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This paper presents an explicit vertex centred finite volume method for the solution of 
fast transient isothermal large strain solid dynamics via a system of first order hyperbolic 
conservation laws. Building upon previous work developed by the authors, in the context 
of alternative numerical discretisations, this paper explores the use of a series of 
enhancements (both from the formulation and numerical standpoints) in order to explore 
some limiting scenarios, such as the consideration of near and true incompressibility. Both 
Total and Updated Lagrangian formulations are presented and compared at the discrete 
level, where very small differences between both descriptions are observed due to the 
excellent discrete satisfaction of the involutions. In addition, a matrix-free tailor-made 
artificial compressibility algorithm is discussed and combined with an angular momentum 
projection algorithm. A wide spectrum of numerical examples is thoroughly examined. 
The scheme shows excellent (stable, consistent and accurate) behaviour, in comparison 
with other methodologies, in compressible, nearly incompressible and truly incompressible 
bending dominated scenarios, yielding equal second order of convergence for velocities, 
deviatoric and volumetric components of the stress.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Current industry codes (e.g. PAM-CRASH, LS-DYNA, ABAQUS, Altair HyperCrash) targeting on the simulation of fast solid 
dynamics problems (e.g. vehicle crash simulation, hypervelocity impact on honeycomb sandwich panel and implosion of an 
underwater structure) are developed on the basis of classical low order finite element displacement based formulations. 
However, these formulations present a number of numerical difficulties, namely (1) spurious hour-glassing and pressure 
checkerboarding [1], (2) bending difficulty [2], (3) shear and volumetric locking [3], (4) reduced order of convergence for 
strains and stresses in comparison with displacements and (5) high frequency noise in the vicinity of shocks [4,5].
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In order to overcome some of these drawbacks, a variety of different techniques have been introduced in the last few 
decades. One very popular option is to resort to a selective reduced integration procedure [6–8], typically applied to (tri-
linear) hexahedral elements. In this case, a reduced number of Gauss integration points is utilised in order to under-
integrate the volumetric component of the stress. Despite not satisfying the inf-sup Ladyzenskaja-Babus̆ka-Brezzi condition, 
this approach remains very appealing to the industry as the modifications required to the existing commercial finite element 
codes are very minor. As an alternative, some of these shortcomings can be partially addressed with the use of high order 
schemes [9]. However, the increase in the number of Gauss integration points can drastically reduce the computational 
efficiency of these schemes in comparison with low order schemes, especially when complex constitutive laws (e.g. visco-
elasticity [10], visco-plasticity) are of great interest.

In the case of tetrahedral elements, the most preferred choice in the industry is the Average Nodal Pressure (ANP) 
procedure originally proposed by Bonet and Burton [11]. In this approach, the pressure field is under-integrated at nodes. 
Extensive effort has since been made in order to prevent the appearance of hourglassing-like modes [12–17], a typical 
shortcoming of this type of finite element. Several variants of the original ANP approach have since followed, including 
the averaged nodal deformation gradient [2], the F-bar method [18], and the Smoothed Finite Element Method (SFEM) [3]. 
However, all of the enhanced methods described above still suffer from spurious pressure fluctuations when attempting 
to model predominantly nearly incompressible solids [11]. This specific shortcoming can be partially rectified using the 
recently proposed SFEM in conjunction with the use of a non-consistent smoothing pressure procedure [19].

On another front, several attempts have also been reported at aiming to solve solid mechanics problems via the use 
of displacement-based finite volume discretisations [20–23]. Some interesting work has also been recently explored using 
the open source platform “OpenFOAM”, with special attention paid to the simulation of contact mechanics [24], orthotropic 
materials experiencing moderate strains [25] and metal forming applications [26]. The earliest attempt at employing a 
system of first order hyperbolic conservation laws in solid dynamics originates from the work of Trangenstein and Colella 
[27,28], where the conservation variables of the mixed based approach were the linear momentum p and the continuum 
deformation gradient tensor F . Specifically, a second order Godunov-type cell centred Finite Volume Method (FVM) in 
combination with a Riemann based upwinding stabilisation was presented. Although the consideration of involutions was 
outlined as part of the paper, its numerical implementation was not fully described. Moreover, the examples explored were 
restricted to the case of small strain linear elasticity in two dimensions [28]. With a similar philosophy, an alternative 
version of cell centred FVM (via a node based discretisation of the numerical fluxes) originally proposed by Mazeran and 
Després [29], and later explored in [30–36], in gas dynamics applications was adapted to the case of hyperelastic solids 
[37,38]. In parallel, Scovazzi and co-authors [10,39–42] also used a mixed based approach for a linear tetrahedral element 
by utilising a Variational Multi-Scale method.

In recent years, some of the authors of this manuscript have pursued the same {p, F } system whilst exploiting a wide 
range of spatial discretisation techniques. These include upwind cell centred FVM [43,44], Jameson-Schmidt-Turkel vertex 
centred FVM [45], upwind vertex centred FVM [46], two step Taylor-Galerkin FEM [47], stabilised Petrov-Galerkin FEM 
[48–51], Jameson-Schmidt-Turkel Smooth Particle Hydrodynamics (SPH) [52], Streamline Upwind Petrov-Galerkin SPH [53]
and upwind SPH [54].

In subsequent papers, the {p, F } system was then augmented by incorporating a new conservation law for the Jacobian 
of the deformation J [46,49] to effectively solve nearly incompressible deformations. Moreover, the {p, F , J } formulation 
was also extended to account for truly incompressible materials utilising a tailor-made fractional step approach [49]. Further 
enhancement of this framework has recently been reported by the authors [51,55], when considering materials governed 
by a polyconvex constitutive law where the co-factor H of the deformation plays a dominant role. The complete set of 
unknowns {p, F , H , J } yields an elegant system of conservation laws, where the existence of a generalised convex entropy 
function enables the derivation of a symmetric system of hyperbolic equations, dual of that expressed in terms of entropy 
conjugates of the conservation variables [50].

One contribution of the current paper is to enhance the robustness of the {p, F } vertex centred finite volume algorithm 
presented in [45,46] and to extend their applicability to nearly and truly incompressible scenarios. To achieve this, and fol-
lowing the work of [52,53,55,56], we incorporate another two additional geometric conservation laws, one for the co-factor 
of the deformation H (or area map) and the other for the Jacobian of the deformation J (or volume map). The objective is 
to explore the improved performance of the vertex centred algorithm when considering these two new conservation laws.

