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ABSTRACT 

The research presented here deals with the evolution of personality features of 

humans engaged in strategic interactions. The evolution of risk aversion and 

trustworthiness is modelled and simulated in the context of a binary trust game, 

seeking the origin and end-points of an evolutionary process, accounting for 

different degrees of locality. 

This research has employed computer simulations in order to get dynamic 

equilibria in populations of players that keep evolving. The locality or global 

nature of interaction plays an important role. Risk aversion evolves together 

with trust and trustworthiness. Trust behaviour follows reciprocation attributes. 

Results of the simulations are equal to the ones elicited in empirical studies. 
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CHAPTER 1. INTRODUCTION  

Trust and trustworthiness can be highly significant in a society’s economic and general development 

(Knack and Keefer 1997). There is a wide body of literature that connects trust with economic 

performance. Evidence suggests that higher levels of trust encompass greater levels of cooperation 

and financial health (Porta et al. 1997). Commercial transactions can be understood as actions of trust 

(Arrow 1972) and institutional success depends on the trust between institutions and the community 

(Putnam et al. 1994). Additionally, the competitiveness and welfare of a country’s economy is related 

to the trust level in a society (Fukuyama 1995).  

Conversely, untrustworthy or manipulative behaviour is often associated with antisocial people, 

which, in extreme cases, resembles the features of a self-interested and even psychopathic 

personality. It would be interesting to discover why, in an evolutionary context, psychopathic 

individuals can be fit and survive in a population under evolutionary rules affecting population 

dynamics over time. 

The review of the relevant literature presented here regards the union of three interdisciplinary fields: 

psychology, economics and computer science. Psychology deals with the study of human traits and 

behaviours. These behaviours have also become the central theme for behavioural and experimental 

economics. Agent-based modelling (ABM) is a subset of modelling techniques which implement 

computational models of autonomous agents acting and interacting. ABM is a relatively new 

discipline which is based on and also nurtures many sciences such as biology, engineering, 



Coevolution of traits in populations: An agent-based approach to the trust game 

  

2 

psychology, economics, finance, medicine and physics. Simulations are further explained in the next 

chapters. All these fields overlap with game theory. In Figure 1, we can see the connections among 

the disciplines involved in this study. 

 

Figure 1. Interdisciplinary context of this research 

Game theory is mainly focused on problems which involve cooperation and conflict between rational  

individuals, and adopt a mathematical approach with the necessary tools in order to study decision-

making and conflicts (Myerson 2013). Mathematicians have always studied games involving 

probabilities determined by external factors (nature) occurring independent of players’ actions, such 

as throwing a dice. However, games involving player skills and choosing strategies were described, 

formalized and improved in 1946 by von Neumann and Morgenstern in their book Theory of Games 

and Economic Behaviour. In fact, there had been earlier approaches, such as Cournot (1838), who 

interpreted players’ decisions on their firms’ outputs as strategically interacting duopolists, and Borel 

(1921), who described the minimax solution to zero-sum games. Game theory has played an 
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important role in economics and other sciences, such as biology, politics, computer sciences, etc. The 

Nash equilibrium and the prisoner’s dilemma games are now known to almost all social scientists. 

International politics in conflicts like the Cold War, Israel and Palestine or even the recent Ukraine 

conflict have been influenced or analysed through game theory by Nobel laureates Aumann and 

Schelling, among others. In particular, game theory has largely become the mathematical toolbox of 

the social sciences (Myerson 2013). In this thesis, an evolutionary approach to the trust game is 

adopted. 

Studying the dynamics of social processes under the actions of evolving imperfect agents with 

simulations allows us to learn which initial conditions can lead to a specific result, instead of 

questions concerning what happens, or what might generally happen, under ideal conditions and full 

rationality (Gilbert and Conte 1995). Simulations allow us to make assumptions and generate data 

which can be examined by induction (Axelrod 1997). They combine the detail of qualitative methods 

and the rigor of quantitative methods. Using simulations is desirable because they deal elegantly with 

parallel, often complex, processes, making it easy to deal with agent heterogeneity (Gilbert and 

Troitzsch 2005). 

Game theory and simulations are becoming central fields in computer science and have already 

become the inspiration for a prolific research agenda. In fact, these techniques have been applied to 

important research into such fields as virus interactions (Turner and Chao 1999), cancer research 

(Tomlinson 1997) or more picayune themes, such as organic food marketing (McCluskey 2000).  
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There have been different approaches to and applications of evolutionary game theory (EGT) 

simulations. In particular, many efforts have been made to understand the evolution of cooperation 

and reputation in games such as the ultimatum, the prisoner’s dilemma and the stag hunt. 

Evolution - based on Darwin’s ‘survival of the fittest’ theory - does not explain all the diversity we 

find in human beings. Other theories can help us understand why this diversity exists, or how human 

evolution can be more or less affected. 

The features of the approach adopted in this thesis are listed, and compared to other similar studies, 

in Table 1. 

Table 1. Differences between our approach and existing agent-based approaches 

Others agent-based simulations Proposed model 

Automata with 0 intelligence Assumes two players: one intelligent (maximises utility 

function) and the other with zero intelligence. 

Play always a pattern One type of player endowed with a utility function to 

maximise each state of nature. 

No coevolution (strategies nor traits) Risk attitude/psychopathy coevolution. 

Locality is exception Focus on locality. 

Simultaneous and symmetric games  Trust (sequential) game.  

Three main gaps in the classical EGT, developed on the trust game, have been identified: 

Gap 1: Automata are 0-intelligence agents. 

Gap 2: In typical evolutionary simulations, evolution affects actual “strategies”, rather than an 

agent’s “behaviour”. 
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Gap 3: Local interaction and trait similarities among neighbours have not yet been exploited. 

 

Figure 2. Concepts regarding novelties 

In the approach adopted in this thesis, type 1 players act as maximisers of a utility function, whose 

parameters reflect the main traits evolving through replication across generations according to an 

agent type’s success during the past periods of the game. Each era includes a number of encounters 

and consequent play in the game. Depending on an agent type’s performance, an evolutionary 

algorithm is implemented to define the replication process, producing new mixtures of agent types 

and, consequently, the behaviour of new agents. 

Agents of type 2 can be psychopaths, i.e. profoundly selfish and never reciprocate, or can be prosocial 

and always reciprocate. Not all the agents that do not reciprocate are psychopaths, there can be other 

reasons to not reciprocate. However we assume that all the psychopaths do not reciprocate. Therefore 

in a population with more psychopaths there are going to be less reciprocations. 

We envisage a situation in which an agent’s (type 1) utility function is characterised by a degree of 

risk aversion and another player's (type 2) trustworthiness. Following a sufficiently large number of 

eras, the initial population of both types evolve, leading to new distributions of agent types.  
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Population averages will be known in the beginning of each era, and they will be the values used to 

calculate the probabilities of being exploited or reciprocated in any given moment in this particular 

state of the society. 

Meanwhile, agents of type 1 have a risk aversion parameter 𝑡, which will be modified thanks to a 

genetic algorithm (GA), depending on their fitness and their probability of being reciprocated 𝑝 

value, calculated in the beginning of each era from the number of psychopaths in the agent's 

neighbourhood. 

Using the number of psychopaths in an agent’s neighbourhood and a player's risk aversion, we define 

the player's optimal strategy in the game. Eventually, Player 2 will have to decide whether to 

reciprocate or not, depending on his strategy value. 

As previously stated, the third gap in the literature relates to neighbourhood effects and similarity. 

Depending on the environment, humans take different decisions. For instance, players from Morocco 

trust Spaniards less than they trust the French (Georgantzis et al. 2018). A novelty of this project is 

related to this idea: traits are the elements whose consequences are behaviours. 

The research to date has tended to focus on the observation of behaviours and traits with experiments 

and tests like the Self-Report Psychopathy scale (Paulhus et al. 2009). In the graph shown in Figure 

3, we can see the typical frequency values of the people who have performed this test. 
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Figure 3. Primary and secondary psychopathy values obtained from a large subject population at the 

Laboratory of Experimental Economics, Jaume I University, Castellon, Spain. 

Depending on the data collected from these experiments and tests, we can infer values for 

participating subjects. While these methods first observe behaviours and then elicit traits, our 

proposed research first characterises the trait and then studies the behaviour and its evolution. 

Research in the field of ABM relates to both traditional and evolutionary economics (Jager and 

Janssen 2002; Tesfatsion 2002; Tesfatsion 2003; Hare and Deadman 2004; LeBaron 2006; Tesfatsion 

and Judd 2006; Tesfatsion and Judd 2006; Safarzyńska and van den Bergh 2010; Wendel and 

Oppenheimer 2010) and also to consumer-behaviour (Said and Bouron 2001; Said et al. 2002), but 

these models are too wide and the simulations use too many personality traits. These ABM 

simulations can be made simpler and more elegant to predict behaviour and give a new point of view 

on the evolution of trust. 
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In the unitary transaction, agents may have different roles; thus, they are not symmetrical. An agent 

is going to be 'Player 1’ his whole life. In other games, such as the prisoners’ dilemma, the two players 

engaged have symmetrical roles. 

In computer science, there is a problem with some algorithms: once we run a program, we do not 

know if it is going to finish quickly, in an hour or never (Turing 1936). This problem is known as the 

‘halting problem’. To deal with this problem, a first approach is, after a reasonable time, to accept 

that the program is not going to finish normally. A halting problem also occurs with simulations: you 

never know whether, or after a hundred or a thousand eras, a population has reached an equilibrium. 

Even if one thinks a simulation is in equilibrium, there may still be these questions: Is it going to last? 

Is it going to be sustained if any disturbances happen? 

Normally, equilibria can be characterised before the simulations take place. With automata, we can 

observe situations where the agents change but repeat some patterns. We would like to do this and 

know if we can get to same equilibria when we start from different initial conditions (Axtell et al. 

1996). 

One purpose of this study is to assess the extent to which simulations with local interaction among 

agents in the same neighbourhood and similar traits can emulate real experiments. 

1 . 1 .  T h e s i s  o u t l i n e  

The objectives of this research are: connecting economic theory, economic experiments and 

computer simulations; finding the evolutionary mechanisms for the emergence of prosocial/antisocial 
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behaviour; studying how risk attitudes, trust, trustworthiness and reciprocity in the population affect 

mutually; testing these hypotheses with simulations; validating the results with empirical data. 

This thesis consists of seven chapters. Chapter 2 contains the Literature review of this research. 

Papers related to economic theory, experimental economics, agent-based modelling and psychology 

are introduced in order to establish the foundations of this research.  

Trust  game (Berg et al. 1995) and a binary version of it (Bohnet and Zeckhauser 2004) are analysed 

in Chapter 3. A particular model of agent’s behaviour in the Trust game is presented.  

The results of the simulations based on this model are displayed in Chapter 4.  

Chapter 5 discusses the findings of this research and future extensions. 

Chapter 6 lists all the references and Chapter 7 contains descriptions and scripts employed in the 

simulations.  
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CHAPTER 2. LITERATURE REVIEW 

This research presents a framework of human interaction involving trusting behaviour in which 

trustworthiness, risk attitudes and locality are embedded. The trust game (Berg et al. 1995) is used to 

model the basic features of trust and reciprocity among human agents. The basic setup assumes that 

individuals from two populations are matched in pairs to play a binary trust game. Thus, the 

simulations will emulate a binary-choice variant of the trust game, as implemented in the 

experimental setting by Bohnet and Zeckhauser (2004). 

Human personality traits, such as cooperation, risk attitudes or psychopathy, can be viewed as 

relevant behavioural dimensions as proposed by (Hofstede et al. 2010). As a motivation for specific 

behavioural patterns, psychopathy can be considered an extreme personality trait corresponding to a 

‘rational’, non-reciprocal behaviour as a second mover in the trust game (Georgantzis et al. 2015). In 

the following sections, the main findings in risk aversion and psychopathy traits regarding the focus 

of this research are summarized. 

Decision-making can be modelled by artificial agents or autonomous decision-making entities, 

whose behaviour is approximated by simple rules regulating their actions (Sugden 2000). Inspired 

by spatial/geographical differences, simulated environments can reproduce experiments. Section 2.4 

describes the procedures and methods employed in computational simulations and agents.  
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2 . 1 .  G e n e r a l  i n t r o d u c t i o n  t o  e v o l u t i o n a r y  

g a m e s  

The trust game belongs to the family of social dilemma games. Social dilemma games are a specific 

type of game in which the cooperative solution − the solution that is best for the whole population − 

differs from the Nash equilibrium (Hardin 2009). Typically, the players in such games would 

individually get higher payoffs by making selfish decisions, which are collectively bad, and they get 

higher payoffs if they all cooperate, rather than if they all defect (Dawes 1980; Von Neumann and 

Morgenstern 2007; Myerson 2013). 

 

Figure 4. Ontologies of social dilemma for this research 

This type of game can be used to address how to enhance or promote cooperation in the real world 

in important domains such as resource management and exploitation, population dynamics, pollution, 

etc. (Dawes 1980; Axelrod and Hamilton 1981). For instance, the use of pesticides and fertilizers 
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generates a payoff to farmers which can be harmful to the population (Hayashi et al. 2010). Individual 

fuel consumption yields utility to consumers in the form of fast transportation or heating, but fuel 

consumption eventually causes pollution and fuel scarcity (Liebrand 1983; Cubitt et al. 2011). Social 

dilemma games can help us to understand and synthesize this kind of problem from a different point 

of view to laypersons and policymakers. Concepts such as cooperation, utility, individual decisions, 

trust, trustworthiness, reciprocity, reliability, freeriding, framing and resilience, together with other 

factors, have been studied in this field (Platt 1973; Rubenstein et al. 1975; Liebrand et al. 1986; Olson 

2009; Attanasi et al. 2010; Cubitt et al. 2011; Sagiv et al. 2011). Among these games, this thesis 

focuses on the trust game, because it provides the simplest representation of trust and reciprocity 

among individuals (Berg et al. 1995). 

Evolutionary game theory (EGT),  developed by John Maynard Smith (Smith and Price 1973; Smith 

1978; Smith 1982), is inspired by engineering, biology and economics and focuses on the dynamics 

of strategies in populations, rather than on the rational players and equilibria proposed by classic 

game theory. In EGT, players are not rational, they have strategies which they have as a heritage and 

will transfer to their progeny. Because of the complexity of the problem, EGT uses programming and 

simulation of games that are played repeatedly among autonomous agents, or automata, interacting 

in strategic situations. Depending on the distribution of behaviours over the population, some 

strategies are better from an evolutionary point of view, in the sense that they fit better (Hammerstein 

and Selten 1994; Hofbauer and Sigmund 1998). If behaviour changes over time, the most successful 

and, thus, more appropriate strategy will increase its share through an evolutionary mechanism 

(Friedman 1991). In such games, the relationship between the Nash equilibria (NE) and evolutionary 

stable strategies (ESS) has been identified. The concept of an ESS was introduced by Smith and Price 
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(1973) and mathematically formalised by Taylor and Jonker (1978), in order to help explain the 

dynamics of EGT. ESS is the conditional status of a population whose strategy distributions are not 

going to change once this point is reached, and can be understood as a dynamic equilibrium. In a 

dynamic equilibrium, players do not increase their expected payoffs by switching to another strategy 

(following the definition of a NE), even if their opponents change their strategies. 

