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Abstract

A new approach to creating an ensemble of novelty detection algorithms is
proposed in this paper. The novelty detection process identifies new or un-
known data by detecting if a test data differs significantly from the data
available during training. It is applicable for anomaly detection in a situa-
tion where there is sufficiently large training data representing the normal
class and little or no training data for the anomalous (abnormal) class. Ab-
normality in Activities of Daily Living (ADL) is identified as any significant
deviation from an individual’s usual behavioural routine. Novelty detection
is relevant to ADL anomaly detection since abnormalities in ADL are rare
and data representing the anomalous cases are not readily available. The
proposed Consensus Novelty Detection Ensemble approach is based on the
concept of internal and external consensus. The internal consensus is an in-
ternal voting scheme within each model in the ensemble while the external
consensus is an external voting scheme among the ensemble models. The
weight of each model is estimated based on its performance and a score,
called “Normality Score”. Computed score is used in classifying the data as
abnormal (anomalous) based on certain threshold crossing, normal otherwise.
Experimental evaluation is conducted to detect abnormalities in ADL data
obtained from CASAS repository as well as experimental dataset collected
for this research. The obtained results show that the proposed approach is
able to identify anomalous instances. The proposed approach offers more
flexibility compared with the existing approaches by allowing the Normality
Score threshold to be adjusted without retraining the models.
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1. Introduction

The ageing population, i.e. people with 65 or more years of age, is es-
timated be over 1.92 billion globally by 2050 [1]. It is always a preferred
option for the older adults to stay in their homes [2] for as long as possible
instead of looking after them in residential or care home facilities. Addition-
ally, the cost of care for the older adults is increasing and local authorities
and governments are unable to meet the financial demands [3, 4]. In order
to improve their quality of life and ease the financial pressure, independent
living for older adults is promoted. This will require constant monitoring of
the older adults in their own homes and detecting any abnormality in their
Activities of Daily Living (ADL). Abnormality is any significant deviation
from individual’s usual behavioural routine, and can be an early indication
of Mild Cognitive Impairment (MCI) or other health-related challenges es-
pecially in ADLs that are detrimental to well-being such as sleeping, eating
and toileting [5, 6].

The task of learning the behavioural routine of an individual and de-
tecting abnormalities in it is rather arduous. Moreover, the ADL data rep-
resenting human behaviour vary from one individual to another. Novelty
Detection algorithms can be used to model the ADL data representing the
individual daily activity routine to serve as a baseline. Subsequent activities
can be compared to the baseline model to detect deviation which can be an
indication of abnormality.

Novelty Detection has to do with the identification of new or unknown
data. This involves detecting if a test data differs significantly from the data
available during training [7]. Unlike in binary or multi-class classification
where data for the different classes are available during training, in novelty
detection, only one set of data is available. This is also referred to as One-
Class Classification or Outlier Detection [7]. It is used for anomaly detection
in a situation where there is sufficiently large training data representing the
normal class and little or no training data for the anomalous (abnormal)
class. This concept is relevant to ADL anomaly detection since abnormal-
ities in ADL are rare and data representing the anomalous cases are not
readily available. Novelty detection enables a model to be fitted into the
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normal training data, and subsequent data to be compared to the model in
order to detect abnormalities that do not conform to the built model. Some
soft computing techniques based on this concept include One-Class Support
Vector Machine (OC-SVM), Support Vector Data Description (SVDD), Lo-
cal Outlier Factor (LOF), Isolation Forest (IF) etc. [7].

In this paper, an approach for creating an ensemble of novelty detection
algorithms is proposed. The proposed Consensus Novelty Detection Ensem-
ble (CNDE) approach generates a score for an activity termed as “Normality
Score” qualifying the activity as either normal (inlier) or abnormal (outlier).
Ensembles of machine learning models are usually based on a voting approach
and the resulting output is a label representing the class of the data point.
In the context of this research, the output can be either “normal” or “ab-
normal”. This is not flexible for ADL anomaly detection since the threshold
value for normal and abnormal activities cannot be explicitly adjusted. Hu-
man behavioural routine is complex and subject to changes due to seasonal
or other factors. The “Normality Score” generated by our proposed approach
allows the threshold to be dynamically adjusted to incorporate changes in
the individual’s routines. The proposed ensemble approach is evaluated us-
ing four heterogeneous novelty detection algorithms for the detection of ADL
anomalies.

