expression (6.7 is therefore dominated by

k
Z / / H |T7f\] fr; 00y, . (2)|P/* dzZk (y, ) dydz,
(73)j=1 trans. p(o \JG )2+ B(z,K) 7~

where the sum is over all choices of transverse k-tuples of caps. Summing both
sides of this inequality over all B(Z, K?) € Bg= with B(z, K?)n B, # (&, it suffices
to show that

k
A[]ﬁmmM4|Wm<mmmmg
Al
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for any choice of K~(*~1_transverse tuple (71,...,7;) and any y,z € B(0, NCOK)k,
However, defining TjA flx) = TT)‘J_ fooy, ., (x) and again choosing C' to be sufficiently
large, this estimate is an immediate consequence of the hypothesised multilinear

estimate.
O

7. ALGEBRAIC PRELIMINARIES

7.1. Basic definitions and results. Let 0 < m < n and consider a collection of
real polynomials P; € R[X1,...,X,], 1 <j<n—m. Let Z(Pi,...,P,_) denote
their zero locus; that is,

Z(Py,...,Poy)i={z€R": Pj(z) =0for 1 <j<n—m}.

A set of the above form is referred to as a wvariety and the mazimum degree of
Z(Py,...,Py_p) is defined to be the number
deg Z(Py,...,Py_) := max degP;.
1<jsn—m

Throughout this article it will be convenient to work with varieties which satisfy
the additional property that the n x (n — m) matrix (VPi(z)...VP,_n(z)) has
full rank whenever z € Z(Py,..., Ph—m). In this case Z(Py,..., Ph_m) is said to
be a transverse complete intersection. Clearly any transverse complete intersection
is a smooth m-dimensional submanifold of R™.

For 0-dimensional transverse complete intersections the following well-known
variant of the classical Bézout theorem holds (see, for instance, [10]).

Theorem 7.1 (Bézout’s theorem). Suppose Z = Z(Pi,...,P,) is a transverse
complete intersection. Then Z is finite and #7 < H?:I deg P;.

A key tool in the present analysis of Hormander-type operators is the following
polynomial partitioning result, which is a variant of the polynomial partitioning
theorem introduced in [I5] and is based on the classical polynomial ham sandwich
theorem of Stone and Tukey [21].

Theorem 7.2 (Polynomial partitioning [13]). Suppose W € L*(R™) is non-negative.
For any degree D € N there is a polynomial P of degree deg P < D such that the
following hold.

i) The set Z(P) is a finite union of ~ log D transverse complete intersections.
i) If {O;}iex denotes the set of connected components of R"\Z(P), then #I < D™
and

/ W ~D™" W forallieT.
O; R™

The connected components O; of the set R"\Z(P) are referred to as cells. Tt
is remarked that in [I3] a stronger version of the above theorem is stated and
proved, which provides further structural information about the polynomial P (in
particular, the full result is stable under certain small perturbations of P). Whilst
the methods of this article will require this strengthened version of Theorem [7.2]
the full statement of the result is not reproduced here (it is only needed to address
certain technical aspects of the analysis).

It was observed in recent work of the first author [14, [13] that polynomial parti-
tioning is a useful tool for studying oscillatory integral operators. Roughly speaking,
Theorem can be used to effectively reduce the problem to situations where the



SHARP ESTIMATES FOR OSCILLATORY INTEGRAL OPERATORS 29

mass of T*f is concentrated in the neighbourhood of some low-degree algebraic
variety; note that this is precisely the setup in the sharp examples discussed in §2

7.2. Polynomial approximation. Recall that the operators T are defined with
respect to data belonging to the C*® category. In order to apply algebraic methods
to the problem, one must approximate certain C* objects by polynomials. This
applies, in particular, to the core curves Fg,v which appear in the definition of the
wave packets in §5 Similar issues were addressed in [8] 27] via a Jackson-type
approximation theorem (see, for instance, [I]); for the present purpose an entirely
elementary Taylor approximation argument is all that is required.

Let € > 0 be a small parameter and define N = N, := [1/2¢] € N. Suppose that
I': (—1,1) - R™ is a smooth curve satisfying

[Cllenes(-a = _max sup r® ) < 1;

by the reductions made in §l the curves I'g, from 5l satisfy this condition. Let
[T']e: R — R™ denote the polynomial curve given by the degree N Taylor approxi-
mation of I around 0. Observe that

el g (—2,2) < 62HFHCN(71,1) <L

Given A » 1, noting that A=¢N < A~Y/2, Taylor’s theorem yields

ITO ) — [T]D(8)] e AV2[¢)1° for all [t| Sc A% and i =0, 1.
Letting T'*: (=X, \) — R™ denote the rescaled curve I'*(¢) := AI'(t/)), the above
inequalities trivially imply that
(7.1) I e -axony S 1 and D)o —aron) S AT
and
(7.2) (MO ) — ([T D (1) < AY2tP for all |t| <. A1 and i = 0, 1.

Combining the ¢ = 1 case of the above estimate with the elementary inequality

z Yy . n
@ Ayl < |x||y|\m - m\ < 2min{lal,Jyl}le —y|  for all 2,y ¢ R™\{0},

one observes that the tangent spaces to the curves I'* and [I'*]. have a small angular
separation; more precisely,

(73) ﬁ_(Tp/\(t)FA, T[F*]E(t) [FA]E) SE )\71/2 for all |t| SE Alis.

7.3. Transverse interactions between curved tubes and varieties. Let Z =
Z(Py,...,P,_) be a transverse complete intersection and fix a polynomial curve
I': R — R™ The purpose of this subsection is to study transverse interactions
between I'" and an r-neighbourhood of Z; that is, roughly speaking, one wishes to
understand the set of points at which the curve I' enters N,.Z at a large angle.
More precisely, given «, r > 0 the problem is to estimate the size of the set

Zeqpp i= {z € Z:3z el with |z — z| <r and X(T.Z,T,T") > a}.

It will be convenient to assume that I" is a polynomial graph, by which it is meant
that the curve can be rotated so that it is given by I'(¢) = (y(¢),t) for some poly-
nomial mapping v: R — R"~1,
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Lemma 7.3. Letn>2, 1<m<nand Z =Z(P1,...,Py_m) S R" be a trans-
verse complete intersection. Suppose I': R — R™ is a polynomial graph satisfying

(7.4) IT | (—2a2n) ST and T pe(—an2n) <O

for some A\,6 > 0. There exists a dimensional constant C > 0 such that for all
a>0and 0 <r < X satisfying o = Cor the set Z=qrr 0 B(0, ) is contained in
a union of O((deg Z - deg T')™) balls of radius r/c.

The case of interest is given by taking I' := [Fé\)v] < to be the polynomial approxi-
mant of the curve Fg,v introduced in the previous subsection. Here degI’ <. 1 and,
by (1), the condition (7)) holds with § ~. 1/A; thus, Lemma [(3] implies that for
a>0and 0 <r < A satisfying a 2 r/\, the set Z~o 1 N B(0,\) is contained in a
union of O.((deg Z)") balls of radius 7/a.

Using Bézout’s theorem (that is, Theorem [(T]), Lemma was established in
the case where I' is a line by the first author in [Lemma 5.7] [13]. If ' = ¢ is a
line, then the condition (Z4) holds for any A > 0 and any 6 > 0 and therefore
the lemma implies that for any a,r > 0 the set Z., ¢ is contained in a union of
O((deg Z)™) balls of radius r/a. The result for general curves I' is, in fact, a rather
straight-forward consequence of the special case of lines.

Proof (of Lemma[7.3). Since the problem is rotationally invariant, one may assume
that T'(t) = (y(t),t) where v: R — R"~! is a polynomial mapping.

The function T: R™ — R™ given by Y (2/, z,,) := (&' — y(xn), zn) is clearly a dif-
feomorphism which maps bijectively between I' and the vertical line ¢ = span{e,,}.
Furthermore, it easily follows that the image set

Z:="(Z(Pr,...,Popn)) = Z(Pro X} ... Py

is a transverse complete intersection of maximum degree deg Z < deg Z - degT.
Let A, a,r satisfy the hypotheses of the lemma for some suitably large dimen-
sional constant C' > 1. The key observation is as follows.

Claim. There exist dimensional constants 0 < ¢ <1 and C > 1 such that
Z>o¢,r,l" N (Rnil X (*)\, A)) o T71(2>ca,0r,f)-

Once this claim is verified, Lemma [7.3] easily follows. Indeed, one may apply the
special case of Lemma [73 for lines (which, as previously remarked, is proved in
[Lemma 5.7] [13]) to conclude that Z- .o o is contained in a union of O((deg Z -
degI)™) balls of radius r/a. On the other hand, as a consequence of the first

hypothesis in (4],
(7.5) IT(z) — T(2")| ~ |z — 2| for all z, 2/ e R™™! x (=\, \).

Combining these observations, it follows that the set Z-q,r n B(0,\) can be
covered by O((deg Z - degI")") balls of radius 7/a, as required.

Turning to the proof of the claim, let z € Z~, 1 n B(0,\) and note that there
exists some z = I'(z,) € T with | — 2| < r and A(T,Z,T,I') > «. Defining
Z:=7Y(2) € Z and 7 := Y(x) € ¢, it follows from (ZA) that |& — 2| < r. Thus, the
problem is reduced to showing that 4(T52, en) = 4(T52, T:0) 2 a.

Observe that, provided C is sufficiently large depending only on n,

(76) ﬁ_(TZZ, TF(zn)F) > 04/2.
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Indeed, |z,| < A and |z,| < A + 7 < 2\ and so, by the second condition in (7)),
T (2n) — T (20)| < 8|y — 20| < 67 < C 7.

Thus, if C is appropriately chosen, then A (Tr(e) T Tr(z,)I') < /2, which imme-
diately yields (7.6)).

Combining the observations of the previous paragraphs, the claim follows pro-
vided one can show that 4(T52, en) ~ (1.2, Tr(.,)I'). Let 1 be a smooth curve
in Z containing z and define 7 := T(n); thus, 7 is a smooth curve in Z containing
Z. The problem is now reduced to proving that

(77) 4—(T2ﬁ7 en) ~ 4(Tz777 TF(zn)F)

If T,n lies in the hyperplane e;- orthogonal to e,, then the above estimate easily
follows. Indeed, the tangent space Tr(;,)I" is spanned by I'(z,) = (7'(2x),1) and
therefore, by (Z4)), one has A (7.7, Tr(., I') ~ 1. On the other hand, it is clear
from the definition of Y that 77 also lies in e and so % (737, e,) = 7/2. Thus,
([T holds in this case.

If T.n does not lie in the hyperplane eﬂ;, then 1 can be locally parametrised as
a graph over the x,-variable. By an abuse of notation, let n denote this graph
parametrisation and 7 := T on so that n(z,) = z and 7(z,) = Z. One may easily
verify that |77 (z,) A en| = [ (2n) A TV(2y)| and so

sin £ (Txij, en) |17 (z0)| = sin £(Ten, Tr(e,) D) I (z0) [T (2]

By the first hypothesis in (T4]), one has |77 (z,)| ~ |7'(2n)| and |[IV(2,)] ~ 1, and
[0 follows. O

8. TRANSVERSE EQUIDISTRIBUTION ESTIMATES

8.1. Tangential wave packets and transverse equidistribution. In this sec-
tion the theory of transverse equidistribution estimates, as introduced in [13], is
extended to the variable coefficient setting. This is a key step in the proof of The-
orem and here the positive-definite hypothesis H2%) plays a crucial rdle in the
argument.

The first step is to give a precise definition of what it means for a wave packet to
be ‘tangential’ to a transverse complete intersection Z. Throughout this section let
T? be a Hormander-type operator with reduced phase ¢ and for some R « \ define
the tubes Ty, as in §5 Furthermore, let d,, denote a small parameter satisfying
0 <0 < 6 « 1 (here ¢ is the same parameter as that which appears in the
definition of the wave packets).

Definition 8.1. Suppose Z = Z(Py,..., P,_m) is a transverse complete intersec-
tion. A tube Ty, is R~Y/?*9m_tangent to Z in B(0, R) if

(8.1) Ty,0 < Npijz+om (Z)

and

(8.2) £(GN(w;w0), ToZ) < Crang R™Y/2H0m

for any x € Ty, and z € Z n B(0,2R) with |z — z| < C_'tangRl/Q‘“sM.

Here Cang > 0 (respectively, C’tang > 1) is a dimensional constant, chosen to be
sufficiently small (respectively, large) for the purposes of the following arguments.
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Definition 8.2. If S € T, then f is said to be concentrated on wave packets from
S if
f=3 fou+RapDec(R)|f] 2z
(6,v)eS

One wishes to study functions concentrated on wave packets from the collection
Tz :={(0,v) €T : Ty, is R™Y2+0m_tangent to Z in B(0, R)}.

Let B < R™ be a fixed ball of radius R'/?*% with centre Z € B(0, R). Through-
out this section the analysis will be essentially confined to a spatially localised
operator np - T*g where np is a suitable choice of Schwartz function concentrated
on B. For any (6, v) the frequencies of ng - T g , are concentrated near the surface

(8.3) Y= {2(w):weQ} where X(w):= 0,0 (T;w).
Now consider the refined set of wave packets
TZ,B = {(9,’0) eTy,: Tgyv N B # @}

If (8,v) € Tz p, then the direction G*(#;wg) of the curved tube Tp,, on the ball B
must make a small angle with each of the tangent spaces 7,7 for all z € Z n B.
It transpires that this essentially constrains the frequency ¥ (wp) to lie in a small
neighbourhood of some fixed (depending on the choice of ball B) m-dimensional
manifold S¢ (here m = dim Z). In the case of the parabolic extension operator Fpay,

which is studied in [I3], the relationship between the normal direction G*(;ws)

and the frequency Y (wy) is particularly simple. Here 3(wy) = (wg, ‘wg‘z) is con-

1/2

strained to lie in roughly the R™"“-neighbourhood some affine subspace A¢. The
uncertainty principle then suggests that if g concentrated on wave packets from
Tz, then the function |Ep..g(z)| is morally constant as one varies z by RY? in
directions perpendicular to A¢. Furthermore, it can be shown that the affine sub-
space A¢ makes a small angle with the tangent planes T.Z for z € Z n B and so
| Eparg ()| is morally constant as one varies = by R'Y? in directions transverse to
Z n B.

One wishes to extend the above observations for Fp,, to the variable coefficient
setting; that is, for g concentrated on wave packets from Ty B the problem is
to show that |T*g| is morally constant in directions transverse to Z n B. More
precisely, one wishes to establish an inequality roughly of the form

(8.0 f gl < f 1T
Np1/2+5m (Z)('\B B

for 0 < p < R; this would show that the L? mass of T?g is unable to concentrate
in a small neighbourhood of Z n B. For the parabolic extension operator the
observations of the previous paragraph can be used to prove ([84]) (up to a rapidly
decaying error term). The general case is more complicated, however. First of
all, the surface S¢ described above is no longer necessarily an affine subspace and
may possess curvature. One way to circumvent this issue is to introduce a further
constraint on the family of wave packets. Let RY/? < p « R and throughout this

My fact, in the general case a more stringent hypothesis on g is required, as discussed below.
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section let 7 < R™! be a cap of radius O(p~1/2+%n) centred at a point in B!
Now define

Tz B, := {(9,1}) €Tz :0n7+# and Ty, N B # @}.

The frequencies X(wg) for (0,v) € Tz g, are further constrained to lie in a small
region of ¥ upon which the curved space S¢ can be effectively approximated by
an affine space A¢. Consequently, one can carry out a similar analysis as in the
parabolic extension case.

The second issue is to ensure that the resulting affine space A; makes a small
angle with the tangent spaces 1.7 for z € Z n B. This is crucial to ensure that
the morally constant property holds in directions transverse to Z. For general
Hoérmander-type operators this property can fail (a simple example is given by the
extension operator associated to the hyperbolic paraboloid, as discussed below). In
order to ensure the angle condition one needs to exploit the additional positive-
definite hypothesis H2T).

In practice, the rigorous formulation of these heuristics is somewhat messier than
[®A), and it is convenient to state the key estimate in the following manner.

Lemma 8.3. With the above setup, if dim Z <. 1 and g is concentrated on wave
packets from Tz g -, then

(8.5) /N s |T>\g|2 < R1/2+O(6M)(p/R)(n_m)/2HgH2L2(B"*1)'
pl/2+8m n

The inequality (B3] is related to the heuristic inequality (84]) via Hérmander’s
L? bound
IT*gl7205) 5 RV g2 (n-1)-
The estimate is presented in this way (rather than in a form more closely resembling
[B4)) as it provides a relatively clean statement and, moreover, (83 happens to
be the precise bound required later in the proof.

8.2. Uncertainty principle preliminaries. If G: R" — C is frequency sup-
ported on a ball of radius r > 0, then the uncertainty principle dictates that G
should be essentially constant at spatial scale r—'. In particular, the L?-mass of G
cannot be highly concentrated in any ball of radius p < ! and so one has

folersf e
B(zo,p) B(xo,r—1)

Strictly speaking, for this inequality to hold the right-hand integral should be taken
with respect to a rapidly decaying weight function rather than over the compact
region B(zo,r~!) (see, for instance, [I3, Section 6]). There is a variant of this
estimate which is effective in cases where G has the property that G is merely
concentrated in (rather than supported in) an r-ball.

Lemma 8.4. If r~Y/2 < p < r~, then for any ball B(zg,p), & € R™ and § > 0

one has
s 1 1/(146)
G 2 < G 1 25/(1+5) / G 2 .
e F 58 160310 " gy 167)
Here wp(g, ) 15 a weight concentrated on B(§o,r) given by

(8.6) Wh g, (&) = (1L + 171 [& = &)™
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for some large N = N5 € N.

