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ARTICLE

Environmental conditions shape the nature of a
minimal bacterial genome

Magdalena Antczak® ', Martin Michaelis® ' & Mark N. Wass® !

Of the 473 genes in the genome of the bacterium with the smallest genome generated to
date, 149 genes have unknown function, emphasising a universal problem; less than 1% of
proteins have experimentally determined annotations. Here, we combine the results from
state-of-the-art in silico methods for functional annotation and assign functions to 66 of the
149 proteins. Proteins that are still not annotated lack orthologues, lack protein domains,
and/ or are membrane proteins. Twenty-four likely transporter proteins are identified indi-
cating the importance of nutrient uptake into and waste disposal out of the minimal bacterial
cell in a nutrient-rich environment after removal of metabolic enzymes. Hence, the envir-
onment shapes the nature of a minimal genome. Our findings also show that the combination
of multiple different state-of-the-art in silico methods for annotating proteins is able to
predict functions, even for difficult to characterise proteins and identify crucial gaps for
further development.

TIndustrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK. Correspondence and requests for materials should
be addressed to M.M. (email: m.michaelis@kent.ac.uk) or to M.N.W. (email: m.n.wass@kent.ac.uk)
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long-term goal of synthetic biology has been the identi-

fication of the minimal genome, i.e., the smallest set of

genes required to support a living organism. The bacter-
ium with the smallest genome generated to date is based on
Mycoplasma mycoides'. Tts minimal bacterial genome consists of
473 genes including essential genes and a set of genes associated
with growth, termed ‘quasi-essential’l. The minimal genome
study assigned function to proteins encoded by the minimal
genome by considering matches to existing protein families in the
TIGRFAM? database, genome context and structural modelling!.
Proteins were annotated with molecular functions and grouped
into 30 biological process categories (including an unclear cate-
gory, where the biological process was not known). The proteins
were further assigned to five classes according to the specificity
and confidence of the molecular function annotations that they
had been assigned: Equivalog (confident hits to TIGRFAM
families), Probable (low confidence match to TIGRFAM families
supported by genome context or threading), Putative (multiple
sources of evidence but lower confidence), Generic (general
functional information identifiable, e.g., DNA binding or mem-
brane protein, but specific function unknown) and Unknown
(unable to infer even a general function). The final two confidence
classes, Unknown (65 genes) and Generic (84 genes) form the
group of genes whose function is unknown. Hence, almost a third
(149) of the encoded 473 proteins are of unknown function,
which emphasises our limited understanding of biological
systems!.

This lack of functional annotation is not restricted to the
minimal bacterial genome. One-third of protein-coding genes
from bacterial genomes lack functional annotations®. Recent
experimental approaches have begun to identify the function of
‘hypothetical’ proteins of unknown function?. However, the
continual improvement of high-throughput sequencing methods
has resulted in a rapid increase in the number of organisms for
which genome sequences are available and the functional anno-
tation of the encoded gene products lags behind*. Less than 1% of
the 148 million protein sequences in UniProt® are annotated with
experimentally confirmed functions in the Gene Ontology (GO)°
(April 2019). To address this gap, computational methods for
protein function prediction have been developed and significantly
advanced over the past 15 years as demonstrated by the recent
Critical Assessment of Functional Annotation (CAFA)
challenges’>8.

Here, we perform an extensive in silico analysis of the proteins
of unknown function encoded by the minimal bacterial genome
using an approach that combines 22 different computational
methods ranging from identification of basic properties (e.g.,
protein domains, disorder and transmembrane helices) to state-
of-the-art protein structural modelling and methods that infer
GO-based protein functions, including those that have performed
well in CAFA experiments.

Results
Orthologues for the proteins in the minimal genome. Hutch-
ison et al.! used BLAST to identify homologues of the minimal
genome proteins in a set of 14 species ranging from non-
mycoides mycoplasmas to archaea. They found that while many
of the proteins from the Equivalog, Probable, Putative and
Generic classes have homologues in all 14 species, very few of the
sequences in the Unknown class had homologues outside of M.
mycoides, with none in M. tuberculosis, A. thaliana, S. cerevisiae
and M. jannaschii.