In addition, in this work, two variants of the Lagrangian description of the conservation equations are presented, namely 
Total Lagrangian formulation (TLF) and Updated Lagrangian formulation (ULF). In the former, evaluation of the integrals is 
carried out with respect to the initial undeformed configuration, whereas in the latter its integral evaluation is carried out 
with respect to the time moving deformed configuration. The objective is to demonstrate the small differences observed 
between both approaches from a discrete viewpoint. Whilst strict correspondence between TLF and ULF is guaranteed at 
the continuum level, from the semi-discrete viewpoint, H (key for the push forward/pull back operation between TLF and 
ULF) is not strongly equal to J F −T , but only in a weak sense via a conservation law. From a spatial discretisation standpoint, 
upwind [46] and Jameson-Schmidt-Turkel [45] schemes will be used for comparison purposes. Interestingly, we show that 
both TLF and ULF representations perform equally well. Thus, it is the authors’ opinion that the choice of representation is 
purely a matter of personal preference.

In the case of near (or full) incompressibility limit or when large rigid body rotations take place, it has been shown 
by the authors the need to incorporate two additional numerical ingredients for the formulation to be robust, namely, a 
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Fig. 1. Motion of a deformable body.

fractional step pressure [49] projection algorithm and a global a posteriori angular momentum projection procedure [44]. It 
is also the objective of this paper to adapt these two techniques for the case of a vertex centred FVM in order to explore 
these extreme scenarios.

The outline of the present paper is as follows. Section 2 summarises the complete set of first order conservation laws 
{p, F , H , J } for large strain fast solid dynamics. Both Total Lagrangian and Updated Lagrangian descriptions of the con-
servation equations, in conjunction with a suitable polyconvex constitutive law, are presented. Section 3 describes the 
computational methodology of the vertex centred finite volume method. Generation of a dual mesh and its associated area 
vectors, the Riemann based spatial discretisation and the complete set of Total Lagrangian and Updated Lagrangian semi-
discrete equations are presented. Section 4 describes the Total Variation Diminishing Runge-Kutta time integrator used for 
temporal discretisation. In addition, an adapted artificial compressibility algorithm is also presented in Section 5 to account 
for truly and nearly incompressible solids. In Section 6, an extensive set of challenging numerical examples is examined to 
assess the performance of the proposed computational framework. Section 7 presents some concluding remarks and current 
directions of research. Finally, an Appendix is included where the discrete satisfaction of entropy production of the scheme 
is demonstrated.

2. Reversible elastodynamics

2.1. Total Lagrangian formalism

Consider the three dimensional deformation of an elastic body of material density ρ0 moving from its initial undeformed 
configuration occupying a volume �0, of boundary ∂�0, to a time dependent deformed configuration occupying a volume 
�(t), of boundary ∂�(t) at time t (see Fig. 1). The motion of the body is defined through a deformation mapping x = φ(X, t)
which satisfies the following system of first order conservation laws [37,43–46,48,52,53,57,58]

∂ p

∂t
− DIVP = f 0; (1a)

∂ F

∂t
− ∇0

(
p

ρ0

)
= 0; (1b)

∂ H

∂t
− CURL

(
p

ρ0
F

)
= 0; (1c)

∂ J

∂t
− DIV

(
H T p

ρ0

)
= 0. (1d)

Here, p := ρ0 v is the linear momentum per unit of undeformed volume, v represents the velocity field, f 0 is the body force 
per unit of undeformed volume, F is the deformation gradient tensor (or fibre map), H is the cofactor of the deformation 
gradient tensor (or area map), J is the Jacobian of the deformation gradient tensor (or volume map), P represents the first 
Piola–Kirchhoff stress tensor, DIV and CURL represent the material divergence and curl operators, respectively, and ∇0 is 
the material gradient operator defined as [∇0]I := ∂ . The symbol represents the tensor cross product between vectors 
∂ XI
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and/or second order tensors as that presented in [55,56,59,60]. Finally, for post-processing purposes, the deformed geometry 
x can be recovered through time integration of the velocity field defined as

∂x

∂t
= p

ρ0
. (2)

As the system of conservation laws presented above has more equations than needed, compatibility relationships, also 
known as involutions, are necessary [27,28,61,62], namely1

CURLF = 0; DIVH = 0. (3)

It is now possible to combine all of the Total Lagrangian conservation equations described in (1a)–(1d) into a system of 
first order hyperbolic equations

∂U
∂t

+
3∑

I=1

∂F I

∂ XI
= S, (4)

where U is the vector of conservation variables, F I is the flux column vector in I-th material direction and S is the source 
term, which can be written as

U =

⎡
⎢⎢⎣

p
F
H
J

⎤
⎥⎥⎦ , F I = −

⎡
⎢⎢⎢⎢⎢⎣

P E I
1
ρ0

p ⊗ E I

F
(

1
ρ0

p ⊗ E I

)
H :

(
1
ρ0

p ⊗ E I

)

⎤
⎥⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎣

f 0
0
0
0

⎤
⎥⎥⎦ , (5)

and the Cartesian coordinate basis

E1 =
⎡
⎣ 1

0
0

⎤
⎦ ; E2 =

⎡
⎣ 0

1
0

⎤
⎦ ; E3 =

⎡
⎣ 0

0
1

⎤
⎦ . (6)

In addition, the surface flux vector is also defined as

FN =
3∑

I=1

F I NI = −

⎡
⎢⎢⎢⎢⎢⎣

P N
1
ρ0

p ⊗ N

F
(

1
ρ0

p ⊗ N
)

H :
(

1
ρ0

p ⊗ N
)

⎤
⎥⎥⎥⎥⎥⎦ , (7)

with N being the material outward unit normal vector of a surface.
In the presence of non-smooth solutions, above conservation equations (1a)–(1d) are accompanied by appropriate Rank-

ine Hugoniot jump conditions across a discontinuous surface (defined by a material unit normal vector N ) propagating with 
speed U in the reference space [43,44,46,50,51]. This can be described as

U � p � = −� P �N; (8a)

U � F � = − 1

ρ0
� p � ⊗ N; (8b)

U � H � = −F Ave
(

1

ρ0
� p � ⊗ N

)
; (8c)

U � J � = −H Ave :
(

1

ρ0
� p � ⊗ N

)
. (8d)

Here, [·]Ave := 1
2

(
[·]+ + [·]−) represents an average state between the left and right states of a discontinuous surface and 

�·� := [·]+ − [·]− denotes the jump operator across a discontinuous surface.

