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Abstract

Standard 2D cell culture does not recreate the complex features of the in vivo environment,

such as soluble factor gradients, cell migration into multiple planes, or cell-cell and cell-matrix

interactions.1–3 3D cell culture addresses these limitations by using 3D biomaterial scaffolds,

such as alginate hydrogels, to recreate the in vivo cell microenvironment in vitro.4,5 3D

platforms can be used to create gradients of soluble factors, vary the biomaterial substrate

stiffness, permit cell-matrix interactions or promote cell migration.6,7 Currently available

3D platforms are prone to the burst release of soluble factors from the biomaterials, making

it difficult to tightly control the soluble factor concentration.7 This limits the use of 3D

platforms for investigating processes such as patterned neuronal differentiation, or cell fate

specification in response to small changes in soluble factor concentration.

This project proposes a novel 3D alginate platform for patterned differentiation. The first

part of this thesis describes experiments to optimise alginate hydrogels for the encapsulation,

aggregation and differentiation of embryonic stem cells (ESCs), and demonstrates that encap-

sulated ESCs form embryoid bodies containing cells from the three germ layers. Exogenous

retinoic acid (RA) is used for in vitro neuronal differentiation protocols, but exogenous RA

is not stable in cell culture and is easily degraded by light. The second part of the thesis

outlines experiments to validate a cell-derived source of RA, which produces a stable con-

centration of RA in vitro and addresses the limitations of exogenous RA. The final section

describes the novel 3D platform that combines the results from the previous sections using an

adapted gradient maker protocol, to create 3D co-culture alginate tubes. The tubes support

patterned differentiation of ESCs in response to the concentration gradient of cell-derived

RA incorporated into the platform.

The novel 3D platform produced in this project contributes a novel tool to the field of

3D cell culture. The 3D platform is a tool for investigating ESC differentiation in response

to a 3D concentration gradient of a cell-derived source of retinoic acid. For experiments that

require a gradient of RA, the ability to maintain a stable source of RA over several days is

an advantage of using this 3D platform over the currently available alternatives. In addition,

alginate hydrogels are highly tunable. Thus, the ability to tune the scaffold properties, change

the cell types encapsulated, or introduce gradients of alternative soluble factors makes this a

versatile tool for 3D culture.
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Chapter 1. Literature Review

1.1 Background

For over a century, scientists have been investigating the development of the nervous system

in an attempt to understand the mechanisms of cell development. Ramon y Cajal’s demon-

stration that neuronal morphology differs for each type of neuron was a major driving force in

nervous system research.8 Tissue regeneration, the complex development of neural networks

and the restoration of function after trauma to the nervous system are of particular interest.

Disease or injury to the central nervous system (CNS) activates an inflammatory response

and disrupts homeostasis. If homeostasis is not restored, the cellular microenvironment con-

tinues to damage cell populations and leads to loss of function.9 Neurodegeneration, spinal

cord injury and traumatic brain injury have a devastating and debilitating effect on quality of

life and all three are underpinned by irreparable, irreversible damage to the CNS.10–12 Neural

plasticity and neurite outgrowth are widespread within the developing nervous system, but

mature axons have a limited capacity for growth and repair, and injured neurons are inca-

pable of self-regeneration thus leading to a long-term impairment after damage to the adult

nervous system.13,14 The limited regenerative capacity of the CNS, in combination with the

current lack of effective therapies to restore function after CNS injury, highlights an unmet

need for methods to enhance our understanding of tissue regeneration and cell development.

1.2 Overview of embryonic stem cell differentiation in vitro

1.2.1 Introduction to embryonic stem cells

The first mouse embryonic stem cell (ESC) line was isolated from the inner cell mass of an 3.5

day blastocyst in 1981.15 This breakthrough contributed to methods for generating human

ESCs and in 1998, the first human ESCs were isolated from in vitro fertilized embryos.16

ESCs are defined by their ability to differentiate into any cell in the body, and their ability

to indefinitely self-renew.1,17,18 Mouse ESCs are maintained in a pluripotent, undifferenti-

ated state in vitro by supplementing the culture medium with leukaemia inhibitory factor

(LIF), or factors acting on the LIF receptor pathway, to suppress differentiation of the stem

cells.19 LIF is insufficient to maintain pluripotency in human ESCs and instead, human

ESCs are cultured on fibroblast feeder layers, which release differentiation inhibiting factors
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to maintain an undifferentiated state.20,21 In the absence of any differentiation suppressing

factors, ESCs undergo spontaneous differentiation into cell types from the three embryonic

germ layers: endoderm, mesoderm and ectoderm.1,18,22 Cell fate specification can be con-

trolled by supplementing the culture medium with exogenous morphogens such as retinoic

acid (RA), bone morphogenetic proteins (BMPs), Wnt, Noggin or sonic hedgehog (Shh), to

induce differentiation toward a specific cell fate.4,23,24

Since ESCs were first isolated, they have been differentiated into a range of cell types in

vitro, including but not limited to hepatocytes, pancreatic cells, cardiomyocytes, neurons, and

glia.15,25–29 Their ability to generate cells from all three embryonic germ layers makes ESCs a

valuable tool for in vitro research. For example, mouse ESC lines have been used to generate

in vitro models of neuronal differentiation,24,30 embryogenesis,31,32 and neuronal functional

activity.33,34 Likewise, human ESCs have been used to generate an in vitro model of spinal

muscular atrophy for examining the mechanisms of the disease,35 and to generate functional

islet-cells for an in vitro model of diabetes.36The value of ESC models as a research tool

depends on the ability to consistently and efficiently differentiate ESCs toward a desired cell

fates, using well-defined and reproducible protocols. One commonly used method is embryoid

body (EB) suspension culture, which offers an easy, reproducible, and scalable method for

differentiating ESCs toward a range of cell types in vitro.

1.2.2 Embryoid body suspension culture for embryonic stem cell differentiation

EB suspension culture is a well characterised method for inducing ESC differentiation.22,31

In brief, ESCs are reseeded in suspension onto a non-coated tissue culture dish and cultured

for several days (for mouse ESCs) or weeks (for human ESCs) in the absence of differen-

tiation inhibiting factors.37 During the initial days in suspension the ESCs form spheroid,

multicellular aggregates called EBs, via cell-cell interactions.9,19,38 By adding signalling mor-

phogens to the medium, EBs can be directed to differentiate into specific cell types:22 RA

induces differentiation to neurons and astrocytes,15,39 ascorbic acid induces differentiation

to cardiomyocytes,30 and Activin A and Wnt3A promote hepatocyte differentiation.40 EB

suspension protocols offer limited control over the size of the EBs and consequently over the

diffusion of nutrients and/or morphogens into the EBs. In addition, the agglomeration of

EBs can lead to a necrotic core, limiting their utility in long-term culture and reducing the

control over ESC differentiation.22,41–43 These size and agglomeration factors can be con-
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trolled using hanging-drop or microwell methods of EB formation, where an exact number

of cells is aggregated in a small volume of liquid, or by using bioreactors to control the rate

of formation of EBs. These methods provide control the EB conditions, but are more labour

intensive and expensive compared to the suspension method.22,44

EBs mimic many aspects of embryogenesis including proliferation, morphogenesis, differ-

entiation, and region-specific differentiation into the three germ layers.19,38,43,45 As observed

in the developing embryo, EBs are highly organised structures with inherent and complex

signalling interactions that influence ESC differentiation.44 Once ESCs have aggregated to

form a multicellular EB, the outer layer differentiates into primitive endoderm and creates

a laminin- and collagen-rich basement membrane. Then apical-basal polarity is established,

followed by ESC differentiation into cell fates from the three germ layers.22,42,46 EB sus-

pension culture produces heterogenous cell populations and the differentiation efficiency of

EB protocols varies.19 The Wichterle and Peljto protocol typically generates 30-50% motor

neurons (MNs),47 a γ-aminobutyric acid (GABA) differentiation protocol generates approxi-

mately 86% GABAergic neurons,48 and another protocol only achieved 10% differentiation to

functional contracting cardiomyocyte.19 Some studies have reported protocols for increasing

the purity of the desired populations through mechanical dissociation,49 antibiotic selection,50

or cell sorting techniques.19,51 McCreedy et al., (2012) reported that enrichment of the MN

cultures by puromycin selection could increase purity to 58±1.5% MNs.28 However, as yet,

there are no protocols that increase the efficiency of EB differentiation to 100% purity.19

If the EB-derived cell populations are generated for transplantation, any carry-over of non-

target cells will have undesired effects within the host tissue and carry over of pluripotent

stem cells can lead to teratoma formation.50 Adverse or uncontrolled paracrine signalling

effects by the transplanted cells may also occur, and may counteract the clinical efficacy of

the transplant procedure.41,52

1.2.3 Limitations of embryoid body models of differentiation

EB models of ESC differentiation have provided valuable insight to the mechanisms of pat-

terned cell differentiation, but they cannot fully capture the process of embryogenesis.1 EBs

do not produce trophectoderm, which is required for the formation of the extraembryonic

tissues.53 To recreate the extraembryonic tissues and examine the effects of the cell mi-

croenvironment on ESC differentiation, some studies have combined EB culture with three-
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dimensional (3D) biomaterials scaffolds. In one study, mouse ESCs were differentiated into

EBs and then encapsulated into hydrogel scaffolds to induce patterned vasculogenic and car-

diogenic differentiation of individual EBs.54 Another study created an in vitro model of

gastrulation using mouse EBs, which were transferred to gelatin after differentiation. Their

results showed that to undergo self-organisation and axis formation, EBs require implan-

tation into an extracellular matrix (ECM)-like structure.55 A breakthrough study showed

that mouse EBs permitted to undergo prolonged differentiation in suspension culture spon-

taneously formed an organoid. The EB-derived organoid generated patterned differentiation

that recapitulated self-organisation in the neural tube, displayed apical-basal polarity and

expressed gene markers for diencephalon, spinal cord, and floor plate tissues.32,56 The study

showed that after extended culture, the organoids formed neuroepithelial cysts, induced floor

plate patterning and generated correct dorsoventral organisation.32 These 3D biomaterial or

organoid cultures have provided novel methods to investigate and control ESC differentiation

within EB cultures. Incorporating 3D cell culture with EB protocols may allow us to gain a

greater understanding of the mechanisms of cell fate specification.

1.3 Patterned differentiation during development determines stem cell fate

The nervous system is the result of temporo-spatially controlled cell differentiation, axonal

migration, and synapse formation.8 During neurogenesis, the neural tube differentiates and

undergoes specification of the rostro-caudal and dorso-ventral axes, through the actions of

morphogens including Noggin, fibroblast growth factors (FGFs), Wnts, β-catenins, BMPs,

Shh and RA.26,57,58 This specification is dependent on localised cross-activating and cross-

repressive gradients of signalling morphogens that induce intracellular signalling cascades

and activate transcription factors that determine cell fate specification.57–59 These localised

signalling gradients, and the temporo-spatial activation and inactivation of signalling cascades

are responsible for generating the diversity of cell types in the adult CNS.31,60,61

1.3.1 Retinoic acid is essential for nervous system development

RA is the most biologically active member of the retinoid family, a group of small lipophilic

molecules derived from vitamin A.62,63 RA plays a major role in patterning the rostro-caudal

and dorso-ventral axes, and is involved in neural differentiation, patterning the neural plate,

and axonal extension.63,64 Maternal vitamin A deficiency, and subsequently RA deficiency in
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the embryo, results in CNS abnormalities and structural malformations in the dorsal spinal

cord.63,65 Contrastingly, excess RA is teratogenic and results in severe malformation of

hindlimb regions and abnormalities in hindbrain development.66

Retinoids are not produced endogenously in mammals and must be absorbed from vitamin

A in food. Once absorbed, they are stored as retinyl esters in the liver, lungs, and kidneys.64,67

Retinoids are transported from these storage sites to cells by retinol, which circulates in

the blood bound to RA-binding protein 4. At the site of action, retinol is uptaken via

RA-binding protein 4 receptors, enters the cytoplasm and binds retinol-binding protein 1.

Within the cytoplasm, a two-step process metabolises retinol into RA: (1) retinol is oxidised

by retinol dehydrogenase and converted to retinaldehyde, and (2) retinaldehyde is oxidised

by retinaldehyde dehydrogenase to produce RA.64,68 During development, the first stage

of RA synthesis is primarily controlled by retinol dehydrogenase 10, expressed in the floor

plate and in somites near the developing spinal cord.69 The second stage is controlled by

three retinaldehyde dehydrogenases (Raldh1, Raldh2, Raldh3) which have distinct spatio-

temporal domains in the embryo.69 Raldh2 is the most well-defined of the retinaldehyde

dehydrogenases: it is expressed within the mesenchyme just after gastrulation, and is later

expressed in MNs, the meninges and the roof plate of the spinal cord.64,69 Raldh2 is the only

retinaldehyde dehydrogenase known to play a role in spinal cord development and all RA

synthesis before E8.5 is regulated by Raldh2. After this stage, Raldh1 and Raldh3 contribute

to RA synthesis in the eyes and olfactory system.67,69

In animal models of development, null mutants for retinaldehyde dehydrogenases have

a range of developmental defects: Raldh1-/- mutants show defects in dorsal retina forma-

tion, Raldh3-/- mutants develop nasal and ocular deficits, and Raldh2-/- mouse mutants ex-

hibit abnormal MN specification and forebrain development.67,69 In loss-of-function Raldh2

chick mutants there is a loss of posterior rhombomeres (5-7) and an expansion of anterior

rhombomeres (2-4). Experiments in a loss-of-function Raldh2 mouse model determined that

Raldh2 is almost solely responsible for RA production during embryogenesis.63,70 Applying

exogenous RA to mutant embryos can rescue the animal from some of the above defects and

allow normal development from the day of rescue onwards: for example, Raldh2-/- mouse

mutants can be rescued from lethality by supplementation with exogenous RA at E7.5.65
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1.3.2 Mechanism of retinoic acid-induced gene transcription

RA influences cell fate specification by regulating gene expression through its actions on

retinoic acid receptors (RARs). RA binds cellular RA binding proteins in the cytoplasm

and enters the cell nucleus, where it acts by binding to transcription factor nuclear RARs

(subtypes: α, β, γ).64 In their unbound form, RARs form heterodimers with retinoid X

receptors (RXRs; subtypes α, β, γ) and bind to RA-response elements, deoxyribonucleic

acid (DNA) sequences that repress gene transcription. Upon RA binding to the RAR/RXR

receptor complex, a conformational change in the receptor recruits co-activators in place

of the RA-response element repressors, and the co-activators bind the RAR region of the

receptor complex that contains the RA ligand site.71 Once co-activators are recruited, they

initiate signalling cascades to modulate RA-RAR downstream targets involved in neuronal

differentiation and cell patterning.64,68,71

RARs form heterodimers with RXRs and there is wide heterogeneity in RAR/RXR dimers

due to the combinations of their α, β, and γ subunits.72 RXRs were orphan receptors until a

metabolite of RA, 9-cis-RA, was identified as their physiological ligand.73 9-cis-RA can bind

to both RARs and RXRs and activates downstream signalling cascades of both receptors,

whereas RA can only bind to RARs.74,75 The in vivo concentration of 9-cis-RA in the spinal

cord is 30-fold lower than the concentration of RA, and is only detectable when embryos are

exposed to teratogenic concentrations of RA. In Raldh2-/- embryos, RA deficiency could be

rescued using 9-cis-RA at concentrations 4-fold higher than the concentration of RA required

to rescue the embryos.75 These studies showed that extremely high levels of RA are required

to reach a sufficient concentration of 9-cis-RA for RXR activation in vivo, and it is believed

that RXR activation by 9-cis-RA is a protective measure against RA-induced teratogenicity.76

1.3.3 Metabolism of retinoic acid

After RA binds and activates RARs, it returns from the nucleus to the cytoplasm, where it

is inactivated by members of the cytochrome P450 26 (Cyp26) family: Cyp26a1, Cyp26b1,

and Cyp26c1. Cyp26s oxidise RA into polar metabolites, which can then be conjugated and

excreted.63,67,70 Cyp26a1 is the primary degrading enzyme for inactivation of RA during

gastrulation.63 Exogenous RA induces Cyp26a1 activity in the hindbrain regions, however

depleting RA signalling does not eliminate Cyp26a1 expression, suggesting that Cyp26a1
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is expressed to prevent RA-induced teratogenicity after RA surpasses a certain threshold.

Once activated, Cyp26a1 does not require RA-RAR binding for ongoing expression.63,70

Shimozono et al., (2013) demontrated in mice treated with 4-(diethylamino)benzaldehyde

(DEAB) that RA is not required for the onset of Cyp26 enzymes in vivo, and Hernandez et

al., (2007) reported that Cyp26a1 can be upregulated by exogenous RA whereas Cyp26b1

and Cyp26c1 are not upregulated by exogenous RA.77,78 Another study demonstrated using

CD336, an RARα-selective agonist, that RARα activation upregulates Cyp26a1 and Cyp26b1,

but downregulates Cyp26c1.62 The above studies show that the effects of RA on Cyp26 are

not global, and that there are distinct effects of each Cyp26 enzyme on RA metabolism.

The resulting localised patterns of RA activation and inactivation may contribute to the

patterned differentiation of the neural tube.62 It is unclear whether a gradient of RA, or the

combined actions of Cyp26s and Raldh2, are responsible for patterned differentiation along

the neural tube. The effects of Cyp26 and Raldh activity on RA can be exploited in vitro to

investigate and identify the mechanisms of cell fate specification by RA. Global activation,

or inactivation, of both offers a novel strategy for controlling stem cell fate in vitro, and

identifying Cyp/Raldh activation and inactivation effects on cell fate.

1.3.4 Retinoic acid signalling is tightly regulated in vivo

Cyp26s and retinaldehyde dehydrogenases are expressed in complementary, non-overlapping

regions during gastrulation, and their interactions determine the availability of RA in vivo.64,66,79

RA upregulates Cyp26a1, and downregulates Raldh2, thus inducing its own metabolism and

inactivation in a negative feedback loop. The combined expression patterns of retinaldehyde

dehydrogenases and Cyp26 enzymes along the neural tube results in patterned inactivation

of RA signalling, and regulates RA-induced gene transcription.63,67,70 Depleting the expres-

sion of all Cyp26 enzymes induces hindbrain posteriorisation in zebrafish embryos.78 Sakai

et al., (2001)79 found that Cyp26-/- mutant mouse embryos exhibited abnormal hindbrain

and hindlimb development. They further estimated that Cyp26-/- mutation is fatal in two

thirds of embryos, and proposed that Cyp26 enzymes are crucial for preventing RA-induced

teratogenesis by metabolising RA. Another study showed consistent findings: Cyp26a1-/-

embryos without exogenous RA exhibited a greater level of abnormal development compared

to Cyp26a1-/- embryos treated with exogenous RA.78
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1.3.5 Retinoic acid-induced embryonic stem cell differentiation in vitro

RA can be used to induce mouse ESC differentiation to a neural fate in vitro. The first proto-

col for RA-induced ESC differentiation was reported in 1995, when mouse ESCs were induced

toward a neural fate using an EB suspension culture and exogenous RA.39 The resulting cell

population had greater numbers of β-III-tubulin positive cells and increased neurite extension

compared to EBs cultured without RA. In 2003, RA-induced EB differerentiation was used

to promote radial-glia-like cell fates from mouse ESCs.80 In 2014, EB culture was used to

differentiate mouse ESCs into functional, beating cardiomyocytes,55 and in the same year,

another study used RA to induce single mouse ESCs to differentiate to cell fates from the

three germ layers, and subsequently undergo self-organisation.81

RA-induced differentiation protocols have been used to generate in vitro analogues for

many in vivo cell types, however, there are limitations to in vitro RA differentiation methods.

The main limitation of these protocols is that exogenous RA is unstable in cell culture.82,83

RA is light-sensitive and isomerises rapidly when exposed to light, which can result in incon-

sistent concentrations of RA or its metabolites in the culture medium.83 One study showed

that 24h after RA was added to cell-free culture medium, only 69% and 27% of the RA was

recovered in serum-supplemented and serum-free medium, respectively82 - the experiments

were carried out under yellow light to minimise any light-induced degradation of RA, and

the results suggested that in less tightly controlled environments, and with cells present in

the culture conditions, the concentrations of RA at 24h would be substantially lower.82 The

instability of RA is a limiting step for fully understanding the effects of RA on cell devel-

opment using an in vitro system. To investigate the interactions between Raldh2, Cyp26a1

and RA in vitro, a durable, stable concentration of RA is required to ensure that any results

observed are not due to uncontrolled degradation and isomerisation of the RA.

Exogenous RA is used to induce neural differentiation in vitro, but some protocols use

supraphysiological concentrations of exogenous RA, which creates conditions in vitro that

do not normally occur in vivo.84 First, the metabolism of supraphysiological concentrations

of RA generates in vitro concentrations of 9-cis-RA that are not observed in the developing

embryo.75 It is proposed that dual ligand binding of RA and 9-cis-RA to RARs and RXRs

simultaneously, may activate downstream signalling pathways in vitro that are only activated

in vivo in response to teratogenic concentrations of RA.75 Experiments on RXR antagonism in
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mouse embryos demonstrated that 9-cis-RA is not required for embryogenesis, therefore, the

high concentrations of 9-cis-RA in vitro are likely activating off-target signalling pathways

that are not involved in cell development.75,76 Second, supplementing supraphysiological

concentrations of RA to the culture medium exposes all of the ESCs to high concentrations of

RA, whereas in vivo, the concentrations of RA are tightly regulated to prevent teratogenicity

and for the correct cell fate specification.84 One study compared mouse ESCs treated with

25 nanomolar (nM) or 1 micromolar (µM) RA in vitro, and showed that compared to a

concentration of 25nM of RA, supplementing 1µM of RA downregulated Fgf8, upregulated

Cdx1, and upregulated Wnt8a agonists. These genes are involved in neural plate patterning

and their altered expression in response to high concentrations of RA points to a mechanism

of forced neural differentiation in vitro, that may rely on off-target pathways not normally

activated during development.84

1.4 Specification of the dorso-ventral neuraxis

1.4.1 Retinoic acid in the ventral spinal cord

RA is essential for the specification of the dorso-ventral neuraxis.31 Hox genes are a di-

rect downstream target of RA signalling, and cross-repressive actions between Hox genes

are responsible for defining rhombomere boundaries, specifying progenitor domains and de-

termining cell fate specification.63,64,66,79 Within the ventral neural tube, there are five

progenitor domains (p0, p1, p2, pMN, p3) that generate the MNs and interneurons of the

ventral domains of the spinal cord (v0, v1, v2, sMN, v3). The identities of these progenitor

zones are defined by their expression of homeobox domain (HD) and basic-helix-loop-helix

(bHLH) proteins.31,85 Okada et al., (2004) reported that EBs treated with low levels of RA

express a midbrain-hindbrain HD protein profile, whereas EBs treated with high levels of RA

express a rostral spinal cord Hox profile.31 RA induces the expression of paired box protein

Pax 6 (Pax6), which subsequently interacts with homeobox protein Nkx6.1 to upregulate ex-

pression of Olig2, a marker of MN progenitor cells. The cross-repressive interactions between

HD proteins Pax6 (class I) and Nkx6.1 (class II) are required to establish the MN progenitor

domain, and subsequently for the generation of the diverse population of mature MNs.86
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1.4.2 Sonic hedgehog in the ventral spinal cord

Shh is a ventralising morphogen expressed from the notochord and floor plate, and is neces-

sary for the specification of dorso-ventral identity in the ventral spinal cord.87 Shh actions

are transduced via Smoothened, the signal transducing subunit of the Shh receptor. Shh

pathways regulate the expression of bHLH and HD proteins in ventral progenitor domains,

which in turn regulate patterned differentiation of the dorso-ventral axis.87,88 The differen-

tiation and specification of MNs during embryogenesis is induced by the interaction of the

neuralising effects of RA and the ventralising effects of Shh.12,47 RA works in combination

with the Shh to regulate expression of HD and bHLH proteins that define ventral progenitor

domain identity and the subsequent differentiation of spinal MNs.31,60

1.4.3 Establishing the progenitor domain boundaries during development

HD proteins can be divided into class I and class II transcription factors. The cross-repressive

interactions of these transcription factors establishes progenitor domain boundaries.60,89 The

combined actions of RA and Shh regulate ventralisation of the neural tube through their

actions on class I and II genes: RA signalling activates expression of class I genes and

inactivates expression of class II genes, Shh signalling activates expression of class II genes

and Shh is repressed by the actions of class I genes.31,87 As class I genes are repressed by

Shh signalling, this permits increased signalling of class II genes, which are further activated

by Shh signalling.31,87,90 This feedforward induction of HD proteins drives a gradient of Shh

signalling throughout the ventral spinal cord, such that the actions of Shh on class I and II

proteins defines the ventral and dorsal limits of progenitor domains (see Figure 1).

1.4.4 Subtypes of motor neurons in the central nervous system

The CNS is host to a diverse range of MNs with distinct identities that correspond to their

position along the spinal cord. MNs are a well characterised class of neurons, both molecularly

and functionally, thus are commonly studied in vitro as a paradigm for investigating nervous

system development and disease.72 The differentiation pathways for MNs are well-defined,

and in vitro protocols for MN differentiation are robust and reproducible. MNs are unique

in that their cell bodies remain with the CNS, but their axons project to targets in the

peripheral nervous system.91 All MNs arise from the pMN progenitor domain and become
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Figure 1: Formation of the Shh gradient in progenitor domains. Shh signalling from
the floor plate represses class I HD proteins, and activates class II HD proteins. Class I
and class II HD proteins repress each other, and this cross-repressive inhibition establishes
the progenitor domain boundaries in the ventral neural tube. Red arrow: cross repressive
interactions between class I and class II HD proteins; yellow gradient: class I transcription
factors; green gradient: class II transcription factors)

refined into subclasses according to the location of their cell body within the spinal column.87

The subclasses of MNs correspond to their columnar, divisional and motor pool identities,

which in turn are dependent on the target muscle of their axonal projections.60,72 Groups

of MNs sharing axonal projection targets cluster together to form five columnar identities,

spread along the rostro-caudal axis:

– Phrenic motor column (PMC)

– Preganglionic motor column (PGC)

– Hypaxial motor column (HMC)

– Medial motor column (MMC)

– Lateral motor column (LMC)

PMC MNs are located at the cervical level of the spinal cord and are required for in-

nervation of the diaphragm. PGC and HMC MNs are located at the thoracic spinal cord

level and innervate the sympathetic ganglia and the abdominal musculature, respectively.87,92

MMC neurons are generated along the length of the spinal column and innervate dorsal axial

musculature.85 LMC MNs, generated at brachial and lumbar levels, are responsible for limb

innervation and can be subdivided into divisional and pool identities, lateral LMC (LMCl)
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and medial LMC (LMCm), which innervate the dorsal and ventral muscles of the limb, re-

spectively. LMCl and LMCm are further divided into motor pool identities, according to

their specific target muscle within the limb, and a vertebrate LMC MN can belong to 1 of

∼50 distinct MN subgroups.93

1.4.5 Motor neuron subtype specification in vitro

ESCs have been successfully differentiated into MNs in vitro by supplementing combina-

tions of RA and Shh to the culture medium.24,50,94 Shh is commonly used to ventralise

differentiating ESCs into spinal motor neurons in vitro. Purmorphamine, HhAg1.3 (a Shh

agonist) and SAG (a Smoothened agonist) are cheaper substitutes for full Shh protein in

MN differentiation protocols.24,58,95,96 The standard in vitro MN differentiation protocol,

defined by Wichterle et al., (2002), adds exogenous RA and Shh (or Shh substitute) to the

culture medium to generate MNs of an MMC identity.47 The Wichterle and Peljto (2002)

protocol generates 30-50% homeobox protein B9 (HB9)+ post-mitotic MNs by EB suspension

culture.24 LMC neurons can be generated in vitro using RA and Shh (or Shh substitute)

and the Hox accessory factor forkhead box protein p1 (Foxp1).97,98 Foxp1 is expressed in

LMC and PGC neurons, but not in MMC and HMC neurons, thus the expression Foxp1

distinguishes between these MNs populations. High expression of Foxp1 is a marker of LMC

neurons, whereas low expression is a marker for PGC, thus allowing distinction between the

two Foxp1+ MN populations.12

Ectopic expression of Hox genes in vivo can induce MNs to an alternate motor pool iden-

tity, and alter the axonal projections of the newly programmed MNs.93 Depleting Raldh2

from the paraxial mesoderm induces a 50% decrease of RA in the spinal cord, leading to a

reduced number of LMCl neurons but only a small decrease in the total number of MNs.69

This indicates that in the absence of RA, LMCl MNs differentiate toward another MN sub-

class, either due to the lack of RA-induced transcription factor activity or the de-repression of

transcription factors usually inhibited by RA. Raldh2-/- mutants treated with exogenous RA

display disorganised brachial LMCs.65 Ricard et al., (2013) reported that MNs derived from

Cyp26a1-/- ESCs using the standard RA and Shh protocol were induced toward a PGC/LMC

columnar identity, rather than an MMC identity.85 These findings indicated that an increased

level of RA signalling induces a shift in Hox gene expression, which in turn affects the colum-

nar, divisional or pool identity of the cell. This offers a potential avenue for patterning ESC
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differentiation to generate a mixed population of LMC and MMC MNs in vitro.

These studies indicate a changing role for RA in cell fate specification during sequential

stages of development. In the early stages, RA is responsible for patterning the rostro-caudal

axis and in combination with Shh, establishing ventral progenitor domain boundaries.31,72

Later in development, RA is involved in the specification of the dorso-ventral axis - RA is

required for Pax6 activation, and indirectly for Olig2 expression in MN progenitors, and

subsequently influences the identities of the mature MNs generated by these Olig2+ progeni-

tors.50,90,99 By exploiting the effects of RA and Shh in vitro, the controlled exposure of ESCs

to both morphogens can pattern their differentiation towards a desired MN fate.

