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Abstract

Data streams are unbounded, sequential data instances that are generated with high Velocity.

Data streams arrive online (i.e., instance by instance) and there is no control over the order

in which data instances arrive either within a data stream or across data streams. Classifying

sequential data instances is a challenging problem in machine learning with applications in

network intrusion detection, financial markets and sensor networks. The automatic labelling

of unseen instances from the stream in real-time is the main challenge that data stream clas-

sification faces. For this, the classifier needs to adapt to concept drifts and can only have a

single-pass through the data with a limited amount of memory if the stream is generating data

instances at a high Velocity. Nowadays the focus of Data Stream Mining (DSM) lies in the

development of data mining algorithms rather than on pre-processing techniques. To the best

of the author knowledge, at present, there are no developments for truly real-time feature selec-

tion in a streaming setting. This research work presents a real-time pre-processing technique,

in particular, feature tracking in combination with concept drift detection. The feature tracking

is designed to improve DSM classification algorithms by enabling real-time feature selection.

The pre-processing technique is based on tracking adaptive statistical summaries of the data

and class label distributions, known as Micro-Clusters. Thus the three objectives of this re-

search were to develop a real-time pre-processing technique that can (1) detect a concept drift,

(2) identify features that were involved in concept drift and thus potentially change their rele-

vance and (3) build a real-time feature selection method based on the developments mentioned

above. The evaluation of the developed technique is based on artificial data streams with known

ground truth and real datasets with and without artificially induced concept drift (i.e., controlled

and uncontrolled real datasets). It was observed that the developed method for concept drift

detection did detect induced concept drifts very well compared with alternative concept drift

detection methods. Overall the research represents a first attempt to resolve real-time feature

selection for DSM tasks. It has been shown that the technique can indeed identify concept drift,
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track features, and identify features that may have changed their relevance for the DSM task in

real-time. It has also been shown that the developed method for real-time feature selection can

improve the accuracy of data stream classification tasks.

iii



Declaration

I confirm that this thesis is my own work. I also declare and certify that, to the best of my

knowledge, this thesis does not infringe upon anyone’s copyright nor violate any proprietary

rights. It is submitted for the purpose of a PhD degree requirement to the School of Mathemat-

ical, Physical, and Computational Sciences, the University of Reading, UK. This thesis has not

been submitted before for any degree or exam of any other university or institute.

Mahmood Shakir Hammoodi

iv



Certificate

This is to certify that the thesis entitled "Real-Time Pre-Processing Technique for Drift De-

tection, Feature Tracking, and Feature Selection using Adaptive Micro-Clusters for Data

Stream Classification" has been prepared under my supervision by Mahmood Shakir Ham-

moodi for the award of the Degree of Philosophy in Computer Science in the School of Mathe-

matical, Physical, and Computational Sciences, the University of Reading.

Dr. Frederic Stahl

Associate Professor

Department of Computer Science

University of Reading

Polly Vacher Building

Whiteknights

Reading

RG6 6AY

v



Acknowledgements

First of all, I am thankful to Allah (S.W.T), the All-Mighty, who blessed me with the strength

and courage to complete this work.

I would like to express my thanks to the Ministry of Higher Education and Scientific Re-

search of the Republic of Iraq, the Iraqi Cultural Attaché in London, and the University of

Babylon for giving me this opportunity.

This thesis has been completed with the help of many people. I am particularly grateful

to my supervisor, Associate Professor Dr Frederic Stahl whose moral support and encourage-

ment was essential to finish this piece of work. He was always kind and cooperative. I am

also indebted to my colleague Mark Tennant, who has always been a source of inspiration and

encouragement.

I also would like to express my thanks to my beloved wife, Mithal, who has offered moral

support, encouragement and patient companionship during my study. My thanks are also due

to my uncle Abo Wissam, Um Wissam, Wissam, and my children, Hassan and Murtadha. They

were the spirit which always encouraged me to continue with my study.

In the end, I acknowledge the role of my family in the accomplishment of this work. The

prayers of my parents and the support of my brothers and my sisters who have made all this

possible.

And finally, I would like to express my sincere gratitude to all those mentioned above who

provided not only much needed time but also their continued support and inspirations which

strengthened my pledge to overcome all obstacles in completing this task, and I dedicate this

thesis to these people whom I love very much.

Mahmood Shakir Hammoodi



Table of Contents

Page

Abstract ii

Declaration iv

Certificate v

Acknowledgements vi

List of Tables xii

List of Figures xix

List of Abbreviations xxvii

1 Introduction 1

1.1 Background and Problem Statement of the Research . . . . . . . . . . . . . . . 1

1.2 Scope of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Motivations for Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Methodology of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Literature Review Stage . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.2 Design a Framework of the Developed Methods Stage . . . . . . . . . 6

1.5.3 Implementation Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.4 Evaluation Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Organisation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Literature Review 11

vii



2.1 Data Stream Mining (DSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Workflow of DSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Concept Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Overview of General Data Stream Processing Techniques . . . . . . . . . . . . 14

2.2.1 Statistical Summaries with Single-Pass Processing . . . . . . . . . . . 15

2.2.2 Windowing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Adaptive Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Data Stream Pre-Processing Techniques . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Minimising the Effect of Feature-Bias . . . . . . . . . . . . . . . . . . 16

2.3.2 Minimising the Effect of Noise . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Minimising the effect of Outliers . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Concept Drifts Detection (CDD) Methods . . . . . . . . . . . . . . . . 19

2.3.5 Feature Selection (FS) Methods . . . . . . . . . . . . . . . . . . . . . 22

2.4 Adaptive DSM Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Adaptive Data Stream Classification Algorithms . . . . . . . . . . . . . 27

2.4.2 Adaptive Data Stream Clustering Algorithms . . . . . . . . . . . . . . 30

2.5 Summary of Reported Literature . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Micro-Cluster Nearest Neighbour (MC-NN) 37

3.1 The Structure of MC-NN Micro-Clusters . . . . . . . . . . . . . . . . . . . . . 38

3.2 Absorbing Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Splitting of a Micro-Cluster using Variance . . . . . . . . . . . . . . . . . . . 41

3.4 Death and Removal of a Micro-Cluster using Triangle Numbers . . . . . . . . 42

3.5 Taking MC-NN Forward to Develop a Real-time Pre-Processing Technique . . 44

3.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.1 Artificial Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Real-Time Concept Drift Detection Method using Adaptive Micro-Clusters 50

4.1 Detecting Concept Drift using Adaptive Micro-Clusters . . . . . . . . . . . . . 50

4.2 Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



4.3 Empirical Evaluation of Real-Time Concept Drift Detection Method . . . . . . 53

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Real-Time Feature Tracking Method using Adaptive Micro-Clusters 62

5.1 Minimising the Effect of Feature-Bias using Real-Time Min-Max Normalisation 63

5.2 Minimising the Effect of Noise using Low Pass Filter (LPF) . . . . . . . . . . . 63

5.3 Real-Time Feature Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Velocity of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Measuring of the Data Stream Spread using IQR . . . . . . . . . . . . 68

5.3.3 Splitting of a Micro-Cluster using IQR . . . . . . . . . . . . . . . . . . 68

5.3.4 Comparison of Splitting using IQR or Variance . . . . . . . . . . . . . 69

5.3.5 First-In-First-Out (FIFO) Queue with SkipList . . . . . . . . . . . . . . 71

5.4 Empirical Evaluation of Real-Time Feature Tracking Method using Variance

and IQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Real-Time Feature Selection Method using Adaptive Micro-Clusters 105

6.1 Feature Analysis and Feature Selection . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Monitoring and Analysis of Temporarily Irrelevant Features . . . . . . . . . . . 107

6.3 Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Empirical Evaluation of Real-Time Feature Selection Method . . . . . . . . . . 109

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusion and Future Works 119

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Contributions of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4.1 Extensions and Improvements . . . . . . . . . . . . . . . . . . . . . . 123

7.4.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

References 126

Appendix A Percentage Difference of Split and Death Rates with Low Pass Filter

Rate 140

ix



A.1 Artificial and Controlled Real Datasets . . . . . . . . . . . . . . . . . . . . . . 140

A.2 Uncontrolled Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix B FIFO Queue Size 144

B.1 FIFO Queue in combination with Percentage Difference of Split and Death Rates 144

B.1.1 Artificial and Controlled Real Datasets . . . . . . . . . . . . . . . . . . 144

B.1.2 Uncontrolled Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . 145

B.2 FIFO Queue in combination with Alpha Rate of LPF . . . . . . . . . . . . . . 146

B.2.1 Artificial and Controlled Real Datasets . . . . . . . . . . . . . . . . . . 146

B.2.2 Uncontrolled Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendix C Percentage Difference of Information Gain for Real-Time Feature Se-

lection 149

Appendix D Error Threshold for Splitting a Micro-Cluster 152

D.1 Artificial and Controlled Real Datasets . . . . . . . . . . . . . . . . . . . . . . 152

D.2 Uncontrolled Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Appendix E Percentage Number of Features with Maximum Velocity Combined

with Variance or IQR 156

E.1 Artificial Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

E.2 Controlled Real Datasets with 6 Features . . . . . . . . . . . . . . . . . . . . . 158

E.3 Uncontrolled Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Appendix F Actual Values of Split and Death Rates 161

Appendix G The Effects of Feature-Bias, Noise, and Outliers on Velocity of Features 167

Appendix H Gradual Concept Drift Detection using Artificial Datasets 172

H.1 Experimental Setup of Artificial Datasets . . . . . . . . . . . . . . . . . . . . . 172

H.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

H.2.1 Real-Time Concept Detection Method . . . . . . . . . . . . . . . . . . 173

H.2.2 Real-Time Feature Tracking Method using Variance and IQR . . . . . . 175

Appendix I Recurring Concept Drift Detection using Artificial Datasets 179

I.1 Experimental Setup of Artificial Datasets . . . . . . . . . . . . . . . . . . . . . 179

x



I.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

I.2.1 Real-Time Concept Detection Method . . . . . . . . . . . . . . . . . . 180

I.2.2 Real-Time Feature Tracking Method using Variance and IQR . . . . . . 182

xi



List of Tables

Page

Table 2.1 Summary of concept drift detection methods. . . . . . . . . . . . . . . . 22

Table 2.2 Summary of feature selection methods. . . . . . . . . . . . . . . . . . . 27

Table 2.3 Summary of data stream classification algorithms. . . . . . . . . . . . . . 29

Table 2.4 Summary of data stream clustering algorithms. . . . . . . . . . . . . . . 34

Table 2.5 Summary of the reported literature. . . . . . . . . . . . . . . . . . . . . 36

Table 3.1 The structure of MC-NN Micro-Clusters. . . . . . . . . . . . . . . . . . 38

Table 3.2 Setup of the artificial datasets. Drifts were generated through the individ-

ual data stream generators and by swapping features. . . . . . . . . . . . . . . 47

Table 3.3 Setup of the real datasets for the controlled set of experiments for concept

drift detection and feature tracking. . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 3.4 Setup of real datasets for the uncontrolled set of experiments for concept

drift detection, feature tracking and real-time feature selection. . . . . . . . . . 48

Table 4.1 Adaptation to concept drift using the initially developed and other state-

of-the-art methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.2 Summary of concept drift adaptation experiments referring to Table 4.1. . 59

Table 5.1 Summary of the experimental results with artificial datasets generated

with noise levels of 0%, 5%, 15%, 25%, and 35%. The results are reported for

the Time 6 which is the time of swapped features. . . . . . . . . . . . . . . . . 88

Table 5.2 Summary of the experimental results with artificial datasets generated

with noise levels of 0%, 5%, 15%, 25%, and 35%. The results are reported for

Time 6 which is the point at which features had been swapped. . . . . . . . . . 97

xii



Table 5.3 Summary of the experimental results with controlled real datasets. The

results are reported for the time of drift onset (Table 3.3) which is the time at

which features were swapped. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 6.1 Summary of the results for the experiments using real datasets with Ho-

effding Tree Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Table 6.2 Summary of the results for the experiments using real datasets with Naive-

Bayes Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table A.1 Summary of concept drifts adaptation experiments using artificial and

controlled real dataset with different values (from 10% to 100%) of Percentage

Difference of Split and Death rates in combination with α . The results are re-

ported for the Time 6 which is the time at which features were swapped. Where

a first number refers to number of false positive detections, whereas a second

number (between round brackets) refers to number of true positive detections. . 141

Table A.2 Summary of average accuracy achieved using uncontrolled real dataset

(CoverType) with different values (from 10% to 100%) of Percentage Difference

of Split and Death rates in combination with α . . . . . . . . . . . . . . . . . . 142

Table A.3 Summary of average accuracy achieved using uncontrolled real dataset

(Diabetic Retinopathy Debrecen) with different values (from 10% to 100%) of

Percentage Difference of Split and Death rates in combination with α . . . . . . 142

Table A.4 Summary of average accuracy achieved using uncontrolled real dataset

(Gesture Phase Segmentation) with different values (from 10% to 100%) of

Percentage Difference of Split and Death rates in combination with α . . . . . . 142

Table A.5 Summary of average accuracy achieved using uncontrolled real dataset

(Statlog (Landsat Satellite)) with different values (from 10% to 100%) of Per-

centage Difference of Split and Death rates in combination with α . . . . . . . . 143

Table A.6 Summary of average accuracy achieved using uncontrolled real dataset

(Waveform (with noise)) with different values (from 10% to 100%) of Percent-

age Difference of Split and Death rates in combination with α . . . . . . . . . . 143

xiii



Table B.1 Summary of concept drifts adaptation experiments using artificial and

controlled real dataset with different values (from 10% to 100%) of Percentage

Difference of Split and Death rates in combination with different FIFO’s sizes

(100, 500, and 1000). The results are reported for the Time 6 which is the time

at which features were swapped. Where a first number refers to number of false

positive detections, whereas a second number (between round brackets) refers

to number of true positive detections. . . . . . . . . . . . . . . . . . . . . . . . 145

Table B.2 Summary of average accuracy achieved using uncontrolled real dataset

(CoverType) with different values (from 10% to 100%) of Percentage Difference

of Split and Death rates in combination with different FIFO’s sizes (100, 500,

and 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Table B.3 Summary of average accuracy achieved using uncontrolled real dataset

(Diabetic Retinopathy Debrecen) with different values (from 10% to 100%) of

Percentage Difference of Split and Death rates in combination with different

FIFO’s sizes (100, 500, and 1000). . . . . . . . . . . . . . . . . . . . . . . . . 145

Table B.4 Summary of average accuracy achieved using uncontrolled real dataset

(Gesture Phase Segmentation) with different values (from 10% to 100%) of

Percentage Difference of Split and Death rates in combination with different

FIFO’s sizes (100, 500, and 1000). . . . . . . . . . . . . . . . . . . . . . . . . 146

Table B.5 Summary of average accuracy achieved using uncontrolled real dataset

(Statlog (Landsat Satellite)) with different values (from 10% to 100%) of Per-

centage Difference of Split and Death rates in combination with different FIFO’s

sizes (100, 500, and 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Table B.6 Summary of average accuracy achieved using uncontrolled real dataset

(Waveform (with noise)) with different values (from 10% to 100%) of Percent-

age Difference of Split and Death rates in combination with different FIFO’s

sizes (100, 500, and 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xiv



Table B.7 Summary of concept drift adaptation experiments using artificial and con-

trolled real dataset with different values (from 10% to 100%) of α rate in combi-

nation with different FIFO’s sizes (100, 500, and 1000). The results are reported

for the Time 6 which is the time at which features were swapped. Where a first

number refers to number of false positive detections, whereas a second number

(between round brackets) refers to number of true positive detections. . . . . . 147

Table B.8 Summary of average accuracy achieved using uncontrolled real dataset

(CoverType) with different values (from 10% to 100%) of α rate of LPF in

combination with different FIFO’s sizes (100, 500, and 1000). . . . . . . . . . 147

Table B.9 Summary of average accuracy achieved using uncontrolled real dataset

(Diabetic Retinopathy Debrecen) with different values (from 10% to 100%) of

α rate of LPF in combination with different FIFO’s sizes (100, 500, and 1000). 147

Table B.10 Summary of average accuracy achieved using uncontrolled real dataset

(Gesture Phase Segmentation) with different values (from 10% to 100%) of α

rate of LPF in combination with different FIFO’s sizes (100, 500, and 1000). . 148

Table B.11 Summary of average accuracy achieved using uncontrolled real dataset

(Statlog (Landsat Satellite)) with different values (from 10% to 100%) of α rate

of LPF in combination with different FIFO’s sizes (100, 500, and 1000). . . . . 148

Table B.12 Summary of average accuracy achieved using uncontrolled real dataset

(Waveform (with noise)) with different values (from 10% to 100%) of α rate of

LPF in combination with different FIFO’s sizes (100, 500, and 1000). . . . . . 148

Table C.1 Summary of average accuracy achieved using uncontrolled real dataset

(CoverType) with different values (from 10% to 100%) of Percentage Difference

of Information Gain in combination with different FIFO’s sizes (100, 500, and

1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Table C.2 Summary of average accuracy achieved using uncontrolled real dataset

(Diabetic Retinopathy Debrecen) with different values (from 10% to 100%)

of Percentage Difference of Information Gain in combination with different

FIFO’s sizes (100, 500, and 1000). . . . . . . . . . . . . . . . . . . . . . . . . 150

xv



Table C.3 Summary of average accuracy achieved using uncontrolled real dataset

(Gesture Phase Segmentation) with different values (from 10% to 100%) of Per-

centage Difference of Information Gain in combination with different FIFO’s

sizes (100, 500, and 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Table C.4 Summary of average accuracy achieved using uncontrolled real dataset

(Statlog (Landsat Satellite)) with different values (from 10% to 100%) of Per-

centage Difference of Information Gain in combination with different FIFO’s

sizes (100, 500, and 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Table C.5 Summary of average accuracy achieved using uncontrolled real dataset

(Waveform (with noise)) with different values (from 10% to 100%) of Percent-

age Difference of Information Gain in combination with different FIFO’s sizes

(100, 500, and 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Table D.1 Summary of concept drifts adaptation experiments using artificial and

controlled real dataset with different values (from 10% to 100%) of Percentage

Difference of Split and Death rates in combination with Θ. The results are re-

ported for the Time 6 which is the time at which features were swapped. Where

a first number refers to number of false positive detections, whereas a second

number (between round brackets) refers to number of true positive detections. . 153

Table D.2 Summary of average accuracy achieved using uncontrolled real dataset

(CoverType) with different values (from 10% to 100%) of Percentage Difference

of Split and Death rates in combination with Θ. . . . . . . . . . . . . . . . . . 153

Table D.3 Summary of average accuracy achieved using uncontrolled real dataset

(Diabetic Retinopathy Debrecen) with different values (from 10% to 100%) of

Percentage Difference of Split and Death rates in combination with Θ. . . . . . 154

Table D.4 Summary of average accuracy achieved using uncontrolled real dataset

(Gesture Phase Segmentation) with different values (from 10% to 100%) of

Percentage Difference of Split and Death rates in combination with Θ. . . . . . 154

Table D.5 Summary of average accuracy achieved using uncontrolled real dataset

(Statlog (Landsat Satellite)) with different values (from 10% to 100%) of Per-

centage Difference of Split and Death rates in combination with Θ. . . . . . . . 154

xvi



Table D.6 Summary of average accuracy achieved using uncontrolled real dataset

(Waveform (with noise)) with different values (from 10% to 100%) of Percent-

age Difference of Split and Death rates in combination with Θ. . . . . . . . . . 155

Table E.1 Summary of the experimental results with artificial datasets. 3 percentage

numbers are stated in the table which are 25%, 50%, and 75%. These percent-

ages represent the highest percentage number of features with maximum Veloc-

ity combined with Variance. The original MC-NN with Variance was used. The

results are reported for the Time 6 which is the time of swapped features. . . . . 157

Table E.2 Summary of the experimental results with artificial datasets. 3 percentage

numbers are stated in the table which are 25%, 50%, and 75%. These per-

centages represent the highest percentage number of features with maximum

Velocity combined with IQR. The new MC-NN with IQR was used. The results

are reported for the Time 6 which is the time of swapped features. . . . . . . . 158

Table E.3 Summary of the experimental results with controlled real datasets. 3 per-

centage numbers are stated in the table which are 25%, 50%, and 75%. These

percentages represent the highest percentage number of features with maximum

Velocity combined with Variance. The original MC-NN with Variance was used.

The results are reported for the Time 6 which is the time of swapped features. . 159

Table E.4 Summary of the experimental results with controlled real datasets. 3 per-

centage numbers are stated in the table which are 25%, 50%, and 75%. These

percentages represent the highest percentage number of features with maximum

Velocity combined with IQR. The new MC-NN with IQR was used. The results

are reported for the Time 6 which is the time of swapped features. . . . . . . . 159

Table E.5 Summary of the experimental results with uncontrolled real datasets. 3

percentage numbers are stated in the table which are 25%, 50%, and 75%. These

percentages represent the highest percentage number of features with maximum

Velocity combined with IQR. The results are reported for the average accuracy

of the Hoeffding Tree classifier achieved using the developed real-time feature

selection method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Table H.1 Setup of the artificial datasets. Drifts were generated by swapping features

gradually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xvii



Table H.2 Adaptation to concept drift using the initially developed and other state-

of-the-art methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Table H.3 Summary of concept drift adaptation experiments highlighted in Table H.2. 175

Table H.4 Summary of the experimental results with artificial datasets generated.

The results are reported for the Time 6 which is the time of swapped features. . 178

Table I.1 Setup of the artificial datasets. Drifts were generated by swapping features. 179

Table I.2 Adaptation to concept drift using the initially developed and other state-

of-the-art methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Table I.3 Summary of concept drift adaptation experiments highlighted in Table I.2. 182

Table I.4 Summary of the experimental results with artificial datasets generated.

The results are reported for the Time 6 which is the time of swapped features. . 184

xviii



List of Figures

Page

Figure 1.1 An example of Micro-Clusters with two features. . . . . . . . . . . . . . 6

Figure 1.2 The framework of the developed methods. . . . . . . . . . . . . . . . . 7

Figure 2.1 Workflow of feature selection and concept drift detection with a classi-

fier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.2 Workflow of Data Stream Mining. . . . . . . . . . . . . . . . . . . . . 13

Figure 2.3 Types of concept drifts. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.4 An example of IQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.1 An example of adding a new instance to the nearest Micro-Cluster. . . . 39

Figure 3.2 An example of two features within two Micro-Clusters. . . . . . . . . . 40

Figure 3.3 An example of adding a new instance to the nearest Micro-Cluster. . . . 40

Figure 3.4 An example of creating a new Micro-Cluster. . . . . . . . . . . . . . . . 41

Figure 3.5 Splitting of a Micro-Cluster according to the feature with the highest

Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.6 The process of calculating the Triangle Number for a Micro-Cluster. . . 43

Figure 3.7 An example of Triangle Number calculation. The shaded areas signify

the time stamps. Where the Micro-Cluster has participated in absorbing new

instances for a specific time stamp. . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.1 An example of Micro-Cluster Split and Death rate. . . . . . . . . . . . 51

Figure 4.2 An example of concept drift detection using the Micro-Clusters Split and

Death rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.3 The results of SEA Data Stream Generator using Micro-Cluster Percent-

age Difference of Split and Death rates for drift detection. . . . . . . . . . . . 54

xix



Figure 4.4 The results of HyperPlane Data Stream Generator using Micro-Cluster

Percentage Difference of Split and Death rates for drift detection. . . . . . . . 55

Figure 4.5 The results of Random Tree Data Stream Generator using Micro-Cluster

Percentage Difference of Split and Death rates for drift detection. . . . . . . . 56

Figure 4.6 The results of CoverType Dataset with 6 Features using Micro-Cluster

Percentage Difference of Split and Death rates for drift detection. . . . . . . . . 57

Figure 4.7 The results of Diabetic Retinopathy Debrecen Dataset with 6 Features

using Micro-Cluster Percentage Difference of Split and Death rates for drift

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.8 The results of Gesture Phase Segmentation Dataset with 6 Features using

Micro-Cluster Percentage Difference of Split and Death rates for drift detection. 59

Figure 4.9 The results of Statlog (Landsat Satellite) Dataset with 6 Features using

Micro-Cluster Percentage Difference of Split and Death rates for drift detection. 60

Figure 4.10 The results of Waveform (with Noise) Dataset with 6 Features using

Micro-Cluster Percentage Difference of Split and Death rates for drift detection. 60

Figure 5.1 Flowchart of Min-Max Normalisation. . . . . . . . . . . . . . . . . . . 64

Figure 5.2 An example of Min-Max Normalisation in real-time. . . . . . . . . . . 65

Figure 5.3 Flowchart of LPF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.4 An example of LPF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 5.5 An example of feature Velocity. . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.6 Splitting of a Micro-Cluster with IQR. . . . . . . . . . . . . . . . . . . 69

Figure 5.7 An example of splitting a Micro-Cluster with Variance and IQR. . . . . 70

Figure 5.8 Real-time sorting of the feature data values using a SkipList. . . . . . . 72

Figure 5.9 An example of the update for the Quartile Identifiers for Case 1 with a

value inserted left of Q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.10 An example of the update for the Quartile Identifiers for Case 1 with a

value inserted between of Q1 and Q3. . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.11 An example of the update for the Quartile Identifiers for Case 1 with a

value inserted right of Q3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.12 An example of the update for the Quartile Identifiers for Case 2 with a

value inserted left of Q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xx



Figure 5.13 An example of the update for the Quartile Identifiers for Case 2 with a

value inserted between Q1 and Q3. . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.14 An example of the update for the Quartile Identifiers for Case 2 with a

value inserted right of Q3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 5.15 An example of the update for the Quartile Identifiers for Case 3 with a

value inserted left of Q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.16 An example of the update for the Quartile Identifiers for Case 3 with a

value inserted between Q1 and Q3. . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.17 An example of the update for the Quartile Identifiers for Case 3 with a

value inserted right of Q3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.18 The results of SEA data stream generator with a noise level of 0% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.19 The results of SEA data stream generator with a noise level of 5% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.20 The results of SEA data stream generator with a noise level of 15% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.21 The results of SEA data stream generator with a noise level of 25% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.22 The results of SEA data stream generator with a noise level of 35% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.23 The results of HyperPlane data stream generator with a noise level of

0% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 82

Figure 5.24 The results of HyperPlane data stream generator with a noise level of

5% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 83

Figure 5.25 The results of HyperPlane data stream generator with a noise level of

15% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 83

Figure 5.26 The results of HyperPlane data stream generator with a noise level of

25% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 84

Figure 5.27 The results of HyperPlane data stream generator with a noise level of

35% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 84

Figure 5.28 The results of Random Tree data stream generator with a noise level of

0% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 85

xxi



Figure 5.29 The results of Random Tree data stream generator with a noise level of

5% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 85

Figure 5.30 The results of Random Tree data stream generator with a noise level of

15% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 86

Figure 5.31 The results of Random Tree data stream generator with a noise level of

25% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 86

Figure 5.32 The results of Random Tree data stream generator with a noise level of

35% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 87

Figure 5.33 The results of SEA data stream generator with a noise level of 0% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.34 The results of SEA data stream generator with a noise level of 5% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 5.35 The results of SEA data stream generator with a noise level of 15% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 5.36 The results of SEA data stream generator with a noise level of 25% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.37 The results of SEA data stream generator with a noise level of 35% using

Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.38 The results of HyperPlane data stream generator with a noise level of

0% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 92

Figure 5.39 The results of HyperPlane data stream generator with a noise level of

5% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 92

Figure 5.40 The results of HyperPlane data stream generator with a noise level of

15% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 93

Figure 5.41 The results of HyperPlane data stream generator with a noise level of

25% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 93

Figure 5.42 The results of HyperPlane data stream generator with a noise level of

35% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 94

Figure 5.43 The results of Random Tree data stream generator with a noise level of

0% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 94

Figure 5.44 The results of Random Tree data stream generator with a noise level of

5% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 95

xxii



Figure 5.45 The results of Random Tree data stream generator with a noise level of

15% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 95

Figure 5.46 The results of Random Tree data stream generator with a noise level of

25% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 96

Figure 5.47 The results of Random Tree data stream generator with a noise level of

35% using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . 96

Figure 5.48 The results of CoverType dataset with 6 features (2 features swapped)

using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . 98

Figure 5.49 The results of CoverType dataset with 6 features (4 features swapped)

using Micro-Clusters for tracking features. . . . . . . . . . . . . . . . . . . . 99

Figure 5.50 The results of Diabetic Retinopathy Debrecen dataset with 6 features (2

features swapped) using Micro-Clusters for tracking features. . . . . . . . . . 99

Figure 5.51 The results of Diabetic Retinopathy Debrecen dataset with 6 features (4

features swapped) using Micro-Clusters for tracking features. . . . . . . . . . 100

Figure 5.52 The results of Gesture Phase Segmentation dataset with 6 features (2

features swapped) using Micro-Clusters for tracking features. . . . . . . . . . 100

Figure 5.53 The results of Gesture Phase Segmentation dataset with 6 features (4

features swapped) using Micro-Clusters for tracking features. . . . . . . . . . 101

Figure 5.54 The results of Statlog (Landsat Satellite) dataset with 6 features (2 fea-

tures swapped) using Micro-Clusters for tracking features. . . . . . . . . . . . 101

Figure 5.55 The results of Statlog (Landsat Satellite) dataset with 6 features (4 fea-

tures swapped) using Micro-Clusters for tracking features. . . . . . . . . . . . 102

Figure 5.56 The results of Waveform (with Noise) dataset with 6 features (2 features

swapped) using Micro-Clusters for tracking features. . . . . . . . . . . . . . . 102

Figure 5.57 The results of Waveform (with Noise) dataset with 6 features (4 features

swapped) using Micro-Clusters for tracking features. . . . . . . . . . . . . . . 103

Figure 6.1 Process of feature selection in real-time. . . . . . . . . . . . . . . . . . 108

Figure 6.2 An example of feature analysis, feature selection, and monitoring of

temporarily irrelevant features. Assumed Information Gains are indicated in

italics, and actual Information Gain calculations are not in italics. . . . . . . . 109

Figure 6.3 The results of CoverType dataset using Micro-Clusters for concept drift

detection with/without real-time feature selection. . . . . . . . . . . . . . . . . 112

xxiii



Figure 6.4 The results of Diabetic Retinopathy Debrecen dataset using Micro-Clusters

for concept drift detection with/without real-time feature selection. . . . . . . . 112

Figure 6.5 The results of Gesture Phase Segmentation dataset using Micro-Clusters

for concept drift detection with/without real-time feature selection. . . . . . . . 113

Figure 6.6 The results of Statlog (Landsat Satellite) dataset using Micro-Clusters

for concept drift detection with/without real-time feature selection. . . . . . . . 113

Figure 6.7 The results of Waveform (with Noise) dataset using Micro-Clusters for

concept drift detection with/without real-time feature selection. . . . . . . . . 114

Figure 6.8 The results of CoverType dataset using Micro-Clusters for concept drift

detection with/without real-time feature selection. . . . . . . . . . . . . . . . . 115

Figure 6.9 The results of Diabetic Retinopathy Debrecen dataset using Micro-Clusters

for concept drift detection with/without real-time feature selection. . . . . . . . 115

Figure 6.10 The results of Gesture Phase Segmentation dataset using Micro-Clusters

for concept drift detection with/without real-time feature selection. . . . . . . . 116

Figure 6.11 The results of Statlog (Landsat Satellite) dataset using Micro-Clusters

for concept drift detection with/without real-time feature selection. . . . . . . . 116

Figure 6.12 The results of Waveform (with Noise) dataset using Micro-Clusters for

concept drift detection with/without real-time feature selection. . . . . . . . . 117

Figure 7.1 Workflow of Data Stream Mining for real-time feature extraction. . . . 124

Figure 7.2 Example of important and extreme limits of feature data’s range using

IQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure F.1 The actual values of Split and Death rates of SEA data stream generator

for drift detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Figure F.2 The actual values of Split and Death rates of HyperPlane data stream

generator for drift detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure F.3 The actual values of Split and Death rates of Random Tree data stream

generator for drift detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure F.4 The actual values of Split and Death rates of CoverType dataset with 6

features for drift detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure F.5 The actual values of Split and Death rates of Diabetic Retinopathy De-

brecen dataset with 6 features for drift detection. . . . . . . . . . . . . . . . . . 165

xxiv



Figure F.6 The actual values of Split and Death rates of Gesture Phase Segmentation

dataset with 6 features for drift detection. . . . . . . . . . . . . . . . . . . . . . 165

Figure F.7 The actual values of Split and Death rates of Statlog (Landsat Satellite)

dataset with 6 features for drift detection. . . . . . . . . . . . . . . . . . . . . . 165

Figure F.8 The actual values of Split and Death rates of Waveform (with Noise)

dataset with 6 features for drift detection. . . . . . . . . . . . . . . . . . . . . . 166

Figure G.1 The results of CoverType dataset with 6 features (2 features swapped)

using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise,

and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Figure G.2 The results of CoverType dataset with 6 features (4 features swapped)

using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise,

and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Figure G.3 The results of Diabetic Retinopathy Debrecen dataset with 6 features (2

features swapped) using Min-Max, LPF, and IQR for minimising the effects of

feature-bias, noise, and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . 168

Figure G.4 The results of Diabetic Retinopathy Debrecen dataset with 6 features (4

features swapped) using Min-Max, LPF, and IQR for minimising the effects of

feature-bias, noise, and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . 169

Figure G.5 The results of Gesture Phase Segmentation dataset with 6 features (2

features swapped) using Min-Max, LPF, and IQR for minimising the effects of

feature-bias, noise, and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . 169

Figure G.6 The results of Gesture Phase Segmentation dataset with 6 features (4

features swapped) using Min-Max, LPF, and IQR for minimising the effects of

feature-bias, noise, and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . 169

Figure G.7 The results of Statlog (Landsat Satellite) dataset with 6 features (2 fea-

tures swapped) using Min-Max, LPF, and IQR for minimising the effects of

feature-bias, noise, and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . 170

Figure G.8 The results of Statlog (Landsat Satellite) dataset with 6 features (4 fea-

tures swapped) using Min-Max, LPF, and IQR for minimising the effects of

feature-bias, noise, and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . 170

xxv



Figure G.9 The results of Waveform (with Noise) dataset with 6 features (2 features

swapped) using Min-Max, LPF, and IQR for minimising the effects of feature-

bias, noise, and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Figure G.10 The results of Waveform (with Noise) dataset with 6 features (4 features

swapped) using Min-Max, LPF, and IQR for minimising the effects of feature-

bias, noise, and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure H.1 The results of SEA data stream generator using Micro-Cluster Percentage

Difference of Split and Death rates for drift detection. . . . . . . . . . . . . . . 173

Figure H.2 The results of HyperPlane data stream generator using Micro-Cluster

Percentage Difference of Split and Death rates for drift detection. . . . . . . . 173

Figure H.3 The results of Random Tree data stream generator using Micro-Cluster

Percentage Difference of Split and Death rates for drift detection. . . . . . . . 174

Figure H.4 The results of SEA data stream generator using Micro-Clusters for track-

ing features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Figure H.5 The results of HyperPlane data stream generator using Micro-Clusters

for tracking features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Figure H.6 The results of Random Tree data stream generator using Micro-Clusters

for tracking features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Figure I.1 The results of SEA data stream generator using Micro-Cluster Percentage

Difference of Split and Death rates for drift detection. . . . . . . . . . . . . . . 180

Figure I.2 The results of HyperPlane data stream generator using Micro-Cluster

Percentage Difference of Split and Death rates for drift detection. . . . . . . . 180

Figure I.3 The results of Random Tree data stream generator using Micro-Cluster

Percentage Difference of Split and Death rates for drift detection. . . . . . . . 180

Figure I.4 The results of SEA data stream generator using Micro-Clusters for track-

ing features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Figure I.5 The results of HyperPlane data stream generator using Micro-Clusters

for tracking features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Figure I.6 The results of Random Tree data stream generator using Micro-Clusters

for tracking features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xxvi



List of Abbreviations

ADWIN ADaptive sliding WINdow

CUSUM CUmulative SUM

DSM Data Stream Mining

DDM Drift Detection Method

EDDM Early Drift Detection Method

EWMA Exponential Weighted Moving Average

FIFO First In First Out

FS Feature Selection

IQR Interquartile Range

LPF Low Pass Filter

MC-NN Micro-Cluster Nearest Neighbour

Min-Max Minimum-Maximum

MOA Massive Online Analysis

Q Quartile

xxvii



Chapter 1

Introduction

This chapter presents the research background and discusses the importance of developing dy-

namic feature selection techniques in combination with real-time concept drift detection meth-

ods. There is an apparent lack of techniques that can do both in the field of data stream mining.

