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h i g h l i g h t s

• JQueuer is a queuing system to be used in conjunction with container technologies.
• JQueuer supports the execution of jobs and the enforcement of scaling policies.
• JQueuer is integrated with the MiCADO orchestration framework.
• Deadline-based execution policies for job submission/batch processing applications.
• Deadline based execution of agent-based simulation application using REPAST.
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a b s t r a c t

There are many scientific and commercial applications that require the execution of a large number of
independent jobs resulting in significant overall execution time. Therefore, such applications typically
require distributed computing infrastructures and science gateways to run efficiently and to be easily
accessible for end-users. Optimising the execution of such applications in a cloud computing environ-
ment by keeping resource utilisation at minimum but still completing the experiment by a set deadline
has paramount importance. As container-based technologies are becoming more widespread, support
for job-queuing and auto-scaling in such environments is becoming important. Current container
management technologies, such as Docker Swarm or Kubernetes, while provide auto-scaling based
on resource consumption, do not support job queuing and deadline-based execution policies directly.
This paper presents JQueuer, a cloud-agnostic queuing system that supports the scheduling of a large
number of jobs in containerised cloud environments. The paper also demonstrates how JQueuer, when
integrated with a cloud application-level orchestrator and auto-scaling framework, called MiCADO, can
be used to implement deadline-based execution policies. This novel technical solution provides an
important step towards the cost-optimisation of batch processing and job submission applications. In
order to test and prove the effectiveness of the solution, the paper presents experimental results when
executing an agent-based simulation application using the open source REPAST simulation framework.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cloud computing offers scalable and on-demand access to
large amounts of computational and data resources. Operating
System (OS) level virtualization, also known as container-based
virtualization has recently attracted much attention due to its
near-native performance and low virtualization overhead [1]. In
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science gateways, containers simplify packaging applications so
as to run on any cloud independently of the cloud’s configura-
tion. A container orchestration engine takes multiple resources
in the cloud, combines them into a single pool, and provides an
abstracted layer between the cloud resources and the application
container that run on these resources. Most applications can be
containerised along with all their libraries so as to run in any
cloud without the need to install any prerequisites. Containers
are stateless which makes them suitable for services that perform
single functions and do not need to store data in the containers. A
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Web service is an example of these stateless services where it is
possible to create/clone several containers so as to process HTTP
requests concurrently.

On the other hand, several types of batch processing appli-
cations in science and business gateways, for example discrete-
event and agent-based simulation or image/video processing, re-
quire a mechanism to launch containers and provide each one
of them with the jobs or data which should be processed. These
applications typically consist of hundreds or thousands of scenar-
ios which need to be executed, usually independently from each
other. Some scenarios are lightweight allowing several of them to
be executed at the same time on the same machine in different
containers, while others consume large amount of resources and
need longer time to be accomplished. These applications are all
dealing with the submission of jobs where the results need to be
kept after execution.

The need to provide the containers with jobs or data and col-
lect the output after execution is not the only difference between
stateless services and batch processing applications. Typical poli-
cies applied when scaling containers are also different. Scaling
up/down the containers of a stateless service may depend on
the load on its containers, CPU and memory consumption, num-
ber of requests, average response time, etc. However, in batch
processing applications, we might need to take scaling decisions
depending on completely different types of policies such as the
time required to process a job, the deadline to finish all jobs
in the queue, or the length of the queue. In some cases, we do
not need to scale up the containers if there are no more jobs
in the queue, even if all containers are consuming 100% of their
resources. The time required to finish a job (job duration) is one
of the most important factors to be taken into consideration in
order to decide the number of containers needed to process jobs
in the queue. Job duration may differ completely from one job to
another making this estimation even more complex. For example,
a queue of video files to be processed might contain videos of
different lengths, from one minute to one hour. If the overall
execution of the experiment needs to be finished by a given
deadline, then this results in the need to periodically auto-scale
up/down the containers based on user-defined scaling policies.

While Stateless Services are widely supported by current tech-
nologies, there is very limited or no support for job-queuing, ex-
ecution and related policy-based auto-scaling mechanisms which
are required by batch processing applications. The lack of these
components forces application developers to spend time and
money to develop proprietary tools or to customise open source
libraries to work in container-based environments. These compo-
nents should also be available to run on public and private clouds
based on various technologies. Therefore, the solutions should be
agnostic to the underlying cloud middleware.

In this paper we propose JQueuer, a cloud-agnostic queu-
ing system that supports the scheduling of a large number of
jobs in containerised cloud environments. We also demonstrate
that JQueuer can be integrated with a managed container plat-
form, such as MiCADO, Microservices-based Cloud Application-
level Dynamic Orchestrator that was presented in [2]. MiCADO
originally supported the scaling of stateless services only based on
performance based metrics, such as memory or CPU utilisation.
By extending MiCADO with JQueuer as an external service, it is
possible to realise deadline-based execution policies required by
job submission or batch processing applications. The job queu-
ing and scheduling is provided by JQueuer, while MiCADO is
responsible for the implementation and enforcement of suitable
auto-scaling policies. The applicability of the implemented so-
lution is demonstrated by designing a deadline-based execution
policy for an agent-based simulation application using the open
source REPAST framework [3] and executing several experiments

to assess its efficiency. While these experiments demonstrate that
JQueuer and MiCADO can be efficiently utilised to execute such
experiments, it also has to be noted that the focus of this paper
is to demonstrate the technical concepts and their usability, and
not to design and optimise deadline based execution policies. This
latter was out of our scope and will only be covered in future
work.

Based on the above, the major contribution of this paper is a
novel cloud agnostic queuing system for containerised environ-
ments. JQueuer is a stand-alone component that can be easily
reused by other researchers or developers seeking a suitable job-
queue for container-based execution. Additionally, the paper also
provides an example for the utilisation of this component when
implementing deadline-based execution policies.