1.4.6 Lateral motor column motor neurons produce retinoic acid in vivo

LMCm MNs are identified by their expression of Raldh2, the major RA synthesising en-

zyme.100 During limb innervation, the Raldh2 in LMCm synthesises RA and this source of

retinoids determines cell fate specification of the later differentiating LMCl MNs.72 Early in

differentiation, all LMCs express Isl1 (a marker for LMCmMNs) and as LMCl MNs differenti-

ate, they are exposed to RA produced by LMCm MNs, at which point Isl1 is downregulated

and Lim1 is upregulated to specify an LMCl fate. RA also serves as an axonal guidance

signal for the LMCl MNs, which follow the axonal trajectories of the earlier differentiated

LMCm to innervate their target muscles.12,90,97 RA signalling in LMCl MNs activates a

cross-repressive interaction between Isl1 and Lim1 in both LMCl and LMCm MNs, which

subsequently determines the medial position of LMCm and lateral position of LMCl MNs in

the spinal cord.72 The LMC MN-derived RA signal is independent of the earlier RA produced

by the paraxial mesoderm: Raldh2 is first expressed at E7.5 and is maintained up to E10.5,

at which point, Raldh2 is downregulated until it reappears at E12.5, during differentiation

of limb-innervating LMC MNs.100–102

1.4.7 3D cell culture - a paradigm shift

Since mouse ESCs were first isolated, they have provided researchers with a rapid method

to investigate cell development in vitro.16 ESCs and ESC-derived cell lines are useful tools

for probing new areas of research or testing theories of development.15,16 Despite the ad-

vances that have been made using ESC lines and available differentiation protocols, there is

still a limited understanding of the mechanisms and processes involved in cell development
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and differentiation.103,104 A major barrier to our understanding of nervous system devel-

opment is the reduction of the intricate in vivo process of development into the simplified

two-dimensional (2D) paradigms used in vitro. 2D cell culture removes many physiological

components of the cell niche, including the cell-matrix interaction, ability to migrate into

multiple planes, and formation of long-range signalling gradients.1,2 This over-simplification

inhibits the potential to recreate cell processes in vitro that precisely mimic their in vivo coun-

terparts, including migration into multiple planes, responding to gradients of soluble factors

and cell-matrix interaction.3,105 Our lack of knowledge drives the need for novel, adaptable

and more complex in vitro platforms that we can use to investigate cell differentiation, the

pathophysiology of disease and the mechanisms of tissue regeneration.106,107

In 2006, a landmark study by Engler et al., demonstrated that human mesenchymal stem

cells (MSCs) responded to the substrate stiffness of the biomaterials that they were cultured

on. In their experiment, they cultured human MSCs on inert polyacrylamide scaffolds with a

substrate stiffness of 0.1-1 kilopascals (kPa), or a substrate stiffness of 34kPa. Their results

showed that the MSC/cytoskeletal interaction was important for determining cell fate.6 The

mechanosensitivity demonstrated by the Engler study represented a turning point for inves-

tigating the processes of cell development in vitro and posed some important questions for

tissue culture research. If tissue culture plastics have a substrate stiffness in the gigapascal

range,2,35 this raises the question of how suitable the cell microenvironment provided by

tissue culture plastics is for recreating the in vivo microenvironment?108

3D cell culture aims to address these questions, and the limitations associated with tra-

ditional 2D cell culture, by combining in vitro cell culture protocols with 3D biomaterial

scaffolds.109 In doing so, 3D cell cultures can generate novel platforms for investigating cell

behaviours in vitro that more closely resemble and recapitulate the conditions cells experience

in vivo. These approaches hold the potential to improve our understanding of the temoporal

and spatial processes involved in creating the vast diversity of cell types in the body.110 The

cell microenvironment or cell niche is comprised of ECM, a complex structural architecture

of fibrous proteins, proteoglycans, glycosaminoglycans and soluble factors.44,105,111,112 In

their physiological microenvironment, all cells are surrounded by ECM, which informs the

cell about its environment.113 Cell-ECM interactions are involved in a range of cell processes

including gene transcription, cell migration, patterned differentiation, and cellular regenera-

tion.6 3D cell culture platforms aim to recreate some, if not all, of the complexities of the cell
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niche by providing culture conditions that recapitulate the substrate stiffness, binding sites,

and signalling cues present in cells physiological microenvironment.86,105,106 For each of the

cell types in the body, the cell niche and available signalling factors vary both temporally and

spatially, thus creating these environments in the dish is difficult to achieve.3,114 The chal-

lenge for 3D cell cultures is to tightly control the in vitro environment, by providing culture

conditions that mimic the in vivo cell niche, whilst also limiting the number of uncontrolled

factors present in the experimental paradigm, so that we can gain high quality information

from the results.

1.5 3D cell culture for investigating cell development

1.5.1 Biomaterials as a platform for recreating the extracellular matrix

Each cell type has a specific ECM and the interaction between the cell and the cell-specific

ECM is responsible for directing cell fate specification.111 The chemical, structural and me-

chanical composition of an ECM interact to provide the essential cell microenvironment to

induce the desired cell fate, at the correct temporal and spatial point in development.115 The

three components are interlinked, with the chemical and structural composition influencing

the specific substrate stiffness (i.e. mechanical strength), and the chemical composition defin-

ing the porosity and topography of the ECM. ECM provides a structure for cell anchorage,

supports cell-cell interaction and cell migration, and provides guidance cues to stem cells

through the precise release of sequestered signalling morphogens.3,44,105

The ECM influences cell fate specification by temporally or spatially controlling the ac-

tivation and inactivation of signalling pathways.44 Tight regulation over the morphogenic

cues, cell adhesion factors, signalling gradients, and cross-repressive interactions between

soluble factors that are available to cells within a given cell niche, are ultimately respon-

sible for generating the diverse cell populations in the body.44,103,112 Understanding the

integration of chemical, structural, and mechanical signals provided by the ECM, and their

influence on cell fate specification canl inform researchers about the processes involved in

cell development.17,116 2D and EB suspension protocols have provided valuable insight into

the mechanisms of cell development, but a dynamic and complex 3D platform that can re-

capitulate the ECM will generate more physiologically relevant information.29,117 These 3D

systems should be capable of providing cell-cell and cell-matrix interactions, and of support-

ing long-term cell culture such that the influence of the cell niche over long periods can be
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investigated in vitro.118

1.5.2 Using 3D biomaterials for stem cell culture

A biomaterial’s chemical and mechanical composition are important characteristics to con-

sider when developing a 3D platform.115 The substrate stiffness is strongly linked with cell

fate specification, therefore to provide an in vitro system for examining physiological cell

behaviours, the culture conditions must first provide a substrate stiffness to mimic the ECM.

Tissue culture plastic is the most frequently used material for in vitro culture, but is a subop-

timal material for recreating the native ECM.103 As mentioned earlier, tissue culture plastic

has an elastic modulus in the gigapascal range, which is similar to the in vivo stiffness of

bone but much higher than the stiffness of the ECM and basement membrane.2,35 The Engler

study demonstrated substrate stiffness is a critical factor in cell development, thus recreating

the complex in vivo mechanisms of cell development in a dish requires a new approach.

A biomaterials approach concentrates on building 3D platforms from natural, synthetic or

ECM biomaterials to mimic the in vivo microenvironment and promote cell behaviours typical

of the physiological environment.9,14,110,117 A secondary aim of these platforms is that the

3D scaffolds provide the optimal microenvironment for the mature cell population, thus as the

ESCs differentiate, the mature populations experience a microenvironment similar to their

in vivo counterparts.11 Each biomaterial has advantages and limitations, and the specific

application for which a biomaterial can be used for depends on the biomaterial composition

and the aims of the experiment.3 Naturally derived biomaterials are inherently biocompatible,

whereas synthetic biomaterials allow greater control of the batch-to-batch consistency and

over the composition of the scaffold.2,3, 119 More recently, hybrid biomaterials have been

formed from combinations of natural and synthetic biomaterials to exploit the advantages of

both and create highly-tuned 3D microenvironments for in vitro research.

1.5.3 Naturally-derived biomaterials

Many studies have used natually-derived or ECM-based proteins as biomaterial scaffolds,

including laminin, fibronectin, collagen, fibrin, and hyaluronic acid.4,117,120 ECM-based pro-

teins are used in 2D cultures to support cell attachment to glass coverslips or tissue culture

plastics, however they can also be be layered to form 3D scaffolds or used to functionalise

biomaterials that do not contain inherent cell binding sites, to support cell-matrix interac-
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tions in those scaffolds.4,105 These materials are derived from animal or plant tissues and

are inherently biocompatible, making them an ideal substrate for cell encapsulation and 3D

cell culture.3,111 Naturally-derived scaffolds are inherently biocompatible and easy to pro-

duce but they often have batch-to-batch variability, in animal-derived materials due to the

gender, age or health status of the originating animal-, or in plant-derived materials due to

the species and methods of processing or isolation.3,121 These variations can be problematic

for reproducing experimental protocols, and have implications for controlling the outcomes

between experiments and between research labs.

Animal-derived biomaterials

Animal-derived scaffolds including collagen, fibronectin, fibrin, and hyaluronic acid can be

used to create 3D cell culture platforms in vitro105,122 or used to functionalise non-adhesive

scaffolds to allow cell attachment.4,111 Kothapalli and Kamm (2013) investigated the effects

of different naturally-derived biomaterials on the differentiation of mouse ESCs into neuronal

and glial lineages in 3D culture compared to 2D culture. Their results showed that collagen-I,

laminin, Matrigel and gelatin promoted significantly higher neural differentiation and signif-

icantly higher neurite outgrowth of mouse ESC-derived EBs relative to EBs differentiated

by suspension culture.9 Another study showed that collagen/Matrigel scaffolds were suitable

for ESC-derived EB differentiation to cardiac cells, and showed that the 3D culture of EBs

was capable of inducing cell migration out of the EBs and into the surrounding scaffold.30

Matrigel is composed of laminin, collagen and growth factors, and is commonly used for cell

culture however it is a poorly defined biomaterial that suffers from batch-to-batch variability,

that contributes to variations in the concentrations of growth factors within the biomaterial,

and this in turn limits the ability to determine which signals are involved in the cellular

responses observed and reduces the ability to replicate those effects across experiments.2,4

Of interest, decellularised EBs have been used to investigate 3D cell behaviours and the re-

sults showed that the EB-derived scaffolds supported mouse ESC proliferation and earlier

differentiation of the seeded ESCs relative to standard EBs.123

Plant-derived biomaterials

Plant-based biomaterials such as alginate, agarose, cellulose and silk are used for 3D cell

culture, and can be combined with ECM-based proteins to promote cell attachment and
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cell-matrix interactions.3,105,124,125 The advantages of plant-based materials over animal-

derived materials are that plant-based materials are more well defined. Some animal-derived

materials, such as Matrigel, are not fully defined and can have uncontrolled or unknown

effects on the behaviour of the encapsulated cells.116 Given that 3D cultures will induce

novel cell behaviours due to cell-matrix interactions, the ability to limit uncontrolled effects

by using plant-based materials offers a distinct advantage over animal-derived counterparts.

Cellulose is the most abundant naturally occuring glucose-based polymer and can be derived

from natural fibers. As it is plant-based, cellulose is naturally cytocompatible, and an added

advantage of cellulose scaffolds is their capacity to be enzymatically degraded in vitro or

naturally biodegraded in vivo without damaging the encapsulated cells.126 Muller et al.

(2006) demonstrated that cellulose hydrogels provided a suitable scaffold for cartilage tissue

engineering using chondrocytes.124 Stenberg et al., (2011) demonstrated that an agarose

scaffold could increase EB formation efficiency by 10% and promote a 3-fold increase in

the size of EBs formed from human ESCs.127 Bozza et al., (2014) demonstrated that 1%

weight per volume (w/v) alginate hydrogels conjugated with fibronectin or hyaluronic acid

had significantly fewer cells positive for markers of pluripotency, and significantly more cells

positive for β-III-tubulin+ compared to their EB counterparts.117 These studies provide

evidence that plant-derived biomaterials can support 3D cell culture and can be adapted

to promote enhanced cell differentiation efficiency compared to the standard EB suspension

protocol.

1.5.4 Synthetic biomaterials

Synthetic polymer biomaterials

As an alternative to both animal- and plant-derived scaffolds, synthetic biomaterials provide

3D ECM biomimetics that offer increased control over the composition, internal structure

and cell-binding sites available within a synthetic scaffold.4,105,128 Synthetic biomaterials are

commonly formed from poly-ethylene-glycol (PEG), poly-lactic-glycolic-acid (PLGA), poly-

dimethyl-siloxane (PDMS), or combinations of polymers.3,4, 129 Synthetic biomaterials do not

contain any inherent cell binding sites, and this absence of binding sites is both an advantage

and a limitation. Although they require addition of cell binding sites to support 3D cell

culture, synthetic scaffolds are a ‘blank slate’ on which the complex cell niche required for

a given paradigm can be created. As with plant-based scaffolds, the synthetic scaffolds can
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be functionalised with animal-derived proteins including collagen and laminin, to provide

integrin binding sites and support cell-matrix interactions.94 A layered hybrid silk:ECM

scaffold functionalised with poly-L-lysine (PLL) was used to produce a model for investigating

cell migration across the boundaries between scaffolds.130 The study also showed that hybrid

scaffolds were superior to hydrogel-only scaffolds, as the hydrogel-only scaffolds collapsed over

the course of cell culture and reduced the transport of nutrients, oxygen and waste products

through the scaffold compared to the hybrid scaffolds.

Biosynthetic self-assembling peptide biomaterials

Self-assembling peptides are a new form of biomaterial scaffold that are used for in vitro cell

culture.131 Self-assembling peptides are formed from chains of hydrophilic and hydrophobic

natural amino acids, that spontaneously self-assemble to create nano-fibrous scaffolds for cell

culture.2,131 Self-assembling peptides are typically high purity, which limits the variability

in composition that exists in animal- and plant-derived scaffolds.131 They are function-

alised with ECM-derived attachment factors to increase cell-matrix interactions, and can be

designed to provide cell-matrix interaction sites at precise locations along the chains thus

allowing enhanced control over cell-matrix interactions that cannot be achieved using either

animal- or plant-derived scaffolds.2,116,132 Cheng et al., (2013) created an injectable self-

assembling peptide that was capable of supporting neural stem cell differentiation, and after

injecting the scaffolds into the host spinal cord, they observed migration of the neural stem

cells into the host spinal cord and the reduced formation of the glial scar at the location of

the injection site.10 In another study, a self-assembling scaffold increased the formation of

EBs from mouse ESCs, and enhanced the subsequent differentiation of the EBs to a neuronal

fate.133 When the scaffold was functionalised with the laminin-derived epitope isoleucine-

lysine-valine-alanine-valine (IKVAV), the functionalised scaffold further enhanced neuronal

differentiation of the EBs, compared to unfunctionalised scaffold.

1.5.5 Hybrid biomaterial platforms

The ability to combine the robust reproducibility of synthetic biomaterials with the inher-

ent integrin binding sites and mechanical properties of a naturally-derived biomaterial are

attractive characteristics of a hybrid scaffold.121 For example, ceramic and alginate hybrid

platforms have been created to induce bone and cartilgate regeneration.134 The synthetic
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ceramic provides the substrate stiffness and mechanical composition to support bone devel-

opment, whereas the alginate top layer provides the softer substrate required for cartilage

development. The platforms tested that did not contain the combined hybrid ceramic-alginate

environment did not generate cartilage, demonstrating that the cell-scaffold interaction was

essential for generating cartilage.134 A hybrid alginate:carbon nanotube scaffold was created

to control the uneven crosslinking structure observed in alginate scaffolds used to culture.135

The results showed that HeLa cells cultured on the hybrid scaffold had significantly higher cell

proliferation compared to on alginate alone. Guillaume et al., (2015) reported similar results,

with alginate:collagen hybrid scaffolds having enhanced proliferation and ECM deposition by

encapsulated MSCs compared to cells cultured on alginate alone.

1.5.6 3D platforms are valuable tools for in vitro research

Many studies have used 3D culture methods to investigate the interaction between 3D bio-

materials and cell behaviours. For example, one study generated a nanocomposite syn-

thetic scaffold that recreated the native microenvironment and substrate stiffness of mature

cartilage, and showed that encapsulated human chondrocytes cultured on the scaffold pro-

duced cartilage that mimicked in vivo cartilage.136 Another study created synthetic RGD-

functionalised PEG hydrogels with substrate density gradients on the hydrogel surface, and

demonstrated that cell infiltration into the scaffold was dependent on the underlying surface

gradients.137 Yang et al., (2015) introduced an IKVAV gradient into a PEG hydrogel, and

reported that neural differentiation efficiency significantly increased with increasing IKVAV

concentration.138 Of interest, they observed that mouse ESCs had a temporary decrease in

proliferation when switched from tissue culture plastic to the PEG hydrogels, but recovered

after 3 days. Similar results were reported by Ali et al., (2015) who showed that mouse ESC

behaviour in response to changing substrate stiffness was stage dependent: pluripotent stem

cells were capable of recovering and adapting to the new environment but non-pluripotent

cells were unable to adapt to 3D culture.139 These two studies suggest that the stage of

differentiation at the time of encapsulation is important for predicting cell fate specification,

and this may be an important factor to consider when designing 3D cell culture experiments

and interpreting the results.

A limitation of 2D cell culture is the inability to introduce concentration gradients of

soluble factors. 3D platforms address this issue by providing gradients to cells in vitro using
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biomaterials platforms: biomaterials with incorporated soluble factors, such as growth factors

and morphogens, can be used to create concentrations gradients of signalling factors in the

scaffold and examine the effects on cell fate.140–142 Wang et al., (2009) used silk-based scaf-

folds loaded with concentration gradients of BMP and/or insulin-like growth factor (IGF) to

promote differentiation of encapsulated MSCs. They showed that the MSCs had preferential

differentiation to osteogenic cell fates in response to high concentration BMPs, and chondro-

genic differentiation in response to low concentration BMPs. They also showed that joint

IGF:BMP gradients promoted even higher osteogenic differentiation compared to BMP gra-

dients alone.143 Wang and Irvine (2011) generated chemokine-loaded alginate microspheres

and incorporated these microspheres into cell-containing collagen scaffolds. They investigated

the chemoattractive effects on the encapsulated cells and demonstrated that cells migrate to-

wards and made physical contact with the chemokine-loaded microspheres from distances

of up to 200 micrometre (µm).144 These results highlight the benefits of using biomaterial

scaffolds for investigating cellular respones to localised signalling factor gradients.

Unfortunately, the current techniques to incorporate growth factors and morphogens into

biomaterial platforms either create a homogenous distribution of soluble factors within the

scaffold, without any control over the spatial or temporal pattern of releases, or cannot main-

tain constant concentrations of soluble factors within the biomaterial for extended periods

of time. Despite the positive results by Wang et al., (2009) discussed above, microsphere

loading efficiency was only 41% and 14% for BMP and IGF, respectively. In addition, they

reported a burst release of 40% of the IGF over the first 48 hours (h) of cell culture (there

was no burst release of BMP).143 Wang and Irvine (2011) reported that 15-20% of the loaded

chemokines were burst-released from the microspheres within 4-5h in cell culture.144 Another

study loaded RA into PCL microspheres and then introduced the RA-loaded microspheres

into human EB suspension cultures to investigate the effect of localised RA release on the

EB differentiation.145 They reported a burst release of RA at approximately 15% over the

first 48h of cell culture, and a cumulative release of 50% of the RA over 28 days in culture,

although the remaining RA was sufficient to induce EB differentiation.

Improved systems for incorporating soluble factors within biomaterial platforms are be-

ing developed to create stable concentrations and/or gradients of signalling factors. Novel

heparin-based delivery systems can incorporate growth factors directly into the biomaterial

and maintain stable concentrations over long periods of time. One research group has devel-
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oped a heparin-based delivery system to incorporate neurotrophin 3 (NT3), platelet-derived

growth factor (PDGF) and glial-derived neurotrophic factor (GDNF) into fibrin based scaf-

folds, maintaining stable concentrations over long periods of time.41,50 An alternative method

uses either photoimmobilisation, or click chemistry, to incorporate growth factors into bioma-

terials.146 McKinnon et al., (2013) created a PEG hydrogel functionalised with ECM-derived

peptides using click chemistry, and showed that their scaffold promoted neurite outgrowth of

the encapsulated ESC-derived MNs.94 Click chemistry can use covalent binding techniques

to incorportate the growth factors or integrin binding sites into a biomaterial, and synthetic

and natural biomaterials can both be modified using click chemistry, making this an easy to

adopt protocol regardless of the biomaterial used for cell encapsulation.147,148

1.6 Alginate hydrogels for stem cell differentiation

Alginate is a plant-derived biomaterial isolated from the ECM of brown algae.149 Alginate

hydrogels are cytocompatible, tunable and degradable biomaterials that are commonly used

as in vitro 3D platforms.43,117,150 To create an alginate hydrogel, alginic acid is dissolved at

the desired weight per volume (w/v) to produce an alginate solution, which is then immersed

into a polymerisation buffer containing divalent ions, allowing the solution to crosslink and

form an alginate hydrogel.149 Alginates have a wide range of compositions and structures

depending on the plant species from which the alginic acid is isolated, and the properties of

a specific alginate affect the type of biomaterial scaffold produced.151

1.6.1 Properties of alginate

Alginate is a linear polysaccharide composed of (1→4) linked chains of β-D-mannuronic acid

(M-residues) and α-L-guluronic acid (G-residues). Each chain contains a combination of

homopolymer G- and M-residues, and copolymer G-M residues (see Figure 2).149,152 The

proportion of G-, M- and G-M residues and the G:M ratio determine the characteristics of

the resulting hydrogel.151 The factors affected include the viscosity and molecular weight of

the alginate solution, the internal porosity, mechanical strength, substrate stiffness, and rate

of degradation of an alginate hydrogel.5,153,154

Unmodified alginate hydrogels do not support cell attachment or proliferation, and must

be functionalised with ECM proteins such as collagen, gelatin, fibronectin, or laminin.149,155

Functionalisation of alginate hydrogels allows cell attachment to the scaffold, promoting cell-
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Figure 2: Chemical structure of alginate.152 Diagram shows the structure of a homopoly-
mer G-residue, homopolymer M-residue, and a copolymer G-M residue of an alginic acid.

matrix interactions, and allowing cell migration, proliferation and/or differentiation of cells

either encapsulated inside, or cultured on the alginate hydrogels.109,117 Alginate can also

be functionalised by adding integrin receptor binding sites within the hydrogels, using ‘click’

chemistry, to guide cytoskeletal organisation and influence gene transcription downstream of

integrin receptors, and thus influence cell fate specification.4,117,150

Although alginate hydrogels are versatile and easy to use, their limitations include batch-

to-batch variability of the alginic acid powders, instability in cell culture medium over time,

and variations in the internal consistency of the resulting alginate hydrogels according to the

type of gelation used, the concentration of calcium chloride and the G:M ratio of the alginic

acid.149,156,157 The gelation process itself requires submerging the alginate/cell solution in

a bath of high concentration calcium chloride (1-1.%) for several minutes.153 The pore size

of the alginate hydrogels can limit the diffusion of larger molecules through the hydrogel,

and reduce their interaction with the encapsulated cells. In addition, the negatively charged

alginate may prevent positively charged molecules from diffusing through the scaffold.120

This is of particular importance for experimental paradigms using an alginate hydrogel for

drug delivery/growth factor delivery after scaffold implantation.158 The following sections

outline the interaction of the G:M ratio of an alginic acid on alginate hydrogel characteristics.

1.6.2 Influence of alginate composition on hydrogel characteristics

The molecular weight of an alginate depends on the length and number of the G- and M-

residues in the alginic acid, and the viscosity of the alginate solution increases as a function

of the molecular weight.122,158 The greater the proportion of homopolymer G-residues, the
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greater the viscosity of the alginate solution, and the higher the elastic modulus of the

resulting hydrogel.5,151 The G-residues in the alginate contain the binding sites for ionic

crosslinking and contribute to the stiffness and porosity of the hydrogel, whereas the M-

residues do not form crosslinks, thus the elastic modulus of an alginate hydrogel increases as

a function of the fraction of G-residues.5,149,156 Alginate hydrogels are formed by polymeris-

ing the alginate solution in a crosslinking buffer containing divalent ions, such as calcium

chloride (CaCl2), magnesium chloride (MgCl2) or barium chloride.156 During polymerisation

the divalent ions crosslink adjacent G-residues between homopolymer G-G residues and/or

copolymer G-M residues. This leads to the formation of a gel network and alginate hydrogels

with a higher proportion of G-residues will have a higher elastic modulus and smaller pores,

due to the increased number of crosslinks forming between G-residues in the solution.5,151,156

The increased number of crosslinks results in a higher subtrate stiffness in high-G alginates

relative to high-M alginates which can affect cell behaviour. For example, Kandalam et al.,

(2012) showed that umbilical cord derived MSCs encapsulated in G-rich alginate hydrogels

had significantly lower viability compared to M-rich alginate hydrogels.157

The concentration of the crosslinking solution also influences the stiffness of the resulting

hydrogel, and even when holding the alginate concentration constant, increasing or decreas-

ing the crosslinking concentration can affect the cell viability of encapsulated cells.149,151,157

The greater the proportion of divalent ions available to crosslink, the more G-residues form

crosslinks and become saturated, thus increasing the elastic modulus of the resulting alginate

hydrogel.149,153 The elastic modulus of alginate hydrogels is also increased by increasing

the concentration (w/v) of an alginate solution, as there are more G-residues present for

crosslinking. Li et al., (2011) reported the elastic modulus of 0.5%, 1.1% and 2.2% alginate

as 3.7kPa, 7.35kPa and 13.13kPa respectively.159 Increasing the concentration of the alginate

w/v also increases the viscosity of the solution and affects cell viability.149 At higher vis-

cosities, alginate hydrogels reduce the viability of encapsulated cells due to the shear forces

exerted on the cells during mixing with the viscous alginate solution. This can be overcome

by combining low and high molecular weight solutions to form alginate solutions with good

structural stability but at a lower viscosity that does not affect cell viability during mixing.149

The influence of the G:M ratio, molecular weight and viscosity of the alginate solution are

thus important factors to consider when choosing an alginic acid, and producing alginate

hydrogels for cell encapsulation applications.149,151
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Alginate’s molecular weight can be reduced by γ-irradiation to break down the G-, M-

and G-M residues: this creates shorter alginate chains that have reduced interactions in

solution but can still form crosslinks during polymerisation to support the hydrogel structure.

The γ-irradiation reduces the molecular weight of the alginic acid and the viscosity of the

alginate solution, without affecting the mechanical stability of the resulting hydrogel.149,158

The less viscous alginate solution reduces the shear forces on the cells and is therefore more

suitable for cell encapsulation. The ability to control the mechanical properties of an alginate

hydrogel independently of viscosity is thus an important characteristic of this biomaterial and

represents an advantage of using alginate hydrogels for producing 3D platforms.154,158 Given

the importance of tuning the ECM composition and stiffness to promote differentiation to

a desired cell fate, the ability to control many factors of alginate hydrogels makes them an

attractive biomaterial for 3D cell culture applications.

1.6.3 Importance of controlling alginate hydrogel porosity

The porosity of a biomaterial scaffold must be sufficient to allow diffusion of oxygen, nutrients

and waste throughout the scaffold, whilst simultaneously surrounding the encapsulated cells

to provide support and cell-matrix interactions.160 A study in collagen-glycoaminoglycan

scaffolds demonstrated that the porosity of the scaffold influenced osteoblast behaviour, with

osteoblasts showing higher infiltration into a scaffold with larger porosity.161 A study in

polycaprolactone scaffolds showed that larger pore sizes support chondrocyte and osteoblast

growth, but smaller pore sizes supported fibroblast growth.162

The porous nature of alginate allows both the diffusion of medium throughout the scaffold

and the release of waste products back into the medium. Wang et al., (2009) and Horiguchi

et al., (2014) investigated the penetration of soluble factors into alginate hydrogel beads of

varying compositions, and both reported that penetration of a soluble factor into the alginate

beads decreased as a function of molecular weight.150,163 Wang et al., (2009) demonstrated

that alginate porosity decreases with increasing w/v of the alginate solution, with pore sizes

of 10.9µm, 5µm and 3.4µm in alginate beads of 0.5%, 1% and 2%, respectively.150 Horiguchi

et al., (2014) investigated the diffusion of molecules of increasing molecular weight into algi-

nate capsules of different composition (uncoated, hollow-liquid core, and PLL coated alginate

beads). Their results showed that regardless of the alginate composition, the rate of pen-

etration of molecules into the beads decreased with the increasing molecular weight of the
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molecule, and that at a molecular weight of 40kDa or more, only 50% of the molecules would

diffuse through the alginate beads after 24h.163

This property of alginate hydrogel beads represents both a limitation and a technical

advantage for cell encapsulation. The inability to use soluble factors of high molecular weight

can limit the use of alginate for some differentiation protocols. For example, full length Shh

typically used for MN differentiation protocols is approximately 19.8kDa, and based on the

results from Horiguchi et al., (2014), less than 75% of this would penetrate alginate beads of

1% w/v at 24h.163 On the other hand, given that a major limitation of 2D cell cultures is that

cells are exposed to a homogenous concentration of soluble factors in the culture medium,

using alginate hydrogels represents an opportunity to introduce gradients of soluble factors

by controlling the hydrogel porosity and manipulating the size of the soluble factors.

In knowing that the size of a soluble factor will affect the time taken to penetrate the

alginate hydrogel, and that the porosity of the scaffold further influences this diffusion rate,

we can manipulate the composition of alginate hydrogels to create gradients of soluble factors.

Exploiting these properties may permit spatial and/or temporal exposure of the encapsulated

cells to developmental cues, which more closely recreates the in vivo environment. For 3D

cell culture, the ability to alter many variables of alginate hydrogels means that platforms

can be adapted for many cell types and applications. By creating growth factor gradients

in 3D, we can closely examine the cell-matrix-gradient, or cell-cell-gradient interactions to

identify any effects that the gradient has on cell fate at different points along the gradient or

different stages of differentiation.

1.6.4 ESC differentiation in 3D alginate platforms

Alginate hydrogels have been used to promote ESC differentiation into a range of cell types.

Studies have differentiated encapsulated ESCs in alginate hydrogels into neurons,117,159 hep-

atocytes,7 motor neurons,164 and pancreatic Islet-like cells.36 Alginate platforms have been

used to develop ESC aggregates in vitro, and the results showed that alginate hydrogels

prevent the agglomeration of encapsulated aggregates, thus preventing the formation of a

necrotic core.165,166 EB agglomeration is a limiting factor for EB suspension cultures as the

increased size of agglomerated EBs creates a necrotic core and also reduces the differentiation

efficiency of the protocol.22,41–43

Some studies have developed cell-laden alginate platforms for in vivo applications. When
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alginate hydrogels are implanted, they protect encapsulated cells from from antibodies and

antigens within the host tissue.150,159,167 Qian et al., (2014) used an alginate hydrogel loaded

with gelatin microspheres to demonstrate that the platform could be used as a soluble factor

delivery system in vivo.168 Their alginate:gelatin hybrid platform reduced the burst release

of growth factors observed in previous platforms. Burst release at 2h was reduced from 30%

to 5%, and cumulative release at 1 week was reduced from 95% to 50% in the hybrid al-

ginate:gelatin platform versus the alginate only platform.168 Another study differentiated

encapsulated mouse ESCs into insulin-producing cells that efficiently responded to glucose

challenge, demonstrating that the cells behaved in a similar way compared to their in vivo

counterparts.150 The cell-laden scaffold could be implanted to provide a source of insulin for

diabetic patients that behaves similarly to endogenous insulin. Alginate typically degrades

slowly in vivo however one study developed an alginate model with incorporated alginate

lyase-loaded PLGA microspheres in the scaffold, which provided a controlled method for de-

grading the scaffold after implantation to the host tissue.155 The above studies demonstrated

that cell-laden alginate scaffolds can be adapted for in vivo applications.

1.7 Focus of the current research

The evidence from the literature points to a need for further development of 3D culture

platforms to generate more complex systems for investigating the mechanisms of ESC differ-

entiation in vitro. For example, the in vivo process of development relies on 3D gradients of

RA to correctly specify cell fates and progenitor boundary domains, to promote axonal mi-

gration and to prevent RA-induced teratogenicity. 2D cell culture protocols cannot recreate

these 3D gradients, and cells in monolayer are exposed to uniform concentrations of soluble

factors in the medium. The previously described 3D platforms have generate 3D signalling

gradients, but their limited control over the concentration of soluble factors, or the use of

exogenous RA to induce ESC differentiation, represent limitations of the existing 3D systems.

The primary goal of this PhD project was to develop a novel 3D platform for investigating

the patterned differentiation of mouse ESCs to cell fates from the three germ layers using

alginate hydrogels. The platform aimed to address the limitations of previous 3D systems

by introducing a cell-derived source of RA into the novel 3D platform, thereby providing

encapsulated ESCs with a stable concentration of RA that was not prone to degradation or

burst release. In the current project, a cell density gradient plus a consequent gradient of
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cell-derived RA were incorporated into the 3D platform. The ability to introduce gradients

into the scaffold was an important feature of the system as it created a more versatile 3D

platform could be adapted for future experiments.

3D cell cultures are important platforms for recapitulating the in vivo environment when

investigating the mechanisms of cell development in vitro.4,106 Altering the concentration of

an alginate solution, or the concentration of the crosslinking buffer changes the properties

of alginate hydrogels, thus these factors can be easily manipulated to design finely-tuned

scaffolds for 3D cell culture. However, the G:M ratio of a specific alginate will impact how

changes to the alginate or crosslinking concentrations affect the viscosity, internal porosity,

elastic modulus and mechanical stability of an alginate hydrogel.169 Despite the influence of

the G:M ratio on the scaffold architecture, no study has conducted a side-by-side comparison

of the effects of using alginates of different G:M ratios on the differentiation efficiency of the

alginate hydrogels. As a direct consequence of this, there is currently no evidence to support

using one type of alginate over another for ESC differentiation.