The rest of this paper is organised as follows: Section 2 details some of
the related works, followed by Section 3 describing the proposed ensemble
approach. Section 4 describes the dataset employed for validation of the
proposed methodology and experimental results. Pertinent conclusions and
future work plan are presented in Section 5.

2. Related Work

Anomaly detection in ADL has received tremendous attention over the
years with different computational methodologies applied for the detection
of various types of anomalies. Hoque et al. [8] proposed a system called
“Holmes” for detecting ADL anomalies using Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN). Similarly, in [9], the number of
sensor events, time and duration of an activity in a smart home is extracted
and clustered with DBSCAN. Instances with unusual duration or irregu-
lar events are classified as anomalous. Jakkula et al. [10] used a method
of detecting temporal relation between activities which can be classified as
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anomalous. Self Organising Map (SOM) was used to detect artificially in-
duced anomalies in occupant behaviour relating to room occupancy [11, 12].

Approaches that try to learn and recognise daily behavioural routine of an
individual, then classify any deviation from the learned routine as an anomaly
seems to be the most feasible approach since data representing anomalous
behaviour are rarely available. Different variants of Recurrent Neural Net-
work (RNN) such as Vanilla RNN, Long Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU) has been applied in [5] to learn a human usual
behavioural pattern and find a deviation from the learned pattern. Lotfi et
al. [4] used Echo State Network (ESN) for the detection of anomalies in ADL
from the raw binary sensor data. Hidden Markov Model (HMM) is trained to
learn the activity sequences over a period of time and classify sequences that
do not conform to what is being learned as an anomaly, then a Fuzzy Rule-
Based System (FRBS) infers if the detected sequence is an actual anomaly
[13].

In [14], a combination of Convolutional Neural Network (CNN) and LSTM
is used to detect simulated anomalies in ADL data. Their approach is to gen-
erate synthetic anomalies mimicking the behaviour of early dementia sufferers
such as disturbed sleep, repeated activities in an unknown order etc. The
main dataset serves as training data for the normal class while the synthe-
sised anomalous data serve as training data for the anomalous class. The
data is then fed into a CNN in order to learn the encoding while LSTM is
used to learn the activity sequences of the behavioural routine. While this
approach shows a promising result, the only drawback is that the author
cannot possibly generate synthetic data for each and every type of anomaly.
Therefore, anomalous instances that are not generated may not be identified
by the model.

Another approach to ADL anomaly detection involves clinical assessment
of older adult’s functional health. A health score is assigned to the older
adults by an expert based on periodic evaluations in areas such as cognitive
health, mobility etc. A computational model is trained to map a relation-
ship between the ambient data collected over the period of the assessment
and the assigned score. This will enable the model to predict future health
score for any given data. Dawadi et al. [15] proposed Clinical Assessment
using Activity Behaviour (CAAB) based on this concept and applied it to 18
smart home datasets collected for over 2 years period. Statistical correlation
is established between the CAAB predicted score and the clinically assigned
score. Alberdi et. al. [16] uses this same clinical assessment approach on
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the same dataset utilising clinical score based on Instrumental Activities of
Daily Living-Compensation (IADL-C). IADL-C consists of a larger subset of
activities than CAAB such as money and self-management, home daily liv-
ing, travel and event memory, and social skills. The author tries to not just
predict the health score, but to also predict if there is any reliable change
in the older adults activity. A regression model is used for predicting the
health score while a classifier is used to predict the change. The work is ex-
tended in [17] by oversampling the minority class to cover for class imbalance.
In both cases, the score predicted by the regression model shows a promis-
ing result. The classification result for predicting absolute change performs
poorly, but statistical evaluation shows a correlation between the activities
and the assigned clinical score. The poor performance of the classifier may
be connected to the unique nature of each human behaviour.

Novelty detection algorithms have also been applied to detect anomalies
in ADLs and other datasets. Authors in [18] and [19] have applied OC-
SVM for ADL anomaly detection. It has also been used to detect cancerous
mass in images [20]. Similarly, OC-SVM was applied for the diagnosis of
faulty vehicles [21], detecting anomalies in time series data [22], applied on
Electroencephalogram (EEG) data to detect seizures in human patients [23],
and in combination with other novelty detectors to predicts patients that are
at risk after undergoing surgery [24].

