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Abstract  

Probiotics and prebiotics are microbiota management tools for improved host health. 

They target gastrointestinal effects via the gut, although direct application to other 

sites such as the oral cavity, vaginal tract and skin are being explored. Here, we 

describe gut-derived effects in humans. In the past decade, research on the gut 

microbiome has rapidly accumulated, accompanied by increased interest in 

probiotics and prebiotics as a means to modulate the gut microbiota. Given the 

importance of these approaches for public health, it is timely to reiterate factual and 

supporting information on their clinical application and use. In this Review, we 

discuss scientific evidence on probiotics and prebiotics, including mechanistic 

insights into health effects. Strains of Lactobacillus, Bifidobacterium, and 

Saccharomyces have a long history of safe and effective use as probiotics, but 

Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium 

spp. show promise. For prebiotics, glucans and fructans are well proven with 

evidence building on prebiotic effects of other substances (e.g. oligomers of 

mannose, glucose, xylose, pectin, starches, human milk; and polyphenols).  
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Key Points 

 The human gut microbiota is integral to health and is associated with a variety 

of diseases  

 Therapeutic and prophylactic effects of some probiotics and prebiotics for a 

variety of gut-related disorders might be, at least in part, mediated through 

modification of the microbiota and/or its function 

 Probiotic microorganisms act via a variety of means, including modulation of 

immune function, production of organic acids and antimicrobial compounds, 

interaction with resident microbiota, interfacing with the host, improving gut 

barrier integrity and enzyme formation  

 Prebiotics are substrates that are selectively utilized by host microorganisms 

conferring a health benefit; prebiotic effects include defence against 

pathogens, immune modulation, mineral absorption, bowel function, 

metabolic effects and satiety  

 Use of some probiotics and prebiotics is justified by robust assessments of 

efficacy, but not all products have been validated; the goal is evidence-based 

use by healthcare professionals  
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[H1] Introduction  

When the Argentinian government requested of the Food and Agriculture 

Organization of the United Nations that an expert panel be formed to evaluate the 

health and nutritional properties of probiotics in food in 2000, it precipitated the re-

emergence of a concept long part of human history. International recognition of the 

concept of probiotics, and coalescence around a definition of probiotic offered by this 

expert consultation,1 established an important consensus foundation. 

The definition of probiotic decided by the consultation retained the essence of 

historical definitions offered over previous decades. It was intentionally broad, to 

encompass a wide variety of microorganisms, hosts, benefits, target sites and 

product types. It has stood the test of time and was reaffirmed, but grammatically 

corrected, in 2014 to the consensus definition of probiotics, which is: “live 

microorganisms that, when administered in adequate amounts, confer a health 

benefit on the host”.2 

Studies abound that describe how microbes are integrated into life processes 

and define ways that beneficial microorganisms—both commensal and externally 

applied—affect physiological homeostasis and host function.3 On the horizon is the 

promise of newly constructed recombinant strains and promising novel microbial 

species, which await testing in vivo. However, as these advances develop, we should 

recognize actionable evidence that is currently available. As will be discussed, 

convincing evidence exists for some established probiotics, which should be 

incorporated into health management. This incorporation includes complementary 

use with pharmaceutical agents, foods and lifestyle. Education of consumers, 

practitioners and regulators will facilitate appropriate use and point out needs for 

further research, which will hopefully include exploration of how to reach the 

individuals at greatest need with affordable and reliable probiotic products.4 

Prebiotics, first defined in 19955, have been used to manipulate microbes in 

the host to improve measurable health outcomes. An update to the prebiotic 

definition published in 2017 as “a substrate that is selectively utilized by host 

microorganisms conferring a health benefit” was compelled by the need to clarify 

what did and did not constitute a prebiotic substance in the face of scientific 

advances.6 The desire to optimize, for improved health, the microbial world 

associated with us has led to the development of compounds targeting an ever-

expanding group of microorganisms and benefits that are derived through them. No 

longer are prebiotics seen simply as boosters of the growth of bifidobacteria and 
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lactobacilli, with recognition of their effects on system-wide metabolic and 

physiological readouts.6 Although the intestine remains the gateway to most of these 

effects, it is not an exclusive one. The extent to which prebiotics can affect microbial 

communities of the urogenital tract, oral-nasal areas and skin is now the subject of 

intensive exploration.7  

This Review describes the current understanding of probiotic and prebiotic 

mechanisms of action, provides important examples of clinical studies on probiotic 

and prebiotic applications, and discusses current knowledge on mechanisms at the 

heart of these effects.  