Hence, if G is concentrated in B(&y, ) in the sense that |G(£)| < Muwpgg, r(§) for
some controllable constant M > 0, then the lemma produces a favourable estimate.

Proof (of Lemma[8). Define ¢(z) := vo(p~'(z — zo)) where 9 is a Schwartz
function which satisfies |¢o(z)| 2 1 on B(0,1). Thus, by Plancherel,

| ek = [wep - [liar
B(zo,p)

Using the rapid decay of 1& and Holder’s inequality, one deduces that
95 GO 5 7" [ waie 70|
for all £ € R™. By expressing the right-hand integral as

6/(146) . B
| (waes s umen @) (G0N waenno?) " dr
and applying Holder’s inequality, it follows that
[+ G(E)| < |B(xo, p)| - 1(6)7 - T1(¢) V/O+)

where

1(§) ?=/]R Wr e, 1) (MW, (1) dn,

(e) = / (G [ Pwpge ) (m) =2 d.

To estimate 1(¢) first perform the variable shift n — 1 + & and then decompose
the range of integration into the regions |n| < [£ — &|/2 and || = [£ — &|/2.

Since wp(e—gy,p-1)(1) S5 Wp(g,p-1)(§) for |n] < [€ = &ol/2 and wp,p-1)(n) <5
Wp(g,,p-1)(§) for [n] = 1§ —&ol/2, it follows that
1(6) <5 | B(wo, p)| " wpiey,p1) (€)'

To estimate I1(€) note that, provided Ny is chosen sufficiently large, by Cauchy—
Schwarz and Plancherel’s theorem one has

) < [Gugle, 15 [ 160 w0 (1) d
< 1B, )21 Gl |Gl paeny-

Combining these observations, one obtains the desired estimate but with an
additional factor of (pr'/2)=279/(1+9) on the right-hand side. Since 1 < pr'/2, the
result immediately follows. O

8.3. Wave packets tangential to linear subspaces. Here, as a step towards
Lemma B3] transverse equidistribution estimates are proven for functions concen-
trated on wave packets tangential to some fixed linear subspace V< R"™. As before,
let B be a ball of radius R'/?*%" with centre Z € R” and define

Ty, := {(0,v) : £(G(&,we), V) < RV and Ty, n B # &}
Let RY? < p < R and for 7 = R* ! a ball of radius O(p~'/2*%n) centred at a point
in B"~! define
TV,B,T = {(9,’0) S TV,B 0N (% -7’) # @}
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where (15 - 7) is the cap concentric to 7 but with 1/10th of the radius.
The key estimate is the following.

Lemma 8.5. If V < R" is a linear subspace, then there exists a linear subspace V'

with the following properties:

1) dimV +dimV’ = n.

2) V,V' are quantitatively transverse in the sense that there exists a uniform con-
stant Cirans > 0 such that

A (v,v") = 2Ctrans for all non-zero vectorsve V and v e V'.

3) If g is concentrated on wave packets from Ty g, II is any plane parallel to V'
and xg € Il n B, then the inequality
im V'’ 26/(146 1/(1+6
TAg|? <5 ROGR) (p/ Ry V2| g2 G0 ([ |T2gP)
IInB(zq,pt/2+0m) IIn2B
holds up to the inclusion of a RapDec(R)|g|r2(pn-1) term on the right-hand
side.

Proof (of Lemma[8F]). The argument is presented in a number of stages.
Gy (@w) .
[Gh e 15 the
Gauss map associated to the hypersurface X, defined in (83). Since G(z;0) = e,
for all z € X, Lemma 4] implies that

A (GMNE;w), en) ~ |wl for all w € Q.

Constructing the subspace V’. Recall that w — G*(T;w) :=

Consequently, by choosing diam €2 to be sufficiently small in the initial reductions,
one may assume that the Gauss map w — G*(Z;w) always makes a wide angle with
the hyperplane e = R"~! x {0}. In particular,

A(GMNT;w),er) 21 forallwe Q.
Since the situation is trivial if Ty, p = J, one may assume that

(8.7) £(Viey) = max  L(v,e;) X 1.

Define S, c R*~! by
Sy i={weQ:GMNz;w) eV}
Fixing an orthonormal basis {N1,..., N, _dimv} for V1, one has
S ={weQ:(GY(T;w),Nyy=0for 1 <k <n—dimV}.
Claim. If S, # &, then S, a smooth surface in R~ of dimension dimV — 1.

Proof. Let w € S,, and note that each N, is tangential to 3 at ¥(w). Hence, one
may write

()0, 0™ (T3 W)

ﬁﬁ

for some choice of coefficients N ( )( ) € R. A computation now shows that

0 (G (@ w), Ny = — 2@3%6 AN (#5w), GY(E;w)HND ().
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The condition H2) implies the invertibility of the (n — 1) x (n — 1) matrix whose
(i,4)th entry is given by

Cr

wiWwj

00N (T w), GY (T3 w)).

Thus, the Jacobian of w +— ((GJ(F;w), Nig))?ZH™ VY has maximal rank, and the
claim follows by the implicit function theorem. ]

At this point it is convenient to switch to a graph parametrisation of ¥ via the
change of variables u ~— WU*(Z;u) where U* is the (appropriate A\-rescaling of the)
function introduced in §dl For convenience, let ¥: U — Q denote this mapping;
that is, ¥(u) := ¥*(Z;u). Recall that the hypersurface ¥ coincides with the graph
of the function
(8.8) h:U - R, h(u):= 0, ¢Z; ¥(u)).

If S, n 7= ¢, then it follows that
4(G)‘(CZ';9),V) > p—1/2+6m > R—1/2+6m

whenever 6 N (% -7) # . Consequently, Tp rv = & and the situation is trivial.
Thus, one may assume without loss of generality that S, n 7 # ¢ and so, letting
Sy =048, ={uelU:G)(z;¥(u) eV},

it follows that S, " W~1(7) # . The properties of the mapping ¥ discussed in
imply that W—(7) is roughly a ball of radius O(p~/2+%m).

Fix some ug € S, n ¥~1(7) and let A, be the tangent plane to S, at ug. This
is interpreted as a (dimV — 1)-dimensional affine subspace of R"~! through .
Now define A¢ := A, x R € R” so that dimV; = dim V' and let V;, and V¢ be the
linear subspaces parallel to A, and Ag, respectively. Finally, let V' := Vgl so that
dimV + dim V' = n.

Verifying the transverse equidistribution estimate in 3). Suppose IT € R" is
an affine subspace parallel to V' which intersects B and zp € Il n B. Let ng(z) :=
n((x — z)/RY?*9m) where 7 is a Schwartz function which satisfies n(x) = 1 for
x € B(0,2) and, for any (#,v) € T, consider

(15 T go.olm) () = 2o O RARTCET) | K € w)go.n(w) de

where K*(&;w) is given by
/ e?ﬂi(¢’\(m0+R1/2+6mz;w)—Rl/2+6m<z7g>)a)\ (ZCO + R1/2+6m2;w)ﬁ(2) dz

for 7j(z) := n(z + (w0 — &)/RY?*%"). The z-gradient of the phase in the above
oscillatory integral is equal to

RY2%0m ([€ — projy B(w) ] + projy. [(0:0™)(Z;w) — (3.0 (w0 + RY2T0m 2; w)])
where the second term satisfies
|projvl[(am¢)‘)(5c;w) — (31¢>\)($0 + R1/2+5mz;w)]| < R1/2+5’"//\ « R™Y/2+0m

Repeated integration-by-parts now shows that K is rapidly decaying whenever
— projy, B(w)| = R~Y2+9m and, moreover,
|€ — projy

[KX & w)| <w (1+ RY2IE = proji E(w)) V.
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If w € SuUpp go,v, then [w—wy| < R™/2 and so |Z(w)—&| S R™/? where & := S(wp).
Consequently,
(8.9) |15 - T2g0,0m)~(€)] S5 ROV wp (oo, ep.m-12) ()] 90,0] 2 (3m 1)
where the definition of the weight function

wB(projV/ﬁg,R*1/2)(€) =1+ R1/2|§ - §0|)7N

agrees with that of Lemmal84] (although here the weights are thought of as functions
on V'), and so N = Nj is a large integer, depending on 4.
The following geometric observation is key to the proof of property 3).

Claim. If (6,v) € Tp v, then dist(&p, A¢) < R™Y/2+0m

Temporarily assume this claim and recall that V' := VEJ- where V¢ is the linear
subspace parallel to the affine subspace A¢. Thus, if (6,v) € Tp v, then proj, &
lies in some fixed ball of radius O(R~Y2+9m). Letting &4 € V' denote the centre of
this ball, it follows that wp(yrej,,, ¢y, R-1/2) 6 WB(g,,R-1/2+4m) and so

Oo(1
Z WB(projy: &o.R-1/2) S8 1T Dwp ey, r-1200m).
(0,0)eTp,+,v

Recalling (89),
(1 - Tl w5 varomllie < RO glzagen s
and, applying Lemma B4l one concludes that

m dim V' 26/(14+6 1/ 1+6
TP <5 RO ( 9| 2L+8) ¢ / T s
B(zq,pt/2tom)AII

If £ ¢ 2B, then & ¢ (g, ,)er,, To,0 and so 1T*g9,0(€)] = RapDec(R)||g] z2(pn-1) for
all (,v) € Tp v. Hence

/ TP nsl? < / T2 + RapDee(R)|gl gz,
II 2BnNII

completing the proof of property 3) under the assumption that the above claim
holds.

R1/2) L2(B»—1)

Proof (of Claim). Fix (6,v) € Tp,rv and let ug := proj,1 X(wg). Recalling that
A¢ = A, x R and applying triangle inequality, one deduces that

dist(&p, Ae) = dist(ug, A,) < dist(ug, Sy N ¥ (7)) + sup dist (us, Ay).
UgE€Sy T —1(T)

Furthermore,
dist (ug, Sy N (7)) ~ dist(wp, Sw N T) < £(CN@;wp), V) < R™Y2+0m

where the last inequality is by the definition of Tp ;. On the other hand, fix-
ing uy € S, N ¥1(7), one wishes to estimate dist(ux, A,). Provided p is suffi-
ciently large (so that diam 7 is sufficiently small), the surface S, N ¥~1(7) can be
parametrised as the graph of some function 1: W — V& < R"~! where W < V,
is an open set about the origin of diameter O(p~'/2*%). In particular, one may
write

Sy NV~ {w+1/1 UJGW}+UO
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where (0) = 0 and 9,%;(0) = 0for 1 < j < n—dimV,,. Thus, us = ws+1(ws)+uo
for some w, € W and, since wy € V,, + ug = A,, it follows that dist(us, A,) <
|th(wy)|. By Taylor’s theorem,

1
|1 (wy )] < / (1 — 1)|€0% 5 (tws Jws, wi )| dE < Jwy|* < p~ 720 < RTY/2H0m
0

for 1 < j < n—dim V,, and combining these observations yields the desired estimate.
O

Verifying the transversality condition in 1). The transversality of the planes
V and V' heavily relies upon the positive-definite hypothesis H2%); the property
does not hold in general if one only assumes the weaker condition H2).

Example 8.6. For ¢y, (7;w) := {2/, w)+x3wiws for (x;w) € R xR? the oscillatory
integral operator
B (o)1= [ ot fu) do
B2
is the extension operator associated to the hyperbolic paraboloid. This is the
prototypical example of a Hormander-type operator for which H2") fails. Here
Go(w) = (—wa, —w1,1)T and therefore if V := {x € R® : 21 = 0}, then

S, :={we B?:Gy(w) eV} ={we B?:wy = 0}.

It follows that Ve = {£ € R3: & =0} and so V/ := Vgl is a vector subspace of V.
Clearly, in this situation the desired transversality condition completely fails.

The present analysis concerns Hormander-type operators with positive-definite
reduced phase ¢*, so that ¢* is a small perturbation of ®par- Such phases do not
exhibit the phenomenon observed in the above example: the following claim is key
to understanding this.

Claim. Let cpar be the constant defined in §4 Then

* Vu =0 ar ).
v*evﬁr(%ggx{o})&(v Vi) = O(cpar)

Here V,, is identified with a subspace of e = R"~1 x {0} in the natural manner.

Example 8.7. Returning to the example of the hyperbolic paraboloid with V' :=
{z € R3: 21 = 0}, the spaces V n (R? x {0}) and V,, := {x € R® : 33 = x5 = 0} are
mutually orthogonal, and so the claim does not hold in this case.

Provided cpar > 0 is chosen sufficiently small, the claim implies the transversality
condition. Indeed, let {v{,...,v3,  ,_;} be an orthonormal basis for V' n e Fix
a unit vector v¥,_ |, € V which is perpendicular to V n e so that {v¥,...,v% -}
forms an orthonormal basis for V. By the above claim, there exist v, € V, nS" 2 <
e; such that

(v, vr) = O(cpar) for 1 <k<dimV —1.
Applying the Gram—Schmidt process, one may further assume that {v1, ..., Vdimv—1}
forms an orthonormal basis of V,,; adjoining e,, to this set then gives an orthonormal
basis of V. Given v e V n S"~! and writing
dim V-1 dimV -1
v = Z (0, V)V + Vs Vi v ) Vi v + Z (v, vi) (Vi — vk),
k=1 k=1
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since sin £ (v, V') = |projy, v|, it follows that

dim V-1

: / *\ |2 * 2 * 2 1/2
sing (v, V) = (2 Koy + Ko, vl v )P v en)l?) = Olcpar)
k=1
dimV

1/2
> ( 2 0,0 ) - iy en)] = Olepar):
=1

Consequently, provided that cpar is chosen to be sufficiently small,
sin (v, V') = Kvdim v en)l = Olcpar) 2 13
indeed, the last inequality holds since (87]) implies that
N _ 7 i
|<v§imV’e">| = &(v;‘imV7en) = 4(‘/7 en) e L.
This concludes the proof of the transversality condition, conditional on the above

claim.

Proof of Claim. Fix v* € V n (S""2 x {0}) and let v € V,, n S"~2 denote the unit
normalisation of the vector projy. v*. It suffices to show that % (v*,v) = O(cpar)-
Since

v* — v = (|projy, v*| = 1)v + projy . v*
and |[[projy, v*| — 1| < |projy, 1 v*|, the problem is further reduced to proving that
(8.10) Iprojy1v*| = O(cpar)-

The surface S, is defined by the equations —(d,h(u), Njy+ Nk, = 0 for 1 < k <
n — dim 1{ where, as above, {N1,..., N,_dimv} is a choice of orthonormal basis for
V+ and h is the function introduced in (88). By differentiating these expressions,
one deduces that a basis for V.- is given by {Mi, ..., M, _gimv} where
My, := 02 ,h(uo) N}, forl<k<n—dmV.

Let 1 <k <n—dimV and recall from Lemma that

(8.11) |0%uh(u0) = In-1]lop = Olcpar)-
Consequently,
(8.12) |Mj — Ny| = O(cpar)

and, combining this with the fact that (v*, N,) = 0for 1 <k <n —dimV (where
v* is identified with a vector in R™~! in the natural manner), it follows that
(8.13) ™, Mgy = (v*, My, — Ni.) = O(cpar)-
Let M be the (n—1) x (n —dim V') matrix whose kth column is given by the vector
M. The orthogonal projection of v* onto the subspace V. can be expressed in
terms of M via the formula
projVuLv* = MM ™) 'MTv*,

By (8I3), the components of the vector M T v* are all O(cpar). Thus, to prove (810)
(and thereby establish the claim) it suffices to show that |[M(MTM)7 !, < 1,
which would in turn follow from

IMllop €1 and  [(MTM) ™ fop < 1.

The bound for M is an immediate consequence of the definition of the M} and
(811)). The remaining estimate would follow if one could show that, provided cpar
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is sufficiently small, |A\| = 1 for every eigenvalue A of the symmetric matrix M TM.
By (8I2) and continuity of eigenvalues, it suffices to show that the matrix N'N
satisfies the same property, where N is the (n — 1) x (n — dim V') matrix whose kth
column is given by the vector Nj. By (1) the vectors Ni,..., N/ 4 € R*!
are linearly independent and, moreover, satisfy

|det N'N| = [N{ A+ AN/ _gimv]* 2 1.
Therefore, the desired condition on the eigenvalues holds if the spectral radius of

NN is O(1). But the latter property is an obvious consequence of the Newton-
Girard identity

Za?:(Zai)2—2 Z Gy Qi a,eRforl<ig<m
i=1 i=1 1<iy <ig<m
and the fact that the entries of NN are all O(1). O
This concludes the proof of Lemma O

8.4. The proof of the transverse equidistribution estimate. It remains to
demonstrate how to pass from Lemma 85l to Lemma R3] At this stage, the proof is
very similar to the argument found in [I3], but the details are nevertheless included
for completeness.

There are two additional ingredients needed for the proof of Lemma B3l The
first is the following theorem of Wongkew [26] (see also [14} [28]), which controls the
size of a neighbourhood of a variety.

Theorem 8.8 (Wongkew [26]). Suppose Z = Z(Pi,..., Po_m) is an m-dimensional
transverse complete intersection in R™ with deg Z < D. For any 0 < p < R and
R-ball Br the neighbourhood N,(Z n Br) can be covered by O(D™(R/p)™~™) balls
of radius p.

The second ingredient is a geometric lemma concerning planar slices of neigh-
bourhoods of varieties. The statement of this result requires a general quantitative
notion of transversality for pairs of linear subspaces in R™. Any m-dimensional
linear subspace V' can be expressed as a transverse complete intersection V =

Z(Pn,,-..,Pn,_, ) where {Ny,..., N,_,,} forms an orthonormal basis of V* and
Py, (x) := {x, N;). Suppose Vi, V> are linear subspaces in R™ satisfying
(8.14) dim V4 + dim V5 = n.