The major motivation behind our work was inspired by the
requirements of real-life industry, public sector and research
focused use-cases currently being investigated in two European
research projects. In the COLA (Cloud Orchestration at the Level of
Application) project [4], Saker Solutions Ltd. [5], a UK-based simu-
lation consultancy company is developing a discrete-event based
simulation application for evacuation modelling. In the Cloudi-
Facturing (Cloudification of Production Engineering for Predictive
Digital Manufacturing) [6] project DSS Consulting [7], a Hungarian
technology company is working together with a truck component
manufacturer to optimise its production processes, also using
discrete-event simulation. In both scenarios large scale simula-
tion experimentation is required that needs to be significantly
speeded up using cloud computing resources. These simulation
runs need to finish by given deadlines otherwise timely, some-
times critical decisions cannot be made. On the other hand, the
number of jobs to execute in these simulations and their duration
can significantly change between scenarios. Therefore, it is not
possible to reliably predict the volume of resources required. In
current practice, both companies use fixed internal resources that
are limited, not scalable and also expensive to maintain. When
migrating their applications to the cloud, they both would like to
utilise its elastic nature fully, leaving it to the underlying layers
to define the optimal volume of resources to be utilised, and
optimise the execution for reaching the given deadline while
minimising costs. The agent-based simulation scenario presented
in this paper, although it comes from academic research, is very
similar in nature to these industry use-cases and therefore it
provides a good basis for experimentation.

The rest of this paper is organised as follows. Section 2 dis-
cusses the state of the art and related work. Section 3 describes
the MiCADO framework that will be used as the managed con-
tainer platform to be integrated with JQueuer and where the
deadline-based execution policy is implemented. Section 4 ex-
plains the structure of an experiment which will be used when
designing JQueuer. Section 5 describes the design and imple-
mentation of JQueuer, while Section 6 explains how it has been
integrated with MiCADO. The implementation of a REPAST ex-
periment and its performance results are presented in Section 7.
Finally, Section 8 concludes this paper and outlines future work.

2. Related work

A number of solutions and studies have been proposed to
tackle the problem of auto-scaling jobs and services execution in
container-based cloud environments. This section first compares
the job-queuing and auto-scaling capabilities of three widely used
container orchestration engines, then looks at open-source job
scheduling systems, and finally analyses some managed solutions
offered by hosted cloud platforms.

Docker Swarm [8] is an orchestration tool which manages
a cluster of Docker Engines running Docker containers. Docker
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provides the service concept in which the services are ‘‘containers
in production’’. A service only runs one image, but it codifies the
way that image runs, what ports it should use, how many replicas
of the container should exist, and so on. Scaling a service changes
the number of container replicas running that piece of software,
assigning more computing resources to the service in the process.
The containers in a service are stateless. It is widely used and
relatively simple to interface with, but, out-of-the-box, Swarm is
not suitable for queueing jobs.

Kubernetes [9] is another orchestration tool for Docker, as well
as for other container runtimes. Kubernetes is a more complex
orchestrator, and as such, offers a larger variety of workloads,
including the Kubernetes Job. The Job controller can deploy and
scale sets of containers in parallel and ensure that a specific
number of containers run to successful completion. This offers
more certainty in job completion that does Swarm, and permits
batching jobs, but Kubernetes itself offers no built-in system for
queuing and no scaling policy for meeting a deadline.

Apache Mesos is a cluster manager that provides efficient re-
source isolation and sharing across distributed applications [10].
There are several projects which have grown out of Mesos, in-
cluding container orchestration. Mesos also features a Job frame-
work called Metronome [11]. Less mature than Kubernetes Jobs,
Metronome allows for the creation of containers on a schedule,
with set resources. However, at the time of writing, there is
not yet any mechanism built-in to Metronome to support a job
queue that executes to a set deadline. In another example, Mesos
container orchestration is interfaced with Jenkins, an open-source
automation server, to deploy and scale jobs in containers ac-
cording to a fixed scaling policy based on job queue length [12].
Although Jenkins and this Mesos plugin provide a working model
for a scalable job queuing system, its scaling policy is fixed and
static.

While these container orchestrators offer scalability, they do
not provide monitored job-queuing support or complex, deadline-
based scaling policies out-of-the-box. In comparison, JQueuer
monitors and executes queued jobs in containers, while MiCADO
provides flexible deadline-based scaling policies and auto-scaling
of the underlying cloud resources.

There are several widely used job scheduling systems in the
open-source domain that are starting to support containerised
environments. However, these solutions are far too heavy and
their Docker support is currently limited. HTCondor is an open-
source high throughput computing software framework for
coarse-grained distributed parallelisation of computationally in-
tensive tasks [13]. HTCondor has support for launching containers
but it does not communicate with container orchestrators which
prevents the applications from using services offered by these
orchestrators, such as networking between containers or Docker
Compose. SLURM (Simple Linux Utility for Resource Manage-
ment) [14] is another open source, fault-tolerant, and highly scal-
able cluster management and job scheduling system for large and
small Linux clusters. While both HTCondor and SLURM support
integration with an elastic cluster to auto-scale the underlying
compute nodes, they are far from being cloud-agnostic, relying on
the proprietary cloud services of only a few specific cloud service
providers. Furthermore, the auto-scaling logic of these clusters
are generally inflexible and do not support queue monitoring and
deadline-based scaling out-of-the-box. In comparison, JQueuer
and MiCADO seek to avoid such vendor lock-in and provide
flexible scaling rules.

CQueue is a promising job scheduling service, fully support-
ing Docker containers, which offers job queue submission and
the parallel execution of those jobs in containers on any cloud
provider [15]. CQueue, similarly to HTCondor and SLURM, takes a
stateless approach to the queue. It creates a new container when

a job is pulled from the queue and kills that container when
the job completes. However, large-scale scientific and industry
simulation software may be resource demanding in which case
creating a new container for each job can generate large over-
heads. These overheads lead to an overall decrease in efficiency
on completing the queue. The design described in this paper takes
a more stateful route to the container, running it as a service
which is able to pick up job after job from the queue, and is only
killed when a policy enforces a scale-down, or the experiment
ends.

Within the domain of large hosted providers, Amazon Web
Services (AWS) offers AWS Batch [16] as a part of the Elastic Con-
tainer Service (ECS). This is a full featured queue system which
schedules, scales and executes jobs in containers across multiple
virtual machine nodes and offers optimised scaling based on job
resource requirements. AWS Batch does not scale to a deadline
by default and is only available inside AWS. Therefore, it is not
a solution for private or community clouds, or any other public
cloud. Microsoft Azure offers a very similar solution, also called
Batch [17]. Just like the AWS solution, it offers container and
virtual machine scaling and submission to a queue with job
execution in the container, and even has a promising custom
metric auto-scaler. However, just like the AWS solution, it ties
any user to one specific cloud.