 

[H1] Human gut microbiome  

The human gut is predominantly inoculated at birth. Microbial diversity develops as 

feeding and dietary patterns mature. It resembles the ‘adult-like’ microbiota after 3-5 

years.8 Because of variations in pH, substrate concentration, Eh (redox potential, 

activity of electrons) and transit time, microbial numbers vary between different 

anatomical regions of the gut.9 The stomach harbours fewer microbes than the small 

and large intestines.10 Studies using metagenomic approaches have highlighted the 

complex inter-relationship between our resident intestinal microbiota and mammalian 

metabolism.11 Through the process of fermentation, anaerobic gut bacteria 

metabolise substrates to form end products such as organic acids and gases.12 The 

main precursors for fermentations are dietary carbohydrates, proteins and lipids, as 

well as indigenous secretions such as mucin. This anaerobic metabolism contributes 

positively towards host daily energy requirements and homeostasis in the gut.13 

Ideally, the human host lives in harmony with its complex gut microbiota in a state 

that promotes physiological resilience.14 However, dysbiosis can result from 

challenges such as medications, infections, ageing, lifestyle, surgery and poor 

nutrition,14,15 

In humans, a range of acute and chronic disorders can be a consequence of 

perturbation of gut microbial communities.16-18 On a chronic basis, inflammatory 

bowel disease (IBD), obesity and irritable bowel syndrome (IBS) have all been linked 

to intestinal bacteria and their activities.10 This aspect opens up the possibility of 

influencing the microbiota to reduce disease risk, fortify homeostasis and, in some 

cases, improve therapeutic status. Diet is a principal driver of gut fermentation and 

therefore can greatly influence functionality of the indigenous microbiota.19 Prebiotics 
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are popular dietary approaches for modifying the gut microbiota to improve host 

health,6 as they are affordable, effective, safe and accessible.  

 

[H1] Probiotics 

As the concept of probiotics evolved over the past decades, the assumption was that 

their effects would be mediated through direct interaction with commensal 

microbiota. Some early definitions stipulated that probiotics functioned “by 

contributing to (the host’s) intestinal microbial balance”20 or “by improving the 

properties of the indigenous microflora”.21 However, the current consensus definition 

of probiotics does not stipulate that probiotic effects are only microbiota-mediated, 

and indeed, other types of mechanisms are known. This idea that probiotics function 

in ways that might act beyond affecting the colonizing microbiota opens the door to a 

wider range of probiotic possibilities, encouraging innovation in the field.  

Much of our knowledge on probiotic mechanisms is based on research using 

in vitro, animal, cell culture or ex vivo human models. Figure 1 compiles known 

mechanisms distributed among various probiotic strains. Not all mechanisms have 

been confirmed in humans nor do they exist in every probiotic strain. Although 

multiple mechanisms likely co-express in a single probiotic, the importance of any 

given mechanism will depend on many factors. For example, in an inflamed intestine, 

the ability to down-regulate inflammatory mediators and increase epithelial barrier 

function may be most important,22,23 whereas the ability to increase short chain fatty 

acids and hydration in the colon may be more important to normalizing intestinal 

motility.24   

Research elucidating mechanisms of probiotics often relies on in vitro or 

animal studies. Probiotics are not unique in this regard. Animal studies have not 

always translated to humans;25 notable examples are probiotics for Crohn’s disease 

and mental health function.26,27  Furthermore, inherent difference among probiotic 

strains exists, for example in the findings that one probiotic (in this case in 

conjunction with a prebiotic) significantly prevented sepsis in infants,28 whereas a 

different formulation failed to prevent necrotizing enterocolitis.29   

The historic concept of ‘colonization resistance,’30 the situation whereby 

native gut microbiota occupy host tissues to exclude infection by potential pathogens 

(resident or invading), is another mechanism attributed to probiotics.31 Expression of 

colonization resistance is likely a sum outcome of the functioning of many of these 

different mechanisms in concert. Indeed, many host factors may impact the ultimate 
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expression of health effects imparted by a probiotic, including properties of baseline 

microbiota. Although few data exist, one study tracking probiotic persistence in the 

gut was linked to properties of the baseline microbiota. Persistence of B. longum 

subsp. longum AH1206 in the human gut was predicted by low abundance in the 

host of B. longum and low microbial carbohydrate utilization genes.32 No clinical 

endpoints were tracked in this study, but the property of long-term persistence may 

contribute to physiological benefits. However, results of many different clinical trials 

that do not include stratification of subjects by baseline microbiota suggest that 

probiotic function is not necessarily predicated on a specific microbiota baseline.33,34 

There may well be compositional patterns of microbiota that do not respond well to 

incoming probiotic strains, just as there are for certain drugs,35 but such profiles have 

not yet been fully defined.   

[H3] Modulation of cell-mediated and humoral immune functions. Some 

probiotics have been shown to increase phagocytosis or natural killer cell activity and 

interact directly with dendritic cells (reviewed in36) Some also demonstrate the ability 

to upregulate antibody secretion translating into improved defences against 

pathogens and augmenting vaccine responses.37-39 Probiotic strains can increase 

levels of anti-inflammatory cytokines such as tumour necrosis factor with implications 

for abating colon cancer and colitis.10,36 As discussed later, cell-surface architecture, 

such as fimbriae, capsule and surface structures expressed by certain probiotics is a 

mechanistic driver for several of these activities. 

