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ABSTRACT 

 

The crystal structure of the tetrahedrites Cu12-xMnxSb4S13 (x = 0, 1) has been studied by 

powder neutron diffraction between room temperature and 773 K. At all temperatures 

investigated, manganese exclusively occupies tetrahedral sites, while the trigonal-planar sites 

contain only copper. In situ diffraction data confirm the stability of the tetrahedrite phase up 

to 773 K, with no evidence of copper mobility at elevated temperatures. Analysis of atomic 

displacement parameters indicate that there are low-energy vibrations associated with the 

trigonal-planar and the tetrahedral copper cations. The Einstein temperatures for the copper 

cations range between 79 and 91 K. Manganese substitution increases the electrical resistivity 

and the Seebeck coefficient, while the thermal conductivity is reduced. This results in a 

modest improvement in the thermoelectric figure of merit for Cu12MnSb4S13, which reaches 

ZT=0.56 at 573 K. 
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INTRODUCTION 

Concerns about increasing atmospheric CO2 levels and climate change are driving research 

into alternative energy generation and conversion technologies. Thermoelectric power 

generation, which entails conversion of heat into electrical power, could improve energy 

efficiency through the recovery of waste heat. Large-scale deployment of thermoelectric 

power generation requires the discovery of sustainable and environmentally-friendly 

materials, given that current generation of commercial thermoelectric materials contain toxic 

and scarce elements such as tellurium. The efficiency with which heat is converted into 

electrical power is related to a figure of merit, ZT = S2which depends on the Seebeck 

coefficient (S), electrical resistivity () and thermal conductivity () of the thermoelectric 

materials used. 

Tetrahedrites, which are currently attracting considerable interest as thermoelectric materials, 

are minerals formulated as A10B2C4Q13 (A = Cu, Ag; B = Mn, Fe, Co, Ni, Zn, Cu, Hg, Cd; C 

= As, Sb, Bi; Q = S, Se).1 The complex structure of tetrahedrite (space group I4̅3m) is often 

described as a defect sphalerite derivative, with three distinct cation sites. The transition-

metal cations, A and B, reside in 12d tetrahedral sites and 12e trigonal planar sites, while the 

pnictogen cations, C, are located in trigonal pyramidal sites (Figure 1). Alternatively, the 

tetrahedrite structure can be depicted as a collapsed sodalite framework.2 Although the 

minerals of the tetrahedrite family have been known for several decades,3 their potential as 

thermoelectric materials was only reported recently, following the publication in 2012 of the 

thermoelectric properties of substituted tetrahedrites, Cu10TM2Sb4S13 (TM = Mn, Fe, Co, Ni, 

Cu, Zn).4 The literature on thermoelectric tetrahedrites has been reviewed by Chetty et al.5 

Examples of promising materials include zinc-substituted tetrahedrite with ZT close to unity 

at 723 K,6 cobalt-substituted tetrahedrite with ZT = 0.98 at 673 K,7 or the doubly substituted 

tetrahedrite Cu10.5NiZn0.5Sb4S13, which reaches ZT > 1 at 723 K.8 Heo et al. reported that 
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manganese substitution results in an impressive thermoelectric performance, with 

Cu11MnSb4S13 reaching ZT = 1.13 at only 575 K;9 however, this contrasts with the reduction 

in thermoelectric performance with manganese substitution observed by Chetty et al.10 The 

substitution of Sb by Te has been investigated, and leads to ZT = 0.92 at 723 K for 

Cu12Sb3TeS13.
11 Natural tetrahedrites have also been studied, with mixtures of mineral Cu12-

x(Zn,Fe)x(Sb,As)4S13 (x ≤ 2) and synthetic Cu12Sb4S13 achieving ZT > 0.8 above 600 K.12,13  

In the case of partially-substituted tetrahedrites Cu12-xTMxSb4S13, X-ray diffraction does not 

enable unequivocal determination of the distribution of copper and the transition-metal cation 

over the 12d tetrahedral and 12e trigonal planar sites. However neutron diffraction has 

established that iron and nickel preferentially occupy tetrahedral sites.14,15 Here, we seek to 

exploit the excellent contrast between manganese and copper afforded by neutron scattering 

to investigate the impact of manganese substitution on the copper sublattice. Given the 

contradictory reports on the thermoelectric performance of manganese-containing 

tetrahedrites,9,10 we also present the results of thermoelectric property measurements of these 

materials. 