The discussion introduces the main research areas and factors that have significantly affected

the Data Stream Mining algorithms. Then the research problem is discussed under academic

and methodological perspectives. Next, the scope of research, motivations for research, the re-

search objectives, and methodology of research are presented. The chapter is concluded with

an outline of the thesis and summary of the chapter.

1.1 Background and Problem Statement of the Research

Velocity in Big Data Analytics (Ebbers et al., 2013) refers to data that is generated at ultra-

high speed and is live-streamed (i.e., a data stream) whereupon the processing and storing of

it in real-time constitutes significant challenges to current computational capabilities in com-

puting systems (Babcock et al., 2002; Gaber et al., 2005). Thus, Data Stream Mining (DSM)

has been developed. Useful information from a data stream can be extracted using DSM. In

other words, DSM is the analysis of unbounded and sequential data instances that are unseen,

generated, labelled automatically, and arrive with a high Velocity in real-time. Thus in DSM,

algorithms need to be capable of learning over a single-pass through the training data (Gaber

et al., 2005). The general area of DSM covered by this research is to solve problems associated

with lack of pre-processing techniques in the context of data stream classification, which is the

prediction of class labels of new instances in the data stream in real-time. Potential applications
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that need real-time data stream classification techniques are for data streams in the chemical

process industry (Kadlec et al., 2009), intrusion detection in telecommunications (Jadhav et al.,

2013), credit card fraud detection (Salazar et al., 2012), Internet traffic management and weblog

analysis (Gama, 2010), sensor networks, etc.

Data stream classification need not only be able to incrementally learn but also be able to

adapt to concept drift over a statistical time window using the most recent data from the stream

(Gama and Gaber, 2007; Bifet, 2009; Hoens et al., 2012).

A concept drift occurs if the pattern encoded in the data stream changes. DSM has devel-

oped various real-time versions of established predictive data mining algorithms that adapt to

concept drift and keep the model accurate over time, such as CVFDT (Hulten et al., 2001) and

G-eRules (Le et al., 2017). The benefit of classifier independent concept drift detection meth-

ods is that they give information about the dynamics of data generation (Gama et al., 2014).

Common drift detection methods are for example ADaptive sliding WINdow (ADWIN) (Bifet

and Gavalda, 2007), Drift Detection Method (DDM) (Gama et al., 2004) and the Early Drift

Detection Method (EDDM) (Baena-Garcıa et al., 2006).

However, these methods are suffering from feature-bias, outliers, and noise (Dongre and

Malik, 2014; Brzezinski and Stefanowski, 2014; Frías-Blanco et al., 2015). In addition, no drift

detection method devised to-date can provide potentially highly valuable insights as to which

features are involved in the concept drift. For example, if a feature is contributing to a concept

drift, it can be assumed that the feature may have become either more or less relevant to the cur-

rent concept. This has inspired the development of a real-time feature tracking method based

on feature contribution information for the purpose of feature selection to identify features that

have become relevant or irrelevant due to concept drift. Thus, in this research, a technique for

detecting causality of drifts, and providing the feature contribution information over a statistical

time window of data instances which is kept in short-term memory in real-time has been devel-

oped. Based on this, tracking features and identifying the relevant features of a classifier for the

purpose of feature selection in real-time have also been developed.

Feature contribution information in this research is formulated or represented as Velocity

and the spread of a feature’s data. Velocity is the rate of change of features centroids over a

statistical time window (i.e., the difference between the current and previous centroid of each

feature). Regarding feature selection, common feature selection methods are for example Linear

Discriminant Analysis (LDA), Canonical Correlation Analysis (CCA), Multi-View CCA, and

2
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Principal Component Analysis (PCA) (Ahsan and Essa, 2014; Lee et al., 2015). These methods

can be applied to a sample of the data stream before commencing the training and adaptation

of a data stream classifier. However, this would not account for changes in the relevance of

features over time for the classification task at hand due to concept drift which can only be

dealt with by re-running the above methods to update the feature rankings to accommodate any

drifts. However, this can potentially be an expensive procedure especially if there are many

dimensions in the data, hence the rationale for a single-pass method requiring the re-evaluation

of only the features whose classification relevance has changed since the last pass.

This research, therefore, describes a concept drift detection method for data stream classifi-

cation algorithms with the feature tracking information feedforward capability linking features

to concept drifts over a statistical time window for feature selection purposes. The method only

needs to examine features that have potentially changed their relevance and only when there is

an indication that the relevance of a feature may have changed. The developed method can be

used with any learning algorithm either as a real-time wrapper or a batch classifier or realised

inside a real-time adaptive classifier (Domingos and Hulten, 2000).

1.2 Scope of Research

This study aims to improve the DSM classification algorithms in terms of the classification

tasks’ accuracy through enabling real-time concept drift detection with automatic dimensional-

ity reduction in specific feature selection. In this study, the focus is given more on both detecting

drifts and feature selection with adaptive summaries of the data and class distributions with con-

tinuous features, known as Micro-Clusters (Zhang et al., 1996; Aggarwal et al., 2003; Tennant

et al., 2017). Micro-Clusters group the data points according to their similarities of charac-

teristics using a distance function such as Euclidean distance. Feature extraction is out of the

scope of this study. However, it can be developed by further developing this research regarding

identifying and detecting redundant features. Feature-bias, outliers and noise may influence

DSM techniques (i.e., clustering and classification). Thus, robustness handling or minimising

the effect of feature-bias, outliers, and noise has been taken into consideration in this research

study. In addition, the in this research developed technique (i.e., a pre-processing technique)

is independent of the data mining algorithm, i.e., this is also out of the scope of this study.

However, a classifier can be developed by embedding the developed technique to identify and

3
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detecting the best feature subset in real-time.

1.3 Motivations for Research

This section discusses the main factors that motivate the research undertaken and investigated

which is the problem of real-time feature selection. Nowadays the focus of DSM lies in the

development of data mining algorithms rather than on pre-processing techniques. The feature

selection previously proposed are typically applied before a classifier is introduced as they are

not designed for data streams as they do not take into consideration that the relevance of a

feature for a classification task may change over time. To the best of the author knowledge, at

present, there are no developments for truly real-time feature selection in a streaming setting.

This is important as features may potentially change their relevance for data mining tasks based

on specific measures of relevance such as Information Gain. Thus the three objectives of this

research were to develop a real-time pre-processing technique that can detect a concept drift,

identify features that were involved in concept drift and thus potentially change their relevance,

and build a real-time feature selection method.

1.4 Research Objectives

The objective of this work is to highlight the problems associated with lack of pre-processing

techniques to a DSM algorithm in real-time. This will improve the accuracy of the classification

task of a data stream classifier.

1. To develop and comparatively evaluate a method to identify a drift point (i.e., concept

drift) through tracking the significant changes in the statistical summaries in real-time,

2. To develop and evaluate a method to detect causality of drifts (which is identified by

the developed method in Objective 1 above) through providing the historical statistics of

each feature for identifying which features were involved in drifting over a statistical time

window in real-time,

3. To develop a method to continuously analyse the historical statistics provided by the

developed method in Objective 2 above with the purpose of selecting the relevant features

for adaptive data stream classifier (i.e., dynamic adjustment feature selection in real-time).

4
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1.5 Methodology of Research

This section illustrates the methodology of this research study which can be outlined as follows:

literature review stage, design stage of the developed framework and methods, implementation

stage, and evaluation stage.

1.5.1 Literature Review Stage

In this stage, the related concepts to the research study are reviewed which are concept drift,

feature selection, data stream classification, and data stream clustering. The review includes

the concepts related to the various methods and algorithms previously proposed. The review

also identifies initially what needs to be improved in order to make effective data stream pre-

processing technique in specific real-time feature selection method. This method does not need

to examine the entire feature space. This can be achieved by applying concept drift detection

method in combination with feature tracking method, and providing the statistical summaries

feedforward capability linking features to concept drifts over a statistical time window. In

addition, in this stage, the original MC-NN algorithm which was developed by (Tennant et al.,

2017) is summarised as it has been identified as a promising classification approach. MC-

NN has originally been developed for predictive data stream analytics using Micro-Clusters

which are able to adapt to unexpected changes on the stream. However, this research is not

concerned with the classification capabilities of MC-NN but in the behaviour of its underlying

model during concept drift. Moving in different directions (i.e., a direction represents a feature)

is the original purpose of a Micro-Cluster in order to adapt to concept drift and maintain an

accurate model. This has inspired the idea of this research study (i.e., tracking the behaviour of

Micro-Clusters) to be modified to detect concept drift, causality of concept drift, and enabling

continuous feature selection. Figure 1.1 shows an example of Micro-Clusters with two features

(i.e., two directions). A Micro-Cluster can move in one or more directions.
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Figure 1.1: An example of Micro-Clusters with two features.

The review also includes an evaluation which aims to show which method or algorithm

previously proposed is capable of handling both concept drift detection and dynamic feature

selection, as well as providing the statistical summaries with single-pass processing through

streaming data in real-time.

1.5.2 Design a Framework of the Developed Methods Stage

In this stage, three developed methods are identified and designed. A method to identify a drift

point (i.e., concept drift) in real-time. A method for detecting causality of drifts providing the

historical statistics (i.e., Velocity and the spread of a feature’s data) of tracked features over

a statistical time window in real-time. A method for identifying irrelevant features which are

involved in drifting detected in the aforementioned methods through analysing the tracked fea-

tures and applying dynamic adjustment feature selection in real-time. The developed methods

are embedded in a proposed framework which consists of minimising the effect of feature-bias,

minimising the effect of noise, drift detection with tracking the involved features, and feature se-

lection. The central components of this framework are drift detection with tracking the involved

features and feature selection. The MC-NN approach that has been reviewed in Stage 1.5.1 is

used in the central components which detect drifts and provide statistical information for the

purpose of tracking which features were involved. The aims and functions of each component
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are determined, as well as the input and output of each component are identified (Chapters 4,

5, and 6), so that a clear interaction and flow between the components are achieved. Figure 1.2

illustrates the proposed framework.

Figure 1.2: The framework of the developed methods.

The major tasks of the proposed framework are to detect a concept drift with the feature

tracking information feedforward capability linking features to concept drifts over a statistical

time window for feature selection purposes. This method does not need to examine the entire

feature space using the adaptive Micro-Clusters.

1.5.3 Implementation Stage

The proposed framework consists of the developed methods that have been designed in stage

1.5.2 is implemented and realised in the Java-based Massive Online Analysis (MOA) framework

(Bifet et al., 2010).

Two types of data were used, artificial data stream generators from the MOA framework

and real datasets. The reason for using artificial datasets is because MOAs data stream gener-

ators enable the introduction of different kinds of concept drift deliberately and thus allow this

research to evaluate against a ground truth regarding concept drift.
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1.5.4 Evaluation Stage

In this stage, the performance of the developed method for concept drift detection is evaluated

with respect to true positive detections of known ground truth concept drifts in comparison with

the competing alternative concept drift detection methods. Regarding the performance of the

developed method for feature tracking is evaluated with respect to true positive detections of

features involved in drifting. Whereas, the performance of the developed method for real-time

feature selection is evaluated with respect to the accuracy of a data stream classifier achieved

using the developed method compared with not using the method. Where the data stream clas-

sification method chosen was Hoeffding Tree as well as incremental NaiveBayes.

1.6 Organisation of Thesis

The rest of this thesis is organised as follows. Chapter 2 analyses literature about the fun-

damental meaning of concept drift, feature selection, data stream classification, data stream

clustering, and Micro-Clusters.

Chapter 3 presents the structure of Micro-Cluster Nearest Neighbour (MC-NN) algorithm

developed by (Tennant et al., 2017). MC-NN has originally been developed for predictive data

stream analytics and is modified in this research to serve as the basis for the methods developed.

Chapter 4 presents the developed method for detecting drifts which is based on the Micro-

Cluster structure of the MC-NN classifier presented in Chapter 3. A research paper has been

published which consists of the developed method for drift detection with a preliminary result

which shows that the developed method is capable of detecting a concept drift but also delivers

an indication which features are involved.

• Title: Towards Online Concept Drift Detection with Feature Selection for data stream

classification,

• Authors: Mahmood Shakir Hammoodi, Frederic Stahl, and Mark Tennant,

• Year: 2016,

• Publisher: IOS Press (ECAI).

Chapter 5 presents the developed method for tracking the features involved in drifting by

monitoring statistical information provided by adaptive Micro-Clusters. A research paper has

8
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been published which consists of the developed method for tracking feature in combination

with drift detection as well as preliminary results which show that the developed methods are

capable of detecting a concept drift and delivering an indication which features are involved

compared with alternative concept drift detection methods.

• Title: Towards Real-Time Feature Tracking Technique using Adaptive Micro-Clusters,

• Authors: Mahmood Shakir Hammoodi, Frederic Stahl, Mark Tennant, and Atta Badii,

• Year: 2017,

• Publisher: BCS Specialist Group on Artificial Intelligence.

Chapter 6 presents the developed method for dynamic feature selection in real-time. A

research paper has been published which consists of the holistic work of this research study, as

well as an in-depth evaluation of the developed methods which are drift detection method, fea-

ture tracking method, and real-time feature selection method with respect to different artificial

and real datasets.

• Title: Real-Time Feature Selection Technique with Concept Drift Detection using Adap-

tive Micro-Clusters for Data Stream Mining,

• Authors: Mahmood Shakir Hammoodi, Frederic Stahl, and Atta Badii,

• Year: 2018,

• Publisher: Elsevier on Knowledge-Based Systems.

Conclusion and future works as guidelines for further research that can be added to the work

drawn from this thesis are summarised in Chapter 7.

1.7 Summary

This chapter explains the background of this thesis. It discussed the main factors that have sig-

nificantly affected the DSM algorithms. This study is motivated by the apparent lack of research

in real-time feature selection in a streaming setting. In addition, it is argued that the DSM clas-

sification algorithms can be improved in terms of accuracy of classification task by applying

a real-time pre-processing technique which detects drifts and selects relevant features for the
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classifier dynamically. Some backgrounds and concepts of concept drift, feature selection, data

stream classification, and data stream clustering will be explained in greater detail in the next

chapter.

10



Chapter 2

Background and Literature Review

In Chapter 1, the aims and objectives were highlighted and described which led to defining

the research problem. Chapter 2 presents the background and literature review that formulates

the foundation on which this research is based. This chapter discusses the concepts of data

stream pre-processing technique, concept drift, feature selection, data stream classification, and

data stream clustering. The chapter also reviews related and relevant methods and algorithms.

This identifies initially what needs to be improved in order to make an effective data stream

pre-processing technique in specific real-time feature selection method. This can be achieved

by applying concept drift detection method in combination with feature tracking method. This

could be used with any learning algorithm either as a real-time wrapper or a batch classifier

or realised inside a real-time adaptive classifier (Domingos and Hulten, 2000). The chapter

is organised as follows. In Section 2.1, Data Stream Mining (DSM) is explained. Section 2.2

gives an overview of general data stream processing techniques. The data stream pre-processing

techniques are presented in Section 2.3. Adaptive DSM algorithms are discussed in Section

2.4. Section 2.5 analyses the reported methods and algorithms in this chapter with respect to

the research objectives. Section 2.6 summarises this chapter.

2.1 Data Stream Mining (DSM)

DSM is the analysis of unbounded and sequential data instances that are unseen and arrive

with a high Velocity in real-time. In other words, the stream arrives online (i.e., instance by

instance) and there is no control over the order in which data instances arrive either within a

data stream or across data streams. Once an instance from a data stream has been handled, it can
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not be retrieved as it is discarded (Gama and Gaber, 2007). The main characteristics of streams

include susceptibility to concept drift which is a problem and an area of research as well as

handling dimensionality, i.e., features may become irrelevant to a classifier in general over time

(Brzeziński, 2010; Ahsan and Essa, 2014; PhridviRaj and GuruRao, 2014). This implies the

following requirements on data mining algorithms learning from data streams in real-time:

1. One data instance at a time is examined and processed.

2. A limited amount of memory is required.

3. Predict at any time and demand.

4. Adapt to concept drift in case of changes in the patterns encoded in the data stream.

5. Irrelevant features to a classifier have to be discarded and monitored in real-time, i.e.,

feature selection needs to be applied dynamically over time.

Next in Section 2.1.1, a general overview of workflow of DSM will be presented.

2.1.1 Workflow of DSM

This section presents the workflow of DSM in terms of feature selection and concept drift

detection. Figure 2.1 shows the typical workflow of feature selection and concept drift detection

in predictive data stream analysis. The best candidate features from given training data are

typically identified and selected by feature selection. The existing feature selection methods

need to be applied in advance (i.e., offline) (see Section 2.3.5). A classifier is then introduced to

build a model using the selected features which may change over time. Thus, dynamic feature

selection is required. Whereas, concept drift detection methods are either applied offline or

unable to handle unexpected changes in data (see Section 2.3.4). In addition, in these methods,

the features involved in drifting are not identified i.e., the features that cause the drift.

Figure 2.1: Workflow of feature selection and concept drift detection with a classifier.
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Thus, adaptive and computationally efficient algorithms are required to analyse streaming

data in real-time in terms of concept drift detection with dynamic feature selection which does

not to examine the entire feature space, as shown in Figure 2.2. Where Test and Train refer to

Test-Then-Train or Prequential. Each individual data instance is used to test the model before

it is used for training over time stamps (Bifet and Frank, 2010). Where a time stamp is the

current time of a data instance that is used to test and train the model. Examining unexpected

change in data (i.e., concept drift) is applied over a statistical windowing approach with a fixed

size (i.e., time window with 1000 data instances as an example). Where a time window is

a set of time stamps. Hence, features which were involved in drifting are discarded using

feature selection (i.e., irrelevant to a classifier). However, the discarded features are ranked and

evaluated over time to be selected as relevant to a classifier using feature selection (i.e., dynamic

feature selection). Based on this the accuracy of a classification task of a data stream classifier

will be improved.

Figure 2.2: Workflow of Data Stream Mining.

Next in Section 2.1.2, a general overview of concept drift will be presented as its the under-

lying motivation of this research study.

2.1.2 Concept Drift

A concept drift occurs if the pattern encoded in the data stream changes over time. The gathered

data changes or shifts after a stability period. Identifying a drift point as distinct from noise or

outlier is the first and most challenging task for drift detection algorithms (Bose et al., 2014;

Gama et al., 2014). Thus analytics algorithms need to adapt. This issue of concept drift needs

to be considered in order to mine relevant data with appropriate accuracy. At least four types
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of drift can be identified; gradual, sudden, recurring, and incremental, as well as noise and

outliers which may occur in the data stream (Aggarwal and Yu, 2001; Brzeziński, 2010; Bose

et al., 2014; Gama et al., 2014). The different types of concept drift are depicted in Figure 2.3.

Figure 2.3: Types of concept drifts.

Regarding Figure 2.3 gradual concept drift refers to a present concept progressively chang-

ing into a new concept within a short period of time whereas sudden concept drift refers to

the instant replacement of the current concept by a new concept. A recurring concept drift

refers to a previous concept re-appearing at a later stage, this can be both sudden or gradual.

An incremental concept drift refers to a constantly evolving concept and these are generally

hard to detect. Outliers and noise are not concept drifts. Often it is challenging for concept

drift detection methods to distinguish noise and outliers from real concept drift (Brzezinski and

Stefanowski, 2014; Gama et al., 2014).

Next in Section 2.2, an overview of general data stream processing techniques is presented,

and in Section 2.3 DSM in terms of handling and adapting to concept drift is presented in greater

detail.

2.2 Overview of General Data Stream Processing Techniques

This section presents the techniques which are frequently used for processing data streams in

terms of handling and adapting to concept drift which are statistical summaries with single-pass

processing, windowing approaches, and adaptive algorithms.
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2.2.1 Statistical Summaries with Single-Pass Processing

In data stream processing, handling and adapting to unexpected changes (i.e., concept drift)

can be achieved by providing and performing statistical summaries over the most recent data

instances, and over summarised versions of the old instances. This is called online-offline pro-

cessing (Ren and Ma, 2009). However, a data stream may be unbounded and arrive continuously

at a high Velocity over time. This poses challenges as multiple scans over the stream is not pos-

sible or infeasible in real-time. Only single-pass processing through the data is required. This

will be highlighted in more detail in Section 2.4.

2.2.2 Windowing Approaches

In data streams, the most recent information from the stream is likely to represent the new

changes in the data distribution which can be used for the purpose of analysis of concept drift.

Windowing approaches have been used to deal with concept drift using only recent data instead

of the whole data stream (Gama and Gaber, 2007; Bifet, 2009; Hoens et al., 2012). There are

three commonly used models in data streams which are sliding windows, damped windows, and

landmark windows (Silva et al., 2013). In the sliding windows, only the most recent information

from the data stream is kept in a data structure (i.e., a first in, first out (FIFO) queue) whose

size can be fixed or identified in advance. The first value added to the window will be the first

one to be removed. The damped windows provide the most recent information by associating

weights with instances from the data stream. The weights of the instances decrease with time,

and more recent instances receive a higher weight than older instances. Regarding the landmark

windows, the whole data stream is divided into chunks (i.e., windows) to be handled as updating

units. When a new landmark arrives, all instances saved into the window are deleted, and the

new instances from the current landmark are saved in the window until a new landmark arrives.

However, in data stream monitoring or analytics, the sliding window is frequently used as it is

keeping the most recent information of the stream (Zhu and Shasha, 2003; Lakshmi and Reddy,

2015).

2.2.3 Adaptive Learning Algorithms

Adaptive learning algorithms often need to be operated in environments that are changing

rapidly or unexpectedly over time. If the data generating process is unstable, the underlying
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concept may be drifting over time. The ability to incorporate new data is a desirable property of

these algorithms and is considered as a natural extension for the incremental learning algorithms

(Gama et al., 2014). Adaptive DSM algorithms will be highlighted in more detail in Sections

2.4.1 and 2.4.2.

2.3 Data Stream Pre-Processing Techniques

In general, when applying data mining algorithms, low-quality data will lead to low-quality

data mining models. Hence, pre-processing techniques have to be taken into consideration

in order to guarantee a quality of the models, and it can often have a significant effect on

generalisation performance of a machine learning algorithm (Gaber et al., 2005; Han et al.,

2011). Several types of problems can be resolved by applying a data stream pre-processing

technique which consists of minimising the effect of feature-bias, noise, and outliers as well

as feature subset selection which is the process of identifying and removing irrelevant features

which may not be related to the target concept (Hu, 2003; Kotsiantis et al., 2006; Yan et al.,

2006; Davis and Clark, 2011). Moreover, in real-world data, the gathered data often changes or

shifts after a minimum stability period. A concept drift detection method needs to be considered

and taken into consideration in the pre-processing technique in order to mine relevant data

with appropriate accuracy (Ramírez-Gallego et al., 2017). This will be highlighted in the next

sections.

2.3.1 Minimising the Effect of Feature-Bias

Normalisation is applied to fit the data (i.e., each feature of a new training instance) to be

almost distributed in a pre-defined boundary such as [0,100]. Normalisation is used to avoid

feature-bias which can potentially lead to mis-classifications as the relevant relations between

target class labels and features are considered by the classifier to be more or less important than

they actually are (Fan and Davidson, 2006; Pelayo Ramirez, 2011).

Three frequently used types of Normalisation are i.e. Min-Max (see Equation 2.1), Decimal

Scaling (see Equation 2.2), and Z-Score (see Equation 2.3) (Ogasawara et al., 2010).

x =
(

current value−minx
maxx−minx

)
∗ (maxrange−minrange)+minrange (2.1)
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x =
x

(10d)
(2.2)

x =
x−µ

σ
(2.3)

x is a feature value of the new data instance. Min-Max is a simple Normalisation technique

to fit the data in a pre-defined boundary with a min range (default 0) and a max range (default

100). Decimal Scaling moves the decimal point of a feature value x depending on its maximum

absolute value. Whereby d equals to MAX(| y |) < 1 (i.e., the smallest value of a feature y).

Lastly, Z-Score normalises a feature value x according to its corresponding mean µ and standard

deviation σ feature values. However, Decimal Scaling and Z-Score rely on the σ and the µ and

thus require the buffering of data before Normalisation can be applied. Whereas, min x and max

x of Min-Max can be re-initialised over time stamps as the buffering of data is not required. It

does not rely on the σ and the µ as it can be updated instance by instance. In addition, Liu et al.

(2011) and Patro and Sahu (2015) stated that in Min-Max, a complex calculation is not required,

and it has better performance in terms of Normalisation in comparison with the aforementioned

techniques. This has inspired the idea of applying Min-Max in real-time in this research study.

2.3.2 Minimising the Effect of Noise

Noise is defined as a random error or Variance in a measured variable, or randomly occur-

ring errors (i.e., data inconsistency, out-of-range values) (Zhang, 2008). In machine learning

algorithms, mis-classification could happen as noise is misleading relationships between the

features and the class labels (Hickey, 1996; Zhang, 2008). Thus, minimising the effect of noise

is required. There are some techniques proposed for the purpose of filtering such as the Kalman

filter and Grid-based filter (Bhowmik and Roy, 2007) which require buffering of data before

filtering (Arulampalam et al., 2002). In the Kalman filter, the posterior density at every time is

Gaussian which is parameterized in terms of µ and Covariance. Whereas, in Grid-based tech-

nique, the optimal recursion of the filtered density is provided when the state space is discrete

and consists of all relevant information required to describe the data. Where, the state space

refers to the Euclidean space in which the variables (i.e., the number of inputs, outputs, and

states) on the axes are the state variables which can be expressed as vectors. State variables are

variables whose values developed gradually through time. However, there is another technique
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proposed called Low Pass Filter (LPF) (Rosenholtz and Zakhor, 1991; Schall et al., 2005). It

does not rely on the σ and the µ as it can be updated instance by instance. This has inspired

the idea of applying LPF in real-time in this research study. LPF is a filter that passes signals

(i.e., the Velocity of a feature) with a frequency lower than a certain cut-off frequency α and

attenuates signals with frequencies higher than the cut-off frequency using Equation 2.4.

new f ilter[x] = α ∗new value[x]+ (1−α)∗old f ilter[x] (2.4)

x is a feature value of the new data instance. new f ilter[x] and old f ilter[x] can be re-

initialised over time stamps as the buffering of data is not required.

2.3.3 Minimising the effect of Outliers

Outliers are data stream instances outside the expected range of values. In other words, it is an

observation that is numerically distant from the rest of the data (Zhang, 2008). Hence, it has a

significant effect on statistical analysis (Zhang, 2008). Thus, minimising the effect of outliers

is needed. There are some techniques proposed for the purpose of outliers detection such as

Distance-based and Density-based (Knox and Ng, 1998; Knorr and Ng, 1999; Ramaswamy

et al., 2000; Breunig et al., 2000) which are generally unable to deal with the curse of high

dimensionality (Aggarwal and Yu, 2005). However, there is another technique proposed to

minimise the effect of outliers which is called Inter Quartile Range (IQR). It is considered a

more robust method to outliers (Leys et al., 2013; Sunitha et al., 2014). In addition, Wang et al.

(2017) stated that in IQR, a complex calculation is not required as it is much easier to compute

in comparison with the aforementioned techniques. It can be computed separately for each

feature of a data instance. This will be highlighted in more detail in Chapter 5.

IQR measures the spread of an ordered set of data (i.e., ascending order) by dividing it into

quartiles such as Lower Quartile (Q1), median, and Upper Quartile (Q3). Q1 and Q3 are the

middle numbers of the first and second half of an ordered list of feature values, respectively.

median is the middle number of an ordered list of data values. IQR is the difference between

Q3 and Q1 which is given by Equation 2.5. Where, x denotes the feature. Figure 2.4 shows an

example of IQR.

IQR[x] = Q3−Q1 (2.5)
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Figure 2.4: An example of IQR.

2.3.4 Concept Drifts Detection (CDD) Methods

There exist standalone concept drift detection methods that can be used in combination with

batch learning algorithms and a statistical sliding window approach (Bifet, 2009). For example

some of these methods are CUmulative SUM (CUSUM) (Page, 1954), Drift Detection Method

(DDM) (Gama et al., 2004), Early Drift Detection Method (EDDM) (Baena-Garcıa et al., 2006),

Exponential Weighted Moving Average (EWMA) (Ross et al., 2012), and ADaptive sliding

WINdow (ADWIN) (Bifet and Gavalda, 2007). They are considered as the most well-known

drift detection methods that are frequently used (Sidhu and Bhatia, 2015; De Barros et al.,

2018). In addition, they are found in an open source DSM framework which is called Massive

Online Analysis (MOA) (Bifet et al., 2010).

• CUSUM raises alarms when the µ of the input data is significantly different from zero.

CUSUM is considered to be ‘almost memoryless’, however, it can only be applied in one

direction, i.e., to detect drifts that only can happen in one direction of the statistics, i.e.,

only detecting significant increases in feature values.

• DDM computes error statistics based on two time windows. An alarm (concept drift)

is triggered only for sudden concept drifts, while gradual concept drifts are not detected

(Dongre and Malik, 2014).

• EDDM is an extension of DDM estimating a distribution of the distances among clas-

sification errors, however, the method is susceptible to noise (Dongre and Malik, 2014;

Brzezinski and Stefanowski, 2014).

• EWMA is similar to DDM, but the estimate of the error rate is updated faster (i.e.,

moving averages) for each point in the data stream. Moving averages means generating a
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set of averages of various subsets of the full dataset. However, the method is susceptible

to noise (Frías-Blanco et al., 2015).

• ADWIN makes use of a variable size sliding window, whereas the size is dependent

on observed changes. If there is a change then the window size decreases, otherwise it

increases. A problem with ADWIN is that windows can become potentially very large

and thus the time to adapt a classifier may increase considerably (Brzeziński, 2010).