[H3] Production of organic acids. Probiotic species belonging to the Lactobacillus 

and Bifidobacterium genera produce lactic and acetic acid as primary end-products 

of carbohydrate metabolism. These organic acids when produced in situ can lower 

luminal pH and discourage growth of pathogens as shown in various model 

systems.40-42 Lactobacillus and Bifidobacterium do not produce butyrate but through 

cross-feeding other commensal microbiota (for example, Faecalibacterium), levels of 

butyrate and other short-chain fatty acids in the gut can increase, potentially 

influencing many aspects of physiology, including the cardiometabolic phenotype.43 

This phenotype can be derived from increased production of butyrate, correlating 

with improved insulin response, or abnormalities in propionate linked to type 2 

diabetes.44 Based upon analyses of weight, lifestyle, metabolic measurements and 

short chain fatty acid (SCFA) levels, the risk of subjects developing cardiometabolic 

diseases can be calculated.45  

[H3] Interaction with gut microbiota. Probiotic strains can interact with the gut 

microbiota through competition for nutrients, antagonism, cross-feeding and support 
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of microbiota stability.46 Many probiotic strains are antagonistic toward other 

microbes, in part due to saccharolytic metabolism, which produces organic acids, but 

also by production of bacteriocins.47 These antimicrobial compounds can be active 

against pathogens at many sites including the human urinary tract and in the gut of 

humans or animals.48,49 Bifidobacteria produce acetate and can cross-feed other 

members of the gut microbiota (reviewed in50). Strains B. longum AH1206 and B. 

bifidum-ATCC15696 have been shown to persist in the infant gut,32,51 although in the 

latter case the concomitant decrease in pathogen abundance was not tested for a 

link to bacteriocin production. The ability of certain probiotic strains to improve 

eradication of Helicobacter pylori may involve some inhibition of the pathogen, but 

stronger evidence for probiotics in this context is for reducing side effects of 

antibiotics used in treatment.52 

[H3] Probiotic–host interactions. Interactions of probiotic strains with host tissues 

are mediated by cell surface macromolecules, including proteins (surface layer 

associated proteins, mucin binding proteins, pili, and LPxGT-binding proteins) and 

non-protein components (lipoteichoic acid, peptidoglycan, exopolysaccharides).53 

These structures have been shown to affect binding to intestinal and vaginal cells, 

mucin, and immune or dendritic cells resulting in increased transit times and 

improved barrier integrity (reviewed in53). An example of the different surface 

structures can be seen in the genome comparison of L. rhamnosus GG that uses pili 

to interact with the intestine and L. rhamnosus GR-1 with a unique cluster of 

exopolysaccharides to aid in vaginal activity.54    

[H3] Improvement of barrier function. Primarily through studies in cell lines, 

several probiotic Lactobacillus and Bifidobacterium strains have been shown to 

increase expression of tight junction proteins (reviewed in55). A study using human 

intestinal epithelial enteroids and colonoids showed that L. rhamnosus GG pre-

treatment countered damage to tight junction zonula occludens 1 (ZO-1) and 

occludin (OCLN) caused by interferon-gamma.56 Another way in which probiotic 

strains may improve barrier function is through upregulating expression of mucus 

secretion genes, thereby reducing pathogen binding to epithelial cells.57,58. Down-

regulating inflammation is also regarded as a factor that improves barrier function.53 

Of note, although some probiotic strains have the capacity to improve barrier 

function, this does not always occur in every cohort for reasons not yet fully 

understood.59  

[H3] Manufacture of small molecules with local and non-local effects. Small 

molecules produced by certain probiotic strains have been described with different 
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effects on the host and its microbiota.58 Perhaps one of the more intriguing findings is 

the production of neurochemicals such as oxytocin, gamma-amino butyric acid, 

serotonin, tryptamine, norepinephrine, dopamine and acetylcholine (reviewed in60, 

61,62) known to affect brain function. In a rat model of stress, L. helveticus NS8 

feeding resulted in lower plasma corticosterone and adrenocorticotropic hormone 

levels and restored hippocampal serotonin and norepinephrine.63 

[H3] Production of enzymes. Microbial enzymes such as β-galactosidase64 and bile 

salt hydrolase,65 which are produced and delivered by some probiotic strains, 

improve lactose digestion and blood lipid profiles in humans, respectively. In the case 

of Streptococcus thermophilus in yogurt, which facilitates lactose digestion, its 

predisposition to be permeabilized by bile when entering the small intestine promotes 

the delivery of microbial β-galactosidase to the small intestine to break down lactose 

into digestible glucose and galactose.64 This results in clinical benefit to individuals 

who are lactose intolerant. Indeed, the European Food Safety Authority considered 

evidence of this effect sufficient to authorize a health claim for S. thermophilus and L. 

bulgaricus as components of yogurt to alleviate symptoms of lactose maldigestion.66 

Admittedly, cause and effect evidence of mechanisms in human hosts 

remains to be gathered, but technological advancements in genome sequencing and 

microbiome analyses, and surgical advances that allow real-time sampling in vivo, 

should help acquire elucidating data over the next few years.  