Here, eggNOG-Mapper® (see methods) was used to identify
orthologues for the minimal genome proteins across the three
kingdoms of life. Overall the analysis showed that very few of the

Unknown class of proteins (7%) have related sequences in
eukaryotes or archaea (6%) while just over half (55%) have
orthologues in other bacterial species, primarily in terrabacteria,
the clade that M. mycoides belongs to (Fig. la, Supplementary
Fig. 1 and Supplementary Data File 1). In contrast, many of the
proteins in the other confidence classes have orthologues across
the three kingdoms (Fig. la and Supplementary Fig. 1). For
example, 63%, 59% and 95% of the proteins in the Generic class
have orthologues in eukaryotes, archaea and bacteria, respectively
(Fig. 1a and Supplementary Fig. 1), rising to 91%, 70% and 99%
for the Equivalog class. Only two proteins from the Unknown
class had many orthologues in both eukaryotes and archaea.
These proteins MMSYN1_0298’ and MMSYNI1_0302 were
classified by Hutchison et al. into the Unclear and Cofactor
transport and salvage functional categories, respectively. Our
analysis determined confident functions for both of these proteins
(see below).

Domain architecture of minimal genome proteins. Domain
analysis, using Pfam!? (Supplementary Data File 2), showed that
few (22%) of the proteins in the Unknown class contain known
domains, significantly less than for the other four classes (Fig. 1b;
p <8.3e-12; Mann-Whitney-Wilcoxon test). In contrast, all
proteins in the Equivalog class contain at least one domain and
nearly half of them (44%) have a multi-domain architecture
(Fig. 1b), whereas multiple domains are present in 21% of the
proteins in the Generic class and only a single protein in
the Unknown class (Fig. 1b). The proteins in the Unknown class
are also clearly different to those in the Generic class, where a
domain is present in 86% of the proteins. Further, the proteins in
the Unknown class also have more disordered regions than the
other groups (Fig. 1c), although this does not reach statistical
significance (X-squared = 19.304, df = 16, p = 0.2532; Chi-Square
test for categorical data).

Structural modelling of the minimal genom. Hutchison et al.l
used threading (an approach for modelling protein structure) to
support functional assignment from TIGRFAM matches. Here,
the Phyre2!! protein structure prediction server was used to
model the structures of the minimal genome proteins. With the
exception of the Unknown class, high confidence structural
templates were identified for the vast majority of proteins for at
least part of the sequence (Supplementary Fig. 2 and Supple-
mentary Data File 3). The proportion of proteins in each con-
fidence class that could be accurately modelled was considered by
identifying those for which at least 75% of the protein sequence
could be modelled with a structural model confidence score (from
Phyre2) of at least 90%. In the Unknown class this applied to only
nine proteins, whereas nearly all proteins in the four other con-
fidence groups were successfully modelled (Fig. 1d).

Transmembrane proteins. Proteins in the Unknown and Generic
classes are enriched with transmembrane proteins with 49% and
35%, respectively, of their proteins predicted to have transmem-
brane helices (Fig. 2a and Supplementary Data File 4). In contrast,
very few transmembrane proteins were identified in the Equivalog
and Probable classes (6% and 12% respectively), while 32% of the
proteins in the Putative class are transmembrane proteins
(Fig. 2a).

These results suggest that many of the proteins that have
unassigned functions may be associated with membranes. For
example, 24 proteins in the Generic class are predicted to contain
six or more transmembrane helices (Fig. 2b), many of which are
likely to be transporters of essential nutrients from the media (see
below).
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Fig. 1 Basic characterisation of proteins encoded by the minimal bacterial genome. a Orthologues identified in bacteria. Results for each functional class are
represented by a different colour: gold for the Unknown class, yellow-Generic, light turquoise-Putative, turquoise-Probable and dark turquoise-Equivalog.
b The domain architecture for proteins in each of the five functional confidence classes is plotted (Unknown [Un], Generic [Gn], Putative [Pt], Probable
[Pr] and Equivalog [Eq]). Proteins with no domains are displayed in yellow, grey represents single domain proteins and dark blue multi-domain proteins.
¢ Predicted protein disorder in the minimal genome proteins. The results are shown for the five confidence classes from b and coloured according to the
percentage of disorder present. Proteins with a percentage disorder >30% are represented by yellow, 20-30% disorder by green, 10-20%-turquoise and
0-10%-blue. Purple indicates proteins without disordered regions. d The percentage of protein structure that can be confidently modified by Phyre2.
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Fig. 2 Transmembrane proteins encoded by the minimal bacterial genome. a The number of proteins predicted by TMHMM to have transmembrane
helices. Brown indicates proteins with one or more transmembrane helix. Yellow for those without transmembrane helices. b The number of
transmembrane helices present in each of the proteins in the minimal genome that is predicted to have one or more transmembrane helix. Results for each
functional class are represented by a different colour: gold for the Unknown class, yellow-Generic, light turquoise-Putative, turquoise-Probable and dark
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Prediction classification for specificity and confidence. To infer
functions for the proteins of unknown function, we introduced a
different way to classify our results, which separates function
specificity and prediction confidence. This enabled a more
nuanced interpretation of the results than the five classes
(Unknown to Equivalog) used by Hutchison et al., which com-
bined both specificity and confidence. Our specificity classes
include ‘hypothetical’, where the function is completely unknown,
‘general’, where we have some basic functional information (e.g.,
DNA binding or transporter), ‘specific’, where we have identified
a specific function (e.g., transcription factor, ABC transporter)
and ‘highly specific’, where a high level of detail is known (e.g.,
ABC transporter with known substrate; further examples are
given in Supplementary Table 1).

