
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Murphy, Julian and Howells, Gareth and McDonald-Maier, Klaus D. (2019) A Machine Learning
Method For Sensor Authentication Using Hidden Markov Models. In: Proceddings of Eighth
IEEE International Conference on Emerging Security Technologies. . (In press)

DOI

Link to record in KAR

https://kar.kent.ac.uk/75458/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/222831542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Machine Learning Method For Sensor
Authentication Using Hidden Markov Models

Julian Murphy∗†, Gareth Howells∗
∗School of Engineering and Digital Arts

University of Kent
Canterbury

United Kingdom (UK)
Email: j.murphy-2060@kent.ac.uk, w.g.j.howells@kent.ac.uk

Klaus D McDonald-Maier†
†School of Computer Science and Electronic Engineering

University of Essex
Colchester

United Kingdom (UK)
Email: kdm@essex.ac.uk

Abstract—A machine learning method for sensor based au-
thentication is presented. It exploits hidden markov models
to generate stable and synthetic probability density functions
from variant sensor data. The principle, and novelty, of the
new method are presented in detail together with a statistical
evaluation. The results show a marked improvement in stability
through the use of hidden markov models.

I. INTRODUCTION

Recent security trends have led to a need to be able to
authenticate and identify correctly embedded devices used in
the Internet-of-Things (IoT). Such devices typically feature
a 32-bit processor, multiple sensors and a moderate level of
software intelligence in-built. While authentication is achieved
by extracting a stable and predictable sequence of n ID bits
(e.g., 128-bits) from the device.

A n-bit ID can be formed in two ways:
1) from outputs of dedicated integrated circuits (ICs) or

from on-chip hardware macro blocks; or,
2) by inferring it from data extracted from the sensors,

memory and processor, which contains hidden informa-
tion local and unique to that device.

We presented a solution to the first approach (bullet point
1 above) in [1]. In this work, a quaternary ID circuit for
used in hardware macro blocks was discussed. And which, 1)
exploits the fact lithography fabrication differences—known as
process variability—cause variations in circuit-level switching
threshold voltages (Vth) due to transistor doping imbalances;
and, 2) quaternary metastability, instead of using the common
approach of binary metastability. It attempted to address the
fact certain bits will be unstable and different each time a n-bit
ID is generated, rather than giving the same n-bit ID each time
(e.g., 20 bits will be unstable for a 128-bit ID). This problem,
termed stability, occurs due to environmental factors, such as
temperature changes, and the natural non-linear properties of
transistors.

The second approach (bullet point 2 above) to form an n-bit
ID—where the authors have conducted work on this approach
using probability density functions (PDFs) in [2] and termed
ICMetrics—also suffers from the exact same stability problem.
Therefore, knowing this, based on the previous work and after

evolving a number of ideas, we have researched and developed
a method to act as the basis for a new solution, and as follows.

Given stability affects the consistency of the sensor data
extracted from a device, we first attempted various approaches
to stabilize the data (pre-processing) before it was used as a
PDF to generate an ID e.g., filtering and various DSP tech-
niques. And, later cutting out the analysis as a PDF and instead
generating some visual fingerprint using image processing and
geometric algorithms to generate an ID e.g., voroni diagrams
and line sweeping. This led to novel solutions, but no real or
appreciable improvement in stability was observed, indeed it
often worsened.

However, what we did note, which stood out when combin-
ing and permutating the previous work and the above attempts
to improve stability, was that: machine generated PDFs, such
as instruction cache signatures, were usually perfectly stable.
This is because they are effectively synthetic PDFs, while the
PDFs from sensors are naturally analogue and influenced by
their environment; and obviously intuitive since one is digitally
created and one is not. But it was not clear that perhaps
something similar could be exploited to improve stability,
and which spawned the following idea: if synthetic PDFs
can be generated from sensor data, and thus making them
machine generated, stability should improve (or at least by an
appreciable percentage).

In researching this, we also noted a similar process, concep-
tually, to this exists in hardware via opto-couplers, which take
in a dirty signal and infer a clean digital signal from light
induced variations. This method is also often used in side-
channel analysis of smartcards to crack their secure IDs from
cleaned up power signals. Therefore, we have investigated
methods to emulate an opto-coupler’s operation with the
purpose of generating synthetic PDFs from raw sensor data,
and led to a method of using Hidden Markov Models (HMMs)
to output synthetic PDFs as follows.