 

[H1] Prebiotics 

If we are to understand how prebiotics work, and more importantly exploit them to 

manipulate the microbiota to propagate health, then we need to keep in mind that 

microbes live in complex functional ecosystems. Within these, bacteria have a 

multitude of roles, including the conversion of incoming dietary carbohydrates, 

proteins and some fats into metabolites that can have either positive or negative 

effects upon host health.67,68,69,70. Current prebiotics are predominantly 

carbohydrate-based, but other substances such as polyphenols and 

polyunsaturated fatty acids may exert prebiotic effects.6 An example of polyphenols 

is water-insoluble cocoa fraction, shown in a gut model to significantly increase 

bifidobacteria,  lactobacilli and butyrate production.71  

 Low molecular weight carbohydrates are very efficiently metabolised by 

microorganisms such as bifidobacteria, which possess a range of cell-associated and 

extracellular glycosidases and specific transport systems allowing them to rapidly 
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assimilate low molecular weight sugars.72,73 Other microbes, such as members of the 

Bacteroides genus are adept at breaking down high molecular weight 

polysaccharides.74,75 Some bacteria might be regarded as keystone, having the ability 

to initiate breakdown of particular substrates;76 for example, Ruminococcus spp. can 

facilitate resistant starch degradation.77 Liberated low molecular weight dextrins are 

then metabolized by the microbial community. The pathway from a polysaccharide to 

a SCFA is thus a complex and indirect network of metabolism. Acetate and lactate, 

the main metabolic end products of bifidobacteria and lactic acid bacteria, are utilised 

by other microorganisms to produce, for instance, propionate78 and butyrate.50,79 

Likely ecological networks involved in the metabolism of carbohydrates have been 

elucidated,74,80,81 although the extent to which they operate in the gut is not clear at 

the present time. 

 A further complication in studies of the ecosystem response to carbohydrates 

is that it is heavily influenced by the microorganisms that are already present. It has 

become clear that individual microbiomes that are Prevotella-dominant can ferment 

carbohydrates more rapidly than can Bacteroides-dominant microbiomes.82 

Furthermore, when these distinct faecal inocula, dominated by Prevotella or 

Bacteroides, were incubated with prebiotic fructo-oligosaccharides (FOS) or with two 

different arabinoxylans, the profile of SCFA produced was distinctly different and 

correlated with the microbiome.83 Cultures using Prevotella-dominant inocula 

produced significantly higher ratios of propionate to acetate and butyrate than the 

Bacteroides-dominant microbiotas. A similar influence of starting microbiome 

composition on carbohydrate fermentation has been seen using isomalto-

oligosaccharides as a carbon source in an in vitro batch fermentation model with 

human microbiota.84  

 Microbiome studies based on 16s rDNA sequencing have given rise to an 

increased awareness of the richness of the gut microbial ecosystem85 and, in some 

cases, to associations between certain microorganisms or microbiome profiles and 

disease states. These include IBD,86 type II diabetes mellitus,87-89 IBS90,91 and 

obesity.92,93. These profiles have frequently been termed “dysbioses”, although it is 

not currently possible to define such a state as ‘normobiosis’ or a ‘normal’ microbiota 

Such associations tend to be merely the starting point for investigation into the role of 

specific microorganisms in disease. Sequencing studies do not give us an 

understanding of the functional interactions between members of the gut microbiota 

and it is imperative that this functional ecology is studied in more detail. It is becoming 

clear that although there might be a huge diversity of individual taxa in the gut 
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microbiomes of individuals, there is a high level of functional redundancy, and specific 

ecological functions are provided by a range of bacteria across different 

individuals,94,95. 

 Given that we have an imperfect understanding of the functional ecology of 

the gut microbiota, uncovering the mechanisms of action of prebiotics presents a 

challenge. Despite this issue, we can postulate probable mechanisms by which a 

prebiotic can lead to health benefits. These pathways are presented in Figure 2 and 

discussed herein. All of these postulated mechanisms have support from research 

carried out through in vitro or animal models, although in many cases, establishing 

that they actually occur within human gut microbiota is difficult. 

[H3] Defence against pathogens. Although mechanistically challenging to establish 

in humans in vivo, pathogen defence can be investigated in vitro using model 

systems.96,97. As noted for probiotics, production of organic acids through prebiotic 

administration and propagation of beneficial bacteria will result in a reduction in 

luminal pH, inhibiting growth of pathogens. Establishment of a stable population of 

commensal microorganisms will reduce nutrient availability for invading 

microorganisms, inhibiting colonisation. In studies of elderly individuals, 10 weeks of 

daily galactooligosaccharide (GOS) intervention induced increases in immune 

function, notably enhanced phagocytic activity and activity of natural killer cells.98,99.  