Within academic research, there is ample work which com-
pares scaling algorithms for deadline-constrained workflows in
the cloud, done at a theoretical level using a cloud simulator
to mimic the behaviour of scalable virtual machines [18,19].
Other research efforts look at implementing scaling mechanisms
which manage auto-scaling virtual machines in order to complete
queued jobs before a given deadline [20,21]. However, each of
these papers is focused at the level of virtual machines, and does
not delve into container environments. According to our best
knowledge, no research to date has been dealing with the queued
execution of jobs in containers which scale automatically along
with the underlying cluster in order to finish the queue of jobs
before a set deadline.

When compared to the above detailed solutions, JQueuer has
been designed to implement containers as services, support flexi-
ble scaling policies based on custom metrics, and be platform and
cloud-independent. In addition, it can work with any container
orchestration engine.

3. MiCADO — Microservices-based Cloud Application-level Dy-
namic Orchestrator

MiCADO is an application-level multi-cloud orchestration and
auto-scaling framework that is currently being developed in the
European H2020 COLA project [4]. The concept of MiCADO is de-
scribed in detail in [2]. In this section only a high-level overview
of the framework is provided to explain its architecture, building
blocks and implementation.

The generic, technology independent architecture of MiCADO
is presented in Fig. 1. MiCADO consists of two main logical com-
ponents: Master Node and Worker Node. Master Node is the head
of the cluster performing the collection of information on mi-
croservices, the calculation of optimised resource usage, the deci-
sion making, and the realisation of decisions related to handling
resources and to scheduling microservices. Worker Nodes are
volatile components representing execution environments for the
microservices. These nodes are continuously allocated/released
based on the dynamically changing requirements of the running
microservices. Once a new Worker Node is allocated and attached
to the cluster, the Master Node utilises its resources by allocating
microservices on it.

The MiCADO Master Node (box with dashed line on the left
in Fig. 1) includes six components. MiCADO Submitter is the
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Fig. 1. Generic, technology independent architecture of MiCADO.

primary service endpoint for creating an infrastructure to run
an application, and managing this infrastructure and the ap-
plication itself. The incoming description is interpreted by the
MiCADO Submitter and related parts are forwarded to other
key components. Creating new MiCADO Worker Nodes and de-
ploying application containers on these Worker Nodes are the
responsibility of Cloud Orchestrator and Container Orchestrator
components, respectively. The Cloud Orchestrator is responsible
for communication with the Cloud API for allocating and releas-
ing resources, and building up and shutting down new MiCADO
Worker Nodes when necessary. The Container Orchestrator allo-
cates new microservices (realised by containers) on the Worker
Nodes, keeps track of their execution and destroys them if neces-
sary. The Monitoring System collects information on load of the
resources and on resource usage of the container services, and
provides this information for the other components on the Master
Node. It also provides alerting functionality in relation to the
measured attributes to detect values that require reaction. The
Policy Keeper implements policies and makes decisions related to
allocating/releasing cloud resources and scheduling container ser-
vices among the Worker Nodes. Moreover, this component makes
sure that the Cloud and the Container Orchestrator are instructed
in a synchronised way during the operation of the entire system.
The Execution Optimizer is a background microservice perform-
ing long-running calculations on demand for finding optimised
setup of both cloud resources and container infrastructures.

MiCADO Worker Nodes (boxes with dashed line on the right
in Fig. 1) contain the Node/container monitor that is responsible
for measuring the load of the resources and the resource usage
of the container services. The measured attributes are then pro-
vided to the Monitoring System running on the Master Node. The
Container Executor starts, executes and destroys containers upon
requests from the Container Orchestrator. Container components
are realising the user services defined in the (container) infras-
tructure description submitted through the MiCADO Submitter on
the Master Node.

The current implementation of MiCADO utilises Occopus [22],
an open source multi-cloud orchestration solution as Cloud Or-
chestrator that is capable of launching virtual machines on var-
ious private (e.g. OpenStack or OpenNebula-based) or public
(e.g. Amazon Web Services or CloudSigma [23]) cloud infrastruc-
tures, and also via the CloudBroker Platform [24] (please note that
in the current implementation of MiCADO all virtual machines
must be mapped to the same cloud, therefore multi-cloud ap-
plications where virtual machines of the same application are
running in different clouds, are not supported). For Container

Orchestration the MiCADO prototype applied in this paper uses
Docker-Swarm [8]. However, it is worth mentioning that the lat-
est version of MiCADO also supports Kubernetes [9] as this com-
ponent. The monitoring component is based on Prometheus [25],
a lightweight, low resource consuming, but powerful monitoring
tool. The MiCADO Submitter and Policy Keeper components were
custom implemented during the COLA Project. The current Mi-
CADO prototype does not include the Optimiser component, its
design and development has just started at the time of writing
this paper. Infrastructure and policy descriptions (left hand side
of Fig. 1) are provided in the form of a TOSCA-based (Topol-
ogy and Orchestration Specification for Cloud Applications) [26]
Application Description Template (ADT) (for further details re-
garding MiCADO ADTs please see [27]). Finally, application logic
is deployed in Docker containers on the MiCADO worker nodes.

4. Experiment structure

In previously mentioned batch processing or job submission
applications, for example simulations or image/video processing,
there are always numerous scenarios that need to be completed
on large computational resources. However, as these application
areas evolved independently, the vocabulary used to identify the
different units of execution are rather varied. In order to avoid
any confusion or misunderstanding, in this section we define and
present these units of execution as experiment, job and task, as
they are illustrated in Fig. 2. The figure illustrates the structure
of the JSON (JavaScript Object Notation) [28] file that is required
to define and submit an experiment in JQueuer, and therefore it
indicates the purpose and role of these various untis of execution.

4.1. Experiment

An experiment consists of two parts. The first part is a set
of global parameters (upper part of Fig. 2), and the second part
consists of a list of jobs (lower part of Fig. 2). Global parameters
define the desired cloud infrastructure and scaling properties. For
launching the cloud infrastructure, these include the endpoint
of the container management platform, the application’s Docker
image and the resources of the virtual machine workers to be
provisioned. For scalability, the necessary parameters include the
deadline by which the experiment should be finished, and an
estimated average execution time for each job. The full list of
global parameters can be seen in the upper part of Fig. 2.
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Fig. 2. Definition of global parameters and list of jobs and tasks for an
experiment (experiment.json).