Additional improvements to the methods mentioned above have been made with the devel-

opment of further concept drift detection. Wang and Abraham (2015) have proposed a frame-

work for earliest detecting concept drifts called Linear Four Rates (LFR) with a minimum num-

ber of false alarms and subsequently identifying the data points that belong to the new concepts.

In LFR, arriving data in batches is not required. It is independent of the underlying classifier

employed. Data between warning and detecting time are stored and extracted to learn a new

classifier when the stored data are insufficient or too small to learn. Thus, a waiting time is

required.

Du et al. (2014) have proposed an approach for detecting concept drift using Entropy which

is monitored dynamically over an adaptive sliding window in order to detect concept drift. En-

tropy measures the change in a given dataset (i.e., from order to disorder). Initially, a classifier

is trained online incrementally with the arrival of data over a statistical sliding window.

Bose et al. (2014) proposed a framework for detecting concept drift by generating popula-

tions from the data streams to be analysed for any changes in data values with fixed size win-

dows. The values of a feature are considered as a time series (i.e., populations). For each time

series, two populations (i.e., time-1 and current time) are matched using Cumulative Frequency

Distribution which is the total of a class label frequency and all frequencies in a frequency

distribution, µ , and σ .

Frías-Blanco et al. (2015) proposed a family of methods to detect the drifts by monitoring

significant changes of µ of the performance of a classifier over time. It is an online drift detector

and is an extension of the DDM mentioned above. Two versions are proposed (HDDMA and

HDDMW ). In HDDMA, the Hoeffding’s inequality is used which presumes only independent

and bounded random variables through providing an upper bound on the probability which is

the sum of independent random variables drifts from its expected values by more than a certain

amount. In addition, at each incoming value, the error bound is computed for the purpose

of detection of significant changes in the moving averages of streaming values (i.e., bounding
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moving averages). However, it is considered suitable to detect sudden concept drift only (Frías-

Blanco et al., 2015). Whereas, HDDMW is an extension of both DDM and EWMA. It monitors

a weighted sum which is updated at each incoming value (i.e., weighted moving averages).

However, it is considered suitable to detect gradual concept drift only (Frías-Blanco et al.,

2015).

Pesaranghader and Viktor (2016) proposed a fast hoeffding drift detection method which is

an extension of the HDDM family. A sliding window of size s (default 200) is used. Drift is

detected when a significant change between a maximum and the most recent probabilities of

correct predictions is achieved.

Pesaranghader et al. (2017) proposed a drift detection method which is also an extension of

the HDDM family. The prediction results of the most recent instances associated with a sliding

window are weighted. Two variables are updated simultaneously which are a current weighted

average and a maximum weighted average. Hence, a significant change between these two

variables results in a concept drift.

Barros et al. (2017) proposed a reactive drift detection method which is also another ex-

tension of DDM. In this method, the new development which has been applied for DDM is to

forget old instances of very long stable concepts in order to provide prediction errors to affect

µ error rate and trigger the drifts efficiently.

Liu et al. (2017) proposed a fuzzy windowing concept drift adaptation method. An overlap-

ping period (i.e., old and new concepts) is kept in order to determine the data instances which

belong to various concepts. In addition, the membership of data instances in a concept is pro-

gressively assessed using fuzzy set theory (i.e., an instance either belongs or does not belong to

the set). Hence, a drift is detected when a significant change between old and new concepts is

achieved.

Another group of researchers proposed a method for drift detection such as Wilcoxon Rank

Sum Test Drift Detector (WSTD) (De Barros et al., 2018) which is also another extension of

DDM and Adaptive Cumulative Windows Model (ACWM) (Sebastião et al., 2017) which is

also another extension of the HDDM family.

However, none of the aforementioned methods provides information into the causality of

the drift, i.e., which features were involved. In addition, these methods are either applied offline

or unable to handle different types of concept drifts such as recurring concept drift and gradual

concept drift as well as feature-bias, outliers, and noise (Brzezinski and Stefanowski, 2014).
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Table 2.1 summarises the concept drift detection methods presented in this section. The ta-

ble shows the author(s), a title of the method, and whether the method applies/provides/handles

the issue of single-pass processing, statistical summaries, concept drift detection, and dynamic

feature selection.

Table 2.1: Summary of concept drift detection methods.

Author(s) Method
Single-Pass
Processing

Statistical
Summaries

Concept
Drift Detection

Dynamic
Feature Selection

Page (1954) CUSUM Apply Not provide Handle Not handle
Gama et al. (2004) DDM Apply Not provide Handle Not handle
Baena-Garcıa et al. (2006) EDDM Apply Not provide Handle Not handle
Ross et al. (2012) EWMA Apply Not provide Handle Not handle
Bifet and Gavalda (2007) ADWIN Apply Not provide Handle Not handle

2.3.5 Feature Selection (FS) Methods

Feature selection is used to convert a high dimensional data into a lower dimension by selecting

the relevant features which are considered to be highly correlated with classes for the purpose of

data classification as learning good classifiers can be achieved by removing irrelevant features

(Janecek et al., 2008; Lavanya and Rani, 2011; Han, 2012; Tang et al., 2014).

Feature selection can be classified into filter, wrapper, and embedded (Kohavi and John,

1997; Liu et al., 2006; Zhao et al., 2008; Beniwal and Arora, 2012).

• Filter: In this technique, feature selection is independent of the data mining algorithm

to be used to assess the relevance of features. A statistical measure needs to be applied

for selecting the relevant features using a pre-processing technique such as Information

Gain, Fisher score, and Correlation Filtering. However, in filter approaches, the effects

of the selected feature subset on the performance of a classifier are ignored (Hoi et al.,

2012; Beniwal and Arora, 2012).

• Wrapper: The relevant features can be selected using a learning algorithm by searching

the space of the best feature subset and evaluating the performance of a data mining

algorithm applied to each feature of this subset using one of the three major sequential

heuristics such as forward, backward, and stepwise regression. However, it is considered

more computationally expensive than filter approaches (Kohavi and John, 1997; Beniwal

and Arora, 2012; Hoi et al., 2012).
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• Embedded: Handling larger datasets can be realised by combining both filter and wrap-

per approaches into the model training process. However, Hoi et al. (2012) stated that

the selected features (i.e., the relevant features) may not be suitable for other data mining

algorithms.

Common methods have been proposed for dimensionality reduction such as Linear Discrim-

inate Analysis (LDA), Canonical Correlation Analysis (CCA), Multi-View CCA, and Principal

Component Analysis (PCA) (Ahsan and Essa, 2014; Lee et al., 2015). LDA transforms two

groups of class labels into two matrices to be matched together. CCA is a statistical method

which aims to search a linear subspace in which the correlation between two sets of class labels

is maximised. Multi-View CCA (Lee et al., 2015) is an extension of CCA which searches for

a pairwise correlation between all sets of class labels. PCA aims to merge the different feature

vectors in a low dimensional space of eigenvectors which keeps their direction unchanged when

a linear transformation is applied to them.

Relief (Kira and Rendell, 1992) is another method which has been proposed for feature

selection by estimating features weights iteratively according to their ability to discriminate

among nearest neighbour features using 1-Nearest Neighbour (1-NN) algorithm which was in-

troduced by (Kuncheva and Jain, 1999). 1-NN assigns each new feature to the class label of

its nearest neighbour from a saved labelled set. A feature x is selected randomly with two

nearest neighbours of x in order to calculate its weight. One nearest neighbour from the same

class label of x and the other from a different class. However, Kononenko (1994) stated that

the nearest neighbours are identified in the original feature space which may not be correct or

true in the weighted feature space. Therefore, Relief-F, multiclass-Relief, and Iterative-Relief

(I-Relief) (Kononenko, 1994; Sun, 2007; Oreski and Klicek, 2015) were proposed, which take

relationships among features into account. The nearest neighbours of a feature can be handled

as hidden features (i.e., not identified or unknown). Thus, weights of a feature are estimated

iteratively until the nearest neighbours are identified.

Additional improvements in the methods mentioned above and techniques (i.e., filter, wrap-

per, and embedded) have been made with the development of further feature selection. Fong

et al. (2016) have proposed a wrapper-based feature selection method applied incrementally.

Swarm Search (SS) is used which is a computational method to improve a feature selection

process in terms of a given feature ranker called the Coefficient of Variation (CV) which de-

scribes the σ of feature values relative to their µ that belong to a certain class label. The value
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of CV needs to be identified in order to partition the data set into two clusters (i.e., one to be

retrained and the other to be removed) using k-means (Lloyd, 1982). k-means is one of the pop-

ular algorithms used for clustering data by segmenting n observations into k non-overlapped

clusters (i.e., a pre-defined number of non-hierarchical clusters) with the nearest µ . A complete

pass over all the data points is required in order to measure the distance from the data points

to each cluster. In addition, in SS, multiple search agents called Particles who work in parallel

are used to search the most optimal feature subset at any time. Although each Particle is at-

tracted towards its own best location in history (i.e., individual best), a Particle has a gradient to

move randomly. However, features are selected in advance (i.e., offline). A threshold needs to

be identified after CV is being calculated in order to identify which features and how many of

them have to be selected.

Lee et al. (2015) have proposed a supervised Multi-View Canonical Correlation Analysis

(sMVCCA) for integrating class labels of high dimensional data to produce more easily handled

data representations for data stream classification. This approach provides labels as view (i.e.,

pair-wise correlation of class label together with its feature) during label encoding to choose

the most correlated class labels with features (i.e., all pairs) of the data using Spearman corre-

lation. It provides statistical dependence between two class labels (i.e., relative position label

of the observations within the features). However, in their approach, a summation of pair-wise

correlation over any number of class labels has to be identified in order to optimise weights

as sMVCCA can only account for correlation between limited class labels. Therefore, feature

selection is not handled properly.

Wang et al. (2014) have proposed a method for Online Feature Selection (OFS). In this

method, Online Gradient Descent (OGD), L2-normalisation, and Epsilon Greedy (EG) are used.

OGD is an algorithm used for training purposes by updating a set of parameters (i.e., weights

of features belong to a certain class label) repeatedly to minimise an error function. Whereas,

L2-normalisation is used for minimising the sum of squares of the differences among the target

class labels. In addition, k-Nearest Neighbour classifier (KNN) is used as a batch learning

classifier. KNN is a non-parametric method which provides a class membership by a majority

vote of the k most similar data instances. If a training instance is misclassified, then OGD is

applied as well as L2-normalisation to ensure that the Normalisation of a classifier is minimised.

Whereas, EG is used for feature selection purposes. EG is an algorithm that randomly selects

a feature with an optimal estimated probability which can be calculated by OverallAccuracy
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which equals the number of correct predictions divided by total attempts. However, in their

work, only two class labels are considered and selected randomly before applying OFS as it is

unable to handle multi-class labels.

Yadav and Swetapadma (2014) have proposed a classification method with feature selection

using Principal Component Analysis (PCA) method to reduce a training dataset into two dimen-

sional (2D) to be trained (i.e., classified) by Artificial Neural Networks (ANN) which is used for

classification purposes. ANN is a computational approach based on a large collection of neural

units. In PCA, the Variance-Covariance matrix has to be calculated which is a square matrix

that comprises of the Variances and Covariances associated with several features. Variance is

a measure of the spread of data in a feature which can be calculated by the average squared

deviation from the µ score of feature values. Whereas, Covariance is the measure of the range

to which corresponding features from two sets of an ordered data move in the same direction

(i.e., correlation of two features). From the Variance-Covariance matrix, the eigenvectors and

eigenvalues are calculated. The eigenvectors will be listed in descending order according to

eigenvalues. Those with the lowest order are ignored. Thus, a given training dataset will be

reduced to a lower dimension (i.e., 2D). However, 2D is the maximum dimension that can be

produced from this method.

Wu et al. (2014) have proposed a method for online feature selection called Second-order

for Online Feature Selection (SOFS) using Heap binary data structure. Heap means that a root

node key is compared with its children and arranged accordingly (minimum or maximum). In

this approach, Max-Heap is applied which means that the value of a root node is greater than or

equal to either of its children. Max-Heap is used for storing the smallest Covariance of features.

A position of a new feature’s Covariance can be adjusted in the Heap when this Covariance is

changed. If this Covariance is smaller than the Heap limit, then the root of a Heap is replaced by

a current item. Otherwise, the corresponding weight will be set to zero (i.e., ignored). Whereas,

a feature with unchanged Covariance will not be checked.

Li et al. (2013) proposed a method for online feature selection called Group Feature Se-

lection with Streaming Features (GFSSF) which handles feature selection at both the group

and individual feature levels from the features generated and arrived. In the individual level of

feature selection, features from the same group are manipulated by searching the best feature

subset from the arrived features using Entropy. Each new arrived feature is matched with a tar-

get feature to be identified as a relevant, irrelevant, or redundant feature. Whereas, in the group
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level of feature selection, grouped features have to be matched together using Entropy as well.

A group which provides more information is then selected.

Wu et al. (2013) proposed Fast-Online Streaming Feature Selection (Fast-OSFS) algorithm

to improve feature selection performance by selecting a small number of relevant features to

train a classifier. Fast-OSFS consists of two main parts which are a redundancy analysis and

computational cost reduction. In the first part, a Markov blanket is used to remove redundant

features. The Markov blanket of a node consists of all the features’ data that separate a node

from the rest of a network (i.e., Bayesian network) which is the only knowledge required to pre-

dict the behaviour of that node. While, in the second part, the computational cost of conditional

independence tests is reduced by only taking into account the subsets within the best candidate

features that consists of the recently added feature.

Vishwanath et al. (2013) proposed a framework for feature selection called Dimensionality

Reduction for Similarity matching and Pruning of time series data streams (DRSP). In the first

stage of this framework, partitioning the arrived data into multi groups over a sliding window

with a fixed size of both windows and groups. Euclidean distance is used to measure the distance

between two pairs of data instances of two groups. If the distance greater than a threshold (i.e.,

user-defined) then those pairs are pruned.

The aforementioned feature selection methods are by no means an exhaustive list of meth-

ods. However, all of them have in common that they are typically applied before a classifier is

introduced. Thus they are not designed for data streams as they do not take into consideration

that the relevance of a feature for a classification task may change over time. Although online

feature selection methods have proposed such as OFS, SOFS, GFSSF, and Fast-OSFS, they are

assumed that the candidate features are generated dynamically and arrive one feature at a time,

and updates the best feature subset (i.e., best candidate features) from the features arrived by

handling each feature according to its arrival. Therefore, these methods are not a good solution

to be applied on DSM applications which are assumed that data instances are generated dynam-

ically and arrive one data instance at a time. Where a data instance consists of one or more

features. Thus, the overall aim of this research study is to develop a real-time feature selection

method which can be applied to DSM applications.

Table 2.2 summarises the feature selection methods presented in this section. The table

shows the author(s), a title of the method, and whether the method applies/provides/handles

the issue of single-pass processing, statistical summaries, concept drift Detection, and dynamic
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feature selection.

Table 2.2: Summary of feature selection methods.

Author(s) Method
Single-Pass
Processing

Statistical
Summaries

Concept
Drift Detection

Dynamic
Feature Selection

Lee et al. (2015) LDA Not apply Not provide Not handle Not handle
Lee et al. (2015) CCA Not apply Not provide Not handle Not handle
Lee et al. (2015) Multi-View CCA Not apply Not provide Not handle Not handle
Lee et al. (2015) PCA Not apply Not provide Not handle Not handle
Wang et al. (2014) OFS Not apply Not provide Not handle Not handle
Wu et al. (2014) SOFS Not apply Not provide Not handle Not handle
Li et al. (2013) GFSSF Not apply Not provide Not handle Not handle
Wu et al. (2013) Fast-OSFS Not apply Not provide Not handle Not handle

2.4 Adaptive DSM Algorithms

This section presents the adaptive DSM algorithms which are categorised into two main cat-

egories clustering and classification (Aggarwal, 2007; Gama, 2010) which will be briefly re-

viewed in the next sections.

2.4.1 Adaptive Data Stream Classification Algorithms

Building a model incrementally is the main task of data stream classification using the most

recent data instances for predicting the class labels of unseen examples. Classification tech-

niques can be categorised into five major categories which are Tree-based classifiers, Rule-

based classifiers, Nearest Neighbour-based classifiers, Neural Network-based classifiers, and

Ensemble-based classifiers (Beniwal and Arora, 2012; Aggarwal, 2014). Several methods have

been proposed for predictive analytics on data streams using the classification categories men-

tioned above.

• Tree-based classifiers- a decision tree is generated based on data instances by creating

two types of nodes which are the root and the internal roots, and the leaf nodes. Features

are associated with the root and the internal roots. Class labels are associated with the

leaf nodes. A notable data stream classifier is the Hoeffding Tree family of algorithms.

The Hoeffding Tree algorithm by Domingos and Hulten (Domingos and Hulten, 2000)

introduces a decision tree incrementally in real-time. The Hoeffding Tree was improved

in terms of speed and accuracy by proposing a Very Fast Decision Tree (VFDT) (Hulten

et al., 2001). Although achieving high accuracy using a small sample is the main advan-
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tage of these algorithms, concept drifting cannot be handled efficiently as a created sub-

trees can only expand from the child nodes onwards. Therefore, further improvements

have been made with the development of adaptive trees that can alter entire sub-trees us-

ing a sliding window approach (Gama and Gaber, 2007; Bifet, 2009). The new version

of VFDT was termed CVFTD. Where C stands for Concept Drift (Hulten et al., 2001).

Loosely speaking, in CVFDT alternative sub-trees can be induced over time and if an al-

ternative sub-tree outperforms (i.e. in terms of accuracy) the current active sub-tree, then

the current sub-tree is replaced with the alternative one. However, if sub-trees are grow-

ing continuously, then a large amount of memory is required or consumed. In addition,

the CVFDT is susceptible to noise, and is unable to handle recurring concept drifts (Chu

and Zaniolo, 2004; Yi et al., 2016).

• Rule-based classifiers- a set of IF-THEN rules is used for classification. The feature

values are related to the class labels using different intervals of the features. VFDR (Gama

et al., 2011) and G-eRules (Le et al., 2017) have been proposed as Rule-based data stream

classifiers.

• Nearest Neighbour-based classifiers- they assume that all data instances relate to points

in the n-dimensional space. The k-Nearest Neighbours (KNN) to the new point are iden-

tified to be used with a weight for determining the class label of the new point. Adaptive

Nearest Neighbour Classification for Data Streams (ANNCDS) (Law and Zaniolo, 2005)

and a Similarity Search Structure called the Rank Cover Tree (RCT) (Houle and Nett,

2015) have been developed as Nearest Neighbour-based classifiers for streaming data.

• Neural Network-based classifiers- they are a computational approach based on a large

collection of neural units which are connected in order to transmit a signal from one to

another. Where each unit receives a set of inputs. Effective Pruning of Neural Network

Classifier (EPNNClassifier) (Lazarevic and Obradovic, 2001) has been proposed as Neu-

ral Network-based classifier.

• Ensemble-based classifiers- in order to obtain better predictive performance, a combina-

tion of classifiers is used to generate the models. Ensemble-based classification (Ensem-

bleC) (Wang et al., 2003) and a Scale-free social network method to handle concept drift

(SFNClassifier) (Barddal et al., 2014) have been proposed as Ensemble-based classifiers

for streaming data.
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Further data stream classification algorithms have been proposed using the aforementioned

classification categories, such as Accelerated Particle Swarm Optimisation (APSO) with Swarm

Search (Fong et al., 2016), Online Data Stream Classification with Limited Labels (ODSCLL)

(Loo and Marsono, 2015), On Demand Classification of data streams (ODClassification) (Ag-

garwal et al., 2004b), Online Data Stream Classification with limited labels (ODSClassification)

(Loo and Marsono, 2015), and Prototype-based Classification Model (PrototypeCM) (Shao

et al., 2014).

Although most of these works have built-in concept drift detection capability, none of these

algorithms takes real-time feature selection into consideration. If feature selection is applied at

all, then it is mostly at the beginning of the data stream, and it is assumed that the contribution

of each feature to the concept remains invariant over time. Where, a classifier is introduced to

build a model using the selected features (see Figure 2.1 Section 2.1.1). However, this is an

unrealistic assumption. The relevance of features for the concept may change over time, and

thus an online feature selection strategy may very well improve the predictive accuracy of the

classifier such as Hoeffding Tree Classifier.

Table 2.3 summarises the data stream classification algorithms presented in this section. The

table shows the author(s), a title of the algorithm, and whether the algorithm applies/provides/handles

the issue of single-pass processing, statistical summaries, concept drift detection, and dynamic

feature selection.

Table 2.3: Summary of data stream classification algorithms.

Author(s) Algorithm
Single-Pass
Processing

Statistical
Summaries

Concept
Drift Detection

Dynamic
Feature Selection

Hulten et al. (2001) VFDT Apply Not provide Not handle Not handle
Hulten et al. (2001) CVFDT Apply Not provide Not handle Not handle
Gama et al. (2011) VFDR Apply Not provide Not handle Not handle
Le et al. (2017) G-eRules Apply Not provide Not handle Not handle
Law and Zaniolo (2005) ANNCDS Apply Not provide Not handle Not handle
Houle and Nett (2015) RCT Apply Not provide Not handle Not handle
Lazarevic and Obradovic (2001) EPNNClassifier Not apply Not provide Not handle Not handle
Wang et al. (2003) EnsembleC Apply Not provide Not handle Not handle
Barddal et al. (2014) SFNClassifier Apply Not provide Not handle Not handle
Fong et al. (2016) APSO Apply Not provide Not handle Not handle
Loo and Marsono (2015) ODSCLL Apply Not provide Not handle Not handle
Aggarwal et al. (2004b) ODClassification Apply Not provide Not handle Not handle
Loo and Marsono (2015) ODSClassification Apply Not provide Not handle Not handle
Shao et al. (2014) PrototypeCM Apply Not provide Not handle Not handle
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2.4.2 Adaptive Data Stream Clustering Algorithms

Clustering is a task of data mining which separates data into clusters (i.e., groups). In a clus-

ter, the data points are more similar to each other than those in different clusters. Clustering

techniques can be categorised into five major categories which are Hierarchical-based cluster-

ing, Partitioning-based clustering, Density-based clustering, Grid-based clustering, and Model-

based clustering (Amini et al., 2014). Several data stream cluster algorithms with minimum

time and memory demands have been proposed over the years using the aforementioned clus-

tering categories. These algorithms typically need only one pass through the data in order to

adapt to concept drifts.

• Hierarchical-based clustering- a given data is grouped into a tree of clusters. Merging

or splitting clusters are required. Some algorithms for streaming data here are Balanced

Iterative Reducing and Clustering using Hierarchies (BIRCH) (Zhang et al., 1996), E-

Stream (Udommanetanakit et al., 2007), ClusTree (Kranen et al., 2009), and HUE-Stream

(Meesuksabai et al., 2011). A notable development of these cluster analysis algorithms

is the aforementioned BIRCH which builds statistical summaries of the clusters. BIRCH

is able to learn concepts incrementally. These statistical summaries consist of Clustering

Features (CF) (i.e., Clustering Feature vector) to group the data points. Where CF =

(n,LS,SS). LS means a linear sum of a feature’s data, while SS means a square sum

of a feature’s data. CFs are considered suitable for clustering of data streams as it can

be initiated dynamically in real-time. These statistical summaries are also often referred

to as Micro-Clusters. However, BIRCH does not forget concepts, and thus its ability to

adapt to concept drifts is limited (Ding et al., 2015).

E-Stream is an evolution based stream clustering method. A new data instance arriving

can be considered as a separate cluster if it is outside the boundary of the existing clus-

ters. However, outliers may be fused in (i.e., absorbed) by the existing clusters before

splitting. An extension of the E-Stream algorithm known as HUE-Stream. Where clus-

ters are merged using a distance function. The nearest cluster of a new data instance is

identified using a distance function as well. Whereas, the splitting of clusters is applied

using histogram management.

The ClusTree (Kranen et al., 2009) algorithm mentioned above is an extension of BIRCH.

It implements a hierarchical data stream clustering algorithm. Some improvements are
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applied to Micro-Clusters by updating their measures (i.e., µ and σ ) incrementally with-

out visiting the previous (i.e., past) data stream. A Micro-Cluster has to be stored and

represented as a hierarchy of CF at multi-levels (i.e., sub-trees) which is updated by in-

serting new data into the nearest sub-tree using Euclidean distance to measure the distance

between two points (i.e., CFs). Whereas, splitting can be applied according to pairwise

distances between CFs which did not contribute to the clustering. However, the height

of the generated tree can be increased significantly with each split of CFs. Although a

single-pass over the stream is required with limited memory usage (Kranen et al., 2009),

noise is inserted at leaf level as a new data point (Hassani et al., 2011).

• Partitioning-based clustering- a particular set of observations is grouped or clustered

(i.e., a partition) according to the similarities of their characteristics. Where a partition

represents a cluster. A distance function is used to form the clusters. CluStream (Aggar-

wal et al., 2003), High-dimensional Projected data Stream clustering (HPStream) (Aggar-

wal et al., 2004a), and Micro-Cluster Nearest Neighbour (MC-NN) (Tennant et al., 2017)

have been proposed as Partitioning-based clustering.

An extension of BIRCH aforementioned above is the CluStream algorithm which extends

the Micro-Clusters with a time component, enabling the algorithm to forget old and obso-

lete concepts and to browse through historical models. The structure of Micro-Clusters is:

< CF2x,CF1x,CF2t ,CF1t ,n >. Where CF2x is a vector with the sum of squares of the

features. CF1x is a vector with the sum of feature values. CF2t is a vector with the sum

of squares of time stamps. CF1t is a vector with the sum of time stamps. n is the number

of data instances in the cluster. CluStream consists of two phases which are online and

offline clustering. Summary statistics are acquired from the data stream in the first phase

(i.e., online). These statistical summaries are then used for creating the clusters in the sec-

ond phase on demand (i.e., offline) using the k-means algorithm (Lloyd, 1982). Although

Micro-Clusters applied online as a complete pass over the given data is not required, mul-

tiple scans of the data are needed in the second phase (i.e., offline). Hence, large data

streams may not be handled properly (Mousavi et al., 2015). In addition, CluStream is

unable to handle noise and outliers as stated in (Amini et al., 2011; Barddal et al., 2016;

Ghesmoune et al., 2016).

HPStream has been applied in an online-offline processing. The initial clusters are cre-

ated using k-means algorithm (i.e., an offline process). The set of features associated with
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each cluster is updated by fading the entire cluster structure using a Fading Cluster Struc-

ture (FCS). FCS gives more importance to recent data by minimising the weight of old

observations in a data stream over time (Hahsler et al., 2010). However, the algorithm is

susceptible to noise (Gao and Zhang, 2013).

A more recent extension of CluStream is the MC-NN algorithm. MC-NN is also built on

a further extension of the CluStream’s Micro-Clusters, it adds splitting of Micro-Clusters

to adapt to concept drift and uses these Micro-Clusters primarily for parallel predictive

analytics in real-time. Whereas, Micro-Clusters which are not participating anymore are

removed as they are considered old.

• Density-based clustering- the clusters are formed in terms of dense area. A given clus-

ter is continuously grown until the density in the neighbourhood reaches some thresh-

old. DenStream (Cao et al., 2006) has been proposed as Density-based clustering. The

Micro-Clusters were improved in terms of handling noise and outliers by proposing the

DenStream which consists of three main tasks which are creating new Micro-Clusters,

merging two nearest Micro-Clusters, and deleting Micro-Clusters. A new Micro-Cluster

is created when the newly arrived instances are outside the density boundary of nearest

Micro-Clusters. Whereas, a Micro-Cluster which is not participating anymore is removed

as it is considered an outlier. However, Amini et al. (2014) and Thoriya and Shukla (2015)

stated that identifying and removing the outlier Micro-Clusters is a time-consuming pro-

cess in the algorithm which is the main challenge that this algorithm faces.

• Grid-based clustering- a given data is divided into a number of data points. Where a

data point represents a data instance. The density of each point is calculated, and then

cluster centres are identified for the purpose of clustering the nearest points. A Grid-

based Clustering algorithm to cluster High-dimensional Data Streams called (GCHDS)

(Lu et al., 2005), and Probability and Distribution-based Clustering (POD-Clus) (Chao-

valit and Gangopadhyay, 2009) have been proposed as Grid-based clustering.

In GCHDS, a summary of data is generated using a grid structure which is updated over

time. The data distributions are analysed on each data point in order to identify the best

data points which can be used to construct a subspace in which the clustering process is

performed.

Regarding POD-Clus, the main aim of this algorithm is to update summaries of the data
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points using the normal distribution. In each POD-Clus’ cluster, n data points are re-

ceived from each incoming data stream. When new data arrives, statistical summaries are

calculated such as µ , σ , and the Covariance matrix. POD-Clus measures the similarity

between data streams using these summaries. However, Bones et al. (2015) and Shukla

et al. (2017) stated that POD-Clus is consider computationally inefficient algorithm.

• Model-based clustering- the main task of this clustering technique is to recover the orig-

inal model from data as it assumes that the data are created through a model. Hence,

clusters and a relationship of objects to clusters are identified from the recovered model.

Distributed data stream clustering called (CluDistream) (Zhou et al., 2007) and incremen-

tal and adaptive clustering stream data over sliding window called (SWEM) (Dang et al.,

2009) have been proposed as Model-based clustering.

In CluDistream, an iterative technique called Expectation Maximization (EM) is used

for clustering streaming data. EM identifies maximum estimates (i.e., probabilities) of

parameters in statistical models. However, a landmark window is used with the EM which

is implemented at every node of the distributed network.

Regarding SWEM, a sliding window is used with the aforementioned EM above. SWEM

creates a summary of data by scanning the data. Data clusters are then created using the

summary.

However, the research presented in this work is inspired by the ability of MC-NN’s Micro-

Clusters to adapt to concept drift and has developed a new Micro-Cluster structure. This could

be used for the purpose of concept drift detection and tracking features to identify the causality

of drifting. Thus MC-NN will be discussed in more detail in Chapter 3.

Table 2.4 summarises the data stream clustering algorithms presented in this section. The ta-

ble shows the author(s), a title of the algorithm, and whether the algorithm applies/provides/handles

the issue of single-pass processing, statistical summaries, concept drift detection, and dynamic

feature selection.

33



Mahmood Shakir Hammoodi Chapter 2

Table 2.4: Summary of data stream clustering algorithms.

Author(s) Algorithm
Single-Pass
Processing

Statistical
Summaries

Concept
Drift Detection

Dynamic
Feature Selection

Zhang et al. (1996) BIRCH Apply Provide Not handle Not handle
Udommanetanakit et al. (2007) E-Stream Not apply Provide Not handle Not handle
Kranen et al. (2009) ClusTree Not apply Provide Not handle Not handle
Meesuksabai et al. (2011) HUE-Stream Not apply Provide Not handle Not handle
Aggarwal et al. (2003) CluStream Not apply Provide Not handle Not handle
Aggarwal et al. (2004a) HPStream Not apply Provide Not handle Not handle
Tennant et al. (2017) MC-NN Apply Provide Not handle Not handle
Cao et al. (2006) DenStream Not apply Provide Not handle Not handle
Lu et al. (2005) GCHDS Apply Provide Not handle Not handle
Chaovalit and Gangopadhyay (2009) POD-Clus Apply Provide Not handle Not handle
Zhou et al. (2007) CluDistream Apply Provide Not handle Not handle
Dang et al. (2009) SWEM Apply Provide Not handle Not handle

2.5 Summary of Reported Literature

This section analyses the reported methods and algorithms in this chapter with respect to provide

the statistical summaries with single-pass processing, adaptation to concept drift in real-time,

and handling dynamic feature selection. In the reported literature, some of the proposed algo-

rithms have been applied in online-offline processing such as CluStream, ClusTree, DenStream,

E-Stream, and HPStream (Ghesmoune et al., 2016). In data stream analytics, single-pass pro-

cessing is required (Gaber et al., 2005). Although most of the grid-based clustering algorithms

and the model-based clustering algorithms are able to provide statistical summaries in single-

pass processing, the grid-based clustering algorithms are consider computationally expensive

as stated in (Kriegel et al., 2009), whereas the model-based clustering algorithms are suscep-

tible to noise and outliers as stated in (Amini et al., 2014). Regarding concept drift detection

methods such as CUSUM, DDM, EDDM, EWMA, and ADWIN, these methods are frequently

used (Sidhu and Bhatia, 2015). However, they are either applied offline or unable to handle

different types of concept drifts such as recurring concept drift and gradual concept drift as

well as feature-bias, outliers, and noise (Brzezinski and Stefanowski, 2014). In addition, infor-

mation (i.e., tracking features) into the causes of the drift, i.e. which features were involved,

not included or mentioned with these methods. It is possible that features may become more

or less relevant for a data mining model, i.e. a decision tree. Thus, feature selection methods

are required. In the reported literature, some methods have been proposed such as LDA, CCA,

Multi-View CCA, and PCA. Although they are frequently used for the purpose of feature selec-

tion (Ahsan and Essa, 2014; Lee et al., 2015), they need to be applied in advance (i.e., offline).
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Online feature selection methods have been proposed such as OFS, SOFS, GFSSF, and Fast-

OSFS. However, they are assumed that the candidate features are generated dynamically and

arrive one feature at a time. This is called streaming feature selection (Wu et al., 2010; Yu et al.,

2012) which is out of the scope of this research study. Where DSM applications are assumed

that data instances are generated dynamically and arrive one data instance at a time. A data

instance consists of one or more features.