We use the number of methods that support a function and the
average score associated with this function as indicators of the
confidence of the annotation (see methods). The average score for
each predicted function was calculated by normalising the scores
from the individual methods (e.g., e-value or probability) to the
range of 0-100, with 100 indicating a highly confident score (e.g.,
a highly significant e-value from Pfam or Gene3D; see methods).
Further, each protein was assigned to a larger functional category
that represents biological process using the 30 different functional
categories proposed by Hutchison et al.

Before predicting protein functions, we re-analysed the
annotations by Hutchison et al. and assigned the functions to
our new specificity classes. Confidence levels of these initial
functional annotations could not be compared, since the outputs
of the individual methods from the Hutchison et al. study were
not available. Our assignment to specificity classes shows that
most of the proteins in the Putative, Probable and Equivalog
classes had previously been assigned highly specific functions,
highlighting how the classification combined both functional
specificity and confidence (Fig. 3a). Further, this analysis
suggested that for some of the proteins classed as of unknown
function (particularly the Generic class), there had been some
suggestion of function, but with very low confidence (Fig. 3a), i.e.,
these were long shots based on the results from the three methods
used in the Hutchison et al. study. Most of the proteins in the
Unknown class were considered to be ‘hypothetical” according to
our criteria (Fig. 3a).

Benchmarking our approach using proteins of known func-
tion. In contrast to Hutchison et al.l, who used TIGRFAM,
genome context and threading to functionally characterise the
proteins encoded by the minimal genome, we applied a wider
range of approaches to infer their functions. Many methods have
been developed to predict protein function using properties
ranging from protein sequence to interaction data and predicting
features ranging from subcellular localisation to Gene Ontology
(GO) terms and protein structure!2. Here, we applied the top
performing methods from the recent CAFA”-8 assessments, which
were available as either a webserver or for download in combi-
nation with other established methods to assign functions to the
proteins encoded by the minimal bacterial genome (see methods
and Fig. 4). Overall functional inferences were made by manually
investigating and combining the predictions and their consistency
with genes from the same operon.

To test the performance of our approach, we applied it to the
proteins of known function belonging to the Hutchison classes
Putative, Probable and Equivalog. For 92% (266 of 289) of the
proteins, the functions predicted by our approach agreed with the
annotation assigned by Hutchison et al. (Fig. 3b). Our approach
has increased the confidence of these annotations, with an
average of 13 methods making predictions that supported the

functional annotations, compared to a maximum of three
methods used in the previous study (Fig. 3c).

For nine proteins there were minimal differences in the
annotations, for example MMSYN1_0637 was previously anno-
tated as the gene rpsl, which encodes the 30S ribosomal protein
S9, whereas our predictions suggest it to be rpsN, which encodes
the 308 ribosomal protein S5 (Supplementary Data File 5), which
is probably due to them both belonging to the ribosomal protein
S5 domain 2-like superfamily. For 12 proteins, our annotations
were less specific than the original ones. These proteins were
solely in the Hutchison et al. Putative class and the existing
annotations were highly specific (Supplementary Data File 5),
such as for MMSYN1_0787, our annotation of RelA/SpoT family
protein, is more general that than the original relA gene
annotation. For a single protein (MMSYN1_0154) our predicted
function of leucyl aminopeptidase was more specific than the
initial cytosol aminopeptidase family, catalytic domain protein.
Further, only for a single protein (MMSYN1_0908) was our
predicted function (yidC; inner membrane protein translocase
component) completely different to the existing annotation
(misC-polyketide synthase). Overall, this demonstrates that for
proteins with known function our approach is able to assign
functions that agree with the existing annotations although in
some cases, our assignment may be less specific than the existing
annotations. We did not assign functions that disagreed with the
known function. Further, with many methods now supporting
these functions, there is greater confidence in them.

Annotating proteins of previously unknown function. We
assigned a function to 133 of the 149 proteins of unknown
function. For nearly half of them (66 of 149), new functional
information was provided. This included more specific functions
(25), assigning a functional category (5) or both of these (26). For
the remaining ten proteins, greater functional information was
added but the specificity class or functional category remained the
same. For example, MMSYN1_0133 was initially annotated as a
peptidase of the S8/S53 family, while we proposed a Subtilisin-like
1 serine protease function. While our annotation is more detailed,
it is not highly specific and so the protein remained in the Specific
class and Proteolysis functional category.