 

EXPERIMENTAL DETAILS 

Synthesis  

Mixtures of the elements S (Sigma Aldrich, flakes, 99.99 %), Sb (Alfa Aesar, 99.5 %), Cu 

(Sigma Aldrich, 99.5 %) and Mn (Alfa Aesar, 99.95 %), with the overall composition Cu12-

xMnxSb4S13 (x = 0 and 1), were milled using a Retsch Planetary Ball Mill PM100. The 

stainless-steel jar was loaded under an Ar atmosphere, and samples were milled at 600 rpm 

for 480 minutes. The ratio of powdered sample to balls was 3:10 (in weight). The ball-milled 

tetrahedrites were then sealed in evacuated silica tubes and heated in a furnace. The optimal 

heat-treatment conditions to obtain good-quality samples are as follow: The unsubstituted 
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tetrahedrite was heated with a ramp of 1 K min-1 to 773 K, held at this temperature for 64 h, 

and then cooled rapidly. The Cu11MnSb4S13 sample, however, required a multi-stage 

heating/cooling process. Initially, it was heated at 973 K for 3 h, after which it was held at 

823 K for 30 h, prior to cooling to room temperature at the natural cooling rate of the furnace. 

It was then reground and underwent a second heat treatment at 823 K for 30 h.  

Powder X-ray diffraction 

For initial sample characterisation, powder X-ray diffraction data were collected over the 

angular range 5 ≤  2/ ≤ 85, on a Bruker D8 Advance powder diffractometer, using Cu Kα1 

radiation (= 1.54046 Å).  

Powder neutron diffraction 

Time-of-flight powder neutron diffraction data were collected, as a function of temperature, 

on the Polaris diffractometer16 at the ISIS facility. Samples, sealed under vacuum in low 

boron content silica tubes, were inserted into cylindrical vanadium sample containers and 

loaded into a furnace on the diffractometer. Diffraction data for Cu12Sb4S13 were collected on 

heating and cooling over the temperature range 303 ≤ T / K ≤ 773, while for Cu11MnSb4S13 

data were only collected on heating.17 The instrumental and sample environment background 

was measured by loading an empty silica ampoule into the furnace. Data reduction, which 

included subtraction of a furnace and empty silica ampoule dataset, was performed using the 

Mantid software.18 Rietveld refinements were carried out using the GSAS software,19 and 

incorporating data from detector banks 5, 4 and 3 (average 2θ = 146.72°, 92.59° and 52.21° 

respectively). The structural model initially used in the Rietveld refinements was derived 

from that obtained using single crystal X-ray diffraction data for Cu12-xMnxSb4S13.
10 Isotropic 

thermal displacement parameters were used for tetrahedral Cu(1), Sb, S(1), S(2), while the 

trigonal planar Cu(2) was modelled using anisotropic thermal displacement parameters. A 



6 

 

second phase, corresponding to the impurity Cu3SbS4,
20 was also introduced into the Rietveld 

refinements.  

The thermal expansion coefficient was calculated as: 

𝛼 =
(𝑎𝑇2−𝑎𝑇1)

𝑎𝑇1
⁄

∆𝑇
    

where aT1 and aT2 correspond to the lattice parameter at temperatures T1 and T2 respectively, 

and ∆T is the temperature difference, T2 - T1. 