1 Indeed conservation equations for the cofactor and Jacobian of the deformation are not strictly necessary from a continuum standpoint as these two 
kinematic fields are intrinsically (strongly) related (via compatibility equations or involutions) with the deformation gradient. However, from a semi-discrete 
viewpoint, this strong compatibility weakens and can be “exploited” in order to add flexibility to a numerical (low order) scheme circumventing locking 
related problems.
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Integrating expression (4) over any arbitrary undeformed domain �0, followed by the application of the integration by 
parts on the flux vector, gives

d

dt

∫
�0

U d�0 = −
∫

∂�0

FN dA +
∫
�0

S d�0. (9)

Equation above can then be particularised for each individual component of the conservation equations described in 
(1a)–(1d), yielding

d

dt

∫
�0

p d�0 =
∫

∂�0

P N dA +
∫
�0

f 0 d�0; (10a)

d

dt

∫
�0

F d�0 =
∫

∂�0

1

ρ0
p ⊗ N dA; (10b)

d

dt

∫
�0

H d�0 =
∫

∂�0

F
(

1

ρ0
p ⊗ N

)
dA; (10c)

d

dt

∫
�0

J d�0 =
∫

∂�0

1

ρ0
p · (H N) dA. (10d)

Remark 1. It is also useful to present an alternative non-conservative form (for the case of smooth solutions) of the differ-
ential equations (known as transport equations) for {H , J }. This is achieved by inserting (3) into equations (1c) and (1d), 
and after some simple algebraic manipulations, to give

∂ H

∂t
= F ∇0

(
p

ρ0

)
; ∂ J

∂t
= H : ∇0

(
p

ρ0

)
. (11)

Their equivalent integral forms are

d

dt

∫
�0

H d�0 =
∫
�0

[
F ∇0

(
p

ρ0

)]
d�0; d

dt

∫
�0

J d�0 =
∫
�0

[
H : ∇0

(
p

ρ0

)]
d�0, (12)

respectively.

For the particular case of a reversible process, the closure of the hyperbolic system (1a)–(1d) requires the introduction 
of a suitable constitutive law relating the stress tensor P with the geometric strain measures {F , H , J }, obeying the 
principle of objectivity [63] and thermodynamic consistency (via the Colemann-Noll procedure). In this work, a nearly 
incompressible constitutive model (derived on the basis of a polyconvex multi-variable energy function) is employed and 
will be presented in Section 2.1.1. The use of the first order system (1a)–(1d), in conjunction with a polyconvex constitutive 
law (i.e. a guarantor of material stability), ensures hyperbolicity and also enables the transformation of the original system 
of conservation laws into a symmetric set of hyperbolic equations expressed in terms of the entropy conjugates of the 
conservation variables [51,55].

Finally, for a complete definition of the initial boundary value problem, initial and boundary (essential and natural) 
conditions must be specified as appropriate. In particular, four different types of boundary conditions will be considered in 
this paper (refer to Fig. 2).

2.1.1. Constitutive model: polyconvex elasticity
For a nearly incompressible Mooney-Rivlin material, the convex multi-variable strain energy W can be decomposed into 

the summation of deviatoric Ŵ (F , H , J ) and volumetric U ( J ) contributions [51,55,60]

W = Ŵ + U , (13)

with

Ŵ = ζ J−2/3 (F : F ) + ξ J−2 (H : H)3/2 − 3
(
ζ + √

3ξ
)

; U = κ

2
( J − 1)2, (14)

where ζ , ξ and κ (bulk modulus) are positive material parameters. By comparison of the tangent elasticity operator at the 
initial undeformed configuration with that of classical linear elasticity [59,60], appropriate values for the material parameters 
ζ and ξ can be defined in terms of the shear modulus μ, that is, 2ζ + 3

√
3ξ = μ [52,53,55].
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Fig. 2. Boundary conditions. The reference configuration is designated by a continuous line while the deformed configuration is represented by a discontin-
uous line. Four types of boundary conditions are considered: (1) Fixed, (2) Free, (3) Skew symmetric and (4) Symmetric.

Following Reference [51], the first Piola-Kirchhoff stress tensor P can be expressed as

P = �F + �H F + � J H , (15)

where the conjugate stresses {�F , �H , � J } with respect to {F , H , J } are defined as

�F := ∂Ŵ

∂ F
= 2ζ J−2/3 F ; �H := ∂Ŵ

∂ H
= 3ξ J−2 (H : H)1/2 H , (16)

and � J := �̂ J + p with

�̂ J := ∂Ŵ

∂ J
= −2

3
ζ J−5/3(F : F ) − 2ξ J−3(H : H)3/2; p := dU

d J
= κ( J − 1). (17)

It is worth noticing that the energy function (13) described above degenerates to the case of a nearly incompressible neo-
Hookean model by imposing the values of ζ = μ

2 and ξ = 0 [55].

2.2. Updated Lagrangian formalism

Insofar as the current industry solid solvers (e.g. PAM-CRASH, LS-DYNA, ABAQUS, Altair HyperCrash) are generally 
established starting from an Updated Lagrangian kinematical description, an equivalent system of Updated Lagrangian con-
servation equations for {p, F , H , J } will be presented in this section.

Utilising both the Nanson’s formula [63] (i.e. nda = H NdA) and the volume mapping transformation (i.e. d� = Jd�0), 
equation (9) becomes

d

dt

∫
�(t)

U d� =
∫

∂�(t)

Fn da +
∫

�(t)

S d�, (18)

where U := J−1U , Fn := ∑3
i=1

(
H−T F

)
i ni , S := J−1S and n represents the spatial outward unit normal vector on a moving 

boundary surface ∂�(t). Above expression can also be particularised for each conservation law employed in this work, 
yielding the full system written under the Updated Lagrangian description as

d

dt

∫
�(t)

ρv d� =
∫

∂�(t)

σn da +
∫

�(t)

f d�; (19a)

d

dt

∫
�(t)

J−1 F d� =
∫

∂�(t)

[
v ⊗ (

H−1n
)]

da; (19b)

d

dt

∫
J−1 H d� =

∫
F

[
v ⊗ (

H−1n
)]

da; (19c)
�(t) ∂�(t)
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Fig. 3. Dual mesh of (a) an interior node and (b) a boundary node using the medial dual approach in two dimensional triangular mesh. Figure (c) shows 
the mean surface area normal vector of a given edge ab for a three dimensional tetrahedral mesh.

d

dt

∫
�(t)

d� =
∫

∂�(t)

v · n da. (19d)

Here, ρ := J−1ρ0 is the current density and f := J−1 f 0 is the body force per unit of deformed volume.

