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A MULTILINEAR FOURIER EXTENSION IDENTITY ON Rn

JONATHAN BENNETT AND MARINA ILIOPOULOU

Abstract. We prove an elementary multilinear identity for the Fourier extension operator on
Rn, generalising to higher dimensions the classical bilinear extension identity in the plane. In the
particular case of the extension operator associated with the paraboloid, this provides a higher
dimensional extension of a well-known identity of Ozawa and Tsutsumi for solutions to the free
time-dependent Schrödinger equation. We conclude with a similar treatment of more general
oscillatory integral operators whose phase functions collectively satisfy a natural multilinear
transversality condition. The perspective we present has its origins in work of Drury.

1. Introduction

To a smooth function φ : Rn−1 → R we associate the Fourier extension operator

Eg(x) =

∫

Rn−1

ei(x
′·ξ+xnφ(ξ))g(ξ)dξ;

here x = (x′, xn) ∈ Rn−1 × R, and a-priori g ∈ L1(Rn−1). The term “extension operator” is

used since the adjoint E∗, given by E∗f(ξ) = f̂(ξ, φ(ξ)), gives a (parametrised) restriction of
the Fourier transform of a function f on Rn to the hypersurface S = {(ξ, φ(ξ)) : ξ ∈ Rn−1}. In
practice the function φ is often only defined on some compact set U ⊆ Rn−1, giving rise to a
compact hypersurface S. We gloss over this point in most of what follows since such a feature
may be captured by the implicit assertion that the function g is supported in U . In the 1960s
Stein observed that if S is compact and has everywhere nonvanishing curvature, then E satisfies
estimates of the form

(1.1) ‖Eg‖Lq(Rn) . ‖g‖Lp(U)

with q < ∞; the case (p, q) = (1,∞) is of course elementary by Minkowski’s inequality. The
celebrated Fourier restriction conjecture asserts that estimates of this type continue to hold
for q > 2n

n−1 , with elementary examples preventing an endpoint estimate at q = 2n
n−1 ; see for

example [16]. Since the 1990s bilinear, and more generally multilinear, estimates of this type
have emerged as particularly natural and useful; see for example [18], [17], [12], [5], [1], [7]. The
simplest such example is the well-known and elementary bilinear identity

(1.2)

∫

R2

|E1g1(x)E2g2(x)|
2dx = (2π)2

∫

R2

|g1(ξ1)|
2|g2(ξ2)|

2

|φ′1(ξ1)− φ′2(ξ2)|
dξ1dξ2,

where E1, E2 are extension operators associated with phases φ1, φ2 and curves S1, S2 in the
plane; see [11] for the origins of this.1 This particular two-dimensional statement occupies a
singular position in Fourier restriction theory in the sense that it is an identity. The main
purpose of this paper is to establish natural higher-dimensional analogues of this. To this
end we consider extension operators E1, . . . , En associated with the functions φ1, . . . , φn, and
hypersurfaces S1, . . . , Sn.

This work was supported by the European Research Council [grant number 307617].
1As may be expected, some technical hypotheses relating to the geometry of these curves are needed here, and

it will suffice to ask that φ′

1(ξ1) 6= φ′

2(ξ2) whenever ξj belongs to some interval containing the support of gj , for
each j = 1, 2.

1
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2 JONATHAN BENNETT AND MARINA ILIOPOULOU

Theorem 1.1.

(1.3) |E1g1|
2 ∗ · · · ∗ |Engn|

2 ≡ (2π)n(n−1)

∫

(Rn−1)n

|g1(ξ1)|
2 · · · |gn(ξn)|

2

∣∣∣∣det
(

1 · · · 1
∇φ1(ξ1) · · · ∇φn(ξn)

)∣∣∣∣
dξ,

for all functions g1, . . . , gn such that the determinant factor is nonzero whenever ξj belongs to
the convex hull of the support of gj , 1 ≤ j ≤ n.

It should be remarked that requiring a non-vanishing determinant factor whenever ξj belongs
to the support of gj (1 ≤ j ≤ n) is necessary in order for the integral on the right hand side
of (1.3) to be finite. This is due to a critical lack of local integrability, which is of course also
present in (1.2). Our requirement that this continues to hold on the convex hull of the supports
is a technical condition used in our proof, and is a product of the generality of the set-up. As
we shall see, this is not always necessary, as the particular case where each Sj is the paraboloid
reveals. In particular, the following holds.

Theorem 1.2. Let E be the extension operator on the paraboloid S = {(ξ, φ(ξ)) : ξ ∈ Rn−1},
with φ = | · |2. Then,

(1.4) |Eg1|
2 ∗ · · · ∗ |Egn|

2 ≡ 2−(n−1)(2π)n(n−1)

∫

(Rn−1)n

|g1(ξ1)|
2 · · · |gn(ξn)|

2

∣∣∣∣det
(

1 · · · 1
ξ1 · · · ξn

)∣∣∣∣
dξ.

