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Abstract: This paper analyses the optimal strategies for one defender and two attackers in an 

defence-attack game, where a) the defender allocates its resource into defending against and 

attacking the two attackers, and b) the two attackers, after observing the action of the defender, 

allocate their resources into attacking and defending against the defender, on either a 

cooperative or non-cooperative basis. On a cooperative basis, for each of the defender’s given 

strategies, the two attackers work together to maximise the sum of their cumulative prospect 

values while anticipating the eight possible game outcomes. On a non-cooperative basis, for 

each of the defender’s given strategies, each attacker simultaneously yet independently tries to 

maximise their own cumulative prospect value. In both cases, the defender maximises its 

cumulative prospect value while anticipating the attackers’ actions. Backward induction is 

employed to obtain the optimal defence and attack strategies for all scenarios. Numerical 

examples are performed to illustrate the applications of the strategies. In general, we find two 

opposing effects considering the attackers’ strategies and analyse the alteration of strategies for 

the participants under two different risk preferences: risk-averse and risk seeking. The reasons 

for the alteration are also performed to illustrate the practical applications. 

Keywords: Reliability; attack–defence game; resource allocation; cumulative prospect; 

cooperation. 
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Recently, analysis of the attack–defence game has gained popularity not only in academic 

fields but also in practical operations. Existing research usually assumes that there is only one 

defender against one attacker, where the defender uses methods such as preventive strike, false 

targets and protection (Guan & Zhuang, 2015; Levitin & Hausken, 2011a). However, in reality, 

two attackers might try to destroy the defender’s object. Here, the defender should allocate its 

limited resource into attacking and defending against the attackers, and the attackers, in 

response, should allocate their resources into attacking and defending against the defender. The 

vulnerability of the defender and attackers is usually characterised by Tullock’s contest success 

function (Tullock, 2001). However, this can always fail to include an important consideration: 

the risk attitudes of the defender and attackers. Risk attitude is important for many decision 

problems we encounter in our everyday lives, ranging from insurance take-up to investment 

choices and medical decisions (Vieider, 2009). To include risk attitudes consideration, one can 

use the cumulative prospect theory (CPT), which is commonly used for descriptive decisions 

under risk and uncertainty (Tversky & Kahneman, 1992). By adopting CPT instead of simply 

evaluating the vulnerability, one can calculate the cumulative prospect values (CPVs) for the 

defender and attackers, and can therefore consider the different possible outcomes of the 

defence–attack game. The risk parameters in the CPV functions of both the defender and the 

attackers can then be tuned to reflect different risk attitudes.  

In this paper, we consider the game between one defender and two attackers. The defender 

moves first and can allocate its resource to four areas: 1) defending against one attacker; 2) 

defending against a second attacker; 3) attacking one attacker; and 4) attacking a second attacker. 

Having observed the defender’s resource allocation, the attackers can then allocate their 

resources into attacking the defender and protecting themselves from the defender’s attack. For 

generality, we consider this game under two scenarios: where the two attackers work either 

cooperatively or non-cooperatively. On a cooperative basis, the two attackers try to maximise 

the sum of their CPVs while anticipating the different game outcomes. On a non-cooperative 

basis, each attacker tries to maximise their own CPV while being able to adjust their strategy 

according to the other attacker’s strategy. That is, for any given strategy of the defender, there 

is a simultaneous non-cooperative game between the two attackers. There are eight possible 

outcomes in the defence-attack game, as each of the three parties can either survive or be 
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destroyed. Their survivability can be characterised by the contest success function. To adapt to 

different practical situations, we discuss two different valuations for the attackers: Vital Target 

(VT) and Vital Base (VB). Under VT, the attackers regard the destruction of the defender’s 

object as being more important than their own survival. . In fact, people sometimes truly have 

intention to destroy others even sacrificing themselves, say, the suicide bombers. Under VB, 

the attackers will take their own survival as the primary goal. In addition, we analyse six 

different scenarios of the resource relationship between the defender and the attackers (i.e. who 

has the most, middle and least resource) and we find the optimal defence and attack strategies 

for each. By altering the risk parameters in the CPV functions of the defender and the attackers, 

the players’ different risk attitudes can be modelled and their respective influences on the 

optimal strategies can be studied.  

This paper contributes to three streams of literature: defence-attack game, intentional 

impact and reliability modelling. Hausken (1996) analysed self-interest and sympathy in 

economic behaviour and in this paper, we discuss the issue about self-interest and hatred. When 

the hatred is high, one may have intention to destroy another even sacrificing itself. Previous 

literature usually considered the defence-attack game between one attacker and one defender. 

Hausken (2011) considered the protection of complex infrastructures against multiple strategic 

attackers and Hausken and Bier (2011) further considered a more generalised model where the 

defender defends against multiple different attackers. They showed that the presence of one 

particularly strong attacker can cause other attackers to withdraw from the contest while in our 

paper the same results are obtained. Nonetheless, we analyse the influence of risk parameters 

and employ a different method known as CPT to solve the results. Following the literature on 

preventive strikes, a typical assumption is that both the defender and the attacker can defend 

and attack (Sandler and Siqueira, 2009; Hausken and Levitin, 2011; Hausken and Zhuang, 2011; 

Levitin and Hausken, 2011b; Gao, Yan, Liu and Peng, 2019). See Hausken and Levitin (2012) 

for a systemic review on preventive strike and other defence measures. Bier and Hausken (2011) 

modelled perverse effects of counterterrorism measures and Bandyopadhyay and Sandler (2011) 

considered the interplay between preemptive and defensive counterterrorism measure by 

analysing a two stage game. In our paper, we consider the cooperation and non-cooperation 

cases between the attackers and come up with some interesting findings. 
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Intentional impact is where strategic attackers aim to destroy the object of the defender. It 

is widely studied in the defence-attack game (Peng, Wu, & Zhai, 2018). Many methods have 

been proposed to obtain the optimal strategies for the attacker and the defender, including 

genuine object protection, false targets deployment, and the launch of preventive strike (Levitin 

& Hausken, 2009, 2010a; Shan & Zhuang, 2013). Wu, Xiao and Peng (2018) considered the 

case where the defender deploys false targets and the attacker deploys false bases, respectively. 