This chapter has presented 39 previous methods/algorithms, and Table 2.5 reports the num-

ber of methods/algorithms applying/providing/handling the issues that are addressed in this

research study. From the literature reported in this chapter, 61.54% of the research works fo-

cused on the single-pass processing, 30.77% of the research works concentrate on the statistical

summaries, 12.82% of the research works focused on the concept drift detection, while none

of the research works handles the dynamic feature selection. Adaptive and computationally

efficient feature selection method in combination with concept drift detection method is re-

quired as the feature may have become either more or less relevant to the current concept.

Where features which were involved in drifting are discarded using feature selection. How-

ever, the discarded features are ranked and evaluated over time to be selected as relevant for the

classification task using feature selection, i.e., dynamic feature selection which was described

previously in this chapter (see Figure 2.2). This can be applied using the statistical summaries

provided by MC-NN Micro-Clusters. MC-NN has been applied in single-pass processing us-

ing adaptive Micro-Clusters which can adapt to concept drift in real-time. Two main tasks are

rapidly applied over time stamps when new concepts arrive which are splitting and removal

of Micro-Clusters. Hence, moving in different directions at different speed rates are expected.

Where a direction represents a feature. Splitting, removal, and movement of Micro-Clusters

could be tracked through providing the statistical summaries over time windows. This could be

used for the purpose of concept drift detection and tracking features to identify the causality of

drifting. Therefore in this research study, the focus is given more on MC-NN as it is considered

as a promising approach rather than the aforementioned methods. MC-NN will be highlighted

in greater detail in Chapter 3.
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Table 2.5: Summary of the reported literature.

Issue

No. of Previous
Methods/Algorithms that
Apply/Provide/Handle
the Issue

%

Single-Pass Processing 24 61.54%
Statistical Summaries 12 30.77%
Concept Drift Detection 5 12.82%
Dynamic Feature Selection 0 0.00%

2.6 Summary

This chapter provides some background and concepts of data stream pre-processing technique,

concept drift, feature selection, data stream classification, and data stream clustering, as well

as presents and explains methods and algorithms previously proposed to detect drift and select

relevant features. This research aims to use the knowledge about a feature’s involvement in the

concept drift in order to develop a real-time feature selection method that can be used by a range

of classification approaches as it feeds forward information about the involvement of individual

features in the drift. This can be achieved using the statistical summaries provided by MC-NN

Micro-Clusters. Therefore, this research study is giving focus more on MC-NN rather than

the aforementioned methods and algorithms presented in this chapter because of these useful

properties of MC-NN. This will be introduced in the next chapter.
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Chapter 3

Micro-Cluster Nearest Neighbour

(MC-NN)

This chapter analyses and summarises the previously briefly discussed MC-NN algorithm (see

Chapter 2) developed by Tennant et al. (2017). MC-NN has been identified in Chapter 2 as a

promising data stream classification approach exhibiting several properties that can be adapted

to realise real-time feature selection from streaming data. It has originally been developed

for predictive data stream analytics using Micro-Clusters which are able to adapt to unexpected

changes on the stream through parallelisation. However, the underlying Micro-Cluster structure

of MC-NN has been adapted and extended in this research in order to develop a drift detection

method. MC-NN generates and updates Micro-Clusters incrementally over time stamps. Where

maximum number of Micro-Clusters can be identified by a user (i.e., 100 Micro-Clusters).

Moving in different directions (i.e., a direction represents a feature) is the main feature of a

Micro-Cluster (i.e., Velocity). This can be used for the purpose of tracking and identifying

the causality of drifting through tracking statistical summaries (i.e., historical statistics such as

Velocity) over time windows. Thus MC-NN is discussed in greater detail. Essentially there

are three operations to adapt MC-NN to concept drifts: (1) absorption of data instances into

nearest Micro-Clusters, (2) splitting of Micro-Clusters with high Variance and (3) removal of

obsolete Micro-Clusters. The chapter is organised as follows. In Section 3.1, the structure

of MC-NN Micro-Clusters is presented. In Section 3.2, absorbing instances is explained. In

Section 3.3, splitting of a Micro-Cluster using Variance is presented. In Section 3.4, removal

of a Micro-Cluster is explained. Section 3.5 discusses as to how MC-NN can be developed for

drift detection, feature tracking, and feature selection. Section 3.6 discusses the experimental
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setup. Section 3.7 summarises this chapter.

3.1 The Structure of MC-NN Micro-Clusters

MC-NN’s Micro-Clusters provide statistical summaries of feature values retrieved from the

stream over time windows. In Tennant et al. (2017), the structure of Micro-Clusters is:

<CF2x,CF1x,CF1t ,n,CL,ε,Θ,α,Ω >. Details about the Micro-Cluster structure components

are listed in Table 3.1.

Table 3.1: The structure of MC-NN Micro-Clusters.

Structure Description
Component
CF2x a vector with the sum of squares of the features
CF1x a vector with the sum of feature values
CF1t a vector with the sum of time stamps
n the number of data instances in the cluster
CL the majority class label of the cluster
ε the error count
Θ the error threshold for splitting the Micro-Cluster
α the initial time stamp
Ω a minimum (user defined) threshold for the

Micro-Cluster minimum participation

The components listed in Table 3.1 can be used to compute the centroid for the feature

within a Micro-Cluster x:

centroid(x) =
CF1x

n
(3.1)

and the Variance (i.e., the boundary) of a feature within a Micro-Cluster:

Variance[x] =

√(
CF2x

n

)
−
(

CF1x

n

)2

(3.2)

Equations 3.1 and 3.2 represent the summary information of each feature within a Micro-

Cluster which are required for the purpose of absorbing of a new instance to its nearest Micro-

Cluster. Hence, the equations are updated after each absorbing within a statistical time win-

dow (i.e., this will be highlighted in Section 3.2). Thus, the centroid (i.e., the position) and

the Variance of each feature within the Micro-Cluster are expected to be changed over time

stamps. Therefore, Micro-Clusters are moving in different directions (i.e., a direction repre-
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sents a feature). This can be tracked (i.e., the movement of the Micro-Clusters) for the purpose

of identifying the involved features, which features were involved in the drift.

3.2 Absorbing Instances

Each centroid of a feature within a Micro-Cluster is updated by adding a new instance to its

nearest Micro-Cluster by updating the statistical summaries (see Table 3.1) if it is within the

boundary (Variance) of the Micro-Cluster (i.e., this is illustrated in Figure 3.1). Where Eu-

clidean distance is used to measure the distance between a new data instance and its nearest

Micro-Cluster. The error ε is decremented by 1 if a new instance matches the CL. Otherwise,

if the nearest Micro-Cluster does not match the CL, then the new instance is still added to the

nearest Micro-Cluster. However, the Micro-Cluster error ε is incremented by one; also the error

ε of the nearest Micro-Cluster that matches the CL is incremented by 1. In the case that the data

instance is outside the boundary (Variance) of its nearest Micro-Cluster, then loosely speaking,

the instance builds a new Micro-Cluster. In this chapter, only two features (i.e., dimensions) are

displayed for readability of the figures in this thesis. However, Micro-Clusters can be initialised

and used with any number of features.

Figure 3.1: An example of adding a new instance to the nearest Micro-Cluster.

Consider the centroids of two features within two Micro-Clusters A and B which are shown

in Figure 3.2 with Variance 941.98 and 1277.65, consequently. Where centroid of Feature 1

and 2 within Micro-Cluster A is (3,3), and centroid of Feature 1 and 2 within the Micro-Cluster

B is (10,8).
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Figure 3.2: An example of two features within two Micro-Clusters.

• Case 1: Consider a new instance (9.5,7) with Variance equals to 300.95.

Euclidean distance between the new instance and the Micro-Cluster A =
√

∑
n
i=1(xi− yi)2

=
√

(9.5−3)2 +(7−3)2 =
√

42.25+16 = 7.63216.

Euclidean distance between the new instance and the Micro-Cluster B =
√

∑
n
i=1(xi− yi)2

=
√

(9.5−10)2 +(7−8)2 =
√

0.25+1 = 1.11803.

As it can be seen that the Micro-Cluster B is the nearest Micro-Cluster to the new instance.

The new instance is also inside the boundary (Variance) of its nearest Micro-Cluster B.

Hence, the new instance is absorbed to its nearest Micro-Cluster B, as shown in Figure

3.3.

Figure 3.3: An example of adding a new instance to the nearest Micro-Cluster.
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• Case 2: Consider a new instance (8,3) with Variance equals to 1200.98.

Euclidean distance between the new instance and the Micro-Cluster A =
√

∑
n
i=1(xi− yi)2

=
√

(8−3)2 +(3−3)2 =
√

25+0 = 5.

Euclidean distance between the new instance and the Micro-Cluster B =
√

∑
n
i=1(xi− yi)2

=
√

(8−10)2 +(3−8)2 =
√

4+25 = 5.38516.

As it can be seen that the Micro-Cluster A is the nearest Micro-Cluster to the new instance.

However, the new instance is not absorbed to its nearest Micro-Cluster A as the new

instance is outside the boundary (Variance) of its nearest Micro-Cluster. Hence, a new

Micro-Cluster is created, the instance becomes a new Micro-Cluster, as shown in Figure

3.4.

Figure 3.4: An example of creating a new Micro-Cluster.

3.3 Splitting of a Micro-Cluster using Variance

MC-NN splits a Micro-Cluster into two new clusters once the error count ε reaches Θ, and

the original Micro-Cluster is removed in order to improve the fit to evolving data streams as

it has recorded high rate of false positive participating (i.e., ε). The new Micro-Clusters are

placed about the original Micro-Cluster feature that has the greatest Variance for a feature x,

this is illustrated in Figure 3.5. The assumption MC-NN makes here is that the feature with the

highest Variance is the most likely to contribute to mis-absorption. However, an example of

splitting of a Micro-Cluster can be found in Chapter 5 Section 5.3.4.
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Figure 3.5: Splitting of a Micro-Cluster according to the feature with the highest Variance.

The assumption made here for the research presented in this thesis is that continuing splitting

of Micro-Clusters would indicate that a concept drift has happened and the Micro-Clusters

do not fit as well anymore. Hence, this can be tracked through feeding forward statistical

information over a time window for the purpose of concept drift detection, i.e., the Split rates

over time. Whereas, the movement of the new Micro-Clusters which are generated from the

original one can be tracked as well. This can be used for the purpose of identifying features

which have contributed towards a concept drift.

3.4 Death and Removal of a Micro-Cluster using Triangle

Numbers

MC-NN removes a Micro-Cluster if it has not participated recently in absorbing new data in-

stances, which can be calculated from CF1t by measuring the Triangle Number (Equation 3.3).

This is called Micro-Cluster Death. Figure 3.7 shows an example for calculating the Triangle

Number of a Micro-Cluster.

Triangle Number ∆(T ) = ((T 2 +T )/2) (3.3)

The Triangle Number gives more weight to recent Micro-Clusters than the older ones. If the

participation percentage of a Micro-Cluster is lower than Ω, then the Micro-Cluster is removed.

The assumption MC-NN makes is that older non-participating Micro-Clusters reflect old and

potentially obsolete concepts. The assumption made here for the research presented in this

thesis is that continuing removing of Micro-Clusters would indicate that a concept drift has
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happened and the Micro-Clusters do not fit as well anymore. Hence, this can be tracked through

feeding forward statistical information over a time window for the purpose of concept drift

detection, i.e., the Death rates over time.

The process of calculating the Triangle Number is given in Figure 3.6 and highlighted in a

concrete example in Figure 3.7. Consider the Micro-Cluster in the example. It was created at

time stamp 2 and updated with instances at time stamps 4 and 6, the current time stamp is 7 but

here it was not updated. On the right-hand side of Figure 3.7 is depicted how the different steps

in the process illustrated in Figure 3.6 are calculated.

Figure 3.6: The process of calculating the Triangle Number for a Micro-Cluster.
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Figure 3.7: An example of Triangle Number calculation. The shaded areas signify the time
stamps. Where the Micro-Cluster has participated in absorbing new instances for a specific
time stamp.

3.5 Taking MC-NN Forward to Develop a Real-time Pre-Processing

Technique

Chapters 4, 5 and 6 take some of MC-NN ideas forward to facilitate real-time pre-processing

technique. The basic idea is to monitor Micro-Cluster Split and Death rates in order to detect

concept drifts. It is expected that concept drifts will cause a peak in splitting and removing

Micro-Clusters because they do not fit the concepts very well anymore. The Velocity, i.e. the

rate and direction of movement of the Micro-Clusters can be used as an indication as to which

features have changed and potentially contributed towards a concept drift. Then in turn features

that have shown significant changes during a concept drift can be examined separately for their

relevance to the classification task (i.e., real-time feature selection). A preliminary result which

shows that the developed method is capable of detecting a concept drift but also delivers an

indication which features are involved has been published in a conference paper (see Chapter

1).

For clarity in this research study note the semantic distinctions in the thesis usage of three

terms relating to time and temporal referencing of a point or an interval in the timeline, namely

’time’, ’time window’, and ’time stamp’. In the thesis analysis ’time’ and ’time window’ are
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regarded as equivalent references used interchangeably to mean duration of time as encapsulat-

ing a set of data instances with sequential time intervals of fixed length. Whereas, ’time stamp’

refers to a specific data instance at a specific point in time. For example, assuming a stream has

generated 2000 sequential data instances and each time window is of length 1000, then there

would be two time windows, time window 1 from time stamp 0 to 999 and time window 2 from

time stamp 1000 to 1999. This may be for example referred to in the thesis as time 1 or time 2

meaning the window 1 and 2.

3.6 Experimental Setup

The implementation of experiments was realised in the Massive Online Analysis (MOA) frame-

work (Bifet et al., 2010). Two types of data were used, artificial data stream generators from the

MOA framework and real datasets. The reason for using artificial datasets is because MOA’s

data stream generators enable the introduction of different kinds of concept drift deliberately

and thus allow this research to evaluate against a ground truth in terms of concept drift.

3.6.1 Artificial Datasets

The following artificial data stream generators were used:

SEA Generator, this data stream was introduced in work by (Street and Kim, 2001), it

generates data comprising continuous attributes. Whereas, the third attribute is irrelevant for

distinguishing between the class labels.

The HyperPlane Generator was also used, it creates a linearly separable model. It slowly

rotates in ‘D’ dimensions continuously changing the linear decision boundary of the stream

(Brzezinski and Stefanowski, 2014). This constant concept change makes it very difficult for

data stream classifiers to keep a good classification accuracy and remain computationally effi-

cient.

The final data stream generator used was the Random Tree Generator, which was intro-

duced in work reported by (Domingos and Hulten, 2000) and generates a stream based on a

randomly generated tree. New examples are generated by assigning uniformly distributed ran-

dom values to features, which then determine the class label using the random tree.

Fifteen datasets were generated using the aforementioned generators, each comprising three

features, two class labels, and a concept drift. The concept drift was always induced halfway

45



Mahmood Shakir Hammoodi Chapter 3

through the stream by both, inducing a gradual concept drift through the in MOA implemented

data stream generators methods and by swapping features (swapping of features is considered

as a sudden concept drift). The reason behind this is that at the beginning of gradual concept

drift (before more data instances are seen), an instance might be mistaken as random noise.

Therefore, a long period of time is required to detect the gradual concept drift (Žliobaitė, 2010;

Brzezinski and Stefanowski, 2014). Hence, in the fifteen datasets, the sudden concept drift was

generated after the gradual concept drift as known ground truth to show that the method pre-

sented in this research is robust to detect the actual/real concept drifts. However, other groups

of artificial datasets with gradual concept drift and recurring concept drift induced as known

ground truth through only swapping features are given in Appendices H and I, respectively, in

order to show that the developed method is able to detect different types of concept drift. Details

about the concept drift methods of the individual streams can be found in the works of (Domin-

gos and Hulten, 2000; Street and Kim, 2001; Brzezinski and Stefanowski, 2014). The reason

for inducing concept drift in this particular way is that this enables the testing as to which of the

features has changed its contribution to the underlying model. One would expect the methods

developed here to identify the swapped features as the cause of the concept drift. For each of

these data stream generators, five datasets having concept drift, a second, third, fourth, and fifth

version of the datasets has been generated which included different levels of noise in order to

validate the robustness of the concept drift detection and feature tracking methods. Table 3.2

shows an overview of the generated streams including settings of the developed method and

which features have been swapped. In order to increase the readability of the figures (i.e., re-

sults), in the experiments, a window size equals to 10% of the total number of instances. Hence,

the expression Time t refers to a specific time window. I.e. according to the figures of the ex-

periments in this chapter time T=1 refers to instances 1-1000, T=2 to instances 1001-2000,

etc.

3.6.2 Real Datasets

Two sets of experiments were setup. One controlled set of experiments to validate whether

the method can detect concept drifts and causality of concept drift on real datasets correctly.

For this, features were swapped halfway through the stream to generate a known ground truth

concept drift. Five real datasets with continuous features were chosen randomly from the UCI

Machine Learning Repository (Lichman, 2013). Table 3.3 shows an overview of controlled real
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Table 3.2: Setup of the artificial datasets. Drifts were generated through the individual data
stream generators and by swapping features.

Dataset
Number of
Instances
Generated

Time of
Concept
Drift
by Generator

Window
Size

Θ

Index of
Swapped
Features

Time of
Swapped
Features

Percentage
of Noise

SEA 10,000 5000 1000 3 2 with 3 6000 -
SEA 10,000 5000 1000 27 2 with 3 6000 5
SEA 10,000 5000 1000 34 2 with 3 6000 15
SEA 10,000 5000 1000 75 2 with 3 6000 25
SEA 10,000 5000 1000 155 2 with 3 6000 35
HyperPlane 10,000 5000 1000 6 1 with 2 6000 -
HyperPlane 10,000 5000 1000 6 1 with 2 6000 5
HyperPlane 10,000 5000 1000 13 1 with 2 6000 15
HyperPlane 10,000 5000 1000 27 1 with 2 6000 25
HyperPlane 10,000 5000 1000 59 1 with 2 6000 35
Random Tree 10,000 5000 1000 644 1 with 2 6000 -
Random Tree 10,000 5000 1000 660 1 with 2 6000 5
Random Tree 10,000 5000 1000 726 1 with 2 6000 15
Random Tree 10,000 5000 1000 685 1 with 2 6000 25
Random Tree 10,000 5000 1000 200 1 with 2 6000 35

datasets including settings of the developed method and which features were swapped. Two

versions of each dataset were used with two features (indexes of swapped features are 1 with

4), and four features (indexes of swapped features are 2 and 3 with 5 and 6) have been selected

randomly to be swapped in order to validate whether the feature tracking method can identify

the changed features correctly.

Table 3.3: Setup of the real datasets for the controlled set of experiments for concept drift
detection and feature tracking.

Dataset Number of
Instances

Number of
Features

Number of
Class Labels

Θ

Index of
Randomly Swapped
Features

Time of
Swapping

CoverType 581,012 6 7 6,000 1 with 4 6
CoverType 581,012 6 7 35,500 2 and 3 with 5 and 6 6
Diabetic Retinopathy Debrecen 1,151 6 2 95 1 with 4 6
Diabetic Retinopathy Debrecen 1,151 6 2 57 2 and 3 with 5 and 6 6
Gesture Phase Segmentation 1,747 6 5 73 1 with 4 6
Gesture Phase Segmentation 1,747 6 5 74 2 and 3 with 5 and 6 6
Statlog (Landsat Satellite) 4,435 6 7 50 1 with 4 6
Statlog (Landsat Satellite) 4,435 6 7 251 2 and 3 with 5 and 6 6
Waveform (with Noise) 5,000 6 3 301 1 with 4 6
Waveform (with Noise) 5,000 6 3 360 2 and 3 with 5 and 6 6

The second set of experiments was uncontrolled, five real datasets were used, and no fea-

tures were swapped, in order to show that the method presented in this research is robust to

more realistic application scenarios. It should be noted that the controlled real datasets men-

tioned above (Table 3.3) have been re-used for the experiments here (real-time pre-processing
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technique) under uncontrolled conditions. This time all features were included. It is expected

that these original versions of real datasets are more challenging for data stream algorithms to

induce good models compared with reduced versions described in Table 3.3. The developed

real-time pre-processing technique which consists of concept drift detection method, feature

tracking method and also real-time feature selection method was applied. Table 3.4 shows

an overview of uncontrolled real datasets including settings of the developed technique. The

robustness of the technique was measured by applying a Hoeffding tree classifier, and the clas-

sification accuracy was monitored over time windows. Also, a control group of experiments was

setup. Where only a Hoeffding tree classifier was applied thus excluding any of the methods

developed in this research work. The Hoeffding tree classifier has been chosen as it is one of

the most popular data stream classifiers and best performing classifier in the MOA framework

(Marrón et al., 2017). However, the developed technique is independent of the classifier used,

and the user may choose a different classification method.

Table 3.4: Setup of real datasets for the uncontrolled set of experiments for concept drift detec-
tion, feature tracking and real-time feature selection.

Real Dataset Number of
Instances

Number of
Features

Number of
Class Labels

FIFO’s Size
(Maximum)

Θ

CoverType 581,012 54 7 1000 50,000
Diabetic Retinopathy Debrecen 1,151 19 2 1000 6
Gesture Phase Segmentation 1,747 19 5 1000 56
Statlog (Landsat Satellite) 4,435 36 7 1000 28
Waveform (with noise) 5,000 40 3 1000 175

In order to increase the readability of the figures (i.e., results), for each real dataset in the

experiments, a window size was set to a value that is either less or equal to 10% of the num-

ber of instances. In the figures, the expression Time t refers to a specific time window. I.e.

according to figures (results) time T=1 refers to instances 1-500, T=2 to instances 501-1000,

etc. The classification accuracy was calculated using the Prequential Testing method imple-

mented in MOA (Bifet and Frank, 2010), which essentially calculates a running average of the

classification accuracy.

For the experiments in this chapter, Ω (i.e., a minimum (user-defined) threshold for the

Micro-Cluster minimum participation) was set to 50 as this yielded good results in most cases,

as stated in (Tennant et al., 2017). The Percentage Difference of Split and Death rates and α

rate of Low Pass Filter (LPF) were set to 50% as it yielded good results for each individual

dataset as examined in Appendix A. Whereas, Θ was set to a relevant value that yielded good

results for each individual dataset as examined in Appendix D. Regarding the FIFO queue, it
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was set to a 1000 instances, as this setting yielded good results in most cases as examined in

Appendix B.

3.7 Summary

This chapter introduced MC-NN algorithm which aims to keep a recent accurate summary of

the data stream using Micro-Clusters. The statistical summaries such as Split and Death rates

can be calculated using Micro-Clusters for the purpose of drift detection. This research study is

giving focus more on MC-NN rather than the aforementioned methods and algorithms presented

in Chapter 2 because of these useful properties of MC-NN. This will be introduced in the next

chapter.
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Chapter 4

Real-Time Concept Drift Detection

Method using Adaptive Micro-Clusters

The work in this chapter directly links to Objective 1 to identify a drift point (i.e., concept

drift) through tracking the significant changes in the statistical summaries in real-time. The

work described in this chapter is based on the Micro-Cluster structure of the MC-NN algorithm

presented in Chapter 3. The MC-NN algorithm aims to keep a recent and accurate summary of

the data stream using Micro-Clusters. Significant changes to these summaries (i.e., historical

statistics) are used in this research to detect concept drift. The chapter is organised as follows.

In Section 4.1, detecting concept drift using adaptive Micro-Clusters is introduced. Section 4.2

presents a working example which shows how a concept drift is detected. The performance,

implementation, and results of the developed method are discussed in Section 4.3 with respect

to real and artificial datasets. In Section 4.4, a summary of this chapter is presented.

4.1 Detecting Concept Drift using Adaptive Micro-Clusters

It is expected that during a concept drift the data distribution of Micro-Clusters changes (caus-

ing larger Variance within Micro-Clusters), but also it is expected that Micro-Clusters absorb

more incorrect data instances (with different class labels than the Micro-Cluster), as explained

in Chapter 3. MC-NN consists of two main tasks which are the splitting and removal of Micro-

Clusters (referred to as Split and Death). When new concepts arrive, MC-NN adapts by absorb-

ing and applying Split and Death, as explained in Chapter 3. Loosely speaking, regarding Split,

two new Micro-Clusters are generated from the original one when the error count ε reaches Θ
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threshold due to false positive participation. Likewise, some of the existing Micro-Clusters may

stop to participate as they become obsolete and are removed. In this research this is measured

as Split and Death rates over time simply by using Equation 4.1 for each time window. Here

n is the number of instances in a time window and i is the index of the current data instance

within the current time window, starting with 1 within each time window. Figure 4.1 illustrates

an example of monitoring a Split or Death rate. In this sense, the calculation of Split and Death

is considered gradually instance by instance within a time window. Higher rates of Splits and

Deaths are expected over time. This would indicate that new concepts have arrived or have

changed (see Chapter 3). Hence, a peak in Split and Death rates is used as a trigger to detect

the concept drift.

Split or Death rate = ∑
n
i=1(Number o f Splits or Deathsi−Number o f Splits or Deathsi−1)

n (4.1)

Figure 4.1: An example of Micro-Cluster Split and Death rate.

The assumption is that the larger both rates are, the more likely it is that a concept drift has

happened. Using a windowing approach on the data stream, running averages of the Split and

Death rates are calculated, as well as the Percentage Difference in comparison with the previous

time window which is given by Equation 4.2. In the equation i denotes the current time window.

Percentage Di f f erence =
| Ratei−Ratei−1 |
(Ratei +Ratei−1)/2

∗100 (4.2)

If the Percentage Differences of both, the Split and Death rates differ from the µ value (of

the current and previous window) by 50% (default value), then this is considered a concept
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drift. In this work, the default value of 50% has been used for all experiments as it yielded

good results in most cases as examined in Appendix A. However, the user may change this to

a different threshold. Keeping old concepts would potentially render a concept drift detection

method unable to detect unexpected changes in data streams (Wang et al., 2013). Hence, once a

concept drift is detected, all Micro-Clusters are re-initialised. This is illustrated in Algorithm 1.

Algorithm 1 Detection of Drifts
Input: Micro-Cluster(s) Split and Death rates for current and previous window
Output: Detection of Drifts

1: Calculate the µ of Split and Death rates over the current and previous window
2: Calculate the Percentage Difference for both, Split and Death rates
3: if new Split rate > µ (Split rate) AND new Death rate > µ (Death rate) AND Percentage

Difference (Split rate) > 50% AND Percentage Difference (Death rate) > 50% then
4: Concept Drift
5: re-initialise MC(s)
6: else
7: No Concept Drift
8: end if

A working example is presented in Section 4.2 below.

4.2 Worked Example

Split and Death rates of Micro-Clusters are as shown below in Figure 4.2 for seven consequently

time windows.

Figure 4.2: An example of concept drift detection using the Micro-Clusters Split and Death
rates.
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Consider the Split and Death rates of window (W4), which are equal to 0.3 and 0.04, sepa-

rately. This shows that the Split and Death rates differ from the µ values (i.e., 0.22 and 0.028)

by more than 50% as the Percentage Difference of Split rate equals to 72.727, and the Percent-

age Difference of Death rate equals to 85.714. This indicates that a concept drift has occurred.

Next, the causality of concept drift is tracked through feeding forward the statistical informa-

tion such as Velocity of the features. This will be described in Chapter 5. The performance,

implementation, and results of the developed method are discussed and recorded in Section 4.3

with respect to different real and artificial datasets.

4.3 Empirical Evaluation of Real-Time Concept Drift Detec-

tion Method

The Micro-Clusters Split and Death rates were used for detecting drifts. For the experiment the

default parameters stated in Table 3.2 of the method were used unless stated otherwise. The

evaluation incorporated several levels of noise in the artificial data stream; the different levels

of noise were introduced as listed in Table 3.2 and the real datasets were described in Table 3.3.

In Figures 4.3 to 4.5 the Percentage Difference is displayed up to 100%, however this can

be much higher than 100%. In order to increase the readability of the figures (i.e., results),

a maximum of 100% difference is displayed. Displaying differences above 100% is not very

interesting as the concept drift detection is triggered once a difference of at least 50% was

reached for both Split and Death rates. This 100% cut-off is also applied on all subsequent

figures in this research referring to Percentage Differences of Split and Death rates. During

the time of concept drift higher Split and Death rates are expected as the set of Micro-Clusters

adapts to the new concept and the feature swap. In the figures, it can be seen that the Split and

Death percentage differences at the time of concept drift (after time 5) increase considerably as

expected for all artificial data streams and noise levels. The noise levels do not seem to affect

the concept drift detection considerably; in two cases, however, for a noise level of 25% and

35%, the algorithm did arrive at some false positive detections, i.e., detected concept drifts that

were not there (i.e., unknown ground truth). This could be an indication that the Micro-Clusters

for SEA generator, HyperPlane generator, and RandomTree generator became unstable due to

noise. This will be discussed further in Section 5.4 where mechanisms to deal with noise are

incorporated in the feature tracking method. The actual values of Split and Death rates for the
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Figure 4.3: The results of SEA Data Stream Generator using Micro-Cluster Percentage Differ-
ence of Split and Death rates for drift detection.
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Figure 4.4: The results of HyperPlane Data Stream Generator using Micro-Cluster Percentage
Difference of Split and Death rates for drift detection.
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Figure 4.5: The results of Random Tree Data Stream Generator using Micro-Cluster Percentage
Difference of Split and Death rates for drift detection.
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results shown in Figures 4.3 to 4.5 are given in the Appendix F.

Next, the concept drift detection method was compared with existing state-of-the-art drift

detection methods CUSUM, DDM, EDDM, EWMA, and ADWIN (see Chapter 2 for more

details about these methods) on the same artificial data streams. They are considered the most

well-known drift detection methods that are frequently used (Sidhu and Bhatia, 2015; De Barros

et al., 2018). In addition, they are found in MOA (Bifet et al., 2010). Table 4.1 shows the time

when each of the methods including the developed method, detected a drift and if it was detected

on time. As it can be seen, the developed method always detected the drift at the correct time

except for the Random Tree data stream with 25% and 35% noise. This could be because of

Micro-Clusters becoming unstable due to noise.

If a method detects a drift falsely, then this would cause unnecessary adaptation by the

classifier to a non-existing drift. This is referred to as a false positive. Correctly detected

drifts are referred to as true positives. The outcome of the experiments (each with one actual

drift) is shown in Table 4.2. As there are 15 experiments, there is a total of 15 concept drifts

to be detected. In the table it is indicated how many true and false positives each method

detected. As can be seen, the developed method detected all concept drifts and only had 5 false

positives detection. The best competitor in this regard, EWMA, it detected 10 true positives,

5 less than the developed method. However, EWMA has a very high false positives number

(113), compared with only 5 for the developed method. Thus EWMA is triggering frequent

and unnecessary adaptation to concept drift. Also, the remaining competitors found fewer true

positives and a much higher number of false positives compared with the developed method.

The method has also been applied on real datasets as shown in Figures 4.6 to 4.10 where

for each case 1 concept drift has been introduced through the swapping of features as listed in

Table 3.3.

Figure 4.6: The results of CoverType Dataset with 6 Features using Micro-Cluster Percentage
Difference of Split and Death rates for drift detection.
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Table 4.1: Adaptation to concept drift using the initially developed and other state-of-the-art
methods.

Generator Method
Number of

Drift
Detections

Times when
Drift Detected Drift Detected

SEA

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 2 5 and 8 Incorrectly
EDDM 2 5 and 8 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 1 5 Incorrectly

SEA with Noise 5

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 5 Incorrectly
EWMA 6 2 to 5, 7, and 8 Incorrectly
ADWIN 3 1, 5, and 6 Correctly

SEA with Noise 15

The Developed Method 1 6 Correctly
CUSUM 2 5 and 8 Incorrectly
DDM 1 5 Incorrectly
EDDM 2 1 and 4 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 2 5 and 9 Incorrectly

SEA with Noise 25

The Developed Method 1 6 Correctly
CUSUM 2 5 and 6 Correctly
DDM 1 4 Incorrectly
EDDM 3 1,4, and 6 Correctly
EWMA 9 1 to 9 Correctly
ADWIN 3 4,5, and 8 Incorrectly

SEA with Noise 35

The Developed Method 2 6 and 10 Correctly
CUSUM 2 4 and 8 Incorrectly
DDM 2 4 and 6 Correctly
EDDM 2 4 and 5 Incorrectly
EWMA 6 2 to 5,7, and 8 Incorrectly
ADWIN 4 1,4,5, and 9 Incorrectly

HyperPlane

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 5 Incorrectly
EWMA 8 1 to 5 and 7 to 9 Incorrectly
ADWIN 3 2,5, and 9 Incorrectly

HyperPlane
with Noise 5

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 5 Incorrectly
EWMA 7 1,2,4 to 6,8, and 9 Correctly
ADWIN 2 2 and 5 Incorrectly

HyperPlane
with Noise 15

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 2 5 and 7 Incorrectly
EDDM 1 5 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 2 2 and 5 Incorrectly

HyperPlane
with Noise 25

The Developed Method 1 6 Correctly
CUSUM 2 5 and 6 Correctly
DDM 2 5 and 6 Correctly
EDDM 2 4 and 7 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 3 2,5, and 8 Incorrectly

HyperPlane
with Noise 35

The Developed Method 3 6,7,and 9 Correctly
CUSUM 2 5 and 6 Correctly
DDM 2 4 and 7 Incorrectly
EDDM 2 4 and 6 Correctly
EWMA 9 1 to 9 Correctly
ADWIN 4 2 and 4 to 6 Correctly

Random Tree

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 5 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 2 5 and 9 Incorrectly

Random Tree
with Noise 5

The Developed Method 1 6 Correctly
CUSUM - - -
DDM - - -
EDDM - - -
EWMA 7 1 to 5,7, and 8 Incorrectly
ADWIN 2 5 and 9 Incorrectly

Random Tree
with Noise 15

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 5 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 2 5 and 9 Incorrectly

Random Tree
with Noise 25

The Developed Method 2 6 and 10 Correctly
CUSUM 1 7 Incorrectly
DDM - - -
EDDM - - -
EWMA 9 1 to 9 Correctly
ADWIN - - -

Random Tree
with Noise 35

The Developed Method 2 3 and 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 2 5 and 7 Incorrectly
EWMA 8 1 to 5 and 7 to 9 Incorrectly
ADWIN 2 5 and 7 Incorrectly
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Table 4.2: Summary of concept drift adaptation experiments referring to Table 4.1.