Therefore, in EGT, games are played in repeated interactions, where the main interest becomes the 

evolution of strategies (Khan et al. 2012). One-shot games can have non cooperative equilibria which 

deviate from those emerging in repeated games and real-world events. This has often been used to 

explain why cooperation emerges and is sustained in some contexts, instead of the NE corresponding 

to the one-shot game. Several such contexts exist and have been used to illustrate the emergence of 

socially superior outcomes as the result of players’ forward-looking behaviour, such as in the case of 

deterrence theory as opposed to induction in the chain store paradox (Selten 1978). In an infinitely 

repeated or finite multiply-repeated game, players tend to minimise their maximum loss in the worst 

case (minimax). The folk theorem, or general feasible theorem (Myerson (2013), states that players 

can converge to mutual trust if they think that they have enough time, i.e. if the future matters 

(Friedman 1971; Cabral 2005) and any individual’s rational decision can lead to a subgame perfect 

Nash equilibrium (SPNE) (Selten 1978). The latter is defined when, for every subgame, the 

restriction of these strategies is also an NE. 

The existing research recognises the critical role played by social evolution and natural selection in 

repeated interactions of subjects. These studies observed the emergence of reciprocity (Trivers 1971; 

Axelrod and Hamilton 1981; Boorman 2012). 
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There are three different, but complementary, approaches in EGT research. First, the theoretical 

method described in previous paragraphs. The theoretical method relies on mathematical rules and 

logical premises. Initially, players were assumed to be fully rational and looking for Nash equilibria, 

until John Maynard Smith contributed to predict behaviours (Weibull 1997). Second, experimental 

methods are used to elicit the behaviour of ‘boundedly’ rational subjects in these games (Friedman 

1996). The third method is agent-based simulation. Agent-based repeated game simulations obtain 

data from artificial subjects, also called agents or automata (Holland 1975; Binmore 1987; Kirman 

1993). 

Repeated trust games have been less explored in the context of evolutionary game theory, as 

compared to other games such as the prisoners’ dilemma. In the next section, the literature on 

evolutionary trust games is reviewed. 

 

2 . 2 .  E v o l u t i o n a r y  a p p r o a c h e s  t o  t h e  t r u s t  g a m e  

Social dilemma games share the common feature of juxtaposing cooperative and competitive 

behaviour. Thus, the literature on different evolutionary games can be used as a reference for the trust 

game. Laboratory experiments have systematically produced data which contradict the behaviour 

expected under the assumption of rational decision-making (Berg et al. 1995), whereas deterministic 

EGT has led to outcomes which are similar to those predicted under the classical economic solution 

concepts (Tarnita 2015). 
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Different elements can modify or explain the expected outcomes. For instance, with structured 

populations, noise and errors in the decisions can improve fairness (Rand et al. 2013). In fact, in a 

theoretical approach, Tarnita (2015) affirmed that stochasticity and mistakes increase the amount of  

trust and trustworthiness in a population. 

Table 2 lists works related to this research by different features, such as the spatiality of the approach 

or the replication rules, that can be used as reference points. In the papers listed, there are theoretical 

or analytical approaches (Kimbrough 2005; Pacheco et al. 2006; Rigdon et al. 2007; Hauert 2010; 

Tarnita 2015). In other cases, data were obtained using experiments (Rand et al. 2013). Moreover, 

one of the most important tools in EGT is simulation (Nowak and May 1992; Macy and Skvoretz 

1998; Hoffmann 1999; Page et al. 2000; Fang et al. 2002; Mui et al. 2002; Brandt et al. 2003; Roos 

and Nau 2010). 

Focused on strategies performance, other repeated games have been simulated by computers. These 

simulations were oriented to the evolutionary fitness of populations of automata, with individual 

playing always one of the pure strategies available. For instance, cooperate (C), defect (D), tit-for-tat 

(TFT) and reputation TFT in the context of social dilemma games (Mui et al. 2002; Fehr and 

Fischbacher 2003) or the effect of the strategy known as R-wS (player chooses a safe decision if he 

won a previous lottery and a risky strategy otherwise) in lottery and stag hunt population simulations 

(Roos and Nau 2010).  

Another aspect of this line of research regards the use of stochasticity and mistakes which affect the 

evolution of various strategies described by Nowak and Sigmund (1992). These hypotheses have 

been confirmed in computer simulations of repeated games such as the stag hunt game (Fang et al. 

2002). 
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We can also find papers related to the evolution (arising) of cooperation in games such as the stag 

hunt (Kimbrough 2005), and theoretical evolution in some public-good games (Hauert 2010). 

Pacheco et al. (2006) studied the coevolution of network structures and strategies with symmetrical  

games. 

Although some research has been conducted into risk and trustworthiness, the parallel evolution of 

risk aversion among type 1 players, together with the trustworthiness of type 2 players, in the context 

of the trust game has not yet been explored. The trust game allows us to study the parallel evolution 

of the two different parameters, each specific to a different agent-type engaged in this sequential 

(asymmetric) social dilemma. In this research, a continuous value for risk aversion is applied to the 

agents’ distribution in the population.



 

Table 2. Papers related to EGT simulations or theoretic approaches 

Author 

(year) 

Methodolgy Game Reproductions Strategies Spatiality Highlights 

Mui et al. 

(2002) 

Simulation Prisoners’ 

dilemma  

 

Snowdrift 

No AllC, AllD, 

TFT and 

reputation 

TFT 

No Measure the 

impact of 

reputation 

among agents in 

a quantitative 

approach. 

Roos and 

Nau (2010) 

Simulation Lotteries 

 

Stag hunt 

Imitate the best 

replicator 

dynamics 

SS, RR, SR, 

RS, RwS, 

RwR 

No Simulation of 

risk aversion 

equilibria in 

binary trust. 

RwS is the best 

strategy in 

lotteries. 

RwS boosts 

cooperation in 

stag hunts.  

Nowak and 

Sigmund 

(1992) 

Simulation Prisoners’ 

dilemma 

Frequencies 

proportional to 

payoff 

AllC, AllD, 

TFT and 

GTFT 

GTFT 

generous 

TFT 

No 

 

Round-

robin, like 

Axelrod’s 

tournaments 

Errors in 

communications 

or decisions in 

heterogeneous 

populations. 

Suggests that 

generous TFT 

(GTFT) 

encourages 

cooperation that 

emulates 

forgiving. 

Stochastic 

instead of 

deterministic 

(y,p,q) 

probabilities to 

cooperate in the 

first round, after 

C and after D. 

Page et al. 

(2000) 

Simulation Ultimatum Proportional to 

fitness 

Mutations 

S1 (p1, q1) 

p1 amount 

offered 

q1 amount 

threshold 

Yes Evolutionary 

setting enhances 

rationality. 

Spatial setting 

enhances 

fairness.  

For one-

dimensional p = 

0.5, two-
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dimensional p = 

0.35. 

q is still small 

compared to 

experimental 

scores. 

Rigdon et 

al. (2007) 

Theoretic Trust Two-person 

experiment 

In second 

treatment, 

more likely 

to play with 

similar. 

Not directly Can the 

cooperative 

play that 

emerged be 

sustained? 

Try to match in 

an experiment, 

players with 

reciprocators. 

‘Since the SPE 

in our trust 

game is not a 

strict Nash 

Equilibrium, 

(R,d) is not an 

ESS.’ 

Tarnita 

(2015) 

Theoretic Ultimatum  

 

Trust 

No Weak 

selection 

Structured Uses weak 

selection and 

reputation in 

structured 

populations. 

Is more likely to 

interact with 

neighbours. 

Similar 

neighbourhood: 

geographic, 

strategic, 

genetic… 

Rand et al. 

(2013) 

Simulation 

and 

experiments 

Ultimatum New agent = 

1-u 

reproduction 

OR u mutation 

Mutations 

 

Round 

robin 

Stochastic EGT 

(errors in 

decision-

making). ‘Finite 

population 

evolutionary 

analysis.’ 

Outcomes of 

simulations fit 

to the 

experiments. 
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Nowak and 

May 

(1992) 

Simulation Prisoners’ 

dilemma 

Substitution by 

the best 

neighbour 

AllC, AllD, 

TFT 

Yes Introduces the 

idea of local 

interaction. 

Two-

dimensional 

array. 

Hoffmann 

(1999) 

Simulation Prisoners’ 

dilemma 

Yes GA 

matches 

random agents, 

mostly the 

fittest, random 

substrings of 

fathers and 

mutation. 

32 automata 

5-bit genes 

with one-

round 

memory. 

Ring Local 

interaction and 

global learning. 

Interaction local 

learning global. 

Macy and 

Skvoretz 

(1998) 

 

Simulation Prisoners’ 

dilemma 

Yes GA 15bits = 

genes 

Yes Use GA. 

Arising of 

behaviours: 

trusting 

neighbours 

more than 

strangers. 

Defector/co-

operator, 

display marker, 

greeting, own 

intentions, 

attend marker, 

attend greeting, 

membership, 

trust 

neighbours. 

Eckel and 

Wilson 

(2004) 

Exp Trust No No No No correlation 

between 

trusting and risk  

measures 

observed by 

Holt and Laury 

(2002) but  

inverse between 

reciprocating. 

Eventually, with 

a survey, they 

found a weak 

relationship. 
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Kimbrough 

(2005 

Theoretic Stag hunt Imitate the best 

Learning in 

MLPS 

Gridscape H 

& S 

MLPS 

Gridscape Gridscape 

model: two-

dimensional 

lattice with non-

intelligent 

agents. 

Markov 

learning in 

policy space 

with more 

intelligent 

agents. 

The supergame 

consists of a 

sequence of stag 

hunt games. 

Various games 

are an epoch. 

Trust emerges. 

Brandt et 

al. (2003) 

Simulation Public 

good 

Imitation. 

Replication 

and 

displacement. 

Cooperate 

& punish 

Defect & 

punish 

Defect & 

don’t punish 

Copp. & 

don’t punish 

Hexagonal 

lattice 

Adding 

punishments 

reduces asocial 

behaviours. 

Less-

cooperative 

individuals 

make more-

cooperative 

societies. 

Each generation 

performed six 

games with two 

neighbours in 

each. 

Imitation can be 

understood as 

replication 

dynamics 

adapted to 

spatial 

simulations. 

Pacheco et 

al. (2006) 

Theoretic Symmetrics 

 

Prisoners’ 

dilemma  

 

Snowdrift 

Pairwise 

comparison 

rule. 

Matching 

random, 

replace with 

probability = 

Fermi function 

(P=[1+exp(-

beta(fa-fb))]) 

Co-

operators 

Defectors 

Build Rational 

decisions. 

Build links and 

destroy if it is 

not productive. 
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Hauert 

(2010) 

Theoretic Public 

good 

Replication 

dynamics 

Contributors 

Selfish 

No Includes 

reputation and 

risk.     



 

2 . 3 .  E v o l u t i o n a r y  g a m e s  w i t h  r i s k  a v e r s i o n   

Over the past century, studies have provided important information on decision-making under 

uncertainity. Important milestones in the risk and subjective probabilities literature are ‘expected 

utility’ (Von Neumann and Morgenstern 2007), the Allais’ paradox (Allais 1953), risk attitudes 

(Arrow 1964), prospect theory and cumulative prospect theory (Kahneman and Tversky 1979; 

Tversky and Kahneman 1992), regret theory (Loomes and Sugden 1982) and rank-dependent 

expected utility (Quiggin 1982), among others. These theories and concepts are the foundation of 

new theoretical frameworks. They are widely applied, tested and used in decision-making 

experiments and simulations. The present research is based on expected utility theory. 

Risk attitudes are commonly elicited in experiments with lotteries (Holt and Laury 2002; Sabater-

Grande and Georgantzis 2002). Player 1’s role in a trust game can be interpreted as being equivalent 

to playing a lottery. Given that the first mover in a trust game may rationally choose to trust depending 

on his risk attitude and the probability of receiving a reciprocal investment from the second player 

(Fehr 2009), the evolution of risk attitudes becomes relevant for this study. Notwithstanding that 

Eckel and Wilson (2004) binary trust game experiments with risk measures found little relation 

between risk and trust. However, in these experiments, the Holt and Laury test was found to relate to 

reciprocation (risk-lovers were found to reciprocate less). 

Risk-averse subjects reward pro-social players; hence, they promote cooperative behaviour (Hauert 

2010). Roos and Nau (2010) simulated population dynamics in stag hunt and lottery games. They 

demonstrated that risky strategies make sense and can be beneficial in the evolution of cooperation.  
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This approach is related to how human traits evolve (Kirley and von der Osten 2014; Viossat 2014) 

in a framework that combines evolutionary ABM (Wu and Yanjun 2001; Manson 2005).  

In experiments with cooperative significant payoffs and small groups of players, it was found that 

players move to a payoff-dominant strategy when games have two evolutionary equilibria: one risk-

dominant (Harsanyi and Selten 1988) and one payoff-dominant (Friedman 1996). Risk attitudes may 

also evolve depending on genetics, social genetics or the environment (Harris 1995; Heckman 2006). 

 

2 . 4 .  A B M  s i m u l a t i o n s  

Systems observed in the real world, from solar flares, animal migrations and climate change to the 

stock exchange, follow processes which have a complex mathematical basis. However, these 

dynamic systems have critically self-organized macroscopic behaviours, that is, their complexity can 

be reproduced with simple local interactions (Bak 2013). Abstract models and simple rules can 

capture aspects of the real world, such as complex behaviours or aggregated ones (Simon 1996). In 

these synthetic worlds, we can perform simulations with agents. These agents can work with isolated  

parameters and help us to understand complex problems (Alexandrova 2006). These ideas might be 

translated to the outcomes of repeated games, which are complex, whilst their rules can be simple. 

The way in which agents evolve and replicate in an evolutionary framework takes us to the 

beginnings of ABM (Kirman 1993; Axelrod 1997) with the modelling of ants or the dissemination 

of traits. 



Coevolution of traits in populations: An agent-based approach to the trust game 

  

3 

Social simulation is a subset of modelling techniques that are used in order to develop theories and 

conduct experiments which can be repeated in a way that would be not possible in the real world 

(Gilbert and Troitzsch 2005). Therefore, there are circumstances in which the use of simulations may 

be more appropriate than the use of closed-form solutions to usually simpler but tractable 

mathematical models in order to formalise theories in the social sciences (Taber and Timpone 1996).  