Hausken, Bier and Zhuang (2009) discussed a similar game involving one defender defending 

against terrorism (which is the first attacker) and disaster (which is the second attacker). In our 

paper, we consider two intentional impacts and obtain some insightful conclusions. Levitin and 

Hausken (2012) analysed the situation where the defender is confronted with two sequential 

attacks and aims to maximise the system survivability. Kim, Han, Kim and Kang (2017), 

Monroe, Ramsey and Berglund (2018) and Zhai, Peng and Wang (2017) introduced the attack–

defence game in other specific systems, e.g. water distribution systems, common bus systems 

and cyber systems. Zhuang and Bier (2007) modelled a defence-attack game of resource 

allocation for simultaneously countering terrorism and natural disasters. Zhang, Ramirez-

Marquez and Wang (2015) and Zhang, Ramirez-Marquez and Li (2018) proposed a 

simultaneous game between a defender and an attacker to study the optimal protection strategies 

against intentional attacks. Hausken (2008, 2017) conducted a systematic review of defence 

and attack strategies.  

Reliability modelling is another key issue in the attack–defence game. Tullock’s contest 

success model is widely used to characterise the reliability or vulnerability of both the defender 

and attacker (Tullock, 2001). Trucco, Cagno, Ruggeri and Grande (2008) used a Bayesian belief 

network to model the maritime transport system, considering its different outcomes and their 

mutual influences. Saltelli (2010) conducted sensitivity analysis on risk assessment, and Li, 

Wang, Song and Li (2016) used the analytic hierarchy process to obtain some useful suggestions. 

Aven (2016) conducted a review of recent advances on risk managements. Backward induction 

is widely employed in obtaining the equilibrium (Wu, Liu, Yan, Peng and Li, 2019). 

This paper is primarily motivated by Levitin and Hausken (2010b) and Cohen (2010). 

Levitin and Hausken (2010b) assumed that an object is protected by the defender and is attacked 

by an attacker who launches sequential attacks. For each attack, a contest intensity measures 
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whether the attack has a low or high impact on the object vulnerability. Cohen (2010) assumed 

that each player has several different types of resource, to be divided in an optimal fashion 

among a fixed set of objects. The concept of the generalised inverse of a matrix was used to 

determine the optimal strategies for each player and the value of the game. However, neither 

Levitin and Hausken (201b) nor Cohen (2010) considered the case where two attackers 

simultaneously allocate their resources into attacking the defender’s object. Moreover, the risk 

attitude of the players is not discussed in their works. This paper resolves this omission by 

considering the players’ risk attitudes using CPT. The major contributions of this paper are as 

follows: 

 The attack–defence strategy, where one defender defends against two attackers, is 

investigated. Two scenarios – the cooperation and non-cooperation of the attackers - are 

discussed. 

 The attackers are analysed under six different resource combinations and under two 

different valuations of the attackers: VT and VB. 

 The defender maximises its CPV instead of the survivability of its object. The attackers 

maximise the sum of their CPVs under a cooperative basis, and they maximise their 

individual CPVs under a non-cooperative basis. The employment of CPVs helps us to better 

depict the behaviour of each party and more accurately reflect their risk attitudes. 

The rest of this paper is organised as follows. Section 2 describes the model and provides 

notations. In Section 3, the optimal attack and defence strategies are obtained through backward 

induction for the scenario where the two attackers cooperate with each other. The influences of 

the risk parameters in the defender’s and attackers’ CPVs are also discussed. Section 4 solves 

the optimal attack and defence strategies for the scenario where the two attackers are non-

cooperative. Similarly, sensitivity analysis on the risk parameters is conducted here. Section 5 

concludes the paper and discusses several possible extensions. 

 

2. Model Foundation 

There are three parties in this model: one defender and two attackers. We calculate the 

destruction probability of each party and then formulate their respective CPV functions. In this 

attack–defence game, the defender, D, spends its resource on defending against the two 
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attackers, A and B, with resources D D DR x y   and (1 )D D DR x y  , respectively, where 

0 1,0 1D Dx y     . The defender attacks these two attackers with resources 

(1 )D D DR x y  and (1 )(1 )D D DR x y  , respectively, where 0 1Dz  . The first attacker, A, 

both defends against and attacks D, with resources A AR x   and (1 )A AR x  , respectively. 

Attacker B both defends against and attacks D with resources B BR x   and (1 )B BR x  , 

respectively. Similarly, 0 1Ax    and 0 1Bx    are held. Note that we assume that the 

defender’s strategy cannot be modified after the selection and the attacker can choose its 

strategy based on the observation of defender’s strategy. The defender, as the underprivileged 

party, can only make its decision based on the anticipation of attacker’s movement. We 

summarise all notations below. 

Notations 

, ,D A BR R R  Resource for the defender and the two attackers 

, ,D D Dx y z  Resource allocation parameters of the defender 

,A Bx x  Resource allocation parameters of the two attackers 

, , ,DA AD DB BDm m m m  Contest intensity parameters 

, ,D A BP P P  The survivability of the defender and the two attackers 

iju  Potential monetary outcomes for party i  in outcome j  

jp  Probability of each potential outcome 

, ,D A BV V V  Prospect values of the defender and the two attackers 

( )ijv u  Value of the potential outcome 

,k k  
 Decision weights for the value of the potential gain and loss 

, ,g l   Risk parameters 

,w w 
 Weighting functions for gains and losses 
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,   Weighting function parameters 

For simplicity, we assume that the unit cost for any defence effort or attack effort is equal 

to one. Thus, the survivability of defender’s object is 

( ) ( (1 ))
.

( ) ( (1 )) ( (1 )) ( (1 ))

DA DB

DA DA DB DB

m m

D D D D D D
D m m m m

D D D A A D D D B B

R x y R x y
P

R x y R x R x y R x


 

    
  (1) 

The survivability of attackers A and B can be represented as  

( )
,

( ) ( (1 ) )

AD

AD AD

m

A A
A m m

A A D D D

R x
P

R x R x z


 
                    (2) 

and 

( )
,

( ) ( (1 ) )

BD

BD BD

m

B B
B m m

B B D D D

R x
P

R x R x z


 
                   (3) 

respectively. 