Remark 2. As an alternative, the left hand side of (18) (typically expressed in terms of a moving domain �(t)) can be pulled 
back to the undeformed configuration �0, resulting in

d

dt

∫
�(t)

U d� = d

dt

∫
�0

JU d�0 = d

dt

∫
�0

U d�0. (20)

For closure of the above system (19a)–(19d), a suitable constitutive relation is thus required by relating the Cauchy 
stress tensor σ (or the Kirchhoff stress tensor τ ) with the geometric strain variables {F , H , J }. Such expressions can be 
easily derived from the standard relationship between these tensors [63]

Jσ = τ = P F T . (21)

To achieve this, it is important to substitute equation (15) into (21) for P , and noting that H F T = J I , which gives the 
resulting expression for the Kirchhoff stresses [51]

Jσ = τ = τ F + τ H I + τ J I , (22)

where

τ F := �F F T ; τ H := �H H T ; τ J := J� J . (23)

3. Finite volume spatial discretisation

3.1. Dual mesh and area vectors

The vertex centred finite volume spatial discretisation presented in this work requires the generation of a dual mesh for 
the definition of control volumes. Specifically, the median dual approach for tetrahedral meshes is chosen. This approach 
constructs the dual mesh by connecting edge midpoints with element centroids in two dimensions (see Fig. 3a) and edge 
midpoints with face centroids and element centroids in three dimensions. For a given edge connecting nodes a and b (see 
Fig. 3c), the mean undeformed area vector is defined as

Cab =
∑

Ak Nk. (24)

k∈
ab
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Here, 
ab is the set of facets belonging to edge ab, Ak and Nk are the area and the material outward unit normal of a given 
facet k, respectively. Essentially, these area vectors satisfy the reciprocal relation Cab = −Cba , which allows for a substantial 
cost reduction in evaluating the control volume interface fluxes by saving an additional loop on facets per edge ab [45].

Similarly, the mean deformed area vector of a given edge ab becomes

cab =
∑

k∈
ab

aknk, (25)

where ak and nk denote the area and its corresponding outward unit normal on the deformed facet k. In the case of 
a boundary edge, the contribution of the boundary faces to which it belongs has to be taken into account. This set of 
boundary faces will be defined as �B

a (refer to Fig. 3b).

3.2. Total Lagrangian discrete formulation

With this in mind, expression (4) can now be integrated in space over an undeformed control volume �a
0, followed by 

the Green-Gauss divergence theorem, to give

�a
0

dUa

dt
= −

∫
∂�a

0

FN dA + �a
0Sa. (26)

Here, Ua and Sa are the average values of both the conservation variables and source term vector within the control 
volume, respectively, and the normal flux F N is already defined in (7).

The surface integral of (26) is approximated by means of an upwinding numerical flux [46]

�a
0

dUa

dt
= −

⎛
⎝∑

b∈�a

∑
k∈
ab

FC
Nk

Ak +
∑

γ ∈�B
a

Fγ
a Cγ

⎞
⎠+ �a

0Sa, (27)

where b ∈ �a represents the set of neighbouring control volumes b associated with the control volume a, Cγ := Aγ

3 Nγ

represents the (tributary) boundary area vector and FC
Nk

= FC
N (U−

k , U+
k , Nk) represents the numerical flux depending on 

the reconstructed states at both sides of the facet k, namely U−
k and U+

k . In this type of scenario, (small) numerical jumps 
arise at each of the facets due to the use of discontinuous interpolations for the conservation variables. It is thus sufficient 
to employ an acoustic Riemann solver (derived on the basis of the Rankine-Hugoniot jump conditions) for the evaluation of 
the numerical flux, where now the shock speed U appearing in (8) is simply the speed of sound of a material [43].

However, it is clear that the above semi-discrete formulation (27) leads to an expensive computation of the numerical 
flux for each of the facets k belonging to a given edge ab. With the use of mean area vector defined in (24), a unique normal 
numerical flux FC

Nab
can now be obtained by grouping all the facets associated with a given edge ab. This would simplify 

expression (27) to

�a
0

dUa

dt
= −

⎛
⎝∑

b∈�a

FC
Nab

||Cab|| +
∑

γ ∈�B
a

Fγ
a Cγ

⎞
⎠+ �a

0Sa, (28)

where FC
Nab

= FC
N (U−

ab, U
+
ab, Nab) is the Riemann-based numerical flux evaluated at the mid-edge of ab. Comparing equa-

tions (27) and (28), the former requires to store the complex facet stencil grouped at each edge, whereas the latter only 
requires to store the edge structure. This will enable expression (28) to be solved using a unique loop on edges, resulting 
into a computationally more efficient discretisation.2 It is for this reason that equation (28) is preferred in this paper.

The terms within the parenthesis in (28) correspond to the evaluation of the control volume interface (and boundary) 
fluxes. This evaluation is comprised of a summation over edges (first term in the parenthesis) and a summation over 
boundary faces (second term in the parenthesis). In this second term, the weighted average stencil proposed by Löhner and 
co-authors [64] is used by computing the boundary flux over a boundary face γ in three dimensions as

Fγ
a = 6Fa +Fb +F c

8
, (29)

where b, c are the other two nodes that together with node a define boundary face γ .
It is worth noticing that equation (28) would only lead to a first order solution in space [43] provided that U−

ab and U+
ab

are modelled following a piecewise constant representation. For instance, U−
ab = Ua and U+

ab =Ub , thus leading to excessive 

2 The use of this simplification does not compromise the overall accuracy of the scheme [45].
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numerical dissipation in the solution. The physics of the problem can no longer be captured accurately unless excessively 
fine meshes are used, which is clearly undesirable especially for large scale problems in practice. To overcome this drawback, 
and to guarantee second order accuracy in space, a suitable linear reconstruction procedure is used. A detailed discussion 
of this reconstruction procedure can be found in [44].