This thesis intends to determine the extent to which a population’s strategy evolution can be 

explained by simulations obeying genetic algorithms. Genetic algorithms (GA) are a type of 

evolutionary algorithm (Fogel 1966) that emulate natural selection due to embedded genetic rules 

such as mutation and recombination (Holland 1975). GA are useful calculating solutions or 

acceptable approximations to complex problems (Gilbert and Troitzsch 2005) and are applied in 

EGT. They make populations evolve and help them to reach ESS (Riechmann 2001). In these cases, 

agents are focused on performance (Vega-Redondo 1996). Replication dynamics were proposed by 

Hofbauer and Sigmund (1998) and consist of replicating the locally or globally fittest agents. A 

simpler method is the imitation of the best random strategy each time performance is compared 

(Matos et al. 1998; Tesfatsion 2001). Imitating the best method is one of the simplest criteria, where 

agents are imitating others strategies or are not following the Walrasian strategy (Vega-Redondo 

1996; Vega-Redondo 1997). 

In  order to analyse games, we can use automata (Aumann 1981). After the first simulations with 

simple automata, such as in Conway’s Game of Life, new ABMS appeared that were based on 

limited-strategies modelling (Deadman et al. 2000; Deadman and Schlager 2002). Kirman (1993) 

used ant behaviour in order to solve economic questions. Precisely, in the field of economics, 

Tesfatsion (2002) worked on agent-based computational economics (ACE) in order to describe 
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economies with evolving systems of autonomous agents which interact among themselves 

(Tesfatsion 2003; Tesfatsion and Judd 2006; Tesfatsion and Judd 2006). Duffy (2001), in order to 

explain behaviour by real subjects, employed an expected utility function for easy decisions made by 

agents following a learned mechanism. Jager and Janssen (2002) built their agents with four 

strategies, one with utility maximization and the other three based on learning following different 

directives. Dal Forno and Merlone (2004) implemented agents with behavioural patterns elicited 

from experiments. Artificial populations constructed by them offered realistic results. Berger (2001) 

modelled different agents which had to adopt a new technology in agriculture. This agent had a profit 

function that had to exceed a threshold in order for the new technology to be adopted. Wu and Yanjun 

(2001) used repeated bids to elicit trust in an ABMS. 

Computer science has evolved since the beginnings of ABM, raising the level of computational 

complexity following Moore’s law, constrained by Amdahl’s rule (Amdahl 1967; Moore 1975). 

The first important reference to trust game modelling we can find is in one body of work by the first 

female Nobel laureate in economics, Ostrom (2009). Ostrom supports the idea that trust can be 

interpreted as a reaction to expected reciprocity. This model, adapted from a 2004 paper, is 

represented in Figure 5. It is inspired by human attributes such as cooperativeness, fairness, 

reciprocity and cooperation. 
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Figure 5. Ostrom’s schema of her model (Ostrom 2009). 

Another work related to ABM and ABMS based on Ostrom’s model is the one performed by 

Ebenhöh and Pahl-Wostl (2008). Also, Ebenhöh (2006) has a chapter dedicated to trait approaches, 

known as ‘the Big Five’: openness, conscientiousness, extraversion, agreeableness and neuroticism. 

There is also an interesting work by Said and Bouron (2001), which models consumers within a 

traits-approach and applies GAs in order to calibrate the agent population. 

There are more important features in evolutionary simulations, such as mutation factors and speed or 

strength of selection. Intuitivelly, we can figure out the purposes of these parameters. However, 

explanation of these features is beyond the scope of this thesis. We should mention that weak 

selection allows for more diversity in populations (Taylor and Jonker 1978; Taylor 1989). 

One purpose of this study is to assess the extent to which social interactions are related to spatial 

structures, such as the model proposed by Schelling (1969). The model suggested in this research 

looks for explanations of aggregate behaviour following simple individual preferences and rules 

which may differ from social preferences (aggregate preferences). 
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2 . 5 .  L o c a l  i n t e r a c t i o n   

Special attention will be paid to whether interactions are local or potentially global. On the basis of 

the locality or spatiality, the way people feel and behave within and across the borders of a country 

is both a cause and effect of phenomena such as social coherence, national identity or prosocial 

feelings (Burns 2006; Bornhorst et al. 2010; Hofstede et al. 2010; Hofstede 2011). For instance, we 

can appreciate the relationship between gross national product per capita and trust in different 

countries in Figure 6. 

 

Figure 6. Cultural heritage, trust and economic development (Inglehart and Welzel (2005). 
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Decision-making in a game-theoretic setup within or between national or social groups has proved 

to be a valid tool for the identification of patterns of human behaviour associated with the proximity 

between, origins of, or distances among interacting agents. To this purpose, various experiments have 

been conducted using the trust game (Roth et al. 1991; Fershtman and Gneezy 2001; Willinger et al. 

2003; Bouckaert and Dhaene 2004; Hennig-Schmidt et al. 2007; Akai and Netzer 2012; Georgantzis 

et al. 2018), showing how the behaviour and beliefs of individuals depend on their origin. 

The spatial distribution of agents has been employed in many simulations to weight the probability 

of interaction (Nowak and May 1992; Nowak et al. 1994; Szabó and Tőke 1998; Hauert and Doebeli 

2004). Lattice representation is one of the simplest methods and makes visual feedback easy to 

represent on paper. Examples of other EGT simulations, such as snowdrift and the prisoner’s 

dilemma, are shown in Figure 7 and 8. 

 

Figure 7. Lattices of 80x80 agents in a spatial distribution of co-operators 

(dark colour) and defectors (light grey) (Nowak 1994). Each column has 

a b value that is the payoff obtained by a defector interacting with a co-

operator. The rows have different values for m, ∞ means that the 

neighbourhood is the best for the agent and 0 the worst. 
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Figure 8. Clustering of co-operators(black squares) in prisoner’s dilemma and 

snowdrift simulations (Hauert and Doebeli 2004).a) clusters of survivors in 

prisoner’s dilemma. b) Isolated patches in snowdrift game. c) Detail, from left 

to right, of the creation and division process of a patch in the snowdrift game. 

Several attempts have been made to model spatial considerations in population dynamics and 

ecosystems (Levin 1974; Levin and Paine 1974; Hastings 1993; Durrett and Levin 1994). In order to 

test these theories, the kinship of the subjects needs to be categorised. One characteristic, which can 

be easily categorised, is the nationality of the subjects. We can assume that nations are roughly 
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clusters of humans who share some common idiosyncrasy, language and geography.  Another way 

to cluster populations could be by religion. Instead of measuring distances between individuals by 

their nationality, we can use other dimensions, such as gender or religion, and their effect on risk 

attitudes (Miller 2000; Roth and Kroll 2007). For instance, we know that individuals from Muslim 

cultures are traditionally more risk-averse (Bartke and Schwarze 2008). Of course, there are many 

possible explanations to these phenomena, but it could be potentially reproduced, or at least 

approximated, in simulations with the approach introduced in chapter 3. 

 

2.5.1. EXPERIMENTS WITH LOCAL INTERACTION 

Many experiments and empirical studies that have collected data from games, including the trust 

game, have looked at neighbour effects on subject behaviour. They mostly study interactions within 

and across different countries. These are known as cross-country experiments and they have detected 

differences when subjects play with peers from the same or different countries. Research has also 

looked at the effects on trust due to similarities and differences within and across other social clusters, 

such as social class, culture and ethnicity (Fershtman and Gneezy 2001; Bouckaert and Dhaene 2004; 

Burns 2006; Bornhorst et al. 2010). 

Strategies can be transmitted culturally by imitation or learning − the better the payoff of a strategy 

(cooperative) the better it spreads (Brown et al. 1982; Axelrod 1984). Repeated interactions in small 

groups lead to reciprocity of subjects (Boyd and Richerson 1988). This can be linked to local 
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interaction. In this study, we will see if local interaction and imitation in simulations obey this 

principle. 

Cross-country experiments with trust games have been conducted between Morocco, Spain and 

France (Georgantzis et al. 2018); Germany, Israel and Palestine (Hennig-Schmidt et al. 2007); Israel, 

Slovenia, the USA and Japan (in this case it was ultimatum game; (Roth et al. 1991); France and 

Germany (Willinger et al. 2003); and even on a huge pool of 23,000 subjects in the USA and Africa. 

These experiments revealed that differences among subjects depend on their nationality. Some social 

behaviour has been captured in these experiments. Individuals playing with people from the same 

country trust more or less depending on the country they belong to. Moreover, when subjects are 

playing with subjects of a different nationality to themselves, trust levels differ. For instance, 

Moroccans trust French subjects more than they trust their fellow Moroccans. French subjects trust 

their fellow Frenchmen more than they trust subjects of other nationalities (Georgantzis et al. 2018). 

In order to study these theories, we should compare results between individuals playing with players 

who are related through geographic relation or locality with those playing with unrelated players. 

2.5.2. AGENT-BASED MODELS AND LOCAL INTERACTION 

This aspect, which is related to our proposed modelling strategy, regards the role of neighbours or 

the locality as opposed to the globality of pairwise interactions. We plan to match neighbours for a 

prisoner’s dilemma game (Nowak and May (1992), but they will be given the option of only two 

strategies: cooperate or defect (always). In our model, Player 1 would sometimes trust and other times 

not, depending on his neighbours’ reciprocity probabilities. Similar studies have also included spatial 
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properties, such as hexagonal lattices for neighbourhoods, with reputation in public-good games 

(Brandt et al. 2003). In the terminology of Tarnita (2009), we want to implement structured 

neighbourhoods. Any agent can play with any other, but players will be more likely to play with their 

closest neighbours in the sense of geographic proximity, genetic similarity, strategies, etc. (Tarnita 

2015). 

Interaction among agents can be described in many ways. Given a population of agents, 𝑁, how many 

other agents can be reached by one specific agent, 𝑘? We call this ‘neighbourhood of 𝑘’ and we can 

name it 𝑁𝑘. So, inside a population there is a probability that two members are neighbours, i.e. this 

probability 𝑞(𝑖, 𝑗) is the likelihood of agent 𝑖 to be able to play the trust game with agent 𝑗. 

How agents interact among these neighbourhoods and get matched can be unstructured, but we are 

paying attention to more ordered systems. To make more intuitive or more realistic simulations, we 

can build in elements, such as spaces of 𝑛 dimensions, where 𝑛 = 1 is a linear world, 𝑛 = 2 is a two-

dimensional and 𝑛 = 3 is a three-dimensional world. Furthermore, we can graph these simulations 

and we can even project higher dimensions and represent them. We can comprehend that agents that 

are closer to each other have higher probability of interacting and the higher the dimensions of the 

model are, the higher the number of neighbours of an agent can be. 

Let us define distance 𝑑𝑖𝑗, in equation (1). Let 𝑝𝑎𝑡ℎ be a function which calculates the cardinality of 

agents belonging to a set defined by an initial, 𝑖, and an end agent, 𝑗, where all agents have at least 

one direct connection with any other agent belonging to the set. Distance 𝑑𝑖𝑗 is the minimum of 

neighbours that are between two agents, plus 1: 

(1)        𝑖𝑓 𝑖 ≠ 𝑗 𝑡ℎ𝑒𝑛 𝑑𝑖𝑗 = 𝑚𝑖 𝑛(𝑝𝑎𝑡ℎ(𝑖, 𝑗)) + 1 
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Where 𝑑𝑖𝑗 = 1 means that agents are direct neighbours and if  𝑖 = 𝑗 then 𝑑𝑖𝑗 = 0. 

Given an agent, we can define all the agents that can interact with this agent as ‘the neighbourhood’. 

Formally, we will call 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 (𝑘) the set of agents which can interact with an agent, 𝑘 . 

It can also be called the ‘window of negotiation’ or window. In order to define a neighbourhood, we 

need to determine the maximum distance between the agent, 𝑘, and the furthest agent belonging to 

its neighbourhood. If we are talking about a two-dimensional, regular grid we can use the length of 

the side of the square area containing the 𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑(𝑘). 

Let agent 𝑗  𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑(𝑖). Then, the probability of matching these two agents will be: 

(2)        𝑞(𝑖, 𝑗) =
1

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑(𝑖))
+ (𝑑𝑖𝑗) 

(𝑑𝑖𝑗)  is a weighting function, where closer neighbours have higher probability to meet. It can be 

positive for closest agents and negative for those further apart. If  𝑗 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑(𝑖), then 

𝑞(𝑖, 𝑗) = 0 and all the agents belong to the same neighbourhood. 

These geometric properties can help us to vary the model to make it resemble different real-world 

situations. In Figure 9, we can see three examples of regular two-dimensional simulation 

representations. Von Neumann and Moore interaction neighbourhoods have been widely employed, 

and the last one is the hexagonal lattice neighbourhood used by Brandt et al. (2003). 
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Figure 9. Examples of two-dimensional regular arrangements. From left to right: Von Neumann, Moore 

and hexagonal. 

The complexity of an ABM social topology depends on the grade of detail necessary for its purpose. 

Nowadays, there is not a specific criteria and it is also considered an art (Schelling 1971; Axelrod 

1997; Bonabeau 2002; Berger and Schreinemachers 2006). 

 

2 . 6 .  P s y c h o p a t h i c  p e r s o n a l i t y  a n d  t r u s t  

There are many traits (possibly hundreds) which are used in natural language to describe personality 

traits, such as funny, aggressive, assertive, active, positive, cold, warm, shy, temperamental, sweet, 

focused, polite, selfish and so on. But psychologists agree that a review and combination of a small 

amount of principal traits is enough to describe a human personality (McCrae and Costa 2003). For 

instance, the Big Five, a combination of five characteristics measured in continuous values, is used 

to classify personalities (Goldberg 1990). The Big Five personality traits are openness, 

conscientiousness, extraversion, agreeableness and neuroticism. They have been found to correlate 

with certain behaviours in experimental games (Zhao and Smillie 2014). However, the research 
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presented in this study is focused on other traits: psychopathy and risk aversion. Risk aversion has 

been discussed in previous sections. 

Psychopathy is a mental disorder, popularized by movies, and is included in the DSM-V (Diagnostic 

and Statistical Manual of Mental Disorders V) as an ASPD (antisocial personality disorder), but it is 

also a personality trait that all humans have to a higher or lower extent. Psychopathy is characterized 

by behavioural patterns that include disrespect for social rules, low empathy, low inhibition, no 

regret, focus and courage. It is also known that psychopaths have low levels of anxiety or fear, that 

they mask maladaptive behaviours and are less prone to withdrawal and attention-seeking behaviours 

(DSM-V).  