To formulate the CPV of each party, we note that each party can be either destroyed or 

survive, which ultimately forms eight possible outcomes, as shown in Table 1 below. There 

should be a specific probability for each outcome under which each party should have certain 

utility. The CPV for each party can be calculated based on the probabilities of all possible 

outcomes and their respective utilities. Note that in this paper the destruction of the defender 

represents the destruction of the defender’s object. 

Table 1. Eight Possible Game Outcomes 

Outcome D A B 

1 Survive Survive Survive 

2 Survive Survive Destroyed 

3 Survive Destroyed Survive 

4 Survive Destroyed Destroyed 

5 Destroyed Destroyed Destroyed 

6 Destroyed Destroyed Survive 

7 Destroyed Survive Destroyed 

8 Destroyed Survive Survive 

The utility of each party under each outcome is represented by 
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, { , , }, {1,2....,7,8}iju i D A B j    and the probability of each outcome is denoted as 

, {1,2....,7,8}jp j  . Without loss of generality, the two attackers are assumed to be 

heterogeneous. In addition, we assume that the defender’s primary goal is to survive. Here, we 

consider the two different valuations of the attackers: VT, where the attackers value the 

destruction of the defender’s object over their own survival; and VB, where the attackers value 

their own survival over the destruction of the defender’s object. The sign of utility under each 

potential outcome is shown in Table 2 below.  

Table 2. Sign of Utility of each Potential Outcome 

Utility 1Du  2Du  3Du  4Du  5Du  6Du  7Du  8Du  

Sign > > > > < < < < 

Utility 1Au  2Au  3Au  4Au  5Au  6Au  7Au  8Au  

Sign 
< (VT) 

>(VB) 

< (VT) 

>(VB) 
< < 

>(VT) 

<(VB) 

>(VT) 

<(VB) 
> > 

Utility 1Bu  2Bu  3Bu  4Bu  5Bu  6Bu  7Bu  8Bu  

Sign 
< (VT) 

>(VB) 
< 

< (VT) 

>(VB) 
< 

>(VT) 

<(VB) 
> 

>(VT) 

<(VB) 
> 

From CPT, the CPV of each party is given by 

1,2,3,4 5,6,7,8

= ( ) ( ) ;D Dk k Dk k

k k

V v u v u  

 

                  (4) 

1,2,3,4 5,6,7,8

3,4,5,6 1,2,7,8

( ) ( )

= ;

( ) ( )

Ak k Ak k

k k

A

Ak k Ak k

k k

v u v u if VT is taken

V

v u v u if VB is taken

 

 

 

 

 

 






 


 

 
            (5) 

and 

1,2,3,4 5,6,7,8

2,4,5,7 1,3,6,8

( ) ( )

= ,

( ) ( )

Bk k Bk k

k k

B

Bk k Bk k

k k

v u v u if VT is taken

V

v u v u if VB is taken

 

 

 

 

 

 






 


 

 
            (6) 

respectively, where ( ), { , , }ikv u i D A B , is the value of the potential outcome for each 
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party i under outcome k, k


 is the decision weight for the value of the potential gain, and k


 

is the decision weight for the value of the potential loss. Like Tversky and Kahneman (1992) 

and Liu, Fan and Zhang (2014), ( )ikv u  can be represented by 

𝑥(𝑢𝑖𝑘) = {
𝑢𝑖𝑘

𝑔
𝑖𝑓 𝑢𝑖𝑘 > 0

−𝜆(−𝑢𝑖𝑘)𝑙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,              (7) 

where both g  and l  are exponent parameters,   is the loss parameter, g  is the value that 

exhibits risk-aversion over gains, and l   is the value that exhibits risk-seeking over losses. 

Based on the players’ attitudes, the loss-aversion factor   should be always greater than 1 

since the individuals are essentially more sensitive to losses than gains. To better calculate the 

CPV, the decision weights for the gains and losses can be expressed by 

1

( ) ( );
n n

k j j

j k j k

w p w p   

  

                      (8) 

and 

1

1 1

( ) ( ),
k k

k j j

j j

w p w p


  

 

                       (9) 

respectively, where w
 and w

 are the respective weighting functions for gains and losses, 

and are given by 

1/
( ) ;

[ (1 ) ]

p
w p

p p



  

 
 

                   (10) 

and 

1/
( ) ,

[ (1 ) ]

p
w p

p p



  

 
 

                   (11) 

respectively, where   and   are weighting parameters and can also be determined through 

experiments. The probabilities of each potential outcome are modelled using the survivability 

of each party, as shown in Table 3 below. 

Table 3. Outcome Probabilities for All Cases 

Case 1p  2p  3p  4p  

Pro D A BP P P  (1 )D A BP P P  (1 )D A BP P P  (1 )(1 )D A BP P P   
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Case 5p  6p  7p  8p  

Pro (1 )(1 )(1 )D A BP P P    (1 )(1 )D A BP P P   (1 ) (1 )D A BP P P   (1 )D A BP P P  

 

3. Optimal Strategies under Cooperation 

If the attackers cooperate with each other, for any given resource allocation of the defender, 

they will maximise their total CPV. Since this is a two-period game, we employ backward 

induction to solve the problem. For a given combination of ( , , )D D Dx y z , the attackers will 

choose the optimal resource allocation to maximise their total CPV, which can be represented 

as 
* *( , ) argmax( ( , , ) ( , , ))A B A D D D B D D Dx x V x y z V x y z   . The defender will choose the 

resource allocation parameters that maximise its CPV as 

* * * * *( , , ) argmax( ( , , , , ))D D D D D D D A Bx y z V x y z x x  . We consider six different combinations 

of the three parties’ resources:  

 Case 1: 15, 10, 5D A BR R R    (D dominates in the game) 

 Case 2: 15, 5, 10D A BR R R    (D dominates in the game) 

 Case 3: 15, 10, 5A D BR R R    (A dominates in the game) 

 Case 4: 15, 5, 10A D BR R R    (A dominates in the game) 

 Case 5: 15, 10, 5B D AR R R    (B dominates in the game) 

 Case 6: 15, 5, 10B A DR R R    (B dominates in the game) 

We also assume that the contest intensity for each battle is the same:  

2DA AD DB BDm m m m     . Without loss of generality, we set the risk parameters as 

0.85, 0.85, 4.10, 0.60g l        and 0.70   . As Abdellaoui (2000), Bleichrodt 

(2000) and Abdellaoui and Bleichrodt and Paraschiv (2007) pointed out in their well-known 

works, the specific value of the risk parameters should be determined through some 

experiments. These researches performed several possible estimations of the loss aversion 

coefficient and conducted a series of experiments to illustrate the robustness and operability of 
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their settings. Therefore, when it comes for real problems, decision maker can first check the 

widely employed parameters and make some alteration based on the real situation. We then 

conduct sensitivity analysis in the extension. The assumed utilities of all parties under all 

possible outcomes are shown in Table 4 below.  