[H3] Immune modulation. Although exact mechanisms are unclear, there is 

evidence that prebiotic intervention can reduce type 2 T helper responses and thus 

affect allergy. The most supportive data come from studies in infants. Galacto- and 

long chain fructo-oligosaccharides in infant formula administered in a double-blind, 

randomized, placebo-controlled trial of 259 infants, showed reduced incidence of 

atopic dermatitis, wheezing and urticaria to less than 50% of the incidence in non-

prebiotic formula fed infants.100,101 In a prospective, double blind, placebo-controlled 

fashion, not as yet replicated, healthy term infants at risk of atopy fed prebiotic-

supplemented hypoallergenic formula for 6 months had a greater than five-fold 

reduction in prevalence of allergies five years after feeding.102  

[H3] Increased mineral absorption. Most absorption of minerals takes place by 

active transport mechanisms in the small intestine,103 Scavenging calcium could make 

a substantial positive contribution to health. As already discussed, fermentation of 

prebiotics leads to production of SCFA, which reduces luminal pH. This drop in pH 

can increase calcium solubility, thereby providing a greater driving force for passive 

uptake. A problem with proving this is that many calcium salts in supplements and 
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food have pH-dependent solubility and limited availability, and depending on the 

starting pH, solubility of calcium can actually increase with higher pH.104 

 Studies have shown that consumption by young adolescents of a mixture of 

FOS and inulin105,106 or GOS107 can result in marked increases in absorption and 

calcium mineralised into bone. Such early intervention may reduce incidence of 

osteoporosis in later in life. This hypothesis is supported by animal model data108, but 

long-term studies in humans are lacking. 

[H3] Improved bowel function. Improvements in bowel function have often been 

ascribed to simple faecal bulking by consumption of dietary fibre. However, animal 

studies have shown that SCFAs produced by fermentation of prebiotics can regulate 

gut hormones that in turn modulate the local motor responses of the gut109,110. The 

humectant water binding capacity of prebiotic carbohydrates also has the effect of 

softening stools, making passage easier.111,112 

 There are surprisingly few studies on the effect of prebiotics on bowel 

function, although they have consistently led to improvements in stool consistency 

and defecation frequency in randomized trials113,114  

[H3] Metabolic effects. As discussed earlier, prebiotic intervention results in the 

elaboration of SCFAs that can act to improve barrier function in the gut and prebiotic 

intervention with GOS has shown improvements in barrier function in vivo.115 Impaired 

barrier function can allow translocation of inflammatory mediators such as bacterial 

lipopolysaccharide (LPS) from the gut into systemic circulation, which has been 

termed metabolic endotoxaemia116 and has been suggested to be a causative factor 

in diabetes and obesity according to evidence, albeit from studies in mice.117, 118. 

 Metabolic effects of prebiotics have been subject to several meta-

analyses119,120,121,122 and although the results among studies vary, the general 

consensus is that prebiotic intervention has a positive effect on glucose homeostasis, 

inflammation and blood lipid profile in humans. Although interventions with GOS123 

and inulin124 have shown improvements in inflammatory markers in individuals with 

obesity, these have been relatively short-term studies over a few months and the 

effect on metabolic health over a long period of consumption is yet to be established.  

 The hypothesis underlying much research on prebiotics and barrier function 

and inflammation is that fermentation products such as SCFA probably mediate the 

beneficial effects through mechanisms discussed above. However, it has been shown 

that, at least in vitro, GOS can directly stimulate the expression of tight junction 

proteins in intestinal epithelial cell lines and decrease trans-epithelial flux125,126. Given 
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that GOS is fermented in the gut, however, the extent to which such mechanisms act 

in vivo are unclear at present. 

 It is possible that the effect of inulin in improving glycaemic response could be 

due to direct inhibition of the intestinal isomaltase-sucrase enzyme complex, but so 

far the evidence is only from mouse studies127. Identification of direct mechanisms 

from metabolic mechanisms in humans is, however, extremely difficult. 

[H3] Effect on satiety. SCFAs produced by fermentation in the gut can interact with 

specific fatty acid receptors, FFAR2 and FFAR3 and regulate lipolysis and release of 

the incretin glucagon-like peptide-1.128,129  These receptors are found on many tissues 

and could be a key mechanistic link between prebiotic fermentation and systemic 

health benefits. SCFAs can regulate appetite via several mechanisms,130 with studies 

showing that the interaction between SCFA and colonic L-cells results in production 

of anorexigenic hormones such as PYY and GLP-1. Other examples are SCFAs 

surviving metabolism by colonic epithelial cells can reach the liver via the hepatic 

portal vein where propionate stimulates gluconeogenesis, acting as a satiety signal.131 

SCFAs entering the circulation could also interact with FFAR2 and FFAR3 located on 

adipose tissue, resulting in leptin stimulation. According to a study in mice, acetate, 

the principal SCFA formed by prebiotic fermentation, can cross the blood-brain barrier 

and enter the hypothalamus, promoting anorectic signals.132 

 

[H1] Translation to the clinic  

Box. Overcoming barriers to translation to the clinic 
 

 More high quality, adequately powered randomized, controlled trials that test 
well-defined probiotic (strain or strain combinations, dose, delivery matrix) and 
prebiotic interventions on substantive clinical outcomes. 

 Better tracking of safety data during the conduct of short and long term clinical 
trials   

 Improved availability of high quality, properly labelled, and effective commercial 
products133 

 Application by clinicians of available efficacy data in evidence-based manner. 
This comprises assessment of totality of data (positive and null) through unbiased 
systematic review processes for specific probiotic and prebiotic interventions.  