It is easy to verify that the subspace V1 n Va is a transverse complete intersection if
and only if dim V4 nVa = dim V3 +dim Vo —n (of course, the inequality dim V; nVa =
dim V; 4+ dim Vo — n always holds so the latter condition says that V3 n V4 is as
small as possible).

Definition 8.9. A pair V;, V5 of linear subspaces in R™ satisfying ([814)) is said to
be quantitatively transverse if the following hold:

i) dim(V; n Vo) = dim V; + dim V2 — n;

ii) #(v1,v2) = Ctrans for all non-zero vectors v; € (V1 n Vo)t n Vi,j=1,2.

Remark 8.10. In the special case where dim V; + dim Vo = n, it follows that the
pair Vi, V4 is quantitatively transverse if and only if £ (v1,v2) = Cirans for all non-
zero vectors v; € Vi, vg € Vo. Thus, up to the minor disparity between the choice
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of constant cirans, this agrees with the transversality condition appearing in the
statement of Lemma

Lemma 8.11. There exists some dimensional constant C > 0 such that the fol-
lowing holds. Let B, < R" be an r-ball, V< R™ a linear subspace, Z a transverse
complete intersection and suppose that dim Z +dimV > n and T,Z,V is a quanti-
tatively transverse pair for all z € Z n 2B,. Then

VB, n"Ny(Z)< Nc,(VnZ)
forallO < p <.
The proof of this simple lemma is postponed until the end of this section.
Proof (of Lemma[83). If Ty, N Npijatem (Z) 0 B = ¢, then it follows that
T go.0(2)| = RapDec(R)| g z2(pn-1) for all z € N,/2+5, (Z) N B.

Consequently, one may assume that g is concentrated on only those wave packets
from Tp, .,z for which Ty , intersects Ngi/2+45,, (Z)n B non-trivially. Suppose (6,v) €
Tg -z has this property and let © € Ty, N Ngij24s,, (Z) n B. If z € Z n 2B, then
|z — 2| S RY?T% and, by the RY?+9m_tangent condition,

£(GNx;0), T, Z) < R™Y/2+0m,
Since |G*(Z;0) — GMx;0)| < |Z — 2|/A < R™Y/?T9" one concludes that
£(GNz;0),T.Z) < R~V forall ze Z n 2B.

Thus, there exists a subspace V € R"” of minimal dimension dim V' < dim Z such
that

£(GN(E;0),V) s R™H2H0m
for all (0,v) € Tp, ;. z for which Ty, N Npij2tem (Z) N B # &. In particular, g is
concentrated on wave packets from Tp ;. One may apply Lemma to find a
subspace V' of dimension n — dim V' such that

(8.15) A (v,v") = 2¢trans for all non-zero vectors v e V and v’ € V’
and
- im V'’ 25/(1+6 1/(1+6)
©16) [P s RO RV PG ([ 1)
IINnB(zg,pl/2+5m) IIn2B

for every affine subspace II parallel to V’'. More precisely, the above estimate holds
up to the inclusion of some additional rapidly decreasing term. This small error will
propagate through the remainder of the argument but in the end will be harmless
and is therefore suppressed in the notation.

It is claimed that for each z € Z n 2B the tangent space T,Z forms a quantita-
tively transverse pair T,Z, V' with V’. Indeed, if this fails, then it is easy to see
that for some z € Z n 2B there exists a subspace W < T, Z of dimension

dimW > dimZ — dimV

with the property that A (w,V’) < cirans for all w € W\{0}. Consequently, the
crucial angle condition (BI5]) guarantees that

K(w, V) = Cirans for all w e W\{0}.
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This implies that there exists a linear map L: R™ — V such that L restricted to
V is the identity, L restricted to W is zero and |L|o, < 1. Recall that for each
(0,v) € Tp,z one has % (G(z,0),V) < R~Y?*%m and so

sup |L(GMNz,w)) — GMNz,w')| < R™V/2H0m,

w,w’eld

On the other hand, G*(Z,0) © Ng, g-1/2+5m (T.Z) 0 S™™! and so L(G*(z,0)) lies
in
L(Ng,g-12tom (T22) 0 S"1) S Ney go/2ssm (LT 2)).
This shows that for all (6,v) € Tp,z one has
£(GNZ,0), L(T.Z)) < R™Y#H0m,

Since L vanishes on W, by rank-nullity L(7T,Z) is a subspace of dimension at most
dim Z — dim W < dim V. This contradicts the minimality of V" and so (T,Z,V") is
a quantitatively transverse pair for all z € Z n 2B.

By Lemma [81T] one deduces that

II N Np1/2+<5m (Z) NnBCc Ncp1/2+5m (H N Z) N 2B.

Since IT N Z is a transverse complete intersection of dimension dim V' + dim Z — n,
Wongkew’s theorem now implies that II n N, p1/240m (Z) n B can be covered by

O(RO(ém) (R/p)(dim V' +dim an)/Q)

balls of radius p/?*9=. Applying the estimate (8I6) to each of these balls and
summing, one deduces that

n—m 26/(1+6 1/(1+6)
1292 <5 RO o/ R g B0 ([ 1) O,

AN 1245, (Z2)NB 2B

Integrating over planes II parallel to V'’ and applying Holder’s inequality, it follows
that

m n—m 26/(1+6 1/(1+9)
[ TR s RO R G (gl
N 1/2+5, (Z2)NB
Finally, recalling Hérmander’s bound,
1/(1+6 1/(1+6
(/ |T’\g|2) /( )S R1/2+0(5m)(/ |g|2) /(146)
2B Br—1

and absorbing the implied rapidly decaying error into the main term, one concludes
that

T g* <5 RY2HO0) (p/R) ™2 g |72 gy,
Np1/2+5m (Z)nB

which is the desired estimate. (|
It remains to prove Lemma 8111

Proof (of Lemma[811]). Applying a rotation, one may assume that V is the span
of the co-ordinate vectors eq,...,eqmy. For the purposes of this proof, vy :=
(V1«5 Yaimv) and Y1 = (Ydim V41, - - - , V) Will denote the orthogonal projections
of a space curve v onto V and V*, respectively.
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Suppose that £ € V n B, n N,(Z) and fix some zp € Z n N,(B,) with 0 <
|z — 20| < p. Let v: R — R™ be the constant speed parametrisation of the line
through v(0) := 2zp and (1) := z. To prove the lemma it suffices to show that
there exists a curve 7: [0,1] — R™ such that for all ¢ € [0, 1] the following hold:

1) 7(0) = ¥(0) = 2,

2) y(t) € Z,

3) Avi(t) = yyu(t), -

4) 17 ()] < C|Fy. (t)] where C := (Sin Cerans) ™

Indeed, once this is established, observe that z; := (1) € Z n V by properties 2)
and 3). Furthermore, 3) and 4) ensure that

7] < ClyL (B < Cly' (1) < Cp
and so, combining this observation with 1),
(8.17) [z = (1) < |z = 20| + [20 = F(t)| < (1 + Ct)p

for all t € [0,1]. In particular, |x — 21| < p, giving the desired conclusion.

The transversality condition implies that the distribution W, := (T,Z n V)* n
T.Z has rank n — dimV on Z n 2B, and, moreover, projy,.|v: V — Wi is an
isomorphism for all z € Z n 2B,. Smoothly extend W, to a small neighbourhood
U of Z n 2B, so that

(8.18) projy|v: V — wit is an isomorphism for all z € U.

The curve v will be chosen so that its tangent always lies in this distribution. Given
that 4y-1 is already defined by property 3), to satisfy this condition 4y must be a
solution to the ODE

{projw;m<y'<t>,v'w<t>> - 0

y(0) Projy 2o

where z(t) := (y(t), v+ (t)). By BI8), solving the above ODE is equivalent to
solving a system of the form

y = gty
(8.19) { y(0) = projyzo
for g a smooth function defined on {(¢,y) € R x V : (y,v1(t)) € U}. Note that g
can be described explicitly in terms of the inverse of projy, . |y and, provided U is
appropriately chosen, the derivatives of g are bounded. ’

The Picard-Lindelof existence theorem implies that the system (BI9) has a
solution 4y defined on an interval [0,T] for some T > 0 such that 5 := (v, vy 1)
satisfies Y(t) € 2B, for all ¢t € [0,T]. On this interval the curve ¥ clearly further
satisfies 1) and 3) and, by the tangency condition which motivated the definition
of the ODE, 2) also holds. If ¢ € [0,T], then it follows that ¥(t) € Z n 2B, and
7'(t) € W51y and so the transversality hypothesis implies that

- o 17y (8]
C™1 = Sin Cirans < sin £ (3'(t),V) = =% )
t 5O = )

Rearranging, one concludes that properties 1) to 4) all hold on [0, T7.

It remains to show that T' can be chosen to satisfy T' > 1. If dist(3(T),U°) 2 1,
then the regularity of g implies that the interval of existence can be extended by
a fixed increment. Thus, one may assume that at least one of the following holds:
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T=1lor |3yT)—x| = r/2 Supposing the latter holds, by the choice of 7" and
BI17), one deduces that

r/2<|H(T) — x| < (1+ CT)p.

Provided r is chosen to be sufficiently large compared to p, the desired bound
immediately follows. O

9. COMPARING WAVE PACKETS AT DIFFERENT SPATIAL SCALES

9.1. Wave packet decomposition at scale p. The proof of Theorem relies
on a multi-scale analysis and for this it is necessary to compare wave packets at
different scales.

Let 1 « R « A and recall the decomposition

T @)= Y T fou(e) + RapDec(R)| flzasm
(6,v)eT

described in §5l Consider a smaller spatial scalds RY? < p < R and fix B(y, p) <
B(0, R) with centre y € X*. Each of the T*fp,, can be further decomposed into
wave packets at scale p over B(y,p). To do this, first apply a transformation to

recentre B(y, p) at the origin. For g: B"~! — C integrable define § := e2mid™ (u; g
so that
(9.1) Trg(z) =T 5(z) fori=x—y

where T is the Hormander-type operator with phase g?))‘ and amplitude @* given
by

(9.2) b(z;w) = ¢(w + %;w) - qﬁ(%;w) and a(z;w) = a(w + %;w).

Applying this identity to the wave packet decomposition above,
T f(x) = Y, TM(fo.0)")(@) + RapDec(R)|f | 12(n1).-

(0,0)eT

Each T’\f.g,v is (spatially) concentrated on the curved RY/2+9_tyube T, and, conse-
quently, each T( fov)™ is concentrated on the translate Ty, — y. Since

0ud™(10,5(1),1) — Y3 w) = 0™ (2.0 (1), 1); w) — B (y5 w)
(9.3) =0 — 0,¢" (y;w),

the core curve Fg,v —y of Ty, — y is equal to 'y ,_p(y;w,) Where

B(y;w) 1= 0 (y; w).
Now repeat the construction of the wave packets for each T)‘( fo.v)”, but at scale
p. In particular, cover by finitely overlapping caps 6 of radius p~%/? and R*~!

12Indeed, suppose both conditions fail for T'. The failure of the latter condition implies that
dist(§(T), (2Br)¢) = r/2. Since 4(T) € Z by property 2), one concludes that 5(T') is far from U®
and thus the interval of existence for 4 can be extended by a fixed increment. One may redefine
T to be some value in the interval of existence incrementally larger than the original value of T'
and repeat this procedure until at least one of the stated conditions hold.

13Later it will be useful to assume the more stringent condition RY2 < p < R'72,
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by finitely-overlapping balls of radius p(!*%)/2 centered at vectors & € p(19)/2zn~1,
Let T denote the set of all pairs (0, 7). For each (6,v) € T one may decompose

(fo)" = D (fo)§, + RapDec(R)| £ r2(mn-1)
(0,5)eT
as in §8l The significant contributions to this sum arise from pairs (6‘~7 0) belonging
to
To., := {(6,0) € T : dist(h,0) < p~'/? and |v — v(y; wp) — 0] < RI+I/2},
as demonstrated by the following lemma.

Lemma 9.1. If RY? < p < R, then, with the above definitions, the function (fo.,)~
is concentrated on wave packets from Tg ,,; that is,

(fon)~ = Y. (fo.)5 5+ RapDec(R)| f]z2(pn1).
(6,0)eTy ,,

Proof. Since (fs,,)~ is supported in 6, clearly the wave packets of (fp,)~ at scale
p are all supported in
y

6: dist(0,0)<p—1/2

Thus, it suffices to show that for each (,v) € T and p~'/2-cap 6 one has
> (fo)g5 = RapDec(R)| f[r2(5n-1)-

0:lv—0(y;we) —B|Z R(I+9)/2

Fixing (0,v) € T and (0,9) € T with |v—o(y; wg) — 0| = RI+9/2 the above estimate
would follow if one could show that

~ _ _ ~\—(n+1
(fou)ia = (1L+ R72J0 = o(y;wp) — 8]) """ RapDec(R)| | 2(5n-1)-
Fourier inversion yields the pointwise bound
((F0.)5 @) < 1) 21w 110 (85 Fo.) ) o
S H(d}é)v * ((f@,’u)w)VHLOO(B(57CP(1+6)/2))

for all w € R"~1. Since (1) is concentrated in B(0, p'/2), the problem is further
reduced to showing that

~\ ~ _ _ —(n+1
((fo.))"(2) = (1+ R7%|2 — v+ 0(yswe)|) "V RapDec(R)| ]l 12(5n 1)
1+6)/2'

whenever |z — v + 0(y;wo)| 2 R( )
Let ¢ be a Schwartz function on R"~! satisfying ¢(w) = 1 for w € B"~" and
define ¢y (w) := P(R™Y2(w — wg)) so that
(o))" = (o™ ) (Jp.)™.
On the one hand, since suppn, < B(v, CR(**+%/2) it is not difficult to show that
(9.4) (fo.)"(2)] = (1 + R™Y2|z — o) """V RapDec(R)| f | 1251

whenever |z —v| = R(1+9/2, On the other hand, it is claimed that

(9.5) ‘(1/:)962”1"1’%”; ))v(z)’ = (1+ R Y2z + 5(y;we)|) "YU RapDec(R)
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whenever |z + o(y; wg)| = R1AF9/2. A routine argument then shows that ([@.4) and
(@) imply the desired estimate for ((fs,,)~)~ and so it only remains to prove the
claim.

The inverse Fourier transform in (@) can be expressed as

Rf(nfl)/Q / 627Ti(<z,w9+R71/2w>+¢7>‘(y;wngR*l/zw)),%Z(w)dw,
Rn—1

where the w-gradient of the phase is given by

(96)  RTV2([000" (s wo + R™H2w) = 0, (yswo)] + [0y we) + 2]).

Using the fact that 02 ¢*(0;w) = 0, the first term in (@8] can be estimated thus:
10,0 (y;wo + R™Y%w) — 0,6™ (y;we)| < R™2|y| < RM2.

Consequently, if z ¢ B(—o(y; wg), R(A*9)/2), then the second term in (6] dominates
the w-gradient of the phase and (%6) is = R%? in norm. Repeated integration by
parts now implies ([@.4]), concluding the proof. O

9.2. Tangency properties. Let Z be a transverse complete intersection of di-
mension m and suppose h is a function which is concentrated on wave packets
from

T2 B(y,p) = {(9,1}) €Tz : Ty, Bly,p) # @}.

What can be said about the scale p wave packets of h? In particular, do the lower

scale wave packets inherit the tangency property; namely, is h concentrated on scale

p wave packets which are p~/2+%_tangent to some variety? It transpires that this

is not true in general. It is true, however, that h can be broken up into pieces

which are each made up of scale p wave packets tangential to some translate of Z.
To make the above discussion precise, let ’ij be the curve defined by

(9.7) 0,0 (30, (1), t;w) =v  forte (=p,p).
It is remarked that (@.3) implies the relation
(98) Wj,v(t) = :Yo).;\,v—ﬁ(y;w) (t - yn) + y/'

Let T,,., be the p'/?*9-tube with core curve fi‘w = (33 .5(t),t) (defined analogously
to the R'/2%9_tube T} ,) and for b e R™ define

Tyip = {(é,f}) eT: Ty, is p~L/2H9m tangent to Z + b in B(0,p)}.
The key observation is as follows.

Proposition 9.2. Let RY? < p < R'™% and Z < R™ be a transverse complete
intersection.

1) Let (8,v) € Ty and be B(0,2RY?>+0m). If (8,7) € Ty, satisfies

Té,f; N N%p1/2+57n (Z—y+0b)#J,

then (6‘~, v) € 'fFZ_y_H,.
2) If h is concentrated on wave packets in Ty p(,. ), then h is concentrated on wave

packets in Uy < gisz+sm Tz—y+o-
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Under the hypotheses of the proposition, if one defines
']NTb = {(é,ﬁ)e U 'ﬁ‘gﬂ,:T5750N%p1/2+5m(z—y+b)#@},
(evv)ETZ,B(y,p)

then it follows that T, = T Z—y+b. The proof of Proposition will in fact yield
the following stronger result.

Corollary 9.3. Under the hypotheses of 1) of Proposition [9.2, if (6,v) € T and
Tev nTy # &, thenTe- N 1/2+am(Z y +b) for all (9 v)e'I['gv

In view of the forthcoming analysis, before proving these statements a simple ap-
plication is discussed. Given a function h concentrated on wave packets in Tz gy, ),
consider a function of the form

(9.9) hyi= Y. hg,.
)e

Expressions of the form (@.9) will play an important role in later arguments. One
may easily verify that thHLQ(Bn—l) < [h§]~‘|L2(371—1) where

(9.10) hi = D1 ho
(9 'U)ETZ B(y,p)
To,w Ty

The latter function is slightly easier to analyse; in particular, Corollary [0.3] implies
that

(911)  TMB(@) = T hE(@)XN 121, (20 () + RapDec(R) A p2n-1)

for all x = & + y € B(y, p).
The proof of Proposition relies on the following lemma.