Table 4. Specific Values of Different Participants under All Conditions. 

Utility 1Du  2Du  3Du  4Du  5Du  6Du  7Du  8Du  

Value 10 15 15 20 -10 -15 -15 -20 

Utility 1Au  2Au  3Au  4Au  5Au  6Au  7Au  8Au  

Value 
-15(VT) 

15(VB) 

-15(VT) 

15(VB) 
-20 -20 

10(VT) 

-10(VB) 

10(VT) 

-10(VB) 
20 20 

Utility 1Bu  2Bu  3Bu  4Bu  5Bu  6Bu  7Bu  8Bu  

Value 
-15(VT) 

15(VB) 
-20 

-15(VT) 

15(VB) 
-20 

10(VT) 

-10(VB) 
20 

10(VT) 

-10(VB) 
20 

3.1 Optimal Attack Strategies 

To illustrate the optimal attack strategies for each of the defender’s strategies, we consider 

two different values for each decision parameter of the defender: 0.3 (Low) and 0.7 (High). 

This gives a total of eight defence strategy combinations. Without loss of generality, we assume 

that all contest intensity parameters in this paper are equal to 2. As shown in Section 3 on the 

previous page, the resources of the three parties always form the set {5, 10, 15}, giving cases 

1–6. In the following, we use TA1, TA2, TB1, TB2, TC1 and TC2 to represent these six 

respective cases under the VT setting, and BA1, BA2, BB1, BB2, BC1 and BC2 to represent 

these six respective cases under the VB setting.  

3.1.1 Vital Target Cases 

Starting with all VT cases, we first consider TA1, where 15, 10, 5D A BR R R   . The 

results are shown in Table 5. 

Table 5. Optimal Attack Strategies under TA1 (VT and Case 1) 

Dx  Dy  Dz  +A BV V  
*

Ax  
*

Bx  
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0.3 0.3 0.3 10.994 0 0.13 

0.3 0.3 0.7 10.681 0 0.03 

0.3 0.7 0.3 10.315 0 0.081 

0.3 0.7 0.7 10.228 0.022 0 

0.7 0.3 0.3 -1.063 0 0.141 

0.7 0.3 0.7 -2.213 0 0.097 

0.7 0.7 0.3 -7.719 0 0.053 

0.7 0.7 0.7 -7.616 0.003 0 

From Table 5, we see that the optimal attack strategies follow two trends, which depend 

on the type of Dx . The attack from the defender can considerably influence the corresponding 

strategy taken by the two attackers. Nonetheless, regardless of how much resource the defender 

spends on protecting itself, the optimal strategy for the attackers seems unchanged. For both 

attackers, they should spend the minority of resource on protecting themselves from the 

defender’s attack and the remainder of their resource on trying to destroy the defender’s object 

after surviving the defender’s attack. This is due to the summation of two effects: positive and 

negative. Because of the positive effect, the higher prospect value of destroying the defender’s 

object (VT) urges the attacker to achieve the goal regardless of its own survival. Because of the 

negative effect, both attackers must invest a lot into attacking the defender to gain a chance to 

defeat them, since the defender now owns considerably more resource. Under this specific 

occasion, the former effect takes the dominating position and makes the attackers unafraid of 

sacrifice. As for TA2, where 15, 5, 10D A BR R R   , the results are analogous to the TA1 

results in Table 5, so we do not elaborate on them here. Instead, we turn to TB1, where

15, 10, 5A D BR R R   . The results are shown in Table 6 below. 

Table 6. Optimal Attack Strategies under TB1 (VT and Case 3) 

Dx  Dy  Dz  +A BV V  
*

Ax  
*

Bx  

0.3 0.3 0.3 15.916 0.319 0.511 

0.3 0.3 0.7 14.782 0.375 0.322 

0.3 0.7 0.3 15.428 0.324 0.386 
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0.3 0.7 0.7 14.568 0.398 0.128 

0.7 0.3 0.3 11.570 0 0.415 

0.7 0.3 0.7 10.206 0 0.451 

0.7 0.7 0.3 8.685 0 0.183 

0.7 0.7 0.7 7.489 0.022 0 

From Table 6, the sum of the attackers’ CPVs is greatly increased with the augmentation 

of the resource of one party. The optimal attack strategies obtained for different given defence 

strategies are not so different to those given in Table 5. Interestingly, the strategy of attacker A 

is greatly changed. When the defender employs an attack, then attacker A ignores its own 

protection and spends almost all its resource on attacking the defender, which again makes the 

positive effect dominate. When the defender concentrates on protection, then attacker A still 

spends part of its resource on protection. The strategy of attacker B, who owns the least resource, 

also benefits from its ally, adopting a conservative strategy rather than a radical one. Therefore, 

we gather two insights: 1) when one party in an attack–defence game becomes more 

conservative, then the other party should act more radically, and vice versa (the sensitivity 

analysis of the risk parameters in Section 5 again prove this insight); and 2) the participant will 

benefit from its ally.  

We now concentrate on TB2, where 15, 5, 10A D BR R R   . The results are shown in 

Table 7 below. 