Approaches based on novelty detection that involves estimating the prob-
ability density function of the data has been proposed in which data in the
region of high density are considered normal while those in the low density
region are classified as anomalous [7]. The major drawback of this approach
is that the data is assumed to be of certain distribution which is not practical.
To overcome this, non-parametric approaches that estimate the distribution
from the training data are proposed. These are applied for detection of
anomalies in Jet engines [25], detection of a cancerous mass in images [26],
and in the detection of network intrusion [27].

Distance measure based approaches which estimate the distance between
a data point and its nearest neighbours are also studied. Data points with
close neighbours are classified as inliers (normal) and those with far neigh-
bours as outliers (anomalous). While this is seen to be computationally
expensive in high dimensional space [7], it has been applied for removal of
outliers in audio streams [28], and in the detection of disease outbreak [29].

Most of the proposed anomaly detection approaches in ADL are too sim-
plistic and therefore generate a high rate of false alarm [8]. A system with
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a high rate of false alarm may not be suitable for monitoring the well-being
of older adults due to its unreliability. Moreover, studies have shown that a
high rate of false alarm in the anomaly detection system for ADL leads to
dissatisfaction by carers and clients [30]. To restrict the false alarm, the be-
haviour of the user needs to be modelled accurately. This can be achieved by
using an ensemble of novelty detection algorithms since each model is good
on certain characteristic features. For example, OC-SVM is sensitive to the
presence of outliers in the training data thereby resulting in poor performance
while IF is able to perform well even when the training data is contaminated
with outliers because it isolates the anomalies instead of profiling the normal
data [31][32]. An ensemble of machine learning models combines multiple
model’s predictions to achieve better accuracy. For anomaly detection, an
ensemble of homogeneous algorithms that produces the same output is not
good enough. However, an ensemble of heterogeneous algorithms is better
since it will provide the much needed diversity and accuracy [33].

In [33], an approach for creating an ensemble of outlier detectors using
similarity measures is proposed while Dib et al. [34] applied an ensemble of
novelty detection models for damage detection for structural health monitor-
ing.

The ensemble of novelty detection models has not been given much atten-
tion and according to our knowledge, none of the few proposed approaches
takes the concept of Normality Score into consideration. The Normality
Score approach gives more flexibility since the threshold for the score signi-
fying inliers and outliers can be adjusted dynamically. Table 1 summarises
some of the related research works in the area of ADL anomaly detection.
Due to the utilisation of different datasets by the different authors as well
as variability in the evaluation criteria, only the data collection and sensing
modality, computational methodology, nature of the experiment, and their
evaluation metrics are highlighted.
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Figure 1: An schematic diagram of the proposed CNDE.

3. Methodology

The proposed CNDE approach is based on the concept of internal and
external consensus. This is inspired by the concept proposed by Mahmud et
al. [35] in which a sensor node is certified based on its data and behavioural
trust among the other nodes in the infrastructure. The internal consensus is
an internal voting scheme within each model in the ensemble (i.e. a number
of child models is created for each model and their votes are aggregated
and a score is computed for the data points). The external consensus is a
voting scheme among the models in the ensemble similar to majority vote
approach. Appropriate weights are estimated and assigned to the respective
models in the ensemble based on their performance. The Normality Score
generated by the CNDE enables the data to be classified as either normal
or abnormal. A higher Normality Score indicates that the data point is an
inlier (normal) while a lower Normality Score signifies an outlier (anomaly).
Figure 1 illustrates a schematic diagram of the CNDE approach.

Given a set of n training samples X = {x1, x2, ..., xn} of d−dimensional
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data (i.e., X ∈ Rd), letA = {a1, a2, ..., am} be a set ofmmodels. A data point
x can be classified as either an outlier or inlier by computing its Normality
Score Nx using an ensemble of A as expressed in Equation 1 below.

Nx =
F c
x + Ec

x

2
(1)

F c
x is the Combined Internal Consensus Score (CICS) and Ec

x is the Combined
External Consensus Score (CECS) of the data point x respectively.

Ec
x =

1

m

∑
vx (2)

vx is the number of votes x received as an inlier from the models and m is
the number of models in the ensemble.

The aggregate of the votes vx is termed as the Combined External Con-
sensus Vote (CECV). The class of a data point based on external consensus
is determined by the majority vote of the CECV.

The CICS is the weighted average of the Internal Consensus Score (ICS)
as expressed in Equation 3.

F c
x =

1

m

m∑
i=1

I ix ∗ wi (3)

where m is the number of models in the ensemble, I ix is ICS of the ith model
for the data point x, and wi is the weight of the ith model.