Psychopathy can be measured by many tests, such as the Self-Reported Psychopathy Scale-III 

(Paulhus et al. 2009). Higher scores on this test mean that the subject has higher psychopathy traits 

in his/her personality, but this doesn’t tell us that this subject is a serial killer (Dutton 2012). It is 

common to find two other traits, narcissism and Machiavellianism, merged with psychopathy. These 

three traits are known as the ‘black triad’, which has been found to be advantageous in some ways to 

subjects and their communities (Dawkins 2006; Jonason et al. 2009). In fact, the lack of neuroticism 

and anxiety related to psychopathy allows subjects to get things done in adverse situations, which is 

often known as cold blood (Taylor and Armor 1996).  

Some traits or disorders can have an evolutionary explanation to some extent (Bouchard and Loehlin 

2001). Different non-functional mutations determine better IQ scores, memory, creativity or 

academic success. Nevertheless, the problem is that some combinations of these lead to disorders 

(Karlsson 1978). These correlations are highlighted in Table 3. In the case of psychopaths, one 
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evolutionary benefit is that they take advantage of social elements such as trust and cooperativeness 

(Mealey 1995). 

Table 3. Examples of traits or disorders related to exceptional abilities 

Skills Trait Paper 

Better IQ scores 

Creativity 

Academic success 

Geniality 

Better memory  

Mathematical ability  

disorders 

schizophrenia 

psychopathy 

autism 

depression 

psychosis 

Karlsson 1978 

Kéri 2009 

Taylor and Armor 1996 

Sacks 1998 

Forgas et al. 2005 

Karlsson 1999 

 

Antisocial behaviours may have many causes, including society, education, environment, 

biochemistry and genetics. The discussion into ‘nature or nurture’ (Plomin et al. 2013)  is beyond the 

scope of this document. However, we can agree that, in some cases, genetics is associated with 

psychopathy (Blair et al. 2005). Neuropsychological deficits and determined brain area structures 

have been found to be related with psychopathic disorders (Beaver et al. 2012; May and Beaver 2012; 

Perez 2012). There are researchers who hold that this disorder is triggered by child abuse (Gao et al. 

2010) and others who indicate that these traits are manifested in childhood (Hare 1999).   

From the evolutionary point of view, there are studies that explain why unfavourable behaviours have 

a possible genetic motivation, such as the case of hyperemesis (pregnancy nausea or ‘morning 
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sickness’). Sherman and Flaxman (2002), proposed that hyperemesis occurs in order to prevent 

infections and toxins. Other authors point out that psychopathy is present in our gene pool possibly 

because cheats (i.e. not reciprocating people) can take advantage of their neighbours if the proportion 

of cheats is low enough (Frank 1988; Mealey 1995; Murphy 2006; Sachs and Simms 2006; Glenn et 

al. 2011). Furthermore, brutality can be useful to human groups in times of scarcity. In the ages before 

agriculture, laws, religion and governments the ‘fittest’ humans by natural selection were more prone 

to use violence, as they had no inhibitions, had their own rules and did not feel remorse (Hobbes and 

Curley 1994; Pinker 2011). 

From an evolutionary perspective, psychopaths can affect the interactions between groups. Selfish 

behaviour can benefit the group with psychopathic members when these subjects have to allocate 

resources in their interactions with other groups, benefiting members of the ‘in-group’ (Brewer 

(1999). In fact, this benefit over the less-advantaged in-group members could be the reason for many 

of the war conflicts seen since the origins of mankind (Choi and Bowles 2007). 

One of the purposes of this investigation is to explore the relationship between human traits and 

behaviours. As a result, the studies mentioned above allow us to infer that we can assume that human 

traits are related to genetic heritage and behaviours. Therefore, the model proposed in chapter 3 

embeds these behaviours, which encompass psychopathy, risk aversion, trust and reciprocity. 

2 . 7 .  E x p e r i m e n t s  a n d  p e r s o n a l i t y  t r a i t s   

A number of researchers have conducted trust game experiments with depressed and borderline 

personality disorder patients (Unoka et al. 2009; Wischniewski and Brüne 2013; Polgár et al. 2014)). 

Experiments with the prisoner’s dilemma games revealed that non-cooperative behaviour is a source 
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of higher gains for psychopaths (Mokros et al. 2008). It has been observed that psychopaths have 

lower acceptance rates in the ultimatum game and offer lower amounts in the dictator game (Koenigs 

et al. 2010; Osumi and Ohira 2010). In an iterated prisoner’s dilemma game, high-psychopathy 

players defected more often and cooperated less (Rilling et al. 2007). 

After running experiments with the trust game (Ibáñez et al. 2016), which studied the relationship 

between risk attitudes, cognitive ability, reciprocity and trust, the data analysis suggested that low 

reciprocity is significantly related with personalities that rated highly for psychopathy, disinhibition 

and impulsiveness. Moreover, Gillespie et al. (2013) affirmed that psychopathic people act selfishly 

and behave non-cooperatively in decision-making games. Table 4 shows some papers related to 

disorders and experiments. 
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Table 4. Experiments related to traits or disorders and different games 

Trait/Disorder Game Paper 

Borderline personality disorder Ultimatum game Polgar et al. 2014 

 

Borderline personality disorder Trust game Unoka et al. 2009 

 

Neuroticism and Machiavellianism, 

extraversion and openness 

Dictator game 

 

Wischniewski and Brüne 2013 

Psychopathy Prisoners’ dilemma 

 

Mokros et al. 2008 

 

Antisocial personality disorder Prisoners’ dilemma 

 

Montañés-Rada et al. 2003 

 

Machiavellian egocentricity Prisoners’ dilemma 

 

Curry et al. 2011 

 

Psychopathy Ultimatum game 

 

Curry et al. 2011 

 

Psychopathy Trust game 

 

Sabater-Grande and Georgantzis 

2002 

 

Psychopathy 

 

Dictator game 

Ultimatum game 

 

Gillespie et al. 2013 

 

Machiavellian egocentricity Ultimatum game 

 

Spitzer et al. 2007 

 

Experimentally, lotteries can elicit risk attitudes. Psychopathic personalities can be measured with self-

reported tests. These two parameters are strongly related to this research, which is focused on trust and 

trustworthiness. Trust can be predicted with surveys (Fehr et al. 2003) and with the trust game. 
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2 . 8 .  S u m m a r i z i n g  m a i n  a s p e c t s  a n d  g a p s  

This research combines game theory, psychology, experimental economics, ABM and computer 

simulation.  This chapter has gone through the aspects needed to understand the whole research. 

This thesis employs the binary trust game that is introduced deeper in chapter 3. Agents whose model 

is explained in chapter 3 were  programmed and simulated.   

In order to understand this model and the simulations that were made, the research done in the fields 

related to it needs to be outlined.  

Evolutionary games have been introduced at the beginning of this chapter. Later the difference 

between theory and experiments has been highlighted with risk attitudes and experiments.  

There is much less research related to simulations of the Trust game compared to the prisoner’s 

dilemma. The sequential characteristic of this game, among the social dilemma games, makes it 

interesting and its simulation a gap in the research.  

In the terms of locality, it has to be interpreted as something more than geographical distances. This 

model and simulations can be employed for any topological distance.  The two dimensional spatial 

parameters employed in these simulations can be any couple of parameters of the agent attributes, 

such as:  height, weight, blood pressure, agreeableness, neuroticism, extraversion, conscientiousness, 

openness, etc.  
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Circumstances such as society, culture, experiences and genetics affect human behaviour. Sections 

2.6 and 2.7 give us an idea that there is something in our behaviour related with some disorders, there 

is something in our brains that builds our decision making mechanism and some features in excess 

can be a disorder in advanced societies (many of them are a problem only since the beginning of 

complex societies 8000 a.c.) but in other cases bring some advantages to the subject or even the 

group. Having an excess of one feature and the performance in a game has been explored in 

experiments. 

Risk attitudes have huge literature in EGT and experiments. However there is nothing related to the 

co-evolution of risk attitudes and reciprocity so far. This is the main gap that this research covers. 

This thesis analyses the coevolution of risk attitudes, trustworthiness and reciprocity through 

simulations of the trust game over generations of artificial agents that follow the decision-making 

mechanism described in chapter 3.  
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CHAPTER 3. THE TRUST GAME: AN 

AGENT-BASED APPROACH 

3 . 1 .  T h e  t r u s t  g a m e :  d e s c r i p t i o n  

The trust game is a well-known sequential social dilemma game in which players take turns to make 

decisions. Whereas the prisoners’ dilemma game has been studied broadly in experiments and in 

ABMS contexts, the trust game gives us a good opportunity to research a game which is sequential 

and comparable to the prisoners’ dilemma game (Axelrod and Hamilton 1981; Wooldridge and 

Jennings 1995). 

An earlier version of the trust game is known as ‘the lending game’ (the first player lends or does not 

lend; then if this player lends, the second player can pay back or renege), introduced by Camerer and 

Weigelt (1988), who employed it in their model of reputation. However, the trust game literature 

indicates that it was introduced as an investment game by Berg et al. (1995) and then it was 

experimentally tested by many authors (Burnham et al. 2000; Gambetta 2000; McCabe et al. 2001; 

Bohnet and Zeckhauser 2004; Ermisch et al. 2009; Costa-Gomes et al. 2014). The experimental 

outcomes, as happened with the prisoners’ dilemma, contradicted the rational equilibrium prediction 

of ‘no trust, no reciprocity’. 
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The structure of the game is as follows: 

1. The experimenter gives an amount of money, 𝑑, to Player 1 (the investor).  

2. Player 1 decides to secure an amount of money, 𝑠 , and return some money to the 

experimenter (𝑑 − 𝑠). If player 1 sends zero, then the game is finished. 

3. Then the experimenter gives a larger amount of money (𝑏 · (𝑑 − 𝑠)), to where 𝑏 > 1) to 

Player 2 (the trustee). 

4. Player 2 decides which amount to secure ( 𝑏 · (𝑑 − 𝑠) − 𝑡) and how much to return (𝑡) to 

Player 1. 

In other words, Player 1 gets money, then decides to trust Player 2 (or not) and to send some money 

to Player 2. If Player 2 has been trusted, they receive a multiplied amount of money and decides how 

much to reciprocate following the trust from Player 1. We can express this analytically with the 

following equation (Tarnita 2015): 

    (3)       𝑇(𝑆1, 𝑆2) = 1
2⁄ (𝑑 − 𝑠1𝑏𝑡2 + 𝑠2𝑏(1 − 𝑡1)) 

The strategy 𝑆1 = (𝑠1, 𝑡1)  means that subject one is going to send 𝑠1 when he is playing as Player 1 

and return 𝑡1 when playing as Player 2. Subsequently, the expected payoff of a subject playing 

strategy 𝑆1 versus another agent playing 𝑆2, is going to be 𝑇(𝑆1, 𝑆2). This subject is going to play 

both roles and that is why you see a ½ in the beginning of this equation and then what he or she gets 

playing both roles is added. 
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3.1.1 BINARY TRUST GAME 

The binary-choice trust game adopted in this research can be represented by the tree shown in 

Figure 10 and Figure 12. Retaining the notation and terminology of the previous chapter, we have 

two players, the investor and the trustee. In this game, instead of continuous values for the investor 

and the trustee, we have discrete values. Therefore, 𝑑1,, 𝑑2,𝑠1, 𝑠2, 𝑏, 𝑡1 and 𝑡2 have discrete fixed 

values. If the investor (Player 1) decides not to trust, he secures 𝑑1 and then Player 2 obtains a fixed 

payoff, 𝑑2. For simplicity’s sake, we will make these two amounts the same (𝑑1 = 𝑑2). In the case 

that Player 1 decides to trust, he sends a fixed amount of money, 𝑠1, and secures 𝑛1 = 𝑑1 − 𝑠1. Then 

Player 2 decides to reciprocate with the maximum amount (𝑡2 = 𝑚1 − 𝑛1) or nothing (𝑡2 = 0). 

Hence, the values for the payoffs are fixed and they have the following relationship: 

(4)      𝑛1 < 𝑑1 = 𝑑2 < 𝑚1 = 𝑚2 < 𝑛2   

These variables have a concrete value in the proposed model. More detailed explanation and figures 

on the trust game used on this research are provided later in this chapter. 

 

Figure 10. Tree schema of the trust game 
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We can forecast the strategies that each player would choose following the backward induction 

reasoning process: start with the last stage of the game and choose the optimal decision for Player 2, 

then do the same analysis with the previous stage and player given this decision. It would be: Player 

1 notes that Player 2 is going to Not reciprocate if he Trusts her, so he chooses No Trust and Player 

2 chooses Not reciprocate, although she knows already that he is not going to Trust. So, payoffs for 

this equilibrium are (𝑑1, 𝑑2).  

 

Table 5. Payoffs in the trust game. 

 

Otherwise, if the game is sequential, we find a SPNE. Therefore, if we use backward induction, 

Player 1 is going to Not trust and the payoffs of this equilibrium will be (𝑑
1
, 𝑑2). 

 

3 . 2 .  B a y e s i a n  e q u i l i b r i u m  o f  t h e  t r u s t  g a m e  

type one players in this proposed binary game are not going to know the strategies of their 

counterparts. Moreover, they do not know their payoffs and, therefore, they do not have complete 

information. Nevertheless, they can have a belief of the strategy of their opponent. Let us suppose 
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that players engage in repeated games with their neighbours and that, after some iterations, they can 

infer a probabilistic distribution of their payoffs. 

Instead of thinking about a Nash equilibrium, we can use the beliefs of Player 1 to be reciprocated; 

that is, the probability that Player 2 is going to reciprocate. This equilibrium, that gives the beliefs of 

a player about other player, is known as a Bayesian Nash equilibrium. Therefore, the trust game is a 

Bayesian game because there is player information that is incomplete. If the utility of the Trust 

strategy is higher than the Not Trust strategy, then Player 1 will choose to Trust.  

From the possible modelling alternatives, we assume a power function for the utility function, 

employed by Tversky and Kahneman (1992), ( 𝑈(𝑥) = 𝑥
1

𝑡  ), linear weight of risk  ( 𝑃(𝑝) =

𝑝  , 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝 𝑖𝑠 𝑝 𝑖𝑡𝑠𝑒𝑙𝑓) and a constant error choice function, equation (5) (Stott 2006). 

The main idea proposed in this approach is to describe the design and implementation of an agent’s 

strategy with a utility function based on his belief of being reciprocated. 