Table 7. Optimal Attack Strategies under TB2 (VT and Case 4) 

Dx  Dy  Dz  +A BV V  
*

Ax  
*

Bx  

0.3 0.3 0.3 22.255 0.686 0.519 

0.3 0.3 0.7 21.569 0.635 0.637 

0.3 0.7 0.3 22.257 0.693 0.503 

0.3 0.7 0.7 21.554 0.64 0.625 

0.7 0.3 0.3 21.039 0.474 0.254 

0.7 0.3 0.7 21.073 0.422 0.368 

0.7 0.7 0.3 21.033 0.488 0.244 
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0.7 0.7 0.7 21.023 0.430 0.351 

The mutual benefit is more significant in Table 7 than in Table 6. Both attackers now own 

more resource, leading the CPV to a higher level. Again, when the defender is more radical, the 

attacker should be more conservative and should spend most of its resource on protection. In 

addition, as the attacker gains resource it becomes more conservative. The positive effect of VT 

remains, but the negative effect of the disadvantage in resource reverses itself. Thus, with the 

two positive effects, the CPV reaches a higher level and the strategy of both attackers becomes 

conservative. For TC1 and TC2, where 15, 10, 5B D AR R R     and 

15, 5, 10B A DR R R    , respectively, all results are the same as in Table 6 and Table 7, 

respectively.  

3.1.2 Vital Base Cases 

We now turn to the six VB cases. First, we consider BA1, where 

15, 10, 5D A BR R R   . Results are shown in Table 8 below. 

Table 8. Optimal Attack Strategies under BA1 (VB and Case 1) 

Dx  Dy  Dz  +A BV V  
*

Ax  
*

Bx  

0.3 0.3 0.3 -17.744 0.604 1 

0.3 0.3 0.7 -42.786 1 0.696 

0.3 0.7 0.3 -19.41 0.604 1 

0.3 0.7 0.7 -31.576 1 0.661 

0.7 0.3 0.3 -7.946 0.669 1 

0.7 0.3 0.7 -7.629 0.637 1 

0.7 0.7 0.3 -8.95 1 0.679 

0.7 0.7 0.7 -16.979 0.715 1 

The situation for the attackers becomes seriously worse here, since the positive effect of 

VT now changes to VB, which leaves no choice for the attackers. Moreover, the defender owns 

more resource, which aggravates the situation. Since the base is more important to the attacker 

than before, no matter what strategy the defender chooses, the optimal strategy for the attackers 

is always to let one attacker put all its effort into protection while the other attacker concentrates 
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on both protection and attack. The results of BA2, where 15, 5, 10D A BR R R    , are 

analogous to BA1, so we do not elaborate on them here. 

 For BB1, where 15, 10, 5A D BR R R   , the results are shown in Table 9 below.  

Table 9. Optimal Attack Strategies under BB1 (VB and Case 3) 

Dx  Dy  Dz  +A BV V  
*

Ax  
*

Bx  

0.3 0.3 0.3 -5.161 1 0.895 

0.3 0.3 0.7 -13.677 1 0.786 

0.3 0.7 0.3 3.349 1 0.9 

0.3 0.7 0.7 -5.76 1 0.782 

0.7 0.3 0.3 12.58 0.829 1 

0.7 0.3 0.7 13.386 0.81 1 

0.7 0.7 0.3 12.009 1 0.487 

0.7 0.7 0.7 10.422 0.77 1 

Like the results in Table 6, the CPV greatly increases because one of the negative effects 

becomes positive. Moreover, we observe a phenomenon like that in Table 8, where, no matter 

what strategy the defender chooses, the optimal strategy for the two attackers is always to make 

one attacker focus on protection and have the other divide its resource into both protection and 

attack. We regard the attacker who only spends resource on protection as a free-rider on this 

occasion, since it does not contribute to the destruction of the defender’s object and only cares 

about its own survival. We now turn to BB2, where 15, 5, 10A D BR R R   . Results are 

shown in Table 10 below. 

Table 10. Optimal Attack Strategies under BB2 (VB and Case 4) 

Dx  Dy  Dz  +A BV V  
*

Ax  
*

Bx  

0.3 0.3 0.3 19.607 1 0.734 

0.3 0.3 0.7 18.856 0.939 1 

0.3 0.7 0.3 18.485 1 0.736 

0.3 0.7 0.7 18.825 1 0.92 
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0.7 0.3 0.3 20.764 1 0.552 

0.7 0.3 0.7 20.923 1 0.729 

0.7 0.7 0.3 20.474 1 0.562 

0.7 0.7 0.7 21.710 1 0.765 

Because of the VB setting, the CPV for this case does not reach the results obtained in 

Table 7; however, the attackers’ circumstances are still greatly improved. Interestingly, Table 

10 shows that attacker A, who owns the most resource, spends all its resource on protection, 

except for the special occasion where the defender allocates most of its resource on attacking 

attacker B and the minority of its resource on attacking attacker A. In other words, the attacker 

with more resource is more likely to become a free-rider and take advantage of the other 

attacker’s cooperation, whereas the attacker with less resource needs to consider both its own 

protection and the attack on the defender. We represent the two effects in Fig. 1 below. The 

brackets between the two sets of opposing effects represent the strategy’s attacker preference, 

and “+” and “-” denote the respective positive and negative effect to the attackers’ 

aggressiveness. 

 

Figure 1. Two Effects Considering the Attackers’ Strategies. 

Fig. 1 shows the two effects and their influences, and the four segments show the typical 

characteristics. When the outcome is VT-oriented and the defender owns more resource, the 

strategy of the attacker becomes more radical. When the defender owns less resource, the 

opposite is true. When the outcome is VB-oriented and the defender owns less resource, 

whichever attacker owns more resource becomes a free-rider whose only concern is for its own 

safety. Thus, it will not want to spare any effort in attacking the defender. The opposite case 

occurs when the defender owns more resource and the attackers can only fight the enemy 
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separately.  

3.2 Optimal Defence Strategies 

Having obtained the optimal attack strategies under different conditions, we try to solve 

the optimal defence strategies through backward induction. Note that there will be differences 

between the VT scenario and the VB scenario. Results for both are shown in Table 11 below, 

with the values in brackets representing VB and those in no brackets representing VT.  