The second part contains the experiment jobs and tasks —
the data necessary to run the intended workloads on the in-
frastructure defined by the global parameters. An experiment
(including jobs and tasks) might be stored using various formats.
In case of JQueuer this format is JSON, but other possible options
include XML (Extensible Markup Language) or YAML (Yet Another
Markup Language). The next sections describe the definition of
jobs and tasks within an experiment.

4.2. Job

A job consists of three parts: Pre-job Command (1), Tasks (2)
and Post-job Command (3). While the first and third parts are
optional, the second part is required. Pre-Job, Post-Job and task
commands will be invoked within the container so as to launch
an application or execute a system call, for example.

1. Pre-Job Command (Optional): It is the command that should
be invoked in the container at the beginning of each job
and before running the tasks. The command might be used
to initialise the parameters or to reserve the resources
which are needed to execute a task.

2. Tasks (Required): It is a list of tasks that should all be
executed sequentially in the same container. If any task
fails for any reason, the whole job will be considered as
‘‘failed’’ and it will be re-queued or cancelled, depending
on the configuration of the system. Quite often, each job
consists of one task only. However, in some experiments
tasks are depending on each other and need to be executed
in a certain order inside a job (e.g. the first task would
parse the argument and download files from a server, the
second task would run the application, while the third task
will upload the results to a server). Another motivation to
put multiple tasks inside one job is to enhance network
utilisation and reduce overhead by fetching and executing
multiple inputs in a batch (e.g. fetching of multiple images
at once in order to be analysed sequentially instead of
fetching one image at a time).

3. Post-Job Command (Optional): This command should be
executed after finishing all the tasks of the job and before
getting a new job from the job queue. It might be used to
free the resources, reset the parameters, etc. A job is con-
sidered ‘‘accomplished’’ when all its tasks have executed
successfully.

4.3. Task

A task is the smallest unit in this structure. It contains the
command line that should be called in the container and the

Fig. 3. JQueuer Manager and Agent — design and implementation with a generic
container management platform.

parameters (arguments) which should be passed along with this
command.

An example of the above structure is a simulation experiment.
The experiment has global parameters including the container’s
image. Let there be a thousand jobs in this experiment and let
each job consists of one task. The task in this case will contain
the command line of the simulation application that needs to be
executed inside a container and the different sets of parameters
that this command requires.

5. JQueuer design and implementation

JQueuer is a queuing system that can be used in conjunction
with container technologies to support the execution of a large
number of jobs. JQueuer is a distributed system that is composed
of two independent components: JQueuer Manager and JQueuer
Agent (Fig. 3). In the following, we are going to discuss the
structure and functionality of each of these.

5.1. JQueuer Manager design

JQueuer Manager is the main component of the JQueuer sys-
tem. It runs externally of any container management platform
(running Docker Swarm/Kubernetes) as a standalone component.
JQueuer Manager consists of several sub-components, named in
non-italicised font in Fig. 3. Each sub-component has a different
set of tasks. The sub-components and their tasks are described as
follows:

1. Experiment Receiver: A RESTful web service which pro-
vides a standard API to submit the experiment file/object
to the JQueuer system via HTTP Request. When an experi-
ment is received, the ‘‘Experiment Receiver’’ will generate
an ‘‘Experiment ID’’ which will be used to identify this
experiment in the system. The experiment sender will re-
ceive this ID as a HTTP response. Experiments to JQueuer
are described in JSON format as illustrated in Fig. 2 and
explained in Section 4.

2. Container Management Platform Handler: This component
offers communication with a managed container platform
cluster (Swarm/Kubernetes/Mesos cluster). The Handler is
responsible for ensuring that the container and virtual
machine infrastructure is built, and for defining a set of
scaling rules for that infrastructure. For the current set
of experiments, JQueuer integrates with an external Mi-
CADO platform, so the Handler accomplishes building the
infrastructure by generating and submitting an ADT (see
Section 3) through the MiCADO Submitter API.
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3. Experiment Queue: A list of the experiment IDs which have
been submitted. Each experiment has two important items
in this queue: the Experiment Service Name and the Job
Queue ID. JQueuer Agents use this list to recognise whether
the containers running (on their virtual machines) should
be controlled or not.

4. Job Parser: The Job Parser is responsible for extracting the
job and task data from the experiment.json file and adding
the jobs, and their tasks to a job queue dedicated to this
experiment.

5. Job Queues: Each experiment depends on a dedicated Job
Queue that has its own ID. The mechanism used to dispatch
jobs from Job Queues is discussed in the next section.

6. Monitoring System: The Monitoring System contains the
monitoring data related to all experiments. The monitor-
ing data will be exposed as Prometheus metrics via a
Prometheus exporter.

5.2. JQueuer Agent design

An instance of JQueuer Agent component should be running
on each virtual machine node in the managed container plat-
form cluster. The JQueuer Agent is responsible for controlling
the service containers of the experiments, fetching jobs from the
Job Queues, monitoring the execution and sending data to the
JQueuer Manager. From functional point of view, this component
can be divided into sub-components, also shown in Fig. 3, as
follows:

1. Experiment Checker: This sub-component monitors the Ex-
periment’s Queue in the JQueuer Manager. When a new
experiment is added, the Experiment Checker will fetch the
Experiment Service ID and the Job Queue ID items.

2. Job Queue Fetcher: It uses the Job Queue ID which has been
obtained from the Experiment Checker so as to fetch the
jobs from an experiment job queue and execute them on
the containers of the corresponding Experiment Service.

3. Monitoring Updater: It monitors job execution on local
containers and sends data and statistics to the Monitoring
System in the JQueuer Manager.

5.3. JQueuer implementation

In this section, the technologies and tools that have been used
in the first implementation of JQueuer are described. They are
visualised in italics in Fig. 3, next to their respective compo-
nents discussed in Sections 5.1 and 5.2 above. The aim was to
reuse existing open source products as components, and as a
result minimise development time and effort. The choice of tech-
nologies was a result of thorough investigation and comparison.
However, due to limitations in length, this selection process is not
detailed in this paper.