Thermoelectric properties 

Measurements of the electrical properties were carried out on consolidated ingots with 

densities greater than 95 % of the crystallographic density. Powders were hot pressed for 30 

minutes at 80 MPa and 723 K, under a flowing nitrogen atmosphere. The density of each 

consolidated ingot was measured by the Archimedes method. Measurements of electrical 

resistivity and Seebeck coefficient over the temperature range 303 ≤ T /K ≤ 573 were 

performed using a Linseis LSR-3 instrument, under a He atmosphere. 

The thermal diffusivity over the temperature range 303 ≤ T /K ≤ 573 was determined using a 

Netzsch LFA 447 NanoFlash instrument. The Dulong-Petit law was used to calculate specific 

heat values of 0.434 J K-1 g-1 for Cu12Sb4S13 and 0.436 J K-1 g-1 for Cu11MnSb4S13. The 

electronic thermal conductivity was estimated using the Wiedemann-Franz law, κel = L σ T. 

The Lorenz number, L, was estimated using L = 1.5 + exp(-|S|/116), where L is in units of 

10−8 W Ω K−2 and S in µV K-1.21  

The uncertainty in the measurements of Seebeck coefficient, electrical resistivity, and thermal 

conductivity can be estimated to be  5%. Discrepancies in ZT values between different 

laboratories have been estimated to range between 11 and 16%.22   
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RESULTS AND DISCUSSION 

Analysis of powder X-ray diffraction data indicates that samples consist primarily of a 

tetrahedrite phase, although a small amount of Cu3SbS4 is also present, the amount of which 

decreases from Cu12Sb4S13 (8 wt%) to Cu11MnSb4S13 (3 wt%). The refined unit cell 

parameters determined using X-ray diffraction (Supplementary Information), which are a = 

10.3234(2) Å and a = 10.3865(3) Å for Cu12Sb4S13 and Cu11MnSb4S13 respectively, and the 

presence of a Cu3SbS4 impurity phase, are in agreement with the results presented by Chetty 

et al.10 In preliminary Rietveld refinements using X-ray diffraction data, manganese was 

placed on the tetrahedral site, but due to the similarity in the X-ray scattering powers of 

manganese and copper no definitive conclusion on its location on the structure could be 

drawn. For this reason, powder neutron diffraction data were collected and analysed. The 

markedly dissimilar coherent neutron scattering length of copper (b = 7.718 fm) and 

manganese (b = -3.73 fm) enabled us to establish unambiguously the location of each 

transition-metal cation. When manganese is placed on the trigonal planar site, clear 

mismatches between the experimental and calculated intensities are observed, while the 

agreement improves significantly when manganese is placed exclusively on the tetrahedral 

site. Therefore, the excellent contrast provided by neutron diffraction strongly supports 

manganese substitution on the tetrahedral (12d) rather than the trigonal planar (12e) site. This 

is consistent with the results of previous neutron diffraction experiments on iron and nickel-

substituted tetrahedrites,14,15 which although showing less contrast between cations (b(Fe) = 

9.45 fm, b(Ni) = 10.3 fm), led to the conclusion that divalent transition metal cations occupy 

the tetrahedral site. The final Rietveld refinements using neutron data collected at room 

temperature for Cu12-xMnxSb4S13 (x = 0, 1) are given in Figures 2 and 3 respectively, while 

the refined parameters as a function of temperature can be found in the Supplementary 
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Information. The quality of the refinements was excellent in all instances, with Rwp values 

between 2 % and 3 %. 

Analysis of our temperature-dependent diffraction data indicates that when samples are 

contained in evacuated and sealed ampoules, the tetrahedrite phase is retained up to the 

maximum temperature investigated (773 K), with no evidence of decomposition, as sulfur 

loss is avoided. This contrasts with the behaviour found when Cu12Sb4S13 is heated under a 

flowing N2 atmosphere, which leads to a complex decomposition into Cu3SbS3 from 673 K 

up to 753 K due to sulfur volatilisation.15 Heating of Cu12Sb4S13 under dynamic vacuum also 

results in decomposition due to sulfur loss.23 The substitution of Cu+ (r = 0.60 Å) by Mn2+, 

which has a larger ionic radius (r = 0.66 Å), results in an expansion of the unit cell with 

manganese substitution (Supplementary Information). Although the lattice parameter for 