The ICS expressed in Equation 4 is inspired by Bagging approach in
machine learning [36]. The training data is split randomly into k-folds. A k-
child models are created for each model in the ensemble. The k-child models
are trained each with one separate fold out of the k-fold training data as
illustrated in Figure 1. The votes a data point x receives from the k-child
models are termed as the Internal Consensus Vote (ICV). A data point is
considered an inlier by a model if it has 1 or more ICV.

Ix =
1

k

k∑
i=1

v (4)

v is the number of votes x received as an inlier from the child models, and k
is the number of child models (i.e. number of folds).

The difference between the ICS and the CICS is, the ICS determines the
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score of a data point for an individual model in the ensemble while CICS
computes the score of the data point across all the models in the ensemble
using the respective models’ weights.

The weight of each model is a value ranging from 0 to 1. The models
performing better receives larger weight and vice versa. This is estimated
during training since it is impossible to manually assign appropriate weight
values. The weight of each model is initialised to 1 and penalised by the
percentage of wrong predictions made by the model. Wrong predictions are
determined by comparing the CECV and the ICV. Variability of prediction
between the CECV and ICV is considered a wrong prediction, therefore,
warrants for the penalisation of that model.

Let W = {w1, w2, ..., wm} be the weights of the m models in the ensemble,
the final weight of each individual model after penalisation can be expressed
as:

wf = wi −
e

n
wi (5)

where wf is the final weight after penalisation, wi is the initial weight before
penalisation (i.e. 1), e is the number of wrong predictions made by the ith

model and n is size of the training samples.
Introducing a threshold value ε termed as “Normality Threshold” to serve

as cut-off point for the Normality Score, the function f(x) that determines
the class of x is expressed as:

f(x) =

{Nx≥ε then x is an Inlier

Nx<ε then xi is an Outlier

(6)

The Normality Score is a value ranging from 0 to 1 (i.e. 0 ≤ Nx ≤ 1)
with higher score signifying inlier and lower score signifying outlier. Certain
standard deviations to the left of the Normality Score is considered as the
threshold as shown in Figure 2. An ideal threshold is −3σ (i.e. any score
below −3σ is an outlier).

Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4 shows the pro-
cedures for computing the CECS, CICS, ICS and Weights of the models
respectively as described above. The time complexities of the respective al-
gorithms are tabulated in Table 2. The worst-case complexities (O) of the
algorithms for the Weight Estimation and Combined Internal Consensus are
dependent not just on the size of the input data (n) but also on the num-
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Figure 2: Normality threshold estimation.

ber of models in the ensemble (m). It is highly unlikely that the number of
models employed will exceed the size of the training data, and therefore, the
complexity will most likely be of the form O(n). However, if in any case,
the number of models in the ensemble is equal to the size of the training
data, then the complexity will be O(n2). An improved time complexity can
be achieved by maintaining a fixed number of models in the ensemble and
having the size of the training data larger than the number of models.

3.1. Combined Concepts

Combining the concepts described, the diagram in Figure 3 shows the
training and testing phases of the proposed approach. The training phase
involves the random split of the training data into k-folds, creation of k-child
models for each individual model in the ensemble, training and estimating
an appropriate weight for each model, computing the Normality Score of the
training data and estimating an optimal Normality Threshold. During the

Table 2: Time complexities of proposed algorithms.

Algorithm Complexity
Combined External Consensus Algorithm (CECA) O(n)
Combined Internal Consensus Algorithm (CICA) O(n ∗m)
Internal Consensus Algorithm (ICA) O(n)
Weight Estimation Algorithm(WEA) O(n ∗m)

11



Algorithm 1 Combined External Consensus Algorithm (CECA)

Input: Dataset X = {x1, x2, ..., xn},
Models List A = {a1, a2, ..., am}

Output: Vote and Score (V e, Ec) = {(vx1 , ex1), (vx2 , ex2), ..., (vxn , exn)}
1: procedure CECA
2: for each x ∈ X do
3: t =

∑
v . Aggregate votes of x as inlier from A

4: ex = 1
m
t . Computing the CECS of x

5: if t is the majority then
6: vx = 1 . x is an inlier by CECV
7: else
8: vx = 0 . x is an outlier by CECV
9: end if

10: (V e, Ec)← (vx, ex) . Append result to (V e, Ec)
11: end for
12: return (V e, Ec) . Return the CECV and CECS of x

testing phase, the trained models along with their estimated weights and the
Normality Threshold are applied to predict the class of the test data (i.e.
either inliers or outliers).

