
School of Biological Science

PhD Dissertation

Functional Connectivity Signatures
of Visual-Motor Coordination using

Spectral Dynamical Analysis

Xinzhe Li

Supervisors:

Prof. Yoshikatsu Hayashi Prof. Slawomir J. Nasuto

October 2018



Abstract

Visual-motor coordination is an essential function of human motion
control, which requires interactions of multiple brain regions. Visual track-
ing is a behavioural task that requires intensive visual-motor coordination,
which makes it a good paradigm to study the underlying mechanism of
visual-motor coordination. In this research, tracking paradigm was used
to study the visual-motor coordination, and both behaviour and electroen-
cephalography (EEG) functional connectivity were analysed.

The behavioural analysis explored the anticipatory characteristic of hu-
man motion control. In the tracking paradigm, participants were asked to
trace a target moving with constant speed along a circular trajectory. Two
different types of tracking paradigm were applied in the research. Firstly,
the full visibility tracking trials were performed, in which participants had
the full visibility of the target movement. Participants showed weak antic-
ipatory behaviour in the full visibility tracking trials. In order to observe
stronger anticipatory behaviour, the intermittent tracking trials were then
performed, in which two target-invisible zones were added. It was found
that participants applied two distinctive control modes of visual-motor co-
ordination in the target-visible zone and target-invisible zone, respectively.
The result showed that the target-invisible zone made participants perform
anticipatory control of visual tracking.

In order to identify the brain activities related to visual processing and
motion control separately in the visual-motor feedback loops, two reference
conditions were designed and compared with the tracking trials. The func-
tional connectivity was defined using phase-locking synchrony, and both
static and dynamical features of the network were investigated. For static
analysis, the time-averaged graphical properties of functional connectivity
were investigated. To investigate dynamical properties, a new dynamical
network analysis method was developed based on eigenvector representa-
tion of functional connectivity. Both static and dynamic analyses demon-
strated significant differences between cortical functional connectivity net-
works of open and closed visual-motor loop. Additionally, the dynamical
network analysis also revealed that the EEG network related to visual-
motor coordination undergoes a meta-stable state dynamics in the prime
eigenvector space. This method can also potentially be applied to other
network system to reveal the meta-stable states structure.
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Chapter 1

Introduction

Motion is the only way that creatures can affect the environment. For

humans, visual-motor coordination is an essential way of motion control,

as humans perceive majority of information from the visual system. Re-

search has shown that the inter-regional correlations of neural signals play

an important role in the motion control of visual-motor behaviour [1, 2, 3].

The collection of these neural correlations also forms a structure of complex

network, which is called functional connectivity network, whose topologi-

cal structure and dynamics could indicate the underlying neural activities

corresponding to the motion control. The functional connectivity network

specifically related to the visual-motor coordination, however, has not been

fully explored. In this study, I investigated the functional connectivity pat-

terns of the human visual-motor coordination behaviour.

Understanding the underlying mechanism of visual-motor coordination

would provide an insight into human motion control, and greatly promote

the progression of the brain-computer interface (BCI) technology. BCI is

an interface that enable direct communication between human brain and

external devices [4]. BCI records and translates neural signals and sends

them to other devices. A person with BCI can send messages or com-
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mands directly from the neural system without using any muscles. BCI

could lead to medical use, in which case amputees could recover their mo-

bility with BCI embedded prosthetic limbs, and potential usage of human

augmentation. Uncovering the pattern of functional connectivity network

corresponding to the visual-motor coordination gives an insight of how the

distributed cortical regions integrate into a precess feedback loop, and make

decoding the neural activities possible.

The human visual-motor coordination is a complicated process, which

involves multiple cortical regions [5]. From the control theory point of

view, the whole visual-motor loop can be divided into different functional

modules, such as visual feedback modules, tactile feedback, motion con-

trol, etc. However, those individual modules could still activate even when

participants are not performing visual-motor coordination. For example,

the neurons of visual perception would function even the subject doesn’t

perform any movement. Therefore, it is essential to carefully separate dif-

ferent parts of the visual-motor system. In this study, I designed a set

of visual tracking tasks which could separate different parts of the visual-

motor loop. Electroencephalograph (EEG) was recorded during the whole

behaviour experiment session, and the functional connectivity network was

derived from EEG. Both topological analysis and dynamical analysis were

performed on the functional connectivity. A new method was developed

in order to extract the dynamical properties of the functional connectivity

network.

In this dissertation, firstly a literature review will be provided to intro-

duce the necessary background of this research, then the analysis on the be-

haviour data of participants will be presented. The behaviour data analysis
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showed that participants exhibited the anticipatory motion control in the

intermittent tracking paradigm. From Chapter 4, I will start to investigate

the EEG functional connectivity network. But before directly analysing

the neural signal, in Chapter 4 I will develop a new eigenvector-based dy-

namical analysis method and set up a simulation model of synchronous

network to testify our method of functional connectivity. In Chapter 5 and

Chapter 6, I will demonstrate the time-averaged topological properties and

dynamical properties of the functional connectivity network respectively,

and explain how those properties of the network distinguish open and closed

visual-motor loop. The results showed that the functional connectivity of

the alpha band is related to the motion control, while the functional con-

nectivity of the gamma band is related to the visual feedback control. In

the last chapter, all the results will be summarized and concluded. The

eigenvector-based dynamical analysis method showed a great potential to

uncover the attractor structure of the network evolution, therefore in the

last chapter, I will also discuss the possible future directions along this

dynamical analysis, which could be applied to reveal the full picture of the

functional connectivity dynamics.
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Chapter 2

Literature Review

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . 7

2.2 Behaviour study of motion control . . . . . . . 8

2.2.1 Visual-motor coordination . . . . . . . . . . . . . 8

2.2.2 Anticipatory behaviour of humans . . . . . . . . 10

2.3 The neural network . . . . . . . . . . . . . . . . 11

2.3.1 Neural correlation . . . . . . . . . . . . . . . . . 12

2.3.2 Neural connectivity . . . . . . . . . . . . . . . . 15

2.3.3 Neural signature of visual-motor coordination . . 17

2.4 Network theory . . . . . . . . . . . . . . . . . . 18

2.4.1 Topological property measurement . . . . . . . . 19

2.4.2 Eigenspectrum of the network . . . . . . . . . . . 21

2.4.3 Dynamical properties of network . . . . . . . . . 23

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . 25

2.1 Introduction

The literature review of this dissertation includes 3 parts. In the first

part, the behaviour studies of human motion control are introduced, which

will have two themes, the visual-motor coordination and anticipatory be-

haviour. The second part of this chapter discusses the neural signal anal-

ysis, specifically the functional connectivity analysis, and also talks about
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the neural signal research of visual-motor coordination. The last part fo-

cuses on the methodology of network analysis, including the topological

properties and dynamical analysis.

2.2 Behaviour study of motion control

2.2.1 Visual-motor coordination

Visual-motor coordination, or more generally, the sensorimotor coordi-

nation, is a critical ability for motor control of humans. The sensorimotor

coordination is a form of referential behaviour [6], in which the action is

coordinated with an external object, which is called referent. For example,

when a person plays tennis or video games, the motion of that person is

coordinated with the tennis ball or visual information shown on the dis-

play. For this scenario, the ball or image shown on the display plays the

role of referent. In the research, sensorimotor coordination is usually inves-

tigated with behaviour tasks in which participants were asked to perform

certain type of motion coordinated to visual or auditory cue. Many differ-

ent variants of behaviour tasks have been applied, including different types

of motion (finger tapping, finger flexion, or movement involving the whole

upper limb), different cue (visual or auditory stimulation), and different

coordination form (in-phase synchrony or anti-phase synchrony).

Tracking paradigm is a visual-motor task in which participants were

asked to track a moving target with a tracer which is controlled by the

participant, usually both target and tracer were shown on a display. The

movement of the target can be either one dimensional or two dimensional,

and usually the tracer would share the same moving space with the tar-
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get. During tracking, participants have to synchronize their movement

with the target, which requires both visual input processing and precise

movement control. Different modifications of tracking paradigm have been

applied in previous research. There are a number of studies using “force

tracking” paradigm [7, 8, 9, 10], where participants usually interact with a

force sensor through one or more fingers (usually the thumb and the index

finger) to control the tracer. Participants press or do finger tapping to

control the position of tracer and try to overlap it with the target. The

other type of tracking involves the motion of the whole arm. For example,

in Lin’s research [11], participants controlled a tracer through a joystick,

while the tracer was restricted within a square track. A target moved

counter-clockwise along the square track, and participants were instructed

to overlap with the target within a tolerance limitation. The drawback

of the force tracking paradigm is obvious: it only involves the motion of

fingers, which may only result in very limited neural activity of the motor

cortex, and the brain signal feature could be hard to observe. Another

problem for both paradigms introduced above are the restriction of the

degree of freedom. In both cases, the movement of target and tracer were

restricted in one dimension. It may also make the visual-motor feedback

loop less active for lack of degree of freedom as well as lack of challenge of

the task. This study followed the tracking paradigm in Hayashi’s work [12],

in which participant was asked to control a freely-moving tracer to track

a moving target which was moving in a circle trajectory on the display.

The advantage of this set up is that the non-restricted movement better

simulates natural movement such as locomotion and reaching. Participants

used a haptic device to control the tracer, which meant the whole arm was
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involved in the movement, while force tracking and other restricted move-

ment paradigms only involve limited degree of freedom, which may not fully

activate visual-motor feedback loop as less information flow is required to

control the movement.

2.2.2 Anticipatory behaviour of humans

Some of the early studies have noted the anticipatory behaviour of hu-

mans. Some very early works [13, 14] have noted that the error between

taps and stimuli tend to have positive-biased distribution (taps preceded

stimuli) rather than symmetric distribution. Klemmer [15, 16] found that

responses of participants were likely to precede, rather than follow, the

stimuli in a behaviour task with relatively high frequency of the isochronous

stimuli sequence. These positive errors or the preceding of tapping suggest

that those participants were performing anticipatory behaviour [17, 18].

People are generally unconscious about their anticipatory behaviour [5].

In the work of Aschersleben [19], participants reported that they had to

intend to delay the tap so that they could perfectly synchronize with the

visual stimuli, which suggests that the anticipatory behaviour is a spon-

taneous rather than subjective behaviour. This phenomenon implies that

the anticipatory behaviour could result from a specific motion control mode

which would be activated unconsciously. The other empirical finding of the

anticipatory behaviour is that there are large variance between individuals

[20, 21, 22]. In the work of Ishida [23], participants performed a visual

tracking task in which they were asked to track a visual target moving at

a constant frequency. There were a number of trials with different target

moving frequencies in the experiment so that researchers could investigate
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the effect of target frequency. They found that the behaviour of partici-

pants preceded the target in a finite frequency range. The positive error

increased as the function of the target frequency and reached its peak at

1.5Hz, and then decreased as the target frequency increased over 1.5Hz.

This result suggested that the anticipatory behaviour of humans is affected

by the frequency of the target. Participants showed anticipation only if

the frequency of target is within a certain range. They also noted that the

positive error of the anticipation was variable for different participants. A

number of different theories have been proposed to explain the anticipatory

behaviour, but none of them could provide a satisfactory explanation and

more evidence is needed [20, 5]. In this study, the behaviour analysis was

performed to investigate the anticipatory behaviour.

2.3 The neural network

The human brain can be seen as a huge scale network of millions of

neurons anatomically. It is widely accepted that brain as a complex neural

network has capacity to store and process information [24]. Some theo-

retical models, such as Hopfield network [25], have demonstrated that it

is possible to store information in the network structure. Therefore, the

neural network structure is the key for understanding the mechanisms of

human cognition and behaviour. With the framework of graph theory from

mathematics, complex network has become a powerful model to describe

and study the brain activity.

The brain network demonstrates a hierarchical structural [26], where

in the bottom of the hierarchy are the small clusters composed by local
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neurons, which are called neural assemblies [27, 28, 29]. Cognitive acts

of humans are generally thought to be related to specific neural assemblies

[30]. In a specific neural assembly, neurons are connected by selective inter-

actions, which means that they preferentially connect with a sub-network

of neurons that are interconnected with each other. Those interconnections

are typically reciprocal [31]. A specific neural integration which is called

phase synchrony plays an important role in the interaction of these local

networks [32].

2.3.1 Neural correlation

Phase and synchrony have been given many different definitions in dif-

ferent works. In a general sense, two signals x and y are considered corre-

lated with each other if one of the signals is related with the other. The

most commonly used measurement of correlation is the Pearson correlation

coefficient which evaluates the product of the variance of the two signals:

rxy(τ) =

∑
u(xu − x)(yu−τ − y)

SxSy
(2.1)

where Sx and Sy are the sample standard deviation of the signals x and y

respectively, while x and y are the mean values of the signals. τ is the offset

between the two signals, so that the Pearson correlation in this form also

considers the coupling with a constant time-lag. The range of r is [−1, 1].

The higher the absolute value of r is, the stronger linear correlation of the

two signals it suggests. This measurement can also be used on band passed

data if a specific frequency band is of interest [33].

While the correlation coefficient take into consideration the phase of
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the signal, phase synchrony specifies the phase correlation between signals.

Different definitions can be applied on “synchrony” of phase. A generally

used one is the in-phase synchrony which is defined as phase equivalence

between two signals x and y:

φx,u = φy,u (2.2)

where u refers to time. However, this measure only account for one of many

types of phase synchrony. Another measurement of phase synchrony is the

phase coherence [34] which is defined as following:

C =
1

T
|
T∑
u=1

ei(φx,u−φy,u)| (2.3)

where T is the width of time window. From Equation (2.3), it can be

learned that phase coherence C would have a large value if the phase dif-

ference φx,u−φy,u within the time window keeps constant, no matter what

exact value the phase difference takes. In other words, this measurement

characterises the consistence of the relative phase difference. Therefore,

the phase coherence can not only detect the in-phase synchrony of the two

signals, but also the synchrony with a certain time-lag. In this dissertation,

the latter situation is specifically named as “phase-locking”. However, the

time window limits the temporal resolution of this measurement, which

means that the relative phase difference changes inside the time window

would be ignored. In this research, rather than calculating the average

phase difference of the time window, the phase coherence C was calculated

with a new method which is based on the Euclidean distance of the time

window segments of the phase time series. The details will be described
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in Chapter 4. By this way, the temporal resolution of phase difference was

not limited by the time window resolution any more.

Evidence found in the research of visual binding has shown that phase

synchrony mediates communication in the neural networks. Visual-binding

research studies the question about how the different visual characteristics

of an object, like shape, color, position, motion, are brought together into

a unified image given that those visual characteristics are processed in dis-

tributed brain regions. Phase synchronization have been found in the local

field potential (LFP) studies of Roelfsema et.al. [1, 35, 36]. The local

field potential (LFP) records the summed electrical signal generated by

multiple nearby neurons within a small volume of brain tissue. In their ex-

periment, cats were trained to response to a visual stimulus, and the LFP

of the visual, somatosensory, and motor areas of cats’ cortex were recorded

and analysed over time. They found a selective increase of the phase syn-

chrony in LFPs of visual-parietal cortex as well as parietal-motor cortex.

The synchronization pattern rose simultaneously when the animal moved

its attention on the visual stimulus, and disappeared when the animal fin-

ished the task and had the reward. This research provides a direct evidence

that large-scale phase synchrony emerges along with the visual-motor task.

Bressler [2, 3] also reported that phase synchrony was observed from the

cortex of monkeys who were trained to perform a visual discrimination task.

The researchers observed a dynamical pattern of the phase synchrony in

the beta and gamma bands synchronisation strength changed during the

visual-motor task. Phase synchrony is also observed in EEG signals, which

are the electrical potentials recorded by scalp surface electrodes. Study of

Rodriguez et.al. [37] investigated the perception of high-contrast human

14
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face images. The images were presented both normally or upside down,

the latter way of presenting the image made the human face hardly recog-

nizable. The long-range synchrony between occipital, parietal and frontal

areas were observed during the face recognition session, and disappeared

when the image were shown upside down. These studies demonstrated that

phase synchrony plays an important role in the visual-motor coordination.

2.3.2 Neural connectivity

As we saw in the previous section, the emergence of phase synchrony

is usually accompanied with certain behaviour task. It is generally be-

lieved that the brain regions synchronized with each other are functionally

correlated, and this functional correlation is related to the behaviour task

that an individual is currently performing. If there are phase synchrony

correlations between multiple regions of the brain, a network structure

emerges. Studying the topological structure of the network could reveal

the information of the underlying neural activities. Neural networks are

usually studied from two different aspects, the functional connectivity and

the structural connectivity. The functional connectivity is the network

whose connections denote the statistical coherence of neural signals, while

the structural connectivity is the network whose connections denote the

anatomical connection of different brain parts. The connections in the

functional connectivity are virtual and defined by neural signal analysis,

while the connections of the structural connectivity usually have physi-

cal form, such as synapses or axonal projections. Structural connectivity

analysis has been applied in planar microelectrode array (MEA) studies

[38], where the synaptic connection of neurons can be clearly observed.
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In human brain studies, however, structural connectivity analysis is less

feasible due to the tremendous scale of brain network which is difficult

to study if every physical neural connection is considered. The functional

connectivity is derived from neural signals, so it is more commonly used in

the research with human subjects. The definition of nodes and links of a

functional connectivity network largely depends on the neural signal acqui-

sition method. For example, in fMRI studies, the nodes of the functional

connectivity are usually called Region of Interest (ROI) which is an ab-

stract point that represent a certain surrounding region of the brain, while

the links are usually weighted by the Pearson correlation coefficient of the

corresponding two signals [39]. With EEG recording, however, the nodes

are physically bound to the electrodes. As EEG signals have much higher

temporal resolution than fMRI signal, more different methods determining

the weight of network links have been developed [40]. Phase-locking syn-

chronization which was employed in the this work is one of those measures

that used to define the non-directed functional connectivity. It is generally

believed that phase-locking synchrony plays an important role in the neu-

ral information transmission process [41, 42, 43]. It has been found that

the degree of phase synchronization is related to the pathological activity

of epilepsy patients [34]. Also phase locking synchrony was used to define

functional connectivity [44, 45]. In this work, functional connectivity is

derived from EEG. Characterized by the high temporal resolution, EEG is

an ideal neural signal for investigation of dynamical property of functional

connectivity.
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2.3.3 Neural signature of visual-motor coordination

Experimentalists have shown that cortical cross-regional correlations

play an important role in visual-motor coordination. Mehrkanoon et.al.

[46] investigated corticomuscular coherence in the dynamical visual-motor

task of human participants. They measured the synchrony with time-

frequency coherency and this result showed that EEG synchronized with

electromyographic (EMG) signal in the beta band, while participant was

exerting constant force on the object. However, when participant changed

the output force, the corticomuscular coherence in the beta was replaced by

coherence in the alpha and gamma band. This study suggested that neu-

ral activities in the alpha and gamma bands involve movement prediction

and error correction process. In the work of Rilk et. al. [7], partici-

pants were instructed to track an irregularly fluctuation target shown on

the screen through a force sensor held by index finger and thumb. They

demonstrated that better performance was associated with higher occipi-

tocentral coherence, while high tracking error was associated with stronger

fronto-central coupling. There are also a number of reports suggesting that

the coherence of the alpha band would increase in the visual motor task

comparing with the rest state [8, 9]. To sum up, current research shows

that visual-motor coordination involves coordination of multiple cortical

regions through multiple frequency bands synchronization. However, those

research only focused on the individual coherence rather than the overall

topological structure of the neural coherence network. The study reported

in this dissertation investigates both topological and dynamical properties

of the neural functional connectivity network related to the visual-motor

coordination behaviour of humans.
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2.4 Network theory

With the framework of graph theory from mathematics, complex net-

work has become a powerful model to describe and study the brain activity.