For completeness, expression (28) is particularised for each individual component of U , yielding

�0
a

dpa

dt
=

∑
b∈�a

tC ||Cab|| +
∑
γ ∈
B

a

tγ
a ||Cγ || + �0

a f a
0; (30a)

�0
a

dF a

dt
=

∑
b∈�a

1

ρ0
pC ⊗ Cab +

∑
γ ∈
B

a

1

ρ0
pγ

a ⊗ Cγ ; (30b)

�0
a

dHa

dt
=

∑
b∈�a

F Ave
ab

(
1

ρ0
pC ⊗ Cab

)
+

∑
γ ∈
B

a

F γ
a

(
1

ρ0
pγ

a ⊗ Cγ

)
; (30c)

�0
a

d Ja

dt
=

∑
b∈�a

1

ρ0
pC ·

(
H Ave

ab Cab

)
+

∑
γ ∈
B

a

1

ρ0
pγ

a · (Hγ
a Cγ

)
. (30d)

Here, the mappings are defined as F Ave
ab := 1

2 (F a + F b) and H Ave
ab := 1

2 (Ha + Hb) and {tC , pC } are, respectively, the numer-
ical approximation [44] for traction and linear momentum. It is important to emphasise that strong compatibility between 
the different kinematic fields {F , H , J } is lost at the semi-discrete level. However, weak compatibility is maintained due to 
the coupled nature of the semi-discrete system of conservation equations.

For visualisation purposes, the current deformed geometry is recovered by integrating in time the discrete nodal velocity 
field obtained using (30a)

dxa

dt
= pa

ρ0
. (31)

Finally, the remaining unknowns to be defined in equations (30a)–(30d) are the numerical flux evaluation for {tC , pC }. 
This can be approximated via a characteristic based Riemann solver and will be discussed in the following section.

3.2.1. Riemann based upwinding stabilisation
To achieve this, recall first that the numerical flux across a discontinuous surface with normal Nab , namely FC

Nab
, is 

generally described as

FC
Nab

= 1

2

[
FNab (U−

ab) +FNab (U+
ab)

]
︸ ︷︷ ︸

Unstable flux

−1

2

U+
ab∫

U−
ab

|ANab |dU

︸ ︷︷ ︸
Upwinding stabilisation

, (32)

where {U−
ab, U

+
ab} represent the reconstructed states of the conservation variables at both sides of the mid-edge ab and 

the absolute value component of the flux Jacobian matrix is defined as |ANab | :=
∣∣∣ ∂FNab

∂U

∣∣∣ = 1
2

∑6
α=1 |cα |RαLT

α (refer to 
Appendix A in [44]). The first term on the right hand side of (32) denotes the unstable average flux, whereas the second 
term (i.e. upwinding stabilisation) can be interpreted as a consistent numerical stabilisation that counterbalances non-
physical instabilities arising from the first term.

In this work, evaluation of |ANab | is carried out at the initial undeformed configuration (i.e. origin) by adopting F =
H = I and J = 1. Furthermore, above unstable flux contribution (refer to the first term of (32)) can be approximated via a 
second order central difference scheme, which results in

FC
Nab

= 1

2

[
FNab (Ua) +FNab (Ub)

]
︸ ︷︷ ︸

Central difference flux

−1

2
|ANab |

(
U+

ab −U−
ab

)
︸ ︷︷ ︸

Upwinding stabilisation

. (33)

Interestingly, this type of central difference flux evaluation does not need to rely on the reconstructed states of the conser-
vation variables U−,+

ab . A detailed derivation of the upwinding stabilisation term in (33) can be found in Reference [44] (see 
pg. 417 to pg. 420 in Section 4.3).

Following the exact same procedure reported in Reference [44], and after some algebraic manipulations, the Godunov-
type numerical traction and linear momentum can be summarised here for completeness

tC = tAve + tStab; pC = pAve + pStab. (34)
ab ab ab ab
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The (unstable) average states of both the traction and linear momentum are

tAve
ab := 1

2
(P a + P b)︸ ︷︷ ︸

P Ave
ab

Nab; pAve
ab := 1

2
(pa + pb), (35)

and the corresponding upwinding stabilisation terms are

tStab
ab := 1

2
S p

ab(p+
ab − p−

ab); pStab
ab := 1

2
St

ab

[
(P +

ab − P −
ab)Nab

]
, (36)

with the (positive definite) stabilisation matrices being defined as

S p
ab := cp (nab ⊗ nab) + cs (I − nab ⊗ nab) ; St

ab := 1

cp
(nab ⊗ nab) + 1

cs
(I − nab ⊗ nab) . (37)

In this case, the unit outward normal vector is

nab := cab

||cab|| ; cab := H Ave
ab Cab, (38)

and cp and cs represent the elastic pressure wave speed and the elastic shear wave speed

cp :=
√

λ + 2μ

ρ0
; cs :=

√
μ

ρ0
, (39)

respectively.

Remark 3. We need to point out that at the discrete level, the deformed area vector cab projected through H Ave
ab (refer to 

(38)) does not necessarily coincide with the geometry-based cab of (25). For instance, cab �= cab . However, in practice, the 
robustness of the overall algorithm would not be adversely affected regardless of which deformed area vector is used.

Substitution of (34) into (30a)–(30d) for {tC , pC } yields the following semi-discrete nodal update for the {p, F , H , J }
Total Lagrangian equations as

�0
a

dpa

dt
=

⎡
⎣∑

b∈�a

P Ave
ab Cab +

∑
γ ∈�B

a

tγ
a ||Cγ || + �0

a f a
0

⎤
⎦+

∑
b∈�a

Dp
ab; (40a)

�0
a

dF a

dt
=

⎡
⎣∑

b∈�a

1

ρ0
pAve

ab ⊗ Cab +
∑

γ ∈�B
a

1

ρ0
pγ

a ⊗ Cγ

⎤
⎦+

∑
b∈�a

DF
ab; (40b)

�0
a

dHa

dt
=

⎡
⎣∑

b∈�a

F Ave
ab

(
1

ρ0
pAve ⊗ Cab

)
+

∑
γ ∈�B

a

F γ
a

(
1

ρ0
pγ

a ⊗ Cγ

)⎤⎦+
∑

b∈�a

DH
ab; (40c)

�0
a

d Ja

dt
=

⎡
⎣∑

b∈�a

1

ρ0
pAve

ab ·
(

H Ave
ab Cab

)
+

∑
γ ∈�B

a

1

ρ0
pγ

a · (Hγ
a Cγ

)⎤⎦+
∑

b∈�a

D J
ab. (40d)

Here, {Dp
ab, D

F
ab, DH

ab, D
J

ab} correspond to the upwinding stabilisation terms expressed as

Dp
ab = tStab

ab ||Cab||; (41)

and

DF
ab = 1

ρ0
pStab

ab ⊗ Cab; DH
ab = F Ave

ab

(
1

ρ0
pStab

ab ⊗ Cab

)
; D J

ab = 1

ρ0
pStab

ab ·
(

H Ave
ab Cab

)
. (42)

In ensuring discrete satisfaction of the involutions (3), we must not introduce any numerical dissipation into (40b) and 
(40c) by setting the values of DF

ab = DH
ab = 0. Additionally, and following the work of [65], the strain variables 