The present thesis aimed to address this question by investigating the impact of two types

of alginate (high G-residue versus high M-residue) on ESC encapsulation and differentiation

in 3D hydrogels. The ability to select an optimal alginate subtype for ESC differentiation

will contribute to developing more efficienct, finely-tuned 3D platforms for investigating cell

development. An ongoing challenge in using alginate for 3D cell cultures is that some studies

using alginate hydrogels do not report the G:M ratio of the alginate used. Without knowing

what type of alginate was used in a given experiment, the ability to reproduce experiments

between labs is limited but there are no published studies that demonstrate the importance

of reporting the G:M ratio. The experiments described in this thesis aimed to generate strong

evidence to support the use of either high-G or high-M alginates when recreating 3D platforms

for ESC differentiation. By demonstrating that ESCs encapsulated in alginate hydrogels of

different G:M ratio, molecular weight and viscosity are viable, capable of forming aggregates,

and by showing that both types of alginate hydrogel remain intact over the course of cell

culture, the experiments demonstrate that the G:M composition may not exert significant

effects on ESCs. Alternatively, if one (or both) compositions of alginate has a negative impact

on viability, does not support aggregation, or does not maintain hydrogel structure during cell

culture, this shows that the choice of alginate must be carefully considered before designing

a 3D platform for ESC encapsulation.
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Previous studies in alginate demonstrated that ESCs can be encapsulated and differenti-

ated in 3D platforms, however, no study to date has investigated if the ESC aggregates formed

within alginate hydrogels are EBs containing cells from each of the three primary germ layers.

Two studies using alginate hydrogels have investigated ESC differentiation towards the germ

layers where the cells were cultured on layers of alginate after the hydrogels were polymerised,

but no study has examined the effects of pre-encapsulation of the ESCs on germ layer differ-

entiation within the aggregates.165,166 As the foundation for 3D cell culture is the knowledge

that cell-matrix interaction significantly affects cell fate, it was possible that the encapsulated

ESCs did not differentiate in the same way as ESCs seeded onto pre-polymerised alginate

scaffolds. Thus it was important to demonstrate that germ layer differentiation occurred

when ESCs were encapsulated, and then differentiated within alginate hydrogels.

This thesis describes experiments to investigate the whether the encapsulated ESC-derived

aggregates were canonical EBs. The aim of these experiments was to bridge the gap in the

available literature by demonstrating that alginate beads are capable of supporting differ-

entiation of canonical EBs, containing cells from the three germ layers. Providing evidence

of germ layer differentiation within the alginate hydrogels would increase the utility of the

platform to include studies of embryogenesis, germ layer self organisation, ESC differentia-

tion to cell derivatives from each germ layer, or the outcomes of long-term EB culture within

alginate beads. In demonstrating the ability to generate cell types from all three germ layers,

the experiments show that alginate hydrogels are suitable for experiments differentiating any

cell type derived from any germ layer, but conversely, by demonstrating that the encapsu-

lated ESCs will only differentiate one or two of the germ layers, the results provide evidence

that this 3D culture method is not suitable for investigating ESC differentiation towards cells

fates from the unsupported germ layers. In that instance, the previously described methods

of seeding the ESCs onto pre-polymerised scaffolds are optimum for generating cell fates from

germ layers not present within aggregates encapsulated within alginate.

1.7.1 Objectives of the experimental chapters

– Chapter 3 aimed to demonstrate that alginate hydrogels are suitable biomaterials for ESC

encapsulation and 3D cell culture, and build the foundation for experiments investigat-

ing ESC differentiation within the alginate hydrogels.

– Chapter 4 outlines experiments to demonstrate that alginate hydrogels support ESC differ-
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entiation to cell fates from the three primary germ layers, and experiments to determine

whether high-G or high-M residue alginate hydrogels are optimum for ESC neuronal

differentiation, relative to standard EBs.

– Chapter 5 describes experiments to validate a cell-derived source of endogenous RA from

HGF11-derived LMC MNs, which can provide a stable concentration of RA in vitro

over several days.

– Chapter 6 describes the development of a novel 3D alginate platform, for investigating

patterned ESC differentiation in vitro, generated by incorporating the platform com-

ponents outlined in Chapters 3-5 using an adapted gradient maker protocol.

1.7.2 Hypotheses

– Hypothesis 1: Alginate hydrogels are a suitable biomaterial scaffold for culturing and

differentiating encapsulated ESCs, as demonstrated by the presence of viable cells and

markers of embryoid body germ layers within the scaffolds.

– Hypothesis 2: There will be an influence of alginate molecular weight/G:M content on

the relative differentiation of encapsulated ESCs towards the ectodermal germ layer as

examined using relative gene expression by quantitative PCR.

– Hypothesis 3: Lateral motor column, motor neurons differentiated from the HGF11 ESC

line will produce a source of endogenously produced retinoic acid.

– Hypothesis 4: An alginate hydrogel tube containing a gradient of retinoic acid producing

cells will induce varying levels of ESC differentiation along the retinoic acid gradient.
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Chapter 2. Methods

2.1 Cell Culture

2.1.1 Aseptic cell culture

All cell culture work was carried out using aseptic techniques. Alginate, CaCl2, forceps,

and spatulas were autoclaved. The gradient maker and tubing were decontaminated with

70% ethanol. Cells were cultured in a humidified incubator at 37oC, 5% CO2. A full list of

reagents used is listed in Appendix 1, p.138.

2.1.2 Preparation of tissue culture plates

Mouse embryonic fibroblasts (MEFs) and ESCs were cultured on gelatin-coated tissue culture

flasks: 0.1% gelatin solution in Dulbecco’s phosphate buffered saline (dPBS) was added to

each flask at a sufficient volume to coat the base of the flask. The flasks were incubated for

2h at 37oC, or overnight at 4oC, and washed once in dPBS before seeding cells.

2.1.3 Culture of feeder-free mouse embryonic stem cells

CGR8 mouse ESCs from passage 10-20 were used for alginate characterisation and co-culture

experiments. CGR8 are feeder-free mouse ESCs derived from the inner cell mass of a pre-

implantation, 3.5 day male mouse (Mus musculus, strain 129).170 CGR8 maintain their

pluripotency in the absence of feeder layers with the addition of a high concentration of

LIF to the culture medium. CGR8 were cultured in ESC medium composed of Dulbecco’s

modified eagle medium (DMEM)-high glucose, 10% ES-qualified fetal bovine serum (FBS; Lot

No. FB-1001H), 100 units/millilitre (mL) penicillin, 100 microgram (µg)/mL streptomycin,

2 millimolar (mM) L-glutamine, 100µM beta-mercaptoethanol (β-ME), and 1000 units of

LIF/mL. Medium was changed daily to maintain pluripotency and ESCs were passaged at a

ratio of 1:8 at 80% confluence (∼every 2 days).

2.1.4 Passaging cell populations by trypsinisation

To passage the cells, the culture medium was aspirated, the cells were washed once in dPBS,

and 3mL or 6mL of 0.25% trypsin:ethylene-diamine-tetraacetic-acid (EDTA; 1X) was added

to the T25 or T75, respectively, for 2-5 minutes (min) until the cells detached from the flask.
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Trypsin was quenched using an equal volume of culture medium (3mL or 6mL) and the cell

suspension was pelleted by centrifugation (5min, 200 relative centrifugal force (rcf)). The

supernatant was aspirated, the cell pellet was resuspended in fresh medium, and the cells

were seeded at the required ratio into a new gelatin-coated flask.

2.1.5 Culture of mouse embryonic fibroblast feeder layers

MEFs (Mus musculus, strain CF1) were cultured as feeder layers for the HGF11 ESC. MEF

medium was composed of DMEM-high glucose, 10% FBS, 100 units/mL penicillin, 100µg/mL

streptomycin, and 2mM L-glutamine. Cells were passaged at a ratio of 1:2 at 80% confluence

(∼every 3 days). At passage 6, confluent flasks of MEFs were inactivated with 10µg/mL

Mitomycin-C treatment for 2h. After inactivation, the cells were washed 3 times with dPBS,

and cultured in MEF medium for up to 10 days, with medium changes every 2 days. MEF

medium was replaced with ESC medium 30min before seeding with HGF11 ESCs.

2.1.6 Culture of feeder-dependent mouse embryonic stem cells

The HGF11 feeder-dependent mouse ESC line was a gift from Professor Bennett Novitch, Uni-

versity of California, Los Angeles. HGF11 are a transgenic cell line derived from HB9::Foxp1

transgenic mice. When HGF11 are differentiated to MN fate, the ESCs express green fluores-

cent protein (GFP) and Foxp1 under control of the HB9 promoter and can be induced toward

GFP+/Foxp1+ LMC MN fate.12 HGF11 were cultured on MEF feeder layers in DMEM-high

glucose, 10% FBS, 100 units/mL penicillin, 100µg/mL streptomycin, 2mM L-glutamine, 1X

non-essential amino acids, 100µM β-ME, and 1000 units of LIF/mL. Medium was changed

daily to maintain pluripotency and HGF11 ESCs were passaged at a ratio of 1:8 at 80%

confluence (∼every 2 days).

2.1.7 Separation of embryonic stem cells from feeder layers

The presence of feeder cells in EB suspension cultures reduces differentiation efficiency,104

so MEFs were separated from HGF11 ESCs before seeding the ESCs for EB culture. After

trypsinisation, the MEF-HGF11 cell suspension was pelleted by centrifugation (5min, 200rcf),

and resuspended in 5mL ADFNK medium: Advanced DMEM-F12:Neurobasal medium

(1:1), 10% Knockout serum replacement, 100 units/mL penicillin, 100µg/mL streptomycin,

2mM L-glutamine and 100µM β-ME. This cell suspension was plated onto a gelatin-coated
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100mm dish (0.1% gelatin). After 45min, MEFS had adhered to the dish and ESCs remained

in suspension. The ESC suspension was aspirated, cells were counted using trypan blue

exclusion and used for differentiation experiments.

2.1.8 Embryonic stem cell neuronal differentiation by suspension culture

ESCs differentiated using the EB suspension culture method served as control conditions for

alginate bead experiments. ESCs were reseeded at 5x104 cells/mL in ADFNK, and the cell

suspension was plated onto 100mm suspension dishes and cultured for 6 days, with 1µM RA

added on days 2 and 4. To change the medium, the dishes were swirled gently to gather the

EBs in the centre of the dish, and the EBs and medium were aspirated into a 15mL falcon

tube. The EBs were centrifuged to pellet (3min, 200rcf) and resuspended in 10mL ADFNK

supplemented with 1µM RA.

2.1.9 Preparation of laminin-coated coverslips

To prepare laminin-coated coverslips for immunocytochemistry (ICC) and enzyme-linked

immunosorbent assay (ELISA) experiments, glass coverslips were added to each well of 12-

well plates, and sterilised by ultraviolet irradiation for 2h. Laminin at 2µg/centimetre (cm)2

in dPBS was added to each well, the plates were placed on a rocker for 15min at room

temperature, then incubated at 37oC overnight. Prepared plates were used immediately, or

sealed with Parafilm and stored at 4oC for up to 2 weeks. The wells were washed twice with

dPBS before seeding cells.

2.1.10 EB dissociation and monolayer culture for immunostaining

On day 6 of differentiation, EBs were collected and dissociated to form a single cell suspension.

The EB suspension was centrifuged (3min, 200rcf) to form a pellet, resuspended in dPBS,

re-centrifuged (3min, 200rcf) and the pellet was resuspended in 5mL of 0.25% trypsin-EDTA

(1X). The EBs were placed on a rocker for 5-10min at room temperature, then 5mL of

ADFNK was added to the suspension to dilute and reduce the activity of the trypsin-EDTA.

The cell suspension was recentrifuged (5min, 200rcf) to form a pellet, resuspended in 5mL

of ADFNK, and passed through a 70µm cell strainer. Cells were counted using trypan blue

exclusion, replated at the required cell density onto laminin-coated coverslips and cultured

for 2 days in ADFNK supplemented with 5 nanograms (ng)/mL GDNF. After 24h, the cells
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adhered to the coverslip and extended neurite processess. On day 8 (48h after replating),

cells were fixed for 20min in 3.7% paraformaldehyde (PFA), washed once in dPBS, and the

plates were sealed with Parafilm and stored at 4oC until immunostaining.

2.2 Characterisation of HGF11-derived lateral motor column motor neu-

rons

2.2.1 Differentiation of motor neurons from HGF11 embryonic stem cells

HGF11 ESCs were differentiated using the Wichterle and Peljto EB differentiation protocol:24

mouse ESCs were differentiated toward a MN lineage by EB suspension culture, adding

1µM RA and 1.5µM purmorphamine on days 2 and 4; this protocol generates 30-50% MN

populations by day 6 of differentiation. On day 6, the EBs were collected, dissociated by

trypsinisation, counted via trypan blue exclusion and replated onto laminin-coated coverslips

at 1x105 cells/cm2 for ICC, or at 17.5x105 cells/cm2 for ELISA experiments (see subsection

2.2.2, p.35). For ICC, cells were cultured for 2 additional days in ADFNK supplemented with

10ng/mL GDNF, then fixed and stored for immunostaining. Control conditions were HGF11

ESCs differentiated with 1µM RA only or CGR8 wildtype ESCs differentiated to MNs using

the Wichterle and Peljto protocol.

2.2.2 Quantification of endogenous retinoid concentrations

Competitive ELISAs were used to confirm that HGF11-derived MNs can produce endogenous

RA and Raldh2, and to quantify the concentration of RA and Raldh2 released by these MNs

into the culture medium. HGF11 ESCs were differentiated as above, and replated at 1x105

cells/cm2 onto laminin-coated coverslips. The cells were cultured for 6 days after replating

(12 days of differentiation) in ADFNK supplemented with 5ng/mL GDNF to enhance the

maturation and survival of MNs.24 Half of the medium was changed every 2 days, allowing

48h build up of RA and Raldh2 in the medium before samples were collected for ELISA. Cells

were tested on days 8 through 12 to confirm the presence of RA and Raldh2 in the medium

at each timepoint.
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2.3 Viability Assays

2.3.1 Live/dead assay for alginate beads

Cell viability inside alginate beads was tested using fluorescein diacetate (FDA)/propidium

iodide (PI) or thiazole orange (TO)/PI. ESCs were encapsulated in alginate beads and cul-

tured for 6 days. On day 6, the beads were incubated in live/dead buffer for 5-10min in the

dark. Live/dead buffer was either 30µM FDA and 20µM PI (in early optimisation exper-

iments) or 100nM TO and 10µM PI (in all subsequent experiments). After incubating for

5-10min, the live/dead buffer was aspirated and the beads were washed once in dPBS. Beads

were imaged using a Zeiss Axiovert A1 inverted microscope and Axiovision software (v4.0).

2.3.2 Validation of live/dead assay by flow cytometry

ESCs were used to set up a live/dead assay template for flow cytometry analysis. To validate

the assay, 100nM TO and 10µM PI were tested on single population of (i) live cells (positive

control for TO, negative control for PI) and (ii) dead cells (negative control for TO, positive

control for PI). CGR8 were passaged, counted using trypan blue exclusion, and aliquoted at

1x106 cells/mL in dPBS. For dead cell populations, the cells were pelleted and resuspended in

100% ethanol for 15min at room temperature. Live and dead cell aliquots were single labelled

with either 100nM TO or 10µM PI, and the samples were incubated for 10-20min at room

temperature. Cells were analysed using a BD Accuri C6 flow cytometer and C-Flow Sampler

software (v1.0). Cell populations were thresholded at 200,000, flow rate was 14 microlitre

(µL)/min, and 10,000 events were collected per condition. Populations were gated for debris

using forward and side scatter (FSC vs SSC), and single stained controls were used to gate

live/dead populations on FL1 vs FL3.

2.4 Immunofluorescence methods

2.4.1 Cryosectioning embryoid bodies and alginate beads

Alginate beads and EBs were fixed at day 6 of differentiation for 1h in 3.7% PFA, cryopro-

tected for 4-6h in 30% sucrose solution, embedded in optimum cutting temperature compound

(OCT) and stored at -80oC. Samples were sectioned at 15-30µM, collected on gelatin-coated

microscope slides, dried overnight at 37oC and stored at 4oC. Microscope slides were coated

to prevent the negatively charged alginate sections from washing off the slides during im-
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munostaining. To apply the coating, standard microscope slides were washed in a 0.2%

gelatin:0.02% chromium potassium sulfate dodecahydrate solution; slides were dipped into

the solution 5 times for 5s, then air-dried for 1min; this was repeated 5 times. The slides

were dried overnight at room temperature. All sections were outlined with an ImmEdge wax

pen for immunostaining.

2.4.2 Immunocytochemistry

To prepare cells for ICC all samples were blocked and permeabilised in 20% normal goat

serum (NGS) in 0.05% Triton-X-100 for 1.5h at room temperature. Primary antibodies

were applied for 1.5h at room temperature or overnight at 4oC. Samples were washed in

dPBS (2x10min). Secondary antibodies were applied for 2h at room temperature, and then

washed once in dPBS. Nuclei were counterstained with Hoechst 1:25,000 for 10min at room

temperature. A full list of antibodies and concentrations used is listed in Table 1. Samples

were washed in dPBS (2x10min), double distilled water (ddH2O) (1x5min), and mounted

using Vectashield mounting medium. Samples were imaged using a Zeiss Axioimager A1

fluorescent microscope and Axiovisionsoftware (v4.0). Immunofluorescence negative controls

were fixed and and stained under the same conditions as experimental samples. Negative

control tissues used for immunofluorescent analysis were as follows:

– Negative controls for alginate beads: CGR8 were encapsulated in alginate beads and

cultured for 6 days in ESC medium with LIF to prevent differentiation.

– HGF11-derived MN characterisation: HGF11 ESCs were cultured on gelatin-coated

coverslips in ESC medium until confluent.

– HGF11-derived MN GFP/FoxP1 validation: HGF11 ESCs were differentiated using

1µM RA only. CGR8 ESCs were differentiated with 1µM RA and 1.5µM purmor-

phamine toward a MN lineage.
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Table 1: Details of antibodies used for immunocytochemistry experiments

Primary Antibody Supplier Code Host Conc.

α-fetoprotein Thermo Fisher PA5-21004 Rabbit IgG 1:200

α-smooth muscle actin Abcam ab7817 Mouse IgG2a 1:300

α-smooth muscle actin Abcam ab5694 Rabbit IgG 1:300

β-III-tubulin Abcam ab41489 Chicken IgY 1:300

β-III-tubulin Abcam ab18207 Rabbit IgG 1:300

Foxp1 Thermo Fisher PA5-52006 Rabbit IgG 1:100

HB9 Santa Cruz sc515769 Mouse IgG2a 1:200

HB9 Thermo Fisher PA5-23407 Rabbit IgG 1:150

Nestin Santa Cruz sc101541 Rat IgG 1:250

Secondary Antibody Supplier Code Host Conc.

anti-chicken Alexa Fluor 647 Abcam ab150171 Goat IgY 1:500

anti-chicken IgY fluorescein Aves Labs F1005 Goat IgY 1:500

anti-mouse Alexa Fluor 488 Life Tech A11001 Goat IgG 1:500

anti-mouse Alexa Fluor 568 Life Tech A11004 Goat IgG 1:500

anti-rabbit Alexa Fluor 488 Life Tech A27034 Goat IgG 1:500

anti-rabbit Alexa Fluor 568 Life Tech A11011 Goat IgG 1:500

anti-rabbit Alexa Fluor 647 Life Tech A21245 Goat IgG 1:500

anti-rat Alexa Fluor 594 Life Tech A11007 Goat IgG 1:500

Hoechst 33342, 10mg/ml Life Tech H3570 n/a 1:25,000

Abbreviations: Conc, concentration; HB9, homeobox protein B9
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2.5 Alginate hydrogels for cell culture

2.5.1 Formation of cell-encapsulating alginate hydrogels

CGR8 were resuspended in 1% w/v alginate:0.1% gelatin at a cell density of 3x106 cells/mL

alginate. Two molecular weights of alginate were tested: low molecular weight, low viscosity

alginate with a high G:M ratio (hereafter referred to as LMW) and high molecular weight, high

viscosity alginate with a low G:M ratio (hereafter referred to as HMW). Alginate beads were

formed by manually extruding the alginate-cell suspension from a syringe with a 21 gauge (G)

needle, into a bath of 100mM CaCl2/10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic

acid (Hepes) (see Figure 3, p.40). The alginate beads were polymerised for 5min at room

temperature, washed once with ADFNK, and cultured for 6 days in ADFNK with 1µM RA

added on days 2 and 4. Cell density per bead was calculated by dividing the volume of

alginate by the number of beads: LMW beads, ∼6x104 cells/bead; HMW beads, ∼5x1040

cells/bead. On day 6, beads and EBs (used as control conditions) were collected and used

for depolymerisation experiments, or prepared for cryosectioning (see subsection 2.4.1, p.36).

2.5.2 Depolymerisation of alginate beads

On day 6 of differentiation, alginate beads were collected for depolymerisation to harvest the

encapsulated cells. To harvest the cells, scaffolds were depolymerised using a depolymerisa-

tion buffer to chelate the CaCl2 crosslinks inside the beads, allowing the alginate to return to

a liquid state. To determine the optimum conditions for depolymerising and harvesting cells,

the number of cells and the cell viability for each condition were recorded. Cell viability was

tested using trypan blue exclusion or live/dead assay via flow cytometry.

2.5.3 Live/dead viability counts by flow cytometry

The viability of cells harvested from alginate beads was assessed by live/dead assay and flow

cytometry. To harvest the cells, the beads were collected using a spatula, washed once in

dPBS, and the depolymerisation buffer was added for the required length of time. Once the

encapsulated aggregates were released, the depolymerisation buffer was diluted using dPBS,

the cell suspension was centrifuged (5min, 200rcf) and resuspended in 1mL dPBS. Cells were

double stained using TO and PI, incubated for 10-20min at room temperature and analysed

via flow cytometry using a BD Accuri flow cytometer and C Flow Sampler software (v1.0).
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Figure 3: Images of alginate beads with encapsulated ESCs on day 0. The images show
alginate beads containing encapsulated ESCs immediately after polymerisation: (a) beads
formed from 1mL of alginate:cell suspension by manual extrusion from a 21G needle; (b)
low magnification brightfield images of beads after polymerisation; (c) high magnification
brightfield images of beads after polymerisation. Scale Bar: (b) 1mm; (c) 400µm
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Figure 4: Diagram of the Boyden chamber setup for alginate co-culture experiments.
To test the activity of endogenously produced RA, alginate beads were co-cultured with
differentiated, RA producing, HGF11-derived MNs. This setup allowed the alginate beads
to be cultured in the same medium as the RA without having the beads in close proximity
to the mature MNs. The Boyden chamber also allowed easy medium changes every 2 days
and easy collection of the beads at the end of the culture period.

2.6 Alginate co-culture

2.6.1 Boyden chamber co-culture

To test the ability of the endogenously produced RA from HGF11-derived MNs to differentiate

ESCs toward a neuronal lineage, alginate beads containing CGR8 were co-cultured with

HGF11-derived MNs (see Figure 4, p.41). To prepare the co-culture, HGF11 ESCs were

differentiated to day 6 as above (see subsection 2.2.1, p.35), and replated onto laminin-

coated coverslips in 12-well plates. On the day that the HGF11-derived MNs were replated,

alginate beads were prepared (day 0 of alginate differentiation) and transferred into Boyden

chambers (8-10 beads per chamber). After 48h (day 2 of alginate differentiation), half of

the medium on the HGF11-derived MNs was replaced and each Boyden chamber containing

alginate beads was transferred into a well containing HGF11-derived MNs. After 2 days (day

4 of alginate differentiation), half of the medium was changed, and on day 6 (day 6 of alginate

differentiation), the beads were fixed, cryopreserved and immunostained for markers of the

three germ layers (see subsection 2.4, p.36).
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2.6.2 Formation of alginate tubes for co-culture

To investigate the potential for endogenous RA to induce patterned differentiation of ESCs at

increasing concentrations, mature HGF11-derived MNs were co-cultured with CGR8 ESCs

inside an alginate tube. The tube was created with a standard gradient maker using the

setup shown in Figure 5. A simplified colour-coded diagram of the system and a description

of the process involved in creating alginate tubes is presented in Figure 6. To create the

alginate tubes containing gradients of two cell types, the alginate cell suspensions are loaded

into each chamber of the gradient maker (A & B). When the pump was switched on, a

volume of alginate from chamber B was drawn into the tubing to form the Leading Edge (L).

This simultaneously draws an equal volume of cell suspension from chamber A into chamber

B, which was then mixed with the cell suspension in chamber B. In this manner, the cell

suspension from chamber A was continuously drawn into and mixed with the suspension in

chamber B.

Whilst the tube was formed through the action of the peristaltic pump, the cell suspension

in chamber B was diluted with a the cell suspension drawn in from chamber A, such that the

Trailing Edge (T) contains a low concentration of cell suspension B and a high concentration

of cell suspension A. For this experiment, both chambers had cell suspensions containing equal

cell densities of CGR8, and chamber B also contained HGF11-derived MNs. This results in

an alginate tube with a consistent cell density of CGR8, and an decreasing cell density of

RA-producing MNs along the length of the tube (see Figure 6, p. 44).

2.7 Quantitative polymerase chain reaction

2.7.1 RNA extraction and DNA synthesis

Quantitative polymerase chain reaction (PCR) was used to assess the gene expression of

markers for the three germ layers in EBs and in cells encapsulated in alginate beads. Alginate

beads were cultured for 6 days (see subsection 2.5.1, p.39), and on day 6, the cells were

harvested using 50mM EDTA, 120mM sodium chloride (NaCl) and 10mM Hepes (pH 7.4)

for 5min at room temperature. The aggregate suspension and EBs were centrifuged (3min,

200rcf) to pellet, and ribonucleic acid (RNA) was extracted using a Qiagen RNeasy kit,

according to the manufacturers instructions. In brief, the cell pellet was resuspended in

200µl RLT buffer and vortexed for 30s to lyse the cells and eliminate ribonucleases (RNase).
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Figure 5: Diagram of a gradient maker and the equipment required to make alginate
tubes. The gradient maker was used to form alginate tubes, to test the effect of localised
RA concentrations on ESC differentiation: (a) the gradient maker setup and equipment
for making the alginate tubes, (b) a close-up image of the gradient maker showing the two
chambers containing alginate-cell suspension solutions for forming alginate tubes.

– 43 –



Methods 2.7 Quantitative polymerase chain reaction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6: Diagram of gradient formation in the tubes. The gradient was formed from
two alginate:cell solutions: (A) alginate containing CGR8 only, and (B) alginate containing
CGR8+HGF11-derived MNs. An equal volume of alginate solutions A and B are added to
chamber A and B, respectively. The peristaltic pump is switched on and draws a volume of
alginate B from chamber B into the tubing forming the Leading Edge (L) of the hydrogel,
which has a high concentration of alginate B, and low concentration of alginate A. This
simultaneously draws an equal volume of alginate A from chamber A into chamber B,
which is then mixed with the alginate B in chamber B by the stir bar (red star). As this
process continues, alginate A from chamber A is continuously drawn into and mixed with
alginate B in chamber B, and the alginate in chamber B is drawn into the tubing and
towards the CaCl2 where it crosslinks to form a hydrogel tube. The alginate solution in
chamber B is continuously diluted with the solution from chamber A such that the Trailing
Edge (T) contains a low concentration of alginate B and a high concentration of alginate A.
This results in a hydrogel tube containing a cell density gradient similar to that depicted
by the blue and red coloured gradients in the diagram. MN: HGF11-derived MNs, CGR8:
wildtype ESCs, Red star: location of stir bar.
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200µl of 70% ethanol was added to the sample, and mixed gently. This suspension was

transferred to an RNeasy mini spin column, and centrifuged (15s, 8000g) to bind the RNA

to the column membrane. The supernatant was discarded, and the column was washed once

with 700µl, and then twice with 500µl of RPE buffer. The mini spin column was transferred

to a fresh 1.5mL eppendorf and 30µl of nuclease free water was added to the column. The

column was centrifuged for 1min at full speed to elute the RNA into the collection tube. RNA

concentration was measured using a Thermo Scientific Nanodrop 2000 spectrophotometer.

RNA samples were stored at -80oC.

Some RNA samples harvested from LMW beads were concentrated using the Qiagen

RNeasy MinElute Cleanup kit. In brief, the sample was adjusted to a starting volume of

100µl with nuclease free water. 350µl RLT buffer was added to the sample, and then 250µl

of 100% ethanol was added and mixed gently. The suspension was transferred to an RNeasy

MinElute spin column, centrifuged (15s, 8000g) to bind the RNA to the column membrane,

and the supernatant was discarded. The membrane was washed once with RPE buffer, once

with 80% ethanol, and then the column was dried by centrifugation (5min, full speed). The

column was transfered to a fresh 1.5mL eppendorf, 12µl of nuclease free water was added to

the centre of the membrane, and the column was centrifuged for 1min at full speed to elute

the RNA into the collection tube.

The Qiagen Quantinova Reverse Transcription kit was used for complementary DNA

(cDNA) synthesis and genomic DNA (gDNA) elimination. For gDNA elimination, 500ng

of template RNA and 2µl of gDNA removal mix (containing RNase inhibitors) were added

to a 200µl eppendorf. The sample was mixed and incubated for 2min at 45oC. For cDNA

synthesis, 1µl of Quantinova reverse transcription enzyme and 4µl of Quantinova reverse

transcription mix (containing deoxyribonucleotide triphosphates and Mg2+) were added to

the template/gDNA reaction. The samples were incubated in a PCR thermal cycler for 3min

at 25oC, 10min at 45oC, and 5min at 85oC to inactivate the reverse transcriptase enzyme.

To prepare the no reverse transcription controls, the reactions were set up as above but the

reverse transcription enzyme was omitted.

2.7.2 Primer validation and efficiency

The primers for POU class 5 homeobox 1 (Pou5f1), Nestin (Nes), Pax6 and β-actin (Actb)

were tested in-house using a five point standard curve (see Table 2). The positive control

– 45 –



Methods 2.7 Quantitative polymerase chain reaction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sample was combined cDNA from EBs and cells harvested from alginate beads (4 EB, 4

HMW, and 3 LMW samples). ESC cDNA was used as the negative control. The quantitative

PCR was run using the Qiagen Quantinova SYBR green kit, according to the manufacturer

instructions. In brief, 0.75µl of cDNA template, 10µl of SYBR Green PCR master mix, 2µl

of QN ROX reference dye, and 1µl each of forward and reverse primer (final concentratrion

0.7µM) were added to each reaction, and the volume was adjusted to 20µl with nuclease free

water. The plates were sealed with a PCR plate seal, mixed for 5min on a plate mixer, and

spun with a plate spinner for 30 seconds (s). The thermal cycler conditions were: 2min at

95oC, followed by 40 cycles of 5s at 95oC and 10s at 60oC. Data were collected using an

Applied Biosystems StepOnePlus Real-Time PCR system and StepOne Software (v2.3).

Table 2: Primer efficiencies for real time PCR. Primer efficiencies were measured using a
5pt standard curve, on combined cDNA from EBs and Beads. The slopes and efficiencies
were calculated using the StepOne Software.

Primer Slope r2 Efficiency

Pou5f1 -3.168 0.98 106%

Nestin -3.126 0.99 108%

Pax6 -3.30 0.99 100%

β-actin -3.11 0.99 109%
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Chapter 3. Characterisation of alginate hydrogels as a suitable

scaffold for encapsulating mouse embryonic stem cells

3.1 Introduction

Alginate hydrogels are a commonly used biomaterial for 3D cell culture,43,105,117 and have

previously been used to encapsulate ESCs and induce cell differentiation to GABAergic

neurons,43 insulin-producing cells,150 and hepatocytes.7 Alginate is inherently biocompat-

ible, scalable for high-throughput applications, and allows easy modulation of characteris-

tics such as porosity, elastic modulus, cell adhesion factors and the size/shape of the scaf-

fold.43,105,171,172 EBs are used for in vitro cell culture experiments to mimic early embryoge-

nesis as they can induce ESC differentiation toward cell fates from the three embryonic germ

layers (endoderm, mesoderm and ectoderm).19,38,173 EB suspension culture generates high

numbers of differentiated cells, however there is limited control over the size of the EBs, the

diffusion of signalling morphogens into the EBs, and the efficiency of cell differentiation.