We clarify that while Theorem 1.2 does not impose a support condition on the functions
gj , finiteness in (1.4) requires that the determinant factor on the right hand side does not
vanish on their supports. This particular determinant factor is of course just the volume of the
parallelepiped in Rn−1 with vertices ξ1, . . . , ξn.

Theorem 1.1 tells us that |E1g1|
2 ∗ · · · ∗ |Engn|

2 is a constant function. Nevertheless, it is
enough to prove (1.3) at the origin, as the right hand side is manifestly modulation-invariant.
The case n = 2 of Theorem 1.1 immediately reduces to (1.2) on evaluating the convolution at
the origin and performing a harmless reflection in either E1g1 or E2g2. The identity (1.3) may
be interpreted as an elementary substitute for the absence of a linear restriction inequality (of
the form (1.1)) at the endpoint q = 2n/(n − 1). Indeed, notice that the n-fold convolution

Ln/(n−1)(Rn) ∗ · · · ∗ Ln/(n−1)(Rn) ⊆ L∞(Rn)

by Young’s convolution inequality; therefore, an inequality of the form (1.1) at q = 2n/(n − 1)
would also imply that |E1g1|

2 ∗ · · · ∗ |Engn|
2 is a bounded function. This perspective on the

restriction conjecture originates in work of Drury, and the underlying ideas in this paper are
closely related to those in [10].

A more geometric interpretation of (1.3) comes from writing

Ejgj = f̂jdσj ,

where dσj is surface area measure on Sj, and fj is given by

gj(ξ) = (1 + |∇φj(ξ)|
2)1/2fj(ξ, φj(ξ)).

In these terms (1.3) becomes

(1.5) |f̂1dσ1|
2 ∗ · · · ∗ |f̂ndσn|

2 ≡ (2π)n(n−1)

∫

S1×···×Sn

|f1(y1)|
2 · · · |fn(yn)|

2

|v1(y1) ∧ · · · ∧ vn(yn)|
dσ1(y1) · · · dσn(yn),

where vj(yj) denotes a unit normal vector to Sj at the point yj ∈ Sj . It is instructive to
(formally) take the Fourier transform of the identity (1.5), and look to interpret the resulting
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distribution
n∏

j=1

(fjdσj) ∗ (f̃jdσj)

as a multiple of the delta distribution at the origin; here µ̃ denotes the reflection of a measure

µ in the origin. The key observation is that each factor (fjdσj) ∗ (f̃jdσj) is supported in the
complement of a cone with vertex at 0, and the axes of these cones point in a spanning set of
directions. We do not attempt to make these heuristics rigorous here.

We conclude this section with some further contextual remarks and generalisations.

Notice that the vector (1,−∇φj(ξj))
T is normal to the hypersurface Sj at the point (ξj, φj(ξj)),

and so if the surfaces S1, . . . , Sn are compact and transversal, that is, satisfying2

|v1(y1) ∧ · · · ∧ vn(yn)| & 1 for y1 ∈ S1, . . . , yn ∈ Sn,

then (1.3) becomes

(1.6) |E1g1|
2 ∗ · · · ∗ |Engn|

2 ∼ ‖g1‖
2
2 · · · ‖gn‖

2
2.

It is interesting to contrast this with the (considerably deeper) endpoint multilinear restriction
conjecture

(1.7) ‖E1g1 · · ·Engn‖
L

2
n−1 (Rn)

. ‖g1‖2 · · · ‖gn‖2;

see [5]. While (1.7) remains open, the weaker

(1.8) ‖E1g1 · · ·Engn‖
L

2
n−1 (B(0;R))

.ε R
ε‖g1‖2 · · · ‖gn‖2, R≫ 1,

is known; see [5], [1] for a modest improvement, and [3], [20] for generalisations.

Theorem 1.1 is a particular case of a one-parameter family of identities for the multilinear
operator Tσ(g1, . . . , gn)(x1, . . . , xn) :=

∫

(Rn−1)n

∣∣∣∣det
(

1 · · · 1
∇φ1(ξ1) · · · ∇φn(ξn)

)∣∣∣∣
σ n∏

j=1

ei(x
′

j ·ξj+xjnφj(ξj))gj(ξj)dξj ,

where x1, . . . , xn ∈ Rn, xj = (x′j , xjn) ∈ Rn−1 × R, and σ ∈ R. Of course T 0(g1, . . . , gn) =
E1g1 ⊗ · · · ⊗ Engn, so that Theorem 1.1 is the σ = 0 case of the following:

Theorem 1.3. For each σ ∈ R,
∫

x1+···+xn=0
|Tσ(g1, . . . , gn)(x1, . . . , xn)|

2dx

= (2π)n(n−1)

∫

(Rn−1)n

|g1(ξ1)|
2 · · · |gn(ξn)|

2

∣∣∣∣det
(

1 · · · 1
∇φ1(ξ1) · · · ∇φn(ξn)

)∣∣∣∣
1−2σ dξ

(1.9)

for all functions g1, . . . , gn such that the determinant factor is nonzero whenever ξj belongs to
the convex hull of the support of gj , 1 ≤ j ≤ n.