Cu11MnSb4S13 increases linearly over the whole temperature range, data for Cu12Sb4S13 show 

a slight anomaly in the slope at approximately 400 K (Supplementary Information). Taking 

this into account, the thermal expansion coefficient was determined between 303 ≤ T / K ≤ 

773 for the manganese-substituted sample, and above 400 K for Cu12Sb4S13. With manganese 

substitution, the thermal expansion coefficient decreases from the value of 2.37(4) × 10-5 K-1 

found for the unsubstituted tetrahedrite to 1.35(3) × 10-5 K-1. A similar trend has been found 

for iron substituted tetrahedrites: the thermal expansion coefficient decreases with increasing 

iron substitution.24 

Rietveld refinements reveal a large anisotropic atomic displacement parameter for the 

trigonal planar Cu(2) cation in the direction out of the plane formed by two S(1) anions and 

one S(2) anion (Figure 4(a)), and pointing towards two Sb cations. At room temperature, the 

atomic displacement parameters for the copper cations, particularly Cu(2), are larger than 

those for sulfur and antimony (Supplementary Information). They also exhibit a stronger 

temperature dependence (Figure 4(b)). The Debye temperature can be estimated from the 
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slope of a plot of the weighted average Uiso for the framework atoms (Sb and S) vs. 

temperature.25 This results in a Debye temperature of 257 K, comparable to the values of 239 

K, obtained using low-temperature diffraction data,26 244 K, extracted from elastic 

measurements,10 and 281 K, determined from first-principle calculations.27 The Einstein 

temperatures for the copper cations can be estimated from a plot of Uiso/eq vs. temperature.25 

This results in values of 79 and 82 K for Cu(2), and 88 and 91 K for Cu(1) in Cu12Sb4S13 and 

Cu11MnSb4S13 respectively, which would correspond to energies ranging between 6.8 and 7.8 

meV. These values are very similar to those found for Cu(1) and Cu(2) in copper-rich 

tetrahedrites,28 as well as to the Einstein temperature of 72 K determined for Cu(2) using low-

temperature synchrotron diffraction data.26 Tetrahedrally-coordinated copper in the 

oxychalcogenides BiOCuQ also exhibits a low-energy vibrational mode, evidenced by the 

behaviour of the atomic thermal parameter, which is similar to that found here for Cu(1), and 

the copper vibrational density of states.29 The nature of the bonding and the rattling behaviour 

of the trigonal planar Cu(2) cations in tetrahedrite have been investigated by Lai et al.,30 who 

found that Cu(2) forms covalent bonds with S(1) and S(2), and exhibits an additional weak 

bonding fluctuation with two Sb cations (bond order ≈ 0.10). This means that rather than 

trigonal planar Cu(2)S3 units, the structural units are effectively Sb[CuS3]Sb trigonal 

bypyramids. A low-energy vibrational mode at 3 meV, determined by inelastic neutron 

scattering, has been attributed to the rattling of the Cu(2) atom within this trigonal 

bypyramid.31 First-principle calculations predict two vibrational peaks between 3 and 5 meV 

for Cu(2), with the partial vibrational density of states for Cu(1) showing a peak at higher 

energies, close to 10 meV.27 The absence of the low-energy Cu(2) vibrational mode in 

inelastic neutron scattering measurements of the tetrahedrite-related phase Cu10Te4S13 