Biomaterials such as alginate offer increased control over the size of EBs and can promote

increased differentiation efficiency of encapsulated ESCs.43,174,175 Alginate beads have been

used to differentiate encapsulated mouse ESCs using RA and studies using these protocols

reported that ESCs encapsulated in alginate beads formed cell aggregates, had high viability

at the end of the culture period and produced a higher proportion of neurons relative to EB

controls.43,150,159 To date, no study has demonstrated that the aggregates within alginate

beads are canonical EBs comprised of cells from the three germ layers; this topic will be

addressed in chapter 4 and to avoid confusion, this chapter refers to the cell aggregates in

alginate beads as aggregates, and to cell aggregates formed by suspension culture as EBs.

This chapter outlines experiments to validate and characterise alginate beads of 1%

w/v, crosslinked in 100mM CaCl2 as a suitable biomaterial for mouse ESC culture. These

alginate/CaCl2 concentrations were selected based on the results from previous studies that

demonstrated successful ESC encapsulation in alginate hydrogels formed using these condi-

tions.43,117,142 Alginate hydrogel beads of different composition and size, and a range of cell

densities were tested to identify the optimum conditions for ESC encapsulation and subse-

quent aggregate formation. The conditions tested in these experiments are listed in Table 3.
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Table 3: Alginate conditions tested for optimisation of ESC encapsulation

Variation Conditions Tested

Alginate Base Solution DMEM ddH2O

Alginate Molecular Weight Low High

Needle Gauge 21G 30G

Gelatin Concentration 0% 0.1% 0.5%

Cell Density (cells/mL alginate) 2x106 3x106 5x106

These experiments optimised the conditions for cell encapsulation, assessed whether ESCs

within the alginate beads formed cell aggregates, and determined if those aggregates were

comparable in size and shape to EBs differentiated by suspension culture.17,176 The formation

of aggregates inside the beads was assessed by brightfield microscopy, and cell viability was

investigated using a live/dead assay. Initial experiments used HMW alginate for cell encap-

sulation, however following high variations in cell viability in early experiments, a literature

review on cell viability in alginate hydrogels was conducted. The review found that alginate

molecular weight and viscosity significantly affected cell viability and cell-matrix interac-

tions. Alginates of higher molecular weight produce alginate solutions with higher viscosity

and expose cells to shear forces during encapsulation which reduces cell viability.154,171,177

All subsequent experiments compared the effects of LMW and HMW alginate for cell encap-

sulation to assess differences in viability or cell fate between the two compositions.

3.2 Optimising alginate beads for embryonic stem cell encapsulation

3.2.1 Identifying a suitable base for alginate hydrogel solutions

Methods

HMW alginate was dissolved at 1% w/v in (i) DMEM-high glucose, or (ii) ddH2O, and gelatin

was added to each solution at a final concentration of 0.1% v/v. CGR8 were passaged by

trypsinisation, pelleted by centrifugation (5min, 200g) and resuspended at a cell density of

5x106 cells/mL in (i) alginate:DMEM or (ii) alginate:ddH2O. The solution was extruded from

a syringe with a (i) 21G or (ii) 30G needle into a bath of 100mM CaCl2, and polymerised

for 5min at room temperature. Beads were washed once in dPBS and cultured for 8 days in

ADFNK. 1µM RA was added to the medium on days 4 and 6 to induce neural differentiation.
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Results

Alginate:DMEM was optimum for embryonic stem cell encapsulation

The formation of cell aggregates inside the alginate beads was compared on day 8 of dif-

ferentiation. Brightfield images showed that ESCs encapsulated using an alginate:DMEM

solution produced large numbers of aggregates in beads formed using both a 21G needle (see

Figure 7a) and a 30G needle (see Figure 7b). Cells encapsulated in an alginate:ddH2O so-

lution formed a small number of aggregates in beads formed using a 21G needle (see Figure

7c) and zero aggregates in beads formed using a 30G needle (see Figure 7d). These results

showed that an alginate:DMEM solution was optimum for ESC encapsulation and that an

alginate:ddH2O solution was not a suitable composition.

Figure 7: Representative images of aggregate formation by encapsulated ESCs in four
alginate bead conditions. Alginate:DMEM beads contain high numbers of aggregates in
21G beads (a) and 30G beads (b). Alginate:H2O beads contain small numbers of aggre-
gates in 21G beads (c), and no aggregates in 30G beads (d). n=1, 3 beads per condition.
Arrowheads: black - encapsulated aggregates; red - escaping aggregates. Scale Bar: 1mm
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Encapsulated aggregates migrate out of alginate beads

At day 8 of differentiation, there were cell aggregates floating in the cell culture medium of

the 21G and 30G alginate:DMEM conditions, that had migrated out of the alginate beads

(see Figure 8a and b). These aggregates were similar in size and shape to EBs formed by

suspension culture (see Figure 8c versus d), and were visually indistinguishable from the EBs

(8b versus d). The encapsulated aggregates were visible at the edges of the beads and there

were striation marks in the direction that the aggregate had migrated from the interior of

the beads into the medium. This indicated that the encapsulated aggregates were interacting

with the alginate matrix and was evidence that the cell aggregates observed floating in the

cell culture medium had migrated out of the beads as whole aggregates, and were not formed

from single ESCs that had aggregated within the medium (see Figure 8e).

Conclusion

The aggregate formation observed in this experiment was consistent with previously re-

ported results for ESCs encapsulated in alginate beads.43,117 The results indicated that

alginate:ddH2O hydrogels were suboptimal for supporting aggregate formation, compared

with alginate:DMEM beads. Previous research reported that alginate solutions formed from

H2O had a 2-fold higher elastic modulus compared to alginate solutions formed in α-minimum

essential medium.171 If this was true for alginate:DMEM versus alginate:ddH2O, the increased

elastic modulus may have inhibited ESC aggregation by restricting cell-matrix interactions.

The 21G-DMEM condition had a smaller number of escaped aggregates versus 30G-DMEM

beads, indicating that they were more suitable for maintaining cell encapsulation during cell

culture. The following experiment builds on these results to further optimise the alginate

encapsulation conditions by examining the effect of reduced cell density and increased gelatin

concentration on aggregate migration from the beads.
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Figure 8: Brightfield images of escaped cell aggregates, EBs and an aggregate migrating
from a bead. Canonical EBs (a) were similar in size and shape to cell aggregates that escaped
from alginate:DMEM beads (c). Magnified images showed that EBs formed by suspension
culture (b) were visually indistinguishable from the free floating aggregates (d). The escaped
aggregates migrated out of the beads as whole aggregates, and appear to interact with the
alginate matrix, forming striations in the bead (e, blue arrowheads). Arrowheads: red -
escaping aggregate; blue - striation marks. Scale Bars: white - 500µm; black - 200µm

.
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3.2.2 Optimising the seeding cell density and differentiation duration

This experiment aimed to reduce the number of aggregates escaping from the 21G-DMEM

beads by manipulating the seeding cell density and gelatin concentrations of the alginate

beads. The cell density was reduced from 5x106 cells/mL to 2x106 cells/mL alginate, based

on results from a previous study that reported a cell density of 2x106 cells/mL is optimum for

maintaining high viability of cells encapsulated in alginate.150 Alginate does not contain cell

adhesion sites and must be functionalised to allow cell attachment and to provide a suitable

environment for anchorage-dependent cells.105,178 The previous experiment used 0.1% v/v

gelatin to support cell adhesion to the alginate. This experiment tested low gelatin (0.1%)

and high gelatin (0.5%) concentrations to examine whether increased gelatin concentration

could enhance aggregate formation or limit migration of the aggregates into the medium. The

previous experiment used an 8 day neural differentiation protocol176 however Montgomery et

al., (2015) reported that a 6 day protocol adding 1µM RA at days 2 and 4 was as efficient

as the 8 day protocol for neural differentiation.17 This experiment tested whether this 6 day

protocol was sufficient for aggregate formation by ESCs encapsulated in alginate beads.

Methods

HMW alginate was dissolved at 1% w/v in DMEM-high glucose and gelatin was added at a

final concentration of 0.1% v/v or 0.5% v/v. CGR8 were passaged by trypsinisation, pelleted

by centrifugation (5min, 200g) and resuspended at a cell density of 2x106 cells/mL. The

solution was extruded from a syringe with a (i) 21G or (ii) 30G needle into a bath of 100mM

CaCl2, and polymerised for 5min at room temperature. Beads were washed once in dPBS and

cultured for 6 days in ADFNK. 1µM RA was added to the medium on days 2 and 4 to induce

neural differentiation. The formation of aggregates was assessed by brightfield microscopy.

Data were collected for n=1-2 experiments with 2-3 beads imaged per condition.

Results

Embryonic stem cells formed aggregates at a reduced cell density

ESCs encapsulated in alginate at a reduced cell density of 2x106 cells/mL successfully formed

aggregates by day 6 of differentiation (see Figure 9). The aggregates were a mixture of cir-

cular and tubular shapes, but no aggregates were observed migrating across the edges of
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Figure 9: Brightfield images of encapsulated and escaped aggregates at a reduced cell
density. ESCs encapsulated at a cell density of 2x106 cells/mL formed aggregates by day 6
in 21G (a) and 30G (b) beads. The encapsulated aggregates were circular (red arrowheads),
or elongated in shape (yellow arrowheads). There were fewer escaped aggregates at this cell
density (c) relative to the higher cell density of 5x106 cells/mL (d). Scale Bar 500µm

.

the beads. The number of aggregates migrating from the beads was reduced and very few

aggregates were observed in the medium at day 6 (compare Figure 9c and d). This indicated

that a lower cell density was optimal for maintaining the cells inside the scaffold compared

with the higher cell density of 5x106 cells/mL.

Gelatin concentration did not affect aggregate formation

Brightfield images of alginate beads (HMW plus 0.1% or 0.5% gelatin) across 6 days of

differentiation showed that aggregate formation was visually comparable between low-gelatin

and high-gelatin conditions (see Figure 10). Some beads with low-gelatin conditions appeared

to have more aggregates in the scaffold (see Figure 10, D4, 0.1% versus 0.5%), but this was

not observed for all beads per gelatin condition. The low-gelatin condition generated beads

with rounder aggregates whereas the high-gelatin condition generated more elongated/tube
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Figure 10: Brightfield images of aggregate formation from ESCs for high and low gelatin
concentrations. Aggregate formation was similar across both conditions, with aggregates
visible from day 4 of differentiation. Some low-gelatin beads produced higher numbers of
round aggregates compared to high-gelatin beads, but this was not consistent across all
beads. n=2, 2-3 beads per condition. Scale Bar: 500µm
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shaped aggregates. This difference could be due a change in the porosity of the alginate at

the higher gelatin concentration or may represent a different ability of the encapsulated cells

to interact with the alginate matrix and form rounded aggregates.

Conclusion

These results showed that a cell density of 2x106 cells/mL and a 6 day differentiation protocol

were suitable for ESC differentiation within alginate beads. There were no differences in

the formation of aggregates between the low- and high-gelatin conditions, thus subsequent

experiments used 0.1% v/v gelatin. The encapsulated ESCs successfully formed aggregates by

day 6 of culture in all conditions tested, and there were very few aggregates free floating in the

medium, indicating that these conditions were more suitable for maintaining the encapsulated

cells within the scaffold compared to the conditions in the previous experiments.

3.3 Assessing the viability of encapsulated embryonic stem cells

In the previous experiments, there were some alginate beads that did not contain any ag-

gregates after 6 days of cell culture. This result indicated that there was variability within

the beads which affected ESC aggregation. It was possible that an inconsistent cell-alginate

suspension resulted in some beads having a cell density below the minimum threshold for cell

viabiltiy (2x106 cells/mL alginate), thus the encapsulated cells did not form aggregates in

some beads. Increased mixing of the cell-solution would improve homogeneity, however ex-

tended mixing would expose the cells to high shear forces and also reduce viability.169,171 As

an alternative, in the present experiments the cell density was increased from 2x106 cells/mL

to 3x106 cells/mL alginate. This cell density was chosen to increase the individual bead cell

density to maintain cell viability, whilst keeping the cell density low enough to limit aggregate

migration out of the beads.

Methods

CGR8 were encapsulated in HMW alginate of 1% w/v in DMEM:0.1% v/v gelatin at a cell

density of 2x106 cells/mL alginate. Beads were cultured for 6 days in ADFNK and 1µM RA

was added on days 2 and 4 to induce neural differentiation. Viability was tested on days 2,

4, and 6. At each timepoint, beads were incubated in 2mL of live/dead buffer (20µM FDA;

30µM PI). The assay was also carried out using 100nM TO and 10µM PI with similar results.
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Data were collected for n=2 experiments, 2-3 beads per experiment. Beads were imaged

using a Zeiss A1 Inverted Epifluorescent Microscope using Axiovision software (v4.0).

Results

Cell viability was high in alginate beads

Live/dead assay showed that encapsulated cells contained viable cells over 6 days of culture

(see Figure 11). On day 6, larger aggregates contained live cells (green labelled cells) but

smaller aggregates contained dead cells (red labelled cells). The cell death in single cells

was expected as aggregation is required for cell survival in alginate hydrogels.172 There was

variable aggregation and some beads did not form any aggregates by day 6. The encapsu-

lated aggregates varied in shape from circular to elongated/tubular (see Figure 9). Round

aggregates contained dead cells clustered in the center, and elongated aggregates contained

dead cells at the tips of the aggregates. These findings were consistent with Wilson et al.,

(2014), who observed dead cells at the tips of elongated aggregates within alginate beads.179

Conclusion

ESCs encapsulated in alginate remain viable over 6 days in culture. The viability of aggre-

gates within the beads may be influenced by internal porosity, elastic modulus or alginate

molecular weight, thus to examine the effects of alginate molecular weight on cell viability,

the following experiments compared aggregate formation by encapsulated ESCs in alginate

hydrogels formed from two different types of alginate.

3.4 Embryonic stem cell aggregate formation and viability in LMW versus

HMW beads

This experiment examined the effects of two types of alginate on the viability and extent

of aggegate formation. The two alginates tested were low molecular weight, low viscosity

alginate with a high G:M ratio (60:40), and high molecular weight, high viscosity alginate

with a low G:M ratio (40:60). The alginate G-residues contain ionic binding sites, thus a

higher G-residue content alginate has a stiffer elastic modulus relative to a low G-residue

content alginate due to the increased number of crosslinks present within the structure. The

higher number of crosslinks creates alginate hydrogels with a smaller pore size relative to low

G-residue content hydrogels.149,156,177

– 56 –



3.4 LMW vs HMW beads Characterisation of alginate hydrogels
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 11: Live/dead assay showed that alginate beads contained viable cells across 6 days
of culture. By day 2, there were live and dead single cells within the beads; by day 4, the
cells formed aggregates inside the beads; by day 6, there were large numbers of aggregates,
containing both live and dead cells (yellow arrowheads). n=2 with 2-3 beads per condition.
Scale Bar: 1mm

.

Methods

To investigate the effect of alginate molecular weight on ESC aggregation, LMW and HMW

alginate solutions were prepared at 1% w/v in DMEM-high glucose, 0.1% v/v gelatin. Details

for the alginates used are listed in Table 4. CGR8 were resuspended in each alginate solution

at a cell density of 3x106 cells/mL alginate, polymerised and cultured in ADFNK. 1µM RA

was added on days 2 and 4 to induce neural differentiation. The formation of aggregates was

assessed by brightfield microscopy on day 0, 2, 4 and 6 of differentiation. Live/dead assay

was used to examine differences in viability between aggregates in the LMW and HMW

beads, and to assess the cell viability at the increased cell density of 3x106/mL. On day 6 of

differentiation, beads were transferred to a 12-well plate, and incubated in live/dead buffer

(100nM TO; 20µM PI) for 5-10min at room temperature. Beads were imaged on a Zeiss A1

Inverted Epifluorescent Microscope using Axiovision software (v4.0).
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Live/dead images were quantified in ImageJ. Live and dead images were analysed si-

multaneously: for each live/dead image pair, the background was subtracted, images were

thresholded and particle analysis was carried out to count the number of aggregates per con-

dition containing live and dead cells. The number of aggregates containing live and dead cells

was converted to a percentage of total aggregates counted in Image J and the results were

analysed using a t-test in GraphPad Prism (v7.0).

Table 4: Product details for LMW and HMW alginate solutions

Product Details LMW HMW

Supplier Sigma #71238 Acros Organics #17777

Viscosity (at 1% w/v) 100-200 mPas 350-550 mPas

Molecular weight 100,000-200,000g/mol 450,000-550,000g/mol

G:M content 65-75%:35-25% 40%:60%

Results

Alginate composition affects aggregate formation within beads

The formation of aggregates by the encapsulated cells was assessed by brightfield microscopy

at day 6 of differentiation (see Figure 12). Both the LMW and HMW beads had aggregate

formation within the scaffold, and aggregates were observed within the beads by day 4 of

differentiation. As was observed in the previous experiments (at cell densities of 2x106/mL

and 5x106/mL), when ESCs were encapsulated at 3x106 cells/mL alginate, the encapsulated

cells form aggregates of both a rounded/circular and elongated/tubular shape. This effect

was observed in alginate beads formed from low and high molecular weight alginate.

Aggregate shape varies across the depth of the beads

LMW and HMW alginate beads contained both circular and elongated aggregates (see Figure

13). Brightfield images across different planes of the beads showed that circular aggregates

were confined to the centre of the bead (see Figure 13a and b), and elongated aggregates

formed near the edges (see Figure 13c and d). These results further support the theory that

the internal topography and porosity of the alginate beads influences aggregate formation.

The porosity of the scaffold affects the diffusion of oxygen, waste and nutrients;180 as the
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Figure 12: Brightfield images of aggregate formation in beads of two alginate molecular
weights. There was aggregate formation in both LMW and HMW alginate beads, with
rounded aggregates visible from day 4 (red arrowheads). Although some aggregates in
LMW were very large (∼300µM), these were infrequent, and the majority of beads contained
smaller circular and tubular aggregates. Scale Bar: 500µm

.
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Figure 13: Brightfield images of aggregate formation at day 6, showing aggregates at the
the centre and exterior of alginate beads. There were changes in aggregate shape according
to their location within the beads. Aggregates near the edges/exterior of the beads were
elongated in shape, and those in the central mass of the beads were more circular and
compact. Scale Bar: 400µm

.

cells proliferate/aggregate within the beads, competition for nutrients or space may result

in the aggregates migrating toward the culture medium. Alternatively, it was possible that

the elongated aggregates were migrating out of the bead; matrix-dependent cell behaviour

has been observed in mouse ESCs encapsulated in gelatin-glutaraldehyde scaffolds, with cells

displaying varied affinities for the matrix at different stages of differentiation.139 In the

present experiments, aggregate migration could indicate that as differentiation progresses

the differentiated aggregates migrate towards the culture medium, or away from the alginate

scaffold due to a change in preference/compatability with the alginate scaffold.

Molecular weight of alginate did not affect viability

The live/dead assay showed that both HMW and LMW alginate beads contained viable

encapsulated cells at day 6 of differentiation (see Figure 14, p. 62). These results were
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similar to those from the 2x106 cells/mL cell density experiment (see Figure 11, p. 57).

The majority of live cells (green) were observed within cell aggregates, dead cells (red) were

observed as single cells or within smaller aggregates, and the elongated aggregates contained

dead cells at the tips of the aggregates (see Figure 11, p. 57, white arrowheads).

The proportion of aggregates containing live/dead cells was counted for each alginate con-

dition (see Figure 15). The results of a two-tailed t-test showed that there was no significant

difference between LMW and HMW beads in the number of aggregates containing live or

dead cells (t(1)=5, p=0.1257).

Conclusion

Both LMW and HMW beads showed aggregate formation by the encapsulated ESCs, and

there were no observable differences in the cell viability or the shape and size of the encap-

sulated aggregates. There were aggregates of different shape and size at the exterior and the

interior of the beads but this was true for both LMW and HMW beads. Based on the liter-

ature the G:M ratio and molecular weight of the alginates was LMW and HMW beads were

expected to have a significant effect on cell behaviours, thus these results were unexpected.

As these experiments could not definitively identify which alginate type was more suitable

for ESC encapsulation, all subsequent experiments used alginate hydrogels of both subtypes.

The following chapters will encapsulate ESCs in alginate hydrogels of LMW and HMW to

determine whether the encapsulated aggregates are differentiating to a neuronal fate, and

investigate if the G:M ratio of the alginate significantly affects the cell types generated by

differentiatiing the encapsulated ESCs.

3.5 Discussion

This chapter outlined the experiments carried out to identify the optimum alginate hydrogel

conditions for the encapsulation on mouse ESCs. The experiments aimed to demonstrated

that alginate biomaterials could maintain high cell viability of the encapsulated cells during

cell culture, and that the alginate beads supported ESC aggregate formation. The alginate

composition variables that were examined are listed in Table 3, p.48.
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Figure 14: Cell viability of encapsulated ESCs in LMW and HMW beads. Alginate
beads of LMW and HMW contained both live cells (green labelled cells) and dead cells (red
labelled cells) on day 6 of differentiation. The merged images demonstrated that aggregates
contained a mixture of live and dead cells, with the dead cells localised to the tips of
tube/lens shaped aggregates (white arrowheads). BF: brightfield; Scale Bar: 500µm

.
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Figure 15: Quantification of cell viability in LMW and HMW beads. The percentage
of aggregates containing live and dead cells was quantified using ImageJ, however a two-
tailed t-test observed no significant difference between alginate conditions (p=0.1257). n=2
technical replicates for 2 independent experiments. Data are presented as mean and SEM.

.

3.5.1 Understanding alginate composition is critical for 3D culture applications

An initial experiment showed that alginate:DMEM hydrogels were superior to alginate:ddH2O

hydrogels for supporting ESC aggregation inside the scaffold. The aggregates inside the

alginate:DMEM beads were observed mgirating out of the scaffolds, with a high rate of

migration in the beads formed using smaller 30G needles. The extent of aggregates escaping

from the 30G beads restricts their utility cell encapsulation, as the cell viability in alginate is

dependent on cell density.150 Retaining more cells inside the scaffold is necessary to predict

higher cell viability, thus uncontrolled migration from the beads should be minimised. Addae

et al., (2012) reported increased neuronal differentiation observed in their study due to the

higher number of cells available within the scaffolds to be differentiated , and not due to

an increased percentage of cells differentiating.43 Their results support the choice of a 21G

needle to create larger beads for subsequent experiments, as the lower number of escaped

aggregates can retain a larger number of cells within the scaffold to be differentiated.

Alginate hydrogels require divalent ions to bind the structure together, and the hydro-

gels lose their mechanical integrity in the presence of monovalent ions, as the monovalent

ions in the medium compete with divalent calcium ions for binding sites on the alginate G-
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residues.120,169,180–182 In cell culture, the negatively charged alginate polymerises with the

positively charged salts in the culture medium,183,184 and over the course of differentiation,

this slow crosslinking contributes to the degradation of the beads. This effect may have con-

tributed to aggregates near the exterior of the beads being released into the medium. One

explanation for the larger number of aggregates escaping from the 30G beads was that the

beads produced using a 30G needle were smaller in diameter, thus a larger proportion of these

beads disintegrated relative to their size during cell culture and permitted a higher number

of aggregates to migrate out of the beads. Alternatively, the levels of aggregate migration out

of the beads may also have reduced the mechanical strength of the beads as the aggregates

burst through the exterior of the beads, which would result in a cumulatively larger number

of cell aggregates to migrate out of the beads.169,185

This slow degradation of alginate hydrogels was both an advantage and a limitation of

using alginate as a cell culture scaffold. as the alginate degradation results in a change in

the elastic modulus of the scaffold over time, the behaviour of the encapsulated cells should

be monitored to ensure that the degradation of the scaffold does not have an uncontrolled

effect on the cell fate or behaviour.174,186 For the purposes of these experiments, this was a

limitation of using alginate, as stem cell spreading,187 and differentiation6 are closely inter-

linked with the elastic modulus of a biomaterial scaffold. Conversely, for alginate hydrogel

in vivo applications, as the alginate was unstable in a physiological environment, carefully

controlling the rates of degradation offers a technical advantage over other hydrogels, and

could provide a method of controlled degradation of an implanted alginate cell scaffold.184

This controlled disintegration could be used for sequential or time-controlled release of dif-

ferent cell types/growth factors from the scaffold into the implantation site, or to ensure the

scaffold remains in place for a sufficient period of time to exert the desired effects on the

implantation site, before being degraded and excreted.

3.5.2 Examining the relationship between alginate internal structure and em-

bryonic stem cell behaviours

The viscosity of alginate solutions is dependent on the molecular weight of the alginate, which

is in turn dependent on the number, length, and ratio of the G-residues to M-residues in that

specific alginate.149,156 The G-residues crosslink with the divalent ions in the crosslinking

buffer (in this case, CaCl2), but the M-residues do not contain ionic binding sites, thus a
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higher M content within the alginate solution predicts a larger porosity within the scaffolds.5

The porosity of the hydrogel is linked to the mechanical stability, and diffusion of nutrients,

oxygen and waste through the scaffold.180 Alginate salts with a high G:M ratio form hydrogels

with a smaller pore size but a more mechanically stable hydrogel, whereas a high M:G ratio

results in larger pore size and less mechanical stability.5,148 These factors were independent of

the molecular weight of alginate, as HMW alginate can be irradiated to reduce the molecular

weight whilst keeping the G:M ratio constant.171 The alginate used for the above experiments

was HMW, high viscosity with a high M:G ratio (60%:40%), and may have resulted in reduced

cell viability by shear stress on cells during mixing due to the high viscosity.169

This internal variability in elastic modulus (reducing cell spreading) and internal porosity

(affecting cell proliferation) may have contributed to the failed cell aggregation inside the

empty beads observed in these experiments, and in previous studies.178,179,187 The specific

localisation of viable cells between circular and tubular aggregates may support this theory:

the cell-matrix interaction is elastic modulus dependent such that variations in the internal

topography/stiffness of the beads produced aggregates of different shapes/sizes. Wilson et al.,

(2014)179 proposed that the shape of the aggregates was dependent on localised weaknesses

of the bead porous structure. As the alginate used in this experiment had a high M:G ratio,

the pores would have been larger but with weak stability, and as the aggregates increased in

size, they may have outgrown the pore space and broken down the internal structure of the

beads. The prevalence of dead cells within the circular aggregates suggested they reached a

restrictive boundary in this localised weakness, where a higher proportion of G-residues were

located next to each other, and without room to expand the cells experienced cell death.

Contrastingly, the elongated aggregates may have formed along a larger weak fissure within

the bead, and the dead cells at the tips of these elongated aggregates might indicate the point

at which those aggregates met a high concentration of crosslinked G-residues which created

a restrictive boundary in the beads.179

3.5.3 Alginate composition influences cell-matrix interactions

The results from experiments comparing alginate beads of LMW and HMW beads were un-

expected. Based on the literature, it was predicted that there would be observable differences

in the level of cell aggregation in the scaffolds due to the differences in G:M ratios and sub-

sequently porosity of the alginate solutions.105,120,171 The G-residue content of the LMW
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alginate was higher than the G-residue content of the HMW alginate (60 versus 40%, re-

spectively), and as the G-residues are responsible for crosslinking with CaCl2, this predicted

that LMW beads would have a higher elastic modulus, more stable internal structure and

and smaller pore size compared to HMW beads.120,148,154 These variations were expected to

produce changes in the size or shape of the encapsulated aggregates in the LMW and HMW

alginate beads but that effect was not observed. The HMW alginate was thus expected to

have a negative effect on cell viability due to the higher shear forces on the cells during

mixing, but this result was also not observed here - both LMW and HMW beads contained

viable aggregates of circular and elongated shape. The similar results between the two algi-

nate subtypes may mean that the differences in G:M ratio and porosity are exerting different

effects on the cells, but not affecting viability or aggregation.

One explanation is that cell proliferation rates may have differed between the two algi-

nate types. Previous experiments showed that molecular weight affects the initial cell viability

(immediately after encapsulation) but not the proliferation rates,163,169 whereas alternative

studies have shown that the properties of alginate beads can affect proliferation and migration

depending on the ability of the cells to interact with the matrix.188 The rates of proliferation

within the beads was not tested for this thesis, but as the cell viability and proliferation were

expected to change according to the internal characteristics of the beads, future experiments

to assess the proliferation profiles of in both alginate types might identify whether different

proliferation rates resulted in similar sized aggregates between LMW and HMW beads. Poh

et al.,(2014)81 reported that single ESCs plated onto a fibrin scaffold were capable of prolifer-

ating to form an aggregate which contained organised germ layers. Single ESCs encapsulated

in alginate were expected to undergo cell death,150 however given the wide variability in cell

behaviour depending on the alginate characteristics, it was possible that some single cells

proliferated here and formed aggregates which would have affected the number and size of

the aggregates observed in brightfield images.

Alternatively, the internal composition may have affected the ability of the cells to interact

with the matrix, but not with each other, thus they maintained viability through cell-cell

interactions despite the G:M variation between alginates. The images in Figure 13 showed

that aggregate shape changed across different planes of the beads, with circular aggregates

in the central mass of the bead, and elongated aggregates at the exterior. The cause of this

localised variation might depend on substrate stiffness, crosslinking buffer, and the stage of
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cell differentiation. Ali et al., (2015) showed that encapsulated ESCs have changing affinities

for a scaffold according to the stage of cell differentiation.139 Their study showed that prior to

the expression of β-tubulin, ESCs were capable of adapting to the elastic modulus of a scaffold,

but after β-tubulin expression, the cells lost this ability and were strongly influenced by the

scaffold stiffness. In the present study, the elongated aggregates may therefore indicate that

the cells were migrating out of the scaffold after they differentiate as the hydrogel properties

were no longer suitable for those cells.

The change in aggregate shape between the centre and edge of the beads could indicate

there was a non-uniform substrate stiffness within the beads, due to one of two changes in the

alginate: (i) inhomogeneous crosslinking, or (ii) uncontrolled degradation in culture. Alginate

polymerisation with CaCl2 is gentle for cells, but is difficult to control due to the fast rate of

gelation and typically generates hydrogels with a non-uniform structure.154,189 This creates

inconsistency between the beads and across experiments, in terms of internal porosity and the

stiffness gradient from the exterior to interior of the bead. This represents an uncontrolled

factor in these experiments and could explain why some beads failed to form any aggregates,

when others had aggregates of varied size/shape, and also provides an explanation for the

varied aggregate shape across different planes of the beads.

As mentioned above, alginate beads degrade slowly in medium due to the divalent cal-

cium ions of the structure competing for binding sites with the monovalent ions in the culture

medium.169 The exterior of the beads was in direct contact with the medium, causing degra-

dation of the scaffold and changes the elastic modulus of the beads. Based on the findings

of Ali et al., discussed above, if the encapsulated ESCs experienced a change in stiffness as

the exterior of the beads degraded, this would have lesser effect on the aggregates at day 4

relative to day 6. This may also explain the change from circular aggregates at day 4 to a

mixture of circular/elongated aggregates at day 6, where the differentiated cells have started

to change their formation and migrate out of the beads. Future experiments to investigate

this effect could quantify the elastic modulus of the beads at different timepoints to assess

any significant differences in aggregate behaviour according to elastic modulus. Another set

of experiments could incorporate CaCl2 washes between medium changes to re-polymerise

the beads and return the elastic modulus to the original state.
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3.6 Chapter summary

The results from chapter 3 showed that ESCs encapsulated at a cell density of 3x106 cells/mL,

in alginate beads of 1% alginate:DMEM with 0.1% gelatin, and extruded using a 21G needle

provide suitable conditions for ESC encapsulation and aggregate formation. Beads formed

under these conditions formed aggregates over 6 days of differentiation, contained viable

cells after 6 days in culture and had low levels of aggregate migration from the beads. The

results did not show any observable differences between beads formed from LMW and HMW

alginate, thus both alginate types will be used for subsequent experiments.