Table 11. Optimal Defence Strategies under VT and VB 

Cases *

Dx  
*

Dy  
*

Dz  DV  
*

Ax  
*

Bx  +A BV V  

1 
0.918 

(0.17) 

0.673 

(0.5) 

0.558 

(0.52) 

-1.159 

(-5.14) 

0.19 

(1) 

0.107 

(0) 

-21.059 

(12.506) 

2 
0.917 

(0.118) 

0.321 

(0.5) 

0.578 

(0.52) 

-0.397 

(-3.221) 

0.154 

(0) 

0.139 

(1) 

-21.763 

(12.517) 

3 
0.964 

(0.096) 

0.686 

(0.5) 

0.576 

(0.509) 

-10.929 

(-16.58) 

0.104 

(1) 

0.195 

(0.096) 

2.638 

(20.495) 

4 
0.089 

(0.086) 

0.2 

(0.5) 

0.1 

(0.519) 

-31.139 

(-12.289) 

0.916 

(1) 

0.744 

(0.587) 

23.348 

(17.594) 

5 
0.965 

(0.092) 

0.33 

(0.5) 

0.593 

(0.52) 

-9.03 

(-13.45) 

0.259 

(0.132) 

0.062 

(1) 

1.964 

(9.57) 

6 
0.089 

(0.088) 

0.1 

(0.5) 

0.2 

(0.52) 

-30.447 

(-14.767) 

0.928 

(0.749) 

0.684 

(1) 

22.833 

(14.024) 

The conclusion here is intuitive. Under the VT scenario, if the defender owns relatively 

more resource than the attackers do, it will choose to protect the object, since its goal is to 

survive. The only difference here is that the defender may allocate different amounts of resource 

to defend against attackers A and B, depending on the respective resources of A and B. However, 

if the defender owns less resource than both attackers do, the optimal strategy alters, becoming 

one of a leap of faith where the defender should spend nearly all its resource on attacking the 

attackers in the hope that it proves victorious. In addition, the defender must spend more 

resource on attacking the attacker who owns relatively less resource. Nonetheless, the CPV 

under this case is far lower than the other cases. In contrast, under the VB scenario, since the 
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key goal of the attackers is to survive rather than to destroy the defender, the free-rider situation 

occurs again. As Table 11 shows, if the defender is in the dominant position, then the attacker 

with more resource will prefer to protect itself rather than to attack. However, if the attacker is 

in the dominant position, then the defender will focus on attacking and thus force the attackers 

to spend more of their resources on protection. The CPV of the attackers will strictly increase 

under the VB scenario compared with the VT scenario. 

3.3 Influence of Risk Parameters 

In the attack–defence game in this paper, the defender is regarded as a party and the 

attackers are regarded a party. We employ CPT in the model foundation to better depict the 

players’ risk attitudes, and we use the implicit assumption that all parties hold the same risk 

attitude. For cases where the defender and attackers are confronted with either a more risk-

seeking or more risk-averse situation, we assume that 0.9, 0.8g l   and 0.8, 0.9g l  , 

respectively.  Note that    represents the greater sensitivity to losses than gains.    is 

always greater than one, since most individuals care more about losses. We alter   from 3 to 

5 with the step of 0.5. To avoid repetition, we choose to analyse only cases 1, 3 and 4 (from 

Section 3), these being the scenarios where the defender owns the most, medium and least 

resource, respectively, under the VT scenario. All previous conclusions of risk influence remain 

the same under the VB scenario. Where 0.9g   and 0.8l  , the results are shown in Fig. 2 

below. 
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Figure 2. Optimal Strategies and Corresponding CPVs under Cooperation and ( 0.9, 0.8)g l  . 

From Fig. 2(a), we find the same conclusions that were obtained in the benchmark: (1) the 

defender will concentrate on protection if its resource is the highest among all participants, and 

(2) if its resource is the lowest, the defender will take a leap of faith to focus on an attack. 

Interestingly, the optimal resource spent on attacking and defending against A does not change 

with the alteration of  , which implies that these decisions are not sensitive to the losses. Fig. 

2(d) illustrates that if the participants become more risk-seeking, then the CPVs increase for 

both parties. Similarly, if the defender chooses to spend more resource on an attack, then the 

attackers can only raise the resource allocated to protection, leading to an augmented CPV 

under cooperation.  

Where 0.9g   and 0.8l  , the results are shown in Fig. 3 below. 
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Figure 3. Optimal Strategies and Corresponding CPVs under Cooperation and ( 0.8, 0.9)g l  . 

Comparing Fig. 2 and Fig. 3, we see that the defender spends more resource on protection 

if its risk attitude is risk-averse. This allows the attacker to save more resource for an attack, 

and it fundamentally lowers the CPV of the defender. We can therefore conclude that, if the 

attackers cooperate with each other, the defender should be more risk-seeking and should take 

a more radical strategy to raise its CPV. 

 

4. Optimal Strategies under Non-cooperation 

Attackers A and B compete in three cases, where:  

 A and B move simultaneously. A and B should be able to seek the optimal solutions 

based on the equations 
*( ) argmax( ( , , , ))A A D D D Bx V x y z x   and 

*( ) argmax( ( , , , ))B B D D D Ax V x y z x  , respectively. The defender will always have 
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* * * * *( , , ) argmax( ( , , , , ))D D D D D D D A Bx y z V x y z x x .  

 Attacker A moves first. There will be an alteration in the forerunner, giving 

*( ) argmax( ( , , , ))B B D D D Ax V x y z x  and 
* *( ) argmax( ( , , , ))A A D D D Bx V x y z x .  

 Attacker B moves first. There will be an alteration in the forerunner, giving 

*( ) argmax( ( , , , ))A A D D D Bx V x y z x  and 
* *( ) argmax( ( , , , ))B B D D D Ax V x y z x . 

All parameters remain the same as the previous section. Note, we consider the cases of A 

and B simultaneously due to space constraint. 

4.1 Optimal Attack Strategies 

Where the attackers compete, and move simultaneously, it is interesting to study one 

attacker’s response to the other. This scenario is like the duopoly game under non-cooperation 

in microeconomics where one supplier chooses its optimal price or quantity in response to the 

other supplier’s strategy. By putting the response curves of the two attackers together, the 

equilibrium of their strategies needs analysis. The equilibrium, if it exists, should be the 

intersection points of their respective response curves.  