For 51 proteins, a more specific function was assigned (Fig. 5a
and Supplementary Data File 5). For 33 proteins that had initially
been annotated as hypothetical, a function was now assigned.
Twenty-five of these annotations were classified as General, seven
as Specific and one as Highly specific (Fig. 5a and Supplementary
Data File 5). Eight proteins moved from a General to a Specific
function (seven Specific, one Highly specific), and 10 proteins
were assigned Highly specific functions having previously been
assigned a Specific function (Fig. 5a). These predictions vary in
their level of confidence. Some of them are supported by many
methods, while some have highly confident predictions from a
smaller number of methods (Fig. 5b, ¢).

For most proteins that were assigned a general function, we see
that they were often supported by fewer methods but those
methods predicted them with high confidence scores (Fig. 5a).
For example, the group of proteins in the bottom right corner of
Fig. 5¢ were all predicted to be transporters but only assigned a
general function as further details such a substrate specificity
could not be inferred. Where Specific and Highly specific
functions were assigned, typically more methods supported the
function but there was a greater range in the scores associated
from the individual methods (Fig. 5). For example,
MMSYN1_0298 and MMSYN1_0302 were both initially classed
as hypothetical and we have assigned them Specific and Highly
specific functions respectively, based on data available from 10
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(MMSYN1_0298) and 12 (MMSYN1_0302) methods (Fig. 5 and
Supplementary Data Files 1-6, 8). Based on these data sources we
propose that MMSYN1_0298 is a ribosomal protein from the
family L7AE/L30e (Fig. 6a) and that MMSYNI1_0302 is an
oxygen-insensitive NAD(P)H nitroreductase (Fig. 6b), both of
which are functions widespread across the kingdoms of life.

Our analysis suggests that the combination of methods
improves the reliability of function annotation. For some proteins,
there appeared to be evidence for a given function from multiple
sources, but on closer inspection it was difficult to assign more
confident annotations (Supplementary Fig. 3). For example,
MMSYN1_0138 is homologous to the ATP-binding region of
ABC transporters but the ATP-binding site is not conserved,
which casts some doubt on this function (Supplementary Fig. 3A).
For MMSYNI1_0615, matches from four methods suggest a
Phenylalanine-tRNA ligase function (Supplementary Fig. 3B).
However, MMSYN1_0615 only contains 202 residues and the beta
chain of bacterial Phenylalanine-tRNA ligases contain nearly 800
residues, making it unlikely that MMSYN1_0615 performs this
function (Supplementary Fig. 3B).

Overall, we found that the diversity of different methods used
was required for inferring function, with no individual method

able to predict the most detailed function assigned to more than
one-third of the proteins of unknown function (Supplementary
Table 2). The top five methods to assign the most detailed
functions each used different approaches, including a method
that identifies orthologous groups (eggNOG-Mapper?), the group
of methods that predict GO terms, a method that predicts protein
three-dimensional structure (Phyre2!!), identification of protein
domains from Pfam and finally the best BLAST match from
UniProt. Further, any combination of the top five performing
methods only obtained the final annotation for a maximum of
25% of the proteins, further highlighting the contribution of
multiple different methods to assign functions (Supplementary
Table 3). Two methods (GO terms and TMHMM) were able to
widely provide more generic functions supporting the overall
assigned function (54% for GO terms and 82% for TMHMM),
although TMHMM only predicts if the protein contains
transmembrane helices (Supplementary Table 2).

For the remaining 83 proteins, our predictions supported the
existing annotation. Importantly for many of these proteins,
multiple methods have now made predictions that support the
annotation, thus increasing their confidence. Figure 7 shows that
many of the proteins (28 out of 83) have predicted functions that
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are supported by 10 or more methods, rising to 61 supported by 5
or more methods, often with high confidence scores (or e-values)
from the individual methods.

Understanding biological processes in the minimal genome.
Functional categories were assigned to 31 proteins that had
previously been classified with Unclear biological process. The
majority of the proteins with a newly assigned functional
category were predicted to have transporter functions, with 24
proteins added to the 84 already assigned to this functional
category (Fig. 8a). Further, one protein (MMSYN1_0033) was
assigned to the cytosolic metabolism category, three to the
preservation of genetic information category (MMSYN1_0005,
MMSYN1_0239, MMSYN1_0353), and three to the expression
of genetic information category (MMSYN1_0615, MMSYN1_0730,
MMSYN1_0873) (Fig. 8a).