Chapter 4 will investigate whether mouse ESCs encapsulated in alginate beads form

EBs, as defined by the presence of cells from all three germ layers within the aggregates.

EBs recapitulate early embryogenesis in vitro and generate cells from all three germ layers,

endoderm, mesoderm, and ectoderm. The experiments will assess the neural differentiation

of encapsulated ESCs, and to what extent this compares with cells differentiated using an

EB suspension protocol. The presence or absence of the three germ layers will be tested by

ICC, and the results from LMW and HMW beads will be compared against control EBs. The

aim of these experiments was to verify that alginate scaffolds are suitable for inducing neural

differentiation of ESCs, and the expression of neural markers Nestin and Pax6 will be tested

by quantitative PCR to verify whether LMW or HMW beads are optimum for promoting a

neural cell fate.
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Chapter 4. Optimising alginate hydrogels for mouse embryonic

stem cell neural differentiation

4.1 Introduction

The results from Chapter 3 identified the optimum conditions in LMW and HMW alginate

beads for ESC encapsulation and aggregation. An advantage of using alginate hydrogels

for 3D culture is the tunability of the biomaterial: small changes to the molecular weight,

viscosity, or concentration of crosslinking buffer can generate an alginate hydrogel of the

desired porosity and elastic modulus.109,140,150,159 ESCs encapsulated in alginate beads have

previously been differentiated to neurons, insulin-producing cells, and hepatocytes.7,43,150

Several studies have reported the formation of aggregates from murine stem cells encapsulated

within alginate beads7,150,159,163 but to date, no study has investigated if these aggregates

are canonical EBs, as defined by the presence of cells from the three germ layers (endoderm,

mesoderm, ectoderm). Gerecht-Nir et al.(2004)165 reported that human ESCs cultured on

alginate hydrogels aggregated to form canonical EBs, expressing cells from the three germ

layers, however the ESCs were seeded onto a pre-gelled hydrogel, whereas the present study

introduced the cells into the alginate before polymerisation. Using biomaterials to control

the ESC/EB microenvironment offers new paradigms for investigating and controlling stem

cell fate,44 and creates novel avenues for using cell-laden or growth factor-loaded biomaterials

to investigate cell differentiation, proliferation and migration.143,144,190

This chapter investigates the ability to generate canonical EBs from mouse ESCs encap-

sulated in alginate beads. The encapsulated ESC-derived aggregates and EBs were compared

by examining the presence of cells positive for markers of the three germ layers by ICC: endo-

derm (α-fetoprotein, AFP), mesoderm (α-smooth muscle actin, SMA), and ectoderm (Nestin,

β-III-tubulin). As the main purpose of this thesis was to develop a novel platform for ESC

differentiation, the experiments aimed to determine which alginate composition (LMW or

HMW) was optimal for ESC differentiation by comparing cell viability, aggregation and the

presence of cells from the three germ layers between the two alginates.The gene expression

of neural progenitor marker Nestin and immature neuronal marker β-III-tubulin was com-

pared to determine whether alginate beads supported similar levels of neural differentiation

to standard EBs.
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4.2 Methods

4.2.1 Differentiation of encapsulated embryonic stem cells to neuronal fate

LMW beads, HMW beads and EBs were cultured for 6 days in ADFNK with 1µM RA added

on days 2 and 4 to induce neuronal differentiation. On day 6, EBs and beads were collected,

fixed and cryosectioned (see subsection 2.4). Samples were immunostained for markers of

each germ layer: endoderm (AFP), mesoderm (SMA), and ectoderm (Nestin, β-III-tubulin).

To identify any spatial differences in differentiation toward each germ layer, the EBs and

beads were serially sectioned at 15µm and 20µm, respectively, and samples were imaged on

3 planes, each separated from the next by 150µm to 200µm (see Figure 16). All of the EBs

and beads from each experiments were cryopreserved in one embedding mould. Primary

antibodies were rabbit anti-AFP, mouse anti-SMA, rabbit anti-β-III-tubulin, and rat anti-

Nestin. Alexafluor secondary antibodies were goat anti-rat 594, goat anti-rabbit 488, goat

anti-rabbit 568, and goat anti-mouse 488 (see Table 1, p.38). Images were collected for

n=3 experiments, 3 technical replicates per sample (EBs and beads), and 2-3 beads/EBs

were imaged per technical replicate. Samples were imaged using a Zeiss Axioimager A1

fluorescence microscope and Axiovision software (v4.0).

4.2.2 Pixel quantification of immunofluorescent images

Serially sectioned beads and EBs were imaged and semi-quantitative analysis was carried out

by pixel counting using ImageJ. To prepare the images for pixel counting, images for each

condition (AFP, SMA, Nestin, β-III-tubulin, Hoechst) were stacked, scaled and thresholded.

Particle analysis was set to include object areas of 500µm2 - infinity and a circularity of

0.00-1.00. Images were analysed and data was exported to Microsoft Excel. For each image,

the area of germ layer marker was divided by the area of Hoechst; this ratio was used to

control for the higher number of cells in EBs versus alginate beads. Pixel counting was used

to measure any difference in the markers of germ layer present across serial sections per

sample (A, B and C; see Figure 16). Data were tested for outliers using the robust regression

and outlier removal (ROUT) method at 10%, and for normality using Shapiro Wilk. Cleaned

data were analysed by two-way analysis of variance (ANOVA) and multiple comparisons were

carried out with Tukeys post-hoc analysis in GraphPad Prism (v7.0).
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4.2.3 Depolymerisation and viability of harvested cells

Three depolymerisation buffers were used to dissolve the alginate beads and harvest the

aggregates. Depolymerisation buffers were prepared in ddH2O and buffered to pH 7.4:

– 100mM Sodium Citrate

– 50mM EDTA + 95mM NaCl + 20mM Hepes

– 50mM Sodium Citrate + 10mM Hepes

The alginate beads were collected on day 6 of differentiation, washed once in dPBS and

incubated in 5mL of buffer until the beads were fully dissolved (3-5min for LMW; 8-10min for

HMW). During depolymerisation, alginate crosslinks are disrupted and the solution becomes

more viscous; 5mL of dPBS was added after depolymerisation to dilute the buffer and reduce

the viscosity before centrifuging to protect the cells from shear stress. The aggregates were

pelleted by centrifugation (3min, 200g), and resuspended in trypsin-EDTA 0.25% (5min,

room temperature) to dissociate the aggregates into single cells. The cell suspension was

recentrifuged (5min, 200g) to pellet, and resuspended in 1mL of live/dead buffer consisting

of 100nM TO and 10µM PI for 5-10min (see subsection 2.3, p.36). The percentage of live and

not viable cells (injured + dead) was counted by flow cytometry; 10,000 events were collected

per sample using a BD Accuri Flow Cytometer and C Flow Sampler software. Statistical

analysis was carried out in GraphPad Prism (v7.0). Data were tested for outliers using the

ROUT method at 10%, the cleaned data were tested for normality by Skapiro-Wilk, and

analysed using a two-tailed t-test or two-way ANOVA.

4.2.4 Gene expression analysis

The relative expression of neural genes Nestin and Pax6, and pluripotency gene Pou5f1

were compared between EBs, LMW beads and HMW beads by quantitative PCR. RNA

was extracted using a Qiagen RNeasy kit, and cDNA synthesis was carried out using the

Qiagen Quantinova kit; quantitative PCR was run using a Qiagen Quantinova SYBR green

kit (see subsection 2.7, p.42 for detail). The primers are listed in Table 5. Samples were run

in triplicate for 3 independent experiments. Data were tested for outliers using the ROUT

method at 10%, tested for normality using the Shapiro-Wilk test. The expression of neural

genes was analysed by two-way ANOVA using GraphPad Prism (v7.0).
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Table 5: Details of primers used for quantitative PCR

Name Sequence (5’ - 3’) bp Tm GC (%)

Fwd Pou5f1 GAAGCCGACAACAATGAGAA 20 62.8 45

Rev Pou5f1 TCTCCAGACTCCACCTCACA 20 63.7 55

Fwd Pax6 CGGAGGGAGTAAGCCAAGAG 20 65.0 60

Rev Pax6 TCTGTCTCGGATTTCCCAAG 20 64.1 50

Fwd Nestin TTGCAGACACCTGGAAGAAG 20 63.1 50

Rev Nestin TCAAGGGTATTAGGCAAGGG 20 62.7 50

Fwd β-actin AGAGGGAAATCGTGCGTGAC 20 66.5 55

Rev β-actin CAATAGTGATGACCTGGCCGT 21 66.0 52

Figure 16: Cryosection slicing plan for alginate beads. ICC was carried out on serial
sections of alginate beads to identify spatial effects on cell differentiation. For each condition,
all of the beads were embedded in OCT embedding medium and cryopreserved in one brain
mould (1), samples were serially sectioned at 20µm for beads, and 15µm for EBs (2), serial
sections were separated so slice A to B, and slice B to C were 200µm apart for beads, and
150µm apart for EBs (3), and multiple beads per slice per condition were imaged (4).
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4.3 Results

4.3.1 Encapsulated aggregates in alginate were canonical embryoid bodies

The presence of cells from the three germ layers within EBs and alginate beads was inves-

tigated using immunofluorescent staining. The results demonstrated that EBs, LMW and

HMW beads contained cells positive for endoderm (AFP), mesoderm (SMA), and ectoderm

(nestin, β-III-tubulin) indicating the presence of cells from each of the three germ layers (see

Figure 17). The images showed that aggregates contained cells positive for each germ layer,

for each differentiation condition. The presence of the cells from all three germ layers within

all three conditions indicated that these protocols were suitable for generating cell types from

each of the three germ layers. These results also demonstrated that alginate beads of LMW

and HMW were suitable hydrogels for neural differentiation, as determined by the presence

of neuroectoderm markers nestin and β-III-tubulin. This result was consistent with previous

studies using RA to induce neural differentiation in alginate hydrogels.117,150,159,191 This

novel result provides the first evidence that mouse ESCs encapsulated in LMW and HMW

alginate beads form canonical EBs, comparable to control EBs formed by suspension culture.

4.3.2 Germ layer presence may vary spatially between culture conditions

Alginate beads and EBs were serially sectioned and immunostained to investigate if there

were spatial variations in germ layer differentiation across sequential sections of the samples

(see Figure 16). Immunofluorescent images showed that there were aggregates positive for

the three germ layers across all sections imaged in all three culture conditions (LMW, HMW,

EBs). Cross-sections of the images indicated that the number of aggregates containing cells

positive for each germ layer marker may vary across different planes of the samples. For

EBs and aggregates encapsulated in HMW beads there appeared to be higher numbers of

aggregates that contained β-III-tubulin+ cells (see Figure 18) and AFP+ cells (see Figure 19).

Contrastingly, LMW beads appeared to contain higher numbers of encapsulated aggregates

that contained Nestin+ cells (see Figure 18) and SMA+ cells (see Figure 19).
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Figure 17: Immunofluorescent staining showed that beads and EBs were suitable for
inducing ESC differntiation towards all three germ layers. Encapsulated aggregates in EBs,
LMW and HMW beads cultured within the same cell culture population were positive for
β-III-tubulin (green; top row), Nestin (red; 2nd row), AFP (green; 3rd row) and SMA (red;
bottom row) indicating the presence of the three germ layers. Scale Bar: 50µm.

– 74 –



4.3 Results Neural differentiation in alginate beads
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 18: Spatial variations in β-III-tubulin and Nestin. Images showed variations in
ectoderm markers in sequential sections of EBs and beads. There appeared to be more
Nestin+ aggregates in LMW beads, and more β-III-tubulin+ aggregates in EBs and HMW
beads. Scale Bars: 50µm.
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Figure 19: Spatial variation in AFP and SMA. Images showed variations in endo-
derm/mesoderm markers at sequential sections of EBs and beads. There appeared to be
more AFP+ aggregates in EBs and HMW beads, and more SMA+ aggregates in LMW
beads. Scale Bar: 50µm.
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To further investigate whether the spatial variation in germ layer presence observed in

immunofluoresecent images were significant, pixel counting was used to quantify the area

of fluorescence in all images. As there were low levels of proliferation in alginate beads,

the HMW and LMW beads were expected to contain fewer aggregates compared with cells

cultured as EBs.150 To control for the lower number of cells in alginate beads relative to

EBs, the pixel values for each image was converted to a ratio by dividing the area of the

fluorescent signal for each germ layer marker (AFP, SMA, Nestin and β-III-tubulin) by the

area of fluorescent signal for the cell nuclei marker (Hoechst). Figure 20 shows a plot of

the ratio values for germ layer marker to nuclear staining, for each differentiation condition.

For each germ layer marker, the images were analysed by two-way ANOVA to compare the

differentiation condition (EBs, HMW beads, LMW beads) with germ layer presence or with

slice position (A, B or C).

Figure 20: Pixel counting data for ratios of germ layer marker to nuclear stain. Data from
the pixel counting quantification of germ layer markers relative to nuclear stain, for each
differentiation condition (EB, HMW, LMW). The ratio values indicated that there may
be a higher proportion of cells positive for Nestin, AFP and SMA in HMW beads relative
to EBs and LMW beads. Data are presented as mean and SEM. * indicates significance
versus LMW and HMW beads. † indicates signficance versus LMW beads. See Table 6 for
p values.

Pixel counting was used to assess the total area of fluorescence for β-III-tubulin, Nestin,

AFP and SMA relative to Hoechst between LMW beads, HMW beads and EBs (irrespective

of slice position). The ratio data from all images per group (EBs, LMW, HMW) per germ

layer marker (β-III-tubulin, Nestin, AFP, SMA) were combined and tested using a two-way
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ANOVA to compare the differentiation condition with germ layer presence. The results from

pixel counting supported the theory that there were fewer cells in beads relative to EBs:

the total area covered by Hoechst across all images for EBs (124,883µm2) was more than

2-fold greater than in HMW beads (54,157µm2) and LMW beads (41,794µm2). The results

showed a significant interaction between differentiation condition and germ layer presence

(F(6,308)=4.4, p<0.001, df=6), which indicated that manipulating the differentiation con-

dition for ESCs could be a useful tool to control the cell fate. Tukey’s post-hoc analysis

determined that there was significantly more AFP and SMA in LMW and HMW beads rela-

tive to EBs, and significantly more AFP in HMW beads relative to LMW beads; there were

no significant differences between any of the groups for the presence of β-III-tubulin or Nestin

(see Table 6). These results showed that the alginate conditions (LMW and HMW) were suf-

ficient to differentiate cells to an ectoderm cell fate at equivalent levels to EBs formed by

suspension culture. The results further suggested that for protocols aiming to induce differ-

entiation to an endoderm or mesoderm fate, alginate hydrogels might offer improved culture

conditions compared to the standard EB suspension culture: based on the current results,

HMW beads were predicted to promote higher levels of AFP differentiation relative to LMW

beads. Although the results did not show any significant differences in the presence of neural

markers Nestin and β-III-tubulin, there was a 2-fold greater proportion of Hoechst in the EB

conditions indicating a greater number of cells in this condition. This result was consistent

with previous reports that alginate limits cell proliferation, and therefore the use of an EB

suspension protocol is optimal where large scale differentiation to neural cells is required.

Table 6: Significance values for pixel counting experiment. All significance values are
adjusted p values for multiple comparisons

AFP SMA β-III-tubulin Nestin

p MD p MD p MD p MD

EB vs. HMW <.001 -0.69 .001 -1.1 .978 0.024 .372 -0.16

EB vs. LMW .033 -0.31 .020 -0.83 .459 0.14 >.99 -0.003

HMW vs. LMW .004 0.38 .404 0.25 .547 0.12 .366 0.16

MD, mean difference.

– 78 –



4.3 Results Neural differentiation in alginate beads
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.3 Spatial variability in the presence of cells from the three germ layers

To identify any spatial variations in cells from each germ layer across different planes of EBs,

HMW or LMW beads, the images from serial sections were analysed by pixel counting to

assess any interaction between differentiation condition (EBs, HMW, LMW) and slice position

(A, B or C). The results from pixel counting indicated that there was no interaction between

differentiation condition and slice position for β-III-tubulin (F(4,57)=0.31, p=0.87) or Nestin

(F(4,55)=0.54, p=0.7). There was a significant interaction between differentiation condition

and slice position for AFP (F(4,89)=2.7, p=0.035, df=4). Tukey’s post-hoc analysis found a

significantly higher proportion of AFP in Slice B relative to Slice A for EBs (p=0.036). Slice

B was located 150µm from Slice A in the sample, indicating that different cell types might

be present on different planes of EBs.

There was a significant interaction between differentiation condition and slice position for

SMA (F(4,86)=3.3, p=0.016, df=4). Tukey’s post-hoc analysis found a significantly higher

level of SMA in Slice B relative to Slice A for aggregates in HMW beads (p=0.007). Slice

B was located 200µm from Slice A in the sample, indicating that different cell types may be

present at different planes of the beads. These results were consistent with previous results

showing a bi-lateral change in endoderm presence in EBs, with one side of the EB having

a greater proportion of AFP.55 Although the analysis showed significant differences in germ

layer presence across slice position, the results should be interpreted with caution. Each

alginate bead contained multiple cell aggregates of different sizes throughout the bead, thus

as the beads were serially sectioned from top to bottom, subsequent sections (Slice A, B,

or C) may have originated from the same aggregate or from two (or more) aggregates lying

close together. Significant differences were only observed in 1/89 comparisons for AFP, and

1/86 comparisons for SMA which suggested that the observed differences perhaps do not

represent a spatial variation in germ layer presence in the aggregates, but rather a difference

in the proportions of AFP and SMA between two different aggregates within 150-200µm of

each other during sectioning. Future experiments can identify any spatial distribution of cells

from the three germ layers by sectioniong an individual EB or bead and immunostaining all

of the sections for the germ layer markers. In this way, a 3D reconstruction of the images

would provide definitive results on the spatial location of cells from each of the germ layers

across the whole EB or bead.
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4.3.4 Alginate hydrogel depolymerisation reduces cell viability

Previous research reported that cells cultured in biomaterials were more functionally active

(measured by electrophysiology) and displayed markers of mature cells earlier in cell culture

(measured using immunocytochemistry) relative to their 2D/monolayer counterparts.27,192,193

The current experiments attempted to harvest viable aggregates from the LMW and HMW

beads so that the differentiated cells could be replated to investigate the stage of differen-

tiation of the cells compared to standard EBs, or to test using electrophysiology if the cells

differentiated in 3D were more or less functionally active relative to their EB counterparts.

Three depolymerisation buffers were used to harvest the cell aggregates from alginate beads,

and the viability of the harvested cells was tested by live/dead assay using flow cytometry.

The average cell counts within the gated regions used for flow cytometry were consistent

across EBs, LMW beads and HMW beads, and for cell densities of 2x106 and 3x106 cells/mL

alginate (see Table 7). The average results from all depolymerisation experiments (see Table

7) demonstrated that alginate depolymerisation had a negative effect on cell viability. The

highest average percentage of viable cells (36%) was harvested from LMW alginate beads,

with an initial ESC encapsulation density of 2x106/mL alginate and depolymerised using

100mM sodium citrate (see Table 7, Column 1). The average viability of cells harvested from

alginate ranged from 16-36%, with a combined average viability of 25% for all depolymeri-

sation experiments. These viability ranges were between 1.9-fold and 4.3-fold lower than the

average viability of 68% for EBs. Given the limitations in retrieving the cells from the beads,

these results showed that alginate was less suitable for experimental protocols that require

the cells to be harvested from the hydrogel for downstream applications.

The data for viability counts from depolymerisation were highly variable between exper-

iments (see Table 8). No depolymerisation protocol was consistently capable of harvesting

live cells from the beads. In initial experiements at the lower cell density of 2x106/mL, the

percentage of viable cells only exceeded 50% in one experiment (see Table 8, Exp 1). The

depolymerisation/cell harvesting using the EDTA buffer was more variable than with sodium

citrate buffers, and in 2 of 5 experiments there was a very small cell pellet with fewer than

10,000 events counted by flow cytometry so these data were excluded from analysis (see Table

8, red font). The variability was thought to be due to an inhomogenous distribution of cells

within the beads due to insufficiently mixing the alginate-cell suspension, resulting in the cell
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Table 7: Average viable cell counts for depolymerisation experiments. Cell viability for EBs
was higher than for cells harvested from alginate: at a lower cell density, cells harvested from
LMW alginate have higher viability than HMW but at a higher cell density, this difference
was eliminated. +100mM sodium citrate; ++50mM sodium citrate+10mM Hepes; #50mM
EDTA+95mM NaCl+20mM Hepes. n=5 for SC/EBs; n=3 for EDTA

SC+ SC++ EDTA# EBs

Cell Density 2x106/mL 3x106/mL 3x106/mL 5x104/mL

Alginate mW LMW HMW LMW HMW LMW HMW n/a

Gated Cells 8818 8780 9668 9625 9656 9600 9064

Live Cells 3138 1402 3017 2574 2376 2165 6200

% Viable 36% 16% 24% 27% 25% 23% 68%

density for some beads falling below the minimum threshold of 2x106/mL alginate required

to maintain cell viability.150 Although increased mixing would homogenise the alginate-cell

suspension, this was not a suitable option as the extended mixing would place extensive shear

stress on the cells thus reducing viability. To counter this, the cell density was increased but

even at the higher cell density there was large variability in the percentage of viable cells,

with a maximum viability of 46% achieved in one of five experiments (see Table 8, Exp 5).

Although the between-experiment viability was inconsistent, the within-experiment viability

was consistent at both the lower and higher cell densities; this result was unexpected and

suggested that the effects on cell viability were caused by an uncontrolled factor either during

cell encapsulation or cell harvesting (see Figure 21). In experiments using a cell density of

2x106 cells/mL there was a downward trend in percentage viability over five experiments (see

Figure 21a); at the higher cell density of 3x106 cells/mL, there was no clear trend, with the

percentage of viable cells increasing and decreasing between experiments (see Figure 21b).

A two-tailed t-test found that at the lower cell density there was significantly higher via-

bility in cells harvested from LMW beads compared to HMW beads (t(18)=4.49, p<0.001).

At this cell density, there were many beads that did not contain aggregates after differentia-

tion, consistent with previous results by Wilson et al.(2014).179 This effect was attributed to

an inhomogenous cell-alginate solution resulting in the initial cell density of the beads falling

below the minimum threshold of 2x106/mL alginate. To address this issue, the cell density

was increased to 3x106 cells/mL alginate for subsequent experiments (see subsection 3.3 for

– 81 –



Neural differentiation in alginate beads 4.3 Results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 8: Individual replicates for the percentage of viable cells harvested per experiment.
There was high variability in the percentage of live cells harvested for each depolymerisation
buffer and at both cell densities. Cell densities are per mL/alginate. Data were collected for
n=5 experiments, 2 technical replicates per experiment. Values in red were excluded from
statistical analysis as the samples contained fewer than 10,000 events. +100mM sodium cit-
rate; ++50mM sodium citrate+10mM Hepes; #50mM EDTA+95mM NaCl+20mM Hepes.

Buffer: SC+ SC ++ EDTA#

Cell Density: 2x106 3x106 3x106

Exp,Rep LMW HMW LMW HMW LMW HMW

1,1 60 67 12 20 15 14

1,2 64 43 13 13 11 9

2,1 38 7 43 42 40 41

2,2 32 7 43 44 43 41

3,1 45 8 18 21 19 17

3,2 42 11 13 15 21 14

4,1 37 7 10 13 24 0

4,2 34 16 6 13 0 33

5,1 22 2 45 42 4 2

5,2 13 1 33 46 3 0

Average 35 16 24 27 25 23

full details). At this higher cell density, two alternative depolymerisation buffers were used

to try and increase the percentage of viable cells harvested: (i) 50mM sodium citrate+10mM

Hepes, and (ii) 50mM EDTA+95mM NaCl+20mM Hepes. A two-way ANOVA found no sig-

nificant effect of the alginate molcular weight or the depolymerisation buffer on the viability

of harvested cells (F(1,36)=0.16, p=0.691, df=1). The result showed that an increase in the

seeding cell density eliminated any significant difference in viability due to molecular weight,

but in absolute values, the new conditions decreased the percentage of viable cells harvested

from LMW beads, and increased the percentage of viable cells harvested from HMW beads.

This suggested that alginate hydrogels of different G:M ratio might require a specific depoly-

merisation buffer to successfully harvest viable cells. The depolymerisation buffer competes

with the CaCl2 for binding sites on the G monomers and disrupts the hydrogel crosslinks,

thus the proportion of G residues in the alginic acid influences the rate at which alginate
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Figure 21: The within-experiment variability across depolymerisation experiments. The
percentage of viable cells harvested from alginate beads over each condition followed a similar
trend within experiments, but had high variability between experiments. SC: sodium citrate;
n=5, except EDTA n=3.

hydrogels were degraded to release the encapsulated cells.169,181 Alginate hydrogels with

higher proportions of G residues would take longer to depolymerise relative to hydrogels with

a higher proportion of non-crosslinking M residues due to the greater number of crosslinks

present in a high-G alginate.

4.3.5 Neural gene expression was comparable in beads and embryoid bodies

The expression of neural (Nestin, Pax6) and pluripotency (Pou5f1) markers was assessed by

quantitative PCR to determine which alginate condition (LMW or HMW) was more suitable

for differentiation of mouse ESCs to a neural fate, and to examine the differences in gene

expression between ESCs differentiated as EBs and ESCs differentiated in alginate beads. A

two-way ANOVA did not show an interaction between the differentiation conditions (LMW,

HMW, EBs) and the expression of Pou5f1, Nestin or Pax6 (F(4,21)=1.4, p=0.260, df=4).

Tukey’s post-hoc analysis showed that there was a significantly higher expression of Pou5f1 in

both HMW beads (p=0.047) and in LMW beads (p=0.047) compared to EBs. The presence

of Pou5f1 was expected as alginate beads have previously been shown to maintain stem cell

pluripotency over long periods of time and EBs are known to maintain some ESCs at their

core during differentiation.194,195

There was no significant difference in the expression of Pou5f1 between HMW and LMW

beads (p=0.982) and there were no significant differences in the expression of Nestin or Pax6
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in any differentiation condition (p>0.999 for all comparisons). This result demonstrated that

alginate beads of HMW and LMW were capable of supporting neural differentiation, and that

there was no significant difference in the expression of Nestin/Pax6 by cells differentiated in

alginate beads relative to cells differentiated as EBs (see Figure 22). This was an unexpected

finding, as ased on the literature, the softer HMW hydrogels were expected to support higher

levels of neuronal cell differentiation compared to the stiffer LMW beads. The current ex-

periment did not investigate the presence of astrocytes markers in the differentiated cells,

however, astrocytes typically differentiate on stiffer substrates compared to neurons.196–198

As astrocytes also express Pax6, the gene expression levels in LMW and HMW beads might

represent a mixed neuron and astrocyte population, and additional experiments to quantify

the gene expression of astrocyte marker glial fibrillary acidic protein (GFAP) could determine

if there is a significant difference in the proportion of neurons and astrocytes (if present) be-

tween the beads or EBs. This may help to determine whether one alginate composition was

optimal to support neuronal differentiation of the encapsulated ESCs.

Figure 22: Gene expression for neural and pluripotency markers in beads and EBs. There
was no significant difference between the expression of Nestin and Pax6 between beads and
EBs (a), however beads had significantly higher expression of pluripotency marker Pou5f1
relative to EBs, but significantly lower expression relative to ESCs (b). *p<0.05 versus EBs,
triplicate values for n=3-4. Data are presented as mean and SEM. HMW and LMW data
were normalised to EBs = 1.

This finding supports the use of alginate hydrogels as a platform for neural differentia-

tion. There was no significant difference in the levels of gene expression for markers of neural

differentiation between the EBs and cells encapsulated in LMW or HMW beads. There was
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a high level of expression of the pluripotency marker Pou5f1 in the alginate beads which

indicated that there were residual ESCs in the alginate hydrogels that had not been differen-

tiated. Within the present protocol, this was a limitation of the cell culture paradigm however

previous research by Addae et al., (2012) used alginate hydrogels for differentiation and the

authors reported that the increased differentiation efficiency observed in their experiments

was the result of the increased availability of ESCs in the beads for differentiation.43 Their

results indicated that under the right conditions, the alginate conditions presented here could

produce a higher efficiency of neural differentiation relative to the EB condition resulting in

a higher percentage of differentiated cells but a lower total number of cells compared to EB

suspension culture. Further investigation into the mechanisms of ESC differentiation in algi-

nate might provide avenues for expanding the neuronal differentiation efficiency in alginate

hydrogels. Given the large proportion of cells that did not differentiate, this indicated that

there may be insufficient RA supplemented to the culture medium to induce differentiation of

all ESCs, or there may be microenvironmental factors at play which inhibit the change from

a pluripotent to a differentiating state. For the purpose of the experiments in this thesis,

the comparable levels of neuronal gene expression in beads and EBs indicated that these

hydrogels were suitable for the development of the novel 3D differentiation platform outlined

in Chapter 6.

– 85 –



Neural differentiation in alginate beads 4.4 Discussion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 Discussion

4.4.1 Alginate beads present a suitable platform for investigating embryogenesis

The results from this chapter demonstrated that alginate beads were capable of supporting

differentiation of ESCs into cells from the three germ layers, and that the relative gene ex-

pression of neural markers by the encapsulated EBs was comparable with EBs formed by

suspension culture. The results from depolymerisation were inconsistent and cell harvesting

produced variable percentages of live cells, suggesting that alginate is more suitable for ex-

periments were cell harvest is not required. The results found no difference between LMW

and HMW alginate beads in neural gene expression or the germ layer presence; this was an

unexpected result as the previously published results indicated that molecular weight would

affect cell differentiation. These novel results expand the range of protocols for which algi-

nate hydrogels can be adapted to include in vitro studies of embryogenesis in biomaterials,

and 3D in vitro models for investigating the interaction or development of multiple tissues

encapsulated within a hydrogel.

Previous studies on EBs in alginate hydrogels have seeded the cells onto the pre-gelled

hydrogels to investigate germ layer presence,165 or examined the effect of altering substrate

stiffness during the cell culture period on ESC differentiation toward the three germ layers.166

However, there was previously no evidence that aggregates formed by ESCs encapsulated in

alginate hydrogels before polymerisation were EBs. Given that cell culture in biomaterials

exerts significant effects on cell fate,6 stem cell spreading,187 proliferation150 and cell-matrix

interactions,199 the aggregates formed from ESCs encapsulated in alginate before polymeri-

sation might not have been EBs. Alginate beads were previously used to maintain ESC

pluripotency over long periods of time,194 so the formation of aggregates inside the alginate

could prevent downstream fate commitment and instead maintain the ESCs in a pluripotent

state, resulting in aggregates of ESCs and not EBs. The results from the present experi-

ments indicated that the aggregates formed in the alginate beads were canonical EBs, and

by verifying that the three germ layers were present in both LMW and HMW alginate beads,

this chapter has contributed to novel avenues for investigating cell differentiation in alginate,

specifically for investigating the process of embryogenesis using EB-alginate cultures. The

ability to differentiate EBs within alginate hydrogels provides several technical advantages for

in vitro cell culture. A current limitation of EB suspension culture is the inability to restrict
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the size of the EBs and prevent agglomeration of EBs or the attachment of EBs to the culture

dish; this limits control over cell differentiation and results in high heterogeneity of the differ-

entiated cell population.44,173 Larger EBs and agglomerated EBs have limited soluble factor

delivery to cells at the centre of the EB, and this creates a necrotic core.44,127,200 These

limitations can be successfully countered using the hanging drop method22 or bioreactor sys-

tems201 to limit the size of the EBs, however these methods are more labour intensive and not

easily scalable.44 EB-alginate culture can be used as an alternative to these methods, as it is

a scalable platform that can limit the size of the EBs and prevent agglomeration.150,173,194

EB-alginate culture offers an additional advantage over hanging-drop or bioreactors, as in

addition to controlling EB size, the alginate hydrogel properties can be adapted to mimic the

microenvironment of the desired cell fate, or investigate the interaction between the microen-

vironment and cell differentiation.44,159,165,200 A limitation of EB-alginate culture is the low

quantity of EBs forming inside the hydrogels compared to EB suspension cultures, due to

the limited ESC proliferation inside the alginate. A second limitation of the alginate-EB cell

cultures is the inability to harvest viable cells from the hydrogels for downstream applica-

tions such as electrophysiology, or comparisons between the 3D encapsulated cell culture and

2D counterparts. These were clear disadvantages for protocols that require large quantities

of cells for additional assays, however where the experimental aim is to investigate cell be-

haviour, control cell fate or aid tissue regeneration within a 3D environment, the results from

the current experiments demonstrated that alginate hydrogels provide a suitable platform for

these applications.