(although it is present in Cu12Sb2Te2S13) confirms the importance of Sb bonding for the 

rattling vibration of Cu(2).32  
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It has been previously shown that for copper-rich tetrahedrites, Cu12+xSb4S13 (0 < x 2.0), the 

copper cations become mobile above 393 K,28 resulting in remarkably low thermal 

conductivities. Structural evidence for copper ion mobility can be found in the site occupancy 

factors of the copper cations, which decrease with rising temperature above the onset of 

copper ionic mobility. For the tetrahedrites Cu11MnSb4S13
  and Cu12Sb4S13 investigated here, 

attempts to refine the copper site occupancy factors in Rietveld refinements using data 

collected at high temperatures result in values very close to unity. This suggests that copper 

ionic mobility is restricted to copper-rich phases, and that stoichiometric tetrahedrites should 

not suffer from the serious degradation issues that affect superionic conductors.33 In the 

copper-rich tetrahedrites Cu12+xSb4S13,
29 the unit cell volume expands to accommodate the 

additional copper, and this expansion may facilitate a diffusion pathway for the mobile 

copper ions. 

Figure 5 shows the electrical resistivity, Seebeck coefficient, and power factor (S2ρ-1) for 

Cu12-xMnxSb4S13 (x = 0 and 1), as a function of temperature. Cu12Sb4S13 is a p-type 

semiconductor with a reasonably low electrical resistivity, in agreement with previous reports 

of the electrical transport properties of this material.6,9,10,26 Substitution of copper by 

manganese at the tetrahedral site increases both the electrical resistivity and the Seebeck 

coefficient. As discussed by Chetty et al.,10 this behaviour is consistent with substitution of 

Cu+ by Mn2+, which reduces the hole concentration by introducing electrons in the valence 

band, thus decreasing the charge carrier concentration. The increase in Seebeck coefficient 

with manganese incorporation compensates for the increase in electrical resistivity only 

below 360 K. As a consequence, the highest power factor, S2ρ-1 = 1.08 mW m-1 K-2, is 

obtained for the unsubstituted tetrahedrite at 590 K. This behaviour is in good agreement with 

previous reports of the electrical transport properties of manganese-substituted 
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tetrahedrites;9,10 the power factor decreases with increasing manganese content, due to the 

increase in resistivity.  

The temperature dependence of the thermal conductivity and the thermoelectric figure of 

merit for the two tetrahedrites is presented in Figure 6. As discussed earlier, the low thermal 

conductivity of tetrahedrites is usually attributed to the rattling vibrations of the Cu(2) cation 

within the Sb[CuS3]Sb unit.30,31 Substitution with manganese results in a large reduction in 

thermal conductivity. The almost temperature-independent value of approximately 0.75 W m-

1 K-1 found here for Cu11MnSb4S13, corresponds to a reduction of over 40 % with respect to 

that of the unsubstituted tetrahedrite. The lattice thermal conductivity (Supplementary 

Information) was estimated by subtracting the calculated electronic contribution from the 

total thermal conductivity. This confirmed that the reduction in thermal conductivity is due to 

a decrease in both electronic and lattice contributions, indicating that phonon scattering is 

increasing as a result of manganese substitution. A reduction in both electronic and lattice 

thermal conductivity as a result of transition-metal substitution has been found for other 

partially-substituted tetrahedrites, Cu12-xTMxSb4S13.
6 As mass and volume fluctuations when 

replacing copper with manganese are relatively small, the increase in phonon scattering might 

be related to charge-transfer mechanisms, as previously proposed for ternary skutterudites 

containing elements with similar masses (e,g, Ru0.5Pd0.5Sb3, Fe0.5Ni0.5Sb3).
34 The thermal 

conductivity reported here is broadly consistent with the results of Chetty et al.10 By contrast, 

Heo et al. found much lower thermal conductivities for manganese substituted samples, ~ 0.2 

W m-1K-1, which are likely to be related to the relatively low density of their samples (85% of 

theoretical value),9 as sample porosity is known to have a marked impact on reducing the 

thermal conductivity.35  

Owing to the reduction in thermal conductivity with manganese substitution, the figure of 

merit is improved in the manganese-containing phase, with the highest ZT = 0.56 found for 
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Cu11MnSb4S13. This value is similar to those for other transition-metal substituted 

tetrahedrites, Cu12-xTMxSb4S13.
7 The significantly higher values of ZT for manganese-

substituted tetrahedrites reported by Heo et al., who found that Cu11MnSb4S13 reached ZT = 

1.13 at 575 K,9 may be related to the low density of their samples.  