 Better understanding of characteristics of host (including diet, baseline 
microbiota, medications and disease) that improve response to probiotics or 
prebiotics 

 Clinicians need clarification about probiotic and prebiotic products: are they safe, 
who will benefit – how and to what extent, and can the product labels be trusted 
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Many clinical gastrointestinal indications could benefit from probiotic and prebiotic 

interventions. In the case of prebiotics, a link between the clinical benefit to 

microbiota function should be established. For probiotics, a clinical indication is 

needed. For both, robust product information is required133. 

There are clinical indications for use of certain probiotic strains supported by 

robust evidence. In paediatric and/or adult populations, evidence exists for 

necrotizing enterocolitis (NEC),134 antibiotic-associated diarrhea (AAD) and H. pylori 

infection135,136,137, defecation frequency138,139, infantile colic,140, mild to moderate 

ulcerative colitis,141 irritable bowel syndrome,142 treatment of acute diarrhea143 

prevention of C. difficile-associated diarrhea144 and neonatal sepsis.28 A recent meta-

analysis provided evidence that probiotic use has the potential to decrease antibiotic 

utilization in children.145 Some clinical guidelines have been issued for probiotic use 

in children.146,147 Systemic from the gut, evidence exists for reduction of incidence 

and duration of upper respiratory tract infections.147,149 No official recommendations 

have been made for adult uses of probiotics. Additional research clarifying the most 

effective strains and doses is needed for many clinical targets so far 

researched.150,151,152 Although many clinical indications are promising, data are still 

emerging for endpoints including brain, metabolic, and cardiovascular effects. 

 Generally, the strength of evidence for prebiotic interventions lags behind 

those for probiotics. Perhaps the strongest support for prebiotic use comes from 

prebiotic infant formulae. Such products are now routinely supplemented with 

mixtures of GOS and fructans153,154 and this blend of prebiotics in a 9:1 ratio reduced 

respiratory tract infections to levels found in breast-fed infants.155,156 101 There is less 

evidence that prebiotics can reduce infections in adults, although one placebo-

controlled, randomized, double blind study of 159 healthy volunteers, showed that 

GOS could reduce the incidence of diarrhea.157 

 Much of the research focus on prebiotics has been in the realm of functional 

food (improves well-being through benefit beyond its nutrient content) applications. 

The one example of a prebiotic food application recognized by European regulatory 

authorities is on improved bowel function in healthy adults resulting from consumption 

of 12g of chicory inulin per day.158,159 

 Prebiotic foods designed to increase satiety and reduce energy intake is a 

promising approach to augment compliance with weight loss diets. Oligofructose-

enriched inulin in overweight children has been shown to increase satiety, reduce 

energy intake as well as BMI and body fat mass over 16 weeks (body weight 
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decrease of 3.1%, percent body fat decrease of 2.4% compared with children given 

placebo (increase of 0.5%, increase of 0.05% respectively).160,161 Oligofructose 

ingested daily by 29 adults for 12 weeks in a granola bar formulation, reduced by 0·3 

(sd 1·2) kg lean mass and waist circumference by -2·2 (sd 3·6) cm, with a 

concomitant intake and increase satiety in adults over a 12-week intervention.162 

However, not all studies have suggested benefits. One study of 97 overweight or 

obese children given oligofructose for 12 weeks did not show a statistically significant 

change in BMI-for-age z-score versus placebo.163 This study did not measure the 

effect of the prebiotic on the gut microbiota and its function, which would have 

provided mechanistic insight to better understand the null study results and enabled 

better design of future interventions.  

 The replacement of glycaemic carbohydrates in food products with non-

glycaemic carbohydrates to reduce post-prandial glycaemic responses has already 

received a positive EFSA opinion.164 Prebiotic carbohydrates might be expected to 

bring additional benefits in terms of increasing satiety in such a replacement strategy. 

Promising results were observed from a double-blind, randomized, controlled cross-

over trial of 40-42 healthy adults who consumed a yogurt drink containing 

oligofructose. The intervention improved postprandial glucose responses.165 

 There is now some evidence that the stool microbiota profiles of patients with 

inflammatory conditions, such as inflammatory bowel disease, differs from those who 

are heathy,166 but it is not clear at the present time why. It is unclear whether these 

differences are caused by the underlying medical condition, are a consequence of the 

disease pathology, or due to confounding factors such as medications or altered 

dietary habits. Probiotic or prebiotic interventions hold promise to achieve disease or 

symptom mitigation through microbiota modulation. An understanding of the 

microbiome composition and function in the donor and recipient will help us 

understand the extent to which clinical success depends on these factors.167 Indeed, 

some clinical trials have noted the importance of baseline microbiota composition 

among responders.168,169,170  Microbiota patterns can be influenced by lifestyle, living 

conditions, diet, medications and stool consistency, among other transient variables. 