Method True
Positives

False
Positives

The Developed Method 15 5
CUSUM 3 16
DDM 2 16
EDDM 2 19
EWMA 10 113
ADWIN 2 33

Figure 4.7: The results of Diabetic Retinopathy Debrecen Dataset with 6 Features using Micro-
Cluster Percentage Difference of Split and Death rates for drift detection.

Figure 4.8: The results of Gesture Phase Segmentation Dataset with 6 Features using Micro-
Cluster Percentage Difference of Split and Death rates for drift detection.
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Figure 4.9: The results of Statlog (Landsat Satellite) Dataset with 6 Features using Micro-
Cluster Percentage Difference of Split and Death rates for drift detection.

Figure 4.10: The results of Waveform (with Noise) Dataset with 6 Features using Micro-Cluster
Percentage Difference of Split and Death rates for drift detection.

In Figures 4.6, 4.7, and 4.10, the CoverType dataset (with 4 features swapped), the Diabetic

Retinopathy Debrecen dataset (with 2 features swapped), and the Waveform dataset (with 2

features swapped), it can be seen that concept drift is detected correctly as the Split and Death

percentage differences at the time of concept drift increase, indicating that the current set of

Micro-Clusters does not fit the concept encoded in the data anymore. Whereas, in Figures 4.6

to 4.10, the CoverType dataset (with 2 features swapped), the Diabetic Retinopathy Debrecen

dataset (with 4 features swapped), the Gesture Phase Segmentation dataset, the Statlog (Landsat

Satellite) dataset, and the Waveform dataset (with 4 features swapped), drift at time of swapped

features (i.e., known ground truth) is not detected. As these data streams are based on real

datasets, it is believed that they potentially contain feature-bias, noise, and outliers and that

these may be the reasons for the developed method not being able to detect the concept drift.

The next chapter will compare this method with the newly developed concept drift detection

method in combination with the new feature tracking method, which is expected to be more

robust to feature-bias, noise, and outliers. The actual values of Split and Death rates for the

results shown in Figures 4.6 to 4.10 are given in Appendix F.
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4.4 Conclusion

This chapter introduced a novel Micro-Cluster based method for drift detection in data streams.

The MC-NN algorithm presented in Chapter 3 aims to keep a recent accurate summary of the

data stream using Micro-Clusters. The statistical summaries such as Split and Death rates

are calculated using Micro-Clusters for the purpose of drift detection. The analyses show that

the method did detect concepts drifts very well on the artificial data streams compared with

alternative concept drift detection methods. On the controlled real datasets seven artificially

induced concept drifts were missed, but unknown concept drifts were detected. As these data

streams are based on real datasets, it is believed that they potentially contain feature-bias, noise,

and outliers and that these may be the reasons for the developed method not being able to detect

the concept drift. The next chapter will compare this method with the newly developed concept

drift detection method in combination with the new feature tracking method, which is expected

to be more robust to feature-bias, noise, and outliers. The next chapter also highlights feature

tracking, which is invoked after a concept drift is detected to examine the causality of the drift

for feature selection purposes.
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Chapter 5

Real-Time Feature Tracking Method using

Adaptive Micro-Clusters

The work in this chapter directly links to Objective 2 to detect the causality of drifts (which

is identified by the developed method in Objective 1, i.e., Chapter 4) through providing the

historical statistics of each feature for identifying which features were involved in drifting over

a statistical time window in real-time. This chapter describes the developed method for tracking

features that have been involved in a concept drift by monitoring statistical information such as

the change of Velocity and Variance of features. These properties are derived from MC-NN

Micro-Clusters and are used once a concept drift is detected as described in Chapter 4. Velocity

and Variance are calculated for each feature of a Micro-Cluster over time stamps. The Velocity

and Variance of the features are then analysed to identify features that have been involved in

the drift. This information can be used for feature selection purposes which will be explained in

Chapter 6. Feature-bias, outliers, and noise potentially influence the tracking of features. Thus

the here presented method incorporates Min-Max Normalisation, IQR, and LPF to counter these

influences. The remainder of this chapter discusses in Section 5.1 how the proposed method

addresses potential feature bias, in Section 5.2 it is explained how the method addresses the

problem of noise, Section 5.3 then explains how the features are tracked and outliers are taken

into consideration. The performance, implementation, and results of the developed method are

discussed in Section 5.4 with respect to real and artificial datasets. Section 5.5 summarises this

chapter.
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5.1 Minimising the Effect of Feature-Bias using Real-Time

Min-Max Normalisation

In this research, a Min-Max Normalisation technique was used as minimum and maximum

values of a feature x can easily be re-initialised in real-time when new instances arrive. Equation

2.1 (see Chapter 2) is applied for every new data instance as shown in Figure 5.1 which shows

a flowchart of Min-Max Normalisation. The alternative techniques explained in Chapter 2

(Decimal Scaling and Z-Score) rely on the σ and the µ and thus require the buffering of data

before Normalisation can be applied. This is undesirable in real-time data analytics. However,

the Normalisation process used in this research study, Min-Max Normalisation, can be updated

incrementally instance by instance. A pre-defined boundary such as [0,100] was used. Old

instances cannot re-normalised as the original data values are not buffered but absorbed in the

statistics of a Micro-Cluster. This could lead to Micro-Clusters not fitting the current concept

well anymore. However, this would also contribute to the detection of the concept drift (Micro-

Cluster Split) as the Variance of the Micro-Cluster would increase and potentially also the error

count ε . Figure 5.2 shows an example of Min-Max Normalisation in real-time.

Next, the Micro-Cluster by which the normalised data instance should be absorbed has to be

determined. For this, the absorbing task of MC-NN described in Chapter 3 is applied. However,

before the data instance is absorbed, a Low Pass Filter (LPF) is applied to the nearest Micro-

Cluster to minimise the effect of noise. This is explained in the next section.

5.2 Minimising the Effect of Noise using Low Pass Filter (LPF)

In this research study, LPF is used as it can be calculated within a time window (i.e., over time

stamps) without buffering of data comparing to alternative techniques discussed in Chapter 2

(Kalman filter and Grid-based filter) which require buffering of data before filtering (Arulam-

palam et al., 2002). Each normalised feature of a new training instance was filtered by LPF

together with its nearest Micro-Cluster in order to improve concept drift detection and feature

tracking. This is illustrated in Figure 5.3 which shows a flowchart of LPF.
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Figure 5.1: Flowchart of Min-Max Normalisation.
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Figure 5.2: An example of Min-Max Normalisation in real-time.
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Figure 5.3: Flowchart of LPF.

LPF is given by the Equation (new f ilter[v] = α ∗new value[v]+ (1−α)∗old f ilter[v]). v

is a feature value of the new data instance. new f ilter[v] and old f ilter[v] can be re-initialised

over time stamps as the buffering of data is not required. The α threshold is set to 0.5 (50%) by

default, as examined in Appendix A. However, the user may change this to a different threshold.

Figure 5.4 shows an example of LPF. The centroid of each filtered feature of a Micro-Cluster

are calculated. Micro-Clusters with normalised and filtered features are passed to the concept

drift detection method which was described in Chapter 4.
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Figure 5.4: An example of LPF.

5.3 Real-Time Feature Tracking

This section describes real-time feature tracking measuring a feature’s Velocity and spread using

both Variance and Inter Quartile Range (IQR) which are derived from the captured statistics of

the Micro-Cluster. Where, the structure of Micro-Clusters is:

<CF2x,CF1x,CF1t ,n,CL,ε,Θ,α,Ω >. Details about the Micro-Cluster structure components

are given in Chapter 3 Table 3.1.

5.3.1 Velocity of Features

Velocity can be tracked through an extension of the MC-NN Micro-Cluster structure by:

<CF1hx,nh >. Where, these components are equivalent to CF1x and n which were described in

Chapter 3. However, the h denotes that these components are historical summaries (taken from

the previous time stamp); previous centroid of a feature x of a Micro-Cluster. The Velocity of x

can then be calculated using Equation 5.1 after each absorbing of a new instance to its nearest

Micro-Cluster (see Chapter 3 Section 3.1), i.e., over time stamps. Figure 5.5 shows an example

of feature Velocity with a Micro-Cluster consisting of two features.

Velocity[x] =| CF1x

n
−CF1h,x

nh
| (5.1)
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Figure 5.5: An example of feature Velocity.

5.3.2 Measuring of the Data Stream Spread using IQR

In the original MC-NN, the spread of the values absorbed in a Micro-Cluster is measured using

Variance. The spread quantifies how varied the set of a feature’s values are. However, the

performance of Variance can be affected negatively by outliers as they may significantly change

the µ . IQR is considered a more robust method with respect to outliers (Leys et al., 2013;

Sunitha et al., 2014) compared with Variance. The first version of the here presented feature

tracker used Variance as a measure of a feature’s spread. However, as expected it was observed

that this approach did not work very well due to its sensitivity to outliers. Thus IQR was

explored as an alternative to Variance in order to obtain a more reliable measure of the Micro-

Cluster spread. The evaluation results presented in Section 5.4 compare the performance of the

proposed feature tracker as obtained using either Variance or IQR. This chapter describes the

new extension of the MC-NN Micro-Cluster structure with IQR for the purpose of splitting a

Micro-Cluster which is explained in the next section.

5.3.3 Splitting of a Micro-Cluster using IQR

One purpose of using IQR in this research is to split a Micro-Cluster once its error counts ε

reaches Θ. The use of ε and Θ was described in Chapter 3. Again original MC-NN uses

Variance and this research prefers IQR as it is more robust to outliers. The assumption here is
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that the larger the IQR of a feature, the greater the range of values that have been seen for that

feature and thus it may contribute to mis-absorption of new data instances.

The new Mirco-Clusters resulting from the Split are generated with Q1 and Q3 quartiles.

The centroids of the new Micro-Clusters are replaced with either Q1 or Q3 in all dimensions

(features). In specific one Micro-Cluster only uses Q1 values and the other only uses Q3 values.

This is shown for one dimension only in Figure 5.6. The original Micro-Cluster is deleted after

the Split is performed.

Figure 5.6: Splitting of a Micro-Cluster with IQR.

Again the results presented in Chapter 4 compare a version of the proposed approach only

using Variance and the other using IQR. The next section provides a working example on Micro-

Cluster splitting for both using Variance and IQR.

5.3.4 Comparison of Splitting using IQR or Variance

This section compares the splitting of a Micro-Cluster containing an outlier using IQR and

Variance. This is to demonstrate that IQR is a more robust metric to split Micro-Clusters if

there are outliers. For simplicity of this illustration the Split along only one feature (dimension)

is observed, as shown in the example and Figure 5.7 below with an outlier.

Consider a feature’s values [x] = 1,1,1.2,2.5,2.8,3,4.6,5,3000, and consider the value 3000

to be an outlier. Then centroid[x] = µ = (1+ 1+ 1.2+ 2.5+ 2.8+ 3+ 4.6+ 5+ 3000)/9 =

335.6778.

• Splitting of centroid with respect to x with IQR:
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Median = 2.8,

Q1[x] = (1 + 1.2)/2 = 1.1,

Q3[x] = (4.6 + 5)/2 = 4.8,

IQR[x] = Q3 − Q1 = 3.7,

centroid[x] of a Left Micro-Cluster = Q1[x] = 1.1,

centroid[x] of a Right Micro-Cluster = Q3[x] = 4.8

• Splitting of centroid with respect to x with Variance:(
CF2x

n

)
= (12 +12 +1.22 +2.52 +2.82 +32 +4.62 +52 +30002)/9 = 1000008.077,(

CF1x

n

)2
= ((1+1+1.2+2.5+2.8+3+4.6+5+3000)/9)2 = 112679.5705,

Variance[x] =
√(CF2x

n

)
−
(CF1x

n

)2
= 941.9815,

centroid[x] of a Negative Micro-Cluster = old centroid[x] - Variance[x] = 335.6778−

941.9815 = −606.3037,

centroid[x] of a Positive Micro-Cluster = old centroid[x] + Variance[x] = 335.6778+

941.9815 = 1277.6593.

Figure 5.7: An example of splitting a Micro-Cluster with Variance and IQR.

In the example given above which illustrated in Figure 5.7, it can be seen that the original

Micro-Cluster centroid is strongly influenced by the outlier. However, it can also be seen that

the new centroids after splitting using IQR are within the value range of the features values

(excluding the outlier), whereas the new centroids after splitting using Variance, as it is per-

formed in original MC-NN (see Chapter 3), are shifted towards the outlier outside the original
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Micro-Cluster’s value range. Thus, in this research IQR is used to perform Micro-Cluster splits

to mediate the influence of outliers.

In order to use the IQR, the feature’s data values need to be ordered or sorted in ascending

order. To achieve this in real-time (i.e., a computationally efficient manner), First-In-First-Out

(FIFO) queue principle combined with SkipList is used which is explained in the next section.

5.3.5 First-In-First-Out (FIFO) Queue with SkipList

In order to identify the quartiles (i.e., Q1 and Q3), some of the feature’s values have to be saved

and sorted in ascending order in real-time. Firstly, in order to save the feature data values a

First-In-First-Out (FIFO) queue is applied. Where the oldest entry of the queue is handled

first. FIFO’s size can be set by a user threshold which is less or equal to the size of the

statistical windows (time windows). FIFO keeps the most recent data (i.e., feature’s data) and

needs to be set to a lowest possible size (i.e., less or equal to a window’s size) which yields

good results. In an initial feasibility study, it was found that a queue size of 1000 works well in

most cases regarding computational efficiency and accuracy as examined in Appendix B. Thus

a queue of size 1000 has been used in all experiments presented in this research. It was also

observed in most cases that even if the statistical window size is much larger than 1000, that

it is unlikely that a single Micro-Cluster absorbs more than 1000 instances. Thus the potential

loss of information due to a queue size limit is also unlikely.

Secondly, for sorting the FIFO queue of a feature x, a SkipList is used, which is a data

structure that enables fast search and insert O(logn) rather than O(n) operations by updating a

linked hierarchy of sub-sequences within an ordered sequence of elements (Shavit and Lotan,

2000; De Gregorio and Di Stefano, 2017). SkipList is superior to alternative sorting algorithms

regarding computational efficiency as indicated in (Hu et al., 2003). Each node in a SkipList

consists of four directions (i.e., up, down, left, and right), as shown in Figure 5.8. Once splitting

of a Micro-Cluster with larger or maximum IQR is performed, the FIFO queue of each feature

x of a Micro-Cluster is then sent to the SkipList.
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Figure 5.8: Real-time sorting of the feature data values using a SkipList.

In order to locate and update the position of Q1 and Q3, Quartile Identifiers are created,

which are data structure connected with the head and tail of a SkipList as illustrated in Figure

5.8. A Quartile Identifier consists of two nodes P and R, P is a pointer to either the value next

to the left of the quartile Q1 or Q3, and R is a pointer to the next value right of P. The index of

P and R is either 1 or 3, which denotes if the pointers refer to Quartile 1 or 3 respectively. The

Quartile Identifier skips either to the left or right position after each insertion of a new SkipList

node , as shown in Algorithms 2, 3, and 4. Quartile Identifier of Q1 is located in the middle

of the left half of median of the SkipList and connected with the head of the SkipList indicated

with letter H in Figure 5.8. While the Quartile Identifier of Q3 is located in the middle of the

right half and connected with the tail of the SkipList indicated with letter T in Figure 5.8.

Given P and R of a Quartile Identifier and if the number of feature values left/right of the

median is either even or odd, then quartiles Q1 and Q3 can be calculated using the following

equations. Where, y refers to either Q1 or Q3. If the number of feature values left/right of the

median is even then Equation 5.2 is used and if it is odd then Equation 5.3 is used.

Qy[x] = (Py +Ry)/2 (5.2)

Qy[x] = Py (5.3)
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When adjusting the Quartile Identifiers in real-time there are three possible cases to consider

depending on whether the total number of values of the feature is odd or even and also if the

number of values to the left and right of the median is odd or even. For each of the three cases,

three further scenarios exist depending. Where the value is inserted in the SkipList. These cases

and scenarios are described in the remainder of this chapter including examples.

Case 1: After inserting the new value, the total number of feature values in the SkipList is

even, and the number of values left or right of the median is odd.

In this specific case Algorithm 2 is applied.

Algorithm 2 Adjusting Quartile Identifiers for lower and upper quartiles (Q1 and Q3) in terms
of Case 1.
Input: new feature value f , nodes of a SkipList after adding a new feature value f , previous
Quartile Identifiers P1 and P3.
Output: updated Quartile Identifiers P1 and P3

1: if f ≤ value o f P1 then
2: P1 and P3 remain at the same position
3: else
4: if f > value o f P1 and f ≤ value o f P3 then
5: Skip P1 to the next value right of P1
6: else
7: if f > value o f P3 then
8: Skip P1 to the next value right of P1
9: Skip P3 to the next value right of P3

10: end if
11: end if
12: end if

Figure 5.9: An example of the update for the Quartile Identifiers for Case 1 with a value inserted
left of Q1.
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In Figure 5.9, the number of nodes of the SkipList for the feature is an even value (10 nodes)

after adding the new feature value 0.92, and the number of nodes of the first and second half

of the SkipList is an odd value (5 nodes). The new value f ≤ value o f P1, thus lines 1 and 2

in Algorithm 2 are executed and Q1 and Q3 are computed, in this scenario P1 and P3 remain

unchanged. The Quartiles are computed using Equation 5.3.

Figure 5.10: An example of the update for the Quartile Identifiers for Case 1 with a value
inserted between of Q1 and Q3.

In Figure 5.10, the number of nodes of the SkipList for the feature is an even value (10 nodes)

after adding the new feature value 7.1, and the number of nodes of the first and second half of

the SkipList is an odd value (5 nodes). The new value f > value o f P1 and f ≤ value o f P3,

thus lines 4 and 5 in Algorithm 2 are executed and Q1 and Q3 are computed. In this case P1 is

skipped to the next value right of P1 and P3 remains unchanged. The Quartiles are computed

using Equation 5.3.
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Figure 5.11: An example of the update for the Quartile Identifiers for Case 1 with a value
inserted right of Q3.

In Figure 5.11, the number of nodes of the SkipList for the feature is an even value (10

nodes) after adding the new feature value 9.8, and the number of nodes of the first and second

half of the SkipList is an odd value (5 nodes). The new value f > value o f P3, thus lines 7

to 10 in Algorithm 2 are executed and Q1 and Q3 are computed. In this case P1 and P3 are

skipped to the next value right of P1 and P3 respectively. The Quartiles are computed using

Equation 5.3.

Case 2: After inserting the new value, the total number of feature values in the SkipList is an

odd value.

In this specific case Algorithm 3 is applied.

Algorithm 3 Adjusting Quartile Identifiers for lower and upper quartiles (Q1 and Q3) in terms
of Case 2.
Input: new feature value f , nodes of a SkipList after adding a new feature value f , previous
Quartile Identifiers P1 and P3.
Output: updated Quartile Identifiers P1 and P3

1: if f ≤ value o f P1 then
2: Skip P1 to the next value left of P1
3: else
4: if f > value o f P1 and f ≤ value o f P3 then
5: P1 and P3 remain at the same position
6: else
7: if f > value o f P3 then
8: Skip P3 to the next value right of P3
9: end if

10: end if
11: end if
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Figure 5.12: An example of the update for the Quartile Identifiers for Case 2 with a value
inserted left of Q1.

In Figure 5.12, the number of nodes of the SkipList for the feature is an odd value (11 nodes)

after adding the new feature value 0.8. The new value f ≤ value o f P1, thus lines 1 and 2 in

Algorithm 3 are executed and Q1 and Q3 are computed. In this case P1 is skipped to the next

value left of P1 and P3 remains unchanged. The Quartiles are computed using Equation 5.3.

Figure 5.13: An example of the update for the Quartile Identifiers for Case 2 with a value
inserted between Q1 and Q3.

In Figure 5.13, the number of nodes of the SkipList for the feature is an odd value (11 nodes)

after adding the new feature value of 7.9. The new value f > value o f P1 and f ≤ value o f P3,

thus lines 4 and 5 in Algorithm 3 are executed and Q1 and Q3 are computed. In this case P1

and P3 remains unchanged. The Quartiles are computed using Equation 5.3.
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Figure 5.14: An example of the update for the Quartile Identifiers for Case 2 with a value
inserted right of Q3.

In Figure 5.14, the number of nodes of the SkipList for the feature is an odd value (11 nodes)

after adding the new feature value 11.3. The new value f > value o f P3, thus lines 7 to 9 in

Algorithm 3 are executed and Q1 and Q3 are computed. In this case P3 is skipped to the next

value right of P3 and P1 remains unchanged. The Quartiles are computed using equation 5.3.

Case 3: After inserting the new value, the total number of feature values in the SkipList is

even, and the number of values left or right of the median is even.

In this specific case Algorithm 4 is applied.

Algorithm 4 Adjusting Quartile identifiers for lower and upper quartiles (Q1 and Q3) in terms
of Case 3.
Input: new feature value f , nodes of a SkipList after adding a new feature value f , previous
Quartile Identifiers P1 and P3.
Output: updated Quartile Identifiers P1 and P3

1: if f ≤ value o f P1 then
2: Skip P1 to the next value left of P1
3: Skip P3 to the next value left of P3
4: else
5: if f > value o f P1 and f ≤ value o f P3 then
6: Skip P3 to the next value left of P3
7: else
8: if f > value o f P3 then
9: P1 and P3 remain at the same position

10: end if
11: end if
12: end if
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Figure 5.15: An example of the update for the Quartile Identifiers for Case 3 with a value
inserted left of Q1.

In Figure 5.15, the number of nodes of the SkipList for the feature is an even value (12

nodes) after adding the new feature value of 0.91. The new value f ≤ value o f P1, thus lines

1 to 3 in Algorithm 4 are executed and Q1 and Q3 are computed. In this case P1 and P3 are

skipped to the next value left of P1 and P3 respectively. The Quartiles are computed using

Equation 5.2.

Figure 5.16: An example of the update for the Quartile Identifiers for Case 3 with a value
inserted between Q1 and Q3.

In Figure 5.16, the number of nodes of the SkipList for the feature is an even value (12 nodes)

after adding the new feature value of 2.9. The new value f > value o f P1 and f ≤ value o f P3,

thus lines 5 and 6 in Algorithm 4 are executed and Q1 and Q3 are computed. In this case P3

is skipped going to the next value left of P3 and P1 remains unchanged. The Quartiles are

computed using Equation 5.2.
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Figure 5.17: An example of the update for the Quartile Identifiers for Case 3 with a value
inserted right of Q3.

In Figure 5.17, the number of nodes of the SkipList for the feature is an even value (12

nodes) after adding the new feature value of 9.21. The new value f > value o f P3, thus lines 8

to 10 in Algorithm 4 are executed and Q1 and Q3 are computed. In this case P1 and P3 remain

unchanged. The Quartiles are computed using Equation 5.2.

5.4 Empirical Evaluation of Real-Time Feature Tracking Method

using Variance and IQR

The evaluation presented in the previous chapter was based on original MC-NN using the read-

ily available Variance statistics of the Micro-Clusters and Split and Death rates to detect con-

cept drift. It has been found that the developed concept drift detection method was affected by

feature-bias, noise, and outliers. This section applies Normalisation and LPF in real-time in

order to address these effects and compares these results with those from Section 4.3. However,

the benefit of applying Normalisation in combination with LPF in terms of Velocity is exam-

ined in Appendix G as this is not considered the main aim of this section. Where this section

compares the previously discussed method for feature tracking based on Variance combined

with feature Velocity to the more robust method based on IQR combined with feature Veloc-

ity. For the experiments the default parameters stated in Table 3.2 (artificial datasets) of the

method were used unless stated otherwise. Regarding the artificial datasets, no Normalisation

was applied as the data stream generators already produced normalised data.

Part (a) of Figures 5.18 to 5.32 shows the results for using MC-NN with Variance and history
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Figure 5.18: The results of SEA data stream generator with a noise level of 0% using Micro-
Clusters for tracking features.

Figure 5.19: The results of SEA data stream generator with a noise level of 5% using Micro-
Clusters for tracking features.
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Figure 5.20: The results of SEA data stream generator with a noise level of 15% using Micro-
Clusters for tracking features.

Figure 5.21: The results of SEA data stream generator with a noise level of 25% using Micro-
Clusters for tracking features.
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Figure 5.22: The results of SEA data stream generator with a noise level of 35% using Micro-
Clusters for tracking features.

Figure 5.23: The results of HyperPlane data stream generator with a noise level of 0% using
Micro-Clusters for tracking features.
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Figure 5.24: The results of HyperPlane data stream generator with a noise level of 5% using
Micro-Clusters for tracking features.

Figure 5.25: The results of HyperPlane data stream generator with a noise level of 15% using
Micro-Clusters for tracking features.
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Figure 5.26: The results of HyperPlane data stream generator with a noise level of 25% using
Micro-Clusters for tracking features.

Figure 5.27: The results of HyperPlane data stream generator with a noise level of 35% using
Micro-Clusters for tracking features.
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Figure 5.28: The results of Random Tree data stream generator with a noise level of 0% using
Micro-Clusters for tracking features.

Figure 5.29: The results of Random Tree data stream generator with a noise level of 5% using
Micro-Clusters for tracking features.
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Figure 5.30: The results of Random Tree data stream generator with a noise level of 15% using
Micro-Clusters for tracking features.

Figure 5.31: The results of Random Tree data stream generator with a noise level of 25% using
Micro-Clusters for tracking features.
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Figure 5.32: The results of Random Tree data stream generator with a noise level of 35% using
Micro-Clusters for tracking features.

of maximum Variance for concept drift detection and feature tracking, and part (b) of the figures

shows the corresponding results for using MC-NN with IQR and history of maximum IQR.

Different figures correspond to different data streams and noise levels. Regarding concept drift

detection, the same results as the previous section (Section 4.3) have been achieved for both,

using Variance and IQR. All concept drifts were detected correctly, with only one exception, a

noise level 35% with the method based on Variance (see Figure 5.32), however, both methods

also detected a false concept drift for a noise level 25% and 35%. This is likely not to cause a

degradation of classification accuracy, as features are merely flagged up to the feature selection

method to have potentially changed their relevance but it is then up to the feature selection

method to evaluate these features and decide if they should be included.

If a concept drift is detected, then the methods use the feature Velocity and history of max-

imum Variance or IQR respectively to decide which features should be flagged up to be con-

sidered for inclusion or removal from the currently considered features. The results for this

are depicted in the bottom part of Figures 5.18 to 5.32. As a reminder, the features are ranked

according to their velocities and the 50% features with the highest Velocity are examined closer.

Where 50% yielded good results as examined in Appendix E. As there are 3 features in each

stream, the 2 features with the highest Velocity are always selected. However, if there are 10 fea-

tures in each stream, as an example, the 5 features with the highest Velocity are always selected.

These features are then flagged up if they also appeared in the history of maximum Variance or
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IQR in the previous time window. This has already been explained in greater detail in Section

6.1. It is expected here that features that have been swapped during the concept drift are more

likely to be flagged up for inclusion or removal from the currently considered set of features.

Table 5.1: Summary of the experimental results with artificial datasets generated with noise
levels of 0%, 5%, 15%, 25%, and 35%. The results are reported for the Time 6 which is the
time of swapped features.

Generator
True
Positive
(Variance)

True
Positive
(IQR)

False
Positive
(Variance)

False
Positive
(IQR)

SEA with Noise 0% 2 2
SEA with Noise 5% 1 2
SEA with Noise 15% 1 1
SEA with Noise 25% 1 1
SEA with Noise 35% 1 2
HyperPlane with Noise 0% 1 1
HyperPlane with Noise 5% 1 1
HyperPlane with Noise 15% 1 1
HyperPlane with Noise 25% 1 1
HyperPlane with Noise 35% 1 1 1
Random Tree with Noise 0% 2
Random Tree with Noise 5% 1 1
Random Tree with Noise 15% 1 2
Random Tree with Noise 25% 1 1* 1 + 2*
Random Tree with Noise 35% 1 1(-) 1
Total: 8 20 6 6

Table 5.1 summarises the feature tracking results presented in Figures 5.18 to 5.32. Num-

bers indicated with a ’*’ in Table 5.1 indicate false positives detections of features that changed

their relevance. This means that there was also an unexpected concept drift. However, it is not

possible to verify with absolute certainty if the detection was indeed a false positive. Whereas,

numbers indicated with a (-) in Table 5.1 reflect that a known drift was not detected. It can be

seen that the here presented method based on maximum IQR achieves a much higher true pos-

itive detection of features that changed. It also has a lower number of false positives detection

with no ’*’ (4 false positives) compared with the method based on Variance (5 false positives).

Now the true positive detections of features are based on the fact the features that are known to

have changed as they have been swapped at the time of concept drift. However, considering the

fact that each artificial stream generator’s native method for inducing a concept drift has been

used as well some of the false positive detections may very well be true positives. Even if they

were not listed in Table 5.1 as true positives, it would merely mean that they are flagged to the

feature selection method to be reconsidered for inclusion or exclusion of the feature set to be

considered for adaptation. Loosely speaking, correct true positive detection numbers are more
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Figure 5.33: The results of SEA data stream generator with a noise level of 0% using Micro-
Clusters for tracking features.

important than false positive detection numbers.

In order to remove the possibility of changing feature relevance due to artificial concept

drift generators, the feature tracking experiments on the artificial datasets were re-conducted.

This time no concept drift was introduced apart from the swapping of the features. Thus the

only features that have changed their relevance must be the swapped features. The results of

these experiments are displayed in Figures 5.33 to 5.47. As it can be seen, and as expected,

both methods have a lower false positive count of flagging features that changed relevance in

comparison with the results presented in Figures 5.18 to 5.32. Again the developed method

based on IQR performs best, it detected most of the features that were swapped.

Table 5.2 summarises these experiments. Altogether there were 30 features swapped so they

all changed their relevance and thus should be identified by the methods. As it can be seen the

method based on original MC-NN with Variance identifies 6 features correctly and also resulted

in 3 false positives. The developed method based on IQR detects 26 features that changed their

relevance correctly and resulted in 2 false positives.

Table 5.2 summarises the feature tracking results presented in Figures 5.33 to 5.47. Numbers

indicated with a ’*’ in Table 5.2 indicate false positive detection of features that changed their

relevance. It can be seen that the developed method based on IQR achieves a much higher

true positive detection of features that changed with only 2 false positives. The true positives

detection of features are based on the fact the features that are known to have changed as they
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Figure 5.34: The results of SEA data stream generator with a noise level of 5% using Micro-
Clusters for tracking features.

Figure 5.35: The results of SEA data stream generator with a noise level of 15% using Micro-
Clusters for tracking features.
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Figure 5.36: The results of SEA data stream generator with a noise level of 25% using Micro-
Clusters for tracking features.

Figure 5.37: The results of SEA data stream generator with a noise level of 35% using Micro-
Clusters for tracking features.
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Figure 5.38: The results of HyperPlane data stream generator with a noise level of 0% using
Micro-Clusters for tracking features.

Figure 5.39: The results of HyperPlane data stream generator with a noise level of 5% using
Micro-Clusters for tracking features.
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Figure 5.40: The results of HyperPlane data stream generator with a noise level of 15% using
Micro-Clusters for tracking features.

Figure 5.41: The results of HyperPlane data stream generator with a noise level of 25% using
Micro-Clusters for tracking features.
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Figure 5.42: The results of HyperPlane data stream generator with a noise level of 35% using
Micro-Clusters for tracking features.

Figure 5.43: The results of Random Tree data stream generator with a noise level of 0% using
Micro-Clusters for tracking features.
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Figure 5.44: The results of Random Tree data stream generator with a noise level of 5% using
Micro-Clusters for tracking features.

Figure 5.45: The results of Random Tree data stream generator with a noise level of 15% using
Micro-Clusters for tracking features.
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Figure 5.46: The results of Random Tree data stream generator with a noise level of 25% using
Micro-Clusters for tracking features.