Let  𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 
 be the ith agent´s probability of being reciprocated. Then, the expression 

1
𝑡𝑖

⁄  represents the agent’s risk aversion value unique to each individual 𝑟𝑖. We can see three kinds 

of risk aversion categories graphed from (Binmore 1992) in Figure 11. The parameter  𝑡𝑖 ∈ (0, ∞) 

will be greater than 1 if the subject is risk averse, 1 if the subject is risk-neutral and less than 1 if the 

subject is risk-seeking. The probability of being reciprocated (𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 
) is related to the number of 

reciprocators among the neighbours of the ith agent. Let’s suppose that an agent plays with its 

neighbours with a uniform probability, the probability of being reciprocated would be the quotient 

of the number of reciprocator neighbours and the total neighbours. It can be also interpreted as a 

correct belief that could have emerged following a sufficiently long learning and Bayesian updating. 
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Then, each agent 𝑖 (player type one) of the population acts in order to satisfy the following conditions:        

(5)               𝐸(𝑈𝑡𝑟𝑢𝑠𝑡𝑖
) ≥ 𝑈𝑛𝑜𝑡 𝑡𝑟𝑢𝑠𝑡𝑖

 

(6)              𝐸(𝑈𝑡𝑟𝑢𝑠𝑡𝑖
) = 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 𝑚1

1
𝑡𝑖

⁄
+ (1 − 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖

)𝑛1

1
𝑡𝑖

⁄
 

(7)             𝑈𝑛𝑜𝑡 𝑡𝑟𝑢𝑠𝑡𝑖
= 𝑑1

1
𝑡𝑖

⁄
 

(8)          𝑆1 = {
𝑁         𝑖𝑓              𝑈(𝑑1)𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖  𝑈(𝑟1) + (1 − 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 )𝑈(𝑛1)

𝑇         𝑖𝑓         𝑈(𝑑1) <  𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖  𝑈(𝑟1) + (1 − 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 ) 𝑈(𝑛1)
 

 

Utilities 𝑈𝑡𝑟𝑢𝑠𝑡𝑖
 and 𝑈𝑛𝑜𝑡 𝑡𝑟𝑢𝑠𝑡𝑖

 are going to determine whether agent i chooses the trust strategy if 

the former is larger than the latter. The risk aversion parameter initially follows a random distribution 

among the population of agents but becomes a discrete variable whose distribution is described as a 

histogram with a sufficiently fine grid. The expected utility of the strategy for the type one player 

( 𝑆1 = 𝑇 ) Trus𝑡,   𝑈𝑡𝑟𝑢𝑠𝑡𝑖
 is composed by the utility of being reciprocated and the utility of not being 

reciprocated, each multiplied by its probability, according to equation (3).   

 

Figure 11. Utility function shape depending on risk aversion (Binmore 1992) 
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If we want to know what 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 is the one that makes an agent decide to change its decision we 

will need to look for  𝑝 ∗. For a set of fixed payoffs, it can be calculated changing equation (5) to an 

equality and so (6) equal to (7) then we extract 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖  .So, there will be a 𝑝 , equation (9) ,value 

that we will call 𝑝 ∗ [0,1], which is the threshold value that determines if Player 1 is going to 

Trust:  

(9)      𝑝∗ =  
𝑑1

1
𝑡𝑖

⁄
−𝑚1

1
𝑡𝑖

⁄

𝑛1

1
𝑡𝑖

⁄
−𝑚1

1
𝑡𝑖

⁄
 

Trust is chosen by a player type one if his 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖  is bigger (or equal) than 𝑝 ∗. Therefore, if 𝑝 ∗ is 

close to 1, it is going to be difficult to Trust because in that case 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖  has to be larger than 𝑝 ∗. 

Alternatively, if 𝑝 ∗ is low or close to zero, it is going to be easier for Trust to emerge.  

In order to calculate  𝑝 ∗  we need to make the payoffs proportional (10) so the calculus of  𝑝 ∗ (11) 

only has one incognita apart from ti: 

(10)      𝑛1 = 𝑎; 𝑑1 = 𝑑2 = 2𝑎; 𝑚1 = 𝑚2 = 4𝑎 ; 𝑛2 = 6𝑎 

(11)     𝑝∗ =  
(2𝑎)

1
𝑡𝑖

⁄
−(4𝑎)

1
𝑡𝑖

⁄

(𝑎)
1

𝑡𝑖
⁄

−(4𝑎)
1

𝑡𝑖
⁄

 

Because of the correct proportions on (10).Then  𝑝∗only depends on the risk aversion parameter: 

(12)    𝑝∗ =  
2

1
𝑡𝑖

⁄
−4

1
𝑡𝑖

⁄

1−4
1

𝑡𝑖
⁄

 

When a player is risk neutral 1 𝑡𝑖
⁄ = 1  then   𝑝∗ = 2/3.  
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Each agent of type one is randomly matched to play the basic constituent game with another agent 

who is of player type two. With 𝑎 = 5 , the payoffs used in our model are shown in Table 6. 
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Table 6. Table of payoffs 

  Player 2 

 

 

Player 1 

 Reciprocate No reciprocate 

No trust (10,10) (10,10) 

Trust (20,20) (5,30) 

 

As mentioned in the introduction, type 2 agents will be “G” (good, always reciprocating, if trusted) 

or “B” (bad, never reciprocating, possibly due to an abusive, opportunistic or psychopathic 

personality). Psychopathy will be embedded in the population of type 2 agents by the proportion of 

“B” bad, never reciprocating, agents. 
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Figure 12. Tree schema of binary trust game with payoffs 

In Figure 13, we can see a curve plotted in red, which we will call 𝑟∗,  that lets us know which values 

of 1 𝑡𝑖
⁄  (y axis) lead to a Trust decision and which ones lead to a Not trust decision, depending on the 

𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖  value (x axis). The set of values  (1 𝑡𝑖
⁄ , 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 )  under the line on the first quadrant are 

the set of conditions to Not trust for the type 1 agents. Notice the scales of the axis. Equation (13) is 

obtained from making equal the expected utility of Trust from equation (6) and the utility of Not 

Trust from equation (7) for a type 1 player with the payoff parameters from table 6. 

(13)      𝑟∗  =
ln[

1−𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 

𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 
]

ln[2]
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Figure 13. Hyperspaces of decision. 1 𝑡𝑖
⁄ = 𝑟𝑖 is the ordinate axis and 𝑝𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖 is the abscissa 

axis. 

 

3 . 3 .  S i m u l a t i o n s  

In our framework, it is assumed that the trust game is played by two different populations of agents:  

type 1 agents, who act as the first mover in each interaction, behaving rationally in order to maximize 

a risk-averse utility function; and type 2 agents, who act as the second mover in each interaction and 

behave like automata, each one endowed with a stable behaviour: “G” (good, always reciprocating, 

if trusted) or “B” (bad, never reciprocating, possibly due to an abusive, opportunistic or psychopathic 

personality). We will call the type 1 agents ‘intelligent’ or ‘non-zero intelligence’ automata to 

distinguish them from standard zero-intelligence agents. 
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Payoffs in a large number of transactions are used to assess the success rate for type of automata in 

the previous generation and proceed with the updating of the population composition in the next 

generation through a reproduction schema that we will introduce later. 

Simulations have been deployed with agents distributed in regular two-dimensional lattices with a 

particular property of neighbourhood in the boundaries. It is a squared grid (mesh) with a toroidal 

topology. Agents in the top and bottom rows are considered as contiguous and likewise with agents 

of the leftmost and rightmost columns (Wilensky and Rand 2015). Neighbour interactions are Von 

Neuman’s type (four neighbours per agent). Each simulation has lattices of 100 agents wide by 100 

agents high, so the network size is 10,000. The replication dynamics is controlled by the accumulative 

payoffs of the agents when their fitness is compared. These comparisons can be made among 

members of the same neighbour or any randomly chosen member of the whole population, i.e. local 

matching and Panmixia (Laredo et al. 2008). All contiguous agents, after a number of iterations, are 

supposed to have had an equal number of encounters (Luthi et al. 2009). 

3.3.1. EVOLUTIONARY SIMULATIONS 

Simulations can be made given a set of rules and parameters. Repeating simulations many times for 

many different parameters can help find patterns and solutions to problems. In fact, given a 

hypothesis, simulations are commonly employed to demonstrate that there is a population (or a set 

of populations) with certain properties, which verifies this hypothesis. In other cases, we want to 

know what the outcome is if there is one change in the parameters of our model. In these situations, 

the calculi of all the possibilities can be really difficult or computationally unbearable. Moreover, 
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because of the nature of this research, we look for possible initial populations that can lead to EES 

populations obeying our model and the feasibility that EES populations can be obtained following 

our model. Nevertheless, reaching these ‘final’ populations (EESs) requires them to be smooth and 

based on individual changes; they cannot be achieved by unexplainable jumps. Therefore, in order 

to find solutions in an efficient way, evolutionary rules are employed to make populations evolve in 

our simulations (Blume and Easley 1992; Holland 1992; Axtell 2000; Boschma 2004). 

Just as in natural environments, individuals of a population interact with their environment and 

‘perform’ better or worse than other elements of the population. Evolutionary artificial agents follow 

rules of replication dynamics (Conte et al. 2013). Therefore, the population changes from the original 

one to a new one which ‘moves’ towards its ‘destiny’, given the original population. 

3.3.2. INTRODUCTION TO THE CHARACTERISTICS OF THE SIMULATIONS 

We chose an initial population, where type 1 players have a probability of 50% to Trust. 

We have calculated that, for a value of p = 0.25, the frontier value of t is 1.58. It can be the central 

point of a distribution of players (a rectangular area containing the dot in the line of Figure 14) in a 

population in order to obtain good heterogeneity. 
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Figure 14. Values of  ri=1
𝑡𝑖

⁄   depending on the probability of being recirpocated. The line splits the space 

into Trust and Not trust strategies. 

In Figure 15, we can see the values of different functions which correspond to the utility expected 

for five possible situations: 0% of reciprocators surrounding the agent, 25%, 50%, 75% and 100%. 

Notice that axis y represents expected utility and axis x is the 1
𝑡𝑖

⁄  value, and that they are 

conveniently scaled. In this case, only with a value of 0.25 does the value of 1 𝑡𝑖
⁄  have to be taken 

into acount. For values higher than 1.58 (very risky agents) and p = 0.25, all player 1 agents Trust. 
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Figure 15. Expected utility of six possible scenarios. Representations with 

different probabilities of being reciprocated (0, 1/4, 1/2, 3/4, 1) and trust       
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3.3.3. PARAMETERS AND RULES 

We will simulate the game with initial populations of agents with different characteristics. Firstly, 

populations with a high probability of being reciprocated (many Player 2 reciprocators) will play the 

game among themselves. In second place populations, with low a probability of being reciprocated 

(many psychopaths), we will do the same. Eventually, a population with values observing proportions 

of one reciprocator out of two, or four type 2 agents, will interact among them. 

Besides the proportion of reciprocators in the population, the values of r among the population will 

be uniformly distributed randomly between the ranges of [0, 3.2], [0-1] and [1-2], suggesting 

heterogeneous societies, risk-averse populations and risk-loving populations. Moreover, as we will 
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see in Section 3.3.3., that initial population of type 1 agents will be spatially ordered. Figure 16 shows 

two examples of different populations expressed with colours and a third dimension (correlated with 

values). 

 

Figure 16. Uniform and randomized spatial distribution 

Evolution of the populations can follow any of the rules described in Table 7. 

Table 7. Rules of evolution for risk attitude and reciprocity 

Evolution 

• No changes  

• Only swap 

• Matching partner for comparing 

o Locally 

o Bigger neighbourhood 

o Globally 

Reciprocity evolution 

• No changes  

• Only swap 

• Matching partner for comparing 

o Locally 

o Bigger neighbourhood 

o Globally 

3.3.4. EXAMPLE 

In Figure 17, an example of initial and final values of r, risk attitude detailed in section 3.3.3, in the 

population of type 1 agents is shown. Values of r go from 0 to 3.2. A risk-lover agent will have an r 

value greater than 1, a risk-averse agent will have an r value lower than 1 and a risk-neutral agent 
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will have a r value of 1. Population of type 1 agents is shown isolated from type 2 agents. There is a 

loss of diversity of the r value because there is no mutation in this example, but risk-lovers can be 

found in a population which is risk-averse on average. In Figure 18, type 2 agents in the same 

simulation are shown. In both cases, spatial entropy in the final generation is lower than in the initial 

one. Agents tend to be clustered in patches of population with same attributes. 

 

Figure 17. (a) Initial values of risk attitude (b) Values of risk attitude 

after 10000 generations (c) rank of values for r 
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(a)                                                             (b) 

(c) 

Figure 18. (a) Initial population of type 2 agents (b) Final population of type 1 agents. (c) 

Colour legend. 

3.3.5. SPATIAL DIMENSION 

We already have explained that the agents are arranged in a regular lattice with interactions in a 

Moore neighbourhood. Because of the nature of these interactions and the asymmetry of their roles, 

the agents are arranged in specific positions. The agents are distributed in a way that every agent is 

surrounded by four agents (to the north, south, east and west) with his/her opposite role, like on a 

chessboard, where black squares are type 1 agents and white squares are type 2 agents. 

Simulations will show characteristic clusters as shown in the example in the previous section. 
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3.3.6. GLOBAL VERSUS LOCAL IMITATION 

In this section, we analyse whether there is any difference between global and local imitation. In their 

day-to-day interactions, humans compare their strategies/actions and outcomes with the other 

members of environment. Usually, the closest ‘environment’ is the people a human can compare their 

performance with, i.e. neighbours, siblings, and family (Case and Katz 1991; Visscher 1998; 

Mazumder 2008). However, in some cases, they can pay attention to other humans that are not in 

their closest environment, such as chieftains, foreign visitors, competitors of other tribes, kings, 

philosophers, business men, religious leaders, football players, etc. The imitation dynamic follows 

this principle and we will see if there is any difference. 

At first sight, we can think that local interactions can disseminate a characteristic among a population 

in the long term. However, depending on how fast these strategies are expanded, competing with 

third strategies can have a different outcome. For instance, a strategy can be blocked by other 

competitive strategies (Arthur 1991; Blume and Easley 1992) or it can succeed in other places, 

interacting with other strategies, compatible or synergetic (Schöner and Kelso 1988). 

3.3.7. SHOCKS AND MUTATIONS 

In this section we will mention the idea of introducing mutations in the parameters and exogenous 

shock affecting payoffs in the simulations. 
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During the 'tulip mania’ of 1635, the Dutch population imitated their compatriots who had sold tulip 

bulbs for high sums. Some of these bulbs showed profits that were a hundred times the typical salary. 

Consequently, many Netherlanders stopped their main occupation and had started to cultivate and 

trade tulip bulbs. Unfortunately, in 1637, the value of the bulbs went down and produced the first 

financial bubble (Mackay 2015). 

What happens when the utility function changes? What happens if something that was valuable is 

not valuable anymore? What happens when there is a technological improvement that shakes the 

market? What was the impact on the population when humans first learnt to manage fire? 

By changing the payoffs, shocks are embedded in the simulations. Essentially, the payoff is changed 

when a population is in an ESS. Therefore, resilience and robustness of equilibria are tested with 

these shocks. 