A network, which is often called a graph in the graph theory of mathemat-

ics, is a representation of the topological structure abstracted from the

physical entity of the system. Therefore, the network can be noted as an

ordered pair G = (V,E), where V refers to the set of nodes or set of ver-

tices, and E refers to the set of connections, or the set of edges, between the

nodes. The connections of a network can be either weighted or unweighted.

Connections of an unweighted network are homogenous, while in weighted

networks, the weight of connections represents a specific property of the

network, the actual interpretation depends on the nature of the network

itself. In the research of neural connectivity, the network connections are

first weighted by the measurement of the coherence of the neural signal, and

then usually binarized to unweighted network connection with a threshold

[47, 48]. The binarization of network connections can make the main topo-

logical features of the network stand out by pruning the weak connections,

but caution must be paid as a bad selection of threshold could lead to

loss of topological structure information of the network [47]. The choice of

threshold can be arbitrary, but usually related with the distribution and

the properties of the coherence measurement [49]. Each connection can also

have its own direction, which represents the asymmetric effects from one

node to another. The network with directed connection is called directed

network, while the undirected network only have undirected connections,

which represent the symmetric interactions between nodes. The directed

network can better represent a system than the undirected network if the
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system has asymmetric effects between its nodes. If we assume symmetric

interaction between nodes, however, the undirected network would be a

better choice given its simplicity.

The method that modeling a system from its network of interactions has

been applied in many different fields including computer science, commu-

nication, social dynamics, and marketing [50, 51]. As the brain naturally

has a network structure, this approach has been extensively used in the

neuroscience and psychology [52, 47, 53].

2.4.1 Topological property measurement

A network is an abstractive representation that specifically focuses on

the topological structure of a system. For that purpose, many different

measures have been developed to quantitatively describe the topological

structure of the network. The most common measures are introduced below

[52]:

Node degree

The degree of a node is the number of connections attached to the

node. In the case of a weighted network, the degree of a node is the

sum of the weights of all the connections attached to the node. It is one

of the most fundamental measures of a network. The degrees of all the

nodes in the network propose the degree distribution, which is an important

characteristic of a network [54]. In this research, this property was not

investigated, so the details of the degree distribution won’t be introduced

here.
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Network density

Network density or connection density is the ratio of the actual number

of connections versus the maximum possible connections number. A net-

work with low connection density can be described as a “sparse” network,

although the “sparse” is an arbitrary criteria.

Clustering coefficient

Clustering coefficient describes how likely nodes tend to gather into a

cluster. An adjacent node ni, or neighbour, of a node nj is a node that

directly connected to node nj with a connection eij. The neighbourhood

of node nj is the set of all its neighbour, which can be written as Ni =

{nj : eij}. If two neighbours of a node are also connected with each other,

which creates a triangle, these three nodes are considered as a micro cluster.

The local clustering coefficient of a node is the ratio of the actual number

of triangles within the neighbourhood of the node versus the maximum

possible number of triangles [55]. Therefore, the local clustering coefficient

can be defined as

Ci =
2 |{ejk : nj, nk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(2.4)

where ki is the total number of neighbours for node ni. The denominator

ki(ki−1)
2

is the maximum possible number of connections in the neighbour-

hood Ni, while the numerator is the number of actual connections in the

neighbourhood. The global clustering coefficient is the average of the local

clustering coefficient of all the nodes.
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Path length and efficiency

The shortest path length is another measure describing the connection

distribution of the network. A path between two nodes m and n is a

sequence of connections which connect the two nodes [56]. The length of

a certain path is the number of connections in the path (in the case of

unweighted network) or the sum of the connections weights in the path

(in the case of weighted network). The shortest path length describes

the topological distance between nodes in the network. In the context

of neural network, it could indicate how fast the information is travelling

between nodes. Efficiency is the reciprocal of the shortest path length

between two nodes. As it is difficult to define the shortest path length

in the network with many disconnected subnetworks, efficiency is usually

applied to describe the topological distance of those disconnected nodes in

this situation.

There are also other measurements characterizing specific topological

structures, such as centrality, which measures how likely the node is a hub

in the network. By investigating those topological properties, one could

characterise the network topological structure. This research investigated

the network density, global clustering coefficient, and mean efficiency of the

functional connectivity.

2.4.2 Eigenspectrum of the network

A network G = (V,E) can be represented as an adjacency matrix A,

whose dimension equals to the number of nodes, and its entry (i, j) is the

weight of connection between nodes i and j. In an unweighted network,

(i, j) would be 1 is the two nodes are connected, otherwise (i, j) would be 0.
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An eigenvector v of the adjacency matrix is a non-zero vector that satisfy:

Av = λv (2.5)

where λ is a scalar, which is called eigenvalue of the corresponding eigen-

vector. Linear algebra has proven that eigenvectors of a matrix contain

its information fully [57]. The set of all the eigenvalues and corresponding

eigenvectors of the matrix is called eigenspectrum, which includes much

information of the network topological structure. The eigenvector corre-

sponding to the largest eigenvalue, which is called prime eigenvector, car-

ries significant information about the existing small module structure of

the network. Eigenvectors, as a low dimensional projection of the network

adjacency matrix, have been extensively applied in the network science.

One of its most common application is network cluster detection. Research

of Allefeld [58] has demonstrated that the values of eigenvalues indicate

the size of each cluster, while the entries of the corresponding eigenvectors

suggest the membership nodes. In the paper, they showed that all the

eigenvalues larger than 1 indicate clusters of the network, and the clus-

ter membership of the nodes can be learnt by observing the entries of the

corresponding eigenvectors. There are also other clustering methods that

combine the eigenspectrum with other clustering algorithm in order to get a

better partition of the network [59]. In this research, the prime eigenvector

was used as a low dimensional representation of the dynamical functional

connectivity network. It captures the main structure of the network, and

the fact that it only contains a part of network information makes it resis-

tant from topological noise. Converting the network time series to prime

eigenvector time series actually draw a trajectory in the prime eigenvector
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space, which reveals the dynamics of the network.

2.4.3 Dynamical properties of network

Dynamical network is an extension of the complex network model, with

the whole topological structure evolving over time, which can be repre-

sented as a time sequence of network snapshots. The neural network is a

transient network as neural signals change in the scale of millisecond, which

could generate distinctive topological structure in a short time, and that

makes it necessary to study the dynamical details of the neural networks

[52]. In the context of dynamical functional connectivity, the connections,

which are the interaction of neural signals, evolve along with time and

changes the topological structure of the network, while the nodes, which

represent specific cortex areas, are usually unchanged during the whole ses-

sion. By analysing the dynamical functional connectivity, the change of the

neural activity as a function of time can be uncovered.

Different methods have been developed to investigate the dynamical

network. One type of the methods focuses on the changes of each indi-

vidual connections, in which the time series of network instances can be

seen as a collection of time sequences of individual connection. However,

tracking the history of every connection creates huge dimensionality, given

that the evolvement of individual connections may not only be affected by

its own historical snapshots, but also by the the history of other connec-

tions. Grindrod [60] proposed a simplification on this model, where the

time sequences of individual connections were assumed to be Markovian

and independent from time sequences of other connections. With these ex-

tra restrictions, the dimension of the network time series has been greatly
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reduced. There are also methods which extend the clustering algorithms

of static networks and apply them on dynamical networks by considering

time as an additional dimension of network. In the work of Mattar et.al.

[61], virtual links were defined between the same nodes on different tempo-

ral snapshots of the network. Each snapshot of the network is an instance

of the static network, which can be seen as a slice in the network time se-

ries. By defining the connections between slices the dynamical connectivity

becomes a 3-dimensional network, with two spatial dimensions and one ad-

ditional temporal dimension. Then, the community detection methods of

static networks can be applied to this 3-dimensional temporal-spatial net-

works. However, the performance of the static network algorithm on this

3D network would be largely affected by the way of defining the temporal

links. Another way of investigating the network dynamics is to collapse the

whole network into a lower dimensional representation, such as the specific

topological measures like clustering coefficient or shortest path length. This

model makes it easier to analyse the time series of the network representa-

tion [62, 63, 48, 64, 65, 66]. In this study, a new dynamical analysis method

which reduces the dimensionality by projecting the network onto its prime

eigenvector and makes use of the eigenvector representation was developed

and applied on the EEG functional connectivity. This method revealed the

meta-stable state dynamics of the functional connectivity evolution.

Chaos is an interesting phenomenon often observed in a nonlinear dy-

namical system. A chaotic system has a well defined dynamics but its

sensitivity to the initial conditions result in that small disturbances would

cause completely different future trajectories of the system [67]. There-

fore, although the behaviour of chaotic systems are well defined, they are
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somehow unpredictable in the long term [68]. Chaos phenomenon has been

observed in many real world systems [69, 70, 71]. The brain has been proved

to be manifest chaotic behaviour [72], thus reflecting this in the neural sig-

nal. The main evidence is from the research of neuron spike firing [73, 74].

It was found that the phase space which was expanded by the succes-

sive firing interval In and In+1 showed the chaotic dynamics. Research of

Schiff [75] has even managed to induce the chaotic firing of neural spikes

by applying electrical stimulus. There are also reports of chaos from EEG

studies [76, 77]. Chaotic patterns were also observed from EEG of patients

who were anesthetized with sevoflurane [77]. This study made a primitive

exploration of the chaotic property of dynamical functional connectivity,

which will be shown in Chapter 6.

2.5 Conclusion

This literature review has introduced the behaviour research of visual-

motor coordination, the neural functional connectivity analysis, and the

complex network analysis. In the first section, tracking paradigm and an-

ticipatory behaviour were introduced. In the second section, it has been

shown that the neural coherence between different regions of cortex plays

an important role in the visual-motor coordination, yet the overall network

structure of the neural correlation has been seldom studied. This research

studied both static topological and dynamical properties of the functional

connectivity corresponding to the visual-motor coordination. The next

chapter will discuss the behavioural analysis, which demonstrated that par-

ticipants exhibited anticipatory behaviour in the tracking paradigm,
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Chapter 3

Behavioural Experiments and
Analysis
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3.1 Introduction

This chapter introduces the behavioural analysis performed in this work.

In order to investigate the visual-motor coordination and anticipatory be-

haviour of humans, behavioural experiment of tracking paradigm was per-

formed in this work. Two different types of tracking paradigm were per-

formed. In the full visibility tracking trials, participants took control of a
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tracer with a haptic device and were asked to use the tracer to track a visual

target on the display. The target moved in a circular trajectory at a con-

stant speed. In the intermittent tracking trials, participants were asked to

complete the same task as in the full visibility tracking trials, but the target

became hidden and invisible in two regions on the display. In these target-

invisible zones, participants were forced to anticipate the position of the

target and were expected to show stronger anticipatory behaviour. There

were 3 different levels of target speed in both types of tracking paradigm.

Average phase difference between the tracer and the target were analysed.

Anticipatory behaviour, which was indicated by positive mean phase dif-

ference (tracer preceded target), was found in the intermittent tracking

trials.

It is widely believed that there is an anticipatory mechanism in the cen-

tral neural system of animals and humans to compensate the delay in the

visual-motor coordination [78, 79, 80, 81, 82, 83]. A number of studies in

which the visual tracking experiment was applied to explore the anticipa-

tory behaviour have been done [84, 85, 86, 87, 88]. When participants acted

in anticipatory behaviour in the experiment, their motion preceded the tar-

get or acted before the cue in the experiments [5]. It has been reported

that the speed of target is essential for the activation of the anticipatory

behaviour [89]. When the speed of target is high, human behaviour would

switch to a specific anticipatory behaviour mode which results in stronger

anticipation of movement [23].

The behavioural analysis showed that the intermittent tracking is able

to exhibit the anticipatory behaviour of humans. Two distinctive control

modes of visual-motor coordination were found in the intermittent tracking
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trials. These two different control modes corresponded to the target-visible

zone and target-invisible zone, respectively, which means that participants

kept switching their control modes depending on the visibility of the target

in the intermittent tracking trails. It was also shown that high speed of

target would result in stronger anticipatory behaviour than the low speed

of target. This chapter first describes the experimental setup, then shows

the analysis of the behaviour data.

3.2 Full visibility tracking paradigm

This research applied visual-motor tracking paradigm as the behaviour

task to investigate the anticipatory behaviour of human movement. Partic-

ipant was required to track a moving target on the display through upper

limb motion. This paradigm was introduced in Ishida’s work [23], while

modifications have been made on it in this research. Two types of refer-

ence trials were designed and applied in this experiment in order to single

out different components of visual-motor feedback loop. EEG signals were

recorded for all the trials, and related analysis will be shown in the following

chapters.

3.2.1 Methods

3.2.1.1 Tracking trial

In tracking trials two filled circles were shown on the display. The red

one is the target while the green one is the tracer. The target moved along

a circular orbital with a fixed speed, while the tracer was controlled by

participant through a haptic device. The participant was instructed to
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Figure 3.1: Screenshot of the experiment. The red circle is the target, while
the green circle is the tracer controlled by the participant.

synchronise the trajectory of tracer with the target as accurate as possible.

The screenshot from an actual experimental trial during the short break is

shown in Figure 3.1. 3 levels of fixed angular speed were applied in tracking

trial, which were 0.1Hz, 0.5Hz, 1.0Hz. Each participant took 20 tracking

trials for every speed, and each trial lasted for 40 seconds. The order of

tracking trial speed were pseudo-randomised. There was a 10-second short

break between each trial, and a long break between every 12 trials. The long

break was between 3-5 minutes, it was decided by each participant. During

the 10-second short break, there was a countdown in the upper right corner

of the screen to notify participant how many seconds left before the next

trial. During every tracking trial, a score was displayed in the upper left

corner of the screen. This purpose of the score was to keep the participant

focusing on the task rather than encouraging the anticipatory behaviour,

so it was calculated from the variance of the phase difference between the

tracer and the target.

29



Behavioural Experiments and Analysis

Figure 3.2: Participant was holding the haptic device and facing the screen
with both target and tracer shown. Informed consent has been obtained
from the participant for the publication of identifying images in an online
open-access publication.

3.2.1.2 Reference trials

The visual-motor coordination engaged in the tracking trials is a com-

plex process where multiple functions of brain are activated, such as the

visual processing and the movement control of limbs. In order to sepa-

rate the neural signals corresponding to different components of the visual-

motor feedback loop, two reference trials were designed. In the motion

only trial (MO), participants were instructed to move the tracer in a cir-

cular trajectory at a constant but arbitrary speed, while the target was

not shown on the display. Therefore, participants did not perform tracking

but simple circular movement. In the visual only trial (VO), participants

did not take control of the tracer but were asked to passively observe a

pre-recorded tracking trial with both target and tracer shown on the dis-

play. In VO trial, participant received exactly the same visual input as in
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tracking trials, while participant did not perform any control or movement.

Both MO and VO trials lasted for 40 seconds, and were performed by 20

times for every participant.

3.2.1.3 Behavioural data analysis

If participant was performing the anticipatory behaviour, the tracer

controlled by the participant would precede the target and “lead” the mo-

tion, which resulted in a positive phase difference between the target and

the tracer. Otherwise, the tracer should fluctuate around the target, which

could result either positive or negative error. According to the work of

Ishida [23], the phase differences of the tracking trials follow a Gaussian

distribution, and the expectation of the distribution would be positive if

the participant showed anticipatory behaviour. Therefore in this study, the

phase differences between the target and tracer were fitted into a Gaussian

distribution and the mean of the distribution was calculated. The same

processes were performed for all the tracking trials, and statistical tests

were performed to examine if the distribution mean was larger than 0.

The overall result is shown in Figure 3.3, while the results of individual

participants are shown in Figure 3.4∼3.6.

3.2.2 Results

T-tests were performed on all the three speed levels of averaged par-

ticipants mean phase difference with the null hypothesis that the mean

phase is not significantly different from 0. Results of the t-tests showed

that the mean phase differences of all the speed levels were significantly

smaller than 0 (p < 0.05), which means that participants did not per-
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Figure 3.3: The averaged participants mean phase difference of the full vis-
ibility tracking trials. The horizontal axis represents the speed of the target
in frequency, while the vertical axis represents the mean phase difference of
different trials. Each error bar represents the standard error of the mean
value.

form the anticipatory control of tracking. Also a decreasing tendency of

the mean phase difference was observed, which indicates that participants’

performances were largely affected by the task difficulty. However, looking

at the individual trials, a huge participant variance can also be found. A

common feature for all the participants is that the variance of the phase

difference distribution (not shown) increases along with the target speed.

The variance of the phase difference distribution can indicate the difficulty

of the task. As the target speed increases, the variance becomes larger,

which suggests that the difficulty of the trial increases with the speed. The

t-test at the significant level α = 0.05 has been done for each average phase

difference of all the participants, 2 out of 14 participants showed at least

1 positive average phase difference among the 3 speed levels (Participant
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(a) Participant ID = dx (b) Participant ID = gj

(c) Participant ID = ha (d) Participant ID = hl

(e) Participant ID = lh (f) Participant ID = lz

Figure 3.4: Behavioural data of individual participants (part 1). Each
subfigure stands for the performance of one single participant, with the
participant ID shown in the subtitle. Each error bar represents the stan-
dard error of the mean value. The horizontal axis represents the speed of
the target in frequency, while the vertical axis represents the mean phase
difference of different trials, and each central point represents a mean of 20
parallel trials.
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(a) Participant ID = oz (b) Participant ID = sx

(c) Participant ID = wa (d) Participant ID = yn

(e) Participant ID = zc (f) Participant ID = zd

Figure 3.5: Behavioural data of individual participants (part 2). Each
subfigure stands for the performance of one single participant, with the
participant ID shown in the subtitle. Each error bar represents the stan-
dard error of the mean value. The horizontal axis represents the speed of
the target in frequency, while the vertical axis represents the mean phase
difference of different trials, and each central point represents a mean of 20
parallel trials.
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(a) Participant ID = zh (b) Participant ID = zj

Figure 3.6: Behavioural data of individual participants (part 3). Each
subfigure stands for the performance of one single participant, with the
participant ID shown in the subtitle. Each error bar represents the stan-
dard error of the mean value. The horizontal axis represents the speed of
the target in frequency, while the vertical axis represents the mean phase
difference of different trials, and each central point represents a mean of 20
parallel trials.

ID = hl, zd), all the other participants showed negative average phase

difference for all the speed levels. According to the different patterns of

the average phase difference versus speed relation, the results of individual

participant can be generally divided into two types. The first type can

be represented by the example of Figure 3.4(c), which has monotonic de-

creasing average phase difference as the target speed increases. This type

includes 6 out of 14 participants (participant ID = dx, ha, yn, zc, zh, zj).

All the other participants (Participant ID = gj, hl, lh, lz, oz, sx, wa, zd)

can be included into the other type, average phase difference of which did

not show a monotonic decrease along with the speed levels. Among them,

results of 6 participants (Participant ID = gj, lh, lz, oz, sx, wa) show the

minimum at 0.5Hz.
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3.2.3 Discussion

The overall averaged mean phase difference in Figure 3.3 shows negative

mean phase differences and decreasing trend, suggesting the participants

did not show the anticipatory behaviour in the full visibility tracking tri-

als. From the individual results in Figure 3.4 to 3.6, it can be found that

the performances of participants were quite variant. Participants perfor-

mances can be classified as two types. In the first type (participant ID =

dx, ha, yn, zc, zh, zj), the performances of participants show a monotonic

decreasing curve. As discussed previously, it was assumed that the be-

haviour of participants would switch to the anticipatory mode as the speed

of target increases. The monotonic decreasing indicates that the partici-

pant performance was only related to the difficulty of the trial, which is

the target speed, and not affected by any other factor. Therefore partici-

pants belonging to this type did not exhibit anticipatory behaviour in the

tracking trials. The other type of participants, whose performances were

not monotonically decreasing, however, had other factors involving in their

behaviour. As shown in the figures, some participants (Participant ID =

gj, lh, lz, oz, sx, wa) had increased average phase difference when target

speed went from 0.5Hz to 1Hz, which may imply that anticipatory control

mode was activated in the high target speed trial although the anticipa-

tion was weak. It seems that participants were using a combined control

mechanism, where passive feedback control mode and anticipatory mode

effected alternately. When the participant switched to anticipatory be-

haviour mode, the phase difference had a larger probability to be positive,

which would compensate for the increasing difficulty of the task. In order

to demonstrate stronger anticipatory behaviour in the experiment, the fol-
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Figure 3.7: Screenshot of the refined experimental paradigm. The red
circle is the target, while the green circle is the cursor controlled by the
participant. Two dash sectors are the target-invisible zone. In the real
experiment, there is no dash boundary, so the target-invisible part can not
be seen.

lowing sections will explore different factors which could affect participant’s

behaviour mode, and experiment paradigm was refined.