A HMM is initially trained on a data set of sensor data (e.g.,
1000 samples from an ambient light sensor). Its parameters are
stored and then reused to rebuild the HMM later, then a new
data set of sensor data is used with it to make a set of state
predictions to form a synthetic PDF. More precisely, as the
new sensor data is passed through the HMM the probability

of being in a certain state changes over time—for example,
moving from state 1 to state 4 to state 2—which naturally
leads to a count for each state for the sensor data set, and
which can be used to build a synthetic PDF. This new digital
PDF can then be used in the regular ICMetrics approach to
generate an ID.

We present in this paper in detail the method behind the
idea, since we have not found any other works that are related.
The scientific novelty is using HMMs to improve stability of
IDs from synthetic PDFs.

II. RELATED WORK

The technology and novelty of ICMetrics is that it is
designed to be similar to what can be found in real life and
in a human that is unique and can be used to generate digital
IDs e.g., DNA, a thumb fingerprint or an eye’s iris. Other tech-
nologies from the literature that work in a similar way include:
Physical Unclonable Functions (PUF) [3], hard-wired digital
keys [4], biometrics [5], dynamic encryption and passwords
[6]. However, ICMetrics can be considered technologically
more of a hybrid approach, given that it exploits data which
can be extracted from hardware (or software) as might be
available or best suited to the application at hand. This is then
used to form PDFs whose parameters are used to form unique
IDs.

In previous publications, namely [7] and [8], it was explored
how viable and if at all possible it was to apply the core
technology to generate stable IDs from a processors software
execution signature. Here, the main idea was to exploit the
program counter (PC) as the data source, given that the PC
signature yields distinct PDFs from different programs, in a
similar way malware analysis. The main findings of the work
are presented in [9]. It can be observed of this approach, that
the PDFs formed are purely digital and synthetic, and thus
effectively noise free and highly stable.

Conversely, any PDF formed from reading sensor values
will have a high amount of noisy and changing values simply
due to environmental effects. For example, an ambient light
sensor’s values require light to be at exactly the same level
to get repeatable readings. Therefore, a means to generate a
stable synthetic from analogue data is desirable. We have not
found anything to this end in the literature, only an approach
to go the opposite way from PDFs to synthetic time-series
instead in [10].

III. METHODOLOGY

A. Hidden Markov Models

A Hidden Markov model is a stochastic signal model which
was first introduced by [11] and based on the following
assumptions:

1) an observation at t was generated by a hidden state;
2) the hidden states are finite and satisfy the first-order

Markov property;
3) the matrix of transition probabilities between these states

is constant;

4) the observation at time t of an HMM has a certain
probability distribution corresponding with one of the
possible hidden states.

Although HMMs were developed in the 1960s, a maximization
method was not presented until the 1970s in [12] to calibrate
the model’s parameters. Since, more than one observation can
be generated by a hidden state the authors in [13] introduced
a maximum likelihood estimation method to train HMMs
with multiple observation sequences, assuming that all the
observations are independent. From which two main types
of hidden Markov models can be built: discrete HMMs and
continuous HMMs.

The actual parameters of an HMM are the constant matrix
A, the observation probability matrix B and the vector p, as
follows:

λ ≡ {A,B, p}

If we have infinite symbols for each hidden state, the
symbol vk will be omitted from the model, and the conditional
observation probability bik is:

bik = bi(Ot) = P (Ot|qt = Si)

If the probabilities are continuously distributed, we have a
continuous HMM. In this work, we assume that the obser-
vation probability is a Gaussian distribution. And, therefore,
bi(Ot) = N (Ot = vk, µi, σi) , where µi and σi are the mean
and variance of the distribution corresponding to the state Si,
respectively. Such that the parameters of an HMM are:

λ ≡ {A,µ, σ, p}

where µ and σ are vectors of means and variances of the
Gaussian distributions.

Three main questions can be answered when applying a
HMM to solve a real-world problem as follows:

1) Given the observation data O = Ot, t = 1, 2, ..., T
and the model parameters λ = A,B, p, calculate the
probability of observations, P (O|λ).

2) Given the observation data O = Ot, t = 1, 2, ..., T and
the model parameters λ = A,B, p , find the “best fit”
state sequence Q = q1, q2, ..., qT of the observation
sequence.

3) Given the observation sequence O = Ot, t = 1, 2, ..., T ,
calibrate HMM’s parameters, λ = A,B, p.

These problems can be solved by using the main HMM
algorithms as below:

1) Find the probability of observations: Forward or back-
ward algorithm.

2) Find the “bet fit” hidden states of observations: Viterbi
algorithm.

3) Calibrate parameters for the model: Baum–Welch algo-
rithm.

The most important of the HMM’s algorithms is the
Baum–Welch algorithm, which calibrates the parameters of
a HMM given the observation data.