Overall, while functional annotations have been inferred for a
considerable proportion of the proteins of unknown function, the
biological process for 48 proteins remains unknown (i.e., in the
Unclear category; Fig. 8a). For 32 of these proteins, a molecular
function was assigned such as Cof-like hydrolase, ATPase AAA
family, or DNA-binding protein HU, but there was insufficient
information to assign a functional category. The remaining
sixteen proteins lack functional information and are classified as
hypothetical. These proteins do not contain any known domains

or transmembrane helices, none have orthologues in other
kingdoms of life and only a few within bacteria. Either these
are species-specific proteins that perform an important function
within Mycobacteria or they have diverged significantly such that
sequence relationships are not detected.

Newly assigned functions indicate transporters. Transmem-
brane helices were identified in 41% (61) of the proteins of
unknown function (Fig. 2 and Supplementary Data File 4). Fif-
teen transmembrane proteins, which were not categorised as
transporters, were annotated with functions in cell division (1),
chromosome segregation (1) and proteolysis (4), while the bio-
logical process remained unknown for nine. Our analysis suggests
that 46 of the 61 predicted transmembrane proteins are likely to
be responsible for membrane transport (Supplementary Data
File 4, S6). Of the 46, 23 were previously annotated by Hutchison
et al. with a range of transporter functions (e.g., ABC transpor-
ters, S component of ECF transporters), all of which were further
supported by our analysis. A further 15 proteins that lack
transmembrane domains were also associated with transport
functions, e.g., ATP-binding units of ABC transporters, 14 of
them were identified by Hutchison et al.l.

Of the 24 newly proposed transporters (previously hypothetical
or with minimal information, e.g., membrane protein), six gained
specific transporter functions. All six were previously classed as
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and the average score. Each point represents a protein

membrane proteins and have now been annotated as transpor-
ters; one hexose phosphate transport protein (MMSYN1_0881),
one ABC transporter (MMSYN1_0411), one S component of an
ECF transporter (MMSYN1_0877), and three belonging to the
Major facilitator superfamily (MMSYN1_0235, MMSYN1_0325,

MMSYN1_0478) (Supplementary Data Files 1-6, 8). The
remaining 18 proteins annotated as transporters (general
specificity level) had previously either been annotated as
membrane or hypothetical proteins. Results from a few methods
(with high scores-Fig. 9) indicate that they are transporters but it
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was not possible to assign them to a specific family/type of
transporter or to identify a substrate.

More specific annotations could be made for proteins already
annotated with transport-related functions, including four
proteins (MMSYN1_0034, MMSYN1_0399, MMSYNI1_0531,
MMSYNI1_0639) that were classed as FtsX-like permeases having
previously been given generic transport-related annotations (e.g.,

permease). For most of these proteins, we have greater confidence
in the assigned function, given that many different methods
support them (Fig. 9). This extends their initial annotations that
had been assigned by only three methods. For example, one
operon encodes proteins that transport oligopeptides
(AmiABCDE MMSYNI1_0165 - MMSYNI1_0169) and another
operon encodes a spermidine/putrescine transporter (PotABCD
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MMSYN1_0195 - MMSYN1_0197) (Supplementary Data File 5
and Supplementary Figs. 4 and 5).

One of the three proteins newly proposed to be members of the
Major facilitator superfamily, MMSYN1_0325, was previously
classified as a membrane protein (Fig. 10). In agreement, the
transmembrane helix prediction tool TMHMM!3 predicted 13
transmembrane helices in the protein. Further, the structure was
confidently modelled by Phyre2, with >98% confidence for 26

independent structural templates, all of which had transporter
functions (including members of the MSF superfamily). Inter-
Pro'* assigned it into the MFS transporter superfamily. Support-
ing this function, further methods predicted a range of
transporter-related functions, including symporter activity
(G0O:0015293) and substrate-specific transmembrane transporter
activity (GO:0022891) with probabilities >90% (Fig. 10 and
Supplementary Data File 6).
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Comparison of predictions made by Danchin and Fang.
Recently Danchin and Fang!® used what they referred to as an
engineering-based approach to investigate the unknown functions
within the minimal bacterial genome and provided annotations
for 71 of the 149 proteins of unknown function. They set out to
identify functions that would be expected to be in a minimal
genome but were missing from the existing annotation and to
then identify proteins that could perform these functions
(although it is not clear how these candidates were identified as
no methods were provided!?).

Comparison of the results from both studies revealed
considerable overlaps (Supplementary Data File 7). Using our
approach, only sixteen proteins remained hypothetical without
any assigned function, while Danchin and Fang did not provide
any annotations for 78 of the proteins with unknown function.
Thus, we leave only 10% of the previously unannotated proteins
without any assigned function, while 52% remain completely
uncharacterised by Danchin and Fang. This demonstrates the
breadth of function that our approach is able to assign. The
predictions showed complete agreement for 36 proteins and
minor differences for 18 proteins (Supplementary Data File 7).
For a further 13 proteins the predictions were more detailed in
one study than the other (Supplementary Data File 7). For e-
xample, Danchin and Fang proposed that MMSYN1_0822, is an
S component of an ECF transporter and is part of a
folate transporter, whereas we identified three possible folate

10

transporters (MMSYN1_0314, MMSYN1_0822, MMSYN1_0836)
and could not confidently assign substrates to any of them.