In the case of the extension operator on the paraboloid, the support condition on the functions
gj may be dropped provided σ ≥ 0, as our next theorem clarifies.

2Throughout this paper we shall write A . B if there exists a constant c such that A ≤ cB. The relations
A & B and A ∼ B are defined similarly.
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Theorem 1.4. Suppose σ ≥ 0. In the case of the paraboloid, i.e. for φ1 = . . . = φn = φ = | · |2,

(1.10)

∫

x1+···+xn=0
|Tσ(g1, . . . , gn)(x1, . . . , xn)|

2dx

= 2−(n−1)(2π)n(n−1)

∫

(Rn−1)n

|g1(ξ1)|
2 · · · |gn(ξn)|

2

∣∣∣∣det
(

1 · · · 1
ξ1 · · · ξn

)∣∣∣∣
1−2σ dξ.

If σ < 0, (1.10) continues to hold provided the determinant factor is non-vanishing on the
supports of the gj , 1 ≤ j ≤ n.

Of course when σ = 0, Theorem 1.4 becomes Theorem 1.2. In contrast with the case σ = 0,
when σ > 0 finiteness in (1.10) no longer requires that the determinant factor is non-vanishing
on the supports of the gj .

Of course (1.9) ceases to have convolution structure for σ 6= 0. However, alternative geometric
insight may be found in a more elementary Kakeya-type analogue of (1.9), which states that

∫

x1+···+xn=0

(
∑

T1,...,Tn

|e(T1) ∧ · · · ∧ e(Tn)|
2σ cT1χT1(x1) · · · cTnχTn(xn)

)
dx

= cn
∑

T1,...,Tn

cT1 · · · cTn

|e(T1) ∧ · · · ∧ e(Tn)|
1−2σ ;

(1.11)

here T1, . . . , Tn belong to finite sets T1, . . . ,Tn of doubly infinite 1-tubes (cylinders of cross-
sectional volume 1) in Rn, and for such a tube T , e(T ) ∈ Sn−1 denotes its direction. Here the
coefficients cTj

are nonnegative real numbers, cn denotes a constant depending only on n, and
we make the qualitative transversality assumption that e(T1)∧· · ·∧e(Tn) 6= 0 whenever Tj ∈ Tj.
When n = 2, this is the well-known and elementary bilinear Kakeya theorem in the plane. By
multilinearity (1.11) immediately follows, for all σ, from the elementary geometric fact that

(1.12) χT1 ∗ · · · ∗ χTn ≡
cn

|e(T1) ∧ · · · ∧ e(Tn)|

whenever e(T1) ∧ · · · ∧ e(Tn) 6= 0. (A simple way to see (1.12) is to begin with its manifest
truth for orthogonal axis-parallel rectangular tubes T1, . . . , Tn, and then use multilinearity and
scaling to extend it to orthogonal tubes of arbitrary cross section, whereby a change of variables
may then be used to establish the claimed dependence on the directions e(T1), . . . , e(Tn).) The
identity (1.11) with σ = 1/2 has a similar flavour to the much deeper affine-invariant endpoint
multilinear Kakeya inequality

∫

Rn

(
∑

T1,...,Tn

|e(T1) ∧ · · · ∧ e(Tn)| cT1χT1 · · · cTnχTn

) 1
n−1

.

(
∑

T1

cT1 · · ·
∑

Tn

cTn

) 1
n−1

proved in [6] and [8], and the seemingly deeper still (conjectural) variant

∫

Rn

(
∑

T1,...,Tn

|e(T1) ∧ · · · ∧ e(Tn)|
2σ cT1χT1 · · · cTnχTn

) 1
n−1

.

(
∑

T1,...,Tn

cT1 · · · cTn

|e(T1) ∧ · · · ∧ e(Tn)|
1−2σ

) 1
n−1

,

(1.13)

for any real number σ. This inequality for σ = 0, or at least a natural variant of it involving
truncated tubes, is easily seen to imply the classical Kakeya maximal conjecture via an appli-
cation of Drury’s inequalities from [10]. The identities in Theorems 1.1 and 1.3 are inspired by
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the analogous conjectural multilinear extension inequality

(1.14) ‖E1g1 · · ·Engn‖
2

L
2

n−1 (Rn)
.

∫

(Rn−1)n

|g1(ξ1)|
2 · · · |gn(ξn)|

2

∣∣∣∣det
(

1 · · · 1
∇φ1(ξ1) · · · ∇φn(ξn)

)∣∣∣∣
dξ

and its generalisation
(1.15)
∫

Rn

|Tσ(g1, . . . , gn)(x, . . . , x)|
2

n−1 dx .