Lemma 9.4. If (§,v) € T and (0,9) € Ty, then
T3 () = (05, (t+yn) —9)| < RYFD2 for alit e (—p, p).

Proof. By the identity (@8) and the definition of Ty, it suffices to show that if
(w1, 1), (W2, v2) € Q x R* 1 satisfy [wy —wa| < p~ /2 and |v; —vg| < RI+9/2 then

301 00 (1) = Ay n ) < RUTD2Z for all t e (—p, p).

Fixing t € (—p, p), let z; := (3, ,, (t),t) and vy := 0, ¢ (4;w2) and note that, since
the value of 5, , () is uniquely determined by (@1), z; = (32,.,, (), t). Observe that

o1 = ve] = |0udN (@3 01) = 0w (w5 w2)| S w1 — wallae] < p'2.
Since |v1 — vo| < RI*9/2 it follows that v, — ve| < R1F9)/2, Therefore,

< < - 5
32101 (8) = A0 B = 32,0, (1) = 305,05 (D] ~ 00 = v| < RUFO2,

which establishes the lemma. ([
One may now turn to the proof of Proposition

Proof (of Proposition[9.2). The proof is broken into stages.
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The angle condition. Fix (,v) € Tz and (6, %) € Ty,,,. Motivated by the definition
of tangency, let x € T ; and suppose z € Z and b € B(0, 2R1/2+5m) are such that
z—y+be B(0,4p) and |z — (2 — y + b)| < Crangp'/?om. Tt is claimed that

(912) 4(é>\ (I; wé), Tznyrb(Z -y + b)) < Etangp71/2+6ma

where é{ is the generalised Gauss map associated to the phase &‘. It is easy to
see that G (z;w) = G*(z + y;w) and so the above estimate can be written as

(9.13) £(GMa + y;w5), T-Z) < Cuangp™ />0
By Lemma [0.4] the definition of Té)ﬁ and the hypothesis p < R'~?, it follows that

(9.14) |z +y— I‘"g\)v(xn +yn)| S RUHO)/2
and this implies that
£(GMN + yswp), ToZ) < £(GMNTY (n + yn)swe), T2 Z) + p~ /2.

Finally, I‘é\yv(;vn + yn) € Ty, and this tube is R~1Y/2+%m _tangent to Z. Note that
z € Z n B(0,2R) whilst, recalling (@I4)), one has

090 (@n + yn) = 2 < o +y =T, (0 +yn)l + |2 = (z =y +b)| + [0 < RV,
Thus, if the constant C’tang in Definition Rl is appropriately chosen, then the
tangency of Tj , implies that

4(G)\(Fg\,v(xn + yn);w9)7 TZZ) < EtangR71/2+6m
and, provided that R is sufficiently large, (Q.I3]) (and therefore (@12))) immediately

follows.

Containment properties. The angle condition (@.I2) implies Corollary any
tube T‘;j which intersects Ni 1245, (Z — y + b) 0 B(0,p) is actually contained
in Nyijzesm (Z —y +b). To demonstrate this containment property, continue with
the setup of the previous stage, but now assume the slightly stronger conditions
that z—y-+be B(0,p) and |z — (2 —y+b)| < (1/2)p/>*9m. Define a time-dependent
vector field Xj ;: (—p,p) x Z n B(0,2R) — R™ on Z n B(0,2R) by

Xé)ﬁ(t,z) = proszZ(f;g‘ﬁ)'(t) for all (¢,2) € [—p, p] X Z n B(0,2R).

This can be smoothly extended to a map on [—p, p] x U where U € R" is a small
open neighbourhood of Z N B(0, 2R). By the Picard-Lindelof existence theorem for
ODE there exists some smooth mapping Zj; ;: (—p, p) — Z such that Z; ;(z,) = 2

and Zéi)(t) = X;;(t, Z5 5(t)) for all t € (—p,p). Here z = (2',2,) € Téyﬁ are the
points fixed above.
Observe that

B3 (n) = (2~ y 4 D) < IFY () — ] + |2 — (2 — y + )| < (2/3)p/2+m.
Let I denote the set of all t € (—p, p) such that t > x,, and
IT55(5) = (Z5.5(5) =y + b)| < (9/10)p"* ™% for all z, < 5 < t.
It is claimed that ¢4 := sup I = p. To see this, first note that if ¢, < p, then
(9/10)p"20m = T} () — (Z5 5 (ts) —y + D)].
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The angle condition (@I2) implies that
4((f‘;~‘ﬁ)’(t), TZ@ a(t)Z) < Etangpil/erém for all z, <t < 4.

Combining the previous two displays with the identity

Ty

fg)ﬁ(t*)—Zm(t*)=/ proj(TZMmZ)L(fg)ﬁ)'(t)dt+(fg

Tn

5(Tn) = 2),

)

one concludes that

by
(9/10)p 215 < [ sinf (£, (0T, 23, (O] de + (2/3)424%

Tn
< 2Ctangp” V20 |ty — wp| + (2/3)pY/2H0m,

Since |ty — x| < 2p, if Geang is appropriately chosen, then this yields a contradiction
and, consequently, [z,,p) € I. A similar argument shows that (—p,z,] € I and
o I‘gﬂ((fp,p)) S Nao 246, (Z —y +b). One therefore concludes that Tj ; <

NP1/2+6m (Z —y+ b)

Proof of Proposition [03, 1). Let b € B(0,2R"/?*%=) and suppose that Tj . N
Niyi2vs(Z =y +b) n B(0,p) # &; the problem is to show thaﬁt Té)ﬁ is p=1/2H0m_
tangential to Z — y + b. By hypothesis, there exists some z € T; ; and z € Z such
that z —y+be B(0,p) and |z — (2 —y +b)| < (1/2)p"/?9m. The preceding analysis
therefore implies that Tj ; € NV p1/2+5m (Z —y+1), which is the desired containment

condition for tangency. On the other hand, the angle condition for tangency always
holds by (@.I2]), and so the proof of part 1) is complete.

Proof of Proposition[d2, 2). By Lemma it suffices to prove that

U 'ﬁe,v < U 1NTnyer-
(0,9)€T 2. B(y.p) b| S R1/2+6m
Fixing (0,v) € Tz p(y,p) and (0,9) € Tg.,, by [@I2) the problem is further reduced
to showing that there exists some |b] < RY2+% such that Té)ﬁ S Nyeism (Z—y+b).
Lemma [0.4] implies that f‘g)ﬁ(t) € Neopievsm (Z —y) for t € [—p, p]. Consequently,
fixing to € [—p, p] there exists some |b| < R+ such that fg,ﬁ(to) eZ—y+b
The desired inclusion now follows from the containment property discussed earlier

in the proof.
O

9.3. Sorting the wave packets. If (6,v) € T and (é,ﬁ) € 'fF@)U, then Lemma [@.4]
implies that["]

(915) diStH (Tgﬁv N B(y, p), ~0-11_) + y) < R1/2+6,

In particular, if a pair of wave packets (01,v1), (f2,v2) € T are such that ’E91,v1 o)
Ty, # &, then the tubes Ty, o, , To, .0, are approximately equal on B(y, p) This
suggests sorting the scale R wave packets (6,v) € T into disjoint sets for which the
associated tubes essentially agree on B(y, p).

14Here dist iy denotes the Hausdorff distance.
L5More precisely, enlarging the radius of either one of the ng v; by a constant factor produces

a tube which contains (T, v, U Ty ,uy) N By, p)-
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FIGURE 4. The set Tj , := U(M)eTé,w Ty, N B(y, p) is highlighted
in yellow. Fixing xg € T}, for every (0,v) € T;,, the tube Tp,
intersects the ball B(zq, CRY?+9).

Let 7 denote the collectign of all pairs (é,w) formed by a p~'/2-cap 6 and
we RUF9/27n=1" For each (f,w) € T choose some

Tow < {(6,v)eT: dist(0,0) < p~ Y% and |v — 9(y;we) — w| < R(1+5)/2}
so that the family {7 ,, : (0,w) € T} forms a covering of T by disjoint sets. Defining

T9~7w = U TO,'U N B(y7 p)v
(6,0)€T

one obtains the following corollary to Lemma [0.4]
Corollary 9.5. If (6,w) € T and (0,v) € Ty, then
disty (To.n 0 By, p),T;,,) < R/**°.
Let g: B*! — C be integrable and define

9o 1= Z 90w for all (A, w) e T.
(0,0)€T5 .,

Since the 75, cover T and are disjoint, it follows that

(9.16) 9=, 9. +RapDec(R)|glz2(mn1);
(0,w)eT
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furthermore, the functions g; ,, are almost orthogonal and, consequently,

(9.17) l91728m-1y ~ D) 1950l 72(m0-1)-
(6,w)eT

By Lemma [0} the function (g;,)" is concentrated on scale p wave packets

belonging to U(Q,U)E'Tg Tg,,. This union is contained in
'7~'§7w = {(0/,0) e T : dist(¢',0) < p~'/? and o — w| £ RUTI/2}

and therefore each (gg,,)~ is concentrated on wave packets from T; . The family
{T5., : (0,w) € T} forms a covering of T by almost disjoint sets. This implies
almost orthogonality between the scale p wave packets of the different functions
(95..,)" - A particular consequence of this observation is that

(9.18) IS )i oy~ Y 195,005 [y,
(8,w)eT (0,w)eT

where hy is defined for a given function h as in (@39).

9.4. Transverse equidistribution revisited. Let Z be an m-dimensional trans-
verse complete intersection, (é, w) € T and h be a function concentrated on wave
packets in Tz~ p(y,p) N 7;;71“. Here the key example to have in mind is h = 96w for
some function g concentrated on wave packets in Tz p(y,p)-

Every scale R wave packet of h intersects B(y,p) on the set T9~7w which, by

Corollary 0.5 is comparable to Ty, N B(y, p) for any (0,v) € T w Consequently,
if z9 € Ty, then all the scale R wave packets of h intersect B(zq, CR'Y/2*%m)

(see Figure @). Moreover, [@I5) implies that the scale p wave packets of h will
intersect B(xo—y, CR'Y/?*%m). Under these conditions a useful reverse-type version
of Hérmander’s L? bound holds.

Lemma 9.6. Let T* be a Hormander-type operator with phase ¢ given by a trans-
late of a reduced phase in the sense of (X2) and 1 < RYV*+0 < < NV2. If f is
concentrated on wave packets which intersect some B(z,r) € B(0, R), therl]

(9.19) 1£1Z2(8n-1y S 77 T 1220800y

Lemma can be proven for extension operators fairly directly via Plancherel’s
theorem (see [I3, §3]). Establishing the general (variable coefficient) version of
Lemma [.6 involves a number of additional technicalities and the proof is therefore
postponed until the end of the section.

For h as above, xg € Té,w and |b| < RY/2+9m the preceding discussion implies
that the function [h)] ™, as defined in ([@I0), is a sum of wave packets which
intersect B(zg — vy, CR1/2+57"). Lemma can therefore be applied at scale p with
r ~ RY2%0m to yield

HﬁbH2L2(Bn*1) SR 122 gy S R0 ‘|T>\[hlﬂwHi?(B(mgfy,CRl/H&m))-

16Here ‘the scale R wave packets of h’ refers to the scale R wave packets upon which h is
concentrated.

" The operator T* appearing on the right-hand side of (@I9) will be defined with respect to
an amplitude with slightly larger support than the a* appearing in the original definition of the
operator. The choice amplitude function in T™ is essentially irrelevant in future applications of
(@13, so this technicality does not present any difficulties.
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By (@I1), one concludes that

(9.20) |Pol72(gn-1y € RT3 | TR0 H%z(zvpl/mm (Z+b)B(w0,CR/2+5m))-

This observation has several useful consequences. First of all, by applying Hérmander’s

L? bound one obtains the following.

Lemma 9.7. Let h be concentrated on wave packets from Tz~py, ) N T@"w, for
some (,w) € T. Let B < B(0,CRY*™%n) be such that the sets N 215, (Z +b) N
B(xo, CRl/“‘;m) are pairwise disjoint over all b€ B. Then,

Z 176172 (gn-1y S [BI72(pn1y-
be'B
A further consequence of ([3.20) is the following transverse equidistribution result.
Lemma 9.8. Let (0, w) € T, |[b| < RY?>*0m and Z be an m-dimensional transverse

complete intersection with deg Z <. 1. If h is concentrated on wave packets from
TzAB(y.p N %,w’ then

13251y < ROC™) (o/R) ™2 [ 22 gy

Proof. The transverse equidistribution estimate in Lemma implies that

R1/2+O(6m) (p/R) n—m)/2

AT 2
HT hb HLQ(N 1/246m (Z+b)ﬁB(m0,CR1/2+‘5m)) HhHL2(Bn—1).

Combining this with ([@20) completes the proof. O

Let g be concentrated on wave packets of Ty p(,,,). For each (6‘~7 w) € T the
function 950 18 concentrated on wave packets in 'H‘Zﬁ B(y,p) N 7; It follows that
Lemma [9.7 and Lemma [0.8 hold for h = g; ,. Combining the contributions from
distinct 7;@, one obtains the following.

Lemma 9.9. Let [b| < RY?*9% and Z be an m-dimensional transverse complete
intersection with deg Z <e 1. If g is concentrated on wave packets from Tz p(y ),
then

ldsl 21y < RO (0/R)™=™2 | g| 12 (gn-1y.
Proof. By (@.16) and the linearity of the map h — hj it follows that
G =Y. (95.,)p + RapDec(R)|g|rz(pn-1).
(6,w)eT
The almost orthogonality relation ([I.I8) between the (g; ,)s implies that
196172501y £ 25 109508 [72(n-1) + RapDec(R) gl 72 (1)
(0,w)eT
By Lemma [9.8] the right-hand side of the above display is in turn dominated by
ROC (p/R)"=m2 X" gg o |72(5n 1y + RapDec(R)|gl72(pn1y-
(6,w)eT

An application of ([@.I7) yields the desired estimate.
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9.5. The proof of the reverse L? bound.

Proof (of Lemmal9.4). One may assume without loss of generality that Z = 0 and
r = RY219_ Indeed, the first reduction follows from the formula (@), which can be
used to replace T* and f with 7* and f, here defined with y := Z. Lemma[0.] and
the identity (@.8)) imply that f is concentrated on scale R wave packets associated to
T which intersect B(0,r). For the second reduction, suppose the result is known
for r = RY2%9 and let R/?>*% <7 < R and f be as in the statement of the theorem.
For a € R consider the slab

Sa — Rn—l ~ I:a* R1/2+5,CL+ R1/2+5] A B(O,CT)

where C' > 2 is a constant, chosen large enough for the purposes of the argument.
Cover S, with a collection {B;} ez of finitely-overlapping RY?+9 palls satisfying
B;nS, # & for all j € J. By the initial reductions, any tube Tp, makes a
small angle with the e, direction and thus intersects at most O(1) of these balls.
Orthogonality of the wave packets together with the hypothesised estimate therefore
imply that

(9-21) 917251 < R_1/2_6HTAQH%2(NCR1/2+5(Sa))

for any g concentrated on wave packets at scale R which intersect S,. If (0,v) €
Tp(o,r), then the aforementioned angle condition implies that Tj ,, intersects every
slab S, for which S, n B(0,r) # . Hence, if f is concentrated on wave packets
from Tp(o,., then one may sum (@.2I) over a collection of ~ r/RY?+% slabs which
cover B(0,r) to obtain the desired result.

Fix a function f satisfying the hypotheses of the lemma with = 0 and r =
RY2%% and note that

(9.22) I aagan—s ~ | 3 [
(0,v):Tp,,nB(0,RY/2+8)5£ 05

Let U: U — Q be the diffeomorphism ¥ (u) := U*(0;u), where ¥* is the rescaled
version of map ¥ introduced in §4 Recall that ¥ reparametrises the surface
{00 (0;w) : w € O} as the graph of the function h(u) := d,,*(0; ¥(u)); in partic-
ular, 0,/¢* (0;¥(u)) = u for all w € U. Applying the change of variables w > W(u),
and denoting the corresponding Jacobian by Jy, it follows that |f[2gn-1) ~
| folz2(pn-1) Where

fui=( > fowo®) - Ju.
(0,v):Ty,» " B(0,RY/2+8)5£ ¥

Let E denote the extension operator
Eg(:z:) — / eQﬂ'i((m',iL)ernE(u))g(u) du
U

associated to the graph u — (u, h(u)). For any z,, € R and g a square integrable
function supported on U, Plancherel’s theorem implies that

2Ty,

H9H2L2(B"*1) = e th%?(B"*l) = HEQ‘@?(R"*lx{mn})'

Hence, averaging this estimate over |z,| < R'/?%% one obtains

(9.23) lgZeon-1y ~ B2 IBG I a(n-1x (- mviaes, uesy):
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The key observation is that the hypothesis on f implies that the right-hand L?-norm
can be localised.

Claim. If |z,| < RY?*% and 2’ ¢ B(0, CRY?%9), then
Efu(x) = (1+ R™22/))""*DRapDec(R)| f| L2(5n-1)-

This concentration property is very similar to that detailed in Lemma 5.2 the
main difference being that the condition (0,v) € T (g g1/2+s) is defined with respect
to the operator T* whilst the above identity concerns the linearised version E.
The proof is a minor adaptation of the stationary phase analysis used to establish
Lemma and is therefore omitted.

For the specific choice of function g = fy, the claim implies that ([@.23]) may be
strengthened to

(0.24) 113y ~ ooty ~ B2 B ful2agpo.cmiees).