Advanced age is also thought to be a factor, but one study of Chinese subjects has 

shown that healthy centenarians have similar microbiota to healthy young people,171 

suggesting that factors other than age are more important drivers of microbiota 

composition. Furthermore, research methodologies and data management may lead 

to spurious interpretations of microbiota assessments, which has the potential to 

mislead.172 Although clinical benefits have been observed with probiotic and prebiotic 
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interventions, the onus is on researchers to clarify the role of the microbiome in these 

successes to optimize short and long-term outcomes.173,174,175,176,177.  

Careful phenotypic and genotypic descriptions of study subjects may also be 

important to clinical trial success targeting the microbiome. Host genetic studies may 

help, for example, in the microbiome-mediated disease of IBD, where 163 loci were 

identified to meet genome-wide significance thresholds.178 However, since the 

majority of cases of IBD are not the result of a single host gene defect,179 

complicating the development of clinical interventions based on host genetics. 

Another complication is that identified genes constitute risk factors, not causal 

determinants, for a disease, and therefore clinical strategies based on host genomics 

have not been forthcoming.  

IBD comprises two main forms, Crohn’s disease and ulcerative colitis. In 

Crohn’s disease, there seems to be distinct molecular subclasses of genomic 

associations, further complicating development of effective strategies.180 This may in 

part explain why probiotic strains have mostly failed to be effective in improving the 

management of Crohn’s disease.181,182 The reason why mild to moderate ulcerative 

colitis has been somewhat improved by probiotic intervention183 but Crohn’s is not 

known. The future success of microbiota manipulation to mitigate serious 

inflammatory conditions will require an understanding of the interactions between the 

microbiome and the human genetic risk factors and will necessitate moving beyond 

microbial genomic sequencing to transcriptomic, metabolomic and proteomic 

investigations. 

The promise of treating or curing disease with microbiota manipulation 

continues to be explored using probiotic species different from those traditionally 

employed184. Many probiotics in current use are from the genera Lactobacillus and 

Bifidobacterium. Although many of them were derived from the faeces or intestinal 

mucosa of healthy human subjects, researchers today are considering the utility of 

many newly explored human resident microbes, such as Akkermansia, Eubacterium, 

Propionibacterium, Faecalibacterium and Roseburia.  This will require going beyond 

laboratory animal experiments that proliferate in the literature.185,62  

Faecal microbial transplantation (FMT), which has been a reasonably 

successful treatment for recurrent Clostridium difficile infection,186,187,188 is being met 

with mixed success in the treatment of other conditions189-191. Although FMT is not a 

probiotic application since it is not suitably defined microbiologically to meet the 

probiotic definition,2 the approach is based on the concept that microbes derived 

from healthy donor feces can restore proper function to a dysbiotic microbial 
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ecosystem.  It is noteworthy that there have only been a few blinded, randomized 

controlled trials (RCTs) on FMT for treatment of recurring C. difficile, and these have 

been relatively small studies and we have little information on the long-term changes 

that such a broad, poorly defined and non-specific treatment might have on 

individuals. A well-defined reproducible probiotic intervention is more suitable for 

rigorous research investigation and could be safer long-term than FMT, as suggested 

by several researchers attempting to assemble a defined consortium of microbes for 

such purposes 192. Whether these defined consortia, typically comprising many 

human commensal microbial species, can reach the same levels of cure as FMT 

remains to be seen.  

The potential impact of gut microbiota manipulation on clinical medicine is 

promising. However, in the excitement over potential, stakeholders often forget that 

association does not mean causation. For example, blinded reviews of 34 

oesophageal biopsy samples found that these microbiomes could be classified into 2 

types. Type I was dominated by the genus Streptococcus and was phenotypically 

normal. But Type II, demonstrating a greater proportion of Gram-negative anaerobes 

and/or microaerophiles, correlated with oesophagitis and Barrett oesophagus.150 Like 

many other microbiome findings, this does not prove causation and there are 

numerous potential reasons why these associations might exist, including diet, drugs, 

and lifestyle. One hypothesis might be that administering a safe, select 

Streptococcus could reduce oesophagitis and Barrett's oesophagus, but this has not 

been tested. Microbiome differences do not necessarily mean that microbiota 

modification will lead to improved health. 

 

[H1] The future  

The gut microbiota might be central to the cause of many disorders and its 

modulation could hold the key to new effective therapies. So, what are the roles of 

probiotics and prebiotics? In a general sense, both interventions serve to increase 

the community of beneficial microorganisms and products of their growth and 

metabolism in the host. In this context, effects relayed might exert influences 

systemically, such as in the cardiovascular system, or to the urogenital tract, skin and 

brain.193  

The field is poised for conceptual advances. Target microbes will expand 

beyond the typical Bifidobacterium spp. and Lactobacillus spp. (as mentioned above) 
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to include other genera and maybe more yeast species.194-197 These microorganisms 

might be new probiotic candidates or further targets for prebiotic utilization.  

Improved precision, accuracy, and repeatability of measures of microbial 

composition, which lead to genuine and not misleading interpretations, are needed in 

this field.172 Improved assessments will lead to an expanded range of probiotic and 

prebiotic products. For example, propionate and butyrate are both considered to be 

beneficial gut microbial metabolites, but neither is produced by bifidobacteria or 

lactobacilli.198,199 Therefore, an opportunity exists to define microbes with metabolic 

capabilities beyond those afforded by traditional probiotics.  