{
F Ave

ab , F γ
a
}

and 
{

H Ave
ab , Hγ

a
}

appearing in the square bracket terms of (40c)–(40d) will be replaced by F a and Ha . This implies that the 
updates for F and H are naturally curl- and divergence-free as their semi-discrete equations are formulated in terms of a 
material discrete gradient of a continuous velocity field [49]. By doing this, the geometric conservation equations (40b)-(40d)
reduce to
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�0
a

dF a

dt
=

∑
b∈�a

1

ρ0
pAve

ab ⊗ Cab +
∑

γ ∈�B
a

1

ρ0
pγ

a ⊗ Cγ ; (43a)

�0
a

dHa

dt
= F a

⎛
⎝∑

b∈�a

1

ρ0
pAve

ab ⊗ Cab +
∑

γ ∈�B
a

1

ρ0
pγ

a ⊗ Cγ

⎞
⎠ ; (43b)

�0
a

d Ja

dt
= Ha :

⎛
⎝∑

b∈�a

1

ρ0
pAve

ab ⊗ Cab +
∑

γ ∈�B
a

1

ρ0
pγ

a ⊗ Cγ

⎞
⎠+

∑
b∈�a

D J
ab. (43c)

Notice here that the upwinding stabilisation is only applied to the linear momentum evolution Dp
ab (40a) and the volume 

map evolution D J
ab (43c). The former alleviates the appearance of spurious zero-energy (hourglass-like) modes, whereas the 

latter removes pressure instabilities in near incompressibility [49].

Remark 4. It is worth noticing that the above semi-discrete system (e.g. (40a) and (43a)–(43c)) guarantees a non-negative 
production of (numerical) entropy for every edge, provided that the following two conditions are fulfilled:

• the term pStab
ab (36b) appearing in D J

ab (43c) is re-defined as pStab
ab := 1

2 St
ab

[
(�+

J ,ab − �−
J ,ab)H Ave

ab Nab

]
; and

• both stabilisation matrices {S p
ab, S

t
ab} (37) are positive semi-definite (second order) tensors.

For the sake of complenetess of this work, detailed proof of the edge based entropy production is included in Appendix A.

3.3. Updated Lagrangian discrete formulation

Following the discretisation procedure presented in equations (40a) and (43a)–(43c), the nodal update for the {p, F , H , J }
equations (19a)–(19d) follows

�0
a

dpa

dt
=

∑
b∈�a

σ Ave
ab cab +

∑
γ ∈�B

a

tγ
a ||cγ || + �a(t) f a +

∑
b∈�a

D p
ab; (44a)

�0
a

dF a

dt
=

∑
b∈�a

1

ρ0
pAve

ab ⊗
[(

H Ave
ab

)−1
cab

]
+

∑
γ ∈�B

a

1

ρ0
pγ

a ⊗ [
H−1

a cγ

] ; (44b)

�0
a

dHa

dt
= F a

⎛
⎝∑

b∈�a

1

ρ0
pAve

ab ⊗
[(

H Ave
ab

)−1
cab

]
+

∑
γ ∈�B

a

1

ρ0
pγ

a ⊗ [
H−1

a cγ

]⎞⎠ ; (44c)

�0
a

d Ja

dt
=

∑
b∈�a

1

ρ0
pAve

ab · cab +
∑

γ ∈�B
a

1

ρ0
pγ

a · cγ +
∑

b∈�a

D J
ab, (44d)

where the area vector is defined as cγ := nγ
aγ

3 and the average Cauchy stress tensor is given by σ Ave
ab = 1

2 (σ a + σ b). It is 
clear that, for computational efficiency, terms on the left hand side of (19a)–(19d) typically expressed in terms of a moving 
domain �(t), are now evaluated at the initial undeformed domain �0 (refer to (20)).

Moreover, the stabilisation term D p
ab described in the Updated Lagrangian linear momentum evolution (44a) is the push 

forward equivalent of Dp
ab (41). This can be achieved by substituting (36a) into (41) for tStab

ab , and noticing that

||Cab||2 = Cab · Cab =
[(

H Ave
ab

)−1
cab

]
·
[(

H Ave
ab

)−1
cab

]
, (45)

which results in

D p
ab =

(
1

2
S p

ab(p+
ab − p−

ab)

)([(
H Ave

ab

)−1
cab

]
·
[(

H Ave
ab

)−1
cab

]) 1
2

. (46)

On the other hand, the term D J
ab becomes

D J
ab = 1

[
1

St
ab(σ

+
ab − σ−

ab)
cab

]
· cab. (47)
ρ0 2 ||Cab||
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Referring to Remark 3, since 
(

H Ave
ab

)−1
cab �= Cab and H−1

a cγ �= Cγ , it is clear that the update of Ḟ (44b) and Ḣ (44c) is no 
longer dependent on a material discrete gradient of a continuous velocity field, thus violating the discrete satisfaction of the 
involutions. This can be remedied by adopting a locally area map projection procedure so that the area maps {H Ave

ab , Ha} on 
the right hand side of (44b)–(44c) are suitably modified. The modified area maps {HAve

ab , Ha} will then satisfy the following 
conditions, namely 

(
HAve

ab

)−1
cab = Cab and H−1

a cγ = Cγ , which will be discussed in Appendix B.

3.3.1. Complete Upwind-ULF

Replacing {H Ave
ab , Ha} with {HAve

ab , Ha} in the system (44a)–(44d), and noting that C ab = (
HAve

ab

)−1
cab and Cγ = H−1

a cγ , 
yields

�0
a

dpa

dt
=

∑
b∈�a

σ Ave
ab cab +

∑
γ ∈
B

a

tγ
a ||cγ || + �a(t) f a +

∑
b∈�a

D p
ab; (48a)

�0
a

dF a

dt
=

∑
b∈�a

1

ρ0
pAve

ab ⊗ Cab +
∑
γ ∈
B

a

1

ρ0
pγ

a ⊗ Cγ (48b)

�0
a

dHa

dt
= F a

⎛
⎝∑

b∈�a

1

ρ0
pAve

ab ⊗ Cab +
∑
γ ∈
B

a

1

ρ0
pγ

a ⊗ Cγ

⎞
⎠ (48c)

�0
a

d Ja

dt
=

∑
b∈�a

1

ρ0
pAve

ab · cab +
∑
γ ∈
B

a

1

ρ0
pγ

a · cγ +
∑

b∈�a

D J
ab. (48d)

In this particular case, cab = cab and nab = nab := cab||cab || . This implies that the time update for {pa, Ja} (see (48a) and (48d)) 
is carried out in the Updated Lagrangian form, whereas the update for the remaining conservation variables {F a, Ha} (see 
(48b) and (48c)) is carried out in an identical manner to the Total Lagrangian formulation.