This is easily seen to imply the lemma. Indeed, reversing the earlier change of
variables,

Efo(z) = / 276 (350) =3TNAIND (1) + RapDec(R)| 12,
Q

for all z € B(0, CRY/?*9), where (2 is the error term in the Taylor expansion
P(z;w) = ¢(0;w) +(020(0;w), 2) + Q(z;w).

Were it not for the factor e=2mA2/A@) the functions E fy(z) and T f(z) would

be equal up to a negligible error term and ([@.24]) would directly imply the desired

estimate. This unwanted additional factor can be removed via a Fourier series
decomposition. Recalling the hypothesis RY/219 < X\'/2_ it follows that

(9.25) 10809 NQURY2H 2/ w)| S 1

for all multi-indices (o, ) € Nj x Nj . Let ¢ € C(R™ x R"~1) be supported on
X x © and equal to 1 on supp a. By forming the Fourier series expansion in both
the x and w variables one obtains

e—2m’>\Q(z/>\;w)w(Z/R1/2+5; w) = Z (1+ |k|)—che2m’(<R1/2+6z,k1>+<w,k2>)7

keZ” xZ™ "

k=(k1,k2)
where the ¢, are weighted Fourier coefficients and N > n + 1 is an integer which
depends only on n and is chosen large enough to satisfy the forthcoming require-
ments of the proof. Observe that (@.25) implies that |cx| < 1 for all k € Z™ x Z"~1.
Thus, ([@.24) now yields

Flzamny < RV 50 (L4 RV [TA 2 f

kezZ™ x7" "t
k=(k1,k2)

)HLQ(B(O,CRl/er‘S)) .

Recalling Hérmander’s L?-estimate from Lemma [5.3] there exists a constant A,
depending only on the dimension, such that

[flz2(mn-1) < ARYFP|TA fll 2 po,orersyy + Y, (14 KDV £l 2nr))-
|| 0

If N is chosen appropriately, then A}, (1 + |k[)~N < 1/2 and the desired

estimate follows.
O
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10. PROOF OF THE k-BROAD ESTIMATE

10.1. A more general result. In this section the proof of the k-broad estimate in
Theorem [[.0 is given. In order to facilitate an inductive argument, a more general
result will be established, which is described presently.

Throughout this section 7* denotes an arbitrary choice of a translate of a
Hérmander-type operator with reduced positive-definite phase. That is, T is of
the form of the operator T* discussed in the previous section, with phase and am-
plitude of the type described in (@.2). Many of the estimates involving T, such as
([I0T) below, are understood to hold uniformly for the entire class of such opera-
tors; it is important to work with the whole class rather than a single choice of T*
in order to run certain induction arguments.

In order to state the result, first define the exponent

(@)1= 5 (5= 7))

and note that —ey n(p) + 1/2 < 0 if and only if p > p(k,n) where p(k,n) =
2(n +k)/(n + k — 2) is the exponent appearing in Theorem

Proposition 10.1. Given ¢ > 0 sufficiently small and 1 < m < n there exist
0<d K1 <K0p9<K...<0 K¢

and constants C., A, dyadic, Dy e S 1 and 9y, < € such that the following holds.
Suppose Z = Z(Py,...,Py_m) is a transverse complete intersection with deg Z <
Dppe. Forall2 <k <n,1<A<A, dyadic and 1 < K < R < )\ the inequality

(10.1)  |T*flgrr | (B0.R) S= KO RIm (108 Ac—log A) —crn (p) +1/2 I fllz2(Bn-1)
holds whenever f is concentrated on wave packets from Tz and

p(k,m) if k<m

(10.2) 2 < p < polk,m) ;={ Dl +6 if k—m

Here Tz is defined as in §8 that is,
Ty :={(6,v) e T: Ty, is R~/* o _tangent to Z in B(0, R)}.
Proposition [[0.J] immediately yields the desired k-broad estimate.

Proof (of Theorem ). Theorem is a special case of Proposition [I0.1} Indeed,
Z = R" is a transverse complete intersection of dimension n and Tz contains all
wave packets in B(0, R). Thus, taking A = A. and p = p(k,n) yields the endpoint
case of Theorem The general result follows by interpolating with the trivial
p = o0 estimate via the logarithmic convexity of the k-broad norms (that is, Lemma

6.3). 0

10.2. Reducing to R < A\'~¢. Turning to the proof of Proposition [[0.1] the first
step is a technical reduction on the radii R which is needed to facilitate certain
polynomial partitioning arguments. In particular, it will be necessary to approx-
imate the curves l"g‘)v by polynomial curves of degree independent of R; by the
observations of 7.2 this is possible when 1 < R <. A'™¢ and thus ([I0.) will
first be proved for this restricted range of R. The result can then be extended to
the full R < A range by a triangle inequality argument (incurring a permissible
RO®) loss). The concentration hypothesis on f in Proposition [[0.] creates some
difficulties here, which are addressed by the following lemma.
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Lemma 10.2. Let 1 < p < R < A and assume that for any transverse complete
intersection Z = Z(P1, ..., Pp_m) with deg Z < D the inequality

(10.3) | fHBLP LB, < Elflrzn-)

holds with some constant E > 0 whenever f is concentrated on wave packets from
Tz. Then for all Z as above, the inequality

HT fHBLP (B(0,R)) (R/P) l)E”me Bn—1)

holds for all functions f concentrated on wave packets in Tyz.

Here T, denotes the collection of wave packets at scale p that are p!/2+0m_

transverse to Z in B(0, p); this notation is consistent with that used in g0l

Proof (of Lemma[I3). Let f be a function concentrated on wave packets in Ty
for some transverse complete intersection Z as in the statement of the lemma. Fix
a cover B, of B(0, R) by finitely overlapping p-balls. By the sub-additivity of the
k-broad norms and Lemma [5.2] there exists some B = B(y, p) € B, such that

HTAfHBLP B(O R)) < (R/p) 1)HT)\hHBLP B) + RapDeC(R)HfHI[)ﬂ(Bn—l)a

where h := 2(9 0)eT 7.5 fo,u; here and below the notation Ty p is consistent with

that used in §8 As in §9 write T*h(z +y) = TAE(%SO that, suppressing the
harmless rapidly decaying term in the notation, one ha

(10'4) HT)\fHZ];LP A(B(O,R)) ~ (R/p O(l HTAhHBLP (B(0,p))*

In general, h is not concentrated on wave packets which are p~1/2+%m _tangential
to a suitable variety inside B(0, p); thus, hypothesis (I03)) cannot be applied di-
rectly to estimate the right-hand side of (I]IEI) Rather, one approaches the prob-
lem via the methods of §91 By Proposition [0.2] h is concentrated on wave packets
in ye Tz—y+b where B is a discrete set of cardinality < (R/p)°™) such that
|b| < RY?*% for all b € B. Consequently, by the sub-additivity of the k-broad
norms and Lemma and Corollary 03] there exists some b € 9B such that

(10.5) TRl < (R/p)°V| Ty

A(B(0,0)) = IB1r (50,0

for hy, as defined in §9l Recall from Proposition [1.2] that hy, is concentrated on wave
packets in Tz_, 4 and satisfies

(10.6) 1]l 2Bn -1y < 1f|L2(mn-1)-

Combining (I0.4) and (I0.3), the desired estimate now follows by applying hypothe-
is (I03) to the function hy and then using (I0.6) to bound the resulting right-hand
expression. O

18 Strictly speaking, in order for (I0.4)) to hold the k-broad norm on the right-hand side should
be defined with respect to a translate of the family of balls Bg2. Since the estimates will be
uniform over all choices of families By2 of bounded multiplicity, this slight technicality does not
affect the argument.
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10.3. Setting up the induction argument. Henceforth it is assumed that 1 <
R <. A'7¢. Under this hypothesis, given £ > 0 sufficiently small, Proposition [0.1]
will be established for the following choice of parameters:

_g—(2n—m)

(10.7) Dyei=¢ , W) i= € — cplm, A, ~67F,
8 = 0i(e) =¥ foralli=1,...,n—1.

Here 0 < § = d(g) « dp—1(¢) and ¢, > 0 is a fixed dimensional constant.
The proof is by induction on the radius R and the dimension m; presently the
base cases for this induction are established.

Base case for the radius: R <. K™. Provided that the implied constant in (I0.1))
and C. are chosen to be sufficiently large, in this case Proposition [[0.1] follows
immediately from the trivial inequality

(10.8) HTAfHBLiyA(B(O,R)) p3 Rn/p”f“L?(anl)a

valid for all Ae N and 1 < p < o0.

Base case for the dimension: m < k — 1. Assuming (without loss of generality)
that K <. Rl/”, one can show in this case that

(10.9) HTAfHBLiyA(B(O,R)) = RapDec(R)| f|r2(pn-1)-

Indeed, fix a ball Bg2 € B2 with B2 n B(0,R) # &; here By denotes the
collection of K2-balls featured in the definition of the k-broad norm (LIZ). Let
B, denote the collection of all K~l-caps 7 for which there exists some (0, v) €
Tz B,, with 6 n 7 # . Observe that if 7 ¢ Tp_,, then

(10.10) | 1P = RapDeetR)|f s g
BK2
since f is concentrated on wave packets in T.
It is claimed that there exists some V € Gr(k — 1,n), such that
(10.11) £(GMNz;7), V)< K™ forallTe%p

K27

where Z € R™ denotes the centre of Bg2. Indeed, by (I0.I0) one may assume
without loss of generality that Tp , # J and hence Tz ., # . Thus, there
exists z € Z n B(0, R) with |z — z| < RY?*9m and, taking V € Gr(k — 1,n) to be
any subspace that contains 7,7, the claim is easily deduced from the definition of
RY2+9m _tangency (together with the hypothesis K < RY™).

Recalling the definition of pp» f(Bg=) from (LII)), it follows from (I0.III) that

pirxp(Brez) < I}f‘}(/

TP < max/ T P
By T¢TBK2 By

and the desired estimate (I0.9) is now a consequence of (IOI0).

Reduction to A > 2: Recall that A. ~ 6. Although the argument does not
require one to induct on A, it is useful to note that (I0.8]) implies that Proposition
[I0T holds for A = 1. This allows one to assume A > 2 throughout the following
argument, and therefore facilitates the use of the k-broad triangle and logarithmic-
convexity inequalities.
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10.4. An overview of the inductive step. Let 2 < k< n—1, k <m < n and
R >, K™. Assume, by way of induction hypothesis, that (I0.1)) holds Whenever the
dimension of the transverse complete intersection Z is at most m — 1 or the radial
parameter is at most /2.

Fixe > 0,1 < A < A, and a transverse complete intersection Z = Z(Py, ..., Pp_m)
with deg Z < D,,.., where the parameters A. and D,, . are as defined in (I0.7).
Let f be concentrated on wave packets from T.

It suffices to show that (I0.1]) holds at the endpoint p = po(k, m). Indeed, observe
that Lemma [5.3] implies the L2-bound

T Bz pomy S 00 1T B < RIRssn)

7:K—1—cap

Once (IO is established for p = po(k,m), one may use the logarithmic convexity
of the k-broad norms to interpolate the p = po(k, m) estimate against the above
inequality and thereby obtain (I0]) in the desired range.

The analysis proceeds by considering two different cases.

The algebraic case. There exists a transverse complete intersection Y'! < Z of di-
mension 1 <! < m — 1 of maximum degree at most (D, )" such that

A A
(10.12) T2y vy oo 07y B00,R)) = Catel T ey 0.

Here cag > 0 is a constant depending only on n and e which is chosen to be
sufficiently small to suit the needs of the forthcoming argument.

The cellular case. The negation of the algebraic case: for every transverse complete
intersection Y! € Z of dimension 1 < I < m — 1 and maximum degree at most
(De)™ the inequality

A
(10.13) 1T I51y ¢ (N3 /2180, (YDABO.R) = cag| T Fley s,
holds.

The cellular case is the simplest situation and will be treated first. Here a
polynomial partitioning argument is employed which splits the mass of the k-broad
norm into small pieces; these pieces can then be treated individually using the
radial induction hypothesis. The algebraic case is the most involved situation; it
encapsulates the kind of behaviour experienced in the sharp examples in §2/ In this
case T f can be thought of as concentrated near a low-dimensional and low-degree
variety Y (in a k-broad sense). If the wave packets of f are also tangential to this
variety, then one may use induction on the dimension to conclude the argument.
This might not be the case, however, and if many of the wave packets of f are
transverse to Y, then an alternative argument is required. Thus, the algebraic case
naturally splits into two sub-cases, a tangential and a transverse sub-case, which
are discussed in detail below. Lemma [(.3] can be applied to show that a given tube
Ty, can only interact transversely with the variety Y on a small number of balls,
which eventually allows one to also close the induction in the transverse situation.
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10.5. The cellular case. The cellular case can be treated using polynomial parti-
tioning. Roughly speaking, since by hypothesis T* f is concentrated in a neighbour-
hood of an m-dimensional transverse complete intersection, for any D > 1 Theorem
can be applied in m dimensions to show that there exists a non-zero polynomial
P of degree at most D such that, letting {O; };ez denote the connected components
of R™\Z(P) (which, recall, are referred to as cells), one has #{0; : i € I} ~ D™
and

(10.14) HT’\fHBLp for all i € 7.

—m || A
o0~ DT s 0y

Thus, the mass of the k-broad norm is essentially equally distributed amongst the
cells. Moreover, using the hypothesis of the cellular case, one can construct P so
that very little of the mass lies near the cell wall

W := Nypi2+s(Z(P)) n B(0, R).

In particular, the estimate (I0.I4) essentially still holds if the O; are replaced with
the shrunken cells O} := O;\IW. The O/ can be thought of as well-separated™d and
this facilitates a divide-and-conquer-style argument. More precisely, the fact that
a non-zero univariate polynomial of degree at most D has at most D roots quickly
leads to the following observation.

Lemma 10.3. If P is a polynomial of degree deg P < D and {O}},ez are defined
as above, then each tube Ty, enters at most D/e of the cells O}.

It is important to note that, in general, Lemma [[0.3] does not hold if the O} are
replaced with the cells O;.

Proof (of Lemma[I0.3). Let [FQ)U]E : R — R"! denote the polynomial approxi-
mant of I‘é\)v, as defined in §7.21 Thus, deg[l"g‘ﬂ)]8 < [1/2¢] and ([Z2) implies that

I03.,]e(t) = T3 ,(t)| < RY?  forallte (—R,R).

Suppose that z € O} N Ty ,,. By the definition of O, the ball B (w 2R1/2+5) con-
tains no points of Z ( ), and is therefore contalned in O;. On the other hand,
dist(z,I') ) < RY?*% and therefore dist(z,[I'3,]c) < 2RY?*%. Consequently,
[Fé\,v]s enters B(z,2RY?%%) € O;. Thus, if Ty, enters a cell O}, then the polyno-
mial curve [l"g‘ﬂ)]8 enters O; whilst, by the simple property of univariate polynomials
quoted above, [I'y ] can enter at most deg P - deg[I'y ] +1 < D/e cells O;. [

Some aspects of the discussion prior to Lemma are not entirely precise; for
instance, to apply the polynomial partitioning theorem one must work with an L!
function rather than a k-broad norm. In view of this, let u denote the measure on
R"™ with Radon—Nikodym derivative

1
Z MTV(BW)—XBKz
| Brez|
BK2EBK2
with respect to the Lebesgue measure. One may easily verify that

(1015) () < IT Wy ) and Ty oy < H(B(0,2R))

Om particular, the distance between a pair of distinct O; is wider than the width RY/2+9 of
any tube Tjp ,.
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for all Lebesgue measurable sets U < R"™. These inequalities ensure that the mea-
sure p acts as an effective surrogate for the k-broad norm in the polynomial parti-
tioning argument.

By combining the cellular hypothesis with Theorem[7.2] one obtains the following
partitioning result.

Lemma 10.4 (Polynomial partitioning [13]). There exists a polynomial P of degree
deg P < Dy, such that, if {O;}iez and W are defined as above and O} := O \W
for alli €I, then #I < (D)™ and

(10.16) 1(07) ~ (D)~ w(B(0,2R))
for at least 99% of the cells O,

This lemma is contained in the work of the second author [I3] §8.1] and the
details of the proof are not reproduced here. The basic idea is as follows: by hy-
pothesis, the mass of 11 is concentrated in Ng1/2+s,, (Z) where Z is an m-dimensional
algebraic variety; this allows one to apply Theorem[(.2]in m-dimensions to construct
a polynomial P which satisfies the desired properties with O; in place of O. The
hypothesis of the cellular case implies that the mass of © cannot concentrate in a
neighbourhood of a certain type of algebraic variety and this can be used to show,
in particular, that the mass cannot concentrate around the cell wall W. Provided
the constant caie is chosen to be sufficiently small, this allows one to pass to the
shrunken cells O} in (I0.10) (at least for 99% of the cells).

There are a number of technicalities involved in rigorously carrying out this ar-
gument. In particular, one must justify the application of Theorem[Z.2/in dimension
m; this requires locally approximating Z by some tangent plane 7,7 and applying
the theorem to the push-forward of p onto 7,7 under orthogonal projection. The
partitioning variety in T, 7 is lifted to a variety Z in R by taking the pre-image
under the orthogonal projection; it is possible to define Z in this way so that it is
transverse to Z. The cells O; are then defined with respect to Z

Presently, it is shown how together Lemma [[0.3] and Lemma [[0.4] easily yield the
proof of Proposition [[0.]in the cellular case. Applying Lemma [[0.4] one obtains a
partition of R™\W into disjoint cells {O;};ez. For each i € T let

Ti:={(0,v)eTz: ToonO;# ) and fi:= > fou
(0,0)eT;

By Lemma one has
HT)\JCH%L;A(O;) < HT)\fiH%Li,A(O;) + RapDeC(R)Hf|\Z£2(Bn,1).