Another development could be anti-adhesive molecules and carbohydrates 

that attenuate microbial virulence. These factors would be adjuncts to current 

prebiotic approaches in that they are not selectively utilized substrates.  

To have robust proof that gut microbiome alterations can reduce disease 

incidence or mitigate disease, more well-designed RCTs are needed. By randomly 

assigning individuals to intervention groups, most biases are reduced and the 

chances of useful results are improved. Due to the easy availability and relatively 

cheap cost of high-throughput sequencing technology, microbiota analysis is 

becoming widespread and differences among disease states increasingly well 

publicized. The expertise and databases required for metabolomic analysis is also on 

an upward trend. This will be vital to optimise clinical translation, as a much greater 

awareness of the functional ecology of the gut is needed together with improved 

clarity of how this ecosystem influences systemic health. Microbiota and host 

transcriptomic studies are also important, but they are expensive, time-consuming 

and require substantial bioinformatic support. Ultimately, the application of probiotic 

and prebiotic regimens has the potential to improve human health and contribute 

greatly to how patients are managed and/or disease risk is reduced.  

[H1] Conclusions 

Although certain commonalities allow us to group substances under the ‘probiotic’ or 

‘prebiotic’ umbrellas, benefits to human health are tied to specific products, not the 

categories en masse. To the extent that a clinical outcome is associated with a 

specific mechanism of action, then it could be hypothesized that a similar strain or 

prebiotic expressing that mechanism might also be beneficial. However, it is 

important not to overgeneralize conclusions about specific entities. In general, when 

an intervention is effective or ineffective, it must be recognized that those results are 

tied to specific formulations, doses, clinical endpoints and target populations. It is 
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incumbent upon responsible scientists to consider the totality of available information 

on specific interventions as a basis of overall conclusions on effectiveness. 

Furthermore, clinicians should scrutinize both positive and null studies for bias, as 

only in eliminating bias in research will we move the field toward truth, thereby 

realising the potential of probiotics and prebiotics. 

The body of research suggests that these interventions can not only improve 

symptomology, but have a meaningful effect on reducing pathology and even saving 

lives. The prevention of sepsis and NEC in infants provides compelling examples. 

These findings demonstrate effective translation of human microbiome research. 

Such clinical impact has changed practice in many healthcare environments. Yet 

many constituencies have yet to embrace the concept through critically considering 

the strengths and weaknesses of existing data.   

In developing countries, probiotics widely available in developed countries are 

either not accessible or affordable to most people. However, a program has 

introduced inexpensive sachets containing a probiotic L. rhamnosus (GR-1 or Yoba 

2012) plus S. thermophilus C106 that allows locals to produce different forms of 

fermented foods (yoghurt, millet, cereals, juices) that not only influence health but 

also empower poverty-stricken communities to improve social well-being.4 With over 

260,000 consumers being reached each week in East Africa, the potential is 

enormous to use these beneficial microbes and local food sources to impact 

communities (manuscript submitted).  

Diseases and poor health often result from the interplay of microbiological 

and biological ecosystems along with societal issues including pollution, food 

shortages and poor medical care.200,201 We encourage more research and 

translational efforts on probiotics and prebiotics to serve the people of developing 

countries, who might stand to benefit most from these interventions.  
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Figure 1. Probiotic mechanisms of action. Diverse mechanisms are likely to drive 

probiotic benefits to host health. In some cases, such as production of antimicrobial 

products and cross-feeding other resident microbes, these mechanisms are driven 

directly by interactions with the resident microbiota. In other cases, such as direct 

interaction with immune cells, their effects might be directly via interaction with host 

cells. Overall, clinical benefits delivered by probiotics could result from the combined 

action of several mechanisms.  

GABA, gamma amino butyric acid.  

 

Figure 2. Identified mechanisms of action of prebiotics  

The premise is that prebiotics enter the gut and are selectively utilized. This step 

increases bacterial growth and functionality of specific genera or species. As a result 

of either or both of these effects, health benefits can then accrue. Fecal bulking and 

improved bowel habits occurs due to microbial growth. Immune regulation can be 

influenced by increased biomass and cell wall components of the bacteria. Metabolic 

products include organic acids, which lowers intestinal pH and have concomitant 

effects upon microbial pathogens and mineral absorption. Metabolic products can also 

influence epithelial integrity and hormonal regulation. Bacteria that respond to prebiotic 

intake can influence the microbiota composition through elaboration of antimicrobial 

agents (e.g. peptides) and competitive interactions, possibly reducing infections and 

bacteria containing LPS. 

GLP, glucagon like peptide; IL – interleukin; LPS,  lipopolysaccharide; PYY, peptide 

YY; TGF, transforming growth factor; Th1, type 1 T-helper cell, type 1; Th2, type 2-T 

helper cell; Tr, regulatory T cell.  
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