(∫

(Rn−1)n

|g1(ξ1)|
2 · · · |gn(ξn)|

2

∣∣∣∣det
(

1 · · · 1
∇φ1(ξ1) · · · ∇φn(ξn)

)∣∣∣∣
1−2σ dξ

) 1
n−1

.

These very strong conjectural inequalities (1.13)–(1.15) arose in discussions with Tony Carbery
in 2004, and also recall work of Drury in [10]. Some recent progress in this direction may be
found in [15]. Of course (1.3) and (1.9) are much more elementary than (1.14) and (1.15) when
n ≥ 3.

Theorems 1.2 and 1.4 may be formulated in terms of solutions u1, . . . , ud+1 : Rd × R → C to
the Schrödinger equation i∂tu = ∆u with initial data f1, . . . , fd+1. Indeed, Theorem 1.2 for
n = d+ 1 becomes∫

x1+···+xd+1=0
t1+···+td+1=0

|u1(x1, t1)|
2 · · · |ud+1(xd+1, td+1)|

2dxdt

=
1

2d(2π)d(d+1)

∫

(Rd)d+1

|f̂1(ξ1)|
2 · · · |f̂d+1(ξd+1)|

2

|ρ(ξ)|
dξ,

(1.16)

where

ρ(ξ) = det

(
1 · · · 1
ξ1 · · · ξd+1

)
;

here ξ = (ξ1, . . . , ξd+1) ∈ Rd × · · · ×Rd. We observe that ρ(ξ) = 0 if and only if ξ1, . . . , ξd+1 are
co-hyperplanar points in Rd, and, in order for the expression in (1.16) to be finite, one needs to

stipulate that the determinant factor is non-vanishing for ξj in the support of f̂j, 1 ≤ j ≤ d+1.
Notice that the tensor product here is a space-time tensor product. Thus there are many times
in play, and the measure is Lebesgue measure on a linear subspace of space-time. Multilinear
expressions of a similar flavour to (1.16) may be found in [2].

A similar reformulation of Theorem 1.4 for σ > 0 gives an extension of (1.16) that ceases to
have local integrability (finiteness) issues, retaining content even if the solutions uj all coincide.
In order to state this, it is natural to define the d-th order differential operator

ρ(∇x) := det

(
1 · · · 1

∇x1 · · · ∇xd+1

)
,

and its fractional power |ρ(∇x)|
γ to be the operator with Fourier multiplier |ρ(ξ)|γ ; here the

Fourier variable ξ belongs to Rd(d+1). In this notation, Theorem 1.4 for σ ≥ 0 becomes

Theorem 1.5. For solutions u1, . . . , ud+1 of the Schrödinger equation, with initial data f1, . . . , fd+1

respectively, and for all σ ≥ 0,∫
x1+···+xd+1=0
t1+···+td+1=0

||ρ(∇x)|
σ(u1(x1, t1) · · · ud+1(xd+1, td+1))|

2dxdt

=
1

2d(2π)d(d+1)

∫

(Rd)d+1

|f̂1(ξ1)|
2 · · · |f̂d+1(ξd+1)|

2

|ρ(ξ)|1−2σ
dξ.

Setting σ = 1
2 is particularly natural, as it reduces to the following:
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Corollary 1.6.

(1.17)

∫
x1+···+xd+1=0
t1+···+td+1=0

||ρ(∇x)|
1/2(u1(x1, t1) · · · ud+1(xd+1, td+1))|

2dxdt =
1

2d
‖f1‖

2
2 · · · ‖fd+1‖

2
2.

The case d = 1 of Corollary 1.6 is due to Ozawa and Tsutsumi [13], and is more usually stated
as

(1.18)

∫

R

∫

R

|D1/2
x (u1u2)(x, t)|

2dxdt =
1

2
‖f1‖

2
2‖f2‖

2
2,

where Dx denotes the scalar derivative operator with Fourier multiplier |ξ|. Notice that the
complex conjugate and fractional derivative appearing here are encoded in the space-time re-
flection resulting from the restriction x1 + x2 = t1 + t2 = 0 in (1.17). Bilinear extensions of
(1.18) to higher dimensions are also natural, although these cease to be identities; see [4] for
further discussion.

As our proof of Theorem 1.5 reveals, the σ = 1 case may be formulated as
∫
x1+···+xd+1=0
t1+···+td+1=0

|ρ(∇x)(u1(x1, t1) · · · ud+1(xd+1, td+1))|
2dxdt

=
1

2d(2π)d(d+1)

∫

(Rd)d+1

|f̂1(ξ1)|
2 · · · |f̂d+1(ξd+1)|

2|ρ(ξ)|dξ,

(1.19)

making it somewhat special since it involves only classical derivatives of the solutions. In [14]
(see also [19]), it was shown how to deduce the classical d = 1 case of (1.19) from certain
bilinear virial identities, avoiding explicit reference to the uj as Fourier extension operators.
This convexity-based approach has the noteworthy advantage of applying to certain nonlinear
Schrödinger equations, and it may be interesting to extend this approach to (1.19) in higher
dimensions. We do not pursue this here.