Combining this inequality with (I0.I5) and Lemma [[0:4] one deduces that at least
99% of the cells O have the property that

(1017) HT)\fH%Li,A(B(O,R)) s (Dm,s)mHT)\fiH%Li,A(oé) + RapDeC(R)HfHZ[)Q(anl)-

20, carry out this argument rigorously, one must further ensure the all the relevant varieties
are transverse complete intersections of dimension at most m — 1 and controlled degree in order
to invoke (I0.I3). Such technicalities account for the choice of maximum degree (D, )™ in the
definition of the algebraic and cellular cases.
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On the other hand, by Lemma and orthogonality between the fg ,, one has
S Uil2agnn ~ Y] #€T: (6,0) € TiHlfoulZagam,
€L (0,0)eTz
<

~E

Since there are roughly (D, )™ cells in total, Markov’s inequality shows that at
least 99% of the cells O} have the property that

(10.18) 1 il 22 gty Se D@ V1 f 122 ().

Therefore, there exists some cell O} for which (I0.I7) and (I0I8) simultaneously
hold; henceforth, attention is focused on a single such cell O}.

Let E,, 4(R) denote the constant appearing on the right-hand side of (I0.1J);
namely,

Epa(R) = Cm,EKCE RE—¢n0m+6(log A-—log A)—er n(p)+1/2

By the radial induction hypothesis, Proposition [0l holds for the radius R/2.
Applying Lemma to f; for the fixed choice of i as above and p = R/2, one
obtains

| T fillpry ABOR) S Em a(R/2)[filL2(gn-1) $ Em a(R)[ fill L2(5n-1).-
Combining the above estimate with (I0.I7) and (I0.I]), one deduces that
| flBrr A(BO,R)) S < C: (Dm,a)_(m_l)/2+m/pEm,A(R)Hf”L%Bn*l)

for some constant C. > 0. The D,, . exponent is negative if and only if p > 2m/(m—
1); note this is the case for the choice of exponent p = py(k, m) Thus, recalling
the definition of D = D,, . and assuming ¢ is sufficiently small depending on n,
it follows that CE(Dmﬁ)_(m_l)/%m/p < 1. This establishes the desired estimate
(@07 and closes the induction in the cellular case.

10.6. The algebraic case. Fix a transverse complete intersection Y! of dimension
1 <1< m—1and maximum degree deg Y' < (D,, .)" which satisfies (I0.12). Let
1 < p « R be such that p'/2t9% = R1/2+9m and note that

(10.19) R<R® .p and p< R %2.R.
Let B, be a finitely-overlapping cover of B(0, R) by p-balls and for each B € B,

define
={(6,v) € T: Typ,o 0 N1przrs, (Y') 0 B # &}

and fp 1= >y ,)er, fo,0- Thus, by ([0.12) and Lemma [5.2]

HTAfHBLP A(B(0,R)) < Z HTAfBH;}DBLiyA(NlRl/HSm (YY)AB)
BeB, 4
holds up to the inclusion of a rapidly decreasing error term. In what follows, such
error terms, which are harmless, are suppressed in the notation.
For B = B(y,p) € B, let Tp tang denote the set of all (§,v) € Tp with the
property that whenever x € Ty, and z € Y~ B(y, 2p) satisty |z—2| < 2Ciangp"/?*,
it follows that

(10.20) £ (GM5w9), TLY') < Ct;ngp—l/u&’

2114 is for this reason that one works with the modified exponent po (k, m) rather than p(k, m).
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where Otang and Ciang are the constants appearing in the definition of tangency.
Furthermore, let Ty trans := TB\TB tang and define

fB,tang = Z fG,v and fB,trans = Z fe,v-
(G,U)ETB,cang (07U)ETB,trans

It follows that fg = fB tang + fB,trans and, by the triangle inequality for broad
norms (that is, Lemma [6.2]), one concludes that

HTAfHBLP A(B(O,R)) Z HT)\fB tangHBLP Jr Z HT)\fB transHBLp 12(B)”
BeB, BeB,

Either the tangential or transverse contribution to the above sum dominates, and
each case is treated separately.

The tangential sub-case. Suppose that the tangential term dominates; that is,

(10'21) ‘|T>\f‘|BLP A (B(0,R)) Z HT fB tangHBLP
BeB,

Each term in the right-hand sum is bounded using the dimensional induction hy-
pothesis. Fix B = B(y, p) € B, and, as in 9 let T* (£ tang) " (2) = T* fB tang (T +Y)
so that??

(10.22) |IT* f5 tane| BLP

. R
b aBe) = [T ([Btang) " [BLE , L(B(0,0))-

Since deg Y < D ¢, in order to apply the induction hypothesis, one must verify
that (fp tang) i concentrated on scale p wave packets that are p~'/2*%_tangent
to Y! —y in B(0,p). By Lemma @] (f5 tang) i concentrated on scale p wave
packets from

TB,tang = U Té,vu

(6,v)€T B tang
where the ']Te,v are as defined in §9 Fix (6‘~, 0) € 'I~F37tang and recall from ([@.I3) that
(10.23) distr (Ty 5, (To. — y) N B(0,p)) < RV « pt/2+0r,
Combining this with the definition of Tp tang, it is easy to see that Te ~ satis-

fies the angle condition for tangency and it remains to verify the containment
property T) S Nzt (Y! —y). The definition of Tp and (I0.23) imply that
T‘;j N Nyjizes (Yl —y) n B(0,p) # & and so the containment property follows
from the angle condition, as in the proof of Proposition 0.2

Thus, the dimensional induction hypothesis may be applied to (fp tang)”, and
one therefore deduces that

|T*(fB,tang) IsLz , ,(B0.0) < Era2(P)| B tang]L2(Bn-1)-
Combining this estimate with (I021)) and (I0:22)), one concludes that
HT)\fHBLﬁ’A(B(O,R)) < ROCVE; 41 (p)| f113 281y

To close the induction in this case, it remains to show that

ROCVE; 45(p) < B a(R).

2256¢ footnote [[¥ on page
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Clearly, p(los A=—log(A/2)) < Ro(log A-—log A) anq p=ern(P)+1/2 < RO R=er.n(P)+1/2,
where both inequalities are by (I0.19). Combining these observations, the prob-
lem is further reduced to showing that p=cr% < R~ Re=¢nom where ¢ > 0 is
a dimensional constant. By (I0.I9), one may ensure that this inequality holds by
choosing the constant ¢, in (I07) at the outset to be large relative to c.

The transverse sub-case. Now suppose the transverse term dominates; that is,

"\ A
(10.24) 17 fI5er 508y S B% 1T B ranslpey oo
€bp

In this case one may exploit the following key inequality.

Claim.

(10.25) 2 I BranslZa(pn-1) Se [ £172(pn1)-
BeB,

Proof. This is a fairly direct consequence of the hypothesis of the transverse case
together with Lemma Indeed, note that

Z HfB,transH%?(Bn—l) ~ Z #{B € Bp . (9,'0) € TB,tranS}er,v“%/Q(Bn—l)-
BeB, (6,v)eT

and so, to prove (I0.29)), it suffices to fix an arbitrary (6,v) € Tp trans and show
that

(10.26) #{BeB,: (0,v) € T trans} Je 1.

Let T" := [1"@\1”]5: R — R" be the polynomial approximant of the core curve Fg\,v
defined in §7.21 Thus, degl’ <. 1 and, recalling that R <. A ~¢, property (Z.2) of
the approximant implies that

10.27 L) —T). ()| <RY? forallte (—R,R).
0,v

Let u € Ty, and z € T'n B(0, R) with |u—x| < RY?*%. Tt follows from the definition
of Ty, and (I0.27) that there exists some ¢ € (—R, R) such that

lu—T5,@)| < RY?** and |z —T(t)] < RY?™.
Consequently, recalling Lemma (4]
£(CM (s w9), ToT) € £ (Try ()90 Tr D) + BY2T0/A
and therefore, by property (73] of the approximant,
£(CP (), ToT) 5 X2 4 R0/ < Cons ooty

Using the above inequality, one may easily verify that if B = B(y,p) € B, and
(6,v) € Tp trans, then Y>la,r,F N B(y,2p) # & for a ~ p~1/2+% and r ~ pl/2+0,
Here Y>la,r,1“ is as defined in §7} that is

Y>la,r,1“ ={ze Y!':3z el with |z — 2| < r and Z(T.Y', T,T) > a}.

By Lemma [Z.3] the number of balls B = B(y, p) € B, for which B(y,2p) intersects
V!, . non-trivially is at most O((degI')™ - (deg Y'')™) = O.(1). Combining these
observations, one immediately deduces ([I0.26]), as required. O
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In view of (I0:2H), the strategy in the transverse case is to use the radial induction
hypothesis to show that for some constant ¢. > 0 one has

(10.28)  ||T*fB trans|BL?

k,A/2

(B) S éaEm,A(R)HfB,transH[?(B"*l) for all B e Bp.

Indeed, provided ¢. > 0 is sufficiently small, depending only on n and ¢, the pre-
ceding inequality may be combined with (I0.24)), (I0.25) and the simple estimate

HfB,traHSHL2(Bn*1) S HfHLQ(B"*1)7

to yield

_ 1—2 1/
HT)\fHBLi,Ap(B(O,R)) Se CEE’ITL,A(R)HfHLZ(épn—l)( Z HfB,transH%z(Bn—l)) b
BeB,

< En AR flz2(Br1),

closing the induction in this case.

The main obstacle in carrying out this programme is that the fp trans do not,
in general, satisfy the hypothesis of Proposition [[01] at scale p, and therefore one
cannot directly apply the radial induction hypothesis to these functions. However,
one can appeal to the theory developed in §9, which essentially allows fp trans to
be broken into pieces fp trans,p Which do satisfy the hypothesis of the proposition
at scale p. Here is a sketch of how the argument works. By choosing a suitable set
of translates B, one may essentially write

(1029) HT)\fB,transHLP(B(O,R)) $ (Z HT)\fB,trans,b
be'B

)1/P

P
Lr(B(0,R))

where each piece fB transp is defined so that it is concentrated on scale p wave
packets which are tangential to some translate Z — y + b of Z. By the theory of
transverse equidistributions developed in §8land §9] the fp trans,» satisfy favourable
L? estimates and, in particular, the inequality (I0.32) below holds. The radial
induction hypothesis is applied to each of the T fB.trans,p- To close the induction,
one must estimate the resulting sum

( Z HfB,trans,b
be'B
in terms of | fB trans|r2(pn-1). Here the gain in p/R in (I0.32), afforded by trans-
verse equidistribution, is crucial to the argument: it allows one to sum up the
contributions from the individual pieces fp trans,p Without any (significant) loss in
R. Tt is this gain which accounts for the improved range of estimates for the k-broad
inequalities under the positive-definite hypothesis (recall, the proof of the transverse
equidistribution lemma relied heavily on the positive-definite condition).

As part of this argument, to ensure that the fp trans,» form a reasonable decom-
position of f5 trans S0 that (I0.29) essentially holds, the set of translates B must be
chosen so that (Jyeq Ny1/2+5m (Z —y + b) covers Npij2+s,, (Z) (recall, by hypothesis
fB.trans 1S concentrated on wave packets in Tz and so the mass of T B trans 1S
concentrated in Ngij216, (Z)) and so that the N,i2+s,, (Z —y + b) are essentially
disjoint. This can be achieved using a probabilistic construction. More precisely,
fixing B = B(y, p) € B,, one may show the following.

)1/10

|ZD
Lp(Bn—1)

Lemma 10.5. There exist a finite set B < B(0,2RY?*%) and a collection B <
{Bg=2 € Bg2 : B2 B(y, p) # &} such that, up to inclusion of a rapidly decreasing
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error term,

1
(10.30) |72 fB wanslBrr . (o.r) < R ( D) fir s e (Br2)) v

k,A/2

BK2 eB’
and for each By= € B’ the following hold:
1) There exists some b € B such that
(1031) BKQ c N1p1/2+5m (Z + b)

ii) There exist at most O(1) vectors b€ B for which
Bz n NP1/2+5m (Z +b) # .

The proof of the lemma, which is slightly technical, is postponed until the end of
the section. Temporarily assuming this result, one may argue as follows to complete
the proof of Proposition [0.1]

For each b € B let B denote the collection of all Bg2 € B’ for which (I0.3T)
holds. Thus, by (I0.30) and property i) in the lemma,

1/p
|7 fB trans L2 u2(BO.R) S (log R)2< D D iy ) (Brz — y)) ;
beB BK2EB;)

up to a rapidly decreasing error term.
Define the collection of wave packets

~g:= {(é,fz)e U 'ﬁ‘e,vlfgjﬂ U (BK2*ZJ)7’5@}§

(0,9)€T B(y,p) trans Bp2€B)

note this set is a subset of the collection T, defined in g9 and so, by Proposition
[0.2] one has T} < Tz_y 1. Therefore, if f5 trans,b is defined by

(fB,trans,b)N = Z (fB,trans);{, )
(0,9)eTy,
then (fp trans,p) 1S concentrated on wave packets that are p_1/2+5m-tangent to
Z —y + b. Furthermore, again up to a rapidly decreasing error term, one has

iy
HTAfB,traHSHBLQ 4/2(B(0,R)) < logR E HT)\ (fB trans,b)” HBLi A/Q(B(O7p))) 3
beB '

The function (fp trans,p)” satisfies the hypotheses of Proposition [I0.d]at scale p and
therefore the radial induction hypothesis yields

1/p
Z HT fB trans b) HBLk A/Q(B( 7p))) < Em A/2
beB be%

On the other hand, it is claimed that

)1/17'

1 ) (1/4—
) /w < RO(6m)(p/R)( )(1/4=1/2p) HfB,transHL%B"*l)'

beB

Clearly it suffices to prove the above inequality for p = 2 and p = o0; the desired
estimate for p = po(k, m) then follows by interpolation (via Hélder’s inequality).
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p = 2. Observe that, by the orthogonality between the wave packets,

Z |.fB,trans.b |i2(3"*1) ~ Z #%(5,{; ’ H(fB,traHS)g,ﬁ H%2(B"*1)

beB (6,5)eT
where B; . = {be B : (9,0) € T}}. Fixing (0,9) € T, it suffices to show that
#B; - < 1. Supposing B ; # &, there exists some By € B’ with Té 5N (Bg2 —
y) # . For any b € B ; it follows that (6‘~7 0) € T, and so Té)ﬁ S Nyj2tem (Z—y+D)
by Corollary @31 Consequently, Br> N N,i2+5, (Z + b) # & for all b € B ; and
so the desired bound follows from property ii) of Lemma

p = o0. In this case, the estimate is a direct consequence of the transverse equidis-
tribution estimates established in §8 and §91 In particular, the function fg trans is
concentrated on wave packets belonging to Tz g and so, by Lemma[3.9] on deduces
that

(10.32) /5 trans.ll 2 (mn-1) S RO (o/ R) "™ 5 trans|| 12 (0 -1y,

as required.

. The preceding analysis shows that \|TAf37trans|\BLi 42(BOR)) is bounded above
by ,
RO By a(p)(p/ R)" ™ VA fi s 2 (1)

and therefore, to prove (I0.28) and thereby close the induction argument in this
case, it suffices to show that

(10.33) ROCE, 4(p)(p/R)"m™WA=120) < 2 F,. 4(R).
For the exponent p = p(k, m) one has
p k(D)2 Ry (n=m)(1/4=1/2p) < per.n(p)+1/2

whilst for the perturbed exponent p = po(k,m) the same inequality holds up to a
ROG) factor. Thus, the left-hand side of (I033) is dominated by

RO (p/R)* By a(R).
Recalling (I0.19) and the choice of parameters ¢; and d,,, one obtains the desired

inequality.

The probabilistic argument. The above argument establishes Proposition [T0.1]
except for the details of the probabilistic argument used to prove Lemma [I0.5

Proof (of LemmalI0J]). Before commencing the argument proper, a few technical
reductions are necessary. By a standard dyadic pigeonholing argument, one may
assume that

(10.34) |IT* fB trans| L

k,A/2

(B.R) S g R( ) MTAfB,ms(BK‘Z))l/p

Be2€B”
for some sub-collection B”  Bg> with the property that
(1035) ,UJT/\fB’tmns (BK2) ~ luT”\fB,trans (BKz) for all BK2 s BK2 € B//.

Since fp trans 1S concentrated on wave packets from Tz g, one may further assume
that B2 n B(y, p) N Npi2tsm (Z) # & for all Biz2 € B”, at the cost of a rapidly
decaying term on the right-hand side of (10.34).
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A set of translates B will be selected at random from R™ according to a probabil-
ity measure P. The distribution P is taken to be a mollified version of the uniform
probability distribution Py, on B(0, RY2*9=). In particular, let w: R™ — [0, 0)
be given b

(el =R

w(x) := exp ( Ptz for all z € R"

and P be the continuous probability measure on R™ with Radon-Nikodym deriva-

tive ( f]R" w)_lw (with respect to Lebesgue measure). This measure approximates
Puir in the sense that

(10.36) P(R™\B(0,2R"Y?**9m)) = RapDec(R).