CONCLUSIONS 

We have shown that in substituted tetrahedrite, manganese cations occupy exclusively the 

tetrahedral site. Temperature-dependent neutron diffraction data collected up to 773 K reveal 

that copper ions remain localised on fully occupied crystallographic sites, in contrast to the 

behaviour of the copper-rich tetrahedrites, where the onset of copper mobility occurs above 

393 K.29 Analysis of the atomic displacement parameters leads to the identification of low-

energy phonon modes associated with the trigonal-planar and the tetrahedral copper ions. 

While it is widely recognised that the low thermal conductivity of tetrahedrites is related to 

the rattling vibrations of copper ions within the Sb[CuS3]Sb trigonal bypyramids,6 little 

consideration has been given so far to the contribution of the vibrational modes of the 

tetrahedral copper ions. Unfortunately, phonon calculations for Cu12Sb4S13 are complicated 

by the presence of a structural phase transition at approximately 90 K,36 and calculations 

using the room-temperature crystal structure lead to unstable optical phonon branches 

involving out-of-plane vibrations of the trigonal-planar copper ions, as well as unstable 

transverse acoustic branches near the N and P points.6 Elucidation of the low-temperature 

structure of tetrahedrite, which we will report in due course, is required in order to gain a 

better understanding of the lattice dynamics in this material. 

Thermal conductivity data for Cu11MnSb4S13 reveal that the behaviour of manganese-

substituted tetrahedrites is comparable to that of other transition-metal substituted 

tetrahedrites.7 The much lower thermal conductivities previously reported for manganese-

substituted samples, ~ 0.2 W m-1K-1, 9 are likely to be related to sample porosity. 
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Supplementary Information 

See supplementary material for tabulated results of Rietveld refinements, Rietveld 

refinements using X-ray diffraction data, the temperature dependence of lattice parameters, 

and the lattice and electronic contribution to the thermal conductivity. 
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Figure 1. View of the crystal structure of tetrahedrite, with the CuS4 tetrahedra and the CuS3 

trigonal planar units shown in orange and purple respectively. Antimony atoms are shown as 

red circles, and sulfur atoms as yellow circles.  
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Figure 2. Observed (crosses), calculated (full line) and difference (lower full line) profiles 

for Cu12Sb4S13 at 313 K from Rietveld refinements using powder neutron diffraction data 

collected on the Polaris diffractometer. From top to bottom, bank 5 (2 = 146.72°), bank 4 

(2 = 92.59°) and bank 3 (2 = 52.21°). Reflection markers for Cu12Sb4S13 (top) and the 

minority impurity phase, Cu3SbS4, (bottom) are shown. 
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Figure 3. Observed (crosses), calculated (full line) and difference (lower full line) profiles 

for Cu11MnSb4S13 at 303 K from Rietveld refinements using powder neutron diffraction data 

collected on the Polaris diffractometer. From top to bottom, bank 5 (2 = 146.72°), bank 4 

(2 = 92.59°) and bank 3 (2 = 52.21°). Reflection markers for Cu11MnSb4S13 (top) and the 

minority impurity phase, Cu3SbS4, (bottom) are shown.  
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Figure 4. (a) The anisotropic thermal ellipsoid of the Cu(2) site. Cu(2) is shown as a purple 

ellipsoid, antimony as red circles and sulfur as yellow circles. (b) Temperature dependence of 

the atomic displacement parameters for Cu11MnSb4S13. For Cu(2), the equivalent Uiso is 

plotted. 
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Figure 5 Temperature dependence of the electrical resistivity (top), Seebeck coefficient 

(middle) and the resulting power factor (bottom) of Cu12-xMnxSb4S13 (x = 0, 1). 
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Figure 6. Temperature dependence of the thermal conductivity and the figure of merit, ZT, 

of Cu12-xMnxSb4S13 (x = 0, 1). 

 