The two main components of the designed architecture,
JQueuer Manager and JQueuer Agent have been developed using
Python 3 and were prepared as Docker images. These components
include Celery [29], an asynchronous distributed task/job queuing
system that was used together with Rabbitmq [30], a message
broker for job queuing, and Redis [31], an in-memory database
for capturing results. Redis was also applied for experiment
queuing and simplifying data exchange between the manager and
the agents. Statsd [32] was selected for monitoring and export-
ing statistics and events of the JQueuer Agents as Prometheus
metrics. We used the official Docker images of each of these com-
ponents together with Docker compose, a tool for defining and
running multi-container Docker applications in order to group

all containers and simplify the deployment and communication
among them. As input to JQueuer Manager, experiments are
described in JSON format, as it was presented in Fig. 2.

JQueuer Agent has two main components: Container Updater
and Container Manager.

1. Container Updater (Experiment Checker): The main func-
tion of this subcomponent is to monitor the containers
on the local virtual machine node to distinguish which
containers belong to a particular experiment. Each Docker
container shows in its information the name of its Docker
Swarm Service. The Container Updater will check the con-
tainer services against the list of experiments on the Redis
server. If the container is new and it belongs to one of the
experiments, a new Container Manager will be forked to
manage this container and it will be added to the list of
containers that this agent is responsible for.

2. Container Manager (Job Queue Fetcher): This component
is responsible for managing and controlling an experiment
container. The life cycle of a Container Manager starts when
fetching a job from the Job Queue that corresponds to
its container. It then executes any pre-job script in the
container and goes through the list of tasks. Tasks are ex-
ecuted sequentially, and after finishing them successfully,
the Container Manager will run any post-job script. It sends
statistics to the StatsD server such as: job starting/finishing
time and task starting/finishing time. If the job fails for any
reason, it informs StatsD of the time spent before the job
has failed, and it signals this failure to the Celery server.
After finishing the job, it fetches another job and starts
executing it. Container Manager continues working until
the Job Queue of its experiment becomes empty.

Containers from different experiments can coexist on the same
machine. JQueuer Agent will provide each Container Manager
with a Container ID and a Job Queue ID. The Container List
contains only those containers that belong to an experiment, and
have been assigned to managers.

6. JQueuer integration with MiCADO

This section describes JQueuer’s integration with a managed
container platform, in our case with MiCADO. As a standalone
queue, JQueuer relies on an external service to provision the
infrastructure of virtual machines and containers where the ex-
periment jobs can be executed. This service should also allow
for the definition of policies or rules that control the scaling of
the infrastructure at both virtual machine and container levels.
MiCADO was selected as the managed container platform for this
integration because it supports Docker Swarm and Kubernetes
orchestration, offers automated cloud orchestration through Oc-
copus, and provides a flexible approach to defining scaling rules.
Integrating JQueuer with MiCADO enables the realisation of dead-
line based execution policies, and the managed execution of
large number of jobs in various container-based cloud computing
environments.

It should be noted that JQueuer does not depend on any
cloud or container technology, and it is also agnostic to the cloud
middleware and resources where the applications are executed.
Therefore, it depends entirely on the managed container plat-
form for which container technologies and which cloud resources
can be used for executing the jobs queued by JQueuer. In the
implemented solution, as MiCADO was applied as the managed
container platform, containers are managed by Docker Swarm,
and virtual machines can be instantiated on clouds supported
by Occopus (i.e. CloudSigma, Amazon, OpenStack, OpenNebula or
CloudBroker).
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Fig. 4. High-level architecture of integrating JQueuer as an external component to MiCADO.

Fig. 5. JQueuer integrating with MiCADO via the Container Management
Platform (MiCADO) Handler.

The high-level architecture of the integrated JQueuer/MiCADO
solution is illustrated in Fig. 4. As it can be seen in the figure,
JQueuer is an external component to MiCADO that receives the
Experiment.json file as input and (specifically for this integrated
solution) generates the necessary ADT as input for MiCADO. This
ADT describes both the necessary virtual machine and container
infrastructures (including the dockerised version of the job exe-
cutable, together with the JQueuer Agent), and also contains the
auto-scaling rules. Based on the ADT, MiCADO deploys the worker
nodes and containers with the JQueuer Agent deployed on them.
This JQueuer Agent communicates with the JQueuer Master to
receive the next job from the queue. Once the job is completed,
JQueuer Agent asks for the next one until all jobs in the queue are
finished. The number of MiCADO worker nodes and containers are
managed by the MiCADO Master component based on the scaling
rules and policies. The Policy Keeper of MiCADO, based on the
scaling policy received from JQueuer, is responsible for deploying
new workers or destroying existing ones (i.e. scaling up or down).
Although this integration, especially the utilisation of the ADT and
the MiCADO Policy Keeper is specific to MiCADO, it also has to be
noted that similar managed container platforms can also be used
in relation to JQueuer in order to achieve containerised execution
and auto-scaling.

The more detailed JQueuer/MiCADO interactions are visualised
in Fig. 5. These interactions can be broadly divided into two
separate tasks: (1) JQueuer submitting the experiment to Mi-
CADO, and (2) MiCADO analysing JQueuer metrics to make scaling
decisions.

6.1. JQueuer submitting the experiment to MiCADO

The first task, where JQueuer submits an experiment to an
external service – in this case MiCADO – begins with the JSON

configuration file (experiment.json in the top left corner of Fig. 5).
This file is responsible for defining two subsets of information
which are described in detail in Section 4:

a. the experiment jobs and tasks
b. the properties of the experiment to be launched, which

include: container image, virtual machine image, scaling
thresholds, and experiment deadlines.

This second subset contains the information required by the
managed container platform to build the infrastructure and de-
fine the scaling rules for the experiment. As shown in Fig. 5,
in order to pass this data to MiCADO, it must first be con-
verted into the TOSCA-compliant Application Description Tem-
plate (ADT) format supported by the framework. To accomplish
this, a generic ADT is written following the Jinja2 [33] templating
language. The Jinja2 engine then generates an ADT specific to
a given experiment by automatically filling key placeholders in
the ADT with the corresponding information from JQueuer’s ex-
periment.json configuration file. The generated and now complete
ADT is then submitted to the MiCADO framework via the TOSCA-
Submitter API, which then manages the creation of container and
virtual machine infrastructure and attaches the unique scaling
rules.