In comparison to the complete set of Total Lagrangian discretised equations (40a)–(40d), it is clear that the update of 
the {p, F , H , J } Updated Lagrangian equations (48a)–(48d) is more computationally demanding as the evaluation of mesh 
based area vectors {cab, cγ } in (48a) and (48d) is required for every time step during the time integration process.

Remark 5. Aiming to eliminate the need to construct the median dual mesh for every time step of the time integration 
process, one viable option is to update the time dependent area vectors {cab, cγ } via the geometry based area map H x :=
1
2 (∇0x ∇0x), defined as

c̃ab := H Ave
x,abCab and c̃γ := Ha

xCγ with γ ∈ �B
a . (49)

Here, the average state of the geometry based area map is defined as H Ave
x,ab := 1

2

(
Ha

x + Hb
x

)
and the material gradient of 

the spatial geometry for an arbitrary control volume a can be approximated as ∇0xa ≈ 1
�0

a

∑
b∈�a

xAve
ab ⊗ Cab with xAve

ab :=
1
2 (xa + xb).

4. Time integrator

Insofar as the resulting set of semi-discrete equations is rather large, it will only be suitable to employ an explicit type 
of time integrator. In this work, an explicit one-step two-stage Total Variation Diminishing Runge-Kutta (TVD-RK) scheme is 
used [43,45,46,66]. This is described by the following time update equations from time step tn to tn+1

U�
a = Un

a + �t U̇n
a(Un

a, tn); U��
a = U�

a + �t U̇�

a(U�
a, tn+1); Un+1

a = 1

2
(Un

a +U��
a ), (50)

where overdot represents differentiation with respect to time.
In this work, a monolithic time integration procedure is used where the conservation variables U = {p, F , H , J } along 

with the geometry x are all updated via expression (50). The maximum allowable time step �t = tn+1 − tn is governed by 
the standard Courant-Friedrichs-Lewy (CFL) condition [67] given as

�t = αCFL
hmin

cp,max
, (51)

where cp,max is the maximum pressure wave speed, hmin is the minimum characteristic length within the computational 
domain (defined in our case as the smallest mesh element length) and αCFL is the CFL stability number. For the numerical 
examples presented in this paper, a value of αCFL = 0.3 has been chosen to ensure both the accuracy and stability of the 
algorithm.
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The proposed algorithm does not necessarily fulfil the conservation of angular momentum of the system, as the minors 
of the deformation gradient tensor, namely {F , H , J }, are no longer computed on the basis of the material gradient of a 
current geometry (e.g. F �= F x := ∇0x, H �= H x := 1

2 F x F x , J �= Jx := 1
6 F x : (F x F x)) [51]. In our experience, this can 

have a negative effect in those problems involving very large and sustained rotations. To rectify this, and taking inspiration 
from the work of [44], a global least-square angular momentum projection procedure is carried out. The linear momentum 
update (see (40a) or (48a)) is suitably modified (in the least squares sense) in order to preserve the total angular momentum 
whilst still ensuring the conservation of the overall linear momentum. Details of this projection technique can be found in 
Reference [44].

5. Artificial compressibility: total Lagrangian formulation

5.1. General remark

As it is well known, in the case of nearly (or truly) incompressible materials, the pressure wave speed cp can reach very 
large (or even infinitely large) values leading to prohibitively small time steps. This can have a very negative effect on the 
computational efficiency of any time-explicit algorithm. One popular approach to address this issue is the employment of 
the artificial compressibility method, originally developed for the Navier-Stokes equations [68]. Taking inspiration from the 
work of Gil and co-authors [49,55], the artificial compressibility approach is here adapted to the system of Total Lagrangian 
conservation equations as presented in (1a), (1b), (11).

To achieve this, we must first re-write the Jacobian conservation law (1d) in terms of its entropy conjugate (pressure),

1

κ

∂ p

∂t
= H : ∇0

(
p

ρ0

)
. (52)

In this case, the new unknowns of the problem are {p, F , H , p} ((1a), (1b), (11a), (52)) and this permits to (naturally) 
consider the degenerate case of strict incompressibility.

With the idea to pursue a fractional step type approach, we must first discretise the continuum equations listed above 
in time and then proceed to their discretisation in space.3 In addition, whilst conservation equations for {F , H} will still be 
solved explicitly, equations for {p, p} will now be treated semi-implicitly in order to enforce the incompressibility constraint 
without compromising the size of the time step, namely

pn+1 − pn

�t
− DIVP (F n, Hn, pn+1) − f n

0 = 0; (53a)

1

κ

pn+1 − pn

�t
− Hn : ∇0

(
pn+1

ρ0

)
= 0. (53b)

As typically adopted in fractional step methods, we now split the time integration over a time step �t into two consec-
utive steps, an intermediate explicit predictor followed by an implicit projection corrector. Therefore, the first (intermediate 
predictor) step is defined as

pint − pn

�t
− DIVP (F n, Hn, pn) − f n

0 = 0; (54a)

F n+1 − F n

�t
− ∇0

(
pn

ρ0

)
= 0; (54b)

Hn+1 − Hn

�t
− F n ∇0

(
pn

ρ0

)
= 0; (54c)

1

κ

pint − pn

�t
− Hn : ∇0

(
pn

ρ0

)
= 0. (54d)

The second (corrector or projection) step becomes(
pn+1 − pint

)
�t

− DIV
[(

pn+1 − pn) Hn] = 0; (55a)

1

κ

(
pn+1 − pint

)
�t

− Hn : ∇0

(
pn+1

ρ0
− pn

ρ0

)
= 0. (55b)

It is important to notice that addition of equations (54a) and (55a) (and (54d) and (55b)) recovers the original equations
(53a) ((53b)). For nearly (and truly) incompressible materials, the bulk modulus present in the first term of equation (54d)

3 This is the opposite to what it is typically done in the so-called method of lines.
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can potentially reach very high values (even infinite), which can destroy the explicit nature of the predictor step of the 
scheme. It is for this reason that a fictitious (thus the name of artificial compressibility) bulk modulus κ̃ is used in its place, 
yielding

1

κ̃

pint − pn

�t
− Hn : ∇0

(
pn

ρ0

)
= 0. (56)

As a result of this, the projection step of the pressure equation (55b) now becomes (to ensure consistency)