Organisation of the paper. In Section 2 we give a proof of Theorems 1.3 and 1.4 (thus also
proving Theorems 1.1 and 1.2). Finally, in Sections 4 and 5 we establish a version of Theorem
1.1 in the context of more general oscillatory integral operators.

Acknowledgments. We thank Neal Bez, Tony Carbery, Taryn Flock, Susana Gutiérrez and
Alessio Martini for many helpful discussions surrounding this work.

2. The proof of Theorem 1.3

The proof we present follows the same lines as the classical case n = 2: a suitable change of
variables that allows the multilinear extension operator to be expressed as a Fourier transform,
followed by Plancherel’s theorem.

We have

Tσ(g1, . . . , gn)(x1, . . . , xn) =

∫

(Rn−1)n
ei(x

′

1·ξ1+···+x′

n·ξn)ei(x1nφ1(ξ1)+···+xnnφn(ξn))G(ξ)dξ,

where xj = (x′j , xjn) ∈ Rn−1 × R, for each j, and

G(ξ) :=

∣∣∣∣det
(

1 · · · 1
∇φ1(ξ1) · · · ∇φn(ξn)

)∣∣∣∣
σ

g1(ξ1) · · · gn(ξn).
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On the subspace x1 + · · ·+ xn = 0 we therefore have

E1g1(x1) · · ·Engn(xn) = E1g1(x1) · · ·Engn(−x1 − · · · − xn−1)

=

∫

(Rn−1)n
ei(x

′

1·(ξ1−ξn)+···+x′

n−1·(ξn−1−ξn))

× ei(x1n(φ1(ξ1)−φn(ξn))+···+x(n−1)n(φn−1(ξn−1)−φn(ξn)))G(ξ)dξ.

We now make the change of variables ηj = ξj − ξn for each 1 ≤ j ≤ n− 1, so that

E1g1(x1) · · ·Engn(−x1 − · · · − xn−1)

=

∫

(Rn−1)n
ei(x

′

1·η1+···+x′

n−1·ηn−1)

× ei(x1n(φ1(η1+ξn)−φn(ξn))+···+x(n−1)n(φn−1(ηn−1+ξn)−φn(ξn)))

×G(η1 + ξn, . . . , ηn−1 + ξn, ξn)dη1 · · · dηn−1dξn.

Applying Plancherel’s theorem in the variables x′1, . . . , x
′
n−1 gives

∫

x1+···+xn=0
|E1g1(x1)|

2 · · · |Engn(xn)|
2dx

=(2π)(n−1)2
∫ ∣∣∣
∫
ei(x1n(φ1(η1+ξn)−φn(ξn))+···+x(n−1)n(φn−1(ηn−1+ξn)−φn(ξn)))

×G(η1 + ξn, . . . , ηn−1 + ξn, ξn)dξn

∣∣∣
2
dη1 · · · dηn−1dx1n · · · dx(n−1)n.

(2.1)

For fixed η1, . . . , ηn−1 we make the change of variables ξn 7→ t, where tj = φj(ηj + ξn)− φn(ξn)
for 1 ≤ j ≤ n − 1. This map is injective on the support of Gη := G(η1 + · , . . . , ηn−1 + · , · ).
Indeed, if not, then there exist ξ1 6= ξ2 in the support of Gη (implying that ηj + ξ1, ηj + ξ2 are
both in the support of gj , for all j = 1, . . . , n− 1), such that

φj(ηj + ξ1)− φn(ξ1) = φj(ηj + ξ2)− φn(ξ2) for all j = 1, . . . , n − 1,

i.e. such that

φ1(η1 + ξ1)− φ1(η1 + ξ2) = . . . = φn−1(ηn−1 + ξ1)− φn−1(ηn−1 + ξ2) = φn(ξ1)− φn(ξ2).

Note that, for all j = 1, . . . , n − 1, the line segment ℓj connecting ηj + ξ1 with ηj + ξ2 is just a
parallel translate of the line segment ℓn connecting ξ1 with ξ2. Of course, for all j = 1, . . . , n, ℓj
is contained in the convex hull of the support of gj , and so by our hypotheses, the determinant
in the statement of Theorem 1.1 is non-zero whenever ξj ∈ ℓj for all 1 ≤ j ≤ n . By the mean
value theorem for each φj on the line segment ℓj , it follows that, for all j = 1, . . . , n, there exists
cj ∈ ℓj, such that the directional derivative of φj at cj , in direction ξ1 − ξ2, has the same value
for all j. In other words,

∇φj(cj) · (ξ1 − ξ2) = c for all j = 1, . . . , n,

for some constant c ∈ R. Therefore,

(1,∇φj(cj)) · (−c, ξ1 − ξ2) = 0 for all j = 1, . . . , n.