The actions of translation to the ADT format and submission
to the MiCADO API are supported by the MiCADOHandler class on
the JQueuer Master. The handler contains the generic template to
be filled, instantiates the Jinja2 engine to generate the final ADT,
and makes a POST request to the MiCADO API endpoint to submit
the infrastructure and rules. The design supports agnosticism in
JQueuer, as a handler can be written for any managed container
service, as long as it can translate the experiment.json configura-
tion into a compliant format, and send the generated data to the
service in order to launch an infrastructure.

6.2. MiCADO analysing JQueuer metrics to make scaling decisions

The second task sees the Policy Keeper component in Mi-
CADO managing virtual machine and container scaling within
the infrastructure in order to complete the experiment by a set
deadline. It does this based on a pre-defined set of scaling rules
included in the generic ADT used in the previous task. These
scaling rules, which define expressions and queries based on
JQueuer-specific metrics, are combined with the scaling thresh-
olds, limits and deadlines defined by the user in experiment.json
to build a complete scaling policy for the experiment.

Generally, the Policy Keeper of MiCADO provides a simplistic
approach to building policies based on Prometheus metrics. Given
that Prometheus can be extended with community-developed
exporters to extract metrics from nearly any piece of software, it
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is an ideal candidate for a pluggable policy enforcer such as Policy
Keeper. Policy Keeper can natively attach to any Prometheus
exporter, either internal or external to the cluster it runs on.
Extremely generic policies can then be abstracted to suit a wide
variety of needs and use-cases. Creating the policies for JQueuer
involves little more than taking a generic deadline-based, job-
completion policy from Policy Keeper, and extending it with
specific queries and expressions related to JQueuer.

Policy Keeper supports querying Prometheus to build expres-
sions, alerts and constants that can then be used to express
scaling logic using the Python scripting language. Conditional
statements based on the queried metrics determine when the
containers and nodes should scale up or down. The Python logic
is written into the generic ADT, which, after Jinja2 templat-
ing, resolves as a complete and working scaling policy for the
infrastructure of the current experiment.

The JQueuer-specific metrics are stored in the statsd server on
the JQueuer Manager and are exposed via a Prometheus exporter
built into the statsd container. The endpoint for this statsd server
is fed into the ADT during Jinja2 templating, and on submission
to MiCADO, Policy Keeper instructs Prometheus to connect to it.
Once connected, the JQueuer-specific metrics become available to
Policy Keeper and the expressions and queries defined in the ADT
are resolved so that metric-based scaling can take place.

The generic scaling policy for a deadline-based job-completion
is created thusly:

First, a set of constants are defined for the user-supplied esti-
mated average execution time, experiment deadline, maximum vir-
tual machine workers, and maximum containers per worker. Then,
queries are fetched via Prometheus for remaining time, jobs in
queue, jobs completed, and calculated average execution time.

Python is then used to express the following logic:
The user-supplied estimated average execution time is used to

calculate the initial number of containers required to complete
the total number of jobs in queue before the user-supplied experi-
ment deadline. After having completed 5% of the jobs in queue, the
queried calculated average execution time is used to calculate the
new number of containers required to complete the experiment
in time. This average is updated as new jobs are completed. Up-
scaling of containers and nodes can occur at any time, however,
to prevent constant scaling, down-scaling will only occur when
the change in containers is greater than three, or the change in
worker nodes is greater than one. The user-defined maximums
ensure that the infrastructure does not scale out of bounds.

Although the above expressed logic implements a suitable
deadline-based policy, a particular problem with down-scaling
can happen if Docker Swarm, the container orchestrator compo-
nent of MiCADO decides to kill a container that currently executes
a job. In this case, significant execution time can be lost as the job
will be killed and rescheduled to a different container. In order to
prevent this, outside of the ADT, the following measures are taken
to prevent a job-in-execution being killed during down-scaling:

The container image itself is edited so that PID 1 inside the
container points to a shell script. This script points to the normal
entry point of the container, but adds protection by using Linux
trap [34] to catch any interrupt signal forwarded to the container.
When Policy Keeper instructs Swarm to scale down the number of
containers, it sends such a signal. On catching the interrupt signal,
the shell script ensures that the job runs to completion before
the container is killed. In order to avoid holding these resources
infinitely, such as in a situation where a job hangs, container
orchestrators offer a grace-period setting — the time to wait after
having sent an interrupt signal (SIGINT), before sending a kill
signal (SIGKILL). We override this value using the user-supplied
estimated average execution time and, since a SIGKILL cannot
be caught by trap, if the grace-period elapses, the container
will be killed regardless of whether the job has completed, and
consequently the killed job will be rescheduled.

7. Deadline-based execution of an agent-based simulation

Simulation is a technique commonly used in science and in-
dustry to study a variety of problems across a wide range of do-
mains by building and experimenting with models under difficult
conditions [35]. Agent-based Simulation (ABS) is a widely used
type of simulation [36]. It has roots in complex systems, complex
adaptive systems and artificial life. ABS allows modellers to rep-
resent loosely structured systems in terms of actors (or agents)
and their interactions with each other and their environment. For
example, ABS has been used to study social networks, healthcare,
supply chains, economic growth, climate change, power distri-
bution systems and physical activity. An ABS typically consists
of a set of autonomous agents (with attributes that describe
the state of the agent), a set of agent relationships (how each
agent interacts with other agents and its environment) and the
environment (the ‘‘world’’ in which the agents exist). The use of
a single computer restricts these to being executed in sequence.
As with other forms of simulation (e.g. discrete-event simulation),
empirical studies also often require many experiments to be run
(e.g. the simulation of a model with different sets of parameters).
Further, as some models can be stochastic, replications need to
be run to build confidence intervals. This can lead to extremely
lengthy or prohibitive experimentation time, especially if the run
time of a single simulation is large.

To investigate the performance of the deadline based execu-
tion approach presented earlier, we have used an agent-based
simulation of an infection network [37]. The model illustrates
how simulation can be used to study the changes in individual
behaviour and the impact on the spread of a disease. It is written
using REPAST, a widely used agent-based simulation tool [3].
The simulation consists of three types of agents that move in
an environment and interact with each other, representing the
susceptible, infected and recovered population.