4. Experimental Results

In this section, the proposed CNDE model in Section 3 is evaluated.
Datasets used for the validation, extracted features and obtained results are
also described.

4.1. Data Description

Two separate data sets representing the ADL of older adults are employed
for the validation of the proposed methodology. More details about the
datasets are provided in the following sections.

4.1.1. Activities of Daily Living Dataset

Data is collected for a single resident for a period of 72 days. Low-cost
non-intrusive ambient sensors such as Passive Infrared (PIR), Pressure and
Door sensor are used as the data collection devices. This data collection
modality is the most widely accepted method for ADL monitoring due to
its non-invasive nature as compared to vision-based approach (e.g. using
cameras) which studies have shown that it is widely rejected due to privacy
and ethical concerns [37].
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Algorithm 2 Combined Internal Consensus Algorithm (CICA)

Input: Dataset X = {x1, x2, ..., xn},
Models List A = {a1, a2, ..., am},
Models Weights W = {w1, w2, ..., wm}

Output: CICS F c = {f c
x1
, f c

x2
, ..., f c

xn
}

1: procedure CICA
2: for each x ∈ X do
3: for each a ∈ A do
4: Ix = Compute the ICS of x
5: ρ← Ix ∗ wa . ICS and model’s weight
6: end for
7: f c

x = 1
m

∑m
i=1 ρ . Compute CICS for x

8: F c ← f c
x . Append result to F c

9: end for
10: return F c . Return the CICS of x

Data generated by these sensors are binary in nature with 1 and 0 sig-
nifying active and inactive states respectively. Activities performed by the
residents are inferred from the sensor readings. For example, the firing of the
PIR sensor in the restroom signifies that the resident is using the restroom
while that of the pressure sensor on the bed is an indication that the resident
is sleeping. Figure 4 shows a pictorial representation of the inferred activities
from the binary sensors’ data.

Activities recorded include preparing a meal (kitchen activity), eating
(dining room activity), staying in the living room, toileting, going out of the
house, and sleeping. Each activity has its start time, an end time, and in
some cases, the location of the performed activity as shown in Table 3.

Table 3: Sample of collected ADL data.

Activity Start Time End Time
Dining Room 2018-05-01 17:19:31 2018-05-01 17:28:45
Living Room 2018-05-01 17:28:59 2018-05-01 20:34:31
Toilet 2018-05-01 20:34:41 2018-05-01 20:42:07
Bedroom - Sleeping 2018-05-01 22:49:43 2018-05-02 07:46:07
... ... ...
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Algorithm 3 Internal Consensus Algorithm (ICA)

Input: Dataset X = {x1, x2, ..., xn},
Model M with k-child models M = {m1,m2, ...,mk}

Output: Vote and Score (V i, I) = {(vx1 , ix1), (vx2 , ix2), ..., (vxn , ixn)}
1: procedure ICA
2: for each x ∈ X do
3: t =

∑
v . Aggregate votes of x as inlier from childrens of M

4: ix = 1
k
t . Computing the ICS of x

5: if t ≥ 1 then
6: vx = 1 . x is an inlier
7: else
8: vx = 0 . x is an outlier
9: end if

10: (V i, I)← (vx, ix) . Append result to (V i, I)
11: end for
12: return (V i, I) . Return the ICV and ICS of x

Algorithm 4 Weight Estimation Algorithm (WEA)

Input: Dataset X = {x1, x2, ..., xn},
Models List A = {a1, a2, ..., am}

Output: Weights W = {w1, w2, ..., wm}
1: procedure WEA
2: Initialise weights W = {w1, w2, ..., wm} to 1
3: Initialise errors E = {e1, e2, em} to 0
4: for each x ∈ X do
5: ve = Get the CECV of x
6: for each a ∈ A do
7: vi = Get the ICV of x by model a
8: if ve 6= vi then
9: ea = ea + 1 . Increment error count of model a

10: end if
11: end for
12: end for
13: for each a ∈ A do
14: wa = Get the weight of model a from W
15: ea = Get the errors of model a from E
16: w∗a = wa − ea

n
wa . Compute final weight by penalisation

17: W ← w∗a . Update weight of model a
18: end for
19: return W . Return estimated weights of A

4.1.2. CASAS H111 Dataset

The H111 dataset from CASAS repository [38] is also used to evaluate
the proposed algorithm. It also provides a benchmark to compare the per-
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Figure 3: The training and testing phases of the proposed CNDE approach.

formance of the proposed algorithm. The dataset contains the ADL of a
volunteer adult living alone in his residence for a period of 50 days. Activ-
ities recorded include sleeping, eating, bathing, dressing toileting etc. The
dataset does not provide any information as to whether there is an abnor-
mality in the resident’s activity or not.