The motivation behind the definition of P is that, in contrast with Py, it enjoys
the doubling property

P(B(z,2r)) < P(B(z,7)) for all z € R™ and 0 < r < pt/2+om,
Consequently, by the Vitali covering lemma, for any £ € R” one has
(10.37) P(Noo(E)) <P(N.(E))  forall 0 <r < p'/2+om,

Recall, if B(z, K?) € B”, then B(x, K?) n Ngij216, (Z) # & and so
|B(0, RY**%m) A Npyasn (Z — )| 2 |B(0, p/20m)]
which implies that

| B(0, pM/2*om)]

P (N2, (2 — 7)) 2 1B(0, R3]

For any s € N with 2° > |B(0, p'/2*9)|, define

28
S .__ 2 /BN _ ~
B® = {B(w,K )€ B": P(N,osan (Z — 1)) |B(07R1/2+6m)|}.

By a further pigeonholing argument, there exists some value of s as above such that
(I030) holds with B* in place of B'.

Let C > 1 be a dimensional constant, chosen to be sufficiently large for the
purposes of the following argument, such that N := C27%|B(0, R/?>*%=)| € N.
Recalling (I0.19), it follows that

|B(0, R1/2+6m)|

s R2n51
[ B(0, pl/2+0m)]

(10.38) N <

Suppose B = {b1,...,bn} is a sequence of vectors in R™ formed by choosing
each term independently at random according to the probability distribution P.
The problem is to show that B satisfies each of the desired properties with high
probability.

u ifu>=0

23Here (u), := { 0 ifu<0 for all u € R.
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The containment property B < B(0,2RY/?9m). Recalling (I0.36) and (I0.38), it
follows that

1/246 & (N k n 1/246m\\*
P(B < B(0,2R"**0m)) =14 ) (k>(—1) P(R™\B(0,2R"/?+m))

=1+ RapDec(R).
Thus, if R > 1 is sufficiently large depending only on n and €, then
(10.39) P(B < B(0,2RY?*0m)) > ——
which verifies that the desired containment property holds with high probability.

Property i). Let B(x, K?) € B® and observe that

P(B(.CL'7K2) " N1 p1/2+5m (Z + b > ( Lj\j Nl 1/2+5m Z +b; ))
" : N
= 1= (1= P(Ny 20 (Z — 0)) )

By the definition of B* and the doubling property (I0.37) of P, it follows that
P(Nip1/2+6m (Z — z)) = ¢C/N for some dimensional constant ¢ > 0 and, conse-
quently,

N _
P(B(x, K2 < | Nyjpraeon (Z + bj)) >1—(1-cC/N)N >1—eC,
j=1

Let X denote the random variable that counts the number of By € B* for which
B2 C N%p1/2+57n (Z 4+ b) for some b € B. If C is suitably chosen, then the above

inequality implies that the expected value of X satisfies E[X] > (1 — 107%)#B°%.
By Markov’s inequality,

. 100 . 99
(10.40) P( M#B ) - g BB - X1 = g

which verifies that property i) of the lemma holds with high probability.

Property ii). For each © € R™ let M, denote the random variable that counts the
number of sets N ,i/2+5,, (Z + b;) containing z; that is,

N
Mo(br, .., bN) = D IXN, 1aes,, (2407) (@):
Jj=1
If B(z,K?) € B®, then
N 9s
E[M,] = Z P(N2p1/2+am (Z — x)) ~ N—6 -
j=1 |B(0, R1/2+9m )|

Now let C' = 1 be a dimensional constant and Y denote the random variable that
counts the number of B(x, K?) € B® for which M, < C. By a two-fold application
of Markov’s inequality, if C is chosen to be sufficiently large, then

. L1 N 99
(10.41) P(Y > m#rs ) (#B “c. 3 M, > m#B ) oo
(x,K2)eB*
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which verifies that property ii) of the lemma holds with high probability.

In view of (I0.39), (I0.40) and (I0.41]), there exists a choice of B < B(0, 2R/2+9m)
and a subset B’ € B?® of cardinality comparable to that of B® for which the desired
properties i) and ii) hold. Finally, by (I0:35]), the inequality (I030) also holds for
the sub-collection B’.

(|

11. GOING FROM k-BROAD TO LINEAR ESTIMATES

11.1. Applying the Bourgain—Guth method. Theorem [[.2] can be deduced as
a consequence of the k-broad estimates via the method of [§]. The key proposition
is as follows.

Proposition 11.1. Suppose that for all K = 1 and all € > 0 any Hérmander-type
operator T with reduced positive-definite phase obeys the k-broad inequality

(11.1) HkaHBL?A(B(O,R)) Se KER®| f|l o)
for some fized k, A, p,q,C: and oll R = 1. If
. M <p < 2. E
2n — k k-2’

then any Hérmander-type operator T with positive-definite phase satisfies
IT* fll Lo (B0,R)) Sée BENfllLe(mn-1)-
Theorem is now a direct consequence of Proposition [[1.J] and Theorem

Proof (of Theorem[1.2). Theorem [[[6] implies that for each 2 < k < n the estimate
(I3 is valid for all p > p(n,k). Thus, for each k one may apply Proposition
IT1 with p(n, k) < p < 2(k —1)/(k — 2) to obtain a (potentially empty) range of
estimates for the linear problem. Since p(n, k) is a decreasing function of k, the
optimal estimate is given by applying Proposition [T.1] as above with & chosen to
be as large as possible subject to the constraint
2n —k + 2 n+k
on g Pk =2 T

Rearranging this inequality yields k < n/2 + 1. Hence, defining ky :=n/2+1 for n
even and ky := (n + 1)/2 for n odd, the linear estimate holds for all p = p(n, k).
A simple computation shows that this corresponds to the range of estimates stated
in Theorem O

For contrast, it is noted that there is also a version of Proposition [[T.1] which
holds without the positive-definite assumption. This can be combined with the
multilinear estimates of Bennett—Carbery—Tao [4] to prove Theorem [L[1] (this is
essentially the argument used in [g]).

Proposition 11.2. Suppose that for all K > 1 and all € > 0 any Hérmander-type
operator T with reduced phase obeys the k-broad inequality

(11.2) HTAfHBLiyA(B(O,R)) <Se KR f|pocpn)
for some fizxed k, A,p,q,C: and oll R > 1. If
n—k+2
<P

‘n—k+1
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then any Hérmander-type operator T satisfies

IT*fll Lo (B0,R)) Sée BENfllLe(mn-1)-

Theorem [I[T] is now a direct consequence of Proposition [1.2] and the Bennett—
Carbery—Tao theorem.

Proof (of Theorem[1]]). The proof is precisely the same as that of Theorem
above, but with the exponent 2k/(k — 1) from the Bennett—Carbery—Tao theorem
(that is, Theorem or, more precisely, the k-broad version given by Corollary
[6.5) playing the role of p(n, k). O

To establish the main result, Theorem [[.2] it remains to prove Proposition IT1.1]
Both Proposition [[T.1] and Proposition can be established using very similar
arguments: in fact, the proofs differ only at one (crucial) point. To highlight the
essential differences between the positive-definite and mixed-signature cases, at the
end of this subsection it is indicated how one may adapt the proof of Proposition
[Tl to yield Proposition

The proof of Proposition [IT.1]is an induction on scale argument. The induction
quantity is defined as follows.

Definition 11.3. For 1 < p < o0 and R > 1 let Q,(R) denote the infimum over
all constants C' for which the estimate

IT*fll ooy < ClfLrsn-1)

holds for 1 < r < R and all Hérmander-type operators T with reduced positive-
definite phase and all A > R.

With this definition, the problem is now to show that, under the hypotheses of
Proposition [[1.1] one has

(11.3) Qp(R) sc B

for all ¢ > 0 and 1 < R < \. Indeed, this establishes the linear estimates in the
case of reduced phases, and then the arguments of §4 extend the result to general
Hormander-type operators with positive-definite phase.

It is useful to introduce some of the ingredients of the proof of (IL3). Decompose
B(0, R) into balls Bg= of radius K2 and consider HT)‘fHLp(BKZ) for some fixed B>
with centre Z. To bound this quantity one expresses f as a sum of two terms: a
“narrow” and a “broad” term. The narrow term is of the form

(11.4) ot

1€V, for some a

consisting of contributions to f from caps for which G*(#;7) makes a small an-
gle with some member of a family of (k — 1)-planes. The broad term consists of
the contributions to f from all the remaining caps. One may choose the planes
V1,...,Va so that the broad term can be bounded by the k-broad inequality from
the hypothesis. Thus, the problem is roughly reduced to studying the case where f
is of the form (II.4). To treat this case, the first step is to apply an ¢P-decoupling
inequality to isolate the contributions of the different f;.



SHARP ESTIMATES FOR OSCILLATORY INTEGRAL OPERATORS 71

Theorem 11.4. Suppose that T is a Hérmander-type operator with reduced positive-
definite phase. If V€ R™ is an m-dimensional linear subspace, then for 2 < p <
2m/(m —1) and § > 0 one has

A —1)(1/2—1/p)+6 AP 1/p
H Z T gTHLP(BK2) <5 KO D2=1p) (Z T g"'HLP(wBK2)) .
TeV TeV
Here the sums are over all caps T for which (G*(z,7),V) < K~ where Z is the
centre of Br2> and wp,, 15 a rapidly decaying weight of the form of that defined in
B.0).

This theorem is a variable coefficient generalisation of a decoupling inequality
due to Bourgain [6]. It can be established by adapting the argument of [6] using
many of the techniques employed in the current article: see also [2]

Summing together the contributions from the various spatial balls Bz, it re-
mains to estimate the decoupled contributions |T*f-|re(p,)- Since each f; has
small support, after rescaling one obtains favourable estimates for | T f, || L»(B(0,R))
by invoking the induction hypothesis. This is made precise by the following lemma.

Lemma 11.5 (Parabolic rescaling). Let 1 < R < X and suppose [ is supported on
a ball of radius p~' where 1 < p < R. For all p > 2 and § > 0 one has

IT fll o0, R)) S5 Qp(R)R o> /P~ =V £l 1o ga-ry.

The proof of the parabolic rescaling lemma for extension operators is simple,
consisting of an affine change of variables. In the variable coefficient case some
significant additional complications arise; the proof is therefore postponed until the
following subsection.

Having introduced the main tools, the proof of Proposition [[T.1] follows easily.

Proof (of Proposition[I11]). Tt suffices to demonstrate the linear estimate for p sat-
isfying the additional condition
2n —k +2 .

2n —k b
the result for the remaining value of p then follows immediately by Hoélder’s in-
equality.

Let € > 0 be given. By hypothesis,

; Afp pe/2|| £P
S i [T < KRR
BK2 EBK2 K2
B2 nB(0,R)#J

where V1, ..., V4 are (k—1)-planes and the notation 7 ¢ V, signifies that £ (G*(z,7),V,) >
K~ for T the centre of the corresponding K2-ball Bye-.

For each B~ fix a choice of V7, ..., V4 which achieves the minimum above. Then
one may write

A
T fIP < KOO max/ T f [P + / | T f.|P.
/B TEV. BK2 aZ:ll BK2 Z

K2 @ TEV,

(11.5)

241¢ is remarked that since the decoupling estimate is applied at a small spatial scale K2 « A/2
one can avoid the use of the full statement of Theorem [I1.4] by appealing to an approximation
argument. If one argues in this way, then only Theorem [I[1.4] for extension operators associated
to elliptic-type hypersurfaces is required.
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The first term can be estimated using the hypothesised k-broad estimate; in par-
ticular,

/ T fIP < KCWO(K €) Rp€/2“fHLp(B" ot Z Z /| Z T>f|P.

B(0,R) Byo€Bg2 a=1 TeVy,
By2nB(0,R)#

It remains to bound the narrow term, where the contributions come from caps

whose directions make a small angle with one of planes V,. By Theorem [I1.4] for

any 0’ > 0 one has

A p k—2 2—1)+4’ A
/B ZTf| <g KF—2@2-D+ Z/ T fr [P, ,

K2 T€EV, TEV,
for each 1 < a < A. Thus, summing over the a and all the relevant balls By, one
concludes that

% B[S rapsee e 5[

Bp2€Bg2 a=1 By2 rev, 7:K—1—cap B(0,2R)
B2nB(0,R)#J

Since each f, is supported on a K ~'-cap, the summands appearing in the right-
hand expression are amenable to parabolic rescaling. In particular, letting § > 0
be a small number chosen to satisfy the requirements of the forthcoming argument,
Lemma implies that

Lo TP s QuRP RO
B(0,2R)

Defining
e(k,p) == (k—2)(1—p/2) =2n+ (n—1)p
and combining these estimates,

[ r < (RODCUC R 4 Cos QIR KD
B(0,R)

and so, by definition,
Qu(R)? < KOWC(K,e)RP/? + C5.5Q,(R)PROK P+,

Since p satisfies (LA, it follows that e(p,k) > 0 and one may choose &' =
e(k,p)/2 so that the K exponent in the right-hand term is negative. Thus, if
K = KoR2?/¢(k:p) for a sufficiently large constant Ky, depending only on ¢, 8, p and
n, it follows that

Qp(R)P < KOWC(KR¥/**:P) \RPE2 4 Q,(R)P/2.

Recall that, by hypothesis, the constant C(K,¢) arising from the k-broad estimate
grows at most polynomially in K. Consequently, one may choose § to be small
enough (depending only on admissible parameters) so that Q,(R) <. R, as re-
quired. O

As mentioned above, this argument can be adapted to study the case of general
Hoérmander-type operators (with potentially mixed signature) to prove Proposition
II2 The induction quantity Q,(R) is defined as before, but now the supremum
is taken over the larger class of all Hormander-type operators 7* which are in a
suitably reduced form. The proof of the parabolic rescaling lemma then extends to
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this setting mutatis mutandis. The key differences arise in the decoupling inequality.
In particular, Theorem [I1.4]does not hold at the required level of generality. To see
why this is so, consider the example of the extension operator E associated to (a
compact piece of) the hyperbolic paraboloid given by the graph of h(w) := wiws.
If V:={xeR3: 2y =0} and G is the relevant Gauss map, then

S, ={weB?:Gw)eV}={we B*:wy, =0}.

Thus, the Eg, for 7 € V are (distributionally) Fourier supported in a neighbourhood
of the & -axis (which is, in particular, a curve of everywhere zero curvature). As
is well-known, in the absence of curvature, no non-trivial decoupling estimates are
possible.

The following simple result acts as a substitute for Theorem [IT.4l

Lemma 11.6 (Bourgain-Guth [§]). Suppose that T* is a Hérmander-type operator
with reduced phase. If V< R™ is an m-dimensional linear subspace, then for all
p=2 and d >0 one has

m—1)(1— /
H ZVT)\QTHLP(BK2) <s K(m—ba 2/P)+5( Z;/ HT)\gTH;ZP(wBK2))1 s
TE T

This lemma provides much weaker estimates than those guaranteed by the ¢P-
decoupling theorem in the positive-definite case: here the K exponent is larger by
a factor of 2 than that appearing in Theorem [[T.4l To prove Proposition I1.2] one
proceeds as in the proof of Proposition [T.1] first decomposing B(0, R) into balls
of radius K2. For each such ball the broad term is bounded using the hypothesised
k-broad estimate whilst the narrow term is bounded by Lemma together with
the induction hypothesis (via parabolic rescaling). The larger exponent incurred
by Lemma propagates through the argument until one arrives at the estimate

Qp(R)? < KOWCO(K,)RY/? + C5.5:Q,(R)P RO K =2 (=2 +2n—(n=1)p+0",

In order to close the induction, once again one must ensure that the K exponent
is negative. By choosing ¢’ appropriately, this is possible if p satisfies the stronger
hypothesis p > 2(n — k + 2)/(n — k + 1), which is precisely the condition featured
in the statement of Proposition

11.2. Proof of Lemma It remains to establish the parabolic rescaling
lemma, which is achieved by adapting arguments implicit in [8]. As mentioned in
the previous section, some additional complications arise in the case of Hérmander
operators (as opposed to the extension case) and the proof of the parabolic rescaling
is slightly involved.

It will be useful to work with the following discrete reformulation of the main
estimate for the operator T*.

Lemma 11.7. If D is a mazimal R™'-separated discrete subset of §), then

wigpM (- 5w n— /
(11.6) | 22 e C=0Gwo) L po,my) S @oRIRTVGlen (o)
we€D
forallG: D — C.

Proof. Fix ¢ € C*(R"!) supported on B(0,2) which satisfies 0 < 1 < 1 and
P(w) =1 for all w € B" ! and for each wy € D define ¥y(w) := P(10R(w — wy)).
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Thus, for all x € B(0, R) the exponential sum appearing in the left-hand side of
([II8) can be expressed as a constant multiple of

Rnfl/ eeriqu(z;w)aA (:zz;w) [1/;(33/R) Z 6727ri)\(lg(m/)\;w)G(w9)1/}9 (w)] dw
Rn—1
we€ED
where Qg (2;w) = ¢(x;w) — (25 wp), ¥ € CP(R™) is a function of n variables which
enjoys properties similar to those of 1 and a* is a suitable choice of amplitude.
Since
sup  [02Qg(z;w)| <5 Rz for all e Nj and z € X,
wESUpp Yo
one may safely remove the AQg(z/A;w) term from the phase. More precisely, by
expanding 1/}($)6727ri)\£29(Rz/>\;w)
that

as a Fourier series in the variable x, one can show

| 3 2 @ Gluwg)| < RPN (1 + [k]) "D T Ay (2)]
weED keZn

where T is a Hérmander-type operator with phase ¢* and
gr(w) =) G(wa)cko(w)ibp(w)
wg€D

for some choice of smooth functions cy, ¢ satisfying the uniform bound |cy gl Lo (pn-1) <
1. Thus, by the definition of Q,(R) it follows that

i (- sw n— —(n
| 2 @™ =G0 L pomy S QoRIB™ Y (L4 [R) " gl Lo
wy€D kezZm™
and, since the vy are supported on pairwise disjoint sets,
=1}/ 1
g6l opnry € BTV (N 1Glwa) ),
wg€eD
concluding the proof. O
Proof (of LemmalI1.7). Recall, the phase of T? is given by ¢* (z;w) := \p(x/\;w)
where
(11.7) d(z;w) = (@', w) + zph(w) + E(z;w).
Let B(w,p~') be a ball supporting f, where @ € B" L. If T*?" denotes the
parabolically rescaled operator defined in ([4.8]), with rescaled phase function
(11.8) b(z;w) = (&', w) + (W) + E(z;w),
then it follows that

P/ | AP

ITf | eB0,R)) < Flo(pm)

where now Dp is an ellipse with principal axes parallel to the co-ordinate axes and
dimensions O(R/p) x --- x O(R/p) x O(R/p?) and f(w) := p~ "V f(@ + p~ w).
Since

| flzognry = p~ " DFOTIR| £ L

given § > 0, the problem is to show that

o~ .
HT/\/p f“Lp(DR) <5 QP(R)R(stHLP(B"*)-

anl)7
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Observe that the phase ¢ defined in (IT8) is also positive-definite and of reduced
form. To lighten the notation, consider once again a general positive-definite re-
duced phase ¢ as in (ILT) and let T? is a Hérmander-type operator associated to
&*. Tt suffices to show

1T Fllo(Dr) S5 Qu(RYE | fllLo(mnr)

foralll « R< R' < X and é > 0 where
|

Dy = {xeR" : (%)2 + <|x_}g|)2 < 1}

is an ellipse. Of course, if R = R’, then this inequality is immediate from the
definition of Q,(R).