The overall architecture diagram of the experiment is illus-
trated in Fig. 6. As preparation for the experiment with MiCADO
and JQueuer, the REPAST model was first compressed into a
model.tar file and each set of parameters were saved in separate
files. These input files were placed into an external file server
(right hand side of Fig. 6) that is also used to store the generated
outputs. Each job in this experiment consists of a single task, with
each task is a simulation run that does not require any pre-job or
post-job tasks.

In the next step, the experiment’s global and experiment def-
inition related parameters were prepared and placed into the
experiment.json file (left hand side of Fig. 6). Some parameters,
such as MiCADO endpoint, Docker image, specification of worker
nodes (CPU and RAM), and the estimated duration of a simulation
run (from previous experience) were fixed for all experiments. As
REPAST is computationally demanding, it was only efficient to run
a single container on a VM. Therefore, the number of containers
per VM was also fixed and set to one. Some other parameters,
including deadline and maximum number of VMs were variables
that were changed in the different experiments to illustrate and
test the auto-scaling capabilities of MiCADO. The input data to
an experiment consists of the URL to the compressed model, the
input parameters XML file, the URL to an external file (FTP) server
where the input/output files are stored, the credentials to access
the server, and the command for the execution of the application.

To compare our deadline-based scheduling approach to a fixed
resource approach, we used an implementation of REPAST run-
ning on the CloudBroker (CB) Platform with fixed resource al-
location [24]. For both experiments (MiCADO and CB) resources
of the CloudSigma cloud [23] were used (2.2 GHz CPU/2GB RAM
instances). A test scenario of 200 REPAST infection model runs
was executed for comparison. Generally, our approach was to run
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Fig. 6. Executing REPAST simulation jobs with MiCADO.

Fig. 7. Description of experiments comparing fixed resource allocation with deadline-based scaling.

the test scenario using a fixed number of VMs via CloudBroker
and then to use information from these runs to set the deadline
to test MiCADO’s performance with different upper limits of VMs.
In the first set of experiments (Experiments 1–4 in Fig. 7) we
used two variants of job submission via CloudBroker (manual
allocation and round robin scheduling) to reflect two general
forms of fixed resource systems and to give context to MiCADO’s
performance (Experiments 1–2). The best of the average execu-
tion times was used to set the deadline for MiCADO. Two MiCADO
experiments were then performed (Experiments 3–4) to study
deadline behaviour against different upper limits of VMs. In the
second set of experiments (experiments 5–6) we compared the
fixed approach (this time just with round robin scheduling) on 5
instances with MiCADO under more relaxed resource constraints.
Finally, we put MiCADO under real pressure. In Experiment 7
we set the maximum number of virtual machines in MiCADO to
10 but restricted the available resources from the cloud service
provider’s side in a way that MiCADO could not launch more than
6 worker nodes (the cloud account was restricted in such way).
In Experiment 8 we significantly increased the number of overall
jobs to execute from 200 to 1000 and set the deadline beyond
5 h.

When executing the experiments, five runs of both manual
and round robin scheduling were performed with CloudBroker
on 10 VMs first (Experiments 1–2). The best average perfor-
mance (with rounding) was set as the deadline for MiCADO which
was the result of the manual allocation and a time of 31 min.
In the next step, the same experiments were run on MiCADO

(Experiments 3–4) with the above defined deadline, and setting
the maximum number of instances to 10 and 15, respectively.
Fig. 8 illustrates the performance of MiCADO for each of the
VM maximums (blue area) and compares these to the direct
CB execution scenarios (red rectangular area). Please note that
each experiment was repeated three times to check the relative
consistency of the results. However, for illustration, only one of
these runs is represented in the figures.

The figures demonstrate how MiCADO adjusted the number
of VMs depending on the progress being made against the dead-
line. Both figures show how the number of VMs processing jobs
changes. At the beginning of the experiments there is some no-
table and unavoidable overhead required to set up the necessary
infrastructure and start deploying VMs and containers. At the
end of the experiments, once all jobs have finished, the virtual
machines are shut down automatically and at the same time
by MiCADO. The length of the experiment is measured until
this automated shut-down. (Please note that in case of manual
scheduling and execution, VMs needed to be shut downmanually,
putting significant burden on the operator to avoid unnecessary
resource usage.)

The adjustment of VMs in Experiment 3 simply means scaling
up to the maximum number of VMs as MiCADO is stretched and
using the maximum number of instances most of the time. In
this scenario MiCADO was given the impossible task to match
(or better) the performance of the optimised manual job distribu-
tion, using a priori knowledge about the jobs, that is not always
available. In doing so, MiCADO scaled up the number of resources
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Fig. 8. Performance of automated scaling with maximum instances set to 10 and 15 and with deadline from batched job distribution (Experiments 3 and 4). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

continuously until reaching the maximum, and then kept process-
ing jobs using this maximum number of VMs. As it was expected,
the deadline could not be reached as MiCADO needed some time
to react and realise the need to scale up (causing some delay at
the beginning of the experiment). On the other hand, MiCADO
managed to almost match the best fixed resource performance
and to process the same work in approximately the same time
(with only 2–3 min delay). Additionally, although the deadline
was missed, the utilisation of cloud resources is still slightly
better than in the manual scenario, providing close to optimal
resource utilisation. It was also noted, that MiCADO performed
much better than the round robin scheduling that picked up and
executed jobs individually on CloudBroker, and took almost twice
as long as the optimised manual job distribution.

In Experiment 4 the scaling up and down is better visible
and illustrates that MiCADO finished the jobs by the set deadline
comfortably (as it can scale up to 15 VMs maximum). It can also
be observed that in Experiment 4 MiCADO makes a pre-mature
scaling down decision which it needs to adjust later on. Such,
seemingly unnecessary decisions are justified by the fact that the
actual job execution time is unpredictable and therefore shorter
or longer jobs can turn up randomly any time. MiCADO’s decision
is based on the latest monitoring information and therefore on
data that happened in the past. This also means that in case of
‘‘extreme’’ job distribution (e.g. if a very long job is turning up
at the end of an experiment), the current MiCADO implementa-
tion can miss the deadline as it was not expecting this ‘‘out of
character’’ behaviour based on previous monitoring information.
The machine learning-based optimiser component of MiCADO
that is currently under development is expected to improve this
situation.