Our approach involves training the model with data for a certain number
of days (e.g. 31 days) and test it against data of the remaining days. Differ-
ent anomalous cases may also be simulated such as going to bed early/late,
oversleeping etc. to certify the model’s ability in predicting these behaviours.
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Figure 4: A sample of combined activities inferred from ambient sensors.

4.2. Data Pre-processing

The datasets described above contains different ADLs. For this experi-
ment, only sleeping activity is filtered and selected. Relevant features that
can discriminate between the normal and anomalous cases are selected.

• Start time: This is the starting hour and minutes of the activity. The
start hour ranges from 0 to 23. It is then converted to a scale of -11 to
+11 with 0 representing 12 midnight. This is because generally, people
do go to bed at night time. An activity that starts at 11:50 pm is closer
to that of 1:00 am in terms of the start time than an activity performed
at 9:00 pm. However, without converting the start time to a scale of
−11 to +11, the margin between 11:50 pm to 1:00 am will be larger as
shown in Figure 5.

• Duration: This is the duration in minutes of the activity obtained by
subtracting the start time from the end time.

• Number of interruption: This is the number of times an individual
leaves the bed and returns back to it. For example, an individual may
leave the bed in the middle of the night to use the restroom. If the
interval (in minutes) between the time the individual leaves the bed
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and returns to it is less than an hour (60 minutes), it is considered an
interruption, else it is assumed that the activity has ended.

• Duration of interruption: This is the total duration (in minutes) of all
the interruptions within an activity.

• Day of activity: This represents the day in which the activity is per-
formed ranging from 0 to 6 representing the 7 days of a week. This is
important because the individual may go to bed late some days and
early some other days due to his/her routine e.g. watching a specific
late-night TV show every Monday.

• Weekend or Weekday: This is to determines if the activity is performed
on weekdays or weekends. Some individuals might have a different
routine for weekdays and weekends while some might not. 0 and 1
represents weekdays and weekends respectively.

Because the extracted features are in different scales, models sensitive
to scaling may perform poorly on the dataset. The selected features are
normalised.

4.3. Model Selection and Optimal Parameters

The proposed CNDE approach described in Section 3 is generic and can
be used with any number of novelty detection models. For this empirical
evaluation, models employed are Isolation Forest (IF), One-Class SVM (OC-
SVM) with Radial Basis Function (RBF) kernel, Local Outlier Factor (LOF),
and Robust Covariance Estimation (RCE). The contamination rate (i.e. the
rate of outliers in the training data) is set to 0.1 across all the models since
the aim is to model the training data with minimal error.

The number of folds for the Internal Consensus can be varied depending
on the size of the training set. Three (3) folds are used for both our col-
lected data and CASAS H111 dataset, with 31 days data used for training.
The weights of the respective models are initialised to 1 and the Normality
Threshold is taken as −3σ as described in the previous sections.

4.4. Ensemble Approach Evaluation

This section contains the obtained results for both the collected and
CASAS H111 dataset.
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(a)

(b)

Figure 5: Clusters with default and converted start time; a) default start time, b) converted
start time.

4.4.1. Activities of Daily Living Dataset

An experiment has been conducted on the described collected data. The
first 31 days data is used to train the model while the remaining 41 days
data is used for testing. To ensure that the proposed ensemble approach
generalises, multiple iterations of the experiment is run since each iteration
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(a)

(b)

(c)

Figure 6: Normality Score for the collected data; a) Iteration 1, b) Iteration 2, c) Iteration
3

splits and shuffles the data randomly.
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The result in Figure 6 shows a plot of the Normality Score for the col-
lected data for 3 iterations. Even though the Normality Score varies across
the iterations, the difference is negligible. The Nine (9) days identified as
anomalous are the same across all the iterations. The dataset is examined
for variations between the days identified as anomalous and those identified
as normal. Table 4 summarises the findings:

It can be seen that the model identifies data points that do not conform
to the known individual’s behavioural routine even though it miss-classified
2 days as anomalous (i.e. Day 32 and Day 61).