3.3 Intermittent tracking paradigm

As participants did not show strong anticipatory behaviour in the pre-

vious experiment, the refined experiment paradigm was designed in order

induce stronger evidence of anticipation. Several refinement were applied.

3.3.1 Method refinements

3.3.1.1 Changing the visibility of target

In the work of Hayashi [90], two target-invisible zones were added to the

work, which made the behaviour of participants more anticipatory. In that
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work, the phase difference distribution inside the target-invisible zone was

positive-biased, which suggests that anticipatory behaviour was shown in

this paradigm. In this research, the same target-invisible zone was applied

in the refined paradigm. Two sectors, whose angles were both 0.6π, were

horizontally symmetrically placed with each other. Their boundaries are

shown as dash line in Figure 3.7. However, their boundaries were invisible

in the actual experiment, so the two sectors were indistinguishable from

the background. Inside the two sectors, the target was hidden behind the

sectors so that it became invisible, while the tracer was not affected by

these two sector regions. The target and tracer moved in the same rule as

in the full visibility tracking trials. By introducing the target-invisible zone,

it was expected that stronger anticipatory behaviour could be observed in

the target-invisible zone. As the target was invisible, participants were

forced to predict the position of the target in order to synchronise with it.

3.3.1.2 Introducing training session

The training effect of the tracking task was observed from the previous

experiment. The performances of individual tracking trials showed im-

provements with time, even in the high target-speed trial. It implies that

participants became more skillful on anticipatory behaviour through train-

ing. In order to get stronger anticipatory behaviour, 3 training sessions

were introduced, which included 12 trials for each speed, 36 trials in total.

The training sessions were exactly identical as the formal tracking trials.
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3.3.1.3 Increasing the target speed

According to the work of Ishida [23], the anticipatory behaviour of

participant becomes stronger when the speed of target increases. However,

extreme high speed of target could be too difficult for humans to perform

any accurate control. Therefore, it is necessary to explore the effect of

target speed in the refined paradigm. Two sets of speed were tested, which

were (0.1, 0.6, 1.1)Hz and (0.1, 0.7, 1.3)Hz. Experiments of both sets of

speed were performed. It was found that most of the participants who had

the (0.1, 0.7, 1.3) set failed to show anticipatory behaviour (5 out of 7),

and showed a decreasing of the average phase difference in the high speed

(6 out of 7). For the other set of speed, (0.1, 0.6, 1.1), however, all the

participants showed anticipatory behaviour (6 out of 6), and the average

phase difference of the most of participants were monotonically increasing

as the function of the speed of target (5 out of 6). These results indicate

that the reaction limit of participants lays between 1.1Hz and 1.3Hz. At

that critical speed, the ability to perform anticipatory behaviour of humans

reaches the peak, and the human anticipation mechanism is fully activated.

3.3.2 Results of refined behavioural experiment

The behavioural data of the 6 participants who performed the inter-

mittent tracking trial with speed (0.1, 0.6, 1.1) were analysed. All of the

participants received 3 training sessions, totally 12 trials for each speed

before the formal session. Their overall averaged phase difference curve is

shown in Figure 3.8, while the results of individual participants are shown

in Figure 3.9.

From the averaged participants mean phase difference in Figure 3.8,
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Figure 3.8: The averaged participants mean phase difference of the inter-
mittent tracking trials from all the participants. Each error bar represents
the standard error of the mean value. It is clear that the result shows
an increasing tendency, and the high speed trials show significant positive
average phase difference (t-test, p < 0.05), which suggests the anticipation
behaviour.
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it can be found that the mean phase differences of the whole trial (blue

curve) of the high speed trials is significantly large than 0 (t-test, p < 0.05),

which indicates that participants showed significant anticipatory behaviour

in those trials. The curve of the mean phase differences of the whole trial

(blue curve) also shows an increasing tendency of the participants perfor-

mances in the intermittent tracking trials, which indicates that the antici-

patory behavioural mode of participants has overcome the increasing level

of difficulty.

The performances of individual participants in Figure 3.9 show similar

picture as the overall result. Most of the participants showed a signifi-

cant anticipatory mode in the high speed trials (t-test, p < 0.05), and

the monotonic increasing average phase difference curve (5 out of 6). The

phase difference data of the target-invisible zone and the target-visible zone

were presented separately. It was found that participants showed stronger

anticipatory behaviour in target-invisible zone than in target-visible zone

in the high speed trial, as the average phase difference of target-invisible

zone was usually higher than that in target-visible zone. In order to inves-

tigate this phenomenon in a further step, the phase difference distribution

of target-visible zone and target-invisible have been plotted as Figure 3.10.

It was reported that the distribution of phase difference follows a Gaus-

sian distribution by previous works [23, 12]. In the results, it can be ob-

served that the distributions of phase difference fit into the Gaussian distri-

bution shape. It can also be found that the distribution of target-invisible

zone is less symmetric than the target-visible zone, especially for the case of

high speed. This positive-biased distribution is the characteristic of the an-

ticipatory behaviour, which suggests that intermittent tracking experiment
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(a) Participant ID = bh (b) Participant ID = cj

(c) Participant ID = ca (d) Participant ID = hc

(e) Participant ID = sf (f) Participant ID = ag

Figure 3.9: The averaged phase difference of individual participants in the
intermittent tracking trials. Each participant had 20 trials for each target
speed. Each error bar represents the standard error of the mean value.
Most of the participants (5 out of 6) show the significant positive average
phase difference in the high speed trials (t-test, p < 0.05), which suggests
the anticipatory behaviours were demonstrated in those trials. For the
clearance of display, the average phase difference of the whole trial (the
blue curve in Figure 3.8) are not presented.
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(a) Phase difference distribution (0.1Hz)

(b) Phase difference distribution (0.5Hz)

(c) Phase difference distribution (1.0Hz)

Figure 3.10: Phase difference distributions in target-visible part and in
target-invisible part are shown separately in this figure. Subfigure (a), (b),
and (c) show the distributions of each target speed, respectively. The dis-
tributions of one participant are shown here as an example (Participant ID
= sf), but all the participants share the same tendency. It is clear that the
phase difference distribution in target-invisible part is less symmetric than
that in target-visible. The positive-biased distribution of target-invisible
part indicates that participant performed anticipatory behaviour in this
region.
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did successfully stimulate the anticipatory behaviour of humans.

3.3.3 Discussion on refined behavioural experiment

From Figure 3.8, it can be found that participants exhibited anticipa-

tory behaviour in the intermittent tracking paradigm. Remarkably, the

average phase differences of the target-visible zone and the target-invisible

zone in the high speed trials were significantly different from each other,

which indicates two distinctive control modes of the motion. From Figure

3.10 it can be further learnt that participants performed very obvious an-

ticipatory behaviour in the target-invisible zone, which is the main reason

that participants had the overall positive average phase difference. The

fact that different participant behaviour patterns corresponded to differ-

ent target visibility regions may imply the transitions between different

visual-motor control modes [90].

In the tracking task, it is very essential for brain to acquire kinetic

information of the target, including both position and velocity. In the

full visibility tracking trials, and the target-visible zone of the intermit-

tent tracking trials, the kinetic information of the target could be easily

acquired through visual input from the screen. However, with this visual

information of the target, participant would only passively follow the tar-

get through a feedback control. The average phase difference between the

tracer and the target would very likely be negative with this feedback con-

trol, because the visual perception takes time, and there will always be a

time delay between the actual phase difference and the phase difference

perceived as the visual feedback by the brain. When the visual informa-

tion acquisition from the target was impeded in the target-invisible zone,
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the other mode of visual-motor control, the anticipatory mode [23, 91, 92],

becomes dominant. Without the access to the actual visual information of

the target, participants were forced to estimate the position of the target,

which made the control mechanism transform from the feedback control

to the feedforward control. In this case, the time delay between the con-

troller and the realtime input vanished, so participant was able to not only

compensate the phase difference but also anticipate the position of target.

Observing the distinctive behaviour modes in the two zones, it can be

learnt that participants kept transiting between these two control modes in

the intermittent tracking trials. While it indicates that participants were

forced to use the anticipatory mode control in the target-invisible zone,

it also indicates that the anticipatory mode would become weak and give

place to visual feedback mode again in the target-visible zone. It may imply

that the inner prediction model of the target kinetics is contradicted with

the direct visual input of the target kinetic information. This hypothesis

will be further studied in future work.

While participants performed distinctive behaviour modes in the two

difference zones, it is worth to note that the overall performance of partic-

ipant in the intermittent tracking trial can not be seen as a simple sum up

of the performances in the visible and invisible zone. The movement of the

participant in the intermittent tracking trial is a continuous process with

the changing visibility of the target. In the 1Hz trials, the target changed

visibility every 0.2 ∼ 0.3 seconds. This rapid change of the target visibility

is also an essential part of the paradigm, which could contribute to the

participants’ performances. In future work, the two target invisible zones

of the intermittent tracking trial can be separated into four, and then the
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overall performance will be compared with the results above, which would

tell whether the change itself plays a role in the participants’ behaviour.

These two different behaviour modes could also affect each other. It

can be found that participants showed different performance in the target-

visible zone of intermittent tracking trials and in the full visibility tracking

trials. In the target-visible zone of intermittent tracking trials, participants

showed significant anticipatory behaviour. From Figure 3.9, it can be ob-

served that most of the participants (5 out of 6) showed positive average

phase differences in the high target speed trial, and monotonic increasing

curves of the average phase difference in the target-visible zone. Partic-

ipants of full visibility tracking paradigm, however, did not show strong

anticipatory behaviour even though the visibility of target was the same

as previous case (Figure 3.4∼3.6). It implies that the target-invisible zone

did not just affect the participant’s behaviour inside it but also affect the

participant’s behaviour outside it. In order to explain this phenomenon,

consider the human anticipation in a more general sense. People will not

perform anticipatory behaviour if the kinetics of the target is constant, be-

cause once the motion is synchronised with the target, no control is needed

any more but passively keeping the velocity of the movement. Therefore,

in order to make people have some variants to anticipate, the movement

state of the target must change over time. In the full visibility tracking

trials, the direction of target’s velocity kept changing during the trials. In

the intermittent tracking trials, the visibility of the target introduced an-

other layer of the variability of the target movement, which is the change

of the accessability of the target movement information. And the introduc-

tion of this extra layer of variability induced a quite strong anticipatory
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behaviour. The different performances of these two tracking tasks with the

same target visibility imply that more variability of the target movement

would result in stronger anticipatory behaviour. Here the variability can be

both changes of the target movement itself or changes of the accessability

of the target movement information. In future work, more experiments will

be performed to collect the evidences for this argument.

From Figure 3.8, it can be also observed that the average phase differ-

ence increased with the speed of target. Studies have shown that higher

speed of target results in stronger anticipatory motion [23, 90]. This trend

was clearly observed in the intermittent tracking trials in this study. The

full visibility tracking trials also exhibit this trend for some degrees, al-

though large participant variance made this trend hard to be observed.

From Figure 3.9, it can be observed that the participant variance was

still large in the intermittent tracking paradigm. In the full visibility track-

ing experiment, there were anticipators as well as followers, which may

suggest that some participants utilized the anticipatory control mode even

with the full access to the visual information of target. It can be also found

in Figure 3.9(f), that the participant did not show a monotonic curve for

the average phase difference in the target-invisible zone. It may indicate

that the high speed, 1.1Hz, is too difficult for that participant. But re-

gardless of that, that participant still had positive average phase difference

at the high speed level, which suggests that the participant still showed

anticipatory behaviour.
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3.4 Conclusion

In this chapter, the anticipatory behaviour of humans was investigated

with the tracking paradigm. The full visibility tracking trials did not ex-

hibit strong anticipatory behaviour in the performances of participants. In

order to better demonstrate the anticipatory behaviour, intermittent track-

ing trials were performed, which showed strong anticipatory behaviour. In

the intermittent tracking trials, two distinctive control modes of visual-

motor coordination were found in the target-visible zone and target-invisible

zone, respectively. In the target-visible zone, participants depended on vi-

sual feedback to control their motion, while in the target-invisible zone,

participants performed anticipatory control mode behaviour. It was found

that the control mode of participant behaviour would switch between the

visual-feedback mode and the anticipatory mode in the intermittent track-

ing trials. In this research, it was also confirmed that higher target speed

would result in stronger anticipatory behaviour in tracking paradigm.
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4.1 Introduction

Brain network is a fast-changing system within the scale of millisecond,

which makes it essential to understand the transient details of the network.

In order to extract the dynamical properties of the functional connectivity,

an eigenvector-based dynamics analysis method was developed and tested

with simulated synchrony network in this project. This chapter first de-

scribes the model simulating the phase synchrony network evolution, and

then describes the dynamical analysis method. After that, the dynamical

analysis method is applied on the simulated network, and the results are

discussed.

The eigenspectrum is the set of all the eigenvectors and corresponding

eigenvalues of the adjacency matrix or Laplacian matrix of the network,

which has been extensively studied in the area of network theory [93]. The

adjacent matrix of an undirected network is a self-adjoint matrix, as such it

can be reconstructed from the eigenspectrum. The eigenspectrum carries

all the information of the network. The relevance of an eigenvector is de-

termined by its corresponding eigenvalue. The eigenvector corresponding

to the biggest eigenvalue, which is called prime eigenvector, carries most

information about the adjacency matrix, which makes it an ideal represen-

tation of the network. In this work, by replacing the adjacent matrix of

each time snapshot with the corresponding prime eigenvector, the evolution

of the network was represented with a reduced dimensionality.

The works described in this chapter are useful tools which are not only

useful in the context of neural signal analysis but also can be applied to the
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analysis of any other dynamical networks. The simulation model of syn-

chrony network can be extended and modified to simulate networks with

different properties. The eigenvector-based dynamical network analysis

method provides an insight of the network evolution, which demonstrated

a great potential to reveal the potential meta-stable states of the network

dynamics. Chapter 6 will demonstrate the results of EEG dynamical func-

tional connectivity with this method applied, which show a meta-stable

state structure of the EEG functional connectivity network.

Time t
Phase φm,t
Angular speed ω

Instantaneous eigenvector
−→
Φ (t)

Correlation matrix C
Eigenvector of the correlation matrix u1, u2, u3

Row vector of the time window vm, vn

Eigenvector of the refined adjacency matrix
−→
Υ(t)

Table 4.1: The notations used in this chapter.

4.2 Simulated synchrony network model

In this work, a synchrony network simulating model was constructed

with auto-regression (AR) model. Before simulating a complex phase syn-

chrony network, let us first start with generating a simple sinusoidal signal

with the AR model.

4.2.1 Generating synchronized time series

Assume an oscillator described by the exponent ei(ωt+φ0), where ω is

the angular speed and φ0 is the initial phase of the oscillator. Defining the
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phase variable

φt = ωt+ φ0 (4.1)

then we arrive at eiφt . φt is a linear function of time t, which makes it an

ideal variable for auto regression. Assuming the time step stays the same

during the whole time series, then:

eiφt+1 = ei[(φt−φt−1)+φt] (4.2)

from which an auto-regression relation of phase can be found. Therefore

when a simple sinusoidal oscillator is standing alone, its phase time series

can be generated by Equation (4.2).

When this oscillator n starts to synchronise with another oscillator m,

the phase of oscillator m will start to affect the phase of oscillator n and

a coupling term will be added to the auto regression equation. Eventually,

the two oscillators will reach a synchronisation state. This study specifically

focused on the phase-locking synchronization which is defined as a state for

which the phase difference of two signals keeps the same for a certain time

period [34]. Thus

φm,t1 − φn,t1 = φm,t2 − φn,t2 (4.3)

Therefore, the coupling interaction can be defined to be proportional to

the increment of phase difference:

amn[(φm,t − φn,t)− (φm,t−1 − φn,t−1)] (4.4)

which is the coupling term acting on the oscillator n from m, and a is a

coupling strength factor. Remarkably, the above equation can be rewrite
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as

amn[(φm,t − φm,t−1)− (φn,t − φn,t−1)] (4.5)

or

amn(δφm,t − δφn,t) (4.6)

where the δφm,t indicates the the phase increment of the oscillator m at

time t. This form suggests another definition of the phase-locking syn-

chrony, which is that the two oscillators have the same phase increment

or the angular speed. This definition will be mentioned again in the fol-

lowing discussion. As a result, when two oscillators m and n interact with

each other and proceed to a phase-locking state, the phase autoregressive

equation of oscillator n becomes

φn,t+1 = [(φn,t−φn,t−1) +φn,t] +amn[(φm,t−φn,t)− (φm,t−1−φn,t−1)] (4.7)

and its complex exponential form is

eiφn,t+1 = ei[(φn,t−φn,t−1)+φn,t]+iamn[(φm,t−φn,t)−(φm,t−1−φn,t−1)] (4.8)

People may notice that Equation 4.7 has a form of the variational equation.

However, this similarity is superficial, because φm and φn do not necessarily

satisfy the inequality sup | φm,t − φn,t |< δ, which is a prior assumption of

the variational equation.

This method is a very intuitive way to generate the pseudo data and only

simple elements are considered. Other possible effects, such as the delay

of the coupling, were not considered in this method. Nevertheless, this

simulation setup would be good enough for testing our dynamical analysis
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method. One well-known phase synchronization model is Kuramoto model

[94], which is a non-linear model that describes the behaviour of a large

group coupling oscillators. However, the nonlinearity of this model create

extra difficulty to generate time series comparing to a linear coupling model.

Remarkably, the coupling strength factor a can be defined as a matrix A,

where each of its entry amn is the coupling strength acting on n from m.

This way of definition provides more flexibility, which allows the coupling

strength to be different for each oscillator pair, and the coupling can be

asymmetric, which is amn 6= anm.

4.2.2 Generating small synchrony networks

The above simulation method was tested in two steps. First, a simple

coupling oscillator pair were generated with this model, then the simula-

tion model were used to generate a larger complex network with multiple

clusters .

4.2.2.1 Two oscillators coupling

The proposed coupling was first examined on a simple case. In order to

do that, two oscillators were defined, and a 3-second time series with 1kHz

sampling rate was generated for each of them. They would be phase-locked

with each other during 1 ∼ 2 second, and acted independently for the rest

of the time. Their coupling strength was set to be symmetric for these two

oscillators in this case. The following figures only show the real part of the

complex exponential, which is the cosine wave of the phase.

From Figure 4.1, it can be found that the phase-locking was taking place

between the 1st second and the 2nd second, and then the phase-locking
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(a) Time series plot

(b) Phase plot

Figure 4.1: The time series of two oscillators coupling between the 1st
and 2nd second. Subgraph (a) shows the time series of the oscillator while
subgraph (b) shows the phase of the oscillator. The initial frequency is 7Hz
for oscillator 1 , and 3Hz for oscillator 2. The coupling strength a is 1 for
both of them. It is clear that they became phase-locked with each other
between the 1st and 2nd second, and then coupling kept on even after the
2nd second when the coupling force disappears.
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kept going on even after 2 seconds. The reason for the everlasting phase-

locking is that there was no spontaneous force to break this coupling in

this buildup, so that the oscillator cannot get rid of phase-locking without

outside interference. Figure 4.1(b) shows that both of the oscillators have

transferred to a new frequency when phase-locking happened, which is a

frequency between 3Hz and 7Hz. This result proves that this buildup can

properly generate phase-locking time series.