Since cj ∈ ℓj for all j, the vectors (1,∇φj(cj)), j = 1, . . . , n, span Rn; thus

(−c, ξ1 − ξ2) = 0,

which is a contradiction, since ξ1 6= ξ2. Therefore, our map is injective. Moreover, the Jacobian
determinant of the transformation ξn 7→ t is simply

∂t

∂ξn
=

∣∣∣∣det
(

1 · · · 1 1
∇φ1(η1 + ξn) · · · ∇φn−1(ηn−1 + ξn) ∇φn(ξn)

)∣∣∣∣ ,



8 JONATHAN BENNETT AND MARINA ILIOPOULOU

which does not vanish on the support of G. It follows that∫

x1+···+xn=0
|E1g1(x1)|

2 · · · |Engn(xn)|
2dx

=(2π)(n−1)2
∫ ∣∣∣
∫
ei(t1x1n+···+tn−1x(n−1)n)

×G(η1 + ξn, . . . , ηn−1 + ξn, ξn)

(
∂t

∂ξn

)−1

dt
∣∣∣
2
dx1n · · · dx(n−1)ndη1 · · · dηn−1,

which by Plancherel’s theorem again, becomes

(2π)n(n−1)

∫ ∣∣∣∣∣G(η1 + ξn, . . . , ηn−1 + ξn, ξn)

(
∂t

∂ξn

)−1
∣∣∣∣∣

2

dt dη1 · · · dηn−1.

Undoing both of the changes of variables above, this expression becomes

(2π)n(n−1)

∫
|G(ξ1, . . . , ξn−1, ξn)|

2

∣∣∣∣
(
∂t

∂ξn

)∣∣∣∣
−1

dξ

= (2π)n(n−1)

∫
|g1(ξ1)|

2 · · · |gn(ξn)|
2

∣∣∣∣det
(

1 · · · 1
∇φ1(ξ1) · · · ∇φn(ξn)

)∣∣∣∣
1−2σ dξ,

as claimed.

3. The proof of Theorem 1.4

Following the proof of Theorem 1.3, we reach (2.1) and apply the same change of variables
ξn 7→ t, which, in this case, is explicitly given by

tj = φj(ηj + ξn)− φn(ξn) = |ηj |
2 + 2ηj · ξn.

For every (η1, . . . , ηn−1) ∈
(
Rn−1

)n−1
that span Rn−1 (that is, for almost every (η1, . . . , ηn−1)),

the above affine transformation is globally injective, with Jacobian determinant

2n−1η1 ∧ . . . ∧ ηn−1 = det

(
1 · · · 1 1

∇φ1(η1 + ξn) · · · ∇φn−1(ηn−1 + ξn) ∇φn(ξn)

)
6= 0.

The proof now concludes as in the proof of Theorem 1.3.

4. Variable coefficient generalisations

It is natural to attempt to generalise Theorem 1.1 (at the level of an inequality) to encompass
families of more general oscillatory integral operators of the form

Tλf(x) =

∫

Rn−1

eiλΦ(x,ξ)ψ(x, ξ)f(ξ)dξ,

where Φ is a smooth real-valued phase function, ψ is a compactly-supported bump function,
and λ is a large real parameter.

To this end, suppose that we have n of these operators, T1,λ, . . . , Tn,λ with phases Φ1, . . . ,Φn

(and cutoff functions ψ1, . . . , ψn). An appropriate transversality condition is that the kernels of
the mappings dξdxΦ1, . . . , dξdxΦn span Rn at every point. In order to be more precise let

X(Φj) :=

n−1∧

ℓ=1

∂

∂ξℓ
∇xΦj
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for each 1 ≤ j ≤ n; by (Hodge) duality we may interpret each X(Φj) as an Rn-valued function
on Rn × Rn−1. In the extension case where Φj(x, ξ) = x · Σj(ξ), observe that X(Φj)(x, ξ) is
simply a vector normal to the surface Sj at the point Σj(ξ). A natural transversality condition
to impose on the general phases Φ1, . . . ,Φn is thus

(4.1) det (X(Φ1)(x1, ξ1), . . . ,X(Φn)(xn, ξn)) & 1

for all (x1, ξ1) ∈ supp(ψ1), . . . , (xn, ξn) ∈ supp(ψn). Under this condition it is shown in [5] that

(4.2)
∥∥∥

n∏

j=1

Tj,λfj

∥∥∥
L

2
n−1 (Rn)

≤ Cελ
−

n(n−1)
2

+ε
n∏

j=1

‖fj‖L2(Rn−1),

generalising (1.8). Here we establish the corresponding generalisation of (1.6).