A test is conducted with 18 days of training data to verify if the size of
the training data has any significant effect on the model’s performance. The
obtained result is shown in Figure 7. It can be seen that the model performs
poorly when trained with data for 18 days as compared to 31 days of training
data.

4.4.2. CASAS H111 Dataset

A test is conducted on the CASAS H111 data with 31 days of data used
for training and the remaining data for testing. Multiple iterations are run
to verify generalisation.

The Normality Score plot for the CASAS H111 dataset for 3 different
iterations is shown in Figure 8. The identified anomalous days are examined
and the findings are summarised in Table 5.

Table 4: A summary of identified anomalies and possible causes for the collected ADL
data.

Day Cause Detailed Description

Day 34, 46 & 55 Less Sleeping The participant sleep for short
period of time compared to the
usual duration

Day 51 Over Sleeping The participant sleep for a longer
duration than the usual.

Day 39 & 69 Interrupted
Sleep

The individual has multiple tran-
sitions from bed to other loca-
tions

Day 59 Late Sleep The individual goes to bed late
Day 32 & 61 Model Error No deviation has been identified

from the usual routine
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(a)

(b)

Figure 7: Normality Score for 31 days and 18 days training data (collected data); a) 31
days training data, b) 18 days training data.

The model is able to detect the data points that do not conform to the
known resident’s behavioural routine with the exception of Day 36 which is
miss-classified. Similarly, a test is conducted with 18 days of training data
and the result is shown in Figure 9.

From Figure 9, it can be seen that the results of both 18 days and 31
days training data are comparably similar unlike in the case of the collected
data. This further proves our initial assertion that human behavioural rou-
tine varies from one individual to the other. However, it can be established
that the minimum number of days required for modelling ADL behavioural
routine is 31 days.
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4.5. Comparison with Ensemble Methods

To evaluate the proposed ensemble approach, a comparison is made with
ensemble approach based on majority vote as well as approaches proposed in
[33], namely; Ensemble of Detectors with Correlated Votes (EDCV) and En-
semble of Detectors with Variability Votes (EDVV). The ensemble approach
based on majority vote involves the respective models in the ensemble voting
the data as either inliers or outliers with the class having the majority votes
taken as the final prediction. Both 2 and 3 are used as the value of the ma-
jority vote threshold since the ensemble contains only 4 models. The EDCV
and EDVV are similar to the majority vote approach except that the for
the EDCV, weights of the ensemble model is estimated from the correlation
coefficient of the models’ predicted score, while for the EDVV, the weights
are estimated from the Mean Absolute Deviation (MAD) of the prediction
score. More details on these approaches can be found in [33].

In order to measure the performance metrics, synthetic anomalous data
is generated for a period of 100 days. The synthetic data is generated to

Table 5: Summary of identified anomalies and possible causes for the CASAS H111 data.

Day Cause Detailed Description

Day 32, 33 & 47 Afternoon Sleep The resident had over 1-2 hours
nap during the day. There is
never an instance where the resi-
dent sleeps during the day in the
data used for training

Day 39 & 49 Interrupted
Sleep

The resident has multiple transi-
tion from bed to other locations.
The number of transition is twice
what the model has seen during
training

Day 37, 44, 46 Longer Interrup-
tion

The duration of interruption the
resident had is longer than the
usual

Day 50 Less Sleeping The individual only sleeps for ap-
proximately 2 hours

Day 36 Model Error No significant variation is identi-
fied from the usual routine
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(a)

(b)

(c)

Figure 8: Normality Score for CASAS H111 dataset; a) Iteration 1, b) Iteration 2, c)
Iteration 3.
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(a)

(b)

Figure 9: Normality Score for 31 days and 18 days training data (CASAS H111 data); a)
31 days training data, b) 18 days training data.

simulate different anomalous instances such as going to bed late, insufficient
sleep, interrupted sleep etc. The training data (both collected and H111
dataset) are oversampled using Synthetic Minority Over-sampling Technique
(SMOTE) proposed in [39] so that the problem of class imbalance is elimi-
nated. The same models (i.e. OC-SVM, IF, LOF and RCE) are utilised in
the various ensemble approaches. The results obtained from the comparison
is presented in Table 6.