Heterogeneity of r 

You could think that an average value of 0.8 means there are no risk-loving agents, or that there is 

no heterogeneity. Here, in Figure 19, we can see that we keep heterogeneity and that there are risk-

lovers. Keep in mind that this simulation has no mutation. The evolution of populations of type 1 and 

type2 agents, ending with this average value of 0.8 for r, are represented in Figure 20. 
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Figure 149. Frequencies of r values in the initial population (dark grey) and final population (light 

grey). Values clustered in 0.1 intervals. 
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 Figure 20. Evolution from left to right and up to down of type 1 agents (a,c,e,g,i,k,m,o) and 

type 2 agents (b,d,f,h,j,l,n,p) agents with 10 generations of evolution shown. Populations (a) 

and (b) evolve 10 generations in till they get to (o) and (p). (q) and (r) are the possible values 

represented. 
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CHAPTER 4. RESULTS 

Simulations were conducted using FLAME (flexible large-scale agent-modelling environment) 

software. FLAME is a generic agent-based software which can be used for many different purposes 

and it was designed to be compiled and executed in many different computers, from regular desktops 

to HPC (High Performance Computers) supercomputers. It enables the researcher to run simulations 

in parallel in order to take advantage of multicore computers with a very interesting flexibility. Flame 

was developed for the European project Eurace (large scale macroeconomic agent based model), well 

known computational economist worked in it.  Its flexibility on the parallelism, the possibility to 

escalate the execution of the simulation on larger computers without changing the code and experts 

in the field behind the project are the reasons for using Flame in this research.  

For instance, it takes six hours to run six parallel simulations of 10,000 generations in a Xeon 

computer with eight cores. So, six cores are busy for six hours and two other cores are available to 

work on other duties. In other computers, with fewer cores in their processors and lower clock 

frequency, it takes up to 30 hours for each computer. 

In order to enable parallel computing execution of the simulations, FLAME operates messages 

between agents. These messages are broadcasted (synchronously) to all the agents and they are 

capable of reading them all.  
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Very briefly explained, agents have an individual memory that keeps variables which go through 

different sequential states (from start to end) and have functions that, given the inputs from messages 

and memory-generated outputs to messages, change in the state and change in its memory. 

 You can appreciate the diagram of states (rounded shapes), functions (squared boxes) and messages 

(green boxes) of Player 1 and Player 2 of the simulations in Figure 21. 

All simulations performed have 100 per 100 lattice agents. Agents are arranged as a chessboard with 

type 1 and type 2 agents. 
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Figure 21. State diagram of agents. Player 1 on the left and Player 2 on the right. 
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4 . 1 .  T r u s t  i s  c l u s t e r e d  i n  w e a l t h y  

n e i g h b o u r h o o d s  

In Figure 22, we summarize the results from simulating 10,000 generations. Type 1 agents swapped 

randomly their r value with their neighbours the whole experiment. All type 1 agents have a value, r, 

which is uniformly distributed between 0 and 3.2 and randomly spatially distributed, as represented 

in Figure 23 by different colours (average value is 1.604 ). Meanwhile, in each iteration, type 2 agents 

compared their performance with their closest randomly chosen neighbour and imitated their strategy 

if their performance was better. That is to say, local agents imitate the best as we mentioned in 

Chapter 3. Before simulating coevolution it may be worth to analyse what happens when only one 

parameter evolves. Baseline: Only one trait is changing but the other “travels”. 

 

Figure 22.  Average reciprocator population among type 2 agents over 10,000 iterations.  

Population r value [0, 3.2] 
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                              (a)                                                                                           (b)                                          (c) 

Figure 23. Spatial distribution of r value over type 2 agents. Initial distribution (a) on the left and final 

distribution (b) on the right. (c)Values closer to red are the highest, values closer to blue are the 

lowest. 

Agents play the trust game repeatedly with their neighbours whose distance is 1. That is, the 

probability of being matched with another agent farther than two boxes from a Player 1’s location is 

zero. Therefore, interaction only happens within a small area around the agents’ locations. This is 

what we call ‘local interaction’. 

Starting with different spatial and behavioural distributions of type 2 agent populations, Figure 24 

shows that the populations of reciprocators tend to aggregate in clusters. We start with randomly 

spatial distribution of type 2 agents with proportions of 1 out of 2, 1 out of 4, 1 out of 32 and 31 out 

of 32 reciprocator agents.  
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  (a)                                                                                        (b)                                         

  

 (c) 

Figure 24. Initial populations of type 2 players. Proportion of reciprocator agents is 1/2 on the left (a) 

and 1/32 on the right (b). Red dots are non-reciprocators agents, green are reciprocators and 

whites are type 1 agents (c). 

After 10000 iterations, it does not matter that what was the initial population of type 2 agents seems 

to aggregate in clusters of reciprocators (green) and not reciprocators (red). Figure 25 shows that 

clusters of reciprocators, among the populations that had different amounts of reciprocators initially, 

end with similar amounts of reciprocators. Meanwhile, the population of type 1 agents kept their 

entropy and heterogeneity (Figure 23). The amount of reciprocators among type 2 agents in these 

simulations ended with values from 9% to 20%, independently of the initial proportion of 

reciprocators.  
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  (a)                                                                                 (b)                                         

            

  (c)                                                                                 (d)          

                         (d)       

Figure 25. Final populations of type 2 agents with reciprocators initial distribution from left to 

right and from up to down of ½ (a), ¼ (b), 1/32 (c) and 31/32 (d) proportion of 

reciprocators. (d) Green dots are reciprocators and red dots non-reciprocators. 
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Figure 156. Reciprocator proportion in the population over 10,000 simulations starting with different initial 

distributions. 

This aggregation is related to wealthy neighbourhoods. In Figure 27, we can recognize clusters with 

better performance. Namely, greater accumulated payoffs (areas in red) that correspond to the areas 

with higher amounts of reciprocators from Figure 25.  The areas that have type 1 and type 2 agents 

with higher accumulated payoff are the areas that have clusters of reciprocators.  

In these baseline simulations, where only the parameter of reciprocity changes over the time, all of 

them get the same amount of reciprocators between 9 to 20%. We can see in Figure 26 how four 

different simulations with four different populations evolve to these values, these populations are the 

same four that we can see in Figure 26 and 27.  

What would happen if we change the average value of r? This is what you can find in next section. 



Coevolution of traits in populations: An agent-based approach to the trust game 

  

51 

 

          

  (a)                                                                                 (b)     

        

  (c)                                       (d)                                          (e)     

Figure 167. (a), (b),(c), (e), Accumulated payoffs of type 1 and 2 agents after 10000 

iterations. Each dot is the colour coded accumulated payoff (d) colour scale for 

values, red indicates high values and blue indicates low values.   
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4 . 2 .  C a u t i o u s  s o c i e t i e s  a r e  b l e s s e d  w i t h  f e w e r  

p s y c h o p a t h s  

 

We repeated the same simulations, but now the type 1 agents only have values from 1 to 2, i.e. risk-

loving. 

Simulations in this section explore what would happen if type 1 agents had values of r equal to or 

greater than 1. What happens in a society where its members are more prone to take risks when 

interacting with others? 

 

Figure 17. Evolution of reciprocator population over 10,000 generations interacting with a 

population of risk-lovers 
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This simulation replicates the previous one with four different initial populations and random 

spatially distributed proportions of reciprocators (1/2, 1/4, 1/32 and 31/32). Local interaction among 

the agents imitates the best locally updating rule for type 2 agents and the random swap of r value for 

type 1 agents. However, in these four different initial populations, r value for type 1 agents are the 

same: they have values from 0 to 1, uniformly distributed and randomly allocated in the lattice. 

As we can see in Figure 24 all populations, no matter the initial conditions, the amount of 

reciprocators converge to a value between 0.25 and 0.4, whereas in the previous simulation with 

values of r between 0 and 3.2, the amounts of reciprocators converge to 0.9 and 0.2. 

Notice in Figure 25, the same phenomenon occurs in the three examples with higher values of 

reciprocator proportions. In all cases, reciprocator population rapidly decays to percentages of 5 to 9 

and then starts to rise steadyly until they achieve dynamic equilibria.  

This simulations compared to the previous one in section 4.1. get larger amounts of reciprocators. 

However repeating the same simulation but with populations of risk neutral and risk averse player 1 

agents (with r values between 0 to 1) the amount of reciprocators is bigger. 
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(a)                                   (b)                        (c)                   (d) 

Figure 18. Evolution of reciprocators in 2000 generations. Proportion of reciprocators: (a) 

31/32, (b) 1/2, (c) 1/4/ and (d) 1/32.   

Cautious subjects enhance the arising of reciprocators 

After repeating the previous simulations, but with lower values of r, we found that there is an 

improvement in the number of reciprocators if the population of type 1 agents have r values from 0 

to 1 (i.e. risk-averse and risk-neutral). All the populations in the simulations converged to 80% of the 

population being reciprocated (Figure 26). 

This result agrees with Chapter 2 mentioned papers such as Eckel and Wilson (2004). One of the 

findings of their experiments is that risk-lovers reciprocate less. In the simulations with larger 
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proportion of risk-lover agents the amoutnt of reciprocators is less. Moreover, risk-averse players 

reward pro-social players (Hauert 2010).  This is the other interpretation we can do.  

 

 

Figure 19. Proportion of reciprocators across 10,000 generations interacting with 

risk-averse agents. 
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4 . 3 .  W i t h o u t  c h a n g e s  i n  r e c i p r o c a t o r  

p o p u l a t i o n ,  r i s k  a v e r s i o n  d o e s  n o t  e v o l v e  

 

Letting the type 1 agents evolve but then keeping the reciprocator population fixed produces no 

changes in the population of type 1 agents. Figure 27 shows the average value of the r parameter of 

all type 1 agents in six independent simulations with the same initial populations. Interaction is local 

and type 1 agents after each generation perform ‘local imitate the best’. Meanwhile, type 2 agents do 

not change their strategy. We can see the population of type 2 agents in Figure 29 (b). The population 

of type 1 agents have uniformly distributed r values (from 0 to 1) and are spatially arranged in order 

to minimise the differences between neighbours Figure 29. After running six simulations with four 

different populations of reciprocators (1/32, 1/4, 1/2 and 31/32), the outcomes are the same, the 

values of r change very little and initial and final populations after 10,000 generations are 

indistinguishable Figure 28. Notice the values of r in the y axis change less than  0.001. 

This simulation is a good example in order to defend this research because the changes in the 

population are more close to reality when instead of changing only one parameter the co-evolution 

is allowed.  

Trying to keep the ceteris paribus criteria we might lose emergences in the population or realism. 

This is one more reason to defend simulations, in order to study parallel complex events (Gilbert and 

Troitzsch 2005,Gilbert and Troitzsch 2005) with simple rules (Kirman 1993; Axelrod 1997) as we 

read in section 2.4. 
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Figure 20. Evolution of r average value in six different populations during 10,000 generations 

         

(a)                                                        (c)                                                (b) 

Figure 21. Distribution of the parameter r over the lattice. Initial on the left (a) and final on the right (b) after 

10,000 iterations. Value of r is 0 in the centre and 1 in the corners.(c) 0=yellow, red=1. 
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(a)                                                      (c)                                                (b)                                                 (d) 

Figure 22. (a) Accumulated payoff of the agents (type 1 and 2) on the left, red colour cells are the agents 

with higher accumulated payoff. (b) Population of type 2 agents.(d) Green is a reciprocator agent 

and red is a non-reciprocator agent.(c)blue is the lower value for payoffs and red the maximum. 

 

4 . 4 .  C o e v o l u t i o n  a n d  w h y  s o m e  s o c i e t i e s  h a v e  

m o r e  d i f f i c u l t i e s  i m p r o v i n g  t h e i r  t r u s t   

 

What happens when two different countries adopt the same strategy?  Why some of them success 

and others do not success? We repeated the same simulations with local imitation and interaction, 

but this time both agents evolved. In these circumstances, the speed of evolution of type 2 agents 

converges to final populations faster than type 1 agents. The type 1 agents’ average value for r do not 
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change much as we can see in  Figure 31. This difference drives to local ESS. Simulations with four 

different populations were executed and populations of type 2 agents converged too quickly to ESS. 

Type 2 agents evolved to two populations, one with all type 2 agents reciprocating and the other one 

with half of them reciprocating Figure 32. Depending on the initial proportion of reciprocators among 

them, populations are deemed to have more or less reciprocators. However, the populations of type 

1 agents do not evolve in their average value of r, as mentioned above, and the spatial distribution 

has no order Figure 33. 

Initial proportions of type 2 agents determine their final populations and the accumulated payoffs of 

all the agents. The bigger the initial number of reciprocators, the bigger the accumulated payoff of 

all the population Figure 34. The way type 2 agents are ordered and payoffs are graphed reminds us 

to Nowak and May (1992) simulations. 

In these simulations, the past matters and societies have difficulties getting out of their local 

equilibria. In societies with bad historical trust records, the trust confidence problem is chronic and 

the accumulated payoff of the agents is worse than in societies with more initial reciprocators. 
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Figure 23. Reciprocator population evolution starting from four different initial distributions. 

 

Figure 24. Evolution of r average value in six different simulations with the same initial population 

with a proportion of one reciprocator out of 32 type 2 agents and an average r value of 0.5 



Coevolution of traits in populations: An agent-based approach to the trust game 

  

61 

       

(a)                                                                                                       (b) 

Figure 25. Populations of reciprocators. (a) Starting with 1/32 and 1/4 proportion of reciprocators. (b) With 

initial population of reciprocators 31/32 and 1/2 over the whole population of type 2 agents. 

     

(a)                                            (b)                                           (c)                                          (d)                    (e) 

Figure 26. Value of r in populations of type 1 agents after 10,000 generations. Initial populations proportion of 

reciprocators is: (a) 1/2, (b) 1/4, (c) 1/31 and (d) 31/32 from left to right.(e) r values from 0 (blue) to 

3.2 (red). 
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(a)                                                                                                       (b) 

        

(c)                                                                                                       (d)         (e)            

Figure 27. Accumulated payoffs of the agents after 10,000 generations depending on initial populations with 

coevolution of both agents. Proportions of reciprocators are (a)1/32 (b)1/4 (c)1/2 and (d)31/32. 

(e)Values closer to red are the highest accumulated payoffs and closer to blue are the lowest 

accumulated payoffs. 
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4 . 5 .  S u c e s s f u l  s t r a t e g i e s  d o  n o t  h a v e  t o  b e  

s u i t a b l e  f o r  o t h e r  e n v i r o n m e n t s  

 

When agents interact locally but their strategies are the outcome of a random global imitation 

populations, they are driven to ESS with low payoffs. Type 2 agents who were lucky and interacted 

with reciprocators are the ones who got better payoffs because the risk-loving behaviour rises and 

type 1 agents are incentivized to use the ‘not reciprocate’ strategy. 