Figure 5.47: The results of Random Tree data stream generator with a noise level of 35% using
Micro-Clusters for tracking features.
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Table 5.2: Summary of the experimental results with artificial datasets generated with noise
levels of 0%, 5%, 15%, 25%, and 35%. The results are reported for Time 6 which is the point
at which features had been swapped.

Generator
True
Positive
(Variance)

True
Positive
(IQR)

False
Positive
(Variance)

False
Positive
(IQR)

SEA with Noise 0% 1 2
SEA with Noise 5% 1 2
SEA with Noise 15% 1 2
SEA with Noise 25% 2
SEA with Noise 35% 1
HyperPlane with Noise 0% 1 1 1
HyperPlane with Noise 5% 1 1
HyperPlane with Noise 15% 2 1
HyperPlane with Noise 25% 1 2
HyperPlane with Noise 35% 2
Random Tree with Noise 0% 2
Random Tree with Noise 5% 2
Random Tree with Noise 15% 2
Random Tree with Noise 25% 1 1* 2*
Random Tree with Noise 35% 2
Total: 6 26 3 2

have been swapped at the time of concept drift.

Next, both approaches (i.e., the developed method with Variance and IQR) were tested on

the controlled real datasets described in Table 3.3. For the experiment, the default parameters

(stated in Table 3.3) of the method were used unless stated otherwise. Real-time Min-Max Nor-

malisation and LPF were applied to minimise the effect of feature-bias and noise, respectively.

Two versions of each dataset were used with two features (indexes of swapped features are 1

with 4), and four features (indexes of swapped features are 2 and 3 with 5 and 6) have been

selected randomly to be swapped in order to validate whether the feature tracking method can

identify the changed features correctly.

Figures 5.48 to 5.57 visualise the results for concept drift detection and feature tracking

using controlled real datasets. Again part (a) of the figures refers to the method based on

Variance and part (b) of the figures refers to the method based on IQR.

Regarding drift detection in the figures, it can be seen that the Split and Death rates at

the time of concept drift increase (i.e., time when the features were swapped), indicating that

the current set of Micro-Clusters does not fit the concept encoded in the data anymore, and a

concept drift is detected correctly for every dataset. The method based on IQR examined in the

figures. Please note there are further concept drifts detected at different times than the features
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Figure 5.48: The results of CoverType dataset with 6 features (2 features swapped) using Micro-
Clusters for tracking features.

were swapped, which could be due to the fact that real data was used and thus there may be

concept drifts that are unknown. This is one of the reasons why the method was also evaluated

on artificial datasets earlier in this chapter, as the ground truth for the artificial datasets was

known. At this stage, it is assumed that high Split and Death rates other than during the time

when features were swapped are due to natural concept drift. As the ground truth for the concept

drift is known only at the time of feature swapping, the evaluation of correct feature tracking

was focussed on the time of feature swapping only.

Regarding the results for the datasets based on CoverType (see Figures 5.48 and 5.49), Di-

abetic Retinopathy Debrecen (see Figure 5.51), Gesture Phase Segmentation (see Figures 5.52

and 5.53), and Waveform (with Noise) (see Figures 5.56 and 5.57), the method based on IQR is

superior by identifying the swapped features (i.e., one of the swapped feature or more) correctly.

Whereas, the method based on Variance did not identify any correctly, because a drift was not

detected. For the Diabetic Retinopathy Debrecen dataset in Figure 5.50, the Statlog (Landsat

Satellite) in Figures 5.54 and 5.55, both methods identify a concept drift correctly at the time

the features were swapped. Again the method based on IQR was superior to the method based

on Variance, as it identified the swapped features (i.e., one of the swapped feature or more)

correctly. Whereas, the method based on Variance did not identify any correctly.

These results are summarised in Table 5.3. It can be seen that the method based on IQR
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Figure 5.49: The results of CoverType dataset with 6 features (4 features swapped) using Micro-
Clusters for tracking features.

Figure 5.50: The results of Diabetic Retinopathy Debrecen dataset with 6 features (2 features
swapped) using Micro-Clusters for tracking features.
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Figure 5.51: The results of Diabetic Retinopathy Debrecen dataset with 6 features (4 features
swapped) using Micro-Clusters for tracking features.

Figure 5.52: The results of Gesture Phase Segmentation dataset with 6 features (2 features
swapped) using Micro-Clusters for tracking features.
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Figure 5.53: The results of Gesture Phase Segmentation dataset with 6 features (4 features
swapped) using Micro-Clusters for tracking features.

Figure 5.54: The results of Statlog (Landsat Satellite) dataset with 6 features (2 features
swapped) using Micro-Clusters for tracking features.
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Figure 5.55: The results of Statlog (Landsat Satellite) dataset with 6 features (4 features
swapped) using Micro-Clusters for tracking features.

Figure 5.56: The results of Waveform (with Noise) dataset with 6 features (2 features swapped)
using Micro-Clusters for tracking features.
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Figure 5.57: The results of Waveform (with Noise) dataset with 6 features (4 features swapped)
using Micro-Clusters for tracking features.

generally achieves a much higher number of true positive identification of changed features

compared with the method based on Variance.

Numbers indicated with a ’*’ in Table 5.3 indicate potentially false positives detection of

features that changed their relevance. Potentially means in this case that there was also an

unexpected concept drift, hence it is not possible to verify with absolute certainty if the detection

was indeed a false positive. Whereas, numbers indicated with a (-) in Table 5.3 reflect a known

drift was not detected.

Experiments in this section have been conducted on in a controlled environment on artificial

datasets and in a less controlled environment on real datasets. Both methods based on IQR and

Variance have been evaluated and compared on all test cases. It was observed that the method

based on IQR identified all known concept drifts correctly. Whereas, the method based on

Variance did miss seven known concept drifts for the controlled real data streams.

Furthermore, it was found that the method based on IQR identified more changed features

correctly compared with the method based on Variance. Loosely speaking, the method based on

IQR has shown to be superior to the method based on Variance in all respects. However, based

on the presented results, the method based on IQR is chosen to evaluate the real-time feature

selection method presented in the next chapter.
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Table 5.3: Summary of the experimental results with controlled real datasets. The results are
reported for the time of drift onset (Table 3.3) which is the time at which features were swapped.

Dataset with 6 Features
True
Positive
(Variance)

True
Positive
(IQR)

False
Positive
(Variance)

False
Positive
(IQR)

CoverType (2 features swapped) 2 2(-) 1
CoverType (4 features swapped) 2 1(-) 1
Diabetic Retinopathy Debrecen (2 features swapped) 1 1
Diabetic Retinopathy Debrecen (4 features swapped) 2 1(-) 1
Gesture Phase Segmentation (2 features swapped) 2
Gesture Phase Segmentation (4 features swapped) 2 1(-)
Statlog (Landsat Satellite) (2 features swapped) 1 1 1*
Statlog (Landsat Satellite) (4 features swapped) 1
Waveform (with Noise) (2 features swapped) 1
Waveform (with Noise) (4 features swapped) 3
Total: 1 17 5 5

5.5 Conclusion

This chapter introduced the developed method for tracking the involved features in drifting by

feeding forward the statistical information such as the Velocity of a feature and the spread of a

feature data (i.e., Variance or IQR) provided by adaptive MC-NN’s Micro-Clusters described

in Chapter 3. They are calculated for each feature of a Micro-Cluster over time stamps (i.e.,

within a time window). Once a drift is detected which is presented in Chapter 4, the statistical

information of tracked features are analysed in order to identify which features were involved

in drifting for the purpose of feature selection. The analyses show that the method based on

IQR identified more changed features correctly compared with the method based on Variance

in all respects. In addition, tracking features would be influenced by feature-bias, outliers, and

noise. Thus robustness handling or minimising the effect of feature-bias, outliers, and noise

is explained in more detail in this chapter. The next chapter highlights the real-time feature

selection method.
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Chapter 6

Real-Time Feature Selection Method using

Adaptive Micro-Clusters

The work in this chapter directly links to Objective 3 to continuously analyse the historical

statistics provided by the developed method in Objective 2 with the purpose of selecting the rel-

evant features for adaptive data stream classifier (i.e., dynamic adjustment feature selection in

real-time). This chapter proposes and describes a real-time feature selection method that makes

use of the drift detection method introduced in Chapter 4 and the feature tracking method devel-

oped in Chapter 5. Three main tasks will be explained in this chapter: feature analysis, feature

selection, and monitoring of temporarily irrelevant features. After detection of concept drift, the

statistical information of the features (i.e., Velocity combined with either Variance or IQR) is

analysed to identify which features were involved in the drift. Loosely speaking, only features

that had a significant change of their statistical information are re-examined for feature selec-

tion using Information Gain (Yang and Pedersen, 1997) in each statistical time window. This is

based on the assumption that features that have not changed much are also likely to have main-

tained a similar Information Gain value. This can be used to reduce the computational cost of

feature selection by assuming that the Information Gain has not changed for these features and

thus re-calculating the Information Gain for these features is not needed. Information Gain is

considered a very popular mechanism to select relevant features for a classification task which

is also used in building decision trees (Han et al., 2011). Loosely speaking, the method follows

the following steps which were described previously in Chapter 2 Figure 2.2 to facilitate com-

putationally efficient feature selection:
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1. Detect concept drift.

2. Use the Micro-Clusters’ statistical information (Velocity combined with either Variance

or IQR) to identify features that have been involved in the drift.

3. Re-calculate Information Gain only for features that have been involved in the drift.

4. Re-rank features according to their Information Gain.

5. Select features using the new Information Gain ranking.

The chapter is organised as follows. In Section 6.1, feature analysis and feature selection

are explained. Monitoring and analysis of temporarily irrelevant features are explained in Sec-

tion 6.2. A working example of applying real-time feature selection technique is explained in

Section 6.3. The performance, implementation, and results of the developed method are dis-

cussed in Section 6.4 with respect to real datasets. In Section 6.5, a summary of this chapter is

presented.

6.1 Feature Analysis and Feature Selection

Feature analysis is facilitated using historical data (i.e. a statistical window between time-1 and

point-of-drift time). For the purpose of feature analysis, a counter is kept for each feature of

a Micro-Cluster over time stamps and starting with 0 within each time window. The counter

is incremented by 1 if the specific feature was the feature with the highest Variance or IQR.

In this research, this is referred to as the history of maximum Variance or IQR. Regarding

Velocity, using a windowing approach over the data stream, a running average of Velocity rate is

calculated for each feature over time windows. A high Velocity rate combined with the history

of maximum Variance or IQR during a concept drift indicates that the feature has changed.

The assumption here is that this specific feature may have changed its contribution towards the

classification technique. Thus, feature selection can be limited to only examining features that

have changed their Velocity rate as well as their Variance or IQR when there is a concept drift

detected.

Features that have changed are temporarily regarded as irrelevant for the data mining task, as

shown in Algorithm 5, as large statistical changes will have a similar effect as noise. However,

the contributions of these features towards the absorption in Micro-Clusters may stabilise after

106



Mahmood Shakir Hammoodi Chapter 6

the drift and thus are re-examined in the following time window. This will be explained in more

detail in the next section. From then onwards only instances comprising the relevant features

are passed on to a data stream classifier.

Algorithm 5 Feature analysis and feature selection.
Input: Micro-Clusters statistical information (Velocity rate [features] and history of maximum
Variance or IQR [features]) of a statistical window between time-1 and point-of-drift time, and
instance.
Output: Instance with relevant features

1: for each drift detection do
2: List Velocity rate[features] in order from low to high
3: Identify median value of the ordered list Velocity rate[features]
4: for each feature with Velocity rate > median value do
5: if feature has history of maximum Variance or IQR > 0 value then
6: instance⇐ delete irrelevant f eature
7: end if
8: end for
9: end for

10: Classi f ier⇐ instance with relevant f eature(s)

6.2 Monitoring and Analysis of Temporarily Irrelevant Fea-

tures

The features (the ones that are temporarily regarded as irrelevant) are monitored in the following

statistical window to examine their relevance using Information Gain. The assumption here is

that the contribution of this specific feature towards the classification result may have changed

significantly due to the drift. Thus checking relevance can be limited to examining only the

features that have been temporarily regarded as irrelevant. If a feature x′s Information Gain

is greater than µ of Information Gain between window at time-1 and at current time with a

Percentage Difference greater than 50%, then x is selected as relevant to a data stream classifier.

It should be noted here that Information Gain has been chosen as a feature selection metric,

as it is a popular metric for this purpose (Han et al., 2011). Thus all experiments in the next

chapter have been obtained using this metric. However, the user may decide to implement a

different metric for feature selection if appropriate for the specific application. Likewise the

Percentage Difference can be adjusted by the user requirements. However, in the experiments

presented in the next chapter a Percentage Difference of 50% was used as it worked well in

most cases as examined in Appendix C. Figure 6.1 puts the aforementioned procedure into a
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flowchart for a better understanding.

Figure 6.1: Process of feature selection in real-time.

6.3 Worked Example

Figure 6.2 shows an example of the statistical information (i.e., Velocity rate and IQR as well as

Information Gain) of two features for six time windows. However, IQR is chosen here instead

of Variance due to the fact that IQR is considered robust to outliers contrary the using Variance

as explained in Chapter 5.
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Figure 6.2: An example of feature analysis, feature selection, and monitoring of temporarily
irrelevant features. Assumed Information Gains are indicated in italics, and actual Information
Gain calculations are not in italics.

Initially, Information Gain is calculated for all features at window W1. In this example, it is

assumed that both features are initially relevant.

Drift is detected at window W3, consider the Velocity rate and history of maximum IQR of

Feature 1 equal to 0.0123808211 and 23, respectively. This represents that the Feature 1 ap-

pears with maximum Velocity rate and a history of maximum IQR compared with the remaining

features (in this case only Feature 2). Thus Feature 1 is temporarily regarded as irrelevant to

the classifier after W3. Information gains of irrelevant features are then calculated in every time

window in order to monitor if they return to being relevant. In this case, Feature 1 appears again

with an Information Gain at W5 = 0.268502, which differs from µ by 50%. This indicates that

the Feature 1 becomes relevant again for classification tasks after W5. Please note that the Infor-

mation Gain of features that have remained relevant are assumed not to have changed and thus

are only re-calculated if there is a drift detected. In this example assumed Information Gains

are indicated in italics, and actual Information Gain calculations are not in italics. For example,

for Feature 2 there is only one Information Gain calculation at the beginning in W1. However,

should there be another concept drift in the future and Feature 2 appears with maximum Velocity

rate and history of maximum IQR, then its Information Gain is likely to have changed and thus

it would be re-calculated.

6.4 Empirical Evaluation of Real-Time Feature Selection Method

In the previous chapters, the research study examined the capability of the developed methods

to identify concept drifts and to track whether features have undergone a significant change.
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The purpose was to use these methods to re-examine the relevance of the features for the clas-

sification task. If a feature x′s Information Gain is greater than µ of Information Gain between

window at time-1 and at current time with Percentage Difference greater than 50% it is then

selected as relevant to a classifier. Where 50% yielded good results as examined in Appendix

C. It has been found that the method based on IQR performed best in all respects. Thus the

experiments in this section are conducted with the method based on IQR. This section eval-

uates the use of the real-time pre-processing technique in specific real-time feature selection

method.The method is applied on a couple of real datasets with a larger number of features

than in the previous more controlled experiments, with unknown ground truth, to evaluate the

effect of the method in real scenarios. Information about the datasets can be found in Table

3.4 in Section 3.6.2. It should be noted that the controlled real datasets used in the previous

section have been re-used for the experiments here under uncontrolled conditions. This time

all features were included. It is expected that these original versions of real datasets are more

challenging for data stream algorithms to induce good models compared with reduced versions

used earlier in the controlled experiments in the previous section. The data stream classifier

chosen to be used with the developed method was the Hoeffding Tree (Domingos and Hulten,

2000). The reason for choosing the Hoeffding Tree was due to its popularity and the fact that

it is considered to be one of the most accurate data stream classifiers (Bifet et al., 2009; Bifet

and Frank, 2010). The classifier (i.e., Hoeffding Tree) is training and updating incrementally

instance by instance. From the start of the experiments all features are considered relevant, and

the developed method may at any time during the experiment detects concept drift and flags

features as relevant or irrelevant after a drift has been detected. At any time during the experi-

ment, the classifier selects only the feature values of relevant features and accordingly uses only

the currently relevant features for training and incrementally updating the model.

For the experiments in this section, two main analyses were conducted. The first analysis

aims to show the accuracy differences over time the method achieved using IQR for concept

drift detection only in comparison with applying the Hoeffding Tree classifier as a standalone

method. Whereas, the second analysis aims to show the accuracy differences over time the

method achieved using IQR for concept drift detection and real-time feature selection in com-

parison with applying the Hoeffding Tree classifier as a standalone method. In addition, in both

analyses, real-time Min-Max Normalisation and LPF were applied to minimise the effect of

feature-bias and noise, respectively.
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Figures (6.3 to 6.7) show the accuracy differences over time the method achieved using IQR

for concept drift detection with/without real-time feature selection in comparison with applying

the Hoeffding Tree classifier as standalone method. The figures also indicate at which time

windows features and how many features have been re-evaluated for inclusion or removal from

the current feature set considered by Hoeffding Tree. In order to increase the readability of the

figures (i.e., results), a maximum of 25% difference is displayed. Displaying differences above

25% is not very interesting as the smallest increment/decrement in accuracy difference would

indicate that the classifier has adapted positively/negatively towards the developed method. As

it can be seen in the figures, Hoeffding Trees using the developed method with IQR for real-

time feature selection generally achieved a better accuracy over time. Only during a few time

windows, the method achieved a marginally lower accuracy. This potentially due to the features

which were not involved in drifting but still have high Velocity, and they are not in the history

of maximum IQR. A counter is kept for each feature of a Micro-Cluster over the time stamps,

starting with 0 within each time window. The counter is incremented by 1 if the specific feature

was the feature with the maximum IQR when splitting of the Micro-Cluster is performed. In

this research this is referred to as the history of maximum IQR (i.e., see Chapter 6 Section

6.1). Hence, the features of the Micro-Cluster with high IQR but not the highest/maximum

one are ignored, i.e., the counters of these features are not incremented by 1. Tracking these

features may contribute to develop an early concept drift detection method. However, this will

be examined in the future works.

Table 6.1 summarises the results for the experiments depicted in Figures (6.3 to 6.7). It

states the average accuracy achieved with and without using the developed real-time feature

selection method. Table 6.1 also states the average accuracy achieved by applying Hoeffding

Tree classifier as a standalone method. As it can be seen a lower average accuracy was reported

when Hoeffding Tree classifier is applied as a standalone method as it is unable to detect concept

drift. In Hoeffding Tree, a created sub-trees can only expand from the child nodes onwards. It

only keeps adapting and building trees (i.e., model) incrementally. Where a model needs to

be re-initialised when concept drift is detected as described and highlighted in more detail in

Chapter 4. However, in Table 6.1, the method actively re-evaluated features for inclusion in the

tree at various times and achieved on average a higher accuracy compared with not employing

the developed real-time feature selection method.

For the experiment, the datasets in Table 3.4 were re-conducted using NaiveBayes Classifier
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Figure 6.3: The results of CoverType dataset using Micro-Clusters for concept drift detection
with/without real-time feature selection.

Figure 6.4: The results of Diabetic Retinopathy Debrecen dataset using Micro-Clusters for
concept drift detection with/without real-time feature selection.
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Figure 6.5: The results of Gesture Phase Segmentation dataset using Micro-Clusters for concept
drift detection with/without real-time feature selection.

Figure 6.6: The results of Statlog (Landsat Satellite) dataset using Micro-Clusters for concept
drift detection with/without real-time feature selection.
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Figure 6.7: The results of Waveform (with Noise) dataset using Micro-Clusters for concept drift
detection with/without real-time feature selection.

Table 6.1: Summary of the results for the experiments using real datasets with Hoeffding Tree
Classifier.

Dataset OverallAccuracy Average with
Hoeffding Tree as Standalone Method

OverallAccuracy Average with
Concept Drift Detection

OverallAccuracy Average with
Concept Drift Detection and
Real-Time Feature Selection

CoverType 76.30 78.50 79.32
Diabetic Retinopathy Debrecen 49.13 49.74 51.04
Gesture Phase Segmentation 54.71 72.18 80.23
Statlog (Landsat Satellite) 76.28 80.68 81.63
Waveform (with Noise) 80.42 80.26 80.68

for evaluating the classification accuracy as it has high prediction rate (Sujana et al., 2017). The

Bayesian rule is the main bases of the NaiveBayes classifier which assumes that the predictor

features are mutually independent among the F features given the class. Figures (6.8 to 6.12)

show the accuracy differences over time the method achieved using IQR for concept drift de-

tection with/without real-time feature selection in comparison with applying the NaiveBayes

classifier as standalone method. The figures also indicate at which time windows features and

how many features have been re-evaluated for inclusion or removal from the current feature set

considered by NaiveBayes. In order to increase the readability of the figures (i.e., results), a

maximum of 25% difference is displayed. As it can be seen in the figures, NaiveBayes using

the developed method with IQR for real-time feature selection generally achieved a better ac-

curacy over time. Again only during a few time windows, the method achieved a marginally

lower accuracy such as Figure 6.9, as explained before.

Table 6.2 summarises the results for the experiments depicted in Figures (6.8 to 6.12). It
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Figure 6.8: The results of CoverType dataset using Micro-Clusters for concept drift detection
with/without real-time feature selection.

Figure 6.9: The results of Diabetic Retinopathy Debrecen dataset using Micro-Clusters for
concept drift detection with/without real-time feature selection.
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Figure 6.10: The results of Gesture Phase Segmentation dataset using Micro-Clusters for con-
cept drift detection with/without real-time feature selection.

Figure 6.11: The results of Statlog (Landsat Satellite) dataset using Micro-Clusters for concept
drift detection with/without real-time feature selection.
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Figure 6.12: The results of Waveform (with Noise) dataset using Micro-Clusters for concept
drift detection with/without real-time feature selection.

states the average accuracy achieved with and without using the developed real-time feature

selection method. Table 6.2 also states the average accuracy achieved by applying NaiveBayes

as a standalone method. As it can be seen a lower average accuracy was reported when Naive-

Bayes is applied as a standalone method as it is unable to detect concept drift. It only keeps

adapting and building a model which needs to be re-initialised when concept drift is detected

as described and highlighted in more detail in Chapter 4. However, in Table 6.2, the method

actively re-evaluated features for inclusion in NaiveBayes at various times and achieved on av-

erage a higher accuracy compared with not employing the developed real-time feature selection

method and only one exception with CoverType dataset. This potentially due to that in Naive-

Bayes classifier, the correlation of pairs of features given the class needs to be measured as the

classification accuracy decreases when the features are not independent given the class (Fried-

man et al., 1997; Martinez-Arroyo and Sucar, 2006). For example, if two features have similar

properties over time, i.e., Information Gain, this would indicate that these features need to be

merged.

Loosely speaking, the results show that the developed real-time feature selection method

indeed improves the accuracy of data stream classifiers.
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Table 6.2: Summary of the results for the experiments using real datasets with NaiveBayes
Classifier.

Dataset OverallAccuracy Average with
Hoeffding Tree as Standalone Method

OverallAccuracy Average with
Concept Drift Detection Only

OverallAccuracy Average with
Concept Drift Detection and
Real-Time Feature Selection

CoverType 61.07 64.31 64.18
Diabetic Retinopathy Debrecen 51.83 52.09 52.17
Gesture Phase Segmentation 54.71 72.18 80.23
Statlog (Landsat Satellite) 76.30 80.74 81.69
Waveform (with Noise) 80.42 80.26 80.68

6.5 Conclusion

This chapter introduced the developed method for feature selection in combination with drift

detection and feature tracking (Chapters 4 and 5, respectively). Adaptive Micro-Clusters were

used which provide the statistical information such as a feature’s speed (i.e., Velocity) and spread

of a feature’s data (i.e., Variance or IQR). The analyses show that the real-time pre-processing

technique can indeed identify concept drift, track features, and identify features that may have

changed their relevance for the data mining task in real-time. It has also been shown that the

technique can improve the accuracy of data stream classification tasks.
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Chapter 7

Conclusion and Future Works

7.1 Summary

The research investigated the problem of real-time pre-processing technique in specific real-

time feature selection in combination with concept drift detection and feature tracking. At

present, the focus of data stream mining lies in the development of data mining algorithms

rather than on pre-processing techniques. Thus at present, there are no developments for truly

real-time feature selection in a streaming setting. This is an important step in the Data Stream

Mining workflow as features may potentially change their relevance for data mining tasks based

on certain measures of relevance such as Information Gain. Thus the three objectives of this

research were to develop a real-time pre-processing technique that can (1) detect a concept drift,

(2) identify features that were involved in concept drift and thus potentially change their rele-

vance and (3) build a real-time feature selection method based on the developments mentioned

above. In this research study, the MC-NN algorithm which was developed by (Tennant et al.,

2017) was used as it has been identified as a promising classification approach. MC-NN has

originally been developed for predictive data stream analytics using Micro-Clusters which are

able to adapt to unexpected changes in the stream. However, this research was not concerned

with the classification capabilities of MC-NN but in the behaviour of its underlying model dur-

ing concept drift. The MC-NN model is based on adaptive statistical Micro-Cluster summaries

of the absorbed data stream instances that can split into new Micro-Clusters (Micro-Cluster

Split), change their size/position in the feature space or be removed (Micro-Cluster Death) in

order to adapt to concept drift. The work in this research study was based on 2 hypotheses about

the behaviour of MC-NN in this regard:
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(1) The Split and Death rates are expected to increase during a concept drift and thus could

be used as a measure to detect concept drift in real-time; and (2) the direction of the Micro-

Cluster movement in feature space during concept drift and their Velocity indicate which fea-

tures are involved in the concept drift. This could be used as an indicator if the relevance of a

feature for a data mining task has changed.

The MC-NN originally used Variance as a statistical measure to split the Micro-Cluster.

During this research, it was expected that Variance as an indirect measure for concept drift

adaptation would be susceptible to potential outliers and noise. Thus an alternative method has

been explored for adapting Micro-Clusters based on IQR. Both methods have been evaluated

with respect to hypothesis 1 and 2 on artificial data streams and real datasets. In addition, for

both methods, Low Pass Filter (LPF) was also incorporated to filter out noise and Normalisation

to reduce feature-bias. Original MC-NN did not make use of LPF or Normalisation.

Firstly, the evaluation of the developed method only focused on the method based on the

already in MC-NN available statistical measure, namely Variance. The method was evaluated

on artificial data streams and controlled real datasets with artificially induced concept drift. It

was observed that the method did detect concept drifts very well on the artificial data streams

compared with alternative concept drift detection methods. It achieved a very high true posi-

tive detection number and resulted in only five false positive detection. On the controlled real

datasets seven artificially induced concept drifts were missed, but unknown concept drifts were

detected. These unexpected concept drift detections may have been natural and thus previously

unknown concept drifts but could have also been the effects of feature-bias, noise, and outliers.

Thus in the next step of the evaluation LPF, Normalisation, and IQR as an alternative measure

for feature splitting and concept drift detection were used to clean the data. To allow a fair

comparison LPF and Normalisation were applied on both the method based on Variance and

the method based on IQR. Both versions of the method were compared with regards to con-

cept drift detection and feature tracking on the artificial data streams and the real datasets (with

induced concept drift). On the artificial data streams, all induced concept drifts were detected

correctly by the method based on IQR and on the controlled real datasets seven concept drifts

were missed but only by the method based on Variance. Regarding feature tracking, the method

based on IQR outperformed the method based on Variance. The method based on IQR achieved

a high true positive identification of features that were actually features involved in concept

drift and a low number of false positive identifications. Thus the method based Variance was
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considered not suitable for feature tracking, and the next step of the evaluation focussed only on

the method based on IQR for feature selection. In this research study, the developed method for

real-time feature selection was tested based on feature tracking using IQR. The evaluation was

conducted in uncontrolled environments on five case studies with data streams based on real

datasets. Thus the ground truth of feature relevance and concept drift was unknown. Hence the

impact of the method on the classification accuracy over time was measured and if the method

actually identified features with changing relevance correctly. The data stream classification

method chosen was the popular Hoeffding Tree algorithm as well as incremental NaiveBayes.

The results showed that the method detected various concept drifts throughout the streams and

identified features for the re-evaluation of their relevance. It was also shown that the classifier

achieved a higher average accuracy when using the developed method compared with not using

the method.

Overall the research represents a first attempt to resolve real-time feature selection for data

stream mining tasks. It has been shown that the method can indeed identify concept drift, track

features, and identify features that may have changed their relevance for the data mining task in

real-time. It has also been shown that the developed method can improve the accuracy of data

stream classification tasks. This can conclude that the research work has achieved its objectives

as described in Section 1.4 of this thesis according to work presented throughout the chapters

of this thesis. The chapter is organised as follows. In Section 7.2, the main contributions of this

research work are listed. Limitations of the study are discussed in Section 7.3. Extensions to

this research study and future work in the field set out by this thesis are listed and discussed in

Section 7.4.

7.2 Contributions of Research

This section presents the main contributions of this research study referring to research objec-

tives set out in Chapter 1.

(1) A method which directly links to Objective 1 was developed and comparatively evaluated

to identify a drift point (i.e., concept drift) through tracking significant changes in the

statistical summaries in real-time.

(2) A method which directly links to Objective 2 was developed and evaluated to detect

causality of drifts through tracking the statistics of each feature for identifying which
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features were involved in drifting over a statistical time window in real-time.

(3) A method which directly links to Objective 3 was developed to continuously analyse the

historical statistics provided by the developed method in Objective 2 with the purpose of

selecting the relevant features for an adaptive data stream classifier (i.e., dynamic adjust-

ment feature selection in real-time).

The above methods are embedded in a framework (i.e., the developed real-time pre-processing

technique). The technique has been implemented for detecting a concept drift with the feature

tracking information feedforward capability linking features to concept drifts over a statistical

time window for feature selection purposes using the adaptive Micro-Clusters.

7.3 Limitations of the Study

Although this research was carefully prepared and described, shortcomings and limitations are

identified and listed below.

1. The developed methods in this research were designed for tracking and analysing the

relevance of features which appear with maximum statistical summaries such as Velocity

and IQR when a concept drift is detected. Whereas, features with only high Velocity are

not analysed and considered as unseen features which may have a significant effect on

OverallAccuracy of the classifier over time.

2. The correlation of pairs of features given the class is not measured over time. This may

also have a significant effect on OverallAccuracy of the classifier such as NaiveBayes

as the classification accuracy decreases when the features are not independent given the

class over time.

3. A time window size was identified in advance (i.e., fixed size, 10% of the total number of

instances). Although this yielded good results in most cases, this may not be suitable for

all classifiers. Also, real data streams may be potentially infinite.
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7.4 Future Works

7.4.1 Extensions and Improvements

There are some extensions to this research study that would expand and strengthen the results.

1. Further enhancement to the developed methods in this area can be done by analysing the

relevance of features with high Velocity only when concept drift is detected or occurred.

It has been noticed in some results that the OverallAccuracy decreases over time (the

evaluation of real-time feature selection, see Section 6.4). This potentially due to the

features which were not involved in drifting but still have high Velocity, and they are not

in the history of maximum IQR. A counter is kept for each feature of a Micro-Cluster over

the time stamps, starting with 0 within each time window. The counter is incremented by

1 if the specific feature was the feature with the maximum IQR when splitting of the

Micro-Cluster is performed. In this research this is referred to as the history of maximum

IQR (i.e., see Chapter 6 Section 6.1). Hence, the features of the Micro-Cluster with high

IQR but not the highest/maximum one are ignored, i.e., the counters of these features are

not incremented by 1. Tracking these features may contribute to develop an early concept

drift detection method.

2. Applying dynamic time window size is another possible improvement which may en-

hance the performance of the developed method and increase an average accuracy of the

classifier such as Hoeffding Tree. Where at each node, more data instances (i.e., a greedy

heuristic) would be required to optimise decisions for building tree models (Kourtellis

et al., 2016).

7.4.2 Future Directions

Future work in the field set out by this thesis can be conducted in the following directions.

1. The developed technique is not embedded in a classifier as it is independent of the data

stream mining algorithm (i.e., a pre-processing technique). However, a classifier can be

developed by embedding the developed technique for the purpose of tracking, identifying,

and detecting the best feature subset (i.e., relevant features) in real-time.
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2. Another direction is to develop a real-time feature extraction method by measuring the

similarity between features in terms of Information Gain as an example. If two features

have similar properties, this would indicate that these features need to be merged over time

to increase an average accuracy of the classifier such as NaiveBayes. Figure 7.1 shows the

workflow of real-time feature extraction in predictive data stream analysis. The best can-

didate features from a given data stream are identified and extracted by dynamic feature

extraction over time. Where Test and Train refer to Test-Then-Train or Prequential. Each

individual data instance is used to test the model before it is used for training (Bifet and

Frank, 2010). Examining the classification accuracy (i.e., OverallAccuracy) is then ap-

plied over a statistical windowing approach when OverallAccuracy decreases (classifier

evaluation). Hence, features are examined using feature analysis which consists of three

main tasks which are feature monitor, feature correlation, and feature extraction. Features

are monitored using Information Gain in combination with Velocity and IQR. Correlation

between features is then measured using k-means as an example in terms of Informa-

tion Gain, Velocity, and IQR. Feature extraction merges features with similar properties.