The effect of the coupling strength was also explored, and a particular

interesting case when a = 1 is discussed here. In Figure 4.2, the coupling

strength a has been tuned to 1 from 0.01, then the performance of simulated

oscillators was different from Figure 4.1. After 2 seconds, the two oscillators

somehow managed to decouple with each other. This phenomenon only

happens in the particular case when a = 1. When 0 < a < 1, the two

oscillators cannot decouple; when a > 1, the system becomes unpredictable

because of the over-feedback.

To understand this phenomenon, revisit the auto regression equation.

Rearrange Equation (4.7):

φn,t+1 − φn,t = (φn,t − φn,t−1) + a [(φm,t − φm,t−1)− (φn,t − φn,t−1)]

φn,t+1 − φn,t = (1− a)(φn,t − φn,t−1) + a(φm,t − φm,t−1)

δφn,t+1 = (1− a)δφn,t + aδφm,t

(4.9)

From Equation (4.9), it can be found that the coupling strength factor

a actually acts as a weight to combine the intrinsic and extrinsic phase

increment (or angular speed). When a = 1, Equation (4.9) can be reduced

to

φn,t+1 − φn,t = φm,t − φm,t−1 (4.10)
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(a) Time series plot

(b) Phase plot

Figure 4.2: Changing the coupling strength a that used to produce Figure 1
from 0.01 to 1 makes the two oscillators get rid of the phase-locking state.
Subgraph (a) shows the time series of the oscillator while subgraph (b)
shows the phase of the oscillator.
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Figure 4.3: When the coupling time is 1-sample-point shorter, a switch of
frequency between these two oscillators can be observed.

or it can be written as following:

φn,t+1 = φn,t + δφm,t (4.11)

From this equations it can be concluded that, when a = 1, the two oscil-

lators keep exchanging their angular speed, which creates a “fake” phase-

locking because the “average speed” of them are the same but they are not

phase-locked in each and every sample point. Then they stop exchanging

the angular speed when the coupling disappears. If the coupling period is

one-step shorter, a switch of frequency between the two oscillators should

be observed. Figure 4.3 shows that the predication is correct. This explo-

ration suggests that the effective range of coupling strength factor a should

be a ∈ [0, 1).
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4.2.2.2 Complex network

With the knowledge learned from the two-oscillator case, the method

was then used to simulate a larger network with cluster structure embed-

ded. The simulated network consisted of three clusters, each cluster was a

connected graph. Different clusters were connected by sparse connections

if they were set to be coupled, otherwise they would be isolated from each

other. For one cluster, the members were first connected together as a

chain, in order to make sure that the cluster was a connected sub-network.

Then all the rest potential edges within this cluster were included with

a probability p1. For the coupling between two clusters, all the potential

inter-cluster edges were included with a probability p2, and p1 > p2. The

connections were symmetric and unweighted. During the whole simulation,

the members within the same cluster kept phase-locked with each other.

The evolution of clusters coupling is shown in Figure 4.4: In the 1st sec-

ond, none of the cluster are coupled; In the 2nd second, Cluster 1 and 2

are coupled with each other; Finally in the 3rd second, Cluster 2 and 3

are coupled. The total length of the simulated time series was 3 seconds.

The numbers of oscillators in each cluster were arbitrarily chosen. Cluster

1 includes 3 oscillators, cluster 2 includes 5 oscillators, while cluster 3 in-

cludes 7 oscillators. The initial frequency of the 3 clusters were 3Hz, 17Hz,

and 7Hz, respectively. The initial phase for each oscillator was generated

randomly.

The temporal evolution of oscillators are represented with the angular

speed time series, which is shown in Figure 4.5. The clusters acted as

expected: Cluster 1 and 2 synchronised from time point 1000 ms to 2000

ms, and Cluster 2 and 3 synchronised from time point 2000 ms to 3000 ms.
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Figure 4.4: The pre-defined meta-stable state transition. Each circle stands
for a cluster, and the black bar between the circles stands for the coupling
correlation. There are 3 meta-stable states, and each of them lasts for 1
second, which makes a 3-second time series with 3 channels. The order of
states in this figure is identical with the time order of the states in the time
series.

Figure 4.6 shows the cosine signals of two oscillators from Cluster 1 and

2, respectively, and it can be observed that the two oscillator started to

synchronise at 1000 and desynchronised at 2000.

The above simulation demonstrated that our simulation method is able

to create the complex synchrony network with dynamical cluster structure

embedded. In the next section, the eigenvector-based dynamical analysis

will be introduced and then tested with the simulated time series.

4.3 Dynamical analysis method using prime

eigenvector

This section describes a dynamical analysis method to recognise the

meta-stable states of network evolution. This method will be tested on the

simulated phase-synchrony networks in the next section. First, let us visit

the instantaneous phase difference. By construction, the instantaneous

phase differences have the following relation:

∆φ13 = ∆φ12 + ∆φ23 (4.12)
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Figure 4.5: The angular speed evolution of the network. The network
initiated with 3 clusters of different frequencies. Cluster 1 started to couple
with Cluster 2 at time point 1000 ms and finally they merged together. At
time point 2000 ms, Cluster 2 and Cluster 3 started to synchronise with
each other. It can be observed that Cluster 2 decoupled with Cluster 1 and
merged with Cluster 3.
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Figure 4.6: Two oscillators selected from the Cluster 1 and 2 respectively.
It can be seen that the two oscillators were coupled between the 1st and
2nd second, which matches the states setting shown in Figure 4.4.

This property implies that the instantaneous phase adjacency matrix, whose

entries are phase differences in complex form, only have one non-zero (real)

eigenvalue with its corresponding eigenvector, which can be easily proved

through Gaussian elimination. In fact, considering the fact that self-adjoint

matrix can be written as the sum of eigenvector products weighted by the

corresponding eigenvalue, the instantaneous phase adjacency matrix can

be written as the product of its only eigenvector:



1 ei∆φ12 · · · ei∆φ1n

ei∆φ21 1 · · · ei∆φ2n

...
...

. . .
...

ei∆φn1 ei∆φn2 · · · 1


=



eiφ1

eiφ2

...

eiφn


[
e−iφ1 e−iφ2 · · · e−iφn

]
(4.13)
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The eigenvector associated with the largest eigenvalue is called the prime

eigenvector
−→
Φ (t), where t in bracket indicates the corresponding time index

of the time series. Then the above equation can be written as



1 ei∆φ12 · · · ei∆φ1n

ei∆φ21 1 · · · ei∆φ2n

...
...

. . .
...

ei∆φn1 ei∆φn2 · · · 1


=
−→
Φ
−→
ΦH (4.14)

where
−→
ΦH is the conjugate transpose of

−→
Φ . It can be conjectured that

the evolution of
−→
Φ (t) in time represents a trajectory in a N-dimensional

(probably noisy) dynamical system with a set of at least M attractors given

by the stable phase vectors
−→
Φ 1,
−→
Φ 2, ...,

−→
ΦM , to be found experimentally. It

can be also assumed that each attractor would correspond to an eigenvector

of an underlying structural connectivity matrix S. With a large enough set

of such eigenvectors, and estimating the corresponding eigenvalues by dwell

time, thus S could be approximately reconstructed. For this picture to be

true, even approximately, the system must display a number of testable

features:

• The system must spend most of its time close to one of the attractors.

Thus, the inner product 〈
−→
Φ (t),

−→
Φ (t+ 1)〉 ' 1

• Occasionally the system will undergo longer excursions away from the

attractor, possibly moving into another attractor’s basin. For a brief

while, self-correlation will decrease 〈
−→
Φ (t),

−→
Φ (t+ 1)〉 � 1

• In the latter case it will quickly return to the proximity of (the same,

or another) attractor.
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Therefore, in the following analysis on simulations, the inner-products be-

tween prime eigenvectors would be investigated. It is expected to be ob-

served that high plateaus separated by sharp decreases on the time series

of successive inner-product time series 〈
−→
Φ (t),

−→
Φ (t + 1)〉. Also the correla-

tion matrix C is defined, whose entry cij = 〈
−→
Φ (i),

−→
Φ (j)〉, and expected to

show block structure in the matrix, as the eigenvectors sharing the same

meta-stable state would have high inner-product.

4.4 Results of simulated network model

Two simulations were setup for testing the eigenvector analysis method.

In the first simulation, only 3 oscillators were included in the network. In

the second one, the 3 oscillators were expanded into 3 synchronous clusters,

which created a network with larger scale. The evolutional interaction

between oscillators/clusters followed the demonstration of Figure 4.4, which

was the same as the network simulated in the previous sections.

The successive eigenvectors inner product time series 〈
−→
Φ (t),

−→
Φ (t + 1)〉

and correlation matrix C are shown in Figure 4.7 and 4.8, which however

shows the patterns which are different from the expectations. In Figure

4.7(a), it can be observed that the structure of plateaus is separated by the

sharp decreases. However, in the expectation, the decreases should corre-

spond to the shift of oscillator synchrony states, therefore two decreases

should happen at time point 1000 ms and 2000 ms, respectively. The de-

creases in Figure 4.7(a) looks randomly placed. In the larger network case

(Figure 4.8(a)), inner-product keeps an extreme high value during almost

the whole time series. Except about 20 points in the boundary (beginning
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(a) Successive inner-product of 3-oscillator data

(b) Correlation matrix of 3-oscillator data

Figure 4.7: Subgraph (a) shows the inner-product time series of succes-
sive prime eigenvector, while subgraph (b) shows correlation matrix C of

the 3-oscillator simulation data, whose entry cij = 〈
−→
Φ (i),

−→
Φ (j)〉. The in-

dex of the axis in subgraph (b) show the time in millisecond. Plateaus
separated by sharp decreases can be observed in the time series of inner-
product. However, the decreases don’t correspond to the shift of oscillator
synchrony states. The correlation matrix doesn’t show the block structure
as expected, alternatively shows a strip pattern.
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(a) Successive inner-product of 3-cluster data

(b) Correlation matrix of 3-cluster data

Figure 4.8: Subgraph (a) shows the inner-product time series of successive
prime eigenvector, while subgraph (b) shows correlation matrix C of the

3-oscillator simulation data, whose entry cij = 〈
−→
Φ (i),

−→
Φ (j)〉. The index

of the axis in subgraph (b) show the time in millisecond. The time series
of inner-product keeps a high value during almost the whole time series.
Except about 20 points in the boundary (beginning and ending), all other
points are > 0.99. The same stripe pattern as 3-oscillator case can be
observed in the correlation matrix.
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and ending), all other points in the time series are > 0.99. The correlation

matrix from both simulation show a similar strip pattern (Figure 4.7(b)

and 4.8(b)), which looks like a wave interference pattern. It indicates that

this pattern may be related to the periodicity of the time series of phase.

In the following two sections, discussion and further investigation would

be made on the inner product time series and correlation matrix, respec-

tively. Both analytical derivation and simulation would be done in order

to explain the patterns shown in the simulated results.

4.5 Discussion on the inner product

4.5.1 Simulations with controlled condition

In order to further investigate the property of eigenvector inner product

time series, a series of simulations with controlled condition were performed.

Figure 4.9 shows four conditions simulated: 2 oscillators in Figure 4.9(a),

3 oscillators in Figure 4.9(b), and 4 oscillators in Figure 4.9(c) and 4.9(d).

At the starting point, all oscillators in Figure 4.9(a), 4.9(b) and 4.9(c) were

isolated, which means there was no connection in the network. In Figure

4.9(d), 4 oscillators were grouped into 2 clusters at the starting point, with

2 oscillators in each cluster. For all the simulations, a connection was

established between two oscillators at discrete time 1.

In Figure 4.9, the sharp decreases can only be observed in the 2-oscillator

and 3-oscillator cases, while no sharp decrease is found in either of the 4-

oscillator simulations. From that, it can be concluded that the density of

the sharp decreases is related to the number of oscillators in the system,

more oscillators in the system would make fewer sharp decreases in the
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(a) 2-oscillator system (b) 3-oscillator system

(c) 4-oscillator system without cluster (d) 4-oscillator system with 2 clusters,
each cluster includes 2 members

Figure 4.9: Scalar product of systems with different setups. (a) 2-oscillator
system; (b) 3-oscillator system; (c) 4-oscillator system without cluster; (d)
4-oscillator system with 2 clusters, each cluster includes 2 members. For
all the systems, there is no coupling in the 1st second, and oscillator 1
and 2 are coupled in the 2nd second, then no connection changes in the
3rd second. The artefact in the beginning and ending results from Hilbert
transformation. It can be seen that more oscillators the system has, the
less spikes there are in the scalar product. Another observation is that
there is a step increasing at 1 second, when oscillator 1 and 2 started
to couple with each other. It seems that the scalar product reflects the
overall synchronization level of the system. Details will be discussed in the
following section.
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inner product time series. Also, it seems that those decreases are placed

randomly in the time series and not related to the changes of synchrony

states of the system.

In the simulations, a synchronisation event was set at time point 1 sec,

and an increase of the baseline at 1 sec can be observed from all the four

subfigures of Figure 4.9. It was also observed that the increases at 1 sec are

quite large in Figure 4.9(a) and 4.9(d), and the increase in Figure 4.9(b) is

slightly larger than that in Figure 4.9(c). These observations imply that the

inner product of successive eigenvectors is related to the overall synchrony

level of the whole system. In order to examine if that is true, let us look

at the prime eigenvector in details: the n-dimensional eigenvector at time

t would be

Φt = {eiφ1,t , eiφ2,t , · · · , eiφn,t} (4.15)

and the eigenvector at time t+ 1 would be

Φt+1 = {eiφ1,t+1 , eiφ2,t+1 , · · · , eiφn,t+1} (4.16)

Consider the case when all the oscillators are synchronised with each other,

which means that all the oscillators share the same phase increment, as they

have the same frequency. That is

φm,t+1 = φm,t + ω,m ∈ {1, 2, 3, · · · , n} (4.17)

where ω is one-step phase increment. Then vt and vt+1 would have the

following relation:

Φt+1 = Φt · eiω (4.18)

69



Eigenvector-based Dynamical Analysis Method

Then the inner product becomes

Φt+1 · Φt = eiωΦ2
t (4.19)

where the absolute value reaches 1 when all oscillators in the system are

synchronised. What’s more, the real part of the inner product would also

be quite large and reach its maximum in an all-synchronised situation,

as the increment ω would have a very small value when the sample rate

is high. For example, a 3Hz oscillator with sample rate of 1kHz has a

step-increment ω ≈ 0.01885, whose cosine approximately equals 1. As the

eigenvector Φt is normalized, whose square equals 1, the real part of the

scalar product Re{Φt+1 · Φt} = Re{eiω} ≈ 1.

The above discussion is made on the case when all the oscillators are

synchronised. In that case, the degree of freedom (DOF) of the system

is 1, which is the only phase increment ω. Now assume that there is one

independent oscillator in the system, which makes the DOF of the system

equal to 2. Then Equation (4.18) would alternatively be

Φt+1 = Φt



eiω 0 · · · 0 0

0 eiω · · · 0 0

...
...

. . .
...

...

0 0 · · · eiω 0

0 0 · · · 0 eiωi


(4.20)

where ωi is the phase increment of the independent oscillator. This equation
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can be rewrite as

Φt+1 = Φt





eiω 0 · · · 0 0

0 eiω · · · 0 0

...
...

. . .
...

...

0 0 · · · eiω 0

0 0 · · · 0 eiω


+



0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 0

0 0 · · · 0 eiωi − eiω




(4.21)

Φt+1 = Φt · eiω + ζ (4.22)

where ζ is the product between Φt and the second matrix at the right hand

side of Equation (4.21). ζ would be a vector with all but one entries equal

to zero, so there is a large angular separation between ζ and Φt, which also

increases the angular separation between Φt+1 and Φt. Therefore the inner

product in this case would be smaller than the all-synchronised case. From

the above equations, it can be found that the more DOF the system has,

the smaller inner product becomes.

In order to further demonstrate the above conclusion, a simulation with

a “stage” setting for the 4-oscillator system was performed: In the 1st sec-

ond, no phase-locking coupling; In the 2nd second, oscillator 1 is coupled

with oscillator 2; In the 3rd second, all of oscillator 1, 2, and 3 are coupled

with each other; And in the 4th second, all of the 4 oscillators are coupled

with each other. The inner product time series is shown as Figure 4.10. A

“stage” increasing of the inner product can be observed. The oscillation in

the inner product time series results from the distortion of Hilbert trans-

form. Figure 4.11 shows the result of using simulated phase data directly

without using the Hilbert transform, and no oscillation is presented in the
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Figure 4.10: Stage increasing scalar product. The frequency of the 4 oscil-
lators are: 1Hz, 5Hz, 10Hz, and 15Hz.

figure.

4.5.2 Effect of noise

In order to better characterise the inner product time series, the noise

was also introduced and its effect on the inner products was investigated.

The noise was directly added on the phase because any modification af-

fected on the amplitude of the oscillation would be ignored during the

analysis. A small noise was added on the phase, then Equation (4.7) be-

comes

φn,t+1 = [(φn,t−φn,t−1)+φn,t]+a[(φm,t−φn,t)−(φm,t−1−φn,t−1)]+ν (4.23)

72



Eigenvector-based Dynamical Analysis Method

Figure 4.11: The scalar product of eigenvectors, calculated directly from
the simulated phase data instead of applying Hilbert transform. There is
no oscillation in the figure, which indicates it is a distortion resulted from
Hilbert transform.
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where ν is uniformly sampled from [−0.0005, 0.0005]. As it has been shown

that the overall synchronisation level of system affects the inner product,

the noise effects were compared on systems with different level of synchro-

nisation. A 4-oscillator system with no initial interaction was set up, and

four 3-second time series with different situations were generated. In the

first case, all the 4 oscillator were synchronised with each other at 1 sec-

ond, which should show a large increase of inner product. In the second

case, instead of 4, only 3 of them were synchronous at the same time point.