Theorem 4.1. Assuming (4.1)

(4.3)

∫

x1+···+xn=0
|T1,λf1(x1)|

2 · · · |Tn,λfn(xn)|
2dx . λ−n(n−1)‖f1‖

2
2 · · · ‖fn‖

2
2.

Of course (4.2) with ε = 0 is the same as (4.3) when n = 2. Theorem 4.1 is well-known for
n = 2, and this is a simple exercise using Hörmander’s theorem for nondegenerate oscillatory
integral operators. More precisely, observe that when n = 2,

T1,λf1(x)T2,λf2(−x) =

∫

(R)2
eiλΨ(x,ξ)ψ1(x, ξ1)ψ2(x, ξ2)f1(ξ1)f2(ξ2)dξ1dξ2,

where Ψ(x, ξ) := Φ1(x, ξ1) + Φ2(−x, ξ2), and notice that detHessΨ coincides with the nonzero
quantity in the hypothesis (4.1). Hence (4.3) holds for n = 2 by Hörmander’s theorem; see [9]
and [16] for further context and discussion. As may be expected from Section 2, the higher-
dimensional case of Theorem 4.1 will follow by a similar argument, although some additional
linear-algebraic ingredients will be required.

5. Proof of Theorem 4.1

We begin by writing

T1,λf1(x1) · · ·Tn−1,λfn−1(xn−1)Tn,λfn(−x1 − · · · − xn−1)

=

∫

(Rn−1)n
eiλΨ(x,ξ)ψ1(x, ξ1) · · ·ψn(x, ξn)f1(ξ1) · · · fn(ξn)dξ,

where Ψ : (Rn)n−1 × (Rn−1)n → R is given by

(5.1) Ψ(x, ξ) = Φ1(x1, ξ1) + · · ·+Φn−1(xn−1, ξn−1) + Φn(−x1 − · · · − xn−1, ξn).

The difficulty now is that HessΨ is no longer an n × n matrix, and so some work has to be
done to see that its determinant coincides with that in the hypothesis (4.1). Once this is done
Theorem 4.1 follows by a direct application of Hörmander’s theorem as in the case n = 2. Thus
matters are reduced to showing the following.

Proposition 5.1.

detHessΨ(x, ξ) = (−1)n−1+
(n−1)2(n−2)

2 det
(
X(Φ1)(x1, ξ1) . . . ,X(Φn)(−x1 − · · · − xn−1, ξn)

)
;

the coefficient above equals 1 for n ≡ 0, 1, 3 (mod 4), and −1 for n ≡ 2 (mod 4).
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Note that HessΨ(x, ξ) is of the form



A
(1)
n×(n−1) 0 0 . . . 0 A

(n)
n×(n−1)

0 A
(2)
n×(n−1) 0 . . . 0 A

(n)
n×(n−1)

0 0 A
(3)
n×(n−1) . . . 0 A

(n)
n×(n−1)

...
...

. . .
...

...

0 0 . . . 0 A
(n−1)
n×(n−1) A

(n)
n×(n−1)




,

where

A
(i)
n×(n−1) = Hess Φi(xi, ξi) for i = 1, . . . , n− 1

and

A
(n)
n×(n−1) = −Hess Φn(−x1 − · · · − xn−1, ξn).

Proposition 5.1 is therefore a special case of Lemma 5.2 that follows, for k = n− 1.

Lemma 5.2. For n ≥ 2 and 1 ≤ k ≤ n − 1, let A
(1)
n×(n−1), . . . , A

(k)
n×(n−1) be n × (n − 1)-block

matrices, and A
(k+1)
n×k be an n× k-block matrix. Let

Mn,k :=




A
(1)
n×(n−1) 0 0 . . . 0 A

(k+1)
n×k

0 A
(2)
n×(n−1) 0 . . . 0 A

(k+1)
n×k

0 0 A
(3)
n×(n−1) . . . 0 A

(k+1)
n×k

...
...

. . .
...

...

0 0 . . . 0 A
(k)
n×(n−1) A

(k+1)
n×k




.

Then,

detMn,k = (−1)(n−1)
k(k−1)

2 Λ∗
1 ∧ · · · ∧ Λ∗

k ∧ Λ∗
k+1,

where Λ∗
i is the (Hodge) dual of the wedge product Λi of the columns of A

(i)
n×(n−1), for all i =

1, . . . , k, and Λ∗
k+1is the dual of the wedge product Λk+1 of the columns of A

(k+1)
n×k .

Proof. For any 1 ≤ k ≤ n− 1, we denote by Ci the i-th column of A
(k+1)
n×k . By definition,

Λ∗
1 ∧ . . . ∧ Λ∗

k ∧ Λ∗
k+1 =

= det




〈Λ∗
1, C1〉 〈Λ∗

1, C2〉 . . . 〈Λ∗
1, Ck〉

〈Λ∗
2, C1〉 〈Λ∗

2, C2〉 . . . 〈Λ∗
2, Ck〉

...
〈Λ∗

k, C1〉 〈Λ∗
k, C2〉 . . . 〈Λ∗

k, Ck〉




= det




Λ1 ∧ C1 Λ1 ∧ C2 . . . Λ1 ∧ Ck

Λ2 ∧ C1 Λ2 ∧ C2 . . . Λ2 ∧ Ck
...