However, the merged features are monitored for the next time windows to examine their

correlations over time (i.e., unmerge the features or keep them merged).

Figure 7.1: Workflow of Data Stream Mining for real-time feature extraction.

3. Outlier detection can also be achieved through tracking upper and lower limits of IQR.

The limits of a feature’s data range using IQR can be identified by two types Important

and Extreme limits given by Equations 7.1 and 7.2 which are added to Q3 (i.e., upper

limit) or subtracted from Q1 (i.e., lower limit). Figure 7.2 shows an example of Important

and Extreme limits of a data’s range using IQR. A counter is then kept for each feature of
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a Micro-Cluster over time stamps and starting with 0 within time windows. The counter

is incremented by 1 if the specific feature was the feature with the highest limit which is

either greater or smaller than Important or Extreme limit in the current time window. A

high limit (i.e., Important or Extreme limit) indicates that the feature would be affected or

influenced by outliers which may have changed its contribution towards the classification

task.

ImportantLimit[x] = 1.5∗ IQR[x] (7.1)

ExtremeLimit[x] = 3∗ IQR[x] (7.2)

Figure 7.2: Example of important and extreme limits of feature data’s range using IQR.
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Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A survey on

concept drift adaptation. ACM Computing Surveys (CSUR), 46(4):44.

Gao, B. and Zhang, J. (2013). Density based distribute data stream clustering algorithm. JSW,

8(2):435–442.

Ghesmoune, M., Lebbah, M., and Azzag, H. (2016). State-of-the-art on clustering data streams.

Big Data Analytics, 1(1):13.

Hahsler, M., Dunham, M. H., et al. (2010). remm: Extensible markov model for data stream

clustering in r. Journal of Statistical Software, 35(5):1–31.

Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

Han, Y. (2012). Stable feature selection: theory and algorithms. State University of New York

at Binghamton.

130



Mahmood Shakir Hammoodi References

Hassani, M., Kranen, P., and Seidl, T. (2011). Precise anytime clustering of noisy sensor data

with logarithmic complexity. In Proceedings of the Fifth International Workshop on Knowl-

edge Discovery from Sensor Data, pages 52–60. ACM.

Hickey, R. J. (1996). Noise modelling and evaluating learning from examples. Artificial Intel-

ligence, 82(1):157–179.

Hoens, T. R., Polikar, R., and Chawla, N. V. (2012). Learning from streaming data with concept

drift and imbalance: an overview. Progress in Artificial Intelligence, 1(1):89–101.

Hoi, S. C., Wang, J., Zhao, P., and Jin, R. (2012). Online feature selection for mining big data.

In Proceedings of the 1st international workshop on big data, streams and heterogeneous

source mining: Algorithms, systems, programming models and applications, pages 93–100.

ACM.

Houle, M. E. and Nett, M. (2015). Rank-based similarity search: Reducing the dimensional

dependence. IEEE transactions on pattern analysis and machine intelligence, 37(1):136–

150.

Hu, X. (2003). Db-hreduction: A data preprocessing algorithm for data mining applications.

Applied Mathematics Letters, 16(6):889–895.

Hu, Y.-C., Perrig, A., and Johnson, D. B. (2003). Efficient security mechanisms for routing

protocolsa. In NDSS.

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-changing data streams. In

Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 97–106. ACM.

Jadhav, A., Jadhav, P., and Kulkarni, P. (2013). A novel approach for the design of network

intrusion detection system (nids). In Sensor Network Security Technology and Privacy Com-

munication System (SNS & PCS), 2013 International Conference on, pages 22–27. IEEE.

Janecek, A., Gansterer, W., Demel, M., and Ecker, G. (2008). On the relationship between

feature selection and classification accuracy. In New Challenges for Feature Selection in

Data Mining and Knowledge Discovery, pages 90–105.

131



Mahmood Shakir Hammoodi References

Kadlec, P., Gabrys, B., and Strandt, S. (2009). Data-driven soft sensors in the process industry.

Computers & Chemical Engineering, 33(4):795–814.

Kira, K. and Rendell, L. A. (1992). The feature selection problem: Traditional methods and a

new algorithm. In AAAI, volume 2, pages 129–134.

Knorr, E. M. and Ng, R. T. (1999). Finding intensional knowledge of distance-based outliers.

In VLDB, volume 99, pages 211–222.

Knox, E. M. and Ng, R. T. (1998). Algorithms for mining distancebased outliers in large

datasets. In Proceedings of the International Conference on Very Large Data Bases, pages

392–403. Citeseer.

Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence,

97(1):273–324.

Kononenko, I. (1994). Estimating attributes: analysis and extensions of relief. In European

conference on machine learning, pages 171–182. Springer.

Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006). Data preprocessing for supervised

leaning. International Journal of Computer Science, 1(2):111–117.

Kourtellis, N., Morales, G. D. F., Bifet, A., and Murdopo, A. (2016). Vht: Vertical hoeffding

tree. In Big Data (Big Data), 2016 IEEE International Conference on, pages 915–922. IEEE.

Kranen, P., Assent, I., Baldauf, C., and Seidl, T. (2009). Self-adaptive anytime stream clustering.

In Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on, pages 249–258.

IEEE.

Kriegel, H.-P., Kröger, P., and Zimek, A. (2009). Clustering high-dimensional data: A survey on

subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions

on Knowledge Discovery from Data (TKDD), 3(1):1.

Kuncheva, L. I. and Jain, L. C. (1999). Nearest neighbor classifier: simultaneous editing and

feature selection. Pattern recognition letters, 20(11):1149–1156.

Lakshmi, K. P. and Reddy, C. (2015). Efficient classifier generation over stream sliding window

using associative classification approach. International Journal of Computer Applications,

115(22).

132



Mahmood Shakir Hammoodi References

Lavanya, D. and Rani, D. K. U. (2011). Analysis of feature selection with classification: Breast

cancer datasets. Indian Journal of Computer Science and Engineering (IJCSE), 2(5):756–

763.

Law, Y.-N. and Zaniolo, C. (2005). An adaptive nearest neighbor classification algorithm for

data streams. In Knowledge Discovery in Databases: PKDD 2005, pages 108–120. Springer.

Lazarevic, A. and Obradovic, Z. (2001). Effective pruning of neural network classifier ensem-

bles. In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on,

volume 2, pages 796–801. IEEE.

Le, T., Stahl, F., Gaber, M. M., Gomes, J. B., and Di Fatta, G. (2017). On expressiveness

and uncertainty awareness in rule-based classification for data streams. Neurocomputing,

265:127–141.

Lee, G., Singanamalli, A., Wang, H., Feldman, M. D., Master, S. R., Shih, N. N., Spangler,

E., Rebbeck, T., Tomaszewski, J. E., and Madabhushi, A. (2015). Supervised multi-view

canonical correlation analysis (smvcca): integrating histologic and proteomic features for

predicting recurrent prostate cancer. IEEE transactions on medical imaging, 34(1):284–297.

Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L. (2013). Detecting outliers: Do not use

standard deviation around the mean, use absolute deviation around the median. Journal of

Experimental Social Psychology, 49(4):764–766.

Li, H., Wu, X., Li, Z., and Ding, W. (2013). Group feature selection with streaming features. In

2013 IEEE 13th International Conference on Data Mining, pages 1109–1114. IEEE.

Lichman, M. (2013). UCI machine learning repository.

Liu, A., Zhang, G., and Lu, J. (2017). Fuzzy time windowing for gradual concept drift adap-

tation. In Fuzzy Systems (FUZZ-IEEE), 2017 IEEE International Conference on, pages 1–6.

IEEE.

Liu, P., Wu, N., Zhu, J., Yin, J., and Zhang, W. (2006). A unified strategy of feature selection.

In International Conference on Advanced Data Mining and Applications, pages 457–464.

Springer.

133



Mahmood Shakir Hammoodi References

Liu, Z. et al. (2011). A method of svm with normalization in intrusion detection. Procedia

Environmental Sciences, 11:256–262.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory,

28(2):129–137.

Loo, H. and Marsono, M. (2015). Online data stream classification with incremental semi-

supervised learning. In Proceedings of the Second ACM IKDD Conference on Data Sciences,

pages 132–133. ACM.

Lu, Y., Sun, Y., Xu, G., and Liu, G. (2005). A grid-based clustering algorithm for high-

dimensional data streams. In International Conference on Advanced Data Mining and Appli-

cations, pages 824–831. Springer.

Marrón, D., Read, J., Bifet, A., and Navarro, N. (2017). Data stream classification using ran-

dom feature functions and novel method combinations. Journal of Systems and Software,

127:195–204.

Martinez-Arroyo, M. and Sucar, L. E. (2006). Learning an optimal naive bayes classifier. In

Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, volume 3, pages

1236–1239. IEEE.

Meesuksabai, W., Kangkachit, T., and Waiyamai, K. (2011). Hue-stream: Evolution-based

clustering technique for heterogeneous data streams with uncertainty. In Advanced Data

Mining and Applications, pages 27–40. Springer.

Mousavi, M., Bakar, A. A., and Vakilian, M. (2015). Data stream clustering algorithms: A

review. Int J Adv Soft Comput Appl, 7(3):13.

Ogasawara, E., Martinez, L. C., De Oliveira, D., Zimbrão, G., Pappa, G. L., and Mattoso, M.

(2010). Adaptive normalization: A novel data normalization approach for non-stationary

time series. In The 2010 International Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE.

Oreski, D. and Klicek, B. (2015). A novel feature selection techniques based on contrast set

mining. In 14th International Conference on Artificial Intelligence, Knowledge Engineering

and Data Bases (AIKED’15).

134



Mahmood Shakir Hammoodi References

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2):100–115.

Patro, S. and Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv preprint

arXiv:1503.06462.

Pelayo Ramirez, L. (2011). Developing and Evaluating Methods for Mitigating Sample Selec-

tion Bias in Machine Learning. PhD thesis, University of Alberta.

Pesaranghader, A., Viktor, H., and Paquet, E. (2017). Mcdiarmid drift detection methods for

evolving data streams. arXiv preprint arXiv:1710.02030.

Pesaranghader, A. and Viktor, H. L. (2016). Fast hoeffding drift detection method for evolving

data streams. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, pages 96–111. Springer.

PhridviRaj, M. and GuruRao, C. (2014). Data mining–past, present and future–a typical survey

on data streams. Procedia Technology, 12:255–263.

Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient algorithms for mining outliers

from large data sets. In ACM Sigmod Record, volume 29, pages 427–438. ACM.

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., and Herrera, F. (2017). A survey
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Žliobaitė, I. (2010). Learning under concept drift: an overview. arXiv preprint

arXiv:1010.4784.

139



Appendix A

Percentage Difference of Split and Death

Rates with Low Pass Filter Rate

In this appendix, different values of Percentage Difference of Split and Death rates in combi-

nation with α rate of LPF were used for the purpose of concept drift detection and real-time

feature selection using artificial and real datasets (controlled and uncontrolled real datasets).

A.1 Artificial and Controlled Real Datasets

Table A.1 illustrates number of concept drifts detected correctly. For the experiments the de-

fault parameters stated in Table 3.2 (artificial datasets) and Table 3.3 (controlled real datasets

with 6 features) were used unless stated otherwise. The new MC-NN with IQR was used. As

there are 25 experiments, there is a total of 25 concept drifts to be detected. Where 15 con-

cepts drift with artificial datasets, and 10 concepts drift with controlled datasets. It can be seen

that 50% of α rate yielded good results in most cases. Whereas, Percentage Difference rates

from 40% to 60% yielded similar results in terms of true positive detections (25). However, a

lower rate of Percentage Difference (i.e., less than 50%) potentially would render the developed

method triggers frequent and unnecessary adaptation to concept drift. Whereas, a higher rate of

Percentage Difference (i.e., greater than 50%) potentially would render the developed method

unable to detect actual concept drifts.
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Table A.1: Summary of concept drifts adaptation experiments using artificial and controlled real
dataset with different values (from 10% to 100%) of Percentage Difference of Split and Death
rates in combination with α . The results are reported for the Time 6 which is the time at which
features were swapped. Where a first number refers to number of false positive detections,
whereas a second number (between round brackets) refers to number of true positive detections.
XXXXXXXXXXXXXXX

Percentage
Difference Rate

α

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 41(15) 42(14) 31(16) 27(16) 17(24) 25(18) 24(18) 28(19) 26(16) 25(17)
20% 41(15) 40(12) 29(15) 26(16) 4(24) 21(19) 27(18) 26(17) 25(16) 25(17)
30% 36(14) 38(12) 27(15) 23(17) 13(24) 27(19) 23(17) 26(17) 21(16) 22(16)
40% 28(14) 31(12) 26(14) 22(16) 10(25) 27(19) 22(17) 24(17) 18(16) 18(16)
50% 26(14) 30(12) 21(14) 21(16) 9(25) 16(19) 22(16) 21(17) 18(16) 18(16)
60% 26(14) 28(12) 20(14) 20(16) 9(25) 17(18) 22(16) 20(17) 18(16) 18(16)
70% 25(14) 27(12) 19(14) 20(16) 9(24) 17(18) 22(16) 20(17) 17(16) 18(16)
80% 24(14) 26(12) 19(15) 18(16) 9(24) 15(17) 22(16) 20(17) 17(16) 18(16)
90% 23(14) 24(12) 18(15) 18(16) 7(24) 15(17) 18(16) 20(17) 17(16) 18(16)

100% 23(14) 23(12) 18(15) 16(16) 7(23) 14(17) 17(16) 21(16) 17(16) 16(16)

A.2 Uncontrolled Real Datasets

Tables A.2 to A.6 illustrate average accuracy achieved using uncontrolled real datasets with the

developed methods for real-time feature selection and concept drift detection. For the experi-

ments the default parameters stated in Table 3.4 (uncontrolled real datasets) were used unless

stated otherwise. The new MC-NN with IQR was used. Hoeffding Tree classifier was used

as well. Although higher average accuracy achieved in most cases, α with higher/lower rate

(i.e., greater/smaller than 50%) potentially would lead to losing information. According to LPF

equation (see Chapter 2 Section 2.3.2), α with 50% means that the method uses 50% of both a

new incoming data and a feature’s filtered data. Regarding Percentage Difference of Split and

Death rates, lower rate of Percentage Difference (i.e., less than 50%) potentially would render

the developed method triggers frequent and unnecessary adaptation to concept drifts, whereas

higher rate of Percentage Difference (i.e., greater than 50%) potentially would render the de-

veloped method unable to detect actual concept drifts. Hence, in this research study, α and

Percentage Difference of Split and Death rates are set to 50%.
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Table A.2: Summary of average accuracy achieved using uncontrolled real dataset (CoverType)
with different values (from 10% to 100%) of Percentage Difference of Split and Death rates in
combination with α .

XXXXXXXXXXXXXXX

Percentage
Difference Rate

α

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 78.29 79.85 78.86 80.00 79.91 78.91 78.91 79.48 78.70 78,58
20% 78.29 79.85 78.86 80.00 79.32 78.91 78.91 79.48 78.70 78,58
30% 78.29 79.73 79.73 79.68 79.32 79.11 78.91 79.48 78.70 78,58
40% 76.30 79.73 79.73 79.68 79.32 79.11 78.91 79.48 78.70 78,58
50% 76.30 79.73 79.73 79.68 79.32 79.11 78.91 79.48 78.70 78,58
60% 76.30 79.73 79.73 76.30 79.32 79.11 78.91 79.48 78.70 78,58
70% 76.30 76.30 76.30 76.30 79.32 79.11 78.91 79.48 78.70 78,58
80% 76.30 76.30 76.30 76.30 79.32 79.11 78.91 79.48 78.70 78,58
90% 76.30 76.30 76.30 76.30 79.32 79.11 78.91 79.48 78.70 78,58

100% 76.30 76.30 76.30 76.30 79.32 79.11 78.91 79.48 78.97 78,58

Table A.3: Summary of average accuracy achieved using uncontrolled real dataset (Diabetic
Retinopathy Debrecen) with different values (from 10% to 100%) of Percentage Difference of
Split and Death rates in combination with α .

XXXXXXXXXXXXXXX

Percentage
Difference Rate

α

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 50.09 50.35 50.00 50.70 50.43 52.52 51.22 52.52 51.39 49.83
20% 50.09 50.35 50.00 50.70 51.48 52.52 51.22 52.52 51.39 49.83
30% 50.09 50.35 50.00 52.17 51.48 52.52 51.22 52.52 51.22 49.83
40% 50.09 50.35 50.00 52.17 51.48 52.52 51.22 52.52 50.87 49.83
50% 50.09 50.35 50.00 52.17 51.04 52.00 51.22 52.43 50.87 49.83
60% 50.09 50.35 50.00 52.17 51.04 52.00 51.22 52.43 50.87 49.83
70% 50.09 50.35 50.00 52.17 51.04 52.09 51.22 52.43 50.87 49.83
80% 50.09 50.35 50.00 52.17 51.04 52.09 51.22 52.43 50.87 49.83
90% 50.09 50.35 50.00 52.17 51.04 52.09 51.22 52.43 50.87 49.83

100% 50.09 50.35 50.00 52.17 51.04 52.09 51.22 52.43 50.87 49.83

Table A.4: Summary of average accuracy achieved using uncontrolled real dataset (Gesture
Phase Segmentation) with different values (from 10% to 100%) of Percentage Difference of
Split and Death rates in combination with α .

XXXXXXXXXXXXXXX

Percentage
Difference Rate

α

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 74.46 74.48 81.03 75.80 81.38 81.21 83.45 75.28 79.31 79.48
20% 77.41 77.70 81.03 75.80 81.38 81.21 75.80 74.89 79.31 79.48
30% 76.67 72.99 73.10 75.80 76.32 81.21 75.80 74.89 79.31 79.48
40% 76.67 72.99 73.10 75.80 80.00 81.21 75.80 74.89 79.31 79.48
50% 77.64 72.99 75.86 72.01 80.23 80.46 75.80 74.89 79.31 79.48
60% 77.64 72.99 75.86 70.52 54.71 80.46 75.80 74.89 79.31 79.48
70% 77.64 72.99 75.86 70.52 54.71 61.03 75.80 74.89 79.31 79.48
80% 77.70 72.99 75.86 70.52 54.71 61.03 75.80 74.89 79.31 79.48
90% 77.70 72.99 75.86 70.52 54.71 61.03 75.80 74.89 79.31 79.48

100% 77.70 72.99 75.86 70.52 54.71 61.03 75.80 74.89 79.31 79.08
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Table A.5: Summary of average accuracy achieved using uncontrolled real dataset (Statlog
(Landsat Satellite)) with different values (from 10% to 100%) of Percentage Difference of Split
and Death rates in combination with α .

XXXXXXXXXXXXXXX

Percentage
Difference Rate

α

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 83.16 82.00 82.10 80.79 80.74 82.23 81.49 81.99 80.41 81.47
20% 83.16 82.00 82.10 80.79 80.74 82.21 80.59 81.99 80.41 81.47
30% 83.16 82.00 82.10 80.79 80.74 82.21 80.59 81.99 80.41 80.41
40% 79.12 82.53 78.02 80.79 81.63 82.21 80.59 81.99 80.41 80.41
50% 78.53 77.86 78.08 79.59 81.63 79.37 80.59 82.14 80.41 80.41
60% 78.53 77.86 78.08 79.59 79.50 79.37 80.50 82.14 80.41 80.41
70% 78.53 77.86 78.08 79.59 79.50 79.37 80.50 82.14 80.41 80.41
80% 78.53 77.86 78.08 79.59 79.50 79.37 80.45 82.14 80.41 80.41
90% 78.53 77.86 78.08 79.59 79.50 79.37 80.45 82.14 80.41 80.41

100% 78.53 77.86 78.08 79.59 79.50 79.37 80.45 82.14 80.41 80.41

Table A.6: Summary of average accuracy achieved using uncontrolled real dataset (Waveform
(with noise)) with different values (from 10% to 100%) of Percentage Difference of Split and
Death rates in combination with α .

XXXXXXXXXXXXXXX

Percentage
Difference Rate

α

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 77.70 72.58 76.24 78.88 78.84 80.68 80.42 80.42 80.42 80.42
20% 79.40 77.14 79.40 79.46 79.36 80.42 80.42 80.42 80.42 80.42
30% 80.96 80.69 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42
40% 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42
50% 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42
60% 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42
70% 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42
80% 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42
90% 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42

100% 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42
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FIFO Queue Size

In this appendix, different FIFO’s sizes (i.e., number of instances saved in the FIFO) were used

for splitting a Micro-Cluster using IQR with artificial and real datasets (controlled and uncon-

trolled real datasets). For the experiments in this appendix, α rate of LPF and Percentage Dif-

ference of Split and Death rates were also used with FIFO queue. Regarding α and Percentage

Difference rates, the same results as the previous appendix (Appendix A) have been achieved.

50% of α and Percentage Difference rates yielded good results in most cases. Whereas, FIFO’s

sizes (500 and 1000) yielded good results in most cases. However, lower FIFO’s size (i.e., 100)

potentially would lead to losing information. Whereas, higher FIFO’s size (i.e., greater than

1000) potentially may consider computationally expensive.

B.1 FIFO Queue in combination with Percentage Difference

of Split and Death Rates

B.1.1 Artificial and Controlled Real Datasets

Table B.1 illustrates number of concept drifts detected correctly using different FIFO’s sizes

have been selected randomly (100, 500, and 1000) in combination with different values of

Percentage Difference of Split and Death rates (from 10% to 100%). For the experiments the

default parameters stated in Table 3.2 (artificial datasets) and Table 3.3 (controlled real datasets)

were used. The new MC-NN with IQR was used. α rate of LPF was set to 50%. As there are

25 experiments, there is a total of 25 concept drifts to be detected. Where 15 concepts drifts

with artificial datasets, and 10 concepts drifts with controlled datasets.
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Table B.1: Summary of concept drifts adaptation experiments using artificial and controlled real
dataset with different values (from 10% to 100%) of Percentage Difference of Split and Death
rates in combination with different FIFO’s sizes (100, 500, and 1000). The results are reported
for the Time 6 which is the time at which features were swapped. Where a first number refers to
number of false positive detections, whereas a second number (between round brackets) refers
to number of true positive detections.
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 27(19) 24(20) 24(19) 23(20) 21(20) 23(19) 21(19) 21(19) 20(19) 18(18)
500 20(24) 16(24) 16(23) 16(23) 14(24) 14(24) 14(24) 14(24) 13(24) 13(23)

1000 23(24) 18(24) 18(23) 15(25) 14(25) 14(25) 14(24) 14(24) 13(24) 12(23)

B.1.2 Uncontrolled Real Datasets

Tables B.2 to B.6 illustrate average accuracy achieved using uncontrolled real datasets with the

developed methods for real-time feature selection and concept drift detection. For the experi-

ments the default parameters stated in Table 3.4 (uncontrolled real datasets) were used unless

stated otherwise. The new MC-NN with IQR and Hoeffding Tree classifier were used.

Table B.2: Summary of average accuracy achieved using uncontrolled real dataset (CoverType)
with different values (from 10% to 100%) of Percentage Difference of Split and Death rates in
combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 79.14 79.14 79.35 79.35 79.35 79.35 79.35 79.35 79.35 79.35
500 79.24 79.24 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32

1000 79.91 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32

Table B.3: Summary of average accuracy achieved using uncontrolled real dataset (Diabetic
Retinopathy Debrecen) with different values (from 10% to 100%) of Percentage Difference of
Split and Death rates in combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 49.65 51.13 51.13 51.04 50.70 50.70 50.70 50.70 50.70 50.70
500 50.43 51.48 51.48 51.48 51.04 51.04 51.04 51.04 51.04 51.04

1000 50.43 51.48 51.48 51.48 51.04 51.04 51.04 51.04 51.04 51.04
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Table B.4: Summary of average accuracy achieved using uncontrolled real dataset (Gesture
Phase Segmentation) with different values (from 10% to 100%) of Percentage Difference of
Split and Death rates in combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 81.38 81.38 76.44 80.00 80.23 54.71 54.71 54.71 54.71 54.71
500 81.38 81.38 76.32 80.00 80.23 54.71 54.71 54.71 54.71 54.71

1000 81.38 81.38 76.32 80.00 80.23 54.71 54.71 54.71 54.71 54.71

Table B.5: Summary of average accuracy achieved using uncontrolled real dataset (Statlog
(Landsat Satellite)) with different values (from 10% to 100%) of Percentage Difference of Split
and Death rates in combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 81.47 81.47 81.47 81.38 81.38 80.43 80.43 80.43 80.43 80.43
500 80.75 80.75 80.75 81.63 81.63 79.50 79.50 79.50 79.50 79.50

1000 80.75 80.75 80.75 81.63 81.63 79.50 79.50 79.50 79.50 79.50

Table B.6: Summary of average accuracy achieved using uncontrolled real dataset (Waveform
(with noise)) with different values (from 10% to 100%) of Percentage Difference of Split and
Death rates in combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 78.54 78.74 79.92 79.92 79.92 79.92 79.92 79.92 79.92 79.92
500 78.84 79.36 80.68 80.68 80.68 80.68 80.68 80.68 80.68 80.68

1000 78.84 79.36 80.68 80.68 80.68 80.68 80.68 80.68 80.68 80.68

B.2 FIFO Queue in combination with Alpha Rate of LPF

B.2.1 Artificial and Controlled Real Datasets

Table B.7 illustrates number of concept drifts detected correctly using different FIFO’s sizes

have been selected randomly (100, 500, and 1000) in combination with different values of α

rate of LPF (from 10% to 100%). For the experiments the default parameters stated in Table

3.2 (artificial datasets) and Table 3.3 (controlled real datasets) were used. The new MC-NN

with IQR was used. Percentage Difference of Split and Death rates was set to 50%. As there

are 25 experiments, there is a total of 25 concept drifts to be detected. Where 15 concepts drifts
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with artificial datasets, and 10 concepts drifts with controlled datasets. Percentage Difference

of Split and Death rates was set to 50%.

Table B.7: Summary of concept drift adaptation experiments using artificial and controlled real
dataset with different values (from 10% to 100%) of α rate in combination with different FIFO’s
sizes (100, 500, and 1000). The results are reported for the Time 6 which is the time at which
features were swapped. Where a first number refers to number of false positive detections,
whereas a second number (between round brackets) refers to number of true positive detections.

XXXXXXXXXXXXFIFO’s Size
α 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 28(13) 32(12) 25(13) 18(15) 21(19) 18(17) 24(16) 26(16) 23(16) 23(15)
500 26(13) 29(14) 22(13) 21(18) 13(24) 19(22) 27(18) 20(18) 20(17) 20(17)
1000 26(14) 29(13) 21(14) 22(17) 14(25) 19(21) 25(18) 22(18) 19(17) 20(17)

B.2.2 Uncontrolled Real Datasets

Tables B.8 to B.12 illustrates average accuracy achieved using uncontrolled real datasets with

the developed methods for real-time feature selection and concept drift detection. For the exper-

iments the default parameters stated in Table 3.4 (uncontrolled real datasets) were used unless

stated otherwise. The new MC-NN with IQR was used as well as Hoeffding Tree Classifier.

Table B.8: Summary of average accuracy achieved using uncontrolled real dataset (CoverType)
with different values (from 10% to 100%) of α rate of LPF in combination with different FIFO’s
sizes (100, 500, and 1000).

XXXXXXXXXXXXFIFO’s Size
α 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 76.30 78.90 78.90 79.03 79.35 78.75 78.19 78.81 78.58 78.61
500 76.30 79.19 79.86 80.00 79.32 79.20 78.96 79.20 78.27 78.97

1000 76.30 79.73 79.73 80.00 79.32 79.12 78.91 79.48 78.70 78.58

Table B.9: Summary of average accuracy achieved using uncontrolled real dataset (Diabetic
Retinopathy Debrecen) with different values (from 10% to 100%) of α rate of LPF in combi-
nation with different FIFO’s sizes (100, 500, and 1000).

XXXXXXXXXXXXFIFO’s Size
α 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 50.08 51.30 50.26 51.74 50.70 51.65 51.57 52.09 50.26 49.39
500 50.08 50.35 50.00 52.17 51.04 52.00 51.22 52.43 50.87 49.83

1000 50.08 50.35 50.00 52.17 51.04 52.00 51.22 52.43 50.87 49.83
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Table B.10: Summary of average accuracy achieved using uncontrolled real dataset (Gesture
Phase Segmentation) with different values (from 10% to 100%) of α rate of LPF in combination
with different FIFO’s sizes (100, 500, and 1000).

XXXXXXXXXXXXFIFO’s Size
α 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 71.38 72.53 71.15 72.01 80.23 80.46 75.80 74.60 79.25 79.14
500 77.64 72.99 75.86 72.01 80.23 80.46 75.80 74.89 79.31 79.48

1000 77.64 72.99 75.86 72.01 80.23 80.46 75.80 74.89 79.31 79.48

Table B.11: Summary of average accuracy achieved using uncontrolled real dataset (Statlog
(Landsat Satellite)) with different values (from 10% to 100%) of α rate of LPF in combination
with different FIFO’s sizes (100, 500, and 1000).

XXXXXXXXXXXXFIFO’s Size
α 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 82.05 80.59 80.77 78.08 81.38 77.79 80.51 82.51 81.29 80.14
500 78.53 77.86 78.08 79.59 81.63 79.37 80.59 82.14 80.41 80.41

1000 78.53 77.86 78.08 79.59 81.63 79.37 80.59 82.14 80.41 80.41

Table B.12: Summary of average accuracy achieved using uncontrolled real dataset (Waveform
(with noise)) with different values (from 10% to 100%) of α rate of LPF in combination with
different FIFO’s sizes (100, 500, and 1000).