For both cases, a noisy and a noise-free sample were generated, respec-

tively. The inner product time series of the simulation are shown in Figure

4.12. From the Figure 4.12(a) and 4.12(c), 3 cases, which are degree of

freedom equals 1, 2 and 4, can be observed. It seems that the noise effect

of DOF=2 and DOF=4 are not significantly different, as we can not find

obvious boundary in Figure 4.12(c). However, obvious boundary can be

found in Figure 4.12(a), which indicates that noise has little effect on the

highly synchronised system. Oscillators which are strongly synchronised

could neutralise the independent identical distributed noise through syn-

chrony forces. Also it was found that the noise would not effect the density

of sharp decreases on the inner product time series.
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(a) 4 oscillators synchronized in the
1 second

(b) 4 oscillators synchronized in the
1 second, without noise

(c) 3 oscillators synchronized in the
1 second, 1 still move freely

(d) 3 oscillators synchronized in the
1 second, 1 still move freely, without
noise

Figure 4.12: The prime eigenvector inner product of a 4-oscillator system
with noise. In subfigure (a) and (b), all the oscillators were coupled with
each other at time point 1 sec, which brought a big increase on inner
product. The increase was still observable with noise added. However, in
subfigure (c) and (d), where only 3 out of 4 oscillator were coupled and 1
was left out, the small increase of the inner product was overwhelmed by
the noise.
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4.6 Discussion on correlation matrix of eigen-

vectors

4.6.1 Eigenvalues of correlation matrix

The definition of complex adjacency has given the eigenvector correla-

tion matrix some interesting properties. One of them is that the number of

non-zero eigenvalues of correlation matrix always equal to the number of

oscillators in the system, this conclusion can be proven as following. With-

out loss of generality, let us assume the number of oscillators in the system

is 3. Then, the eigenvector correlation matrix C has entry at ith row and

jth column

Cij = Φ(i) · Φ(j) = ei(φ1,i−φ1,j) + ei(φ2,i−φ2,j) + ei(φ3,i−φ3,j) (4.24)

where Φ(i) and Φ(j) are the prime eigenvectors at time point i and j,

respectively. This equation indicates that every entry of C can be decom-

posed into the sum of 3 components, which also means that the whole

matrix can be decomposed in the same way. Define vectors u1, u2, u3 as

u1 =
(
eiφ1,1 , eiφ1,2 , eiφ1,3 , · · · , eiφ1,L

)T
(4.25)

u2 =
(
eiφ2,1 , eiφ2,2 , eiφ2,3 , · · · , eiφ2,L

)T
(4.26)

u3 =
(
eiφ3,1 , eiφ3,2 , eiφ3,3 , · · · , eiφ3,L

)T
(4.27)

The first sub-note of φ refers to the index of vector, while the second sub-

note refers to the time index. L is the length of time series. By definition,

vector u1, u2, and u3 are the time series of oscillator 1, 2 and 3. In the
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following discussion, I will show that these three vectors u1, u2, and u3 are

the three eigenvectors of the correlation matrix C. Substitute u1, u2, and

u3 into Equation (4.24):

C = u1u
∗
1 + u2u

∗
2 + u3u

∗
3 (4.28)

where the star on the shoulder refers to conjugate transpose. Here a fact

should be pointed out that self-adjoint matrix can be decomposed as a sum

of products of its eigenvector which is weighted by the eigenvalue. That is,

for a self-adjoint matrix A, it satisfies the following equation:

A =
R∑
n=1

λnvnv
∗
n (4.29)

where λn and vn are corresponding eigenvalue and eigenvectors, and R is

the rank of matrix A. Recognising the similarity between Equation (4.28)

and (4.29), it can be concluded that u1, u2, and u3 are three eigenvectors

of C, and the corresponding eigenvalues can be derived by normalize them.

Given that correlation matrix C can be fully constructed by u1, u2, and u3,

it is proven that there is only 3 non-zero eigenvalues for C. This conclusion

can be easily generalized to that the number of non-zero eigenvalues of C

equals the number of oscillators in the system.

4.6.2 Parallel stripes of correlation matrix

This section will focus on the stripe pattern observed on the correlation

matrix. Figures 4.7(b) and 4.8(b) show the parallel stripes in the diagonal

blocks. I am going to demonstrate that this pattern results from the wave

overlapping in this section. Consider the case that only 2 synchronous
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clusters in the oscillator system, all the oscillators within one cluster are

perfectly synchronised so that they share the same phase increment. Revisit

Equation (4.24), it can be learnt that in the equation all the synchronised

oscillators could merge into one term. For 2-cluster system, we can only

write two terms:

Cij = Aei(φ1,i−φ1,j) +Bei(φ2,i−φ2,j) (4.30)

where A and B are the number of members for two cluster respectively. For

convenience, let us note α = φ1,i − φ1,j and β = φ2,i − φ2,j, then Equation

(4.30) becomes

Cij = Aeiα +Beiβ (4.31)

based on this, we can derive

Cij = Aeiα +Beiβ

= Aei(α+β
2

+α−β
2

) +Bei(α+β
2

−α−β
2

)

= eiα+β
2 (Aeiα−β

2 +Be−iα−β
2 )

(4.32)

If we look along the direction parallel to the diagonal, α and β are con-

stant according to their definition because the time lag i− j is unchanged

along this direction. Then Cij is a constant as well. So the synchronous

modes are reflected by parallel stripes in the direction parallel to the diag-

onal.

Now let us look along the direction orthogonal to the diagonal. In this

direction the sum of two time index is constant, which is i+ j = L, where
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L is a constant. Then α and β becomes

α = φ1,i − φ1,j = ω1i− ω1j = 2ω1t− ω1L (4.33)

β = φ2,i − φ2,j = ω2i− ω2j = 2ω2t− ω2L (4.34)

where ω1 and ω2 are the phase increments of the two clusters, and we simply

replace i with t in the last step. Therefore α and β can be viewed as a

simple harmonic phase along time t. The pattern depends on the value of

A and B. For the special case that A = B,

Cij = 2Aeiα+β
2 Re{eiα−β

2 } (4.35)

which makes the pattern a wave package, with the cosine function as the

envelop. For the case A� B,

Cij = Aeiα+β
2 eiα−β

2 = Aeiα (4.36)

which indicates that the pattern becomes a simple harmonic wave.

So far only the two synchronized clusters case have been discussed. For

more clusters, more complicated pattern will be expected. However, the

conclusion still hold that there will be stripes parallel with the direction of

diagonal.

4.7 Refined dynamical analysis method

The discussion so far has shown that the instantaneous phase matrix

can only measure the overall synchronization level of the network, while the
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dynamical cluster structure remains unclear. In order to reveal the cluster

changes, I propose a different way which is based on the complex instan-

taneous adjacency matrix. The simulation results suggest that this new

method could reveal the changes of meta-stable states of network cluster

structure.

4.7.1 Reconstruct the functional connectivity

First, let us revisit the complex instantaneous adjacency matrix shown

in Equation (4.13). From this equation, it can be learnt that the evolu-

tion trend of oscillators can not be understood from the complex instanta-

neous adjacency matrix, as it only contains instantaneous phase difference.

Therefore, some moving time window techniques would be needed to in-

clude the information of oscillator evolutions from multiple instantaneous

matrix. For experimental systems, it can be more practical to measure

synchronisations not by the instantaneous phase difference, which can os-

cillate instantaneously randomly, but by the average angular speed, which

can filter this random oscillations. By definition, the phase-locking syn-

chrony is a state that phase difference of two signals keeps the same for a

certain time period, which is

φm,t1 − φn,t1 = φm,t2 − φn,t2 (4.37)

and it can be rewrite as

φm,t1 − φm,t2 = φn,t1 − φn,t2

φ̇m,t1 = φ̇n,t1

(4.38)
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which is true when t1−t2 → 0. The above equations have shown that phase-

locking synchrony can be measured by comparing how close the phase speed

of two signals are. Therefore the new method first calculates the angular

speed of the oscillators, than a time window is applied on the angular speed

as following:



eiφ̇1,t1

eiφ̇2,t1

...

eiφ̇n,t1





eiφ̇1,t2

eiφ̇2,t2

...

eiφ̇n,t2


· · ·



eiφ̇1,tw

eiφ̇2,tw

...

eiφ̇n,tw


→



eiφ̇1,t1 eiφ̇1,t2 · · · eiφ̇1,tw

eiφ̇2,t1 eiφ̇2,t2 · · · eiφ̇2,tw

...
...

. . .
...

eiφ̇n,t1 eiφ̇n,t2 · · · eiφ̇n,tw


(4.39)

where tw is the time window width. Within each time window, the row

vectors represent the phase trajectories of corresponding EEG channel. In-

stead of taking average of the time window, the Euclidean distance between

each row vector is calculated, as shown in the following equation:

dmn = ‖−→vm −−→vn‖2 (4.40)

where vm and vn stand for the row vectors for channel m and n respectively:

−→vm = (eiφ̇m,t1 , eiφ̇m,t2 , · · · , eiφ̇m,tw )

−→vn = (eiφ̇n,t1 , eiφ̇n,t2 , · · · , eiφ̇n,tw )

(4.41)

The 2-norm of vector difference represents the Euclidean distance between

those two vectors. The distance dmn therefore can be used as the phase-

locking value (PLV) between node m and n. Comparing to the moving

window averaging, this way to define phase-locking value preserves all the

instantaneous information of the phase time series. By calculating this
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distance-based PLV for all channel pairs, an adjacency matrix is obtained,

which describing the phase-locking functional connectivity within this time

window. After that, a threshold was applied on the adjacency matrix

to determine if certain channel pair is phase-locked. Let us define the

prime eigenvector of the binary adjacency matrix as
−→
Υ(t), where t denotes

time window index. By studying the inner product of the successive prime

eigenvector 〈
−→
Υ(t),

−→
Υ(t+ 1)〉, the evolution of the network can be revealed.

4.7.2 Simulation results

This new method was tested with the simulated oscillator data. Figure

4.13 shows the angular speed trajectory of the simulated network. The

network started with 4 clusters, and there were several merging and sepa-

rations between these clusters. Let us name the four clusters as cluster 1

to cluster 4 from bottom up. At time point 500, clusters 1 and 2, clusters

3 and 4 merged together. At time point 1000, clusters 3 and 4 stopped

interacting with each other, while a connection established between clus-

ters 2 and 3. This connection made clusters 1, 2 and 3 started merging (as

the connection between clusters 1 and 2 remained). At time point 1500,

clusters 1 and 2 stopped interacting with each other, while clusters 3 and

4 started synchronisation. Finally, it can be seen that clusters 2, 3 and

4 merged into a super cluster while cluster 1 stood out from others. The

inner product time series of prime eigenvectors are shown as Figure 4.14.

It can be found that inner product decreases at every time point of cluster

structure changing, although the decreasing is small. It can be observed

that there are multiple decreases around one change point. That could

result from the delay between the starting and finishing of the synchroni-
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Figure 4.13: The angular speed time series of the oscillators, demonstrating
the evolution of the system. At time point 500, clusters 1 and 2, and
clusters 3 and 4 were synchronised. At time point 1000, cluster 3 went
out of synchrony with cluster 4, but started to synchronise with cluster 2
instead. At time point 1500, clusters 1 and 2 went out of synchrony, while
cluster 3 and 4 resume synchrony.

sation. Also the correlation matrix C is shown in Figure 4.15. A very clear

block structure can be observed in the figure, each block on the diagonal

suggests a meta-stable state. By this new method, the changes of network

structures can be detected.

The following chapters will show that the functional connectivity net-

work of EEG was constructed and analysed with the new method proposed

in this chapter.
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Figure 4.14: The inner product time series of successive prime eigenvectors.
The small subfigure enlarges the decreases around time point 500. It can
be seen that one or more decreases took place at the time point when
the network structure changed. When the changes happened, it took time
that the clusters newly connected reached synchronisation, which probably
results in multiple decreases.
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Figure 4.15: The correlation matrix C, whose entry cij is the inner product
between prime eigenvector at time i and time j. The matrix shows an
obvious block structure. As the prime eigenvectors within the same meta-
stable state have similar direction, their inner product should be a very
high value. Therefore, the high value blocks along the diagonal correspond
to the meta-stable states of the system.
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Chapter 5

Static Topological Properties
of Functional Connectivity
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5.1 Introduction

In the last chapter, an eigenvector-based analysis method was developed

and tested with a simulated dynamical network model. The following two

chapters will show that this method can be applied on the functional con-

nectivity network configured from EEG. This chapter focus on analysing

the topological properties of the time-averaged static network, the next

chapter will explore the dynamics of the evolutional network.
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When brain engages certain activity, the collaboration of different re-

gions of brain would generate a certain pattern of correlated neural ac-

tivities. By observing these correlated neural activities, the correlation

between regions can be measured and an abstract network based on those

correlation can be defined, which is called functional connectivity network.

The nodes of the functional connectivity network usually represent different

spacial locations of the brain cortex, while the links are constructed based

on the correlations between the neural signals of nodes. The topological

structure of the functional connectivity network includes the information

of the corresponding neural activities. Thanks to the network theory, many

measurements have been developed to describe those topological structure

of the network [52]. These topological properties give an insight into the

corresponding neural activity, and further into the neural mechanism of

related behaviour.

The EEG analysis of this study focused on the difference between the

full visibility tracking (Tra) trials and two reference trials, motion only

(MO) and visual only (VO) (See Section 3.2.1.2). For tracking trial, the

1Hz trial was selected as it has the highest target speed, which requires the

most intensive involvement of the visual-motor neural circuits. The two

reference trials, MO and VO, as discussed in Section 3.2.1.2, represent two

different visual-motor cognitive states. By comparing the Tra trials with

MO and VO trials, it was expected that the neural features correspond-

ing to the different parts of visual-motor control can be separated. In this

chapter, the functional connectivity network of EEG was constructed with

phase-locking value, as described in Section 4.7. Three topological prop-

erties, network density, clustering coefficient, and the average efficiency,
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of the time-averaged functional connectivity network were investigated. It

was found that all these topological properties showed significant differ-

ence between different experimental conditions, which suggests that differ-

ent visual-motor coordination states have different topological structures

of the functional connectivity. As a further step, the overall topological

structure of functional connectivity links in the alpha and gamma band

were investigated. The results indicated that the significant differences

in topological properties are related to different topological structures of

functional connectivity links. These analyses have revealed that open and

closed visual-motor loops would result in different topological structure of

the static functional connectivity network.

5.2 Methods

The previous chapter has introduced the functional connectivity defined

on the PLVs which were calculated from the instantaneous angular speed

vector (see Section 4.7). This chapter will show the investigation of the

topological properties of the EEG functional connectivity which was defined

with the same method.

5.2.1 EEG acquisition and pre-processing

Electroencephalography (EEG) was recorded through the whole session

of experiment with 1kHz sampling rate. 32 electrodes (F3, F1, Fz, F2,

F4, FC5, FC3, FC1, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP3,

CP1, CPZ, CP2, CP4, P3, P1, PZ, P2, P4, PO3, POz, PO4, Oz) plus

1 reference electrode (FCz) and 1 ground electrode (AFZ) (g.tec) were
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applied in the experiment. The electrodes were connected to 2 g.BSamp

16-channel amplifiers (g.tec). Each amplifier output the signals to an A/D

board (CONTEC CO., Ltd) to digitalise the signals, then the digital signals

were sent to a PC with xPC-Target running (The MathWorks, Inc). A

haptic arm with two encoders, corresponding to X and Y coordinates of

the tracer, respectively, was used for participants to control the tracer.

The signals of two encoders went to a counter board (CONTEC CO., Ltd),

which integrated the angle changes and gave the current position of the

tracer. Outputs of the counter board would also be sent to the target

PC. This target PC would synchronise the EEG signals and behaviour

signals, then sent them to the main PC through an ethernet cable with User

Datagram Protocol (UDP). The programme running on the main PC was

based on MATLAB and Simulink (The MathWorks, Inc), the programme

read and recorded data received from target PC, and played the animation

on the screen. A detailed description of the EEG acquisition system is

presented in the appendix.

MATLAB and EEGLAB (Swartz Center for Computational Neuro-

science, La Jolla, CA) were used to process EEG data. First of all, each

dataset was fed into a broad band-pass filtering (0.1-50Hz, all the filter-

ing process in this study applied EEGLAB embedded FIR filter), then the

filtered time series were cut into trials according to time stamps. Then

an independent component analysis (ICA) was performed on the data in

order to remove eye blinking and other artefacts, which was implemented

with EEGLAB embedded function (“runica”). The independent compo-

nents (ICs) recognized as artefacts were selected through visual inspection.

There are toolboxes for EEGLAB that automatically perform IC rejection,
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which have been tried but failed to give satisfying result. In the manual se-

lection process, the ICs with random occurred stand-alone peaks which had

a source from the frontal (blink pattern) and high frequency jitters (elec-

tromyographic pattern) would be considered as artefacts. The whole trial

would be rejected if more than 50% ICs were recognized as artefacts. After

ICA pruning, the data were processed with Laplacian operator through

CSD toolbox [95, 96, 97]. This processing was aimed to avoid the phase

synchronisation resulted from both electrodes sharing a common source.

5.2.2 Phase-locking synchrony connectivity

Narrow band-pass filtering was done on the pre-processed data to re-

duce the frequency components so that phases of the signals can be defined.

4 frequency bands were selected, which are 8-12Hz, 18-22Hz, 26-30Hz, 38-

42Hz [98, 32]. After that, Hilbert transform was applied to extract the

phase from time series. Here the phase was noted in the complex expo-

nential form because it’s easier to deal with the period in complex space.

Then the first order differentiation was performed on the phase time se-

ries to get the instant angular speed. Following Equation (4.39), a moving

time window (width = 40ms, step = 5ms) was then applied on the angular

speed time series. For each channel, the segment of time series within the

time window corresponded to each row vector. The Euclidean distances be-

tween each row vector were calculated as shown in Equation (4.40). Then

an adjacency matrix was constructed for each time window, whose entries

were PLVs defined by the distances between row vectors. After that, a

threshold was applied on the adjacency matrix to binarize it. The thresh-

old was determined through visual inspection. As phase-locking is defined
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by the constant phase difference, I have reviewed the raw time series of

phase, and calculated the phase locking value for the signals pairs which

were found to be phase-locked in the raw time series. Figure 5.1 shows

a segment of angular speed time series from the actual EEG data, which

further demonstrate the selection of the threshold. The two arrow pairs in

the figure indicate two example segments of phase-locking. The segments

of channel F1 (blue triangles in the figure) and FZ (yellow triangles in the

figure) between the magenta arrow pairs are very close to each other during

this certain period of time, so they are identified as phase-locked during

this period of time. The segments of channel P1 (purple hexagon) and PZ

(green hexagon) between red arrows provide another example of the phase-

locking channel pairs. P1-PZ channel pair has very close spatial distance on

the scalp, and so does F1-FZ pair, which suggests these two channel pairs

are very likely to become phase-locked. With a large number of samples

having been reviewed and calculated, the proper threshold (4× 10−4) for

the binary functional connectivity matrix was determined. At this stage,

a time series of binarised adjacency matrix was obtained, which represents

the evolving functional connectivity of brain signal.

5.2.3 Static property analysis

Three topological properties, network density, mean efficiency and clus-

ter coefficient [52] were calculated for each time window, then the time

averaging were performed on the topological property time series. Instead

of mean path length, the mean efficiency was calculated. The mean effi-

ciency is defined in Section 2.4, which is the averaging of the reciprocal

of the shortest path length for node pairs. The reason for using efficiency
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Figure 5.1: A segment of angular speed time series, where each curve stands
for one EEG channel. The legend shows the location of each electrode in
10-20 system. By definition, phase-locking synchrony means angular speed
of two signals are equal or very close in a certain time period. Therefore in
the figure, two signals are in a phase-locking synchrony state if they are very
close to each other during that certain time period. Two arrow pairs give
two example of phase-locking synchrony. Channel P1 (purple hexagon) and
PZ (green hexagon) are synchronized between two red arrows, as they are
very close to each other during this period. Channel F3 (blue triangle) and
FZ (yellow triangle) between two magenta arrows give another example of
synchronisation. We searched for this case and calculated their PLV value
to determine our threshold.

rather than path length is that the unweighted networks of the EEG func-

tional connectivity were very sparse, with many disconnected nodes, while

the shortest path length is not well defined for the isolated nodes. Ef-

ficiency is a generalized metric that describes the same characteristic of

networks as shortest path length while it can be applied on disconnected

networks. Statistical comparisons between the three conditions were per-

formed on the time-averaged topological properties of all 12 participants,

the results of which are shown in Table 5.1 and Figure 5.2. In order to di-

rectly assess the structure of the functional connectivity, the time-averaged

functional connectivity (a single network calculated from the dynamical
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network series) was defined, the connections of which were weighted with

their averaged appearing probabilities. First, the recurrence probability

of each connection was estimated within each individual trials. Then the

probability networks of all the trials from the same experimental condition

were averaged, which made a single representation of functional connectiv-

ity for every condition. In order to demonstrate the network structure in

Figure 5.3, a threshold has been applied on the averaged network for the

visualisation purpose. Consistent with findings of topological properties

(which will be discussed later), it was found that the network density of

VO in the alpha band and MO in the gamma band grow faster as a func-

tion of the threshold than other conditions. Therefore the threshold was

chosen in a way that could demonstrate the most differences between the

two conditions and others.