Simulations were executed six times with four different populations for 10,000 generations. The 

populations were randomly spatially distributed with proportions of reciprocators of 31/32, 1/4, 1/2 

and 1/32; r value is uniform between 0 and 3.2.In all cases, the r value, on average, evolved to risk-

loving and the number of reciprocators disappeared even when the initial populations of reciprocators 

was very low (1/32), as we can appreciate in Figure 35 and Figure 36. 

These  simulations might be fine-tuned selecting the distance of one agent to another.  Measuring the 

similarity of one agent as the difference of  their parameters we can imagine that agents that are more 

similar would be more prone to copy strategies if they are successful. Including this idea would make 

evolution slower and “Armageddon” events (all the population not reciprocating) would happen less.  
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Figure 28. Evolution of the average value of r in six simulations of 10,000 generations. 

 

Figure 29. Reciprocator evolution over 10,000 generations. Total population of type 2 agents is 5000. 
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4 . 6 .  E v e n  w i t h  r i s k - a v e r s e  a n d  r i s k - n e u t r a l  

a g e n t s ,  c i v i l i z a t i o n s  d o  n o t  i m p r o v e   

Another way to avoid too optimistic agents emerging  is to start the simulations with more averse 

populations. We repeated the simulation of the previous section, but instead of having r values from 

0 to 3.2, type 1 agents had r values from 0 to 1 (risk-averse and risk-neutral). Simulations were 

executed six times with four different populations for 10,000 generations. The populations were 

randomly spatially distributed with proportions of reciprocators of 31/32, 1/4, 1/2 and 1/32. 

Even with 50% of the initial population of type 2 agents reciprocating in all their interactions, the 

simulations ended up with reciprocators becoming extinct; meanwhile, the average r values were 

unpredictable. In this situation the agents type 1 are not becoming risk lovers. 

 

Figure 30. Evolution of the average value of r in six simulations with the same initial population 
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Figure 31. Number of reciprocators out of 5000 agents over 10,000 generations in six simulations. 

 

4 . 7 .  G e t t i n g  o u t  o f  l o c a l  e q u i l i b r i a :  m u t a t i o n s  

Mutations can be employed to maintain heterogeneity and move the system out of weak local ESS. 

Figure 32 shows the results of simulations with the same initial populations and parameters, but with 

mutations. In previous sections, in many cases, simulations ended with the extinction of the 

reciprocator agents. However, if the heterogeneity is preserved with mutations it is less likely that 

these populations of reciprocators disappear. Thanks to these mutations populations of type 1 agents 

end clustered with other agents with closer values of r while something similar happens to type 2 

agents. Moreover, there are clusters of both type agents who get the same accumulated payoff (third 

column). In the areas with better performance both agents get the same accumulated payoffs but in 

the other areas there is inequality between agents. 
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                          (a)                                                             (b)                                                            (c) 

         

                          (d)                                                             (e)                                                            (f) 

         

                          (g)                                                             (h)                                                            (i)  

                

                          (j)                                                             (k)                                                            (l) 

Figure 32. Results after 10,000 generations.  From left to right, (a), (d), (g) values of type 2 agents, (j) green agents are 

reciprocators and red agents non-reciprocators. (b), (e), (h) r values of type 1 agents (k) blue values are 0 and red 

are 3.2 ;and (c), (f), (i) accumulated payoffs, (l) red colour are the higher accumulated payoffs.  
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We can appreciate where psychopaths affect their environment in Figure 33. Green is more money 

than blue and red more money than blue. The central agents of this images are psychopaths that take 

advantage of their neighbours as mentioned in section 2.6  (Frank 1988; Mealey 1995; Murphy 2006; 

Sachs and Simms 2006; Glenn et al. 2011). 

                   

                                         (a)                                             (b)                                              (c) 

Figure 33. Accumulated payoffs detail. (a), (b) surrounding area 

close to psychopath. The psychopath has higher accumulated payoff 

and its neighbours are affected negatively. (c) Colour interpretation. 

Reciprocators and risk-lovers have a fruitful outcome (Figure 34). However, psychopaths have better 

performance in difficult environments (Taylor and Armor 1996). 

               

                                     (a)                                                     (b)                                                           (c) 

Figure 34. (a) Payoffs in a risk-lover/reciprocator environment. (b) Payoffs in a risk averse/psychopathic 

environment. (c) Colour interpretation. 
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Here, the average value of r behaves as a dumped oscillator function over time and populations keep 

adapting to changes and possible shocks (Figure 35). Populations of type 1 agents and type 2 agents 

co-evolve and regulate each other. 

 

Figure 35. Average value of r over time with mutations 
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4 . 8 .  G l o b a l  i m i t a t i o n  a n d  m u t a t i o n  

With global imitation, the system is over-dumped and oscillates too much (Figure 36). This can be 

modulated to medium neighbourhoods with a lower rate of mutation or imitation rules. Global 

imitation did not produce interesting ESS and neither does it even with mutations. 

Again, with values of r from 0 to 3.2 type 1 agents tend to follow the most successful members of 

the society. However, this does not get the best accumulated payoffs and produce a population of 

type 2 agents that follow what is the “fashion” strategy. This is what would happen if all the members 

of the society wanted to follow their dreams as successful people do like Steve Jobs, Elon Musk, 

Obama, Donald Trump,  Tom Cruise, etc. 

 

Figure 36. Over-dumped average r value in simulations with global imitation and mutations 
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                          (a)                                                             (b)                                                            (c) 

          

                          (d)                                                             (e)                                                            (f)  

                  

                          (g)                                                             (h)                                                            (i) 

Figure 37. Different simulations with the same initial conditions. (a), 

(d) end populations of type 1 agents. (b), (e) end populations of type 2 

agents. (c), (f) accumulated payoffs of all the agents. (g) Green dots 

are reciprocators and red dots are non-reciprocators (h) colour values 

for r (i) red colour are the highest accumulated payoffs and blue the lowest 

ones. 
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                          (a)                                                             (b)                                                            (c) 

           

                          (d)                                                             (e)                                                            (f)  

                

                          (e)                                                             (f)                                                            (g) 

Figure 38. Different simulations with the same initial conditions. (a), 

(d) end populations of type 1 agents. (b), (e) end populations of type 2 

agents. (c), (f) accumulated payoffs of all the agents. (g) Green dots 

are reciprocators and red dots are non-reciprocators (h) colour values 

for r (i) red colour are the highest accumulated payoffs and blue the lowest 

ones. 
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4 . 9 .  W h a t  h a p p e n s  i f  a  s o c i e t y  i s  a l r e a d y  

r i s k - a v e r s e ?  

This last simulation keeps the same rules, but the initial populations have values of r from 0 to 1. 

When a mutation happens, the value of r can be up to 3.2.  This mutations can help to protect the 

populations in case of shocks as mentioned in section 3.3.7. 

Just letting the populations start from lower values of 9r produces a system closer to reality where 

the reciprocators (Figure 39) and trustors evolve together (Figure 40).  

 

 

Figure 39. Reciprocator population with mutations and global imitation 

Evolution of average r value over the time in six different simulations starting with the same 

population is chaotic but do not have tendency to go to risk averse preferences (Figure 40). 
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Figure 40. Average r value with mutations and global imitation. 

As we can see from Figure 41, the values of r are unpredictable, but the payoffs outcome is bad. 

This simulation can explain why markets with too much volatility generate less accumulated payoffs.  

           

                          (a)                                                             (b)                                                            (c)  



Coevolution of traits in populations: An agent-based approach to the trust game 

  

75 

           

                         (d)                                                             (e)                                                            (f)  

           

                          (g)                                                             (h)                                                            (i) 

           

                          (j)                                                             (l)                                                            (l)  
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                          (m)                                                             (n)                                                            (o)  

           

                          (p)                                                             (q)                                                            (r)  

                

                          (s)                                                             (t)                                                            (u) 

 

Figure 41. Different simulations with the same initial conditions. . (a), (d), (g), (j), (m), (p) end populations of type 1 

agents. (b), (e), (h), (l), (n), (q) end populations of type 2 agents. (c), (f), (i), (l), (o), (r) accumulated payoffs of all the 

agents. (s) Green dots are reciprocators and red dots are non-reciprocators (t) colour values for r (u) red colour are the 

highest accumulated payoffs and blue the lowest ones. 
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  CHAPTER 5. CONCLUSIONS 

This dissertation explores the domain of ABM simulations. The aim of this research is to explore the 

evolutionary mechanisms for the emergence of prosocial/antisocial behaviour and to study how risk 

attitudes and trustworthiness coevolve parallel to each other. 

Chapter 2 introduces all the literature review.  All the papers mentioned belong at least to one of 

these fields: computer science, economics and psychology. Chapter 3 presents the model of decision 

making for our agents and the introduction of the simulations. This model is a Bayesian decision 

making algorithm based on the combination of the expected utility and the individual risk aversion 

of the agent player 1. 

Chapter 4 summarizes some of the most interesting results of the simulations. Many simulations, 

following the parameters explained in Chapter 3, were performed. Out of all the data obtained some 

of the simulations have been selected and discussed in Chapter 4.  

Using ABM, we have studied a trust game in which potentially risk-averse agents acting as Player 1  

choose whether to trust or not in order to maximize their expected utility, given the probability of 

reciprocation by Player 2 agents in their neighbourhood or in the entire population. 

Our main findings indicate the relevance of our approach to the co-evolution of risk attitudes and the 

trustworthiness of people in society. To begin with the findings, as expected, no matter the initial 

situation risk aversion grows to a level dictated by the likelihood of reciprocity and, thus, the 
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trustworthiness of agents. The locality or global nature of interaction plays an important role. Local 

and global imitation has been tested in 4.5 and 4.8 and it has been congruent with the predicted in 

section 3.3.6. Risk aversion evolves together with trust and trustworthiness as observed in chapter 4. 

Moreover  trust and trustworthisness evolve in parallel but risk evolves before convergence. The 

most important finding is that, in our model simulations, trust behaviour follows reciprocation 

attributes, and both tend to reach values close to 0.8 on average, as other empirical studies have 

reported. Risk aversion results from ‘mixed’ initial populations (Tversky and Kahneman 1992; 

Birnbaum and Chavez 1997; Abdellaoui 2000). 

Other finding of these simulations is that societies who trust too much are in risk of being debilitated 

by selfish behaviours as stated in section 4.2. In the introduction chapter we state that trust improves 

efficiency in societies (Knack and Keefer 1997; Porta et al. 1997) but we did not foresee the opposite 

effect of trust in societies. These results of the simulations give us a clue about what happens when 

psychopathic leaders abuse the trust of their groups such as the emergence of Nazis before WWII or 

nowadays extreme right parties in many countries. In the same section 4.2. we state that risk aversion 

curbs the emergence of non-reciprocators, identifying one of the strongest findings of this thesis, the 

importance of coevolution.  In simulations with only evolution of risk or only evolution of reciprocity 

the results are less similar to reality meanwhile with co evolution of both parameters we obtain results 

that are closer to experimental data. 

Other findings are that the emergence of agents’ aggregation was found in the majority of the 

simulations and that societies which had bad performance in the past are found to have more 

difficulties to improve in the future (section 4.4).   
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Mutations introduced in 3.3.8. have been analysed in simulations  4.7, 4.8 and 4.9. This feature allows 

to tune the control of the simulations, through the likelihood of agent mutation, in order to avoid 

getting populations locked in local ESS, lose heterogeneity or allow them to adapt to shocks.  

This research has some limitations, some of them because of the extension of the research itself and 

others related with the size of the data that must be analysed (1 TB). Measure sizes of the clusters, 

the amounts of clusters in the population or the density of clusters are the next steps in order to study 

and better understand the data obtained. It is difficult to get real data of psychopathic population in 

order to feed and validate the simulations. As stated in chapter 2, not all the non-reciprocators agents 

would be psychopaths but societies with higher amounts of psychopaths would have less 

reciprocators. 

 Another possible improvement consists of making the topology of the networks more complex based 

on dynamic networks. In these kind of topologies agents reinforce link connections whose 

interactions are beneficial for them and destroy or weaken links that are not profitable. Besides risk 

aversion and trutworhiness, other traits of human personality can be explored in the trust game by 

ABM simulations. Big Five traits can be included in the model. Also adapt the model in other games 

such as prisoner’s dilemma, stag and hunt, ultimatum game and dictator game would be another 

option.  

Besides risk aversion, humans have a different degree of optimism that affect their decisions. Further 

studies will include optimism of the agents in the model. This is already implemented in the 

simulations; it is a new variable epsilon that increases the probability of an agent to choose the trust 

strategy. 
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CHAPTER 7.APPENDIX 

7 . 1 .  A B M S  d e s c r i p t i o n  i n  X M L  

 

<?xml version="1.0" encoding="UTF-8"?> 

<xmodel version="2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" 

xsi:noNamespaceSchemaLocation="http://flame.ac.uk/schema/xmml_v2.xsd"> 

    <name>model 01</name> 

    <version>1</version> 

    <author>Jose Guinot</author> 

    <description>Circular Trust game playground whitout changes in 

population, no dies no replication</description> 

    <environment> 

        <constants> 

            <variable> 

                <type>float</type> 

                <name>equivalentecierto</name> 
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                <description>value wich determines if an agent decides 

strategy</description> 

            </variable> 

            <variable> 

                <type>int</type> 

                <name>population</name> 

                <description>population of the simulation</description> 

            </variable> 

        </constants> 

        <functionFiles> 

            <file>agent_a_match.c</file> 

            <file>agent_a_play.c</file> 

        </functionFiles> 

    </environment> 

    <agents> 

        <xagent> 

            <name>agent_a</name> 

            <description>An agent that plays Trust game with its 

neighbours</description> 

            <memory> 



Coevolution of traits in populations: An agent-based approach to the trust game 

  

103 

                <variable> 

                    <type>int</type> 

                    <name>id</name> 

                    <description>An integer variable ID unique from 1 

to circle</description> 

                </variable> 

                <variable> 

                    <type>int</type> 

                    <name>money</name> 

                    <description>An integer variable money 

</description> 

                </variable> 

                <variable> 

                    <type>int</type> 

                    <name>partner</name> 

                    <description>id left or id rigth </description> 

                </variable> 

                <variable> 

                    <type>float</type> 

                    <name>p</name> 
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                    <description>p continuous value describing the 

agent Psicopath/Suspicious=0 Confident/Collaborative=1</description> 

                </variable> 

                <variable> 

                    <type>int</type> 

                    <name>role</name> 

                    <description>role playing this 

iteration</description> 

                </variable> 

            </memory> 

            <functions> 

                <function> 

                    <name>match</name> 

                    <description>Each agent send a message to one of 

its neigbours</description> 

                    <currentState>start</currentState> 

                    <nextState>Play</nextState> 

                    <outputs> 

                        <output> 

                            <messageName>message_z</messageName> 

                        </output> 
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                    </outputs> 

                </function> 

                <function> 

                    <name>play</name> 

                    <description>if they agree play the 

game</description> 

                    <currentState>Play</currentState> 

                    <nextState>end</nextState> 

                    <inputs> 

                        <input> 

                            <messageName>message_z</messageName> 

                            <filter> 

                                <lhs> 

                                    <value>a.id</value> 

                                </lhs> 

                                <op>EQ</op> 

                                <rhs> 

                                    <value>m.neig</value> 

                                </rhs> 

                            </filter> 
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                        </input> 

                    </inputs> 

                </function> 

            </functions> 

        </xagent> 

    </agents> 

    <messages> 

        <message> 

            <name>message_z</name> 

            <description>A message holding an id</description> 

            <variables> 

                <variable> 

                    <type>int</type> 

                    <name>neig</name> 

                    <description>id partner desired</description> 

                </variable> 

                <variable> 

                    <type>int</type> 

                    <name>remitent</name> 

                    <description>remitent  ID</description> 
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                </variable> 

                <variable> 

                    <type>float</type> 

                    <name>premitent</name> 

                    <description>remitent P</description> 

                </variable> 

            </variables> 

        </message> 

    </messages> 

</xmodel> 

 

 

7 . 2 .  D e f i n i t i o n  o f  a  a g e n t  f u n c t i o n :  m a t c h  

 

#include "header.h" 

#include "agent_a_agent_header.h" 

#include "time.h" 

 

/* 
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 * \fn: int agent_a_do_matching() 

 * \brief: send a message to the left or the rigth. 