4.4.2 The influence of alginate G:M composition on differentiation

A critical feature of biomaterial cell culture is the ability to investigate how modulating

biomaterial properties such as substrate stiffness or porosity can influence cell fate and cell

behaviour. In mouse ESCs, the temporo-spatial effects of increasing substrate stiffness on

primary germ layer expression has been investigated using alginate hydrogels.166 Dixon et al.,

(2014) demonstrated using an alginate-collagen biomaterial that a temporo-spatial change in

substrate stiffness could induce cell-state switching from a pluripotent self-renewing state

to differentiation,202 and the interaction between stem cell stage of differentiation and cell-

matrix attachment has been examined using a gelatin-glutaraldehyde biomaterial.139 The two

alginate salts used in these experiments varied in molecular weight/viscosity and G:M ratio:
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(i) HMW, high viscosity, low G:M ratio, and (ii) LMW, low viscosty, high G:M ratio. The

effects of molecular weight, viscosity, and G:M ratios on alginate hydrogel properties are in-

terdependent, and their combined influence affects the behaviours of encapsulated cells.149,156

The low G:M ratio of the HMW alginate reduces its crosslinking potential with the divalent

CaCl2, resulting in a soft hydrogel with a low elastic modulus; contrastingly, the high G:M

ratio of the LMW alginate contains a larger proportion of G chains that crosslink with the

CaCl2, resulting in a stiffer and more stable hydrogel.109,148,154

Based on previous studies that used alginate salts of the same composition as the alginates

used for these experiments, the beads in the present study were estimated to have an elastic

modulus of approximately 7.3kPa for LMW beads,159 and 1-5kPa for HMW beads.5,177,203

The in vivo substrate stiffnesses for neural cell fates are 0.1-1kPa for neurons, >7kPa for

oligodendrocytes, and 9-10kPa for astrocytes, and the LMW and HMW hydrogels span these

ranges however the LMW modulus is also close to the in vivo substrate stiffness for myogenic

cell fates (8-10kPa).196–198,204 Based on the evidence from the literature, the differences

in the composition of the LMW and HMW alginates were predicted to have a significant

effect on hydrogel porosity and substrate stiffness, which subsequently were expected to

significantly influence cell differentiation toward the primary germ layers.6,169,187 In contrast

to the literature, the results from these experiments demonstrated that both LMW and HMW

alginate hydrogels contained cells from each of the three germ layers (see Figure 17, p.74),

and contained cells with comparable levels of gene expression of neural markers Nestin and

Pax6 (see Figure ??, p.??). These results indicated that the molecular weight, viscosity or

G:M ratio of alginate hydrogels may not have as significant an effect on cell differentiation

as previously reported.

The initial substrate stiffness was predicted to be 7.3kPa for LMW and 1-5kPa for HMW

beads, which falls into the in vivo range of tissue stiffnesses for neural tissues, but a de-

crease in the substrate stiffness would not inhibit neural differentiation as the in vivo elastic

modulus for neural tissues is very soft, ranging from 60Pa for notochord,205 85Pa in the neu-

ral tube,205 200Pa in the human spinal cord132,206 up to 3.4kPa in the early blastocyst.207

Ali et al., (2015) showed that neural differentiation was possible on gelatin-glutaraldehyde

biomaterial scaffolds up to 30kPa, but that the day of differentiation at the point of cell en-

capsulation was a greater predictor of the cell differentiation than the substrate stiffness.139

In their experiments, the greatest effects of substrate stiffness on cell differentiation occur on
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day 4 of differentiation at the onset of β-III-tubulin expression: cells encapsulated up to day

4 of differentiation were capable of cell-matrix interaction and successful generation of neural

precursors as prior to this point the encapsulated stem cells could adapt to their microen-

vironment.139,208 Candiello et al., (2013) reported similar results, with alginate hydrogels

of stiffnesses from 400-1400Pa showing similar levels of ectoderm expression at day 5 of dif-

ferentiation.166 The current experiments encapsulated pluripotent ESCs into the alginate

biomaterials, and based on the results from in the above studies, the early stage of encap-

sulation may mean that the ESC were more amenable to adapting to their specific alginate

environment and subsequently differentiated efficiently resulting in comparable levels of gene

expression for neural and pluripotency markers between cells in both alginate compositions.

In the current study, the encapsulated stem cells had aggregated into large numbers of

EBs by day 4 of differentiation, so it was possible that the substrate stiffness of the alginate

beads had reduced to an elastic modulus that was suitable to support EB differentiation at

this point in cell culture. Previous research showed that an alginate hydrogel elastic modulus

decreased by approximately 40% over the first 9 days of cell culture, which supports this the-

ory.183 However, EBs form their own microenvironment in suspension culture which exerts

biomechanical and chemical effects on the aggregated stem cells.44,209 This microenviron-

ment controls nutrient/waste diffusion, and can form signalling gradients with the EB, and

influences cell-cell interaction.22,44,200 Once the encapsulated ESCs in alginate have aggre-

gated to form EBs, it was possible that the influence of this localised EB microenvironment

may overcome the effect of the alginate hydrogel substrate stiffness. As the EBs provide a

localised microenvironment, the predicted differences between LMW and HMW beads based

on the previous research would not be observed, and subsequently, the localised EB microen-

vironment may have supported comparable levels of ESC differentiation, and consequently,

the comparable gene expression between the ESCs differentiated in LMW and HMW beads

relative to standard EBs.

4.4.3 Germ layer differentiation was not influenced by aggregate spatial location

Alginate beads in cell culture medium slowly degrade over the course of the culture period

due to the interaction between the monovalent ions in the medium with the guluronic acid

binding points in the alginate.169,180,208 Encapsulated aggregates escaped from the alginate

beads by day 4 of culture which indicated that they were capable of breaking the alginate
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structure, or that hte alginate had degraded sufficiently to release aggregates at the exterior

of the beads into the medium.169,179 In addition, alginate hydrogels crosslinked by extrusion

into CaCl2 have an inconsistent structure, in terms of both porosity and elastic modulus, due

to the rapid crosslinking of the divalent CaCl2 with the G-residues, which creates a stiffness

and porosity gradient from the exterior toward the interior of the beads.154,177 Cell fate

determination is significantly influenced by the porosity and substrate stiffness of alginate

hydrogels,6,178,179,187 so although the aggregates in LMW and HMW beads contained cells

positive for markers of the three germ layers, the beads were serially sectioned to examine if

there were any differences in the spatial distribution of cells from each germ layer markers

within the beads. A difference in the level of AFP at different levels of the beads and EBs was

expected based on previous research that showed EBs were non-uniform at day 6, and had an

increased density of endoderm at one end of the EBs versus the other.55 Spatial localisation

of AFP and β-III-tubulin positive cells was expected, with more AFP+ cells at the exterior

of the aggregates and more β-III-tubulin+ cells at the interior of the aggregates.195

Semi-quantitative analysis using pixel counting did not find a significant difference in

the presence of cells positive for the germ layer markers across sequential sections of the

beads. This suggested that the differences in G:M ratio between the two alginate hydrogels

did not exert the significant effect on cell differentiation that was expected based on the

literature. The G:M composition of the alginate hydrogels is known to create beads of differing

porosity and substrate stiffness, and consequently, the aggregation and differentiation of the

encapsulated ESCs may be expected to be significantly different between the LMW and

HMW beads.166,169 Consistent with the results from Fuchs et al., (2012),55 there was a

significant difference in the presence of AFP at different locations within EBs, however as

multiple EBs were embedded per block, serial sections may have originated from two or more

EBs lying close together and not from the same structure so further experiments are required

to validate these results. The bilateral difference in AFP expression was not observed in

any of the encapsulated aggregates, which indicated that either the encapsulated aggregates

were at a different stage of development compared to the standard EBs, or perhaps that ESC

encapsulation affected the distribution of cell differentiation within the beads. The inability

to successfully harvest the aggregates from the alginate beads was a major disadvantage,

as harvesting the cells at different timepoints to examine the influence of the cell-matrix

interaction on differentiation towards each of the germ layers would be a useful in vitro
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paradigm.

4.4.4 Alginate hydrogels do not support cell harvesting after experiments

Previous literature has reported that cells encapsulated in alginate can be harvested using

sodium citrate or EDTA based buffers that de-crosslink the hydrogels and release the en-

capsulated cells.43,159 This study attempted to harvest cells from alginate hydrogels using

three different buffers however the experiments were not successful. One technical replicate

from a total of ten experiments achieved the highest viability of 67%, and changes to the cell

density and the composition of the depolymerisation buffers did not increase the consistency

or percentage of viability achieved. Alginate hydrogels have previously been shown to gener-

ate neurons with greater functional maturity compared to their EB-generated counterparts

(measured by electrophysiology),43 and to generate mature dopaminergic neurons earlier in

cell culture compared to neurons generated using a 2D differentiation system (measured by

ICC).140 The ability to harvest viable cells from the hydrogels would be useful for designing

experiments to examine the effects of 3D culture on cell development over time, the differ-

ences between ESCs differentiated in biomaterials compared to their 2D counterparts, or for

using the harvested cells for downstream applications such as electrophysiology experiments.

A previous study showed that mouse embryos embedded into a biomaterial scaffolds in vitro

had significantly different levels of development when implanted into female mice, compared

to the mouse embryos cultured on tissue culture plastics.210 In a similar way, encapsulating

and harvesting the differentiating aggregates from alginate beads at different timepoints could

create platforms for analysing the temporo-spatial changes to differentiation in response to

changes in cell-matrix interaction at different stages of development.

Research by Ali et al., (2015)139 may hold an explanation for the wide variability in

viabilitly of harvested cells between experiments. Their results showed that stem cell-matrix

interaction was dependent on the stage of differentiation of stem cells at the time of seeding

them on the 3D scaffold: pluripotent cells had the greatest ability to adapt to being cultured

on a biomaterial, whereas once cells expressed β-III-tubulin they had the lowest ability to

adapt to 3D culture. If the ESC bank had any drift from pluripotency, and underwent

spontaneous differentiation between passages (and thus between alginate experiments), each

subsequent alginate experiment would have had a lower number of pluripotent stem cells

encapsulated, and a higher number of spontaneously differentiated cells. Given that the
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ability to adapt to the 3D environment changes with the level of pluripotency, any partially

differentiated cells would not have interacted in the same way as the ESCs with the alginate

matrix, and this may have had negative effects on cell viability. The pluripotency of the

stem cell populations was not verified before encapsulation, thus future experiments could

investigate if this variable was responsible for the variability between the experiments.

Although the experiment did not successfully harvest the encapsulated cells, they high-

lighted a potential benefit of using alginate hydrogels of different composition for 3D cell

culture. As mentioned above, alginate beads degrade over the course of the culture period

due to monovalent salts in the cell medium competing with CaCl2 at G monomer binding

sites.169 Alginate hydrogels with a high G:M ratio degrade at a faster rate than those with a

high M:G ratio, due to the larger proportion of G residue binding spots being de-crosslinked

in the hydrogel155,177 and LMW hydrogels degrade faster due to their shorter G and M chains

versus HMW alginates.155,165,177 This effect was observed during depolymerisation with the

LMW beads degrading and releasing their encapsulated aggregates faster than the HMW

beads. The G:M ratio and the length of the G or M chains of an alginic acid composition

are interlinked with the rate of degradation of the hydrogel and this factor provides the op-

portunity to tightly control the rate of degradation of an alginate hydrogel. If the alginate

hydrogels will be used for in vivo implantation for cell transplants or release of growth factors

for a paracrine effect, the ability to temporally control the degradation of the hydrogel offers a

technical advantage that can be exploited to allow slow release of incorporated growth factors

into the medium. Alternatively a controlled degradation of the beads in future experiments

could examine the effects of substrate stiffness on cell differentiation by encapsulated ESCs.

The stiffness of an alginate hydrogel has been observed to decrease rapidly during the first

week in cell culture183,186 and the rate of alginate degradation in vivo can be estimated based

on the concentration of potassium and NaCl in the localised area surrounding the implant

site.184 The ability of alginate to degrade in a physiological environment was therefore both

a limitation and a benefit of using these hydrogels, and the ability to use alginate as a bio-

material depends on the purpose of the platform, the required time in cell culture or in vivo,

the cell types encapsulated and the specific composition of the hydrogel being used for cell

encapsulation.
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4.4.5 Future research based on the current experiments

The current experiment investigated ESC differentiation toward the three germ layers and

investigated the spatial distribution of the germ layer markers in beads and EBs. In the

experiment, multiple beads and EBs were embedded in one block which limited the ability

to fully investigate the spatial location of cells positive for the germ layer markers. Future

experiments to serially section an individual bead and examine the germ layer distribution

within the beads will be useful for determining which bead composition is optimal for ESC

differentiation to a given germ layer. The results from the quantiative PCR indicated that

alginate beads might be superior to EBs for endoderm and mesoderm differentiation, and

serially sectioning an individual bead could verify if this is the case. Stem cells can be differ-

entiated toward neural fates on substrates with an elastic modulus <30kPa139 however the

specific neural subtype varies with substrate stiffness: neurons on softer substrates, oligo-

dendrocytes on medium substrates, and astrocytes on the stiffest substrates.196 Quantitative

PCR investigated the relative gene expression of neural markers, but not markers for the

three germ layers; additionally, Pax6 is expressed by neurons and astrocytes, thus using Pax6

to quantify the expression of neural genes in LMW and HMW beads could not distinguish

between the proportion of neurons and astrocytes in each alginate condition. Further in-

vestigations of the relative expression of markers of neurons, astrocytes and cells from the

germ layers may identify a signficiant difference according to alginate composition. A future

experiment to examine the relative gene expression of all three germ layers, and neuron and

astrocyte specific genes, will allow a more in-depth investigation of the specific cell types

present in the two alginate hydrogels.

4.5 Conclusion

The results from this chapter showed that HMW and LMW alginate beads were suitable

biomaterials for neural differentiation. EBs, HMW and LMW methods using a differentiation

protocol with 1µM RA were sufficient to derive cells from all three germ layers, expanding

the potential for the current work to include studies of embryogenesis. The results from

depolymerising were inconclusive and a consistently successful method for harvesting viable

cells from the alginate hydrogels is still required. The results from quantitative PCR showed

that the relative gene expression for neural markers was similar between EBs and both LMW
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and HMW alginate beads, indicating that alginate:EB culture is a suitable platform for

neural cell differentiation and can produce aggregates containing equivalent expression levels

of Nestin and Pax6 to ESCs differentiated using the EB suspension protocol.
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Chapter 5. Developing a novel tool for 3D ESC culture - LMC

MNs are a novel source of endogenous RA

5.1 Introduction

RA is a key signalling morphogen in neural differentiation and neuronal patterning in vivo31,64

and is required for successful vertebrate embryogenesis.211 RA is synthesised by Raldh2 in

the presomitic mesoderm65,67,212 and Raldh2 is responsible for all RA synthesis prior to

E8.5 in the mouse embryo.213 Loss of mesodermal RA or knockdown of Raldh2 is lethal

by E8.75.71,214 RA is first detected at E7.5 during the late primitive streak stage, and is

required for body axis extension,71 and patterning the rostrocaudal and dorsoventral axes of

the neural tube.64,211,213 The ability to stimulate stem cell differentiation in vitro using RA is

a valuable research tool for investigating embryogenesis and cell-fate specification.31,71,215,216

ESC differentiation protocols use RA concentrations from 1nM to 1µM to induce ESC differ-

entiation toward a neuronal lineage, which spans the in vivo concentration of 1nM to 300nM

for endogenous RA in the developing mouse embryo.86,217

Cell-laden biomaterial platforms hold potential for tissue engineering applications for

spinal cord injury or neurodegenerative conditions, as they can deliver cells directly to the

site of injury and/or initiate cell migration or regeneration of the host cells via a paracrine

effect.17,145,218 Previous experiments to induce patterned neuronal differentiation combined

3D biomaterials with RA to investigate the effects of RA signalling on ESC differentiation.

Binan et al., (2014) showed that a RA- and purmorphamine-loaded PLGA scaffold could

direct neural stem-like cells to a MN fate.11 Other experiments have shown that polymer

microspheres loaded with RA145,159,175 or nanospun fibres loaded with RA or growth fac-

tors NT3 and PDGF17,219 can successfully control morphogen release and induce neuronal

differentiation of encapsulated/seeded stem cells. These platforms demonstrated the poten-

tial for using combined biomaterial-cell culture platforms to generate novel paradigms for

investigating tissue regeneration.

A limitation of these platforms is the inability to control how much RA is released from

the scaffold over time, due to RA leaching or burst release from the scaffolds.11,145 Although

the decreasing concentration of RA over time is a technical limitation of the scaffolds, the

ability of RA to diffuse through the scaffolds/into the medium represents a distinct advantage
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of using biomaterial scaffolds over 2D cell culture protocols: in monolayer/2D cell culture,

signalling morphogens or growth factors can diffuse freely throughout the medium, whereas

3D biomaterials cell culture allows for concentration gradients of signalling or growth factors

to be created, more closely resembling the in vivo environment.4,44,200 RA signalling acts in

a paracrine manner in vivo and this paracrine effect can be recapitulated in 3D biomaterial

platforms by incorporating RA into the scaffold and allowing the RA to leach from the

biomaterial and into the medium or at close proximity to the encapsulated ESCs.64,71,201

This offers a useful in vitro platform for investigating the effect of RA gradients on ESC

differentiation.

The results from chapter 4 showed that encapsulated ESCs in alginate beads could be

differentiated toward cell types from the three germ layers using exogenous RA. Exogenous

RA is unstable in cell culture and is prone to light-induced degradation during medium

changes, which may result in a reduced concentration of RA present in the medium relative

to the concentration that was initially supplemented to the medium. Developing a source

of RA that can be incorporated into a biomaterial scaffold, without a decreased in RA

concentration over time, would present a major breakthrough for investigating embryogenesis

or patterned differentiation in vitro. This chapter outlines experiments to characterise a cell-

derived source of endogenous RA, which could be used as a stable source of RA for in vitro

research. To generate this source of RA, transgenic HGF11 ESCs (see subsection 2.1.6, p. 33)

will be differentiated to Raldh2+ LMC MNs. This MN-produced source of Raldh2 is known

to be physiologically active and capable of synthesising endogenous RA in vivo.85,220,221

The aim was to generate a source of RA that can be incorporated into 3D biomaterials

platforms, in order to overcome the limitations of the currently available RA-incorporated

platforms described above. To do so, this source of RA must be capable of generating a stable

concentration of RA in the culture medium for 4 days (a duration sufficient to induce ESC

differentiation) and must be be physiologically active (i.e. capable of differentiating mouse

ESCs).

5.2 Methods

5.2.1 Culture of feeder-dependent mouse embryonic stem cells

HGF11 ESCs were cultured on feeder layers (CF1 mouse embryonic fibroblasts) in mouse ESC

medium with LIF until confluent. The cells were passaged by trypsinisation (every 2 days),
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and split at a ratio of 1:8. For EB experiments, any carry-over of mouse embryonic fibroblasts

into the EB suspension can inhibit differentiation, so the feeder layers were separated before

replating the stem cells for EB culture: the flask of HGF11 was passaged as normal, pelleted

and resuspended in ADFNK. The cell suspension was plated into a gelatin-coated 100mm

petri dish for 30min at 37oC, 5% CO2. At this point, feeder cells had adhered to the surface of

the dish, and HGF11 ESCs remained in suspension. The stem cell suspension was aspirated,

cells were counted via trypan blue exclusion, and replated at the required cell densityfor EB

suspension culture.

5.2.2 Motor neuron differentiation via embryoid body suspension culture

HGF11 ESCs were differentiated to MNs using the EB suspension protocol describedWichterle

et al., (2002).47 After separation from the feeder layers, HGF11 ESCs were replated at 5x104

cells/mL ADFNK in an un-coated 100mm dish, and cultured for 6 days with 1µM RA and

1.5µM purmorphamine added on days 2 and 4 to induce MN differentiation. On day 6, the

EBs were collected, pelleted by centrifugation (3min, 200g), washed once in dPBS, and re-

suspended in 0.25% trypsin-EDTA. The cells were dissociated for 10min on a rocker to form

a single cell suspension, then the cell suspension was pelleted, and resuspended in ADFNK

supplemented with 5nM GDNF. Cells were plated at the required cell densities onto well

plates coated with laminin at 2µg/cm2. Half of the medium was changed every 2 days.

5.2.3 Characterisation of the HGF11-derived motor neurons

Immunofluorescent staining

After EB dissociation the HGF11-derived MNs were plated at a cell density of 1x106 cells/cm2

onto laminin-coated 12-well plates. The MNs were cultured for 2 additional days and then

fixed and immunostained (see subsection 2.4). To verify the presence of the transgene, which

drives GFP and Foxp1 under the control of HB9, the MNs were immunostained for GFP, HB9

and Foxp1 co-localisation. Primary antibodies were mouse anti-HB9 and rabbit anti-Foxp1;

GFP was expressed at a level that could be visualised without antibody staining so no GFP

antibody was required. Secondary antibodies were goat anti-mouse 568, goat anti-rabbit 568

and goat anti-rabbit 647.
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Flow cytometry cell counting

To determine the proportion of cells that differentiated into MNs (GFP+), the cells were

counted by flow cytometry using the GFP reporter. The MN differentiation protocol was

expected to generate 30-50% MNs.12,24 After EB dissociation, the single cell suspension was

counted by flow cytometry to quantify the proportion of MNs differentiated using this cell

line. The control condition was HGF11 ESCs differentiated using only 1µM RA without

purmorphamine. Purmorphamine is the ventralising morphogen required to produce MNs

and the control condition was expected to generate lower numbers of MNs compared to the

experimental condition (7% compared to 30-50%).12,104 For each sample, 10,000 events were

counted using a BD Accuri C6 flow cytometer and C-Flow Sampler software (v1.0).

5.2.4 Quantification of retinoic acid and Raldh2 produced by HGF11-derived

motor neurons

To determine whether the HGF11-derived MNs were producing Raldh2 and/or RA, the dis-

sociated EBs were replated at a cell density of 1.75x106 cells/cm2 and cultured in ADFNK

supplemented with 5nM/mL GDNF. The medium was collected and tested using competitive

ELISA to quantify the concentration of RA and Raldh2 produced by the MNs. To compare

the concentration of RA and Raldh2 present in the medium across several timepoints (day

8 to 12), freshly collected medium for all timepoints was tested simultaneously. In all sam-

ples, the medium was changed by 50% 48h before being collected for ELISA to allow the

RA/Raldh2 concentration to build up in the culture medium for 2 days. This duration was

selected to time match with the standard protocols, which replace the cell culture medium

and add fresh RA every 2 days. Statistical analysis was carried out in GraphPad Prism (v7.0).

Data were tested for outliers using the ROUT method at 10%, tested for normality using

the Skapiro-Wilk method, and analysed using a one-way ANOVA and multiple comparisons

were conducted using Tukey’s post-hoc analysis.

5.2.5 Investigating mouse embryonic stem cell differentiation using a novel source

of retinoic acid

A co-culture experiment was designed to assess whether the endogenous RA produced by the

HGF11-derived MNs was sufficient to induce neural differentiation. To set up the co-culture
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experiment, the HGF11 ESCs were first differentiated to MNs by EB suspension culture, and

then dissociated and replated onto laminin-coated well plates. On the same day, CGR8 ESCs

were encapsulated in alginate beads, of both LMW and HMW (see subsection 2.5.1) and the

beads were transferred into Boyden chambers (6-8 beads per chamber). This denoted day 0 for

alginate beads, and d6 for the HGF11-derived MNs. After 48h, the medium on the MNs was

changed by 50% and the Boyden chambers containing the alginate beads were transferred into

the wells containing the HGF11-derived MNs (see Figure 4) - this was day 2 of differentiation

for cells in the alginate beads and day 8 for the HGF11-derived MNs. After another 48h, there

were cells attached to the Boyden chambers in the wells containing alginate beads indicating

that some ESCs had escaped from the beads; on this day, the medium was changed again by

50%. After another 48h, which denoted day 6 of differentiation for the alginate beads, the

beads were fixed in the Boyden chamber for 1h in 3.7% PFA, then transferred into OCT in

brain-embedding moulds and prepared for cryosectioning (see subsection 16). Samples were

cryosectioned and immunostained for markers of the three germ layers.

5.3 Results

5.3.1 HGF11-derived motor neurons express the Foxp1 transgene

The HGF11 ESC line is derived from transgenic HB9::Foxp1 mice, which drives Foxp1 and

GFP expression under control of HB9. When the HGF11 ESCs are differentiated towards a

MN fate, the expression of Foxp1 in post-mitotic HB9+ MNs forces an LMC MN fate.12,97 To

verify that the differentiation was successful, the HGF11-derived MNs were immunostained

to demonstrate co-localisation of GFP, HB9 and Foxp1. The control conditions were wild

type CGR8-derived MNs differentiated using the same protocol, which do not express Foxp1,

thus differentiate to a medial motor column, MN fate: these MNs do not express Raldh2

and and do not synthesise RA. The results showed that HGF11-derived MNs were positive

for GFP, HB9 and Foxp1 (see Figure 23), and the wild type CGR8-derived MNs did not

contain any GFP+ cells, indicating that HB9 promoter for GFP and Foxp1 was specific to

the HGF11 ESCs (see Figure 25). There were some GFP-, HB9+, Foxp1+ cells in the CGR8-

derived condition; this was expected as spontaneous differentiation to a LMC fate occurs in

approximately 0.5% of EB-differentiated cells.12,104
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Figure 23: HGF11-derived MNs were GFP+, HB9+ and Foxp1+. (a) HGF11-derived MNs
were positive for Hoechst (blue), GFP (green), HB9 (red) and Foxp1 (yellow), with some
GFP+ neurites present (white arrowheads). n=3 independent experiments, 5 images per
condition. Scale Bar: 20µm

5.3.2 HGF11-derived motor neurons have a lateral motor column identity

To determine the proportion of cells that were GFP+ LMC MNs, the differentiated HGF11-

EBs were dissociated and the single cell suspension was counted by flow cytometry. The

results showed that approximately 30% of the cells were GFP+, which was consistent with

the previous reports of 30% by Wichterle et al., (2008)24 and 40% by Adams et al., (2014)97

(see Figure 26). The cells in the control condition generated 7% GFP+ cells which was

consistent with the expected levels of spontaneous differentiation to a MN fate.12,104 The

control condition was generated by differentiating HGF11 ESCs using 1µM RA without pur-
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Figure 24: Magnified images (40X) showed that not all of the GFP+ (green) cells were
HB9+ (red) and/or Foxp1+ (yellow) indicating a mixed population. Scale Bar: 20µm

morphamine. Purmorphamine is the ventralising morphogen required to drive a MN fate,

and ESCs differentiated using RA only are expected spontaneously generate low numbers of

HB9+ MNs - the presence of GFP in the control conditions was due to GFP driven under

control of the HB9 promoter in spontaneously differentiating MNs.

5.3.3 HGF11-derived motor neurons produced Raldh2 and retinoic acid

To measure the concentration of Raldh2 and RA produced by HGF11-derived MNs, the cul-

ture medium from monolayer HGF11-MN cultures was tested by competitive ELISA. The

results from the ELISA analysis of Raldh2 concentrations showed that the MNs produced

Raldh2 throughout the day 8 to day 12 period. The average concentration of Raldh2 pro-

duced by HGF11-derived MNs ranged from 6.63ng/mL to 7.55ng/mL (see Table 9), but the

concentrations were highly variable between experiments and the r2 value was low. This may

be due to the experimental design whereby each technical replicate was taken from a sepa-

rate well; this method was chosen to capture any variation in the concentration of Raldh2

or RA being produced between wells in an individual experiment. A one-way ANOVA did

not detect a statistically significant difference in the concentration of Raldh2 across the five

timepoints F(4,12)=0.19, p=0.939, df=4 (see Figure 27a).

– 101 –



A novel source of retinoic acid for in vitro cell culture 5.3 Results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 25: CGR8-derived MNs were HB9+ and GFP-, demonstrating that the GFP ex-
pression under the control of HB9 was specific to the transgenic HGF11 cell line. The
control condition contained GFP-, HB9+, Foxp1+ cells (arrowheads) which was expected
due to spontaneous differentiation to an LMC lineage. Scale Bar: 20µm

Figure 26: MN differentiation from HGF11-ESCs. (a) HGF11 ESCs differentiated to a
MN fate contained approximately 30% GFP+ MNs. (b) HGF11 ESCs differentiated with
RA and without purmorphamine contain approximately 7% spontaneously differentiating
MNs. n=2 experiments, 10,000 events per condition
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Table 9: HGF11-derived MNs produced Raldh2. There was between-experiment variability
in the Raldh2 concentration produced by the cells throughout day 8 to day 12, but the
within-experiment concentrations were consistent. Text in red indicates outliers that were
excluded from statistical analysis. n=4 experiments, 2-3 technical replicates per experiment.

Concentration (ng/mL) Mean

D8 0.00 5.95 13.05 3.37 7.45

D9 2.41 10.73 16.06 3.94 7.47

D10 2.30 5.50 15.36 3.37 6.63

D11 3.67 5.12 15.62 4.06 7.12

D12 2.45 9.22 15.32 3.20 7.55

r 0.86 0.86 0.88 1

ELISA analysis of RA concentrations showed that the cells were producing RA through-

out the day 8 to day 12 period, with the average concentration range of RA from 65pg/mL to

105pg/mL or 214-291pM (see Table 10). The concentration of RA produced by the HGF11-

derived MNs was much lower than the in vivo concentration of 122nM RA previously reported

for the E9.5 neural tube.217 Although the concentration was low, it remained consistent over

the five day period tested. As the standard neural differentiation protocol adds RA on days

2 and 4 of differentiation, the five day time period observed here was sufficient to test ESC

differentiation using this novel endogenous source of RA. A one-way ANOVA did not de-

tect a statistically significant difference in the concentration of RA in the culture medium

across the five timepoints F(4,9)=1.53, p=0.274, df=4. The individual concentrations of RA

produced ranged from 49.31ng/mL to 96.09ng/mL across day 8 to day 12; mean concentra-

tions increased from 64.98ng/mL at day 8 to 87.53ng/mL at day 12 but this effect was not

significant (see Figure 27b).

Raldh2 is responsible for the RA synthesis by the HGF11-derived MNs and to determine

if there was any correlation between the concentration of Raldh2 and RA in the culture

medium, data were analysed using a two-tailed Pearsons correlation coefficient. The results

showed that there was no correlation between the concentration of Raldh2 and RA across the

five timepoints r(4)=-0.55, p=0.337 (see Figure 27c). This result was difficult to interpret

based on the limited data from these experiments. Raldh2 is the sole enzyme responsible

for synthesising RA in these cells, however high concentrations of RA downregulate Raldh2
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Table 10: HGF11-derived MNs produce RA. The concentrations of RA produced across
the five timepoints were not significantly different. The mean concentration ranged from
214-291pM. Text in red indicates outliers which were excluded from statistical analysis. n=3
experiments, 2-3 technical replicates per experiment.