Cover B"~! by a collection of essentially disjoint R~'-caps 6 and decompose f
as f = > fo. Define

—2mip™ (w5w
) f(x) = e 2 SO TR fy ()

so that
D)= 3 EETRfy ()
0:R—1—cap
Fix § > 0 to be sufficiently small for the purposes of the forthcoming argument.
Each f5 is supported on an R~ '-ball and is therefore, of course, supported on an
R~'*%ball. Since (R~'*9)~!1 < A%  one may apply Lemma [5.6] to deduce that
T3 fo(w) = T;' fo * npa-s(«) + RapDec(N) | f| 2(zn-1)

for some choice of rapidly decreasing function 7. As in the proof of Corollary[5.7 the
function n may be chosen so that |n| admits a smooth, rapidly decreasing majorant
¢: R™ — [0, 0) which is locally constant at scale 1. In particular, it follows that

(11.9) Cpi-s(x) < R‘Sg‘les (y) if |z —y| <R

Cover Dg by finitely-overlapping R-balls and let Br be some member of this
cover. Combining the above observations, if  denotes the centre of Br and z €
B(0, R), then

T (@ +2)| s R / | D) R ) 2mat @A fo () s (7 — ) dy,
" 9:R-l—cap
where q~5’\(z;o.)9) = ¢MNT + z;wg) — ¢MN(T;wp). Taking the LP-norm in z it follows
from Minkowski’s inequality that |7 f|.»(py) is dominated by

i /n | Z e2mid ;we)e%wx(i;we)Té\f@(y)HLp(B(o,R))CWS("% —y)dy.

6:R—1—cap
By Lemma [[T.7 the LP-norm appearing in the above integrand is bounded by a
constant multiple of

QBRI (N T () P)
0:R—1—cap

Applying Holder’s inequality and the locally-constant property (IT.9), one deduces
that

n— / - 1
HT)\fHLT’(BR) < Qp(R)R( L/p +O(5)(/ Z |T’\f9($+2—y)|pCle6(y) dy) p
R 0:R—1—cap
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for all z € B(0, R). By raising both sides of this estimate to the pth power, averaging
in z and summing over all balls B, in the covering, it follows that [T f||1»(pyg) is
dominated by

n— ' —n, 1/
Qp(R)R( 1)/p /p+0O(9) ( / Z HT)\fe Hzl)/p(DR_y)<R1*5 (y) dy) P'
" 9:R—1—cap

Observe that, by Hormander’s theorem (Lemma [5.4]) and Holder’s inequality, one
has

< R~ (n=1(1/2-1/p)+1/2 I.fo

1T foll 12 (Dr —y) le(r-1)-

On the other hand, the trivial estimate
I foll o (Dr—y) < B foll Loginry

holds, simply due to Holder’s inequality. Combining the above,
1T foll o (Dn—yy < B o ey,

The desired inequality is now immediate. ([

12. AN e-REMOVAL LEMMA

The A\°-loss in the linear estimates of Theorems[T.T]and can be removed away
from the endpoint by an appeal to an e-removal lemma of the type introduced in
[23] (see also [8] 22]). The precise form of the required lemma does not appear in
the literature, but it can be deduced by a minor modification of an argument from
[23]. For completeness, the details are given presently.

Suppose T? is a Hormander-type operator with associated phase function ¢*.
Let p > 2 and suppose for all € > 0 the estimate

(12.1) | T fl o (Br) Seivia BENf o1

holds for all p > p, all R-balls B for 1 < R < A and any choice of amplitude
function. Under this hypothesis, one wishes to show that the global estimate

(12.2) IT* fl o @y Sga I Flesn-)
is valid for all p > p.

Definition 12.1 (Tao [23]). Let R > 1. A collection {B(z;, R) ;-V:1 of R-balls in

R™ is sparse if the centres {z1,..., 2y} are (RN)-separated. Here C' > 1 is a fixed
constant, chosen large enough for the purposes of the proof.

Following [23], the first step towards establishing (I2.2]) is to reduce the problem
to proving estimates for T over sparse families of balls.

Lemma 12.2. To prove [I22) for all p > p it suffices to show that for all e > 0
the estimate

(12.3) IT*fllLocsy Sepa BENFILocmn—r)

holds whenever R = 1 and S < R™ is a union of R-balls belonging to a sparse
collection, for any choice of amplitude function.

The key step in the proof of Lemma [12.2] is the following covering lemma.
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Lemma 12.3 (Tao [22, 23]). Suppose E € R™ is the union of 1-cubes and N > 1.
Define the radii R; inductively by
Ro:=1, R;j:=R$ ||EI° for1<j<N-1.

Then for each 0 < j < N — 1 there exists a family of sparse collections (Bja)aca;
of balls of radius R; such that the index sets Ay, have cardinality O(|E[YN) and

N—1
Ec U U Sj)a
j=0 acA;
where Sj o 1s the union of all the balls belonging to the family B; o .

Proof (of Lemma[12.2). Let E < R™ be a finite union of 1-cubes. For N > 1, the
covering lemma together with the hypothesis (I2:3)) imply that

~N
HT)\f”Lﬁ(E) $€,¢,a N|E|1/N+EC HfHLﬁ(anl).
Choosing N ~ log(1/e), it follows that
HT>\f|‘Lﬁ(E) $€,¢>,a |E|é/10g(l/€) Hf“Lﬁ(Bn—l).

It will be convenient to work with the dual operator
T*g(w) := / 672”i¢k(m;“’)a)‘(x;w)g(x) dz
so that the above estimate can be reformulated as

(12.4) IT* 9]l Lot (5n -1y S0 [EI7 B gl L )

for g supported on the set F.

Fix p > pand 7 € [—1/2,1/2]™. Suppose that g € LP' (R™) satisfies Igll o ey = 1
and is constant on the mesh of 1-cubes centred on points of the lattice 7+ Z". Form
a level set decomposition of g by writing g = >, _;, g where g, := gxg, for

Ep:={zeR":27F < |g(z)] <277}

Chebyshev’s inequality implies that |Fj| < 2k’ for all k € Z. Furthermore, each
set Ej is a union of 1-cubes and therefore if E # ¢, then |E;| > 1. Combining
these observations, one deduces that Ey = ¢ for all £ < 0. Since g is supported
on Ej, one may apply (IZ4) to conclude that

(12.5) IT* il Lot (1) S 1Bl BN [ gill Lo -

Using a simple base-times-height estimate, the right-hand side of (I2Z.E) can be
bounded by (a constant multiple of)

9| [, |/ loa(1/e)+1/F < 9=k(1=C'/log(1/e)=p'/F')

Since p’ < p’, by choosing ¢ sufficiently small one can ensure that the right-hand
exponent is negative and therefore

HT*QHLP/(B"*U S HT*gHLﬁ/(B"*U < Z HT*QkHLﬁ/(anl) Spal= HgHLP/(]R")'
k=0

This establishes the dual of the desired estimate (I2.2) under the additional hy-
pothesis that the function g is constant on 1-cubes.
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It remains to remove the condition that g is constant on 1-cubes. The key
observation is that this special case of (I2:2)) implies the discrete inequality

—2mip™ (04T
(12.6) H Z e 2N (@H T ) o N o 7 -)G(U)HLP,(BH,I) So.a 1Gllew 2y
oEL™
for all G € ¢ (Z") and 7 € [—1/2,1/2]™. Indeed, once ([Z0) is established, tak-
ing g € v (R™) belonging to a suitable a priori class and applying Minkowski’s
inequality one deduces that

oY
IT*q| 1o grn-1y < / e~ 2Ot Ao 7 Vgl + )| oy AT
Ly’ (Bn—1) [1/2,1/2]n H aezz:n HL (Bn—1)
Combining this with (I2:6) and Hoélder’s inequality yields (I2.4)).

Thus, the problem is now reduced to proving (IZ6). Fix G € 7' (Z™) and define

g(x) := Z Go)x(x —o—1)
oEL™

where x is the characteristic function of [—1/2,1/2]™. Since g is constant on 1-
cubes, one is free to apply (I2.4) to this function. In particular, let T* be the dual
of a Hérmander-type operator with phase ¢* and amplitude @* where

() L sin(0y; ¢) (T3 w) _1a _
)= (11 ) @)

for ap a smooth amplitude which is supported on X x Q and satisfies ap(z;w) =1
for (z;w) € suppa. By the usual reductions (see §l) one may assume from the
outset that [(0z;¢)(z;w)| < 1/2 for (z;w) € X x Q and 1 < j < n and hence @ is a
well-defined, smooth function. Thus, the estimate

IT* Gl 1o (Bn—1y .0 1G] o (mm)

holds, which can be rewritten as

—27i™ (o+7T;
(12.7) | > e N (AN o + 75 )G (0) | Lo g1y Seva G 2y
oEeZL™
where
(12.8) Ax(z;w) = / e~ TNty A =d(@W) g (1 4 g/ w) dy.
[-1/2,1/2]"

Note that (I27) is almost the desired expression ([[Z6]) except for the disparity
between the amplitude functions. To deal with this slight technicality, observe
that, since
/\lgrolo Ax(z;w) = ap(x;w) uniformly,

one may assume that A is sufficiently large so that |Ay(z;w)| 2 1 for all (x;w) €
supp a. Thus, the expression appearing in the norm on the left-hand side of (I2.6))
is given by

Z 672”&(‘””")(AA)A(0 + 75 w)G(O')(p)\))\(O' + 7 w)

oeZm™
where, by taking a Fourier series expansion, the ratio p) satisfies

a(z;w) _ .
. - ) _ 1 k (n+1) 2midx, k)
prlase) = T = 3 (1) e
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where the ¢y, are bounded functions, uniformly in A and k. One may therefore
bound the left-hand side of (IZ6) by a (1 + |k|)~(**D-weighted sum of the left-hand
side of (I2.7) applied to modulated versions of G. Estimating each summand using
([I21) and summing in k& concludes the proof. O

Given the above reduction, it remains to establish the estimates for T* over
sparse collections of R-balls.

Lemma 12.4. Under the hypothesis (IZ1), if p = p, then the estimate
| T fllo(s) Seipa BENflLo(pn—r)

holds for all ¢ > 0 whenever S < R"™ is a union of R-balls belonging to a sparse
collection.

Proof. The proof uses a crude form of wave packet analysis and has much in com-
mon with the arguments described in §5 Let {B(z;, R)};V: 1 be the sparse collection
of balls whose union is the set S. Clearly it suffices to assume that R « A and that
all the B(zy, R) intersect the z-support of a”. Furthermore, letting cqiam > 0 be a
small constant chosen to satisfy the requirements of the forthcoming argument, by
applying a partition of unity one may assume that diam X < cqijam and so

(12.9) w < Cdiam for all 1 < j1,72 < N.

Fix n € C®(R" 1) satisfying 0 < n < 1, suppn € B" ! and n(z) = 1 for
all z € B(0,1/2). For Ry := CNR, where C > 1 is a large constant, define
ngr, (2) := n(z/R1). Further, let 1 € CP(R"!) satisfy 0 < ¢ < 1, suppy < Q and
¥ (w) = 1 for w belonging to the w-support of a*. Fix 1 < j < N and write

PN (e . TN (T s: -
MY f = Pif + (2T f = Pif) = Pif + fi
where P;f := g, * [62”‘79(””* 4pf]. If one defines
Fre(z) = / 2T @)= 5590 N (1 0) £ o () oo,
Rn—1
then it follows that
T f(x) = TA[efzﬂ‘M(mﬁ P f(x) + Err(z).
For z € B(z;, R) the term Err(x) is negligible. Indeed, by Plancherel’s theorem

Brr(o) = [ Gale)- (1= (DI ] () d

where

() = / (2mi((2 ) =0 ()40 (2,9)) 0 (31 ) .
Rn—1

Taking the w-gradient of the phase of G (z), one obtains
2= M0w(x/X;w) — dud(zj/A;w)) = 2z + O(R).

Thus, if z belongs to the support of 1 — ng,, then G,(z) is rapidly decaying in R,
and therefore

[Ere(z)] < RapDec(Ry)| flpo(5n1).



80 L. GUTH, J. HICKMAN, AND M. ILIOPOULOU

It remains to bound the contributions arising from the frequency localised pieces.
By applying the estimate for 7% with R-loss over each ball B(x;, R) one obtains

N
—27ip™ (x5 - 1/
1T liags) < (D T2 @B, o) + RapDec(B)| 1o

j=1
N
Seva BE( Y 1B 150 gn )" + 1o snn),
j=1
Thus, it now suffices to show that

N

(Z HijH’ip(Rnfl))l/p S Iflear-1y-
j=1

This estimate follows via interpolation between the endpoint cases p = 2 and p = o0,
which are established presently. The p = o0 case is a trivial consequence of Young’s
inequality and so it suffices to consider p = 2. By duality, the desired inequality is
equivalent to

N N
(1210) [ D] e 2@ Dy [, 5 5] ey S () 19513250 0)
j=1 J=1

By squaring the left-hand side of (I2.10) one obtains

N
[ o, » g3 i, 95,
J1,ja=17 R

where
Gj, (W) = e2mi(¢7 (w4, 3w) =9 (2, ;w))#,(w)?.

By Plancherel’s theorem, each summand of the above expression can be written as
(12.11) [ G Cman) « (i) () dz

here (g, j,)~ (2) := (MR, §j,)(—z). Note that the integrand in (I2.I1]) is supported
on a ball of radius O(R;) about the origin.

Fix 1 < j1,j2 < N with j; # jo, let 2 € R"™! with |2| < Ry < |zj, — 2, and
consider

. ) N ) (e
Gj17j2(z) :/R B 627”(<Z»W>+¢ (25, 3w)— ™ (@53 ))1/)(w)2 dw.

This oscillatory integral can be bounded by a simple stationary phase analysis. For
o € N"! with |a| < 2 consider the function

0% (M@, w) — M @3 w)| = 002 p(wj, W), Ty — 5, ) + OCdiaml| Ty — 5, 1),

where the remainder term has been estimated using (23]

Let ccrit > 0 be another small constant, chosen to satisfy the requirements of the
forthcoming argument, and wg € 2. Suppose that
—

-
(12.12) + 2 Gy wo)| = Cenit,
’ |‘Tj2 — Tjy | o ‘
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where the estimate is interpreted as holding for both choices of sign. Condition H1)
on the phase implies that for each wy € Q the vector G*(z;wp) spans the kernel of
0% ™ (z;wo). Consequently, in view of (I2ZI12) one has

|aw [<81¢A(Ij1;w)vxj2 - ‘Tj1>]|w:w0| R |Ij2 - ‘Tj1|

and therefore
|aw [¢)\(le ) w) - ¢)\(sz ) W)] |w:w0| e |‘Tj2 — Ty, |7

provided cgiam is sufficiently small. On the other hand, if (IZI2) fails, then

05 (0a6™ @13 ),

T — s
Sy = 05000150, G (500D + Olceri).
|74y — @5 |
If cerit and cqiam are both chosen to be sufficiently small, then condition H2) implies
that
| det aazuw [(b)\ (‘le ) W) - (b)\ (‘sz ) W)] |w:w0| = |‘Tj2 - Ljy |n71_

Thus, any critical point of the phase must be (quantitatively) non-degenerate and
one may apply higher dimensional versions of van der Corput’s lemma (see, for
instance, Chapter VIII, Proposition 6 of [20]) to estimate the oscillatory integral.
In particular,

. —(n— _c
1Gji o ()| S gy — 2| V2 S Ry

so that the absolute value of (IZI1) is bounded by

2
-C - -\~ -C .
Ry (R, g30) * (1R, 32)~ |1 gn—1) S Ry n ImR. 9.1l L1 n—1)

=1

2
—C+n—1
S H 19 HL2(R"*1)'
i=1
Since there are only O(N?) choice of indices ji,j2, one may invoke the trivial

estimate
2

N
H lgs: | L2mn—1y < Z lg; H%?(B"*l)
i=1 j=1

and then sum all the contributions from all pairs ji,j2 to bound the off-diagonal
terms arising from the left-hand side of (I2.I0). On the other hand, the diagonal
terms provide a favourable contribution of

N N
(D 1im * 93 5amm 1)) < (X 15320 ) 2.

Jj=1 J=1

Combining these observations concludes the proof of (IZI0) and thereby establishes
the lemma. ]
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