XXXXXXXXXXXXFIFO’s Size
α 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 80.26 80.26 80.26 80.26 79.92 80.42 80.42 80.42 80.42 80.42
500 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42

1000 80.96 80.96 80.26 80.26 80.68 80.42 80.42 80.42 80.42 80.42
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Appendix C

Percentage Difference of Information Gain

for Real-Time Feature Selection

In this appendix, different values of Percentage Difference of Information Gain were used for

the purpose of real-time feature selection in particular monitoring of temporarily irrelevant fea-

tures. When a concept drift is detected, and the real-time feature selection method is applied,

Information Gain is calculated based on the features’ values saved in FIFO queues. Therefore,

in this appendix, different FIFO’s sizes have been selected randomly (100, 500, and 1000) were

used in combination with different values (from 10% to 100%) of Percentage Difference of In-

formation Gain. Uncontrolled real datasets were used. The default parameters stated in Table

3.4 were used. Hoeffding Tree classifier and the new MC-NN with IQR were used. For the

experiments in this appendix, the α rate of LPF and Percentage Difference of Split and Death

rates were set to 50% as it yielded good results in most cases as examined in the previous appen-

dices. Tables C.1 to C.5 illustrate the average accuracy achieved using the developed methods

for real-time feature selection and concept drift detection. Regarding FIFO’s size, the same

results as the previous appendix (Appendix B) have been achieved. Regarding Percentage Dif-

ference of Information Gain, it can be seen that lower average accuracies have been recorded

in some cases when Percentage Difference of Information Gain greater than 50%. Whereas,

higher average accuracies have been achieved when Percentage Difference of Information Gain

between 10% and 50%, and only one exception with CoverType dataset.
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Table C.1: Summary of average accuracy achieved using uncontrolled real dataset (CoverType)
with different values (from 10% to 100%) of Percentage Difference of Information Gain in
combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 79.35 79.35 79.35 79.35 79.35 79.35 79.35 79.35 79.35 79.35
500 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32

1000 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32 79.32

Table C.2: Summary of average accuracy achieved using uncontrolled real dataset (Diabetic
Retinopathy Debrecen) with different values (from 10% to 100%) of Percentage Difference of
Information Gain in combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 51.04 50.96 50.96 50.96 50.96 48.87 49.48 49.39 49.39 49.13
500 52.09 52.00 51.74 50.61 51.04 49.48 49.39 49.39 48.52 48.52

1000 52.09 52.00 51.74 50.61 51.04 49.48 49.39 49.39 48.52 48.52

Table C.3: Summary of average accuracy achieved using uncontrolled real dataset (Gesture
Phase Segmentation) with different values (from 10% to 100%) of Percentage Difference of
Information Gain in combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 72.13 72.13 72.13 80.23 80.23 73.79 73.79 73.79 73.79 73.79
500 80.63 80.23 80.23 80.23 80.23 80.23 73.79 73.79 73.79 73.79

1000 80.63 80.23 80.23 80.23 80.23 80.23 73.79 73.79 73.79 73.79

Table C.4: Summary of average accuracy achieved using uncontrolled real dataset (Statlog
(Landsat Satellite)) with different values (from 10% to 100%) of Percentage Difference of In-
formation Gain in combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 81.85 81.63 81.63 81.63 81.38 81.54 81.54 81.54 81.54 81.54
500 81.74 81.60 81.60 81.94 81.63 81.63 81.63 81.63 81.63 81.63

1000 81.74 81.60 81.60 81.94 81.63 81.63 81.63 81.63 81.63 81.63

150



Mahmood Shakir Hammoodi Appendix C

Table C.5: Summary of average accuracy achieved using uncontrolled real dataset (Waveform
(with noise)) with different values (from 10% to 100%) of Percentage Difference of Information
Gain in combination with different FIFO’s sizes (100, 500, and 1000).
``````````````````̀FIFO’s Size

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 79.30 78.62 78.62 78.62 78.62 78.62 78.62 78.62 78.62 78.62
500 79.82 79.82 80.68 80.68 80.68 80.68 80.68 80.68 80.68 80.68

1000 79.82 79.82 80.68 80.68 80.68 80.68 80.68 80.68 80.68 80.68
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Appendix D

Error Threshold for Splitting a

Micro-Cluster

In this appendix, different values of Θ (error threshold) have been selected randomly (100,

300, 500, 700, and 900) and used for the purpose of splitting Micro-Clusters. MC-NN splits

a Micro-Cluster into two new clusters once the error counts ε reaches Θ. Therefore, in this

appendix, different values (from 10% to 100%) of Percentage Difference of Split and Death

rates in combination with Θ were used. For the experiments in this appendix, the α rate of LPF

was set to 50% as it yielded good results in most cases as examined in the previous appendices.

The new MC-NN with IQR was used.

D.1 Artificial and Controlled Real Datasets

Table D.1 illustrates number of concept drifts detected correctly. For the experiments the default

parameters stated in Table 3.2 (artificial datasets) and Table 3.3 (controlled real datasets with 6

features) were used unless stated otherwise. The new MC-NN with IQR was used. As there are

25 experiments, there is a total of 25 concept drifts to be detected. Where 15 concepts drifts with

artificial datasets, and 10 concepts drifts with controlled datasets. Although high true positive

detections achieved in some cases (18 false positives with 7 true positives), a relevant value

(Θ) that yielded good results for each individual dataset has been identified after re-conducting

each dataset using different error counters (between 1 and a window size). Where a window

size equals to 10% of number of instances. The relevant values of Θ for datasets are shown in

Tables 3.2 and 3.3.
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Table D.1: Summary of concept drifts adaptation experiments using artificial and controlled real
dataset with different values (from 10% to 100%) of Percentage Difference of Split and Death
rates in combination with Θ. The results are reported for the Time 6 which is the time at which
features were swapped. Where a first number refers to number of false positive detections,
whereas a second number (between round brackets) refers to number of true positive detections.
XXXXXXXXXXXXXXXΘ

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 51(6) 47(5) 29(1) 34(1) 34(1) 31(1) 25(2) 25(2) 25(2) 23(1)
300 32(7) 28(7) 27(7) 23(6) 22(7) 22(7) 20(7) 20(7) 18(7) 18(7)
500 24(0) 23(0) 22(0) 20(0) 18(0) 18(0) 18(0) 16(0) 16(0) 16(0)
700 16(4) 9(4) 8(4) 8(4) 8(4) 7(4) 7(4) 7(4) 5(4) 5(4)
900 13(0) 11(0) 11(0) 11(0) 11(0) 10(0) 9(0) 7(0) 7(0) 7(0)

D.2 Uncontrolled Real Datasets

Tables D.2 to D.6 illustrate average accuracy achieved using uncontrolled real datasets with the

developed methods for real-time feature selection and concept drift detection. For the experi-

ments the default parameters stated in Table 3.4 (uncontrolled real datasets) were used unless

stated otherwise. The new MC-NN with IQR was used. Hoeffding Tree classifier was used as

well. Although high average accuracies achieved in some cases, a relevant value (Θ) that yielded

good results for each individual dataset has been identified after re-conducting each dataset us-

ing different error counters (between 1 and window size). Where a window size equals to 10%

of a number of instances. The relevant values of Θ for datasets are shown in Tables 3.4.

Table D.2: Summary of average accuracy achieved using uncontrolled real dataset (CoverType)
with different values (from 10% to 100%) of Percentage Difference of Split and Death rates in
combination with Θ.
XXXXXXXXXXXXXXXΘ

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 71.63 71.84 71.84 71.84 73.54 73.54 73.54 76.71 76.71 76.71
300 74.62 74.62 75.05 75.05 75.05 74.85 74.85 74.85 74.85 74.85
500 77.52 77.05 76.82 76.79 76.79 76.79 76.79 76.79 76.79 76.79
700 75.57 75.57 75.57 75.57 74.59 74.08 74.08 74.08 74.08 74.08
900 78.90 78.90 76.82 76.82 76.82 76.79 76.79 76.79 76.79 76.79
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Table D.3: Summary of average accuracy achieved using uncontrolled real dataset (Diabetic
Retinopathy Debrecen) with different values (from 10% to 100%) of Percentage Difference of
Split and Death rates in combination with Θ.
XXXXXXXXXXXXXXXΘ

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09
300 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09
500 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09
700 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09
900 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09 50.09

Table D.4: Summary of average accuracy achieved using uncontrolled real dataset (Gesture
Phase Segmentation) with different values (from 10% to 100%) of Percentage Difference of
Split and Death rates in combination with Θ.
XXXXXXXXXXXXXXXΘ

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 80.00 80.00 80.00 60.80 60.80 60.80 60.80 54.71 54.71 54.71
300 68.51 68.51 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71
500 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71
700 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71
900 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71 54.71

Table D.5: Summary of average accuracy achieved using uncontrolled real dataset (Statlog
(Landsat Satellite)) with different values (from 10% to 100%) of Percentage Difference of Split
and Death rates in combination with Θ.
XXXXXXXXXXXXXXXΘ

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 81.00 81.00 80.43 80.43 80.43 80.43 80.43 77.63 77.63 77.63
300 80.61 80.61 80.61 80.61 80.61 80.61 76.28 76.28 76.28 76.28
500 78.49 78.49 78.49 78.49 76.28 76.28 76.28 76.28 76.28 76.28
700 76.28 76.28 76.28 76.28 76.28 76.28 76.28 76.28 76.28 76.28
900 76.28 76.28 76.28 76.28 76.28 76.28 76.28 76.28 76.28 76.28
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Table D.6: Summary of average accuracy achieved using uncontrolled real dataset (Waveform
(with noise)) with different values (from 10% to 100%) of Percentage Difference of Split and
Death rates in combination with Θ.
XXXXXXXXXXXXXXXΘ

Percentage
Difference Rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100 79.60 79.60 79.46 79.46 79.46 79.46 79.46 79.46 79.46 79.46
300 71.62 76.60 80.42 80.42 80.42 80.42 80.42 80.42 80.42 80.42
500 76.22 76.22 80.42 80.42 80.42 80.42 80.42 80.42 80.42 80.42
700 80.42 80.42 80.42 80.42 80.42 80.42 80.42 80.42 80.42 80.42
900 80.42 80.42 80.42 80.42 80.42 80.42 80.42 80.42 80.42 80.42
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Appendix E

Percentage Number of Features with

Maximum Velocity Combined with

Variance or IQR

In this appendix, different values of percentage number of features with maximum Velocity

combined with Variance or IQR were used for the purpose of feature analysis and feature se-

lection using artificial and controlled real datasets. For the experiments in this appendix, the α

rate of LPF and Percentage Difference of Split and Death rates were set to 50% as it yielded

good results in most cases (Appendix A).

E.1 Artificial Datasets

Table E.1 illustrates number of features tracked with maximum Velocity combined with Vari-

ance. For the experiments the default parameters stated in Table 3.2 were used unless stated

otherwise. In order to identify a best highest percentage number of features with maximum Ve-

locity combined with Variance, 3 percentage numbers are stated in the table are 25%, 50%, and

75%. Where number of true positive and false positive is recorded for each percentage number

in the table. As there are 3 features for each dataset, It is possible that 25% retrieves only 1

feature. Whereas, 50% and 75% retrieve 2 features.

In Table E.1, numbers indicated with a * indicate potentially false positives detection of

features that changed their relevance. Potentially means in this case that there was also an

unexpected concept drift. However, it is not possible to verify with absolute certainty if the

156



Mahmood Shakir Hammoodi Appendix E

detection was indeed a false positive. Whereas, numbers indicated with a (-) reflect a drift

was not detected. It can be seen that the 50% and 75% achieved a much higher true positive

detection of features that changed.

Table E.1: Summary of the experimental results with artificial datasets. 3 percentage numbers
are stated in the table which are 25%, 50%, and 75%. These percentages represent the highest
percentage number of features with maximum Velocity combined with Variance. The original
MC-NN with Variance was used. The results are reported for the Time 6 which is the time of
swapped features.

Dataset 25%
(true positive)

25%
(false positive)

50%
(true positive)

50%
(false positive)

75%
(true positive)

75%
(false positive)

SEA with Noise 0% 1 1 2 2
SEA with Noise 5% 1 1 1
SEA with Noise 15% 1 1
SEA with Noise 25% 1 1
SEA with Noise 35% 1 1
HyperPlane with Noise 0% 1 1 1
HyperPlane with Noise 5% 1 1 1
HyperPlane with Noise 15% 1 1
HyperPlane with Noise 25%
HyperPlane with Noise 35% 2 1 1
RandomTree with Noise 0%
RandomTree with Noise 5% 1 1
RandomTree with Noise 15% 1 1
RandomTree with Noise 25% 1* 1*
RandomTree with Noise 35% 1(-) 1(-) 1(-)
Total 2 6 8 6 8 6

Table E.2 illustrates number of features tracked with maximum Velocity combined with IQR.

As mentioned before, for the experiments the default parameters of artificial datasets stated in

Table 3.2 were used unless stated otherwise. It can be seen that the 50% and 75% achieved a

much higher true positive detection of features that changed.
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Table E.2: Summary of the experimental results with artificial datasets. 3 percentage numbers
are stated in the table which are 25%, 50%, and 75%. These percentages represent the highest
percentage number of features with maximum Velocity combined with IQR. The new MC-NN
with IQR was used. The results are reported for the Time 6 which is the time of swapped
features.

Dataset 25%
(true positive)

25%
(false positive)

50%
(true positive)

50%
(false positive)

75%
(true positive)

75%
(false positive)

SEA with Noise 0% 1 2 2
SEA with Noise 5% 1 2 2
SEA with Noise 15% 1 1 1
SEA with Noise 25% 1 1 1
SEA with Noise 35% 1 2 2
HyperPlane with Noise 0% 1 1 1
HyperPlane with Noise 5% 1 1 1
HyperPlane with Noise 15% 1 1 1
HyperPlane with Noise 25% 1 1 1 1 1
HyperPlane with Noise 35% 1 1 1 1 1
RandomTree with Noise 0% 1 2 2
RandomTree with Noise 5% 1 1 1
RandomTree with Noise 15% 1 2 2
RandomTree with Noise 25% 1 + 1* 1 1 + 2* 1 1 + 2*
RandomTree with Noise 35% 1 1 1 1 1
Total 12 4 20 6 20 6

E.2 Controlled Real Datasets with 6 Features

Table E.3 illustrates number of features tracked with maximum Velocity combined with Vari-

ance. For the experiments the default parameters stated in Table 3.3 were used unless stated

otherwise. In order to identify a best highest percentage number of features with maximum

Velocity combined with Variance, 3 percentage numbers are stated in the table which are 25%,

50%, and 75%. Where number of true positive and false positive is recorded for each percent-

age number in the table. As there are 6 features for each dataset, it is possible that 25% retrieves

only 2 features. 50% retrieves 3 features. Whereas, 75% retrieves 5 features. It can be seen that

the 50% and 75% achieved a much higher true positive detection of features that changed.

158



Mahmood Shakir Hammoodi Appendix E

Table E.3: Summary of the experimental results with controlled real datasets. 3 percentage
numbers are stated in the table which are 25%, 50%, and 75%. These percentages represent the
highest percentage number of features with maximum Velocity combined with Variance. The
original MC-NN with Variance was used. The results are reported for the Time 6 which is the
time of swapped features.

Dataset 25%
(true positive)

25%
(false positive)

50%
(true positive)

50%
(false positive)

75%
(true positive)

75%
(false positive)

CoverType (2 features swapped) 1(-) 2(-) 2(-)
CoverType (4 features swapped) 1(-) 1(-) 1(-)
Diabetic Retinopathy Debrecen (2 features swapped)
Diabetic Retinopathy Debrecen (4 features swapped) 1(-) 1(-) 1(-)
Gesture Phase Segmentation (2 features swapped)
Gesture Phase Segmentation (4 features swapped) 1(-) 1(-) 1(-)
Statlog (Landsat Satellite) (2 features swapped) 1 1 1
Statlog (Landsat Satellite) (4 features swapped)
Waveform (with Noise) (2 features swapped)
Waveform (with Noise) (4 features swapped)
Total 1 4 1 5 1 5

Table E.4 illustrates number of features tracked with maximum Velocity combined with IQR.

As mentioned before, for the experiments the default parameters of controlled real datasets

stated in Table 3.3 were used unless stated otherwise. It can be seen that the 50% and 75%

achieved a much higher true positive detection of features that changed.

Table E.4: Summary of the experimental results with controlled real datasets. 3 percentage
numbers are stated in the table which are 25%, 50%, and 75%. These percentages represent
the highest percentage number of features with maximum Velocity combined with IQR. The
new MC-NN with IQR was used. The results are reported for the Time 6 which is the time of
swapped features.

Dataset 25%
(true positive)

25%
(false positive)

50%
(true positive)

50%
(false positive)

75%
(true positive)

75%
(false positive)

CoverType (2 features swapped) 1 1 2 1 2 1
CoverType (4 features swapped) 1 1 2 1 2 1
Diabetic Retinopathy Debrecen (2 features swapped) 1 1 1 1 1
Diabetic Retinopathy Debrecen (4 features swapped) 2 2 1 2 1
Gesture Phase Segmentation (2 features swapped) 1 2 2
Gesture Phase Segmentation (4 features swapped) 1 2 2
Statlog (Landsat Satellite) (2 features swapped) 1 1* 1 1* 1 1*
Statlog (Landsat Satellite) (4 features swapped) 1 1 1
Waveform (with Noise) (2 features swapped) 1 1 1
Waveform (with Noise) (4 features swapped) 2 3 3
Total 12 3 17 5 17 5

E.3 Uncontrolled Real Datasets

Table E.5 illustrates average accuracy achieved of the Hoeffding Tree classifier using the devel-

oped real-time feature selection method. For the experiments the default parameters stated in

Table 3.4 were used unless stated otherwise. In order to identify a best highest percentage num-

ber of features with maximum Velocity combined with IQR, 3 percentage numbers are stated in
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the table which are 25%, 50%, and 75%. Regarding CoverType dataset, the same results have

been achieved with all percentage numbers. Regarding Diabetic Retinopathy Debrecen dataset,

the best average accuracy has achieved with 50%. Regarding Gesture Phase Segmentation

dataset, the same results have been achieved with 50% and 75%. Regarding Statlog (Landsat

Satellite) dataset, the best average accuracy has achieved with 75%. Regarding Waveform (with

Noise) dataset, the same results have been achieved with 50% and 75%.

Table E.5: Summary of the experimental results with uncontrolled real datasets. 3 percentage
numbers are stated in the table which are 25%, 50%, and 75%. These percentages represent
the highest percentage number of features with maximum Velocity combined with IQR. The
results are reported for the average accuracy of the Hoeffding Tree classifier achieved using the
developed real-time feature selection method.

Dataset 25% 50% 75%
CoverType 79.32 79.32 79.32
Diabetic Retinopathy Debrecen 50.26 51.04 50.35
Gesture Phase Segmentation 73.16 80.23 80.23
Statlog (Landsat Satellite) 81.47 81.63 81.92
Waveform (with Noise) 80.26 80.68 80.68
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Appendix F

Actual Values of Split and Death Rates

This appendix presents the actual values of Split and Death rates which were used for the

purpose of concept drift detection using artificial and controlled real datasets.
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Figure F.1: The actual values of Split and Death rates of SEA data stream generator for drift
detection.
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Figure F.2: The actual values of Split and Death rates of HyperPlane data stream generator for
drift detection.

163



Mahmood Shakir Hammoodi Appendix F

Figure F.3: The actual values of Split and Death rates of Random Tree data stream generator for
drift detection.

Figure F.4: The actual values of Split and Death rates of CoverType dataset with 6 features for
drift detection.
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Figure F.5: The actual values of Split and Death rates of Diabetic Retinopathy Debrecen dataset
with 6 features for drift detection.

Figure F.6: The actual values of Split and Death rates of Gesture Phase Segmentation dataset
with 6 features for drift detection.

Figure F.7: The actual values of Split and Death rates of Statlog (Landsat Satellite) dataset with
6 features for drift detection.
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Figure F.8: The actual values of Split and Death rates of Waveform (with Noise) dataset with 6
features for drift detection.
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Appendix G

The Effects of Feature-Bias, Noise, and

Outliers on Velocity of Features

In this appendix, the effects of feature-bias, noise, and outliers on Velocity of features are ad-

dressed. This appendix applies the original MC-NN with Variance and the new MC-NN with

IQR in combination with Min-Max Normalisation and LPF. For the experiment, the default

parameters stated in Table 3.3 (i.e., controlled real datasets) of the technique were used unless

stated otherwise. Figures G.1 to G.10 visualise the results for minimising the effect of feature-

bias, noise, and outliers. Part (a) of the figures refers to the method based on Variance, and part

(b) of the figures refers to the method based on IQR. In part (a) of the figures, although real-

time Min-Max Normalisation and LPF were applied, Velocity rates are very high due to the

effect of outliers which have a significant effect on Variance and the detection of both concept

drift and the involved features in drifting. Whereas, in part (b) of the figures, Velocity rates are

cleaner/smoother in comparison with the in part (a) as IQR is considered robust to outliers, and

then the detection of concept drift can be applied more accurately as well as tracking features

using IQR (see Section 5.4).
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Figure G.1: The results of CoverType dataset with 6 features (2 features swapped) using Min-
Max, LPF, and IQR for minimising the effects of feature-bias, noise, and outliers.

Figure G.2: The results of CoverType dataset with 6 features (4 features swapped) using Min-
Max, LPF, and IQR for minimising the effects of feature-bias, noise, and outliers.

Figure G.3: The results of Diabetic Retinopathy Debrecen dataset with 6 features (2 features
swapped) using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise, and
outliers.
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Figure G.4: The results of Diabetic Retinopathy Debrecen dataset with 6 features (4 features
swapped) using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise, and
outliers.

Figure G.5: The results of Gesture Phase Segmentation dataset with 6 features (2 features
swapped) using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise, and
outliers.

Figure G.6: The results of Gesture Phase Segmentation dataset with 6 features (4 features
swapped) using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise, and
outliers.
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Figure G.7: The results of Statlog (Landsat Satellite) dataset with 6 features (2 features
swapped) using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise, and
outliers.

Figure G.8: The results of Statlog (Landsat Satellite) dataset with 6 features (4 features
swapped) using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise, and
outliers.

Figure G.9: The results of Waveform (with Noise) dataset with 6 features (2 features swapped)
using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise, and outliers.
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Figure G.10: The results of Waveform (with Noise) dataset with 6 features (4 features swapped)
using Min-Max, LPF, and IQR for minimising the effects of feature-bias, noise, and outliers.
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Appendix H

Gradual Concept Drift Detection using

Artificial Datasets

H.1 Experimental Setup of Artificial Datasets

Three datasets were generated using the MOA data stream generators (SEA, HyperPlane, and

Random Tree), each comprising three features, two class labels and a concept drift. The concept

drift was always induced halfway through the stream by swapping two features gradually (i.e.,

induce a gradual concept drift as known ground truth by swapping features gradually), in order

to show that the developed method is able to detect different types of concept drift. For example,

features were swapped from 5000 instances to 5099 instances, 5200 instances to 5299 instances,

5400 instances to 5499 instances, 5600 instances to 5699 instances, 5800 instances to 5899 in-

stances, and from 6000 to 9999 instances (end of the stream). The participation threshold Ω was

set to 50 for each experiment, which yielded good results in most cases, as stated in (Tennant

et al., 2017). The error threshold Θ was set to the best performing one for each dataset. Table

H.1 shows an overview of generated streams including the settings of the developed method and

which features have been swapped. In the experiments, a window’s size equals to 10% of the

total number of instances. Hence, the expression Time t refers to a particular time window. I.e.

according to the figures in this appendix time T=1 refers to instances 1-1000, T=2 to instances

1001-2000, etc.
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Table H.1: Setup of the artificial datasets. Drifts were generated by swapping features gradually.

Dataset
Number of
Instances
Generated

Window
Size

Θ

Index of
Swapped
Features

Start of
Swapped
Features

SEA 10,000 1000 15 2 with 3 6000
HyperPlane 10,000 1000 2 2 with 3 6000
Random Tree 10,000 1000 359 2 with 3 6000

H.2 Results

H.2.1 Real-Time Concept Detection Method

Micro-Clusters’ Split and Death rates were used for detecting drifts. For the experiment the

default parameters stated in Table H.1 of the method were used unless stated otherwise.

Figure H.1: The results of SEA data stream generator using Micro-Cluster Percentage Differ-
ence of Split and Death rates for drift detection.

Figure H.2: The results of HyperPlane data stream generator using Micro-Cluster Percentage
Difference of Split and Death rates for drift detection.
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Figure H.3: The results of Random Tree data stream generator using Micro-Cluster Percentage
Difference of Split and Death rates for drift detection.

In Figures (H.1 to H.3), the focus is given more at the times when concept drift was intro-

duced and features were swapped. During this time as higher Split and Death rates are expected

as the set of Micro-Clusters adapts to the new concept the feature swap. In the figures, it can be

seen that the Split and Death rates at the time of concept drift (after time 5) increase as expected

for all artificial data streams. Next, the concept drift detection method was compared with ex-

isting state-of-the-art drift detection methods CUSUM, DDM, EDDM, EWMA, and ADWIN

(see section 2 for more details about these methods) on the same artificial data streams. Table

H.2 shows the time when each of the methods including the developed method, detected a drift

and if it was detected on time. As it can be seen, the developed method always detected the drift

at the correct time.

Table H.2: Adaptation to concept drift using the initially developed and other state-of-the-art
methods.

Generator Method
Number of

Drift
Detections

Times when
Drift Detected Drift Detected

SEA

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 2 4 and 5 Incorrectly
EDDM 3 2,3, and 5 Incorrectly
EWMA 6 2 to 4,6,7, and 9 Correctly
ADWIN 4 5 to 7 and 9 Correctly

HyperPlane

The Developed Method 2 6 and 9 Correctly
CUSUM - - -
DDM 1 6 Correctly
EDDM 2 6 and 8 Correctly
EWMA 6 1,2, 4 to 6, and 8 Correctly
ADWIN 2 2 and 6 Correctly

RandomTree

The Developed Method 1 6 Correctly
CUSUM 1 6 Correctly
DDM 1 6 Correctly
EDDM 1 6 Correctly
EWMA 8 1 to 5 and 7 to 9 Incorrectly
ADWIN 3 4 and 6 Correctly

If a method detects a drift falsely, then this would require unnecessary adaptation by the

classifier to a non-existing drift. This is referred to a false positive. Correctly detected drifts are
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referred to as true positive. The number of experiments (each with one actual drift) are shown

in Table H.3. As there are 3 experiments, there is a total of 3 concept drifts to be detected. In the

table it is indicated how many true and false positive each method detected. As it can be seen,

the developed method detected 3 concept drifts and only had 1 false positive detection. The

best competitor in this regard, ADWIN, also detected 3 true positives, equals to the developed

method. However, ADWIN has a very high false positives number of 6, compared with only

1 for the developed method. Thus ADWIN is triggering frequent and unnecessary adaptation

to concept drift. Also, the remaining competitors found fewer true positive and a much higher

number of false positive compared with the developed method.

Table H.3: Summary of concept drift adaptation experiments highlighted in Table H.2.

Method True
Positives

False
Positives

The Developed Method 3 1
CUSUM 1 1
DDM 2 2
EDDM 2 4
EWMA 2 18
ADWIN 3 6

H.2.2 Real-Time Feature Tracking Method using Variance and IQR

This section now applies the in Sections H.2.1 discussed Split rate, Death rate and LPF in

order to address tracking features. Furthermore this section also compares these results with

the in Sections H.2.1 discussed new approach for building and adapting Micro-Clusters using

IQR combined with feature Velocity instead of using Variance combined with feature Velocity.

For the experiments the default parameters stated in Table H.1 of the method were used unless

stated otherwise. Regarding the artificial datasets, no Normalisation was applied as the data

generators already produced normalised data.
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Figure H.4: The results of SEA data stream generator using Micro-Clusters for tracking features.

Figure H.5: The results of HyperPlane data stream generator using Micro-Clusters for tracking
features.
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Figure H.6: The results of Random Tree data stream generator using Micro-Clusters for tracking
features.

Part (a) of Figures H.4 to H.6 shows the results for using MC-NN with Variance and history

of maximum Variance for concept drift detection and feature tracking, and part (b) of the figures

shows the corresponding results for using MC-NN with IQR and history of maximum IQR. As

expected and similar to the results presented in Chapter 5 Section 5.4. Regarding concept drift

detection, the same results as Section 5.4 have been achieved for both, using Variance and IQR.

All concept drifts were detected correctly, however, the method based on Variance detected a

false concept drift, see Figure H.5.

Table H.4 summarises the feature tracking results presented in Figures H.4 to H.6. It can

be seen that the here presented method based on maximum IQR achieves a much higher true

positive detection of features that changed. However, it also has a higher number of false

positive detections compared with the method based on Variance. Now the true positive figures

are based on the fact the features that are known to have changed as they have been swapped at

the time of concept drift. However, considering the fact that each artificial stream generator’s

native method for inducing a concept drift has been used as well some of the false positive

detections may very well be true positives. Even if they were not true positives, it would merely

mean that they are flagged to the feature selection method to be reconsidered for inclusion

or exclusion of the feature set to be considered for adaptation. Loosely speaking a high true

positive detection numbers are more important than low false positive detection numbers.
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Table H.4: Summary of the experimental results with artificial datasets generated. The results
are reported for the Time 6 which is the time of swapped features.

Generator
True
Positive
(Variance)

True
Positive
(IQR)

False
Positive
(Variance)

False
Positive
(IQR)

SEA with gradual concept drift 1 1
HyperPlane with gradual concept drift 1 2
Random Tree with gradual concept drift 1 1 1
Total: 2 4 2
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Recurring Concept Drift Detection using

Artificial Datasets

I.1 Experimental Setup of Artificial Datasets

Three datasets were generated using the MOA data stream generators (SEA, HyperPlane, and

Random Tree), each comprising three features, two class labels and a concept drift. The concept

drift was always induced halfway through the stream by swapping two features (i.e., induce a

recurring concept drift as known ground truth), in order to show that the developed method is

able to detect different types of concept drift. For example, features were swapped from 5200

instances to 5799 instances. The participation threshold Ω was set to 50 for each experiment,

which yielded good results in most cases (Tennant et al., 2017). The error threshold Θ was

set to the best performing one for each dataset. Table I.1 shows an overview of generated

streams including the settings of the developed method and which features have been swapped.

In the experiments, a window’s size equals to 10% of the total number of instances. Hence,

the expression Time t refers to a particular time window. I.e. according to the figures in this

appendix time T=1 refers to instances 1-1000, T=2 to instances 1001-2000, etc.

Table I.1: Setup of the artificial datasets. Drifts were generated by swapping features.

Dataset
Number of
Instances
Generated

Window
Size

Θ

Index of
Swapped
Features

Start of
Swapped
Features

SEA 10,000 1000 16 2 with 3 6000
HyperPlane 10,000 1000 2 2 with 3 6000
RandomTree 10,000 1000 359 2 with 3 6000
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I.2 Results

I.2.1 Real-Time Concept Detection Method

Micro-Clusters’ Split and Death rates were used for detecting drifts. For the experiment the

default parameters stated in Table I.1 of the method were used unless stated otherwise.

Figure I.1: The results of SEA data stream generator using Micro-Cluster Percentage Difference
of Split and Death rates for drift detection.

Figure I.2: The results of HyperPlane data stream generator using Micro-Cluster Percentage
Difference of Split and Death rates for drift detection.

Figure I.3: The results of Random Tree data stream generator using Micro-Cluster Percentage
Difference of Split and Death rates for drift detection.
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In Figures (I.1 to I.3), the focus is given more at the times when concept drift was introduced

and features were swapped. During this time as higher Split and Death rates are expected as the

set of Micro-Clusters adapts to the new concept the feature swap. In the figures, it can be seen

that the Split and Death rates at the time of concept drift (after time 5) increase as expected for

all artificial data streams. Next, the concept drift detection method was compared with existing

state-of-the-art drift detection methods CUSUM, DDM, EDDM, EWMA, and ADWIN (see

section 2 for more details about these methods) on the same artificial data streams. Table I.2

shows the time when each of the methods including the developed method, detected a drift and

if it was detected on time. As it can be seen, the developed method always detected the drift at

the correct time.

Table I.2: Adaptation to concept drift using the initially developed and other state-of-the-art
methods.

Generator Method
Number of

Drift
Detections

Times when
Drift Detected Drift Detected

SEA

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 2 4 and 5 Incorrectly
EDDM 3 2,3, and 5 Incorrectly
EWMA 7 2 to 7 and 9 Correctly
ADWIN 2 5 and 7 Incorrectly

HyperPlane

The Developed Method 2 6 and 9 Correctly
CUSUM - - -
DDM 1 5 Incorrectly
EDDM 2 6 and 8 Correctly
EWMA 6 1,2, 4 to 6, and 8 Correctly
ADWIN 1 2 Incorrectly

RandomTree

The Developed Method 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 6 Correctly
EWMA 8 1 to 5 and 7 to 9 Incorrectly
ADWIN 3 4 and 6 Correctly

If a method detects a drift falsely, then this would require unnecessary adaptation by the

classifier to a non-existing drift. This is referred to a false positive. Correctly detected drifts are

referred to as true positive. The number of experiments (each with one actual drift) are shown

in Table I.3. As there are 3 experiments, there is a total of 3 concept drifts to be detected. In the

table it is indicated how many true and false positive each method detected. As it can be seen,

the developed method detected 3 concept drifts and only had 1 false positive detection. The

best competitor in this regard, EDDM and EWMA, detected 2 true positives only. However,

EDDM and EWMA have a very high false positives number of 4 and 19, respectively compared

with only 1 for the developed method. Thus EDDM and EWMA are triggering frequent and

unnecessary adaptation to concept drift. Also, the remaining competitors found fewer true

positive and a much higher number of false positive compared with the developed method.

181



Mahmood Shakir Hammoodi Appendix I

Table I.3: Summary of concept drift adaptation experiments highlighted in Table I.2.

Method True
Positives

False
Positives

The Developed Method 3 1
CUSUM 2
DDM 4
EDDM 2 4
EWMA 2 19
ADWIN 1 6

I.2.2 Real-Time Feature Tracking Method using Variance and IQR

This section now applies the in Sections I.2.1 discussed Split rate, Death rate and LPF in order

to address tracking features. Furthermore this section also compares these results with the in

Sections I.2.1 discussed new approach for building and adapting Micro-Clusters using IQR

combined with feature Velocity instead of using Variance combined with feature Velocity. For

the experiments the default parameters stated in Table I.1 of the method were used unless stated

otherwise. Regarding the artificial datasets, no Normalisation was applied as the data generators

already produced normalised data.

Figure I.4: The results of SEA data stream generator using Micro-Clusters for tracking features.
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Figure I.5: The results of HyperPlane data stream generator using Micro-Clusters for tracking
features.

Figure I.6: The results of Random Tree data stream generator using Micro-Clusters for tracking
features.

Part (a) of Figures I.4 to I.6 shows the results for using MC-NN with Variance and history of

maximum Variance for concept drift detection and feature tracking, and part (b) of the figures

shows the corresponding results for using MC-NN with IQR and history of maximum IQR. As

expected and similar to the results presented in Chapter 5 Section 5.4. Regarding concept drift

detection, the same results as Section 5.4 have been achieved for both, using Variance and IQR.

All concept drifts were detected correctly, however, the method based on Variance detected a

false concept drift, see Figure I.5.
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Table I.4 summarises the feature tracking results presented in Figures I.4 to I.6. It can

be seen that the here presented method based on maximum IQR achieves a much higher of

true positive detection of features that changed. However, it also has a higher number of false

positive detections compared with the method based on Variance. Now the true positive figures

are based on the fact the features that are known to have changed as they have been swapped at

the time of concept drift. However, considering the fact that each artificial stream generator’s

native method for inducing a concept drift has been used as well some of the false positive

detections may very well be true positives. Even if they were not true positives, it would merely

mean that they are flagged to the feature selection method to be reconsidered for inclusion

or exclusion of the feature set to be considered for adaptation. Loosely speaking a high true

positive detection numbers are more important than low false positive detection numbers.

Table I.4: Summary of the experimental results with artificial datasets generated. The results
are reported for the Time 6 which is the time of swapped features.

Generator
True
Positive
(Variance)

True
Positive
(IQR)

False
Positive
(Variance)

False
Positive
(IQR)

SEA with recurring concept drift 1 1
HyperPlane with recurring concept drift 2 2
RandomTree with recurring concept drift 1 1
Total: 3 4 1
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