Concentration (ng/mL) Mean pM

D8 53.59 65.90 75.47 64.98 216

D9 49.31 65.85 77.81 64.32 214

D10 59.24 68.69 92.17 73.36 244

D11 68.32 168.88 79.21 73.76 246

D12 96.09 92.10 74.41 87.53 291

r2 0.93 0.9 0.98

in vivo to protect the cells from RA-induced teratogenicity during embryogenesis.212,222 If

the cells from these experiments behave in the same way as their in vivo counterparts, using

these cells as an in vitro tool requires a detailed understanding of the timescale of RA-induced

Raldh2 inhibition.

5.4 Discussion

5.4.1 HGF11-derived motor neurons produced a stable source of retinoic acid

The HB9::Foxp1 transgenic HGF11 ESC line was differentiated toward a MN lineage. The

differentiated cells were positive for GFP, HB9 and Foxp1 indicating that they were LMC

MNs. Adams et al., (2014) demonstrated that these HGF11-derived MNs were de facto LMC

MNs, capable of innervating muscle explants in vitro and migrating to the correct positional

location in the neural tube when injected into chick embryos.12,97 These LMCs produce a

source of RA responsible for limb innervation during embryogenesis: earlier differentiating

medial LMC MNs express Raldh2, which synthesises the RA responsible for both differenti-

ating and providing axonal guidance to the later differentiating, lateral LMC MNs.12,90,223

Although these cells were identified by their expression of Raldh2, which is known to

produce physiologically active RA in vivo, no previous study has investigated the potential

for using these MNs to create an in vitro source of RA. In the experiments presented here,

the concentration of RA produced by these cells was quantified using ELISA, and the results
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Figure 27: HGF11-derived MNs produce a consistent concentration of RA and Raldh2.
Over 5 consecutive days, RA and Raldh2 were present in the medium. (a) the concentrations
of Raldh2 varied between wells but did not vary significantly over 5 days of culture p=0.939;
(b) the concentration of RA did not vary significantly from day 8 to day 12 p=0.234,
indicating the cells are a stable source of RA for future experiments; (c) there was no
correlation between the concentration of Raldh2 and RA p=0.337. Error bars: mean and
SD. n=3-4, 2-3 technical replicates per experiment

showed that the culture medium from HGF11-derived MNs contained both Raldh2 and RA.

The concentration of Raldh2 and RA did not vary significantly over the 5 timepoints tested,

indicating that these cells can be used as a stable concentration of RA in vitro for a 6 day

neural differentiation protocol. In demonstrating this, the experimental system described

here has produced a novel tool for in vitro research. If the feedback loop between Raldh2 and

RA concentrations can be characterised, it would provide a novel avenue for investigating cell

differentiation. The cell-generated source of endogenous RA is a novel experimental tool and

and further experiments to determine whether there is an observable or predicatable corre-

lation between Raldh2 and RA concentrations over time would be useful for regulating the

concentrations of RA produced by the cells. The HGF11-derived MNs could subsequently be

incorporated into biomaterials platforms to investigate the temporal effects of gradients of

RA and Raldh2 cross-inhibition on ESC differentiation. This type of experiment is not pos-

sible using 2D or monolayer cell culture protocols as morphogen gradients cannot be created
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using the standard cell culture methods. The combination of biomaterials platforms with

controlled morphogen release holds potential for investigating cell development in response

to gradients of signalling factors.

These LMCs hold significant potential for investigating (i) the intricate relationship be-

tween Raldh2 concentration, RA synthesis and subsequent Raldh2 downregulation, and (ii)

neural differentiation using a stable and endogenous source of RA. Several studies have pro-

posed that endogenous RA may induce differentiation patterns that differ from those gen-

erated using exogenous RA, because unlike exogenous RA, the metabolites of endogenous

RA are believed to activate both RA receptors and retinoid X receptors.71,76,78 This al-

lows propagation of receptor activation after the RA has been metabolised and is believed

to activate downstream signalling pathways that are not activated by exogenous RA. There

is also evidence that exogenous RA may have in vitro effects that are not observed in vivo

by initiating off-target effects via FGF871 or by failing to inhibit Raldh2 and subsequently

teratogenicity.212 FGF8 contains an RA-response element that is activated by endogenous

RA during embryogenesis and is involved in inhibition of caudal FGF8 signalling; when ex-

ogenous RA is added to the medium, the supra-physiological concentrations (1-10µM86) can

force FGF8 activation to induce off-target effects.71 Opposing gradients of RA and FGF8

are involved in midbrain-hindbrain patterning thus the incidence of off-targets effects in vitro

can have significant effects on cell development.

5.4.2 Applications of a cell-derived source of retinoic acid

Okada et al., (2004) reported that RA concentrations from 1nM to 1µM were sufficient to in-

duce ESC differentiation toward the three germ layers, however 1nM concentrations induced

more mesodermal differentiation, and higher concentrations induced more neural differentia-

tion.31 In the present experiment, the observed concentration range of RA produced by the

HGF11-derived MNs (215-290pM) was lower than the reported in vivo range (1-300nM)217

and the concentration range of 1nM to 1µM exogenous RA used in vitro.24,31,58 The previ-

ously reported physiological concentrations were determined using HPLC from whole tissues:

Horton et al., (1995) dissected E10.5 embryos and quantified RA per region: spinal cord

(250nM), forebrain (8nM), midbrain (10nM), hindbrain, somites and mesenchyme or limb

buds (alll 30-40nM) and neural tube (122nM).217 Ulven et al., (2001) quantified RA in the

E12.5 spinal cord: brachial (74nM), thoracic (36nM) and lumbar (200nM).76 These concen-
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trations are all substantially higher than the concentrations of RA observed in the present

experiments, however the present experiment tested the culture medium using ELISA, which

can only detect the concentration of free RA in the medium and cannot quantify RA se-

questered inside the cells (bound to cellular RA binding proteins or RARs).76 Thus it is

possible that the concentration of RA produced by the HGF11-derived MNs would closer

the physiological range if the RA was quantified from whole cells and not isolated from the

medium.76 During embryogenesis, the cross-repressive actions of localised RA, FGF8 and

Wnt signalling gradients within subregions of the neural tube are responsible for patterning

the progenitor domains, and as the physiological concentrations previously reported were

collected from whole tissue, they did not capture any localised concentrations of RA within

the tissues.224,225

In the present experiments, each well contained 2mL of culture medium, refreshed by

50% every two days. Despite the volume and medium changes, the concentration of RA

quantified by ELISA analysis was not significanly different throughout days 8 to 12. This

provided evidence that the HGF11-derived MNs were producing sufficient RA within a 48h

period to compensate for the dilution of RA due to medium changes, and maintain a stable

concentration over several days. The ability of the cells to replenish the concentration in

such a large volume of medium indicated that the concentrations of RA obseved in the

present experiment may be substantially higher near the source HGF11-derived MNs before

they dilute into the medium. This indicated that this endogenously produced source of RA

holds the potential to induce ESC differerentiation if the RA source (HGF11-derived MNs)

is placed in close proximity to the target ESCs. This would mimic the in vivo environment

where localised concentrations of RA are responsible for patterning cell differentiation.

Commonly used in vitro RA-induced differentiation protocols supplement exogenous RA

into the culture medium every 2-3 days to induce ESC differentiation using EB suspension

culture.43,117 The current RA differentiation protocols are limited by the instability of RA

in the culture medium, and RA degradation in response to light, which both result in a

decreasing concentration of RA during changes of medium. This unstable concentration

of RA introduces an uncontrolled variable and fails to provide stable morphogenic action in

vitro. The effects of RA in vivo are tightly regulated by cross-repressive actions of RA, Raldh2

and Cyp26a, the enzyme responsible for metabolising RA.212 The uncontrolled degradation

of RA throughout the course of an in vitro experiment cannot recapitulate the tight control
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that exists during embryogenesis. The novel method presented here has produced an in vitro

tool that provides a source of RA that remains at a stable concentration over at least 5 days

of culture. This source of RA was endogenously produced by HGF11-derived MNs which

replenish the RA concentration between medium changes, which offers a distinct advantage

over the standard protocols which are prone to light-induced degradation of exogenous RA.

This source of RA can therefore be applied to in vitro experiments of cell differentiation, and

hold the potential to build new protocols for investigating ESC differentiation.

5.4.3 HGF11-derived motor neurons are a novel tool for differentiation

Several studies have loaded morphogens into biomaterials scaffolds to investigate cell dif-

ferentiation, morphogen release rates, or to create EBs or cell aggregates that incorporate

microbeads of RA inside the aggregate. Willerth et al., (2008) created a fibrin scaffold de-

livery system that incorporated NT3 and Shh, or NT3 and PDGF, into the fibrin fibres,

and used the fibrin delivery systems to culture mouse ESC-derived neural precursor cells.219

Their results showed that the cells cultured on the fibrin scaffold with an incorporated deliv-

ery system had significantly higher numbers of cells positive for Nestin, β-III-tubulin, and O4

but significantly lower numbers of cells positive for GFAP compared to the unmodified fibrin

scaffolds.219Of note, the authors aimed to implant the scaffold into the damage spinal cord

to aid regeneration, thus specifically engineered their fibrin delivery system to inhibit astro-

cyte differentiation and prevent astrocyte-induced inhibition of neuronal regeneration. Their

results demonstrated that their fibrin delivery system could increase differentiation efficiency

if the growth factors and morphogens were released to the encapsulated cells from within

the scaffolds, relative to the cells which received the signalling morphogens in the medium.

Carpenedo et al., (2010) created RA-loaded PLGA microspheres that were incorporated into

EBs by suspension culture. Their results showed that localised RA signalling inside the

EBs caused accelerated re-organisation and stratification of the EBs, and development of the

primitive streak, compared to the standard EB protocol.175 Binan et al., (2014) used RA-

loaded PLGA fibres to control differentiation of neural stem-like cells: their results showed

a significant increase in neurite length for the cells differentiated on RA-loaded fibres versus

unloaded fibres. All of the above 3D platforms demonstrated that when ESCs were exposed

to localised sources of signalling factors and morphogens, the 3D platforms were capable

of increasing the efficiency of the differentiation protocol. They further demonstrated that
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growth factor- or morphogen-loaded scaffolds hold potential as in vitro tools for manipulating

cell differentiation in a manner that is not possible using standard protocols. In the standard

protocols, all cells have access to a uniform concentration of the soluble factors present in the

medium, and cannot only extend neurites within a single plane. Biomaterial 3D platforms

introduce the potential to incorporate localised gradients and support extension of neurites

into multiple planes, which supports the formation of more complex cell morphologies and

subsequently the formation of complex and long-range neuronal networks that more closely

mimic the physiological microenvironment, relative to cells cultured on 2D tissue culture

plastics.4,226

The studies discussed above reported positive results, using localised sources of signalling

factors in biomaterials, but a major limitation of their experimental designs was the burst

release of the loaded growth factor or morphogen over time. Carpenedo et al. (2010),

did not report the concentration of RA that was loaded into the microspheres or directly

investigate the burst release, however the authors conducted a burst release profile for Cell

Tracker Red-loaded microspheres formed using the same method. Their microspheres had

a burst release from the microspheres within the first 24h, indicating that the RA-loaded

microspheres would have a rapidly decreasing concentration when incorporated into the EBs.

Similar to the burst release observed in the Carpenedo study, the RA-loaded PLGA fibres

generated by Binan et al., (2014) had significant burst release of RA from the fibres into

the culture medium in the first 24h, resulting in a 75% decrease in RA concentration from

200nM to 50nM. This concentration decreased by a further 50% over a subsequent five days

resulting in a final concentration of 25nM.11 Willerth et al., (2008) used a heparin-based

system to maintain the NT3 within the scaffolds, but their most efficient result only retained

40% of initial concentration of NT3 within the scaffold. The platforms described above

exposed the encapsulated cells to an initial peak of high-concentration RA followed by a

decreasing concentration of RA throughout the culture period. This is not representative

of physiological environment, where RA concentrations are tightly regulated. Although the

physiological concentration of RA ranges from 1nM to 300µM, not all cells are exposed to the

highest concentration in vivo thus for the previously described platforms, it is possible that

the initial burst release exposed some cells to teratogenic concentrations of RA. The novel

source of RA presented here can address that limitation by providing a stable, consistent

source of RA that prevents any uncontrolled, burst release or teratogenic effects.
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Despite the burst release of RA from the above scaffolds, the concentration was still

substantially higher than the concentration of RA released by the HGF11-derived MNs but

there is still potential for the novel source of RA to induce ESC differentiation in vitro. ESCs

can be differentiated toward fates from the three germ layers in vitro using concentrations

of exogenous RA as low as 1nM supplemented to the culture medium.31 The concentration

presented here was five times lower but (i) was an endogenously produced source of RA

which makes it inherently cytocompatible, and (ii) remains at a stable concentration over

time which more closely recapitulates the in vivo environment. This novel source of RA

addresses the limitation of the burst release observed for the existing platforms. In addition,

as the source of RA was constantly replenishing the RA concentration in the medium, it also

reduces the implications of light-induced degradation of exogenous RA for both the efficiency

and reproducibility of in vitro protocols. Finally, as the RA was produced by LMC MNs,

these cells can be incorporated into existing, or novel, 3D platforms to investigate the effects

of localised RA gradients on ESC differentiation. Given the number of platforms that have

been developed to investigate this effect, and the results showing enhanced differentiation

efficiency when localised signalling gradients were provided to encapsulated cells, the novel

source of RA outlined in this chapter holds great potential for 3D in vitro investigation of

cell development in response to gradients of signalling morphogens.

5.5 Conclusion

There is an unmet need for in vitro 3D platforms that can deliver concentrations gradients

of signalling morphogens to ESCs and mimic the in vivo environment during development.

Currently used platforms are limited by burst release of the loaded morphogen or signalling

factor, which introduces an uncontrolled variable into those protocols. The experiments

presented in this chapter have produced a novel in vitro tool that addresses the limitation of

burst release. The HGF11-derived MN source of RA can be incorporated into a 3D platform

to provide sustained, controlled release of a stable concentation of RA over at least 5 days.

This tool offers novel avenues for investigating the effects of RA on cell differentiation in

vitro. Previously described 3D platforms reported that differentiation efficiency was increased

when the encapsulated cells were exposed to localised concentrations of growth factors or

morphogens. The source of RA presented here can be used to create new 3D platforms that

offer localised concentrations of RA, without the limitation of burst release of RA during
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the initial stages of cell culture. The previous chapters have demonstrated that alginate is a

suitable 3D biomaterial for ESC encapsulation and differentiation. Based on the experiments

presented in the current and previous chapters, the next chapter presents experiments to

create a novel 3D platform for inducing patterned differentiation.
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Chapter 6. Creating a novel 3D platform to promote patterned

neuronal differentiation of embryonic stem cells

6.1 Introduction

Tissue engineering has combined biomaterials with cell cultures, growth factors or signalling

morphogens for a range of applications. Hydrogels have been used to promote axonal regen-

eration in peripheral nerves in rats,227 neurons have been observed to extend their axons from

a fibrin scaffold implanted into the spinal cord of rats,228 growth factor-loaded scaffolds have

induced osteogenic regeneration in vitro,6,150 and implanted 3D scaffolds have been used to

promote host cell infiltration and regeneration with the spinal cord.219 The ability to engi-

neer personalised, functional tissues has real-world applications, both for investigating tissue

regeneration after spinal cord injury or neurodegenerative disorders, and for developing novel

platforms for stem cell therapy.17,105,115

3D cell cultures using biomaterial scaffolds can recreate the in vivo cell microenvironment

allowing us to gain a deeper understanding of the mechanims of cell differentiation, disease,

degeneration and regeneration.3 Smith et al., (2015) investigated gene expression and func-

tional activity of human neural stem cells differentiated in 2D versus 3D cell cultures, and

observed significantly greater spontaneous activity, and a significant upregulation of genes

related to cytoskeletal activation of the neurons cultured in 3D platforms.27 In a landmark

study, Meinhardt et al., (2014) generated a 3D model of neural tube patterning using a

Matrigel scaffold. Their neural tube formed a floor plate with dorso-ventral patterning and

represents a novel system for investigating morphogen activity in 3D, specifically the process

of neuroectoderm differentiation and gastrulation.32 Engler et al., (2006) demonstrated that

the elastic modulus of a substrate affects cell development,6 and Poh et al., (2014) showed

that embryogenesis could be controlled in vitro by varying substrate stiffness.81 Despite these

breakthroughs and advances, the influence of the cell microenvironment on cell behaviour and

cell fate specification is still poorly understood. To date, no 3D platform has been reported

that can control all of variables that exist in vivo, including substrate stiffness, localised

signalling gradients, cell-matrix interactions and paracrine signalling, making it difficult to

capitalise on these protocols and create functional tissue with therapeutic value.205,229,230

The development of the nervous system is the result of finely-tuned, temporo-spatial
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control over cell differentiation, axonal migration, and synapse formation.8 The large diversity

of cell types are the result of region-specific patterned differentiation, resulting from localised

changes in morphogen signalling. Cell fate specification is determined by the specific actions

of gradients of signalling morphogens within the cell microenvironment.57,58 During neural

tube differentiation, specification of the rostro-caudal and dorso-ventral axes is dependent on

cross-repressive gradients of signalling morphogens, such as RA, which determines cell fate

specification by regulating gene expression.63,64 These signalling gradients are lost in vitro,

as signalling factors such as RA or BMPs are supplemented into the culture medium, thus all

of the cells are exposed to a uniform concentration of that soluble factor. Without temporo-

spatial gradients of signalling factors, these tissue culture protocols cannot establish a vital

component of in vivo neural tube development. To combat this, 3D biomaterial platforms

have combined signalling morphogens with cells in vitro to induce localised effects on cell

behaviour or patterned differentiation.11,17,219

Alginate has previously been used for 3D cell culture using growth factor diffusion,143 cell

delivery,180 and cell guidance cues;144 alginate is a suitable material for these applications

due to its cytocompatability140,150 and the ease of diffusion of soluble factors throughout

the gels.122 Kuo and Wang (2013) described controlled acceleration of stem cell differen-

tiation into neurons on 3D alginate-chitosan scaffolds by incorporating nerve growth factor

(NGF) into the 3D platform to promote stem cell differentiation.231 Lin et al., (2017) used

macroporous alginate scaffolds to control neurite outgrowth indicating that alginate could

be a host scaffold for aiding neural regeneration.178 Zhang et al., (2013) showed increased

gene expression for markers of the three germ layers, and greater mesoderm differentiation

in soft core alginate-chitosan-alginate microcapsules.174 These findings, in combination with

the results from Chapter 3 and Chapter 4, are strong indicators that alginate is a suitable

scaffold for tissue engineering applications, and for protocols investigating embryogenesis,

self-organisation of the embryonic germ layers, and patterened differentiation.

The current chapter outlines a set of experiments used to develop a novel alginate platform

for 3D cell culture applications by combining the 3D alginate beads and the LMC-derived

source of RA developed and validated in the previous chapters. The previous chapters have

demonstrated successful survival, aggregation and differentiation of ESCs encapsulated in

alginate hydrogels. The encapsulated cells were shown to form EBs which differentiated into

cells from all three primary germ layers. The previous experiments characterised a stable
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source of RA, produced by HGF11-derived LMC MNs, which has the potential to drive ESC

differentiation in vitro. As this is a cell-produced source of RA, the LMC MNs can also

be incorporated into 3D platforms for investigating the influence of localised RA gradients

on ESC differentiation. The present chapter aimed to develop a novel 3D alginate platform

for creating localised RA signalling gradients, and subsequently investigating the effects of

the localised concentration of RA on ESC differentiation in vitro. This chapter outlines

experiments to test the physiological activity of the endogenous RA and determine if this

cell-derived source of RA can differentiate mouse ESCs to a neural cell fate. The experiments

combined these findings with the results from previous chapters to create a novel 3D platform

for patterned cell differentiation using a co-culture technique. This novel platform was created

using an adapted gradient maker protocol142 and the resulting alginate tube 3D platforms

were tested for patterned ESC neuronal differentiation by investigating the presence/absence

of cells from each of the three germ layers at each end of the scaffold.

6.2 Methods

6.2.1 Co-culture experiment to test the physiological activity of HGF11-motor

neuron produced retinoic acid

A co-culture experiment was designed to test the ability of an LMC MN produced source

of RA, secreted into the medium, to induce differentiation of ESCs encapsulated in alginate

beads. Alginate beads of LMW and HMW were produced using the standard method (see

subsection 2.5.1), and the alginate beads were transferred into a Boyden chamber well-insert

at 8-10 beads per well. The beads were cultured in ADFNK without RA for 2 days. On

day 2 of differentiation, the Boyden chambers were transferred into 12-well plates where each

well contained HGF11-derived MNs on day 8 of differentiatio. This setup was used so that

the encapsulated ESCs in beads were exposed to the RA produced by the MNs but were not

in close proximity to the source of the RA. The Boyden chamber setup for the co-culture

experiment is shown in Figure 4, p.41. The beads were cultured for 4 days in co-culture

with the HGF11-derived MNs, with half of the medium changed every 2 days. This protocol

thus mimicked the 2-/4+ RA differentiation protocol, with 2 days in ADFNK only, and 4

days in medium containing the cell produced RA. On day 6, the beads were collected from

the Boyden chambers, fixed and cryopreserved for immunostaining. The beads were serial

sectioned at 15µm, and stained for Nestin and β-III-tubulin.
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6.2.2 Generation of retinoic acid gradients in alginate hydrogel tubes

To investigate the effect of a localised concentration gradient of RA on ESC differentiation,

a gradient maker was used to create alginate tubes with a graded cell density of HGF11-

derived MNs (to produce a graded concentration of RA), and a constant cell density of CGR8

ESCs. Figure 5 (p.43) shows the gradient maker setup used to form the alginate tubes. In

brief, HGF11 ESCs were differentiated toward a MN lineage by EB suspension culture (see

subsection 2.2.1), the cells were dissociated to form a single cell suspension, and this single-

cell suspension was mixed with an equal cell density of CGR8 ESCs. This CGR8:HGF11-MN

cell suspension was pelleted by centrifugation (5min, 200g) and resuspended at 6x106/mL in

0.5% LMW alginate. This cell density is equivalent to 3x106/mL for each cell type. A second

cell suspension of CGR8 ESCs, without HGF11-derived MNs, was pelleted and resuspended

at 3x106/mL in 0.5% LMW alginate.

To create the tubes, 1.5mL of each alginate-cell suspension (CGR8 only or CGR8:HGF11-

derived MNs) was loaded into each chamber of the gradient maker (A and B). Chamber

A contained the CGR8 only cell suspension, and chamber B contained the CGR8:HGF11-

derived MNs cell suspension. The tubes were formed as per the protocol in subsection 5 and

resulted in an alginate tube with a consistent cell density of CGR8, and an decreasing cell

density of HGF11-derived MNs from the leading edge to the trailing edge of the tube (see

Figure 6, p.44). The alginate tube was polymerised in CaCl2 for 5min at room temperature.

The tube was cultured in ADFNK supplemented with GDNF (5ng/mL) for 6 days, with

medium changes on days 2 and 4. On day 6, the tube was collected, fixed, cut into sections

of approximately 1cm length and cryopreserved in OCT. For immunostaining, the first and

last section of each tube was stained for markers of the three germ layers (AFP, SMA, β-III-

tubulin), and the cell types present at each end of the tube were compared. The results were

collected for n=2 independent experiments where tube 1 = 8cm, tube 2 = 5cm.

6.3 Results

6.3.1 HGF11-motor neuron retinoic acid in the medium did not induce differ-

entiation of encapsulated embryonic stem cells

The results from the co-culture/Boyden chamber experiment showed that the concentration

of LMC-produced RA in the culture medium was not sufficient to induce differentiation of
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Figure 28: Brightfield images of alginate beads after 6 days of co-culture with HGF11-
derived MNs. Low and high magnification images of the alginate beads showed that the
encapsulated cells generated very few aggregates by day 6 in both HMW and LMW beads.
Scale Bar: 4X magnification, 1mm; 10X magnification, 400µm

ESCs encapsulated within alginate beads, when the beads were physically isolated from the

source of RA. Brightfield images showed that cells encapsulated in LMW and HMW alginate

contained very few aggregates by day 6 of co-culture with HGF11-derived MNs (see Figure

28). These aggregates were visible near the exterior of the beads and were long and tubular

shaped, which contrasts to the circular EBs formed in beads differentiated using exogenous

RA (see Figure 12, p.59).

As it was difficult to confirm aggregate formation by brightfield images, the beads were

fixed and cryosectioned to investigate the extent of aggregate formation inside the beads. Nu-

clear staining using Hoechst showed that the beads contained single cells or small aggregates

with the aggregates clustered near the exterior edges of the bead, consistent with what was

observed in brightfield images (see Figure 29). This result demonstrated that the 215-290pM

range of endogenous RA produced by the HGF11-derived MNs was not sufficient to induce

aggregate formation within the beads, in both LMW and HMW alginate beads. This result
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Figure 29: Endogenous RA did not induce EB formation from encapsulated ESCs. The
results from ICC of cryosections of beads co-cultured with HGF11-derived MNs showed that
there were very few aggregates within the beads, and that these aggregates were clustered
near the edges of the beads. White dashed lines indicate the exterior edge of the alginate
beads. Images were collected for n=4 independent experiments. Scale Bar: 200µm

was not unexpected given that the standard concentration range of RA used for in vitro

differentiation is 1nM to 1µM.

EBs differentiated using RA were used as a positive control for the experiment to show

the immunostaining was successful, and to demonstrate that the ESCs encapsulated in the

alginate came from a cell population that was viable and capable of forming aggregates. The

results from immunostaining showed that the cells encapsulated in the beads were negative

for AFP, SMA, Nestin and β-III-tubulin, whereas the cells in EBs were positive for all four,

indicating that the cells in the beads were not differentiating (see Figure 30). This was

expected as there were very few aggregates present in the beads, and single cells are known

to lose viability in alginate hydrogels.150 Due to the expected cell death of single cells within

alginate beads, and the limited numbers of aggregates observed encapsulated in the beads,

the immunofluorescent images were only collected from areas of the beads that contained

aggregates.

6.3.2 A localised retinoic acid gradient induced embryoid body differentiation

To investigate whether a more localised concentration gradient of RA, produced by the

HGF11-derived MNs, could induce patterned differentiation, CGR8 ESCs and HGF11-derived

LMC MNs were encapsulated together within alginate tubes. Preliminary tests of the gradi-
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Figure 30: Encapsulated cells were not differentiated by the HGF11-MN source of RA.
The results from immunostaining of cryosections of beads co-cultured with HGF11-derived
MNs were negative for neural markers Nestin and β-III-tubulin, but EB positive controls
had clear staining for both indicating neural differentiation. This demonstrated that the
encapsulated cells were not differentiating toward a neural lineage. Images were collected
for n=4 independent experiments. Scale Bar: 50µm
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ent maker/tube formation using 1% w/v solutions of LMW and HMW alginate found that

both solutions were too viscose to form alginate tubes using this protocol. During the tube

formation, one chamber of the gradient maker was emptied rapidly, followed by the second

chamber, thus the solutions were not mixed before being drawn through the tubing to form

an alginate tube. To address this, the LMW alginate was diluted 1:2 in DMEM to form a

0.5% solution; the experiments prior to this point did not observe a significant difference in

differentiation or viability between the LMW and HMW alginates, thus LMW alginate was

chosen for its lower viscosity compared to HMW alginate.

Using the new 0.5% w/v alginate solution, the gradient maker functioned as expected,

mixing the cell suspensions in chamber A and B, before drawing the alginate into the tubing.

The resulting alginate tubes contained a constant cell density of CGR8 ESCs along the

length of the tube, and a graded cell density of HGF11 LMC MNs, to provide a localised

concentration gradient of RA within the tubes. The alginate tubes formed had a variable

diameter along the length of the tube, and swelled over the course of the cell culture, but

the majority of tube remained intact at day 6 (compare Figure 31a and 31b). Brightfield

images of the leading and trailing edges, and the centre portion of the tubes, showed that the

encapsulated cells had formed aggregates inside the tubes; there were also some free floating

aggregates in the culture medium, as previously observed in experiments using alginate beads

(see Figure 31c-e).

The presence of the aggregates inside the tubes indicated that unlike the encapsulated

ESCs in the Boyden chamber co-culture experiments, the mouse ESCs encapsulated in algi-

nate tubes alongside HGF11-derived LMC MNs, were exposed to sufficient levels of RA to

induce aggregation. To determine whether the localised RA had induced ESC differentiation,

and to investigate if the opposing concentrations of LMC MNs and the LMC-derived RA

affected the level of differentiation, the trailing and leading ends of the alginate tube were

cryosectioned and immunostained for markers of the three germ layers. The results observed

the presence of cells from all three germ layers in both the trailing and the leading edge of the

tubes. Figure 32 shows a comparison of AFP and SMA positive cells, and Figure 33 shows a

comparison of the GFP and β-III-tubulin positive cells encapsulated in each end of the tube.

The outcomes from this experiment iindicated that although the concentration of RA in

the medium was lower than the physiological concentration, the localised RA concentration

was sufficient to induce cell differentiation of the encapsulated aggregates. This was a novel
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Figure 31: Brightfield images of alginate tubes formed using a gradient maker: (a) the
diameter varied across the length of the tube, (b) at day 6, the tube was intact and aggre-
gates were observed floating in the medium (white arrowheads). Low and high (red box)
magnification images of the (c) leading, (d) central, and (e) trailing sections of a tube on
day 6 showed encapsulated aggregates (white arrowheads), and escaped aggregates in the
medium (blue arrowheads). Scale Bars: left panels 1mm, right panels 400µm
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Figure 32: Alginate tubes contained markers for endoderm and mesoderm. The alginate
tubes contained markers of endoderm and mesoderm germ layers at day 6 of differentiation.
These were present at both the trailing and leading end of the tube. Scale Bar: 50µm

– 121 –



Creating a novel 3D alginate platform 6.3 Results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 33: Alginate tubes contained ectoderm marker β-III-tubulin. The alginate tubes
contained β-III-tubulin at both the trailing and leading end of the tube at day 6 of dif-
ferentiation. The tube also contained GFP+ cells at both end of the tube. Scale Bar:
50µm
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result that indicated that this alginate platform holds potential for investigating the effects

of a localised gradient of RA signalling on cell differentiation. The results also indicated

that the encapsulated ESCs had differentiated toward cells from the three germ layers which

was evidence that this hydrogel platform may be adapted and optimised for in vitro studies

of embryogenesis. This experiment was a preliminary investigation to verify whether this

novel co-culture platform was suitable for creating alginate tubes that remained intact in

cell culture, could encapsulate gradients of cell densities within the tube and permitted the

formation and differentiation of cell aggregates. Based on the results from Chapter 4 and

Chapter 5, it was expected that the cells would only differentiate if they had a sufficient

concentration of RA to initiate aggregate formation.

The results from Chapter 4 showed that the encapsulated ESCs exposed to 1µM of exoge-

nous RA differentiate into cells from the three germ layers. Contrastingly, as observed in the

Boyden chamber co-culture experiment, the encapsulated ESCs do not spontaneously differ-

entiate with low concentrations of RA. These findings indicated that the ESCs within the

scaffold can successfully form aggregates in the absence of exogenous RA and indicated that

the concentration of 215-290pM RA was sufficient to differentiate ESCs. This supports the

theory that the physiological concentrations reported for RA (1-100nM) may be considerably

higher than the actual concentration(s) of RA available to the cells in vivo as the previously

reported RA concentrations were quantified from whole tissues and do not account for the

RA sequestered in the nuclei or by cellular RA binding proteins.76,224,225 The formation of

aggregates observed in these experiments could be the result of ESC response to the localised

production of RA by the HGF11-derived MNs co-encapsulated within the scaffold, or might

be due to cell-cell interaction or perhaps paracrine signalling from the encapsulated MNs

not via RA signalling. It was also possible that the combination of these three and other

unknown variables contributed to the formation off aggregates.