 */ 

//int agent_a_do_matching() 

 int match() 

{ 

 // send a message 

 int size=POPULATION; 

 int neig; 

 time_t t; 

 int aux=0;  

  

 //srand((unsigned)t); SI INICIALIZO LA SEMILLA ME DA SIEMPRE EL MISMO 

RESULTADO 

  

 if (rand()>(RAND_MAX/2))  

  aux=-1;   

 else 

  aux= 1;  

 neig=ID+aux; 
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 if (neig>size) neig=1; 

 if (neig<1) neig=size; 

 add_message_z_message(neig,ID,P);  

 PARTNER=neig; 

 if (ID==1) 

  printf ("*Soy el agente: %d  y quiero jugar con: %d  \n",ID ,neig); 

 else  

  printf  ("Soy el agente: %d  y quiero jugar con: %d  \n ",ID ,neig); 

  

 return 0; /* Returning zero means the agent is not removed */ 

} 

 

 

 

7 . 3 .   D e f i n i t i o n  o f  a  a g e n t  f u n c t i o n :  p l a y  

 

#include "header.h" 

#include "agent_a_agent_header.h" 
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/* 

 * \fn: int agent_a_play_game() 

 * \brief:recive message and play if is matched*/ 

int play() 

{ 

 int remitente; 

 float poponente; 

 

 // Read messages of type message_z 

 START_MESSAGE_Z_MESSAGE_LOOP 

  remitente= message_z_message->remitent; 

  poponente= message_z_message->premitent; 

 FINISH_MESSAGE_Z_MESSAGE_LOOP 

 if (remitente==PARTNER){ 

  //jugamos; 

  //printf("Voy a jugar, soy agente: %d  dinero %d p %f\n", 

ID,MONEY,P); 

  if (ROLE==1)              //juega como tipo 1 

  {  
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   if (EQUIVALENTECIERTO<P) 

   {     

     MONEY=MONEY+1;  //es psicopata y el oponente no importa   

   }  

   else 

   { 

    if(EQUIVALENTECIERTO>=poponente) 

     MONEY=MONEY+2; //es confiado y su oponente tambien 

        

    // else 

     //No gana nada es confiado pero el oponente es psicopata 

   }    

 

  } 

  else 

  { 

   if (EQUIVALENTECIERTO<P) //psicopata 

   {     

    if(EQUIVALENTECIERTO<poponente)    

     MONEY=MONEY+1;       //oponente  psicopata 
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    else 

     MONEY=MONEY+3;      //oponente confiado 

   }  

   else       //confiado 

   { 

    if(EQUIVALENTECIERTO<poponente) 

     MONEY=MONEY+1;    //oponente  psicopata 

    else 

     MONEY=MONEY+2;    //oponente confiado 

   }    

  } 

  printf("Resultados del agente: %d  dinero %d pareja %d\n", 

ID,MONEY,remitente); 

 } 

 //printf("Resultados del agente: %d  dinero %d p %f\n", ID,MONEY,P); 

 if (ROLE==1) 

 { 

  ROLE=0; 

 } 

 else 
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 { 

  ROLE=1; 

 } 

 

 return 0; /* Returning zero means the agent is not removed */ 

} 

 

 

7 . 4 .  X M L   o f  t h e  s i m u l a t i o n ’ s  f i r s t  i t e r a t i o n   

 

<states> 

<itno>1</itno> 

<environment> 

<equivalentecierto>0.500000</equivalentecierto> 

<population>1024</population> 

</environment> 

<xagent> 

<name>agent_a</name> 

<id>1</id> 
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<money>0</money> 

<partner>1024</partner> 

<p>0.827620</p> 

<role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>2</id> 

<money>0</money> 

<partner>1</partner> 

<p>1.152144</p> 

<role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>3</id> 

<money>0</money> 

<partner>2</partner> 

<p>0.795266</p> 

<role>0</role> 
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</xagent> 

<xagent> 

<name>agent_a</name> 

<id>4</id> 

<money>0</money> 

<partner>3</partner> 

<p>0.824442</p> 

<role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>5</id> 

<money>0</money> 

<partner>6</partner> 

<p>0.726833</p> 

<role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>6</id> 
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<money>0</money> 

<partner>7</partner> 

<p>0.782730</p> 

<role>1</role> 

</xagent> 

<xagent> 

  

       

…omitted code… 

 

 

 

<xagent> 

<name>agent_a</name> 

<id>1022</id> 

<money>1</money> 

<partner>1023</partner> 

<p>0.859830</p> 
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<role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>1023</id> 

<money>1</money> 

<partner>1022</partner> 

<p>1.192997</p> 

<role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>1024</id> 

<money>1</money> 

<partner>1</partner> 

<p>1.229483</p> 

<role>1</role> 

</xagent> 

</states> 
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7.4.1. XML  OF THE SIMULATION’S LAST ITERATION 

<states> 

<itno>10000</itno> 

<environment> 

<equivalentecierto>0.500000</equivalentecierto> 

<population>1024</population> 

</environment> 

<xagent> 

<name>agent_a</name> 

<id>1024</id> 

<money>3771</money> 

<partner>1</partner> 

<p>1.229483</p> 

<role>0</role> 

</xagent> 

<xagent> 
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<name>agent_a</name> 

<id>1023</id> 

<money>3750</money> 

<partner>1024</partner> 

<p>1.192997</p> 

<role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>1022</id> 

<money>3741</money> 

<partner>1023</partner> 

<p>0.859830</p> 

<role>0</role> 

</xagent> 

 

 

…omitted code… 
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<xagent> 

<name>agent_a</name> 

<id>3</id> 

<money>3744</money> 

<partner>4</partner> 

<p>0.795266</p> 

<role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>2</id> 

<money>3746</money> 

<partner>1</partner> 

<p>1.152144</p> 

<role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

<id>1</id> 
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<money>3736</money> 

<partner>1024</partner> 

<p>0.827620</p> 

<role>1</role> 

</xagent> 

</states> 

 

 

7.4.2. XML  OF THE INITIAL CONDITIONS SIMILAR NEIGHBOURS 

 

<states> 

<itno>0</itno> 

<environment> 

<equivalentecierto>0.5</equivalentecierto> 

<population>1024</population> 

</environment> 

<xagent> 

<name>agent_a</name> 
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  <id>1</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.998046875</p> 

  <role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>2</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.99609375</p> 

  <role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>3</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.994140625</p> 
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  <role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>4</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.9921875</p> 

  <role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>5</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.990234375</p> 

  <role>1</role> 

</xagent> 

<xagent> 
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…omitted code… 

 

<xagent> 

<name>agent_a</name> 

  <id>1022</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.99609375</p> 

  <role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>1023</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.998046875</p> 

  <role>1</role> 

</xagent> 



Coevolution of traits in populations: An agent-based approach to the trust game 

  

125 

<xagent> 

<name>agent_a</name> 

  <id>1024</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>1.0</p> 

  <role>0</role> 

</xagent> 

</states> 

 

7.4.3. XML OF THE INITIAL CONDITIONS WITH NOISE NEIGHBOURS 

 

<states> 

<itno>0</itno> 

<environment> 

<equivalentecierto>0.5</equivalentecierto> 

<population>1024</population> 

</environment> 
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<xagent> 

<name>agent_a</name> 

  <id>1</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.827620061215</p> 

  <role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>2</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>1.15214401056</p> 

  <role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>3</id> 

  <money>0</money> 
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  <partner>0</partner> 

  <p>0.795266266697</p> 

  <role>1</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>4</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.824441730334</p> 

  <role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>5</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.726832994118</p> 

  <role>1</role> 

</xagent> 
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…omitted code… 

<xagent> 

<name>agent_a</name> 

  <id>1022</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>0.859830282732</p> 

  <role>0</role> 

</xagent> 

<xagent> 

<name>agent_a</name> 

  <id>1023</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>1.19299675596</p> 

  <role>1</role> 

</xagent> 

<xagent> 
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<name>agent_a</name> 

  <id>1024</id> 

  <money>0</money> 

  <partner>0</partner> 

  <p>1.22948322803</p> 

  <role>0</role> 

</xagent> 

</states> 

 

 

 

 

 

 

7 . 5 .  P a r a m e t e r s  o f  t h e  s i m u l a t i o n s  

 

Model diagram 
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message_a   from a to b 

 

message_a_next  from a to next 

 

message_b from be to a 
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message_b_next from b to b 

 

Environmet variables 
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Agent a 

 

 

Agent b 
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Model Epsilon localimitation  

 

 

A 
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B 

 

 

Message a 
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Message a next 

 

Message b 

 

Message b next 
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7 . 6 .  S c r i p t s  

7.6.1. LAUNCH SIMULATIONS (LAUNCH.BAT): 

@echo off  

title Launching simulations  

:principio  

set/p cant=How many generations?  

set/a contador=%cant%  

set/p carpetas=Folder?  

title  %carpetas% is being simulated 

set total=0  

if %cant% LSS 2 (goto mal) else (goto bucle)  

:mal  

echo It has to be greater or equal to 2  

goto principio  

:bucle  

echo Count value is: %contador%  

CD 

CALL main 100 %carpetas%%contador%/poblacion.xml -f 100 

set/a contador=%contador%-1  

if not %contador% == 0 (goto bucle)  

echo.  

echo Finished 

pause >nul  

echo MsgBox "Simulations done",64, "End of simulations">%temp%\mensaje.vbs 

start %temp%\mensaje.vbs 
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7.6.2. EXTRACT AVERAGE TIME SERIES (EXTRACT_TSERIES.BAT) 

@echo off 

echo Bienvenido %username%, deseas continuar? 

pause>nul 

@echo off  

title Let’s   

:principio extract r, trust , reciprocators and money. 

set/p cant=How many generations are there?  

set/a contador=%cant%  

set/p carpetas=Name of the folders?  

title Extracting from  %carpetas% . 

set total=0  

if %cant% LSS 2 (goto mal) else (goto bucle)  

:mal  

echo Greater of equal than 2 please. 

goto principio  

:bucle  

echo Count value is: %contador%  

CD 

CALL grep "<r>" %carpetas%%contador%\100.xml|awk 'sub("\\<r\\>","",$0)'|awk 'sub("\\</r\\>","",$0){aux=$1; 

suma=suma+aux; cuadrador=cuadrador+(aux*aux)}END{print suma" "cuadrador}'>>%carpetas%_res_r.txt 

CALL grep "<trust>" %carpetas%%contador%\100.xml|awk 'sub("\\<trust\\>","",$0)'|awk 

'sub("\\</trust\\>","",$0){aux=$1; sumat=sumat+aux; tcua=tcua+(aux*aux)}END{print sumat"

 "tcua}'>>%carpetas%_res_trust.txt 

CALL grep "<reciprocator>" %carpetas%%contador%\100.xml|awk 'sub("\\<reciprocator\\>","",$0)'|awk 

'sub("\\</reciprocator\\>","",$0){aux=$1; recipcua=recipcua+(aux*aux); sumarecip=sumarecip+aux}END{print sumarecip"

 "recipcua}'>>%carpetas%_res_reciprocators.txt 

 

CALL grep "<money>" %carpetas%%contador%\100.xml|awk 'sub("\\<money\\>","",$0)'|awk 

'sub("\\</money\\>","",$0){suma=suma+$1}END{print suma/10000}'>>%carpetas%_res_money.txt 

 

set/a contador=%contador%-1  

if not %contador% == 0 (goto bucle)  

echo.  

echo Finalizado 
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pause >nul n 

echo MsgBox "Finished",64, "Simulations done">%temp%\mensaje.vbs 

start %temp%\mensaje.vbs 

 

7.6.3. EXTRACT PARAMETERS FROM A POPULATION (EXTRACT.BAT) 

@echo off  

title We are going to extract r r,trust, reciprocator and coordenates.  

Echo File: %1  

:principio  

cd %2 

CALL grep "<r>" %1.xml|gawk 'sub("\\<r\\>","",$0)'|gawk 'sub("\\</r\\>","",$0){print $1}'>> ..\results\%1%2r.txt 

CALL grep "<trust>" %1.xml|gawk 'sub("\\<trust\\>","",$0)'|gawk 'sub("\\</trust\\>","",$0){print $1}'>> 

..\results\%1%2trust.txt 

CALL grep "<posx>" %1.xml|gawk 'sub("\\<posx\\>","",$0)'|gawk 'sub("\\</posx\\>","",$0){print $1}'>> 

..\results\%1%2posx.txt 

CALL grep "<posy>" %1.xml|gawk 'sub("\\<posy\\>","",$0)'|gawk 'sub("\\</posy\\>","",$0){print 

$1}'>>..\results\%1%2posy.txt 

CALL grep "<reciprocator>" %1.xml|gawk 'sub("\\<reciprocator\\>","",$0)'|gawk 'sub("\\</reciprocator\\>","",$0){print 

$1}'>> ..\results\%1%2reciprocator.txt 

CALL grep "<id>" %1.xml|gawk 'sub("\\<id\\>","",$0)'|gawk 'sub("\\</id\\>","",$0){print $1}'>> ..\results\%1%2id.txt 

CALL grep "<money>" %1.xml|gawk 'sub("\\<money\\>","",$0)'|gawk 'sub("\\</money\\>","",$0){print $1}'>> 

..\results\%1%2money.txt 

cd .. 

echo Finalizado 

 

 