Considering the presented results, the proposed approach achieved a bet-
ter performance than the other approaches. The only exception is in the case
of our collected data when 18 days data is used to train the model. This is
not surprising since it is established earlier that 31 days of training data is
the minimum required for behaviour modelling. Similar to what is obtained
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in the Normality Score plot in Figure 9, The results for CASAS H111 dataset
when trained with data for 18 days and 31 days are comparably similar, while
for the collected data, the results are significantly different. This is another
confirmation of the variability in the behavioural routine of one individual
to another. Overall, the ensemble approach based on majority votes with a
3 votes threshold outperformed that of a 2 votes threshold.

4.6. Discussion

Based of the results presented in Table 6, it can be argued that the
proposed method outperformed other ensemble approaches. It can also be
observed that the proposed approach has nearly a linear time complexity in
all cases.

The weight estimation algorithm allows for easy identification of bet-
ter performing model for any given dataset. This is important since poor
performing models for a given dataset can be identified and removed from
the ensemble. The Normality threshold can be adjusted without explicitly
retraining the models giving more flexibility to incorporate changes in the
overly changing human behavioural routine.

Novelty detection models are created on the promise that there is only
one set of available training data. This means that the training data con-
tains none or a negligible amount of outliers [7]. A significant amount of

Table 6: Result of comparison with other ensemble methods based on accuracy.

Training Data
(Days = 31)

Training Data
(Days = 18)

Ensemble
Approach

Collected
Data

CASAS
H111

Collected
Data

CASAS
H111

EDCV 0.92958 0.83099 0.88732 0.85915
EDVV 0.90141 0.81690 0.91549 0.83099
Majority
Vote (v=2)

0.54930 0.77465 0.54930 0.78873

Majority
Vote (v=3)

0.76056 0.92958 0.60563 0.94366

Our Ap-
proach
(CNDE)

0.98592 0.95775 0.77465 0.97183
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outliers (noise) in the training data can drastically affect the performance of
the models, and therefore, the proposed ensemble approach. To address this
problem, the most feasible approach is to reduce the class imbalance prob-
lem by undersampling the majority class or oversampling the minority class.
Supervised learning algorithms can then be utilised to classify the data as
applied in [17].

While the proposed ensemble approach is applied in a batch manner where
all the needed training data are available, it has the potential of being utilised
in an online or incremental learning scenario where the models are required
to adapt to new data as they become available. This is possible because
the threshold value qualifying the data as inliers or outliers can be adjusted
without explicitly retraining the models. The distribution of the normality
score for the new incoming data generated by the ensemble approach can be
used to estimate a new threshold value.

5. Conclusion

In this paper, an ensemble approach for novelty detection algorithms
is proposed based on the concept of internal and external consensus. The
proposed CNDE approach is applied for detection of ADL anomalies. Ex-
periments conducted on both collected ADL data and H111 data obtained
from CASAS repository produced an excellent result.

In addition, the weights of the models in the ensemble are estimated dur-
ing training based on the models’ performance allowing for the identification
of suitable models to be included in the ensemble. The resulting output of
the ensemble approach is a score termed as “Normality Score” qualifying the
data as inliers or outliers. Due to the dynamic nature of human behavioural
routine, the proposed approach offers more flexibility since the threshold of
the Normality Score can be dynamically adjusted to incorporate changes in
human activities. The dynamic threshold enables new or unknown activi-
ties to be incorporated into the anomaly detection model in an incremental
manner without retraining the entire ensemble models.

Further work in this area will include testing the proposed approach on
longitudinal ADL data to determine long term behavioural changes and per-
form trend analysis. Performance metrics will also be evaluated by experi-
menting on a large labelled anomalous data. While the proposed approach
is able to detect ADL anomalies, features of the dataset that are likely to
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be the cause of the anomaly cannot be identified. This will be addressed as
part of the upcoming future works.

Conflict of interest statement

There is no conflict of interest.

Acknowledgements

This research project is supported by Nottingham Trent University through
Vice Chancellor Studentship Scheme provided to Salisu Wada Yahaya.

References

[1] S. Chernbumroong, S. Cang, A. Atkins, H. Yu, Elderly activities recogni-
tion and classification for applications in assisted living, Expert Systems
with Applications 40 (5) (2013) 1662 – 1674.

[2] P. Rashidi, A. Mihailidis, A survey on ambient-assisted living tools for
older adults, IEEE Journal of Biomedical and Health Informatics 17 (3)
(2013) 579–590.
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