The response curves and the corresponding CPVs for both attackers are shown in Fig. 4 

below. Again, for simplicity, we choose to analyse only cases 1, 3 and 4 (from Section 3), these 

being the scenarios where the defender owns the most, medium and least resource, respectively.  
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Figure 4. Optimal Responses for A and B in VT under Different Combinations of 

( 0.3, , )D D Dx y z . 

In Fig. 4, situations 1–3 represent B’s best response to A under cases 1, 3 and 4, and 

situations 4–6 represent A’s best response to B under cases 1, 3 and 4. 

The response curves for the two attackers under the defender’s different strategies are 

shown in Fig. 4 and Fig. 5. Each of these two figures are divided into four subfigures per the 

different values of Dy  and Dz . For each subfigure, we perform the response curve for each 

of the two attackers with respect to the other attacker’s strategy, and we also show the attackers’ 

corresponding CPVs. We see that the intersections of the curves for situations 1–3 and situations 

4–6 are the equilibrium of the optimal attack strategies. From Fig. 4 we can conclude that (1) 

under situation 3, where the attacker owns more resource than the defender, the optimal strategy 

is always to spend more resource on protection, and (2) for the opposite situation the optimal 
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strategy is to spend nearly all resource on an attack. This phenomenon is clearer in Fig. 4 than 

in Fig. 3, where we can see the alteration of the curve for situation 1. Like the scenario of 

attack–defence under cooperation, such a phenomenon occurs because the prospect value here 

is VT-oriented: if the defender owns more resource, then the strategy becomes more radical, as 

per the two effects we discussed in Fig. 1. Moreover, in some cases there are no intersection 

points for the response curves of the two attackers, and in other cases there are multiple 

intersection points, which implies that, in some cases, the two attackers may not be able to reach 

an equilibrium, and, in other cases, they may reach different equilibriums. We must analyse the 

potential equilibrium from three sides: 

 When there is no equilibrium. When the response curves have no intersection point, 

then the most conservative strategy of the defender is to anticipate that the attackers 

should choose strategies that minimise the CPV of the defender:

* *( , x ) argmin( ( , , , , ))A B D D D D A Bx V x y z x x   and 

* * * * *( , , ) argmax( ( , , , , )).D D D D D D D A Bx y z V x y z x x  

 When there is one equilibrium. When there is only one intersection point between the 

two response curves then that point is the most reasonable movement for both attackers. 

The defender also anticipates that the attackers will make such movement. 

 When there is more than one equilibrium. When more than one intersection point exists 

then the attackers may reach different equilibriums. However, it is conservative for the 

defender to anticipate that the attackers will reach the equilibrium that gives the 

defender the lowest CPV.  
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Figure 5. Optimal Responses for A and B in VT under Different Combinations of 

( 0.7, , )D D Dx y z . 

Comparing Fig. 4 and Fig. 5, we see that the best response for both attackers becomes 

more polarised. Where the defender owns more resource, the strategies of the attackers become 

more radical because of the VT effect. In contrast, where the defender owns relatively less 

resource, the optimal strategies of the attackers become more conservative. Furthermore, the 

CPV in Fig. 4 is higher than the CPV in Fig. 5. In other words, if more of the defender’s resource 

is spent on protection, the CPV of the attacker decreases because of the more radical action it 

takes.  

We now turn to the scenario of VB, as shown by the results in Fig. 6 and Fig. 7 for different 

values of Dx . 
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Figure 6. Optimal Responses for A and B in VB under Different Combinations of 

( 0.3, , )D D Dx y z . 

From Fig. 6 and Fig. 7, the best responses for both attackers seem to remain at a very high 

level under VB. In contrast to the VT scenario, the attackers cannot cooperate with each other; 

only one attacker spends resource on an attack while the other concentrates on protection. The 

non-cooperation between attackers now pushes them to consider only their own CPVs. Since 

the safety of the base is of greater value, the optimal strategies of both attackers alters to one of 

protection. Moreover, the summation of CPVs of both parties is far lower than in the scenario 

under cooperation. In addition, when the defender owns less resource, one of the attackers 

should spend most of their resource on an attack, which will lead the other to spend nearly all 

their resource on protection, making them a free-rider. On the contrary, when the defender owns 

more resource, then the two attackers have to fight on their own without cooperation that again 

proves the conclusion in Figure 1. 
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Figure 7. Optimal Responses for A and B in Vital Base under Different Combinations of 

( 0.7, , )D D Dx y z . 

Interestingly, when the defender now decides to spend more resource on protection, the 

mutual constraint between the two attackers seems to disappear since their bases will not be 

destroyed by the defender and thus the attackers can spend more efforts in attacking the defender. 

The cumulative prospect values for both attackers are higher than the case where the defender 

is more radical. It can be seen that the intersection points are increasing under Vital Base since 

the strategy of both parties is widely overlapping, as can be seen in the figure. 

4.2 Optimal Defence Strategies 

Having obtained the optimal attack strategies, we analyse the optimal defence strategies 

through backward induction and obtain the results shown in Table 12. Similarly, the value in 

brackets represents the case of Vital Base. Since the attackers compete with each other, we do 

not analyse the summation of the two attackers’ cumulative prospect value. Instead, we analyse 
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them separately. 

Table 12. Optimal Defence Strategies under Vital Target and Vital Base. 

Cases 
*

Dx  
*

Dy  
*

Dz  DV  
*

Ax  
*

Bx  AV  BV  

1 
0.805 

(0.245) 

0.584 

(0.504) 

0.626 

(0.45) 

0.706 

(-2.13) 

0.247 

(0.455) 

0.428 

(0.465) 

-5.226 

(6.264) 

-3.63 

(-6.23) 

2 
0.755 

(0.247) 

0.425 

(0.612) 

0.503 

(0.54) 

0.204 

(-2.16) 

0.34 

(0.451) 

0.023 

(0.316) 

-5.502 

(9.34) 

-3.954 

(-14.49) 

3 
0.802 

(0.187) 

0.612 

(0.5) 

0.618 

(0.67) 

-8.37 

(-10.8) 

0.214 

(0.535) 

0.413 

(0.526) 

4.587 

(9.6) 

5.01 

(6.39) 

4 
0.754 

(0.034) 

0.454 

(0.5) 

0.648 

(0.72) 