The immunofluorescent images did not indicate whether there was variation in the level

of differentiation at the trailing and leading edges of the tubes. A major limitation of this

experiment was that the platform did not incorporate a method to track the previously

differentiated HGF11-derived MNs or the CGR8, so the previously differentiated HGF11-

derived MNs could not be isolated from cells that differentiated from the CGR8 ESCs. Future

experiments could incorporate CellTracker or time-lapse imaging to record which cells were

originating from each of the encapsulated cell populations. Although the results demonstrated
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that there were GFP+ cells in close proximity to GFP-/β-III-tubulin+ cells, which indicated

that ESCs differentiated within the platform, there were no instances of GFP+/β-III-tubulin+

cells from the HGF11-derived MNs. It was possible that within the scaffold, the endogenous

GFP was not visible in the images, and antibody staining for GFP may locate the HGF11-

derived MNs. In addition, without incorporating a method to track which cells originated

from which encapsulated population (CGR8 or HGF11-derived MNs), it was not possible to

know whether cells that were postiive for markers of the three germ layers differentiated from

CGR8 or if they differentiated from carry-over ESCs in the dissociated MN population. As

the EB differentiation protocol only generates 30% MNs, 70% of the population remained

uncharacterised, thus the EB-generated MN populations may also have contained ESCs or

cells from the three germ layers which were subsequently visualised in the alginate tubes.

6.4 Discussion

6.4.1 A cell-produced source of retinoic acid can be used for differentiation

Biomaterials have previously incorporated RA-loaded microcapsules or fibers into the bioma-

terial scaffolds to induce differentiation or patterned migration of the encapsulated cells.11,175

As discussed previously (see subsection 5.4.3), the largest limitation of these studies was the

inability to control the release of RA from the scaffold. The previous chapter reported that

the HGF11-derived MNs could produce endogenous RA, and the present chapter has demon-

strated ESCs cultured in close proximity to these RA-producing cells was sufficient to support

differentiation of the encapsulated ESCs towards cell fates from the three germ layers. This

was a novel result and has provided evidence that HGF11-derived MNs are a tool for in vitro

biomaterial differentiation protocols.

The results of these experiments were interpreted with caution as there were no control

conditions for these tubes. The formation of aggregates and/or differentiation towards cell

types from the germ layers might be due to a cell-cell interaction, a cell-matrix interaction or

an RA-induced effect promoted by the HGF11-derived MNs. The results from the Boyden

chamber experiment demonstrated that the presence of the HGF11-MNs in the medium was

not sufficient to induce aggregate formation or differentiation of ESCs towards the three germ

layers. These results indicated that the aggregate formation observed in the alginate tubes

was linked to the presence of the HGF11-derived MNs in close range to the encapsulated ESCs,

and this close proximity was responsible for the cell differentiation. Experiments to compare
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ESC differentiation in the present platform, with a control group of ESCs co-cultured with a

non-transgenic, non-RA producing MN population would distinguise between the influence

of RA produced by the LMCs and the presence of the MN populations in the tubes.

Neural-antigen 2+ glia can produce RA in the spinal cord, and astrocytes can regulate

RA signals in the brain.232,233 The present experiments did not investigate the presence of

astrocytes in the alginate platform and thus an astrocyte-derived source of RA may have con-

tributed to differentiating the encapsulated ESCs. In addition, the experiments did not test

the concentrations of RA released locally within the tubes, thus there is no information on the

extent of paracrine signalling from neighbouring sections of the tubes on ESC differentiation.

A recommended approach to determine these effects is to utilise hybrid biomaterial scaffolds

that allow layers of spatially distinct cell-laden biomaterials to be combined. This could

easily be achieved by adapting the protocol characterised in these experiments, by swapping

the alginate-cell suspension from one gradient maker chamber with a cell suspension in an-

other biomaterial, thus separating the RA source (HGF11-derived MNs) and the pluripotent

stem cells (CGR8) but continuing to allow diffusion of the RA through the scaffold. By

introducing cell labelling to track the cells from each population (CGR8, LMCs) this layered

platform would identify any cell migration in response to cell-cell or cell-matrix interaction.

In addition, the layered scaffolds can be immunostained for astrocytes to determine whether

an astrocyte-induced source of RA might be inducing cell differentiation. This approach

would be possible with alginate-chitosan layered scaffolds,231 fibrin layered scaffolds234 and

alginate-collagen hybrid scaffolds.190

Despite the limitations of the protocol, the results were promising for future research as

using HGF11-derived MNs as a source of RA produced that was physiologically active within

the scaffold. The results from chapter 5 showed that the concentration of RA was stable

over time, which addresses the limitation of RA burst release into the culture medium as

observed in the platforms reported by Binan et al., (2014) and Carpenedo et al., (2010).11,175

The cell-derived source of RA means that the RA concentration will be replenished by the

encapsulated HGF11-derived MNs between medium changes, and addresses the limitation of

light-degradation of RA. These cells are thus a novel tool for producing RA in vitro and can

be exploited to investigate many aspects of cell development, and to examine the proposed

varied signalling pathways activated by exogenous versus endogenous RA.71,73,212,235
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6.4.2 Alginate tubes are a novel platform for studying differentiation in vitro

Cell-laden alginate hybrid scaffolds are a current focus in biomaterials research due to their po-

tential to support tissue regeneration. Seol et al., (2015)134 used chondrocyte-laden alginate-

ceramic hybrid hydrogels to regenerate cartilage tissue in rabbits, and Pfister et al., (2007)236

developed an alginate-chitosan hybrid nerve conduit that promoted cell infiltration into the

conduit, and had low immune response to the conduit after it was implantaed in vivo. Hybrid

scaffolds have been used to alter the substrate stiffness throughout the cell culture period,

and examine the subsequent changes in cell behaviour.166,202 Some protocols have exploited

the properties of hydrogel scaffolds to regulate the dissolution of the scaffold in vivo and

investigate the cell response.122 Alginate hydrogels can be adapted to regulate growth factor

release from the scaffolds,143,168 to control the diffusion of growth factors toward the encap-

sulated cells150 and can be loaded with signalling morphogens to induce localised changes in

cell behaviour.143,180 The results from the current chapter have contributed a novel platform

to the field of tissue engineering, that has the capacity to incorporate many of the above

features in a single self-contained platform.

The platform presented here can be optimised for investigating cell behaviour and cell

differentiation by capitalising on the inherent characteristics of alginate, including the ability

to regulate alginate hydrogel substrate stiffness, cell adhesion molecules, diffusion through

the hydrogel, and the dissolution rate of the hydrogel in vivo. The platform created here

has the capacity to allow patterned differentiation of the encapsulated cells, using a novel

endogenous source of RA. This platform is unlike the previously reported biomaterial scaffolds

incorporating RA as it utilised a cell-produced endogenous source of RA that maintained a

consistent concentration over several days. The findings were preliminary, and there are

many factors that would need to be optimised to precisely investigate the extent of patterned

differentiation capable using this platform but immunofluorescent images provided strong

evidence that this platform can adapted for studying embryogenesis in vitro.

6.4.3 Alginate tubes with graded cell densities are novel platforms for investi-

gating gradients of signalling factors in vitro

There was high variability in the methods and protocols currently used for culturing cells in

3D biomaterials. These methods include: (i) encapsulating the cells,43,117,150,159 (ii) seeding
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cells onto freshly formed biomaterials,180,204,237 (iii) adding cells to the biomaterial after

pre-processing the scaffold to control porosity or topography,165,166 and (iv) changing the

adhesive factors added to the scaffold238–240 to investigate cell behaviour. To record all of

the potential effects of 3D culture or biomaterials culture on cell development or behaviour

would be a highly labour-intensive process. Even within one 3D cell culture experiment,

the studies cannot investigate all of the potential factors affected by the biomaterial-cell

interaction, and typically select from a range of variables of interest such as cell viability,

cell-cell interaction, cell-matrix interaction, matrix subtype interaction, variability between

cell lines, cell fate specification and cell migration within the scaffold. Specifically in studies

that used alginate, previous studies have examined the influence of substrate stiffness on

cells seeded on a pre-polymerised scaffold,165,166 differentiation of ESCs within one type of

alginate,43,159 or have examined the behaviour of differentiated cells on alginate scaffolds of

varying molecular weight.188

The platform presented here offers the potential to manipulate and control several mi-

croenvironment factors within an individual experimental platform. Future experiments to

investigate the concentration of RA produced at the trailing/leading edge, across of range of

cell seeding densities, and a range of alginate compositions, may shed light on the process

of patterned ESC differentiation within alginate tubes. Additionally, the physical structure

of the tube changed between the first and second experiment, with the second tube being

shorter. This was the result of uneven extrusion of alginate from the tubing into the CaCl2,

which resulted in breakages of the initial portions of the tube. These are limitations that

can be addressed by altering the viscosity of the alginate, the diameter of the tubing and the

extrusion rate of the peristaltic pump, to create tubes of varying length, diameter, and cell

density gradients. These varied tubes can then be characterised to identify the optimal con-

ditions for a range of ESC differentiation experiments or to investigate aggregate formation

and differentiation in a 3D platform. Alginate hydrogels are limited in their use for longer

term culture, as they dissolve over time in culture medium, but layered alginate scaffolds with

collagen or chitosan can be cultured for longer periods, and can be used to adopt this method

for extended in vitro experiments. The method of tube fabrication is easy to manipulate by

changing the soluble hydrogels loaded into each chamber of the gradient maker, for example

to vary the porosity or substrate stiffness, or alternative the cell types encapsulated ton alter

the method of differentation.
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Previous studies have generated outputs that can be combined with the results presented

here to build alternate scaffolds for investigating cell behaviour or differentiation. Chatterjee

et al., (2011)241 used an adapted gradient maker to produce a 3D PEG-dimethacrylate scaffold

with an elastic modulus gradient from 10kPa to 300kPa, and encapsulated osteoblasts. They

demonstrated selective osteogenic differentiation and mineral deposits at an elastic modulus

of 225kPa and higher. Their platform demonstrated that an adapted gradient maker proto-

col can be used to modulate many of the variables involved in cell-matrix interaction, and

highlights the potential for the gradient maker platform presented here to be expanded to

include multiple microenvironment variables. Soundarajan et al., (2007)34 generated a cell

line that produces an endogenous form of Shh. This cell line can be incorporated into the

gradient maker platform from this chapter to co-culture pluripotent stem cells with (i) the

HGF11-produced source of RA characterised here, and (ii) the Shh producing cells. This

hybrid platform could then form a model for neural tube patterning in a 3D biomaterial mi-

croenvironment. The gradient maker protocol outline by Chaterjee et al., (2011) produced a

flat, rectangular scaffold that could be sliced into sections.241 This protocol may be optimal

for modelling the neural tube as cells could initially be cultured on top of the scaffold to

examine the differentiation patterns, before incorporating the added variable of cells cultured

in 3D (i.e. encapsulated in the scaffold). Developing such a neural tube model would require

precise optimisation of the characteristics of the scaffold. A limitation of the alginate for

that purpose was the lack of cell adhesion sites, thus manipulation of the attachment factors

added to the alginate, or use of an alternative biomaterial allowing controlled cell adhesion

would produce more tightly controlled results.149

6.5 Conclusion

The experiments from this chapter have combined the tools developed in previous chapters to

create a novel 3D platform for investigating patterned stem cell differentiation. The HGF11-

derived MNs were shown to produce an endogenous source of physiologically active RA,

capable of producing a localised source of RA inside alginate tubes. The alginate tubes were

a prototype for a novel 3D platform to generate signalling morphogen gradients in vitro. The

tunability of alginate as a biomaterial means that the 3D platform can be optimised to further

investigate the influence of a localised RA gradient on ESC development in 3D. There is an

increasing need for reproducible, in vitro models of embryogenesis, neurodevelopment, and
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tissue regeneration, and the 3D platform presented in this chapter can contibute to each of

these - by adapting the platform and incorporating different cells types, or different growth

factor gradients, these 3D tubes can mimic the localised signalling gradients that occur in

vivo and allow us to examine the response of encapsulated cells to a range of growth factors

or cell-cell interactions in a 3D microenvironment.
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Summary discussion

8.1 Summary of results

The experiments presented in the current thesis have optimised and characterised alginate

hydrogel beads as a scaffold for the 3D culture of mouse ESCs (Ch. 3), showed comparable

levels of neural differentiation in LMW and HMW alginate beads versus EB suspension

cultures, (Ch. 4), characterised a novel cell-produced source of endogenous RA from HGF11-

derived LMC MNs (Ch. 5), and produced a novel 3D platform for investigating patterned

ESC differentiation in response to morphogen gradients in vitro (Ch. 6).

8.2 Importance of the current results for 3D cell culture applications

8.2.1 Applications of embryoid body culture within alginate hydrogels

This thesis demonstrated for the first time that aggregates formed by ESCs encapsulated in

alginate beads are canonical EBs containing cells from the three germ layers. In demonstrat-

ing the presence of the three germ layers, these experiments showed that alginate beads are

suitable biomaterial for investigating EB differentiation in 3D. The implantation of EBs to a

3D gelatin scaffold was previously demonstrated to promote self-organisation of the embryonic

germ layers.55 As mentioned previously, one study allowed mouse ESCs to undergo extended

differentiation in suspension culture, and showed that the resulting organoids contained tis-

sues from the neural plate and spinal cord.32 More recently, a study combined mouse-EB

cell cultures with extraembryonic trophoblast stem cells using a 3D Matrigel scaffold.242 The

study showed that the resulting embryos were a precise 3D model of embryogenesis that

mimicked the self-organisation of embryogenesis in vivo, both temporally and spatially. The

study also demonstrated that the in vitro scaffolds could be used to investigate the self-

organisation of the embryos in response to Wnt, BMP and Nodal signalling.242 The above

studies demonstrated that a combination of 3D culture with EB differentiation holds poten-

tial to discover new information about the mechanisms of cell development. In verifying that

alginate hydrogels support EB differentiation in 3D, the current thesis showed that alginate

scaffolds are an alternative biomaterial for similar experiments. The tunability of alginate

provides an additional benefit for choosing alginate hydrogels over alternative biomaterials

for 3D culture applications. The properties of alginate hydrogels makes them highly tunable
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for a given experimental paradigm, such that the characteristics of the hydrogel can be se-

quentially adapted to investigate the self-organisation of the EB germ layers in response to

different microenvironments. In doing so, alginate:EB differentiation could be a new research

tool for examining cell-matrix interaction effects on cell fate specification.

8.2.2 Co-culture experiments are important for 3D culture

HGF11-derived LMC MNs were established as a novel in vitro source of endogenous RA.

The novel cell-produced source of RA is easy to generate, as it requires only basic cell cul-

ture equipment, a 6 day differentiation protocol and inexpensive reagents, thus can be easily

adopted by other research groups as an in vitro tool. The MNs provided stable concentra-

tions of RA, and furthermore, co-culturing the HGF11-MNs alongside ESCs within alginate

tubes demonstrated that a localised source of RA influenced ESC aggregation and differen-

tiation. The concentrations of RA produced by the MNs were low relative to the standard

concentrations used in vitro (100nM to 1µM) and the reported concentrations in vivo (1-

300nM) however the ability to introduce the RA in close proximity to the ESCs was a more

important feature of this source of RA. As mentioned above, one study combined EB culture,

trophoblast stem cell culture and biomaterial scaffolds to investigate the development of em-

bryonic and extraembryonic tissues within the 3D platform. Their results are an example of

the advantages of using co-culture methods to investigate cell behaviours.242 In showing that

co-encapsulation of LMC MNs and ESCs induced cell differentiation to fates from the three

germ layers, this thesis provided further evidence that 3D co-culture experiments may pro-

vide new methods for examining the influence of cell-cell interaction, or paracrine signalling

from neighbouring cells, on ESC differentiation.

In the Boyden chamber experiment (Ch.6, p.115) HGF11-MNs were cultured in the same

medium as ESCs encapsulated in alginate beads. Over 6 days of cell culture, the encapsu-

lated ESCs did not aggregate within the alginate beads, but when the two cell types were

co-cultured, the ESCs aggregated and differentiated to cell types from the three germ layers.

RA acts in a paracrine manner in vivo and the observed differentiation in the current ex-

periments may have been an ESC response to the low levels of RA produced by the LMCs.

Alternatively, the LMC MNs were encapsulated in close proximity to the ESCs in the plat-

form so it is possible that the observed cell differentiation was the result of an uncontrolled

variable occuring through cell-cell interactions, or signalling via another soluble factor re-
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leased by the LMCs.64 A previous study on ESC-derived germ layer cells reported that the

cell-cell interactions and cell-matrix interactions were important for specifying cell fate,81

thus the same effect may occur within the platform described here. As the Boyden chamber

experiment showed that ESCs did not aggregate when encapsulated alone (without LMCs),

it was unlikely that a cell-matrix effect was responsible for the ESC aggregation and differ-

entiation observed in the co-culture tube experiments. This instead points toward a cell-cell

interaction through the actions of the LMCs. DEAB is an inhibitor of Raldh2 and could

be used to interrupt the LMC MN-produced RA within the scaffolds, to observe any effects

from non-RA induced effects by the co-culture paradigm.77 Inhibiting Raldh2-synthesis of

RA would determine if there are other non-RA induced, cell-cell interactions influencing ESC

aggregation and differentiation.

8.2.3 The 3D platform for patterned differentiation addressed the limitations

of previously reported 3D gradients of soluble factors

The novel alginate tubes created cross gradients of HGF11-derived MNs with stable cell den-

sities of ESCs to investigate the influence of morphogen gradients on ESC differentiation. As

mentioned previously, a major limitation of 2D cell culture is the inability to introduce soluble

factor gradients to the cells.4 Gradients of signalling morphogens are challenging to produce

in 3D, due to the burst release of soluble factors from biomaterials. One study reported a

loss of 15% of the original concentration of NGF in a biomaterial scaffold after 1 day, and

35% after 1 week in culture medium.243 A second study used photopolymerisation of PEG-

dimethacrylate hydrogels to incorporate IKVAV gradients within the scaffold, however the

requirement for UV exposure (6min) makes these scaffolds unsuitable for cell encapsulation,

but suitable for experiments were cells are seeded onto the scaffold after the gradients are

introduced.138

The LMC MN source of RA established in this thesis was stable over at least 5 days of

cell culture thus addressed the limitation of burst release from biomaterials scaffolds as the

source of RA originated within the scaffolds. In addition, the LMC-produced source of RA

also reduced the variability introduced by light-induced degradation of exogenous RA, as

the cells can replenish the RA concentration between medium changes after being replaced

into the incubator. The concentration of RA released along the slope of the alginate tubes

was not tested, but the 3D platform set a foundation for future experiments to optimise this
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protocol. For example, Purcell et al., (2009) investigated the rates of growth factor release by

encapsulated cells in G-rich and M-rich alginate hydrogel scaffolds.169 They showed that the

rates of growth factor release could be controlled using the alginate G:M ratio and whether

the beads were coated or uncoated: (i) neural stem cells in G-rich alginates produced 3-

fold more NGF relative to neural stem cells in M-rich alginates, (ii) PLL coated M-rich

alginates produced 2-fold more NGF relative to uncoated M-rich alginates. Their results

suggested that the 3D platform described here can be adapted to offer increased control over

the concentrations of RA released, by changing the composition of the hydrogel tubes to

promote RA synthesis by the encapsulated LMC MNs. This contributed to novel avenues for

investigating the influence of 3D soluble factor gradients on ESC differentiation.

8.2.4 In vivo applications of the 3D platform for patterned differentiation

For in vivo applications, alginate hydrogels can be polymerised in situ123 or can be sur-

gically implanted to a lesion site.184,231 After spinal cord injury, the glial scar creates an

increased elastic modulus in the area surrounding the lesion that inhibits cell differentia-

tion.64 Biomaterials can combat this effect, limiting glial scar formation and supporting

tissue regeneration.139 For example, Shin et al., (2018) surgically implanted a neural stem

cell-laden poly-glycolic acid (PGA) scaffold at the site of spinal cord lesions in neonatal

mice.244 Their results showed that the implanted scaffold reduced the formation of glial scar-

ring at the site of injury, and that the encapsulated neural progenitor cells had migrated from

the scaffolds, into the infarct, and differentiated into neurons and astrocytes. The authors

also reported functional benefits to the cell:biomaterial implant: mice who received the com-

bined cell:scaffold implant had improved motosensory recovery compared to mice receiving

a cell-only or scaffold-only implant.244 Another study used a hybrid HA:astrocyte-derived

ECM scaffold to promote V2a interneuron migration from the scaffolds and into the lesion

site in mouse spinal cord.245 This study, and the studies discussed above highlight the need

for 3D cell-laden scaffolds that are capable of delivering cells to the point of injury, and also

permitting the implanted cells to penetrate the site of injury and promote regeneration or

functional recovery of host tissue.

Within the peripheral nervous system, RA-induced activation of RARs after nerve injury

promotes regeneration and previous in vitro studies demonstrated that RAR activation is

sufficient to promote axonal regeneration of rat cortical neurons.64 The 3D platform for
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patterned differentiation can be used in a similar manner to the above studies, delivering a

source of MNs to the site of spinal cord injury, and simultaneously a cell-produced source

of RA. By implanting an LMC-laden alginate scaffold at the site of a spinal cord lesion (or

polymerising the hydrogel in situ), the effects of endogenous RA on the regeneration of cells

after injury in the CNS can be investigated. Optimised versions of the platform presented

here, containing high purity LMCs and vitamin-A loaded microspheres, could monitor the

effects of local peaks and troughs of RA on cell differentiation, regeneration and axonal

guidance of limb-innervating MNs in vivo. The HGF11-derived MNs have previously been

demonstrated to migrate towards the correct muscle targets after implantation.12 This is

evidence that delivering in vitro derived cell-analogues for in vivo cell types could be used

to promote regeneration of the spinal cord after injury. In the paradigm outlined here,

the LMCs would be capable of mimicking their in vivo counterparts and correctly projecting

axonal trajectories to their target muscles. To build upon the platform presented here, further

investigation of the concentration of RA produced along the slope of the cell density gradient

could permit more fine-tuned investigations of cell development in the scaffold and be used

to predict the in vivo response of the host tissues to the concentration gradient.

8.2.5 A novel platform for investigating 9-cis-RA activation of RAR/RXRs

RXRs are highly abundant at the limb-levels of the spinal cord, which indicates a relationship

between the LMC MN-derived source of RA and activation of RXR/RAR complexes during

limb innervation.100,221,246 As RARs form heterodimers with RXRs, there may be a role

for 9-cis-RA in specificying LMC positional identities and muscular targets during limb-

innervation.74–76 As mentioned previously, 9-cis-RA is only detected in vivo when embryos are

exposed to supraphysiological concentrations of RA, thus 9-cis-RA may prevent teratogenic

concentrations of RA from inducing off-target effects during LMC differentiation, such as

abnormal cell fate specification or LMC innervation of the incorrect muscle.74,76

The 3D platform for patterned differentiation described here is uniquely situated to inves-

tigate whether the effects of 9-cis-RA in response to supraphysiological concentrations of RA

are a protective measure against RA-induced teratogenicity, or if there is another function for

9-cis-RA that has not been discovered. In vitro MN differentiation protocols use supraphys-

iological concentrations of exogenous RA, which are known to produce supraphysiological

concentrations of 9-cis-RA, and are proposed to activate off-target signalling pathways.75 By
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supplementing increasing concentrations of retinal to the medium of HGF11-derived LMCs,

the LMCs may produce a supraphysiological concentration of RA.76 The subsequent concen-

trations of endogenous 9-cis-RA in the medium, metabolised from supraphysiological concen-

trations of endogenous RA could then be quantified. Using the novel co-culture 3D platform

presented here, the effects of supraphysiological levels of LMC-produced endogenous RA on

9-cis-RA concentration, RAR/RXR activation, and ESC differentiation can be examined.

This would provide new information about the relationship between RA and 9-cis-RA con-

centrations in vitro that cannot be investigated using exogenous RA.

Alternatively, using the same methods as above to create supraphysiological concentra-

tions of RA, and simultaneously antagonising RARs or RXRs in the encapsulated cells, the

platform could be used to investigate whether RAR, RXR or combined RAR/RXR activa-

tion is necessary for inducing ESC differentiation in vitro. The rate of receptor activation

in response to increasing concentrations of endogenous RA (due to supplementing retinol or

retinal to the medium), and subsequently to the increasing concentrations of 9-cis-RA would

provide new information about the relationship between teratogenic concentrations of RA

and activation of RXRs. A previous study reported that 9-cis-RA and RA were capable of

inducing differentitaion in P19 embryonic carcinoma cells, but that 9-cis-RA was 50-100 times

more potent compared to all-trans retinoic acid.224 Alternatively, another study showed that

P19 cells expressed different RARs depending on the stage of development,247 which suggests

there may be differential rates of RAR and RXR activation in differentiating ESCs, in re-

sponse to either RA or 9-cis-RA, depending on the stage of differentiation. RARα, RXRαand

RXRβare widely expressed during development whereas RARβ, RARγand RXRγhave tissue-

specific expression,67 further suggesting that ligand binding of 9-cis-RA or RA to RAR/RXR

receptor complexes has a stage-dependent effect on development. The influence of the RA

in the medium on activation of LMC-specific RXRs and RARs, or the ESC-specific RXRs

and RARs could further determine if there are differences in the rates of receptor activation

depending on the cell type or cell stage of development. These experiments would answer

some long standing questions about the role of 9-cis-RA in RA-induced differentiation in

vitro, and can provide important information about the on-target and off-target effects of

exogenous and exogenous RA during differentiation.
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8.2.6 Concluding remarks

This experiments presented within this PhD thesis have contributed several novel results to

the field of 3D cell culture. The 3D platform for patterned differentiation is a new tool for in

vitro 3D cell culture that provides a foundation for a wide range experiments investigating

patterned ESC differentiation. The platform can be optimised and adapted to investigate the

impact of co-culture methods on ESC differentiation, to examine the RA specific and non-RA

specific mechanisms involved in ESC differentiation and to examine the role of 9-cis-RA in

in vitro neuronal differentiation protocols. The ability to introduce additional or alternative

cell types, combined with growth factor gradients, makes the 3D platform a suitable tool

to investigate the interdependence of cell-matrix, cell-cell and soluble factor effects during

differentiation. The use of an adapted gradient maker protocol provides a technical benefit,

as alternative biomaterials can be combined or interchanged with alginate; this would allow

cell types that are not easily cultured in alginate to be combined with the 3D platform in an

alternate biomaterial. The research opportunities provided by the 3D platform for patterned

differentiation are substantial and the platform is thus an important tool that this thesis

contributed to 3D cell culture applications.

The individual components of the platform also contributed novel tools and insights to in

vitro cell culture. The cell-produced source of endogenous RA was used to provide a localised

concentration gradient of RA to the encapsulated ESCs, and although the all or some of the

observed patterned differentiation may be due to non-RA induced effects, the results have

demonstrated that a co-culture paradigm is important for inducing ESC differentiation in 3D

cultures. By validating that the LMC MNs are a stable source of RA, this thesis contributed

a useful tool for providing localised, low level RA concentrations to ESCs. Although the

protocol requires characterisation to determine the production rate and upper concentration

of RA that can be achieved, the results as they stand have contributed towards new research

avenues in 2D and 3D cultures, such as comparing the rates of ESC differentiation towards

cell fates from each of the germ layers using cell-derived and exogenous RA, or creating RA

gradients in alternative biomaterials to investigate if ESC differentiation can be induced in

alternate scaffolds with differing properties.

A driving hypothesis behind the experiments comparing LMW and HMW alginate was

that a direct comparison of alginate hydrogels of different G:M ratios would identify whether
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high-G or high-M alginate hydrogels were optimal for ESC differentiation to cells from the

germ layers. The results showed no significant difference between the two alginate com-

positions, which suggests that in contrast to the published studies, ESC differentiation in

alginate may not be as sensitive to the 3D culture conditions as previously reported. The re-

sults showed, for the first time, that EBs in alginate beads are canonical EBs and contain cells

from each of the three germ layers. The results definitively showed that cell fates from each

of the three germ layers can be investigated in alginate, which demonstrated that alginate

scaffolds are not only suitable for ESC encapsulation, but also that ESCs can be induced for

form EBs in alginate hydrogels of different G- and M-residue content. Experiments building

on this knowledge can investigate ESC differentiation towards derivatives of each germ layer

in scaffolds of different G:M types, where the scaffold properties can be tuned to support the

terminal cell fate. As the ESCs will differentiate in both high G- and high M-residue algi-

nates, this allows for long term culture by creating hydrogels characteristics that will support

the mature cells, and thus allows the influence of cell-matrix on later stages of development

to be examined.

To conclude, this thesis answered questions about the utility of alginate hydrogels as

3D biomaterials, demonstrating that alginate can be used to support EB formation and

differentiation from encapsulated ESCs. The thesis provided a novel solution that addresses

the limitations of exogenous RA differentiation protocols, and can be applied in both 2D and

3D culture applications. This PhD created novel tools for in vitro culture that are easy to

produce, affordable, adaptable and scalable, and in doing so contributed new knowledge to

the field of 3D cell culture that will inform future experiments using alginate hydrogels.
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Appendix 1

Item Supplier Code

Advanced DMEM-F12 Gibco 11540446

Alginate, high molecular weight Acros Organics 17777

Alginate, low molecular weight Sigma-Aldrich 71238

β-mercaptoethanol Gibco 11528926

Calcium chloride, salt Fisher Scientific 10161800

CF1 mouse embryonic fibroblasts Merck PMEF-CFL

CGR8 wildtype mouse ESCs Sigma-Aldrich 08032901-1VL

DMEM , high glucose, no l-glutamine Gibco 11500416

dPBS +MgCl2, +CaCl2 Gibco 11580456

dPBS -MgCl2, -CaCl2 Gibco 12559069

EDTA, disodium salt Fisher Scientific S311500

ESGRO mouse LIF, concentrated Merck ESG1107

ESGRO mouse LIF, non concentrated Merck ESG1106

FBS South American, EU Approved; Lot: FB-1001H Gibco 11550356

Fluorescein diacetate Sigma-Aldrich F7378-5G

GDNF from mouse Sigma-Aldrich SRP3200

Gelatin 2% type B, porcine Sigma-Aldrich G1393-100ML

Gradient maker Sigma-Aldrich GESG100

Hepes Fisher Scientific 10397023

ImmEdge hydrophobic pen Vector Labs H4000

Knockout serum replacement Gibco 10828028

Laminin Merck CC095-5MG

L-glutamine Gibco 11539876

Mitomycin C Sigma-Aldrich Y0000378

Mouse Raldh2 ELISA Kit MyBioSource MBS7237205

Mouse RA ELISA Kit MyBioSource MBS706971

Neurobasal medium Gibco 11570556
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Item Supplier Code

Non-essential amino acids Gibco 11140050

Normal goat serum Gibco 16210072

Parafilm Fisher Scientific 1535088

Paraformaldehyde 37% Sigma-Aldrich 252549-500ML

PBS 1X tablets Fisher Scientific 10388739

Penicillin/streptomycin Gibco 11548876

Purmorphamine Sigma-Aldrich SML0868-5MG

Quantinova SYBR green kit Qiagen 208054

Quantinova reverse transcription kit Qiagen 205411

Retinoic acid Sigma-Aldrich R2625-50MG

RNeasy mini kit Qiagen 74106

RNeasy min ELUTE Qiagen 74204

Sodium chloride Fisher Scientific S271500

Sodium citrate Fisher Scientific S279500

Thiazole orange Sigma-Aldrich 390062-250MG

Tissue-Tek OCT VWR 62550-01

Triton X-100 Sigma-Aldrich X100-100ML

Trypan blue Gibco 15250061

Trypsin-EDTA Gibco 11570626

Vectashield mounting medium Vector Labs H1000
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