5.3 Results

The time-averaged topological properties of the functional connectivity

network have been systematically compared between three different con-

ditions: tracking condition (Tra), motion only condition (MO), and vi-

sual only condition (VO). Three topological properties, connection density,

mean efficiency, and global clustering coefficient, were calculated for each

trial. Efficiency is defined as the reciprocal of shortest path length. It is a

generalization of shortest path length which can be used on disconnected

graph. The efficiency was calculated instead of shortest path length in this

research to characterize the network. These calculation were performed for

4 different frequency bands of the EEG signal, 8-12Hz, 18-22Hz, 26-30Hz,
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and 38-42Hz [98, 32]. The statistical test was performed on the datasets of

all the 12 participants. It was found that all the three topological properties

were highly correlated with each other. For a certain condition pair, the

results of statistical tests for all the three topological properties would be

the same. The statistical significance of all the comparisons is summarized

in Table 5.1. Figure 5.2 shows the histogram of the three topological prop-

erties. Both Wilcoxon signed-rank test and ANOVA were performed on

the data and gave consistent results for the significant differences between

conditions.

Frequency band Tra vs. MO Tra vs. VO MO vs. VO
8-12Hz 0 1 1
18-22Hz 1 1 1
26-30Hz 0 1 1
38-42Hz 1 0 1

Table 5.1: Results of statistical comparison of topological properties.
Wilcoxon signed-rank test was used to exam the significance. 1 means
that the alternative hypothesis has been accepted, indicating there is a sig-
nificant difference between these two conditions, while 0 means there is no
significant difference between these two condition. For all those showing
significance, p < 0.005.

In 8-12Hz and 26-30Hz band, VO trial showed significantly higher den-

sity, higher clustering coefficient, and higher efficiency (lower mean path

length) than Tra and MO trials. In 38-42Hz band, MO trial showed sig-

nificantly higher density, higher clustering coefficient, and higher efficiency

(lower mean path length) than Tra and VO trials. In 18-22Hz band, all

three conditions showed significant difference from each other.

Besides the statistical difference, the topological structure of the net-

works in the alpha and gamma band were directly assessed, which are

shown in Figure 5.3. The representative network of each condition was
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Figure 5.2: This figure shows the histogram of three statistical topologi-
cal properties of functional connectivity network. Each row represents the
measurement in a frequency band, while the left column shows clustering
coefficient of the connectivity, and right column shows mean efficiency (av-
erage reciprocal of least path length) and network density. Each error bar
represents the standard error of the mean value. The horizontal bars with
star indicate pairs showing significant difference.

95



Static Topological Properties of Functional Connectivity

(a) Functional connectivity of the alpha band (8-12Hz)

(b) Functional connectivity of the gamma band (38-42Hz)

Figure 5.3: A comparison of functional connectivity structure in the alpha
(Subfigure a) and gamma (Subfigure b) band between each condition. The
probability of each link was estimated for each trial, then the trial-wise
averaging was performed, which generated a single representative network
for every condition. For the purpose of better demonstration, a threshold
was applied on the averaged network and it was tuned in the way so that
different features of network structure can be clearly shown.
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an average of all trials of the same condition, and it was a weighted net-

work. Here only the strong links in the networks are shown to illustrate

the topological structure discriminating different conditions.

It is obvious that there is one condition significantly different from the

other two conditions in each frequency band. In 8-12Hz band, VO trial

had much denser connections in the occipital part of the scalp. In 38-42Hz

band, MO trial had more connections than Tra and VO trial on the right

hemisphere and occipital part. In the networks with lower density, it can

be found that the connectivity structures are similar to the lattice network.

It could result from the neighbouring effect of electrodes. Two electrodes

may receive the signal from a common source, which then creates the same

component for both channels, and that would finally result in that this

channel pair has higher phase-locking value.

5.4 Discussion

Table 5.1 and Figure 5.2 provide an overview of the topological proper-

ties, which made different conditions stand out in different frequency bands.

In the alpha band (8-12Hz), VO was significantly different from the other

two conditions in all the topological properties, which indicates that the

alpha band neural activity is related to the motor control. In the gamma

band (38-42Hz), MO was significantly different from the other two con-

ditions in term of all topological properties, which indicates that gamma

band activity is related to the visual tracking behaviour. The topological

structures of the representative networks were also found to be different be-

tween conditions in both alpha and gamma band, which are shown in Figure
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5.3. The beta band (18-22Hz and 26-30Hz) showed significant difference

in statistical topological properties between conditions but no significant

difference of the functional connectivity network structure was found in the

representative networks (not shown). Figure 5.2 and Figure 5.3 show that

Tra condition had a lower density of connections in both alpha and gamma

bands, while VO in the alpha band and MO in the gamma band had a

higher connection density. Considering VO condition in the alpha band

and MO condition in the gamma band as two baseline conditions of the

open visual-motor loop, it can be concluded that closing of the loop during

tracking task led to desynchronisation in both frequency bands. Desyn-

chronisation of neural signal can be related to movement onset, which is

called event-related desynchronisation (ERD) [98], and it is believed to be

related to motion control. After the stimulus, a series of time-locked events

take place but those events are not synchronous with each other, which re-

sult in the desynchronisation of EEG. The inter-channel desynchronisation

found in this research may result from the same mechanism: the real-time

visual-motor coordination requests intensive communication to establish

the fine control, and the neural signal of the communication could be asyn-

chronous due to the random nature of the disturbance in participant’s mo-

tion. Therefore, the time averaged synchrony measurement showed lower

value of synchrony.

Figure 5.3 shows that there was a difference of representative network

topological structures between conditions in both alpha and gamma band.

In the alpha band, VO shows higher density of connections than the other

two conditions, where the differences are mainly in the occipital region

and the back part of central region. A study from Rilk et. al. reported

98



Static Topological Properties of Functional Connectivity

that visual-motor coordination task would result in a decrease of oscilla-

tory power of central and occipital regions in the alpha and low beta band,

while the the interregional coherence between central region and occipital

region would increase [7]. It should be noticed that the baseline used for

comparison in that study was the rest state of participants. In this study,

however, visual-motor coordination state was compared with visual only

state and motion only state. In other words, this experimental design iso-

lated motor control from the overall visual-motor feedback loop. Therefore,

differences of connections shown in Figure 5.3 are specifically related to the

motion control activity. This result implies that the motion control in the

visual-motor coordination loop is related to the back part of central region

and the occipital region. It should be pointed out that the rear part of the

occipital region in Tra and MO of the alpha band has less density difference

from the VO. It indicates that this rear part of the occipital region may

not be related specifically to the motor control.

In the gamma band (38-42Hz) of Figure 5.3, MO showed different net-

work structures and topological properties from the other two conditions.

In order to interpret this difference, let us revisit the behaviour conditions.

In MO condition, participants were asked to perform a circular motion of

the tracer while the target was not shown. In VO condition, participants

passively watched a pre-recorded tracking trial with both target and tracer

shown on the display. As the VO trials exhibited the exactly same visual in-

put as Tra trials, it can be concluded that the differences of functional con-

nectivity structures in the gamma band resulted from the different visual

inputs from the display. There are two possible explanations of the gamma

band neural activity. One explanation is that participants applied differ-
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ent attention on the moving object(s) which generated different gamma

band connectivity networks. A number of studies have demonstrated the

visual attention is related to the gamma oscillatory [99, 100, 101]. In Tra

and VO trials, multiple moving objects were shown on the display, which

could be more likely to catch participants’ attention than showing a single,

under-controlled moving object. Another possible explanation is that the

different intention of participants resulted in the differences of functional

connectivity in the gamma band. As the participants were watching both

target and tracer, either with control (in Tra trials) or without control (in

VO trials), participants would start to visually measure the distance of

the two objects and activate the relative brain connectivities. In our future

work, the attention of participants will be measured during the behavioural

experiment in order to resolve this issue.

5.5 Conclusion

In this chapter the topological properties of static functional connectiv-

ity network were explored, which showed that the topological properties of

EEG functional connectivity differ between open and closed visual-motor

loop. The results suggest that the alpha and gamma bands in the brain

signals are related to motor control and visual feedback, respectively. In

the alpha band, the desynchronisation between central and occipital re-

gion of cortex was observed when participants engaging motion control. In

the gamma band, the desynchronisation was also found while participant

were minimizing distance between target and tracer. The overall struc-

tures of the phase-locking connections in the network was also investigated
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by observing the representative network of each condition. It showed that

the significant difference in statistical topological properties is related to

different spacial structure of the functional connectivity.

From the above analysis in this chapter, it was shown that the lower

frequency band of the EEG signal is related to the movement, while the

higher frequency band of EEG is related to the precise visual feedback and

control. These results established a baseline which shows that the static

functional connectivity structure is related to the visual-motor coordina-

tion, and different visual-motor coordination states can be distinguished by

the topological properties of the functional connectivity network. The next

chapter will turn the focus on the dynamical properties of the functional

connectivity networks, which were extracted with the eigenvector-based

method introduced in the previous chapter.
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6.1 Introduction

While in the previous chapter, it has been demonstrated that open and

closed visual-motor loops are distinguished by the static topological prop-

erties of the functional connectivity, this chapter focuses on the network
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evolution by investigating the dynamical properties of the functional con-

nectivity. In order to extract the evolution information of the network, the

eigenvector-based method developed in Chapter 4 was applied on the EEG

functional connectivity network. This chapter shows that the evolution of

the functional connectivity network is based on a serial transitions between

different meta-stable states. Those meta-stable states imply an attractor

structure of the network dynamics. By comparing the transition frequen-

cies and the meta-stable states duration distribution of different conditions,

it was shown that the dynamical properties of the functional connectivity

network can differentiate the open and closed visual-motor coordination

loops.

In this chapter, the attractor structure of the neural network dynamics

will be studied with the eigenvector-based dynamical analysis method. This

analysis will show that the successive prime eigenvector inner product time

series depicts a natural partition of the meta-stable states of the network

evolution. It will also demonstrate how the network transits between those

different meta-stable states. In this chapter, two dynamical properties, the

meta-stable state transition probability as well as the distribution of meta-

stable state duration, will be compared between different conditions. It will

also be shown that these results indicate an interrelation with the static

topological properties of the functional connectivity.

At the end of this chapter, the exploration of Lyapunov exponent of

the network density time series will be introduced. Lyapunov exponent

is a measurement describing the separation rate of a dynamical system’s

trajectory in the phase space. This measurement implies the predictabil-

ity of the dynamical system with noise, and is usually used to investigate
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chaos phenomenon in nonlinear dynamical systems [68]. Many studies of

neuroscience and psychology [75, 102, 73, 74, 77, 76] have suggested that

the dynamical process of a brain network is chaotic. In this chapter, a

primitive investigation of Lyapunov exponent will be described, which was

applied on the network density time series of the functional connectivity in

the alpha and gamma band. This analysis alone is not enough to provide a

concrete conclusion on the chaotic property of the functional connectivity

evolution, but it showed interesting results and is worthy to report in this

thesis. The results showed consistence with the results of topological prop-

erties analysis, as VO in the alpha band and MO in the gamma band had

significantly larger network density than other conditions in the same fre-

quency band. The chaotic property of the functional connectivity network

will be further studied in future work.

6.2 Attractors and Meta-stable state tran-

sitions

First of all, the eigenvector-based dynamical analysis method was ap-

plied on the function connectivity of EEG to investigate the dynamics of

the prime eigenvector. This analysis revealed the attractor structure and

meta-stable state dynamics of the functional connectivity.

6.2.1 Methods

In the last chapter (Section 5.2.1 and Section 5.2.2), the functional con-

nectivity network of the brain signal has been generated with the method

described in Section 4.7. Following the path of Section 4.7, this chapter
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applies the eigenvector analysis on the functional connectivity network.

The discussion in Chapter 4 assumed that several attractors exist in the

trajectory of the prime eigenvectors, while two eigenvectors have very sim-

ilar direction if both of them are close to the same attractor, which means

〈
−→
Υ(m),

−→
Υ(n)〉 ' 1, otherwise 〈

−→
Υ(m),

−→
Υ(n)〉 � 1 if they are in the basin

of different attractors. Therefore, a plot of 〈
−→
Υ(t),

−→
Υ(t + 1)〉 as a function

of time will be composed of stable long plateaus which are close to one,

punctuated by short transient decreases. The set of the average values of

−→
Υ(t) over each stable period would be the attractors. They do not need

to be orthogonal to each other. In Section 4.7 it has been shown that this

assumption describes the correct picture of the simulated networks, and in

this chapter the same method is applied on the EEG data while the similar

pattern as Figure 4.14 is expected.

To test these conjectures, the prime eigenvector for each time window

was calculated from the time series of binary adjacency matrix, generating

a time series of prime eigenvectors |
−→
Υ(t) |. Then the inner product time

series of successive prime eigenvectors were calculated for every trial. In

Figure 6.2.2, time series of an example trial is shown. This figure indicates

that the inner products tend to be either 0 or 1. The inner products dis-

tribution of the same trial is shown in Figure 6.1 (b). From the result,

it was found that the distribution of a single trial follow a bimodel distri-

bution with most of the events fell into either 0 or 1. This is compatible

with the noisy attractor dynamics in the assumption. As described early,

〈
−→
Υ(m),

−→
Υ(n)〉 � 1 suggests a transit a transition between meta-stable

states while 〈
−→
Υ(m),

−→
Υ(n)〉 ' 1 can be viewed as holding the same state

during that time window. Therefore, the number of 0 in the inner product
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time series suggests the number of transitions happened in the state space,

and more transitions between meta-stable states implies relatively unstable.

In order to identify the transition frequency, the number of events, where

the inner product of eigenvectors were < 0.01 and > 0.99 were counted.

Events that < 0.01 can be interpreted as prime eigenvector transits be-

tween states, and events that > 0.99 stand for the situation where prime

eigenvector stays in the same state. The normalized frequency of the two

events, < 0.01 and > 0.99 (these two events will be simply noted as 0 and

1 in the following text) from each experimental conditions were compared

by Wilcoxon signed-rank test and ANOVA, results of which are shown in

Figure 6.3.

In order to further demonstrate the temporal cluster structure and the

attractors in eigenvector space, the inner products of prime eigenvectors

from all the time windows in the same trial were calculated, and that

makes a correlation matrix C, each entry of which is the inner product of

eigenvectors from the corresponding two time windows. That is Cmn =

〈
−→
Υ(m),

−→
Υ(n)〉. In the purpose of better demonstration, only a segment

of the whole matrix is shown in Figure 6.2, which are the inner product

correlation matrix of a 3-second segment.

6.2.2 Results

While Figure 6.1 shows the bimodel distribution of the successive prime

eigenvector inner product, Figure 6.2 shows the inner product matrix C

of a time series segment of the trial in Figure 6.1, which shows a block

structure. The blocks of high value suggest the prime eigenvectors with the

similar directions, which can be seen as temporal clusters of the eigenvector
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(a) Time series of successive prime eigen-
vector inner product

(b) Distribution of successive prime
eigenvector inner product

Figure 6.1: (a) An example time series of successive prime eigenvector inner
product. The figure shows the data from a single tracking trial in the alpha
band. (b) Distribution of successive prime eigenvector inner product (Tra,
alpha band). It is obvious that the distribution follows bimodal distribution
with most of the event counts fall in 0 and 1.

trajectory. Remarkably, the high value blocks on the diagonal stand for the

meta-stable states. Figure 6.2 proves that it would be possible to identify

attractors in the prime eigenvector space experimentally, and the EEG

functional connectivity network has a meta-stable dynamics.

The significance tests were performed on the normalized frequency of

the two events between different conditions (Figure 6.3). As discussed in

previous section, the inner products with small values represent the tran-

sitions of the functional connectivity. Figure 6.3 shows that in the alpha

band, there are more inner products close to 1 than those close to 0, and

1 count in VO condition is significantly larger than that of Tra and MO,

while 0 count is significantly smaller. This result suggests that the al-

pha band functional connectivity has more transitions when participants

perform motion control. In the beta band (18-22Hz and 26-30Hz), a sig-

nificant difference of number of transitions between Tra and VO condition

was found. However, MO doesn’t show significance when comparing to
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Figure 6.2: The inner product correlation matrix C of a short segment from
an experiment trial which used to produce Figure 6.1. A segment (from 0s

to 3s) was selected from the eigenvector time series |
−→
Υ(t) | and then the

inner product was calculated for every possible pair in the segment, so that
each entry Cmn in the matrix is the inner product of the corresponding

two eigenvectors, which is Cmn = 〈
−→
Υ(m),

−→
Υ(n)〉. It can be observed from

the figure that there is a block structure. A segment of eigenvector time
series having high inner product with another segment makes a block of
high value in the matrix. It can be learnt that each block refers to a
temporal cluster, or an attractor in the eigenvector space. This structure
suggests a natural state partition of the eigenvector dynamics, from which
the meta-stable states can be defined.
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either Tra or VO condition. Also the p-value between Tra and VO was

very close to the threshold (0.05). Therefore it is hard to conclude how the

beta band functional connectivity relates to the visual-motor coordination.

In the gamma band, MO condition has significantly higher transition fre-

quency than the other two conditions, which suggests that the functional

connectivity has fewer transitions and is relatively stable when participants

perform tracking rather than simple circular movement. Comparing the re-

sults of Figure 6.3 and Figure 5.2, it is interesting to find that the condition

pairs showing significant difference in the topological properties were also

significantly different in the dynamical properties.

6.2.3 Discussion

In this chapter the method from Chapter 4 was applied on the EEG

data. Comparing the inner product time series of simulated data and EEG

data in Figure 4.14 and Figure 6.1 (a), respectively, it can be observed

that both inner product time series have plateaus of high values separated

by transit sharp decreases, which is a structure of meta-stable dynamics.

The plateaus of high values represent the meta-stable states in which the

eigenvector stays near one attractor, and the sharp decreases represent the

moments that eigenvector made those transitions from one attractor to

another. It is not surprising that the inner product time series of EEG

data is more noisy than that of simulated data, as the results of EEG

show a wider range of high values, around 0.8 ∼ 0.9, and more transitions,

than the results of simulated data. Except the main structure of the meta-

stability which has been captured by this analysis, the biological system

has much more complicated details within it.
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Figure 6.3: Comparison of probability of events that d < 0.01 and d > 0.99,
where d is the successive prime eigenvector inner product. Each error bar
represents the standard error of the mean value. Subfigure (a) shows the
result of the alpha band (8-12Hz); Subfigure (b) shows the result of the low
beta band (18-22Hz); Subfigure (c) shows the result of the high beta band
(26-30Hz); and Subfigure (d) shows the result of the gamma band (38-
42Hz). The horizontal bar with star indicates the pair that is significantly
different (Wilcoxon signed-rank test, α = 0.025). These results are highly
consistent with the results of topological properties (Comparing to Table
5.1 and Figure 5.2).

110



Dynamical Properties of Functional Connectivity

From the analysis of eigenvectors, the attractor structure was discovered

in the prime eigenvector space. Figure 6.2 gives a glance at the eigenvector

trajectory, which shows the existence of the attractors in the eigenvector

space. Blocks of high values can be found in Figure 6.2. Each block can

be seen as a temporal cluster of those eigenvectors from different time in-

stances. The centres of the clusters should be highly correlated with the

attractors. The similar block structure can be found in Figure 4.15 from

Chapter 4. The attractors suggest different topological connections of the

network, which can be called “meta-networks” of the functional connec-

tivity. The results showed that the network evolves in a way that transits

from one meta-structure to another. Therefore, it can be concluded that

there is an attractor structure in the evolution of EEG functional con-

nectivity which results in a meta-stable dynamics of the network. The

attractors provide a natural partition of the brain states. The concept of

defining state space on the brain signal analysis has been proposed a long

time ago. Lehmann and his colleges have proposed the concept of EEG

microstates, which is based on different EEG power spatial distribution

patterns [103, 104, 105, 106, 107, 108]. There are also other methods based

on the clustering of network topological properties [109, 110]. Eigenvector

is a representation of the instantaneous network which preserves the ma-

jority of network structure, so it provides a better way of defining brain

signal state space. By clustering the eigenvectors of the whole trajectory,

one should be able to identify the individual attractors and, from those

attractors, the “meta-networks” of the EEG functional connectivity can be

reconstructed.