Four of the predictions differed considerably (Supplementary
Data File 7). They are represented by proteins such as
MMSYNI1_0388 which here was annotated as a transmembrane
protein, possibly a cation transporter, while Danchin and Fang
suggested that it has a role in double-strand break repair. For
three of the proteins, Danchin and Fang inferred more functional
characteristics. They annotated MMSYN1_0853 MMSYN1_0530,
MMSYNI1_0511 with the functions energy-sensing regulator of
translation, promiscuous phosphatase and double-strand break
repair protein, respectively, while here they were retained as
hypothetical since there was little agreement between the multiple
methods used to be able to infer protein function.

Discussion

The synthesis of the bacterium with the smallest genome (to
date), resulted in an astounding number (149 of 473) of proteins
of unknown function and emphasised the gaps in our under-
standing of the basic principles of life. Our results demonstrate
that the combined use of a range of complementary advanced
methods for protein function inference is superior to the use of
individual approaches. Using a combination of results from 22
different methods, we were able to assign new functional infor-
mation to 66 of the 149 proteins that were originally classed as
having unknown function. Further, given the use of many
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different methods, we have increased the confidence in existing
annotations that our approach also supported. For some proteins,
more detailed functions were predicted by some of the methods.
However, in manually combining the predictions, there was
insufficient evidence to assign them to more specific functional
classes. Nevertheless, these functions should be sufficient to direct
further research and experimental characterisation. Our analysis
shows that the combination of many methods was essential with
no single method able to identify the highest detailed function
assigned to more than one-third of the proteins (Supplementary
Table 2).

Most of the proteins of unknown function were homologous to
few other proteins with known functions and they also lacked
orthologues. Thus, for many of the proteins where functions have
been assigned, methods that are not dependent on homology
were prevalent (e.g., FFPred316, Fig. 5 and S6). This highlights the
importance of developing further methods that do not rely on
homology. Moreover, many of the difficult to characterise pro-
teins do not contain known protein domains and are enriched for
transmembrane proteins (Fig. 1). Hence, additional approaches to
predict the function of such proteins are required.

With our expanded functional assignments, 50% of the proteins
encoded by the minimal genome perform functions associated
with two fundamental life processes; preserving and expressing
genetic information (Fig. 8a). Most notably, many proteins were
assigned transporter functions, and these proteins now represent
22% of the minimal genome. In generating the minimal genome,
32 M. mycoides genes with membrane transport functions were
removed!. Additionally, many proteins with metabolic functions
were removed. Hence, the minimal genome bacterium is reliant
on obtaining many nutrients from the medium and also needs to
remove (toxic) metabolites from the cell. Thus, it may not be
surprising that transporters are essential for the bacterium. It was
not possible to assign substrates for these transporters. The reason
for this may be at least in part due to the promiscuity of myco-
plasmal transport systems!”. Additionally, transporters may
transport low-affinity substrates in a nutrient-rich environment in
which nutrients are highly abundant.

The identification of many transporters also highlights the
dependence of the minimal bacterial genome cells on the medium
in which they grow. Hence, the nature of the minimal genome is
partly shaped by the conditions in a nutrient-rich environment.
Consequently, we propose that a minimal genome consists of two
sets of genes. The first set encodes functions that are an essential
prerequisite for all bacteria and probably all forms of life, which
on its own is not sufficient to enable life. This gene set needs to be
complemented with an additional set of genes that enables life in
a particular environment. In a nutrient-rich environment, these
additional genes may largely have functions associated with
compound uptake and efflux in agreement with our current
results presented here. Under other circumstances, where nutri-
ents are not so abundant, metabolic functions are likely to be of
greater importance.