In all scenarios and runs, we have also calculated the average
number of VMs that were used by MiCADO. This number varied
between 7.87 to 9.44 in Experiment 3, and 8.48 and 9.24 in
Experiment 4 which demonstrates that MiCADO used slightly
lower number of instances on average than the fix allocation.
This is due to the fact that not all jobs have the same execution
time and this execution time cannot be predicted beforehand. In
the manual allocation we simply allocated the same number of
jobs per VM. However, when leaving the scheduling and auto-
scaling to MiCADO, it has the ability to better optimise variable
length jobs and allow the execution of variable number of jobs
by workers that can result in a better overall execution time. As
conclusion, it can be observed that although MiCADO has been
put under real pressure in this scenario as it was compared to
an ideal, specifically generated and pre-batched job distribution
(which in most real-life scenarios is not possible due to various
length of simulation jobs), it was preforming reasonably well by
using less resources than the manual allocation and completing
the tasks by the deadline or with less than 10% extra time used.

In the next set of experiments (Experiments 5 and 6) a more
relaxed scenario was prepared for MiCADO to better illustrate its

auto-scaling capability. Five runs of round robin scheduling were
performed with CloudBroker on 5 VMs. The average execution
time from these experiments was set as the approximate deadline
for MiCADO (1 h 4 min 55 s). In the MiCADO experiments the
maximum number of VMs were set to 10 and the experiment was
repeated three times. Fig. 9 shows two of these runs as examples
of the performance of MiCADO in this context.

In both examples, MiCADO ran faster than the best fixed
resource runtime and finished the jobs by the deadline. In all
runs MiCADO consumed a maximum of 6 VMs and, as shown in
the figure, this again was ‘‘peak’’ consumption that only existed
for a short time. Overall an average of 3.86 VMs were used, less
than the 5 VMs of the fixed resource implementation (this again
was possible due to the unpredictable and variable execution
times of the individual jobs). Overall, MiCADO used less VMs to
‘‘beat’’ the deadline by a small margin. Additionally the figure also
demonstrates that MiCADO scaled up differently in different runs
based on the actual performance of the VMs that differ slightly
in time when using CloudSigma. This unpredictable behaviour
coupled with variable job execution time leads to some scaling
up/down adjustments performed by MiCADO, as it is visible on
both graphs.

Experiment 7 was designed to test how MiCADO behaves in
an impossible scenario when the resources are restricted by the
cloud service provider and not available in the expected volume.
In this experiment the maximum number of resources to be
utilised by MiCADO were set to 10. However, the user account
on the CloudSigma cloud was restricted in a way that MiCADO
could not launch more than 6 worker nodes at a time. The results
of this experiment are shown in the left hand pane of Fig. 10. As
it is evident, MiCADO scales-up to the maximum of 6 workers.
However, as it was expected, this amount of resources is not
enough to complete the tasks by the set deadline which is missed
by a large margin due to these physical constraints. Please note
that MiCADO does not provide error message or warning to the
user in such scenarios (a feature which can be implemented in
the future). However, the scaling of the virtual machines can be
observed on the MiCADO dashboard where the user can see the
restricted scaling behaviour.

In Experiment 8 the aim was to execute a larger use-case
scenario. Therefore, we increased the number of jobs to 1000 and
we primarily tested the scalability and robustness of our solution.
As it is evidenced in the right hand pane of Fig. 10, MiCADO
coped well with the pressure and completed all 1000 jobs by
the deadline. It is important to note that in this case we have
not actually performed the fixed resource experiment, only used
the outcomes of Experiment 5 to estimate and set a reasonable
deadline. As in the previous cases, multiple runs were performed,
with the graph showing some of these as examples only.

The above experiments demonstrate the performance of Mi-
CADO for a relatively small set of experiments. Performance was
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Fig. 9. Performance of automated scaling with maximum instances set to 10 with relaxed deadline (Experiment 6).

Fig. 10. Automated scaling in resource constrained scenario (Experiment 7) and with 1000 jobs (Experiment 8).

comparable with a fixed resource implementation, even under
challenging deadlines. Significantly, in this limited demonstra-
tion, the experiments show that less VM time was used in the Mi-
CADO implementation than in the fixed resource ones. Arguably
this shows that, if an appropriate deadline is set, simulation users
can merely set the upper limit of VM expenditure and allow Mi-
CADO to make efficient use of available cloud resources. However,
further experimentation with a range of simulation models will
be required to generalise this observation.

8. Conclusion and future work

This paper presented a set of technologies that enable the
efficient deadline-based execution of large number of jobs in con-
tainerised cloud environments. As such experiments are typically
computationally demanding and require access to distributed
computing infrastructures, these building blocks can be efficiently
used when implementing science gateways.

The presented components include JQueuer, a cloud-agnostic
distributed system designed to support the scheduling of large
number of jobs in containers and virtual machines. It was also
demonstrated how JQueuer can be integrated with a managed
container platform, such as MiCADO, to realise deadline-based
scaling policies. Both JQueuer and MiCADO are open source and
available at https://github.com/micado-scale. Finally, an agent-
based simulation application implemented in REPAST was used
to test the behaviour of the combined MiCADO JQueuer solution
in various scenarios.

As REPAST is used widely, especially by the academic and
research communities, a public gateway, based on the CloudSME
AppCenter and its related technologies [38] is currently being set
up where such simulations can be executed on cloud computing

resources on a pay-as-you-go basis. Similarly to the REPAST solu-
tion, an open source discrete-event simulation software package,
called JaamSim [39] is also being prototyped with the deadline-
based scaling solution and will be offered as public service via
the gateway. The results of this work impact both forms of
simulation.

In parallel, experimentation for developing more efficient scal-
ing policies and implementing the optimiser component of Mi-
CADO using machine learning techniques is currently ongoing
work in the COLA project. This work also incorporates the further
investigation of cost models and how cost optimisation can also
be considered besides deadline-based execution. Additionally,
MiCADO is being extended with several new features and capa-
bilities, for example to support multiple applications/experiments
and multiple users under the same MiCADO installation.
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