By performing inner products among successive eigenvectors, it can
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be learnt how much the network has changed between the two successive

instances, in other words, how smooth the network evolves. Distribution

with more events in 1 and less events in 0 means that prime eigenvector is

less likely to jump between attractors, suggesting a relative stable network

which is more likely to preserve its structure during the evolution. From the

results (Figure 6.3), it can be learnt that VO is more stable than Tra and

MO trials in the alpha band while MO is more variable than Tra and VO

in the gamma band. It can also be found that network in lower frequency

is always more stable than high frequency. The reason for this could be

that phase-locking synchrony changes slower in low frequency band, which

makes the functional connectivity based on the phase synchrony evolves

slower as well. Comparing Figure 6.3 with Figure 5.2 and Table 5.1, it

can be found that the pairs showing significant difference in the transition

frequency of meta-stable states also showed significant difference in the

topological properties. It indicates that there is an interrelation between

the network dynamics and static properties of functional connectivity.

6.3 Distribution of meta-stable state dura-

tions

In order to further investigate the stability of functional connectivity

network evolution, the distribution of meta-stable state duration was stud-

ied.
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6.3.1 Methods

The stability of the meta-stable dynamics was studied by investigating

the distribution of meta-stable state duration. The distribution of meta-

stable state duration was calculated for every condition. As discussed in

the previous section, the meta-stable states were defined as the inner prod-

ucts > 0.99. In every frequency band, all the trials of the same experi-

mental conditions were counted and generated a single distribution for the

meta-stable state duration. It was found that the duration distribution of

individual trial was exponential. Therefore, the duration distribution was

plotted in semi-log coordinates and linear fitted. The slopes of the fitted

line were statistically compared with analysis of covariance (ANCOVA) at

the level of α = 0.005.

6.3.2 Results

Figure 6.4 shows that the in the alpha (8-12Hz) band, slope of VO is

significantly larger than Tra and MO. In the low beta (18-22Hz) band,

slope of VO and Tra are significantly different, while MO is in the middle

of them and does not show significant difference from either of Tra or VO.

The distribution of the high beta (38-40Hz) band and the gamma (38-42Hz)

band show similar pattern, as it can be observed from the figures that MO

has smaller slope than Tra and VO, while Tra and VO are very close to each

other. In the high beta band, MO is significantly different from Tra and VO,

but in the gamma band no significant difference was found. It could result

from that in the gamma band all the meta-stable states tend to be short,

which produces this small variance. It was also found that the significantly

different pairs in Figure 6.4 also showed significant difference in Figure

113



Dynamical Properties of Functional Connectivity

(a) 8-12Hz (b) 18-22Hz

(c) 26-30Hz (d) 38-40Gz

Figure 6.4: The semi-log plot of distribution of meta-stable state duration.
Subfigure (a) shows the result of the alpha band (8-12Hz); Subfigure (b)
shows the result of the low beta band (18-22Hz); Subfigure (c) shows the
result of the high beta band (26-30Hz); and Subfigure (d) shows the result
of the gamma band (38-42Hz). The horizontal axis refers to the length of
meta-stable states, while the vertical axis refers to the logarithm of number
of events. The scatter plot of the distribution was linear fitted. In the alpha
(8-12Hz) band, the slope of VO is significantly larger than Tra and MO.
In the low beta (18-22Hz) band, the slope of VO and Tra are significantly
different, while MO is in the middle of them and does not show significant
difference from either of Tra or VO. The distribution of the high beta (38-
40Hz) band and the gamma (38-42Hz) band show similar pattern, as it
can be observed from the figures that MO has smaller slope than Tra and
VO, while Tra and VO are very close to each other. In the high beta
band, MO is significantly different from Tra and VO, but in the gamma
band no significant difference was found. It could result from that in the
gamma band all the meta-stable states tend to be short, which makes small
variance. It was observed that longer meta-stable states are more common
in low frequency band.
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6.3. In the alpha band, for example, VO condition has larger slope, which

means it has more and longer meta-stable state segments. From Figure 6.3,

it can be learnt that VO has less transitions of meta-stable states than the

other two conditions. The same trend can be observed in other frequency

bands. As more transitions of the network evolution are likely to cut the

meta-stable states into shorter pieces, the condition with fewer transitions

found in the inner product time series would have larger slope for the

duration distribution. A general trend observed from the results was that

longer meta-stable states are more common in low frequency band. This

is a consequence of the difference in transition frequency between different

frequency bands, as more transitions would make the meta-stable states

shorter.

6.3.3 Discussion

The investigation of the duration distribution provides another mea-

surement of the network stability. Larger (flatter) slope suggests there are

longer meta-stable states in the prime eigenvector trajectory, which indi-

cates that the network evolves in a smoother way. As shown in the previous

section, Section 6.3.2, the meta-stable state duration distribution is largely

affected by the number of transitions. These results enhanced the conclu-

sion of the network stability made from the transition frequency analysis.

In the alpha band, VO has longer meta-stable states, which suggests that

the network is more stable when participants do not perform motion con-

trol. In the high beta band and gamma band, MO has shorter meta-stable

states, which suggests that the functional connectivity networks of these

frequency bands are less stable when participants perform simple move-
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ments, while the network becomes more stable when participants perform

tracking task, which evolves more complicated visual-motor coordination

control. The low beta band, like its result of meta-stable state transitions

frequency, only showed one significant pair Tra-VO with MO in the be-

tween of them, and p-value of Tra-VO was also quite close to 0.05. These

make it hard to lead to any conclusion.

6.4 Lyapunov exponent

Lyapunov exponent is a characteristic measuring the separation rate

of the trajectory of a dynamical system¡£ It is usually used to investigate

the chaos phenomenon in dynamical systems [68]. The alpha and gamma

band showed significant difference between conditions in both topological

and meta-stable state dynamical analyses. Therefore as an exploration, the

Lyapunov exponent of the network density time series was investigated for

the alpha and gamma band. The results are interestingly consistent with

all the other static topological and dynamical analysis discussed before.

Although this primitive analysis itself is not enough for making conclusion

of the chaotic property of the network evolution, it is worthy to report this

analysis in this thesis.

6.4.1 Methods

Suppose two trajectories of the system in the phase space have a initial

separation δZ0 at time point 0, and their divergence rate is give by

|δZt| ' eλt|δZ0| (6.1)
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where λ is the Lyapunov exponent. A negative Lyapunov exponent sug-

gests a stable system, which is attracted to a stable fixed point or a limit

cycle. A Lyapunov exponent equalling to 0 suggests the dynamical system

trajectory has a marginal equilibrium, and could be in the presence of a

bifurcation. In those two cases, the dynamical system is not chaotic. If

the Lyapunov exponent is positive, however, the dynamical system would

be sensitive to small perturbations, and it is considered to be chaotic, the

larger the Lyapunov exponent is, the more sensitive the system is to the

initial conditions.

In order to investigate the divergence of the system, firstly the phase

space needs to be defined. The delay method was used to define the phase

space. It was considered a time-delay of 3 successive points in the time

series. The time series of the network density was projected into the time-

delay phase space, which generated a 3-dimensional trajectory in that phase

space. Lyapunov exponent is defined on an infinite trajectory in the phase

space, which is usually not true for experimental data. Wolf’s algorithm

[111, 112, 113, 114] provides an approximate estimation of the Lyapunov

exponent. Starting from the beginning of the trajectory, let x0 be the

state being investigated. A “partner” state y0 would be selected on the

trajectory, which should be close enough to x0, so a threshold of distance

and angle was applied. The distance between x0 and y0 can be measured,

which is noted as δZ0. Then let both x0 and y0 evolve together for a few

steps, and we have xt and yt. The distance between xt and yt can be

noted as δZt. Using Equation (6.1), the local Lyapunov exponent λ can

be calculated. Iterate the same procedures through the whole trajectory in

the state space and average all the local Lyapunov exponent, we could get
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Figure 6.5: Average Lyapunov exponent of the alpha (Subfigure (a)) and
gamma band (Subfigure (b)). Each error bar represents the standard error
of the mean value. The calculation applied Wolf’s algorithm [111, 112,
113, 114], while the dimension of the time-delay phase space was 3. It can
be observed that the results are consistent with the analysis of topological
properties.

the global Lyapunov exponent. The results are shown in Figure 6.5.

6.4.2 Results

It can be seen that the Lyapunov exponent of VO condition is signifi-

cantly higher than Tra and MO in the alpha band. In the gamma band, the

MO condition has significantly higher Lyapunov exponent than the other

two conditions. Comparing with the results shown in Figure 6.3, it can

be found that VO condition showed significant differences in both tran-

sition probability and Lyapunov exponent in the alpha band, while MO

condition showed significant difference from the other conditions in both
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transition probability and Lyapunov exponent in the gamma band. It was

also interesting to find the consistence of the network density between its

time averaging and dynamical property when comparing Figure 6.5 with

Figure 5.2. The figures show that the condition with larger time-averaged

network density also has larger Lyapunov exponent of the network density

trajectory.

6.4.3 Discussion

Comparing Figure 6.5 with Figure 5.2, it can be seen that the results

of Lyapunov exponent and average density are quite similar. The con-

sistence between the time-averaged property and the dynamical property

could result from that the distribution with larger average value also has

larger variance, given the lower bounds of all the distributions are the same

(like distribution of network density, where the lower bound is fixed to 0).

Therefore, the system that has larger average value and larger variance

would have larger divergence in its evolution. However, it may also im-

ply that the network density has different dynamics in different conditions

that conversely result in different distribution. In future works, the chaotic

dynamics of the network properties will be further investigated.

It should be remarked that the “stability” discussed in this section is

different from the stability discussed in the previous sections. In the previ-

ous section, the stability was based on the transition frequencies between

meta-stable states, as more transitions suggest relative unstable system. In

prospect of chaotic system, however, a system is “unstable” if it is sensitive

to perturbations. A very “unstable” system would have large Lyapunov ex-

ponent and its trajectory would be sensitive to small perturbations. Also,
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the stability was measured with different network properties. The meta-

stable state discussed in previous sections is a representation of the network

cluster structure, while Lyapunov exponent in this section was performed

on the time series of network density, which is an overall network mea-

surement which is not necessarily corresponding to different cluster struc-

ture. For example, two networks that have two non-overlapped clusters,

respectively, may have the same average density. In the alpha band, VO

has larger Lyapunov exponent, which suggests it is more chaotic. In the

context of inner-product count, VO are significantly more stable than the

other two condition. It suggests an interesting structure: although the evo-

lution of the network is less likely to transit between different meta-stable

states and keep the network structure, but looking at the network density

time series, it is more likely to be perturbed by small fluctuations. In the

gamma band, MO shows significantly larger Lyapunov exponent, while it

also show higher transition counts. It suggests that MO condition has more

transitions between states as well as more sensitive to disturbances.

6.5 Conclusion

In this study, the eigenvector-based dynamical analysis has revealed

the attractor structure of the network evolution. The analysis of successive

prime eigenvector inner product time series showed that the functional con-

nectivity network would transit between different attractors, which provides

a natural partition of the meta-stable states. In the inner product time

series, 0 suggests orthogonal successive prime eigenvector, which implies

the transition between states, while 1 suggests parallel successive prime
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eigenvector, indicating the two eigenvectors belong to the same meta-stable

state. The time series of successive prime eigenvector inner product showed

a pattern with plateaus of high values which were separated by the sudden

decreases of low values (as shown in Figure 6.1). From this pattern, it

can be learnt that the plateaus represents the meta-stable states while the

low values of inner product indicate transitions between meta-stable states.

The number of transitions was compared between different conditions. It

was found that in the alpha band, the functional connectivity network of

VO trials had less transitions than the Tra, while in the gamma band, the

functional connectivity network of MO trials had more transitions than the

Tra. Those pairs which showed significant difference in dynamical property

were also significantly different in topological properties, which implies an

underlying connection between the meta-stable state transitions and the

time-averaged topological properties of the functional connectivity. As a

further step, the distribution of meta-stable state duration was investigated.

Those distributions were exponential, therefore the slopes of their semi-log

linear fittings were compared between conditions. The results were con-

sistent with their transition frequencies, as more transitions result in more

and shorter fragments of meta-stable states, while fewer transitions result

in longer meta-stable states. It suggested that the functional connectivity

network in the alpha band is more stable when participants do not perform

motion controls, while in the gamma band, the network is more stable when

participants performed tracking, which require control of higher precision

and heavier load of visual input precession.

Lyapunov exponents of the time series for the network density in the al-

pha and gamma band were also explored in this work. The results showed

121



Dynamical Properties of Functional Connectivity

consistence with the topological properties analysis. In the alpha band,

the Lyapunov exponent of VO network density trajectory was significantly

larger than that of Tra and MO, which suggests that the network density

time series evolution of VO was more diverge than other trials. In the

gamma band, the Lyapunov exponent of MO network density was signifi-

cant larger than that of Tra and VO trials as well, which suggests that the

network density time series of MO evolves in a more sensitive and chaotic

way than other trials. This is a very primitive exploration of chaotic prop-

erty of functional connectivity network evolution. In future works, further

investigation will be done to uncover the chaotic dynamics of the neural

network.
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Chapter 7

Conclusion and Future Works
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7.1 Conclusion

The human visual-motor coordination is an essential motion control

mechanism. This project has explored anticipatory behaviour of humans

as well as neural features of visual-motor coordination. In this work, two

types of tracking paradigm were applied in behaviour experiment to inves-

tigate the anticipatory behaviour of humans. In the full visibility tracking

trials, participants showed large variance on their performance and ex-

hibited little anticipatory behaviour. Then the refined intermittent track-

ing paradigm were performed. Although still affected by the participants

variance, the intermittent tracking trials exhibited strong anticipatory be-

haviour of participators. Two distinctive control modes were found in the

intermittent tracking trials, and these two control modes were dominant

in the target-visible zone and target-invisible zone, respectively. In the

target-visible zone, the visual feedback mode was dominant where partic-
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ipants passively followed the target. In the target-invisible zone, instead

of depending on the visual feedback, participants performed anticipatory

control on the tracer. It was also observed that higher target speed would

result in stronger anticipatory behaviour in the tracking paradigm.

For the behavioural analysis, this work explored the anticipatory be-

haviour in the visual-motor coordination. This work demonstrated the

strong anticipatory behaviour of humans with the intermittent tracking

paradigm. In the target-visible zone and target-invisible zone, participants

used different control mechanisms. The passive visual feedback control

mode depends on the viability of the target, so this control mechanism

is limited in the target-visible zone. When the target became invisible,

participants were forced to use anticipatory control mode. This work also

confirmed that higher target speed would result in stronger anticipatory

behaviour, which was reported in the previous papers [89, 23].

In the neural signal analysis, the functional connectivity features of

visual-motor coordination of humans was investigated. Both static topo-

logical properties and the dynamical properties of the functional connectiv-

ity network were analysed. It was found that the functional connectivity

networks in the alpha and gamma band have significant differences that

can distinguish different states of visual-motor coordination loops. In the

alpha band, functional connectivity of VO trials had much higher net-

work density, and consequently higher clustering coefficient and average

efficiency, than Tra and MO trials, which suggests that motion would re-

sult in desynchronisation of the phase-locking networks in the alpha band.

In the gamma band, functional connectivity of MO had higher network den-

sity, and consequently higher clustering coefficient and average efficiency,
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than Tra and VO trials, which suggests that desynchronisation would take

place when participants perform a precise visual feedback motion control.

In this project, an eigenvector-based dynamical analysis method was devel-

oped and tested on a simulated network model. With this new dynamical

method, the attractor structure in the prime eigenvector space was discov-

ered, which enables the identification of the meta-stable states by inves-

tigating the successive prime eigenvectors inner product time series. Low

inner product (close to 0) between successive prime eigenvectors indicates

a transition between meta-stable states, while high inner product (close to

1) indicates that the network stayed in the same meta-stable state during

this instance. Then, the transition probability of each trial was statisti-

cally analysed, the results of which, interestingly, showed consistency with

the topological properties: In the alpha band, VO trials had less transi-

tions than Tra and MO trials, while in the gamma band, MO trials had

more transitions than Tra and VO trials. This consistency may imply a

relation between the network dynamics and its topological properties of

the time-averaged static network. Further, the stability of the meta-stable

state transition was studied by investigating the distribution of meta-stable

state duration. The duration distribution of individual trials was exponen-

tial, therefore the linear fitting was applied on the semi-log plot of duration

distributions and their slopes were compared. It was found that the dis-

tribution of meta-stable state duration is largely affected by the number

of transitions, for that more transitions are likely to chop the meta-stable

states into smaller pieces and result in shorter meta-stable states, while

fewer transitions result in longer meta-stable states. To sum up, both static

and dynamical neural features corresponding to different visual-motor co-
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ordination states were found in this work.

A number of contributions have been made by this work. A new dy-

namical analysis method was developed and applied on the neural signal

in this work. This method projects the network onto the prime eigenvector

of the adjacency matrix, which reduces the dimension and make it easier

to represent the network dynamics without losing too much information

of the network. This method was proven to be valid with both simula-

tion network model and neural functional connectivity network. In Chap-

ter 4, a simulation synchronous network model was developed to test the

eigenvector-based dynamical analysis method. The results showed that the

structure changes of the simulated network was captured by the successive

prime eigenvectors inner product time series. In Chapter 6, this dynamical

method was applied on the functional connectivity of EEG and revealed

the meta-stable state dynamics of the functional connectivity networks. An

overall picture of prime eigenvectors showed the attractor structure of the

prime eigenvector trajectory. Both analysis of simulated network and anal-

ysis of EEG functional connectivity suggested that this eigenvector-based

dynamical analysis method is capable to uncover the dynamical structure

of the network evolution. This eigenvector-based dynamical analysis is not

limited to the analysis of neural network, but also can be applied on the

analysis of other dynamical networks. This method shows a great potential

to uncover the structural changes of the network.

This work also revealed the neural functional connectivity network prop-

erties corresponding to the visual-motor coordination. By comparing the

tracking paradigm trials with specifically designed reference trials, the neu-

ral patterns corresponding to different visual-motor cognitive states can
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be identified. In the MO trials, participants performed the same circular

movement as Tra trials, but the target was not shown on the display, which

made the participants had a different intention of control. In the VO trials,

participants only passively observed the pre-recorded Tra trials, without

performing any control process. By comparing the functional connectiv-

ity network of Tra with MO and VO, respectively, the network differences

corresponding to the intention of control and movement was identified sep-

arately. Interestingly, it was found that the neural patterns corresponding

to the two different parts of the visual-motor coordination, the movement

and intention of control, corresponded to the alpha band and gamma band

of EEG, respectively. In the alpha band, both topological properties of

the static network and dynamical properties of meta-stable state transi-

tion were found to be different during the VO trials and the other two

conditions. All the three topological properties, mean network density,

mean cluster coefficient, and mean efficiency, were significantly different

while performing the Tra and VO trials, which indicates that performing

motion control would result in desynchronization between different cortex

regions, and consequently creating fewer links in the synchrony network.

The analysis of eigenvector inner product in the alpha band suggested that

the functional connectivity network becomes less stable when participants

perform motion control. Similarly in the gamma band, both topologi-

cal properties and dynamical properties were shown to perform different

results in the MO and the other two conditions. The topological prop-

erties analysis suggested desynchronization happened when participants

were intended to perform the tracking. The eigenvector inner product

of the gamma band showed that the functional connectivity network was
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sparser but more stable when participants performed tracking rather than

simple circular movement. The discovery of these functional connectivity

differences could help future studies understand the neural mechanism of

visual-motor coordination. The results also suggest that the topological

properties and the network dynamics have an underlying connection.