-27.9 

(-19.8) 

0.405 

(0.456) 

0.48 

(0.547) 

10.13 

(11.94) 

11.09 

(10.46) 

5 
0.796 

(0.165) 

0.317 

(0.49) 

0.6 

(0.62) 

-8.986 

(-10.2) 

0.354 

(0.471) 

0.262 

(0.465) 

3.499 

(10.93) 

6.04 

(-6.59) 

6 
0.668 

(0.032) 

0.48 

(0.5) 

0.668 

(0.71) 

-29.9 

(-27.6) 

0.469 

(0.488) 

0.513 

(0.54) 

9.669 

(11.97) 

11.35 

(8.42) 

From Table 12, we can have some interesting observations. First, when the attackers now 

compete with each other, the defender should spend more resource on attacking the attackers 

instead of protection. The defender’s corresponding cumulative prospect value under this case 

is higher than the case of cooperation but the summation of prospect values of both attackers is 

decreasing except for two cases where the defender owns more resource. In other words, the 

split of the attacker makes the defender owns more advantage since the attackers under this case 

spend more resource on protection instead of attacking. For the attackers, they just fight their 

own enemy. Nonetheless, when the defender owns more resource, it seems that the attackers 

prefer competing with each other than cooperation. The reason behind is that when the attackers 

cooperate with each other, there is a common phenomenon called free-rider, where the one who 

owns relatively more resource may take advantage of the other attacker and spare all effort in 

protection, pushing the other attacker to attack the defender. Also, the resource spent on 

protection will increase under the case of Vital Base since the safety of their own base is now 

the priority of the attackers. Similarly, the defender will change its strategy under two different 
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occasions: dominating or dominated. No matter in which case, under Vital Base the defender 

should always spend the majority of its resource on attacking; and the intensity of the attack 

will be higher if its resource is not dominating. However, if the defender owns resource 

advantage, this strategy will lower down its cumulative strategy since the attackers now 

concentrate more on the safety of the base. On the contrary, if the attackers own advantage, this 

strategy may benefit the defender as a result of attackers’ prudent. 

4.3 Influence of Risk Parameters 

Similar to Section 3.3, we analyse the influence of the risk parameters when the attackers 

compete with each other. Still, for the sake of conciseness, we only perform the results under 

three relationships between the parties, which represents the parameter setting in Cases 1, 3, 

and 4, respectively. In addition, only the case of Vital Target is discussed and we can further 

prove that all major conclusion of risk parameters remains the same under the case of Vital Base. 

The results when both parties become more risk-seeking are performed in Figure 8. 
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Figure 8. Optimal Strategies and Cumulative Prospect Value under Non-cooperation and 

( 0.9, 0.8)g l  . 

From the comparison between Figure 2 and Figure 8, we have the following findings.  

 If the defender owns the highest resource, for the attackers, non-cooperation seems to be a 

better option than cooperation. This is because the attacker with more resource will become 

a free-rider and therefore makes the summation of the cumulative prospect value to 

decrease. However, under the case of non-cooperation, the attackers fight the defender on 

their own and thus make the strategy more harmful, which increases the value.  

 If the defender does not own the highest resource, for the attackers, cooperation will 

become a better option than non-cooperation. This is because the attackers can adjust their 

strategy based on the action of the defender. Here is so-called late-move advantage. 
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Moreover, contrary to the case where attackers cooperate with each other, now the defender 

should be more conservative instead of being radical. This is reasonable since under 

cooperation, the free-rider may give the defender more opportunity to destroy one of the 

attackers. In contrast, under non-cooperation the defender should defend against all 

possible attacks, which makes the defender more conservative.  

Now we turn to the case when both parties become risk-averse and perform the results in 

Figure 9. 

 

Figure 9. Optimal Strategies and Cumulative Prospect Value under Non-cooperation and 

( 0.8, 0.9)g l  . 

From Figure 9, we can obtain the same trend of the curve in each common subfigure as 

Figure 3. Note that there are seven subfigures in Figure 3 since under cooperation the attackers 

try to maximise the summation of their cumulative prospect values. Also, the attackers will 

prefer non-cooperation when the defender owns resource advantages and prefer cooperation in 
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other cases. When we compare results under different combinations of risk attitudes, we can 

find that the risk attitude will considerably change the optimal strategies of the defender and 

the attackers. In other words, imagine the case where the defender prefers attacking rather than 

protection, then two different situations may arise:(1) the resource spent on attack will raise to 

a higher level if its risk attitude becomes more risk-seeking, and (2) if its risk attitude becomes 

more risk-averse, the optimal strategy will not change to protection but the optimal resource 

spent on attack will go down and the resource spared on protection will increase. 

 

5. Conclusion and Future Works 

Numerical examples are presented to illustrate the application of the proposed models and 

sensitivity analysis is conducted to study the influences of different parameters. When attackers 

cooperate with each other, the attacker with more resource is more likely to become a free-rider 

and take advantage of the other attacker’s cooperation, whereas the attacker with less resource 

needs to consider both its own protection and the attack on the defender. Moreover, under the 

VT scenario, if the defender owns relatively more resource than the attackers, it will choose to 

protect the object. Contrary form that, under the VB scenario, the free-rider situation occurs 

again. By analysing the risk parameters, we can find that the defender should be more risk-

seeking and should take a more radical strategy to raise its CPV. When non-cooperation exists, 

then equilibrium with different types may occur and the best response for both attackers 

becomes more polarised, leading to a more complicated case for the defender. Comparing 

between the cooperation case and non-cooperation case, we can obtain two major conclusions 

of our paper. If the defender owns the highest resource, for the attackers, non-cooperation seems 

to be a better option than cooperation. Otherwise, for the attackers, cooperation will become a 

better option than non-cooperation. 

This work can be extended in several directions. Say, it is interesting to consider the cases 

where the attackers also own intention to attack each other. Another future work is to extend to 

the case where there are arbitrary numbers of defenders and attackers. In addition, this work 

modelled the contest between defender and attacks as a sequential game. In the future, 

simultaneous game can be used to study the contest between an arbitrary number of players, 

where each owns an object to defend and intention to attack others. Another direction for future 
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work is to incorporate the use of false targets.  
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