Λk ∧ C1 Λk ∧ C2 . . . Λk ∧ Ck


 .
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It thus suffices to show that, for any n ≥ 2 and k ≤ n,

(5.2) detMn,k = (−1)(n−1)k(k−1)
2 det




Λ1 ∧ C1 Λ1 ∧ C2 . . . Λ1 ∧ Ck

Λ2 ∧ C1 Λ2 ∧ C2 . . . Λ2 ∧ Ck
...

Λk ∧C1 Λk ∧ C2 . . . Λk ∧ Ck


 .

We prove (5.2) by induction on k.

Indeed, (5.2) clearly holds for k = 1; in that case,

detMn,1 = det
(
A

(1)
n×(n−1) C1

)
= Λ1 ∧C1.

Let k ≥ 2, and let us assume that (5.2) holds for k− 1; we now deduce it for k. We first observe
that

detMn,k =
k∑

i=1

detBi,

where

Bi =




A
(1)
n×(n−1) 0 0 . . . 0 0 . . . 0 Ci 0 0

0 A
(2)
n×(n−1) 0 . . . 0 C1 . . . Ci−1 0 Ci+1 Ck

0 0 A
(3)
n×(n−1) . . . 0 C1 . . . Ci−1 0 Ci+1 Ck

...
...

. . .
...

...

0 0 . . . 0 A
(k)
n×(n−1) C1 . . . Ci−1 0 Ci+1 Ck




.

Indeed, let us focus on the last k columns of Mn,k. By writing the i-th of these columns in the
form (Ci, 0, . . . , 0)+ (0, Ci, . . . , Ci), for all i = 1, . . . , k, multilinearity of the determinant implies
that

detMn,k =

k∑

i=1

detBi +
∑

i 6=j

det Γi,j,

where Γi,j is an nk×nk matrix with (Ci, 0, . . . , 0) and (Cj , 0, . . . , 0) as the i-th and j-th column

of its right nk × k block. These columns, together with the columns of A
(1)
n×(n−1), form a set of

n + 1 vectors in Rn−1, and are thus linearly dependent, forcing the determinant of Γi,j to be
zero.

We now swap the column (Ci, 0, . . . , 0) consecutively with columns on its immediate left until
it becomes the n-th column; there are i− 1 + (n− 1)(k − 1) such swaps involved, therefore

(5.3) detMn,k = (−1)(n−1)(k−1)
k∑

i=1

(−1)i−1 detDi,

where Di is the matrix we get from Bi by the above process; in other words,

Di =




A
(1)
n×(n−1) Ci 0 0 . . . 0 0

0 A
(2)
n×(n−1) 0 . . . 0 Âi

n,k−1

0 0 A
(3)
n×(n−1) . . . 0 Âi

n,k−1
...

...
. . .

...
...

0 0 . . . 0 A
(k)
n×(n−1) Âi

n,k−1




,
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where Âi
n,k−1 denotes the n × (k − 1) matrix that we get from A

(k+1)
n×k after deleting its i-th

column. Since
(
A

(1)
n×(n−1) Ci

)
is a square matrix, we obtain

detDi = (Λ1 ∧Ci) · det




A
(2)
n×(n−1) 0 . . . 0 Âi

n,k−1

0 A
(3)
n×(n−1) . . . 0 Âi

n,k−1
...

. . .
...

...

0 . . . 0 A
(k)
n×(n−1) Âi

n,k−1




= (−1)(n−1)
(k−1)(k−2)

2 (Λ1 ∧ Ci) · det




Λ2 ∧ C1 . . . Λ2 ∧ Ci−1 Λ2 ∧Ci+1 . . . Λ2 ∧ Ck

Λ3 ∧ C1 . . . Λ3 ∧ Ci−1 Λ3 ∧Ci+1 . . . Λ3 ∧ Ck
...

Λk ∧ C1 . . . Λk ∧Ci−1 Λk ∧ Ci+1 . . . Λk ∧Ck


 ;

the last equality holds by the inductive hypothesis. Plugging this into (5.3), we obtain (5.2) for
this k.

�
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(2009), 261–290.
[15] J. Ramos, The trilinear restriction estimate with sharp dependence on the transversality,

arXiv:1601.05750.
[16] E. M. Stein, Harmonic Analysis, Princeton University Press, 1993.
[17] T. Tao, Some recent progress on the restriction conjecture in Fourier Analysis and Convexity, 217–243,

Appl. Numer. Harmon. Anal., Birkhäuser, Boston MA, 2004.
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