7.2 Future works

In Chapter 3, only the behavioural analysis of the anticipatory be-

haviour was shown, while the neural signal feature related to the antic-

ipatory behaviour was not investigated. Future works will investigate and

compare the functional connectivity networks between trials with different

target speeds, which could hopefully reveal how the different levels of target

speed affect the control mode of visual-motion coordination. It would be

also quite interesting to investigate the difference between the functional

connectivity networks of target-visible zone and target-invisible zone, which

would illustrate the functional connectivity signatures corresponding to the

two distinctive control modes.

It was also interesting to notice the different performances of partici-

pants in the target-visible zone of intermittent tracking trials and in the

full visibility tracking trials. As discussed, this difference of performances

could imply that the anticipatory behaviour is affected by the viability of

the target, including changes of the target movement or changes of target

movement information accessability. More viability would lead to stronger

anticipatory behaviour. In future works, different forms of behavioural

tasks will be performed in order to investigate how different forms of tar-
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get viability would affect the anticipatory behaviour. The viability and its

effect of the anticipatory behaviour will also be quantitatively analysed.

In Chapter 4, it was demonstrated that the prime eigenvector could

show the dynamics of the network. However, the dynamics revealed by

this eigenvector-based dynamical analysis might be incomplete. A paper

of Allefeld [58] described a clustering method based on the eigenspectrum,

which used similar techniques of the eigenvector. In that paper, they calcu-

lated the eigenvalues and corresponding eigenvectors of the adjacency ma-

trix, and claimed that each eigenvalue larger than a given threshold (they

derived a particular threshold here, which is 1) suggests one cluster in the

network, and more interestingly, the entries of the corresponding eigen-

vector indicate the membership of nodes. It could suggest that the prime

eigenvector only describes the largest cluster in the network. Therefore,

it would be worth using the spectral analysis for finding the other smaller

clusters in the EEG networks. In order to recover all the information of the

network, defining the spectral gap on the eigenspectrum and investigating

all the eigenvectors corresponding to the eigenvalues larger than the spec-

tral gap could be necessary. However, as it can be learnt from the network

density, the functional connectivity obtained is very sparse, which means

there could only be 1 or 2 clusters in the network. It could be possible that

the prime eigenvector recover the most of information of the functional

connectivity if the functional connectivity only have one connected cluster

in the most of the time instance. In future works, the spectral gap will

be investigated and the multiple eigenvector method will be developed to

analyse network dynamics. Also the sparsity of the functional connectivity

will be examined in order to understand how much information the prime
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eigenvector could recover.

This research has shown the existence of attractor structure in the prime

eigenvector space of the functional connectivity network. Each attractor

suggests a certain network connection pattern, and the trajectory of prime

eigenvectors suggests that the functional connectivity network evolves in

a way that transit between the different attractors. Therefore, revealing

these attractors would further recover the underlying pattern of the network

evolution. In future works, I would apply clustering method on the prime

eigenvector trajectory and identify the attractors by looking for the cluster

centre of each cluster. In this way, each attractor will be represented as an

averaged “eigenvector”. It can be considered that these attractors are the

eigenvectors of an underlying network which represents the overall dynam-

ics of the functional connectivity network evolution, and these underlying

network could be rebuilt with those attractor eigenvectors. Therefore, a

unique underlying network can be extracted for every experimental con-

dition. By comparing them, further details of the function connectivity

dynamics could be revealed.
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Appendix A

EEG Acquisition System and
Validation

A.1 Introduction

In this study, there was a demand to synchronise the behavioural data
and EEG data. Therefore, an EEG acquisition system was developed for
that purpose and as a part of original work of this project. This chap-
ter is presented to describe this system, and show the evidence that this
system is able to successfully collect EEG data. In this system, there are
two computers, the host PC and the xPC-Target. Both behavioural data
streams and EEG data streams were sent to the second computer, which
is named xPC-Target (The MathWorks, Inc). The xPC-Target registered
the two stream with the same time stamp, and then sent the combined
data streams to the main computer, which is referred as the host PC in the
following text. In order to show that this extra layer of signal processing
would not affect the EEG signals, evidence is shown in this chapter, which
suggests that the recorded EEG data have the features reflecting the partic-
ipants’ behaviour. This system can be served as an universal experimental
platform which is compatible for all the behavioural paradigms having a
request for behavioural-neural signal synchronisation. This chapter first de-
scribes the system, then followed by the description of EEG pre-processing
and validation.

A.2 System setup

A.2.1 Hardware system

The hardware of the EEG acquisition system included two computers,
two A/D modules (AD 12-16 (PCI), CONTEC CO., Ltd), a counter board
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Figure A.1: Experiment hardware system layout

Figure A.2: g.BSamp front side sockets and LEDs. Figure copied from user
manual of the product [115].

(CNT32-8M (PCI), CONTEC CO., Ltd), two amplifiers (g.BSamp biosig-
nal amplifier, g.tec) with accessories (cables and electrodes), and a haptic
device. The connection layout of the system is shown in Figure A.1. Each
amplifier had 16 EEG recording channels, two amplifiers made total 32
EEG channels. Each A/D module had 16 channels as well, therefore each
amplifier had a corresponding A/D module. A haptic arm with two en-
coders, corresponding to X and Y coordinates of the tracer, respectively,
was used for participant to control the tracer. An orbicular handle made by
3D printing was fixed in the end of the haptic device in order to make the
participant easier to hold. The EEG data streams from the amplifiers were
sent to A/D modules for digitalisation, while the behavioural data streams
from the encoders of the haptic device were sent to the counter board. The
counter board integrated the angle changes and gave the current position
of the tracer. Then both of the streams were collected by the xPC-Target,
with the operation system of xPC-Target ver. 5.1 (MathWork), in order
to register them with synchronised time stamp. Finally, the synchronised
data streams were sent to the host PC by user datagram protocol (UDP)
packages.

The front and rear panel of the amplifier are shown in Figure A.2 and
A.3. 16 red sockets and 16 black sockets are the signal sockets and reference
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Figure A.3: g.BSamp rear view. Figure copied from user manual of the
product [115].

Figure A.4: Configuration for two amplifiers. Figure copied from user
manual of the product [115].
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sockets, respectively. They are one-to-one corresponded with each other. 8
ground sockets are located in the middle of the front panel, 4 in green and 4
in yellow. The ground sockets with the same colour are connected inside the
amplifier, while the ones with different colours are disconnected. During the
experiment, reference and ground sockets of two amplifiers were connected
as the configuration shown in Figure A.4. All the 16 reference sockets
of one amplifier were connected with the shortcut cable, while reference
sockets of two amplifiers were connected with the pink jumper cable. 8
ground sockets of one amplifier were connected with the pink jumper cable,
while the ground sockets of two amplifiers were connected with the yellow
jumper cable. Therefore, the two-amplifier system shared the same ground
and reference source.

On the rear side of the amplifier, there is a metal contact bar which
is marked as potential equalization conductor in Figure A.3. The two
conductors of the two amplifiers were connected during the experiment. On
the rear side of the amplifier, there are also 16 channel parameter settings,
corresponding to the 16 channels. The 4 parameters of each channel are:
“LP” for low pass filter, “Notch” for notch filter at 50Hz, “HI” for high
pass filter, and “Sens” for sensitivity. The settings used in this research
are: low pass-low; notch filter-on, high pass-low; and sensitivity-low.

A.2.2 Software system

All the data recording and processing during the experiment sessions
were completed with programmes of Matlab Simulink (The MathWorks,
Inc) environment. The software system has two parts. One part ran on the
xPC-Target. This part of programme has 2 functions: First, it calculates
the coordinates of tracer from the angles of haptic device encoders; Second,
it synchronises the EEG and tracer coordinates data streams and packs the
data to send to the host PC. The other part of the software ran on the host
PC. This part of programme unpacks the data stream and write the data
into files. It also displays the animation of target and tracer.

A.2.3 Data recording configurations

This experiment utilized the 10-20 system for electrode location. 32
electrodes (F3, F1, Fz, F2, F4, FC5, FC3, FC1, FC2, FC4, FC6, C5,
C3, C1, Cz, C2, C4, C6, CP3, CP1, CPZ, CP2, CP4, P3, P1, PZ, P2,
P4, PO3, POz, PO4, Oz) plus 1 reference electrode (FCz) and 1 ground
electrode (AFZ) (g.tec) were applied in the experiment. The behavioural
data streams (which were sent to the host PC) included 3 channels, which
corresponding to the 3 spatial coordinates, X, Y, and Z, while Z coordinate
was unused in this paradigm. Therefore, the combined data streams have
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35 channels. These synchronised data streams were sent to the host PC
though UDP pack, and written into the file in real time. The sample rate
for both EEG and behavioural channels were 1kHz.

A.2.4 Amplifier trouble shooting

During the research, one amplifier showed noisy output and was sus-
pected to be malfunction. A series of systematic tests were performed for
trouble shooting. During the trouble shooting, the channel parameter set-
tings kept the same as described in Section A.2.1. The tests were carried
out with a signal generator (g.SIGgen, g.tec) which generated the sinu-
soid signal. First, no shortcut cable or jumper cable was connected on the
suspected amplifier. Every channel of the suspected amplifier was tested
with the signal generator, and all of the channels showed normal response.
Second, all the reference sockets of the suspected amplifier were connected
with shortcut cable as Figure A.4, and all the channels were tested with
the same fashion. Still all the channels of the suspected amplifier showed
normal response. In the next step, the suspected amplifier was connected
with 16 EEG electrodes, 1 reference electrode, and 1 ground electrode. The
reference and ground sockets of the suspected amplifier were connected to-
gether as Figure A.4. All the electrodes, including the reference and the
ground electrode, were drowned in a cup of electrolyte solution, in order to
simulate the experimental condition in a low impedance environment. The
cup was made of plastic, and placed about ten centimetres away from the
amplifiers. When we moved our hands near the cup, output signals fluc-
tuated corresponding with our hand movements. Moving electrodes inside
the water also generated corresponding fluctuation in the output signals.
The same test was performed on the other amplifier, which showed that the
output signals of the other amplifier were not affected by any movements.
As the final step, all the downstream equipments were replaced and the
same test was performed on both amplifiers, which gave the same result.
Therefore, the suspected amplifier was malfunction and became extreme
vulnerable to the outside disturbance. The report of the above tests was
sent to the producer, and the faulty amplifier was replaced later.

A.3 Validation of EEG data

In this section, evidence that show EEG data have the features reflect-
ing the participants’ behaviour will be presented in order to validate the
recorded EEG data.
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Figure A.5: The time-frequency transform of a single channel in wide-band
filtered data. The white double arrow indicates the time duration of a
tracking trial. It can be observed that there are 12 tracking trial in this
figure. And the durations of the high power around 5Hz are about 10
seconds, which correspond to the experiment setting very well.

A.3.1 Temporal-frequency spectrum

First, the temporal-frequency spectrum of the EEG data was investi-
gated. Continuous wavelet transform (CWT) was applied on the broad-
band (0.1-50Hz) filtered EEG data of a tracking session (including 12 track-
ing trials and corresponding short break). The mother wavelet employed
in this CWT was Morlet wavelet, which takes the form of the following:

ψ(x) = e−x
2

cos(π

√
2

ln2
x) (A.1)

The result is shown in Figure A.5.
It is very clear that the whole spectrum is separated by some low fre-

quency (centred at about 5Hz) components with high power. The time
intervals between the low frequency components correspond accurately to
the time of tracking trials. The white double arrow in the figure marks the
time duration of a tracking trial. The width of the low frequency compo-
nents is also identical with the time duration of the 10-second short break
period. Those observations suggest that these low frequency peaks ap-
peared in the rest periods of the experiment, and disappeared during the
tracking trials, which is a clear difference of the brain signals between the
tracking state and the rest state. These components are very likely to be
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(a) ERP in tracking trial

(b) No ERP found in visual only reference
trial

Figure A.6: Comparison of event related potential between tracking trial
and visual only trial (No movement conducted trial). It is obvious that
there is a drop of potential in tracking trial at the time point approximately
400ms, which was not found in visual only trial.

the rest state alpha rhythm.

A.3.2 Event-related desynchronization

The event-related potential (ERP) is a widely recognized symbol for
movement [116][117], which is a phenomenon in which the evoked potential
appears after the onset of movement. ERP of tracking trials and visual
only trials was explored and the results were compared between tracking
trials and visual only trials. Each session of tracking trials and visual only
trials included 12 trials. As the start time of each trial was the onset of
movement in the tracking condition, this time point was chosen to be the
0 point in ERP analysis, while the time range was set from -1s to 2s. The
baseline of ERP was calculated from the average of EEG within [−1, 0]. It
was expected to observe an event-related desynchronization (ERD) in the
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(a) 2-D scalp potential map at 400ms (Track-
ing trial)

(b) 2-D scalp potential map at 400ms (Visual
only trial)

Figure A.7: Comparison of 2-D scalp map at 400ms between tracking trial
and visual only trail. It is clear that there is a low potential near the left
sensory-motor cortex in tracking trial, as the participant is right-handed.
This is corresponding to the drop at 400ms in Figure. The same pattern is
not found in visual only trial.

138



EEG Acquisition System and Validation

400ms [98]. Figure A.6 shows the results of ERP analysis. It is obvious
that a desynchronisation took place at the 400ms in tracking trials, while
it was not found in visual only trials. Figure A.7 shows the 2-D scalp ERD
plot at 400ms. As the participant is right-handed, it was found that the
ERD appeared in the left sensory-motor cortex region when the participant
performed tracking task, while the same ERD region was not fount when
participant performed visual only trial. The ERD region in Figure A.7 is
corresponding to the drop of potential in Figure A.6.

A.3.3 EEG signal averaging

It is well-known that the periodic changing of image contrast causes
a corresponding potential change on visual cortex neurons [118]. In this
experiment, it is possible that these visual cortex neurons showed the same
rhyme as the period of target movement as well. Therefore as a further step
of validation, the averaged EEG data of the visual cortex were investigated.
Four channels were selected as the sources of the visual cortex EEG signals.
These channels were PO3, POz, PO4, and Oz. The EEG time series of
these four channels were averaged, generating a single visual cortex signal
representation of one trial. And then the visual cortex signal representation
of all the 0.1Hz tracking trials were averaged. The same process was done
on 0.5Hz tracking trials and 1.0Hz tracking trials. The averaged time series
are shown as Figure A.8. It is clear that the signals of 0.5Hz and 1.0Hz
trials change corresponding to the frequency of target movement. This
phenomenon was not found in the result of 0.1Hz trials. An explanation
for no corresponding periodic change in 0.1Hz trials is that the visual cortex
is not fully activated because of the very low speed. The visual cortex had
spare time to process other visual information and did not respond to the
target movement all the time because the low target speed was easy to
follow. For the higher speed, 0.5Hz and 1.0Hz, the participant had to pay
all attentions so that the visual cortex responded to the target movement all
the time, then a corresponding periodic potential change could be observe
by averaging out the noise. These results are a further validation of the
EEG signal, which show that neuron was activity corresponding to the
target movement.

In order to further confirm that the signal comes from the visual cortex,
the channel averaging from the other region of brain was assessed with the
same method. The frontal region signal was an averaging of three channels:
F1, Fz, and F2, while the central region signal was an averaging of three
channels as well: C1, Cz, and C2. Results are shown in Figure A.9. This
figure shows that the rhythm corresponding to the speed of target was also
found in other regions of brain, but with different amplitude. Additionally,
the signals from three different parts of scalp, the frontal, central, and rear,
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(a) Visual cortex signal of tracking trials
(0.1Hz)

(b) Visual cortex signal of tracking trials
(0.5Hz)

(c) Visual cortex signal of tracking trials
(1.0Hz)

Figure A.8: The averaged EEG signal measured near visual cortex when
participant performed tracking trials. Each of the subfigure was calculated
from the mean signal of 4 channels: PO3, POz, PO4, and Oz, and then
averaging of all the tracking trial with the same target speed across partic-
ipants. It is clear that there is a obvious potential change corresponding
to the target movement for 0.5Hz and 1.0Hz. For 0.1Hz the corresponding
is not obvious, which may result from the very low speed.
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(a) Frontal region signal averaging
(0.1Hz)

(b) Central region signal averaging
(0.1Hz)

(c) Frontal region signal averaging
(0.5Hz)

(d) Central region signal averaging
(0.5Hz)

(e) Frontal region signal averaging
(1.0Hz)

(f) Central region signal averaging
(1.0Hz)

Figure A.9: The EEG signals measured from other region of brain, which
shows the same pattern as in visual cortex. Frontal region signal was
averaged from F1, Fz, and F2, while central region signal was averaged
from C1, Cz, and C2.
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were plotted into the same figure (Figure A.10) in order to compare their
phase. First, it can be seen that the signal from the rear part of the scalp,
which represents the visual cortex, has the largest amplitude in all the
three trials of different speeds. It can also be learnt that the signal from
central scalp always in-phase synchronise with the rear scalp signal, while
the signal from frontal scalp always anti-phase synchronise with the rear
scalp signal. This phenomenon can be observed in both 0.5Hz trial and
1.0Hz trial. Actually, zooming in the figure of 0.1Hz trial, as showed in
Figure A.11, the in-phase and anti-phase relations can be found in 0.1Hz
as well. It implies that this relation is a common property of the EEG
rhythm. The phase shift in different scalp region makes this low frequency
rhythm hardly be artefact, because artefact, like the eye ball movement
or body movement, is not likely to generate a phase shifting when travel
across the scalp. From the other aspect, the signal of the rear part of scalp
seems to be the nearest to the signal source, because the electrical signal
decays when travel across a conductor. As the conclusion of this section,
the comparisons and analyses of EEG averaging supports that the EEG
recording is valid. However, the reason of phase shift between different
scalp region is still unclear. In future works, the phase relation of the
whole scalp will be explored, and then the source of this rhythm can be
found.

A.4 Conclusion

In this chapter, the EEG acquisition system was first described, and
then the validation of the recorded EEG data was discussed. Several meth-
ods have been applied to show the validation of data. All of them showed
the neural responding to the on-going behaviour of participants. This evi-
dence concreted the validation of EEG data.
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(a) Phase comparison of averaged signal from
different scalp region (0.1Hz)

(b) Phase comparison of averaged signal from
different scalp region (0.5Hz)

(c) Phase comparison of averaged signal from
different scalp region (1.0Hz)

Figure A.10: The superposition of channel averaging signals from different
regions of scalp. It can be found that the signal of rear part has the largest
amplitude. And also there is a interesting phase relation between the sig-
nals from different regions. The rear part signal is in-phase synchronised
with central signal, but anti-phase synchronised with frontal signal.
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Figure A.11: Details of Figure A.10(a)
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Statistical Topological
Properties of Individual
Participant

Figure B.1: Functional connectivity clustering coefficient of individual par-
ticipant in 8-12Hz band.
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Figure B.2: Functional connectivity efficiency and density of individual
participant in 8-12Hz band.

Figure B.3: Functional connectivity clustering coefficient of individual par-
ticipant in 18-22Hz band.
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Figure B.4: Functional connectivity efficiency and density of individual
participant in 18-22Hz band.

Figure B.5: Functional connectivity clustering coefficient of individual par-
ticipant in 26-30Hz band.

147



Statistical Topological Properties of Individual Participant

Figure B.6: Functional connectivity efficiency and density of individual
participant in 26-30Hz band.

Figure B.7: Functional connectivity clustering coefficient of individual par-
ticipant in 38-42Hz band.
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Figure B.8: Functional connectivity efficiency and density of individual
participant in 38-42Hz band.
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