Generating PDFs from HMMs

HMMs have been widely used in mathematics to predict
economic cycles and for speech/text recognition. However, in
this paper we propose a method of using them with the purpose
of generating stable PDFs by emulating the operation of opto-
couplers.

In this method, we start by training a HMM using a raw
sensor data set of a fixed length for a given sensor:

O = Ot, t = 1, 2, ..., T

where where Ot is the sensor sample at time t.
While the number of HMM states used should correspond to

the number of bins of the raw training data set’s PDF. We also
assume that the distribution corresponding with each hidden
state is a Gaussian distribution.

Next given a trained HMM for a sensor we simply predict
the PDF given another raw data set from the same sensor.
The prediction is executed by simply running the data set
through the HMM and recording the predicted state changes. A
synthetic PDF can then be constructed from the tally of states.
If the correct sensor has been used the resultant PDF should
correspond to the trained HMM PDF from which parameters
can be extracted to generate an ID.

IV. EVALUATION

To develop and evaluate the method we have used exten-
sively a Arty FPGA board together with a variety of PMOD
sensors to extract data from. For ease of analysis sensor
data was recorded straight into a database and file storage
under various conditions to exercise the full range of sensor
data ranges as per a given sensor’s usage. For example, an
accelerometer sensor was moved through each axis and the
ambient light sensors data was extracted under varying lighting
conditions. This approach was taken to ease back-end analysis,
rather than trying to perform it all in real-time and potentially
missing points or data anomalies of interest. Once the batch
sensor data sets had been collected, training of the HMMs
and prediction was performed in the open-source statistical
analysis software known as R.

Algorithm 1 Building a HMM model and histogram in R

1| dataDiffT = as.numeric(diff(dataT))
2| hmmT <- depmix(dataDiffT ~ 1,

family = gaussian(), nstates = 3,
data=data.frame(dataDiff=dataDiff))

3| hmmfitT <- fit(hmmT, verbose = FALSE)
4| post_probsT <- posterior(hmmfitT)
5| hist(post_probsT$state)

Prior to settling on R various other software solutions were
investigated for their HMM capabilities (such as Ruby, Python
and Matlab), however the availability and open source nature
of R’s HMM packages proved the most reliable and easiest
to work with. Various HMM solutions are available in R,

Algorithm 2 Predicting a HMM model and histogram in R

1| dataDiffP = as.numeric(diff(dataP))
2| hmmP <- depmix(dataDiffP ~ 1,

family = gaussian(), nstates = 3,
data=data.frame(dataDiffP=dataDiffP))

3| hmmP <- setpars(hmmP, getpars(hmmfitT))
4| hmmfitP <- fit(hmmP, verbose = FALSE)
5| post_probsP <- posterior(hmmfitP)
6| hist(post_probsP$state)

so the most practical was chosen and discussed here, namely
depmixS4 with R version 3.4.4. To use any of code presented
the reader will need to first install version 3.4.4 and also load
depmixS4 as a R library. For the experiments relevant sensor
data was simply read from file as a CSV then used with the
following core code listings.

0 1 2 3 4 5

500

1000

1500

2000

2500

0

Predicted State

Fr
e
q
u
e
n
cy

Fig. 1. Ambient sensor HMM trained PDF

The first, Algorithm 1, on line 1 takes the difference
between all the samples to form a training data set named
dataDiffT. From which a Gaussian HMM is built with three
states; the state count was varied over differing ranges during
the experiments, three is just a placeholder in the code. We
found it is not guaranteed that a HMM can be built given
the data and number of states, or even that the resultant
histogram is actually useful, all input data can map to just
one HMM state for instance. To address this, initializing R’s
seed setting, for example as “set.seed(1)”, to different values
helps mitigate this issue and to choose states that matched
the number of bins in the raw data set PDF. Next a HMM
is trained and fit to the input training sensor data in line 3
and the posterior probabilities extracted in line 4 into variable
post_probsT. Lastly, a histogram is constructed by extracting
the state tally from this variable with post_probsT$state. All
the variable names in the code are appended with letter ’T’ to
signify that they are training data.

Once a HMM had been trained on a sensors raw data set
it was just a matter of saving the HMM parameters. They are

0 1 2 3 4 5

500

1000

1500

2000

2500

0

Predicted State

Fr
e
q
u
e
n
cy

0 1 2 3 4 5

500

1000

1500

2000

2500

0

Predicted State

Fr
e
q
u
e
n
cy

Fig. 2. Two ambient sensor HMM prediction PDFs

simply reloaded as required to make a prediction with new
sensor data to output a synthetic PDF of the HMM states. The
code listing to accomplish this in R is listed in Algorithm 2.
The differences of the sensor data to be used for prediction are
read stored into dataDiffP on line 1. Then a placeholder HMM
is constructed in line 2, whose parameters are updated with
the trained HMM in line 3. Next a HMM is fit to the data
using the parameters of the trained HMM and the posterior
probabilities extracted into the variable post_probsP in line 4.
A prediction PDF is then built by extracting the states stored
in variable post_probsP$state.