In summary, we have successfully applied a combined bioin-
formatics approach to characterise proteins with unknown
function from the minimal genome that had not been annotated
by previous approaches. Currently, only about 1% of all known
proteins are annotated with experimentally confirmed functions.
Since the experimental analysis of protein function will for the
foreseeable future remain restricted to a small subset of proteins
due to physical and financial limitations, optimised bioinfor-
matics approaches will be critical for the assignment of functions
to proteins and, in turn, our understanding of the essential
functions of life. Proteins that are difficult to classify typically (i)
do not contain known protein domains (ii) lack homology to
proteins with known structure and (iii) are enriched for

transmembrane proteins. Further, most of the hypothetical pro-
teins appear to be bacteria- and clade-specific. Hence, further
complementary approaches are needed that enable the assign-
ment of functions to such proteins. Importantly, a considerable
proportion of the newly annotated proteins probably have
transporter functions. These transporters are likely to be involved
in the uptake of nutrients and efflux of waste products in a
minimal genome organism that lacks many metabolic enzymes
and is cultivated in a nutrient-rich environment. Additionally,
our findings indicate the existence of a core set of genes that is
essential for all forms of life but not sufficient to enable life on its
own. This essential gene set needs to be complemented by a
second enabling gene set that facilitates life under particular
environmental conditions. Thus, the concept of a minimal gen-
ome is context/environment specific.

Methods

Identifying basic protein properties. Protein domains were determined by running
PfamScan against the library of Pfam 30.0 HMMs!?. GO terms associated with Pfam
domains were extracted using the pfam2go file!? (version 11 February 2017). The e-
value of the domain matches were used to indicate the confidence of a GO term
describing the function of the query protein. To test if the probability of minimal
genome proteins having more domains identified increases with the increasing
confidence of the annotation in the particular functional class, we performed the
Mann-Whitney-Wilcoxon test. We cross-compared all the functional classes (438
proteins in total) and tested the null hypothesis that samples have the same dis-
tribution against the alternative hypothesis that there is a >0 shift in the distribution.

InterProScan was run with default settings to determine matches against
InterPro databases of protein signatures'®. Results from the following resources
were included in the analysis: CDD!8, Gene3D!%, HAMAP?(, PIRSF?!, PRINTS?2
ProDom?3, ProSitePatterns?4, ProSiteProfiles?4, SFLD?>, SMART?% and
SUPERFAMILY?.

Orthologues were identified using eggNOG-Mapper® against HMM databases
for the three kingdoms of life. Additionally, precision of predictions was prioritised
by restricting results to only one-to-one orthologues. The eggNOG-Mapper API
was used to predict the orthologous groups in eggNOG that the minimal genome
proteins belonged to. The proteins present in these orthologous groups were
extracted and the species associated with the sequences were mapped to the NCBI
Taxonomy to group them into phyla and used to identify the phyla where
orthologues were present. Predicted features including GO terms, KEGG pathways
and functional categories of Cluster of Orthologous Groups were also obtained
from eggNOG-Mapper.

Identifying membrane transporters and lipoproteins. Proteins were classified as
lipoproteins (SPasel-cleaved proteins), SPasel-cleaved proteins, cytoplasmic and
transmembrane proteins using LipoP?8. Similarly, proteins were distinguished
between membrane transporters and non-transporters using TrSSP2°. TrSSP pre-
dicted substrates of the proteins from seven groups: amino acid, anion, cation,
electron, protein/mRNA, sugar and other. The functions of membrane transporters
and lipoproteins were further supported by identifying transmembrane helices,
signal peptides and protein topology using TMHMM!3.

Inferring gene ontology-based protein function. GO terms were predicted using
FFPred3!°, Argot2.5%0, CombFunc3!32 (only Molecular Function terms) and
LocTree333 (only Celullar Component terms). As the FFPred3 SVMs were trained
only on human proteins from UniProtKB, predicted GO terms were additionally
filtered using the frequency of terms in UniProtKB-GOA (version 5 June 2017).
Predicted GO terms that were not annotated to any bacterial proteins in
UniProtKB-GOA were removed from the set of FFPred3 predicted functions as
they were likely to be functions that are not present in prokaryotes.

Argot2.5 was run with the taxonomic constraints option. As scores returned by
Argot2.5 have a minimum score of zero and no upper bound, the linear spline
function recommended by the method developers (personal communication) was
applied to rescale them to the range of 0 to 1. CombFunc3! was run using standard
settings.

Structural analysis. The CATH FunFHMMer webserver was used to identify the
functional families of structural domains, CATH FunFams>$3°.

Protein disorder was predicted using DISOPRED33C. For each of the proteins, the
percentage of disordered regions was calculated based on the DISOPRED3 results. To
verify if there is a statistically significant difference between 438 minimal genome
proteins in five different functional classes, we performed a Chi-Square test for
categorical data with a null hypothesis that the functional class of a protein and its
disorder ratio level (0%, (0%, 10%], (10%, 20%], (20%, 30%], >30%) are independent.

Firestar?” and 3DLigandSite3® were used to predict ligands binding to the
proteins. For Firestar only results marked as cognate were considered. Phyre2!!
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was run using standard mode to model the structure of the minimal genome
proteins. Information provided by the name and description of the best matching
models was used in the process of inferring function of the proteins. To make sure
that each residue was covered with the highest possible confidence, the matches
were firstly sorted by e-value and then selected gradually if they covered residues
that were not covered before by a match with lower e-value.

Identifying operons. Genes in the synthetic M. mycoides (JCVI-syn1.0) were
grouped into operons based on the predictions made for both M. mycoides subsp
capri LC str 95010 and M. mycoides subsp mycoides SC str PG1 by two methods
DOOR23? and MicrobesOnline*’. The proteins of the synthetic M. mycoides were
first mapped to the proteins of M. mycoides subsp capri LC str 95010 and M.
mycoides subsp mycoides SC str PG1 downloaded from GenBank®!. This was done
by using BLAST to search against databases constructed from proteomes of these
two species and extracting the best hit. A protein from M. mycoides subsp capri LC
str 95010 or M. mycoides subsp mycoides SC str PG1 was considered a corre-
sponding homologue of a protein from synthetic M. mycoides if the coverage and
identity were greater than or equal to 80%. Via the corresponding homologues,
operons predicted for these two species by DOOR2 and MicrobesOnline were
mapped to the proteins of the synthetic M. mycoides.

Combined protein function prediction. The results from the following methods
were removed from the analysis if their e-value was above 0.001: TIRGFAM, Pfam,
eggNOG-Mapper, CATH FunFams and domains. Models predicted by Phyre2 were
kept if the probability of the match was above 80% and e-value was below 0.001. Only
results from Firestar with a reliability score above 70% and marked as cognate were
retained. Ligands predicted by 3DLigandSite were kept if they were included in at least
three homologous models. The best BLAST hit from UniProt (maximum e-value of
0.001) was used to identify the closest homologue of the protein and the information
accessible in UniProt was taken into account in the annotation. Additionally, all the
predictions of Gene Ontology terms were combined together and the probability of
particular terms being predicted by any of the methods were calculated using the
following formula: P(GO) =1 - (1 - P (GOggpreas))* (1 = P(GOrgor25))* (1 -P
(GOCombFund)* (1 = P(GOpoctrees))> where P(GO) is the combined probability of a
given GO term and where subscripts are included this indicates the probability of that
term from the named individual method. Only high probability (>0.65) Gene
Ontology terms were considered for each of the proteins. For the final prediction of
protein function, results from all the methods were manually reviewed. The initial
proposition of protein function was based on combining the results from TIGRFAM
equivalog families, Pfam domains, InterPro families and domains, eggNOG ortho-
logous groups, CATH functional families, the best BLAST hit from UniProt and the
Phyre2 model of the structure. In considering the results from these methods, we
looked for agreement between methods, particularly with highly confident results.
This initial function was then verified using the predicted Gene Ontology terms and
information on predicted ligands (Firestar’’, 3DLigandSite’®) and transmembrane
helices (TMHMM). Where information was not available from the first group of
methods, the second group of methods were used as a starting point to infer func-
tions. Transporters and lipoproteins were predicted using membrane transporter
(TrSSP) and lipoprotein signal sequences (LipoP) respectively. Finally, it was con-
sidered if the predicted function was consistent within a group of genes in the same
operon. Where methods made predictions that conflicted with the final predicted
function, this was noted, but it did not affect the confidence as we recorded the
number of methods supporting a function and the average score associated with these
predictions (see below).

Confidence of predicted functions was considered for each protein by counting the
results that support the final function and calculating the average score from these
methods. Results used to calculate the average score come from the methods applied
in the first step of function prediction (Fig. 4), i.e., TIGRFAM, Pfam, InterPro
resources (all but ProSitePatterns), eggNog-Mapper, BLAST, CATH FunFams,
Phyre2, and also the overall GO term-based prediction (which already combined
Argot2.5, CombFunc, FFPred3 and LocTree3) resulting in 17 methods in total.
Methods that concern a very specific element of a function, such as transmembrane
helices or ligands were not included in the average score calculation. For all methods,
scores were normalised to the range 0-100. Most of the methods use e-values as a
measure of confidence (e.g., TIGRFAM, Pfam), for these methods —log10(e-value) was
used capping the value at 100. Where probabilities were provided these were
multiplied by 100. HAMAP and ProSiteProfiles use scores that are not probabilities or
e-values and do not appear to have an upper bound. Considering the scores of these
methods for the proteins of known function in the minimal genome indicated that
scores were typically in the range 0-100 (Supplementary Fig. 7 and Supplementary
Fig. 8), so scores above 100 were capped at 100.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The protein sequences encoded by the minimal genome were obtained from the
supplementary material of Hutchison et al.!. A processed form of the full results provided
by each of the methods used is provided in the supplementary data files. The raw results

from the different methods are available from Figshare under https://doi.org/10.6084/m9.
figshare.8218937
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