As example of the method, Figure 1 shows a trained HMM
PDF for three states for an ambient sensor under room lighting
conditions. Using two other data sets from the same sensor
also under room lighting two synthetic PDFs constructed using
the trained HMM but making a prediction is shown in Figure 2.
For each of the synthetic PDFs there is a clear consistency and
self-evident stability in comparison to the trained HMM PDF.

V. CONCLUSIONS

We have presented a method and its details of how to gen-
erate synthetic PDFs from raw sensor data using HMMs in an
endeavor to increase stability. Initial experimental results show
a marked improvement in stability. In conducting the work
we also explored other structures and algorithms in machine
learning as possible solutions for generating synthetic PDFs.
One area, which is currently of great interest regardless, which
we thought might be suitable was neural network processing.
While a normal neural network is not fitting, a certain sub-
class of neural networks which seem to be appropriate are
Restricted Boltzman Machines which we have noted can be
used in a similar fashion as HMMs, and often used in speech
processing and prediction. An which, will form the starting
point of future work.

ACKNOWLEGMENT

This work has been supported by the Euro-pean CHIST-
ERA SPIRIT Project funded in the UKby the Engineering and

Physical Sciences ResearchCouncil (EPSRC) [grant numbers
EP/P016006/1 andEP/P015956/1].

REFERENCES

[1] J. Murphy, G. Howells, and K. D. McDonald-Maier, “On Quaternary
1-of-4 ID Generator Circuits”, AHS, pp. 323-326, 2018.

[2] Y. Kovalchuk, K. D. McDonald-Maier, and G. Howells, “Overview
of ICmetrics technology-security infrastructure for autonomous and
intelligent healthcare system,” International Journal of u- and e-Service,
Science and Technology, vol. 4, pp. 49-60, 2011.

[3] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in 44th ACM/IEEE Design
Automation Conference, 2007, pp. 9-14.

[4] H. Handschuh, G.J. Schrijen, and P. Tuyls, “Hardware Intrinsic Security
from Physically Unclonable Functions,” in Towards Hardware-Intrinsic
Security, A.-R. Sadeghi and D. Naccache, Eds., ed: Springer Berlin
Heidelberg, 2010, pp. 39-53.

[5] A. K. Jain, P. Flynn, and A. Ross, Handbook of Biometrics: Springer
US, 2008.

[6] W. Sheng, G. Howells, M. C. Fairhurst, F. Deravi, and K. Harmer, “Con-
sensus Fingerprint Matching with Genetically Optimised Approach,”
Pattern Recognition, vol. 42, pp. 1399-1407, 2009.

[7] Y. Kovalchuk, W. G. J. Howells, H. Hu, D. Gu, and K. D. McDonald-
Maier, “A practical proposal for ensuring the provenance of hardware
devices and their safe operation,” in 7th IET International Conference
on System Safety, incorporating the Cyber Security Conference, 2012,
pp. 1-6.

[8] Y. Kovalchuk, W. G. J. Howells, H. Hu, D. Gu, and K. D. McDonald-
Maier, “ICmetrics for low resource embedded systems,” in the 3rd
International Conference on Emerging Security Technologies, 2012, pp.
121 - 126.

[9] Y. Kovalchuk, H. Huosheng, G. Dongbing, K. McDonald-Maier, D.
Newman, S. Kelly, et al., “Investigation of Properties of ICmetrics
Features,” in the 3rd International Conference on Emerging Security
Technologies (EST) 2012, pp. 115-120.

[10] M. Sinhuber, E. Bodenschatz, M. Wilczek, “A probability distribution
approach to synthetic turbulence time series,” APS Division of Fluid
Dynamics, 2016.

[11] L. E. Baum and T. Petrie, “Statistical inference for probabilistic func-
tions of finite state Markov chains,” The Annals of Mathematical
Statistics, 37, pp. 1554–63, 1966.

[12] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic functions of
Markov chains,” The Annals of Mathematical Statistics, 41, pp. 164–71,
1970.

[13] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction to the
application of the theory of probabilistic functions of Markov process
to automatic speech recognition,” The Bell System Technical Journal,
62, pp. 1035–74, 1983.