1

κ

(
pn+1 − pn

)
�t

− 1

κ̃

pint − pn

�t
− Hn : ∇0

(
pn+1

ρ0
− pn

ρ0

)
= 0. (57)

After advancing explicitly the predictor step, the corrector step must be solved ((55a) and (57)). In this case, and in order 
to preserve a matrix free approach, the artificial compressibility method is further exploited. This is typically achieved by 
introducing artificial “pseudo-time” derivative terms which permit to explicitly evolve the corrector equations in pseudo-
time until convergence. This gives,

∂ p

∂τ
= DIV

[(
pn+1 − pn) Hn]−

(
pn+1 − pint

)
�t

; (58a)

1

γ

∂ p

∂τ
= 1

κ̃

pint − pn

�t
+ Hn : ∇0

(
pn+1

ρ0
− pn

ρ0

)
− 1

κ

(
pn+1 − pn

)
�t

, (58b)

where ∂
∂τ represents the pseudo-time derivative terms and γ denotes the so-called artificial compressibility parameter. In 

this work, the pseudo-time terms are discretised in time using exactly the same time integrator as described in (50).
Once the time semi-discretisation is concluded, spatial semi-discretisation is then necessary. The upwind finite volume 

spatial discretisation for the predictor-corrector system (54a), (54b), (54c), (56), (58a), (58b) will now be presented.

5.2. FVM artificial compressibility algorithm

Following the upwind FVM discretisation procedure presented in Section 3.2, the predictor step of the mixed-based 
system {p, F , H , p} becomes,

�0
a

[
pint

a − pn
a

�t

]
=

∑
b∈�a

P Ave,n
ab Cab +

∑
γ ∈
B

a

tγ ,n
a ||Cγ || + �0

a f a,n
0 +

∑
b∈�a

Dp,n
ab ; (59a)

�0
a

[
F n+1

a − F n
a

�t

]
=

∑
b∈�a

1

ρ0
pAve,n

ab ⊗ Cab +
∑
γ ∈
B

a

1

ρ0
pγ ,n

a ⊗ Cγ ; (59b)

�0
a

[
Hn+1

a − Hn
a

�t

]
= F n

a

⎛
⎝∑

b∈�a

1

ρ0
pAve,n

ab ⊗ Cab +
∑
γ ∈
B

a

1

ρ0
pγ ,n

a ⊗ Cγ

⎞
⎠ ; (59c)

�0
a

[
pint

a − pn
a

κ̃�t

]
= Hn

a :
⎛
⎝∑

b∈�a

1

ρ0
pAve,n

ab ⊗ Cab +
∑
γ ∈
B

a

1

ρ0
pγ ,n

a ⊗ Cγ

⎞
⎠+

∑
b∈�a

D J ,n
ab . (59d)

The corrector step of the discrete system {p, F , H , p} becomes
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5.3. Iteration speed-up procedure

To accelerate the speed of convergence within the iterative process, we can incorporate an additional Laplacian dissipative 
operator to equation (60b), which results in
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Referring to [54], the discrete Laplacian viscosity operator used in this work is defined as

DPSE
ab := α

c2
s �t

μ

[
pb − pa

‖Xb − Xa‖ Nab

]
· Cab, (62)

where α is a dimensionless user-defined parameter in the range of [0, 1]. Above dissipative operator automatically ensures 
fulfilment of the global conservation requirement, that is 

∑
a �0

aDPSE
ab = 0.

Notice here that the only purpose of adding viscosity operator DPSE
ab to (61) is to accelerate the speed of convergence 

within the pseudo time integration process when iteratively solving the implicit system for pressure correction (60a), (61). 
This is in clear contrast to the upwinding stabilisation terms {Dp

ab, D
J

ab} introduced in the predictor step (59), crucial to 
ensure the robustness (overall stability) of the algorithm.

6. Numerical examples

An ample spectrum of numerical examples is presented in order to examine the performance of the proposed methodolo-
gies in compressible, nearly incompressible and truly incompressible scenarios. Specifically, three different types of proposed 
methodologies are analysed, namely Upwind Total Lagrangian Formulation (Upwind-TLF, refer to (40a) and (43a)–(43c)), 
Upwind Updated Lagrangian Formulation (Upwind-ULF, refer to (48a)–(48d)) and Upwind Pseudo Updated Lagrangian For-
mulation (Upwind-PULF, refer to (48a)–(48d) but {cab, cγ } are replaced with {c̃ab, ̃cγ }). For verification purposes, some of the 
results are benchmarked against other in-house mixed-based numerical schemes, namely Finite Element Method [48–51], 
Finite Volume Method [43–46] and mesh-free Smooth Particle Hydrodynamics [52,53].

6.1. Low dispersion cube

A cube of unit side length has symmetric boundary conditions (i.e. restricted to tangential displacement) at the faces 
X = 0, Y = 0 and Z = 0 and skew-symmetric boundary conditions (i.e. restricted to normal displacement) at the faces 
X = 1, Y = 1 and Z = 1. This example has been thoroughly explored in previous publications [39,44–46,49,55,56], with the 
final aim to show the optimal convergence behaviour of the proposed framework. In the case of small deformations, the 
problem has an analytical (or closed-form) solution for the displacement field described as

u(X, t) = U0 cos

(√
3

2
cdπt
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)
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(
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2

)

⎤
⎥⎥⎥⎥⎦ ; cd =

√
λ + 2μ

ρ0
. (63)

When the value of U0 < 0.001 m, this example is considered to be linear and the exact solution provided in (63) holds. 
In this case, the problem is initialised with a given fibre map F (X, t = 0) := F 0(X) = I + ∇0u|t=0 by taking the material 
gradient of (63) at time t = 0. Subsequently, the initial conditions for the area and volume maps are H (X, t = 0) := H 0(X) =
1
2

(
F 0 F 0

)
and J (X, t = 0) := J 0(X) = 1

6 F 0 : (F 0 F 0
)
, respectively. A linear elastic model is chosen where the material 

properties are Poisson’s ratio of ν = (1 − μ/κ)/2 = 0.45, Young’s modulus E = 17 MPa and density ρ0 = 1100 kg/m3. The 
solution parameters are set as U0 = 5 × 10−4 m and the value of A = B = C = 1 [44] ensures the existence of a non-zero 
pressure field.

Tables 1 and 2 show the L1 and L2 global convergence analysis of the linear momentum p and the first Piola Kirchhoff 
stress tensor P simulated using the {p, F , H , J } Upwind-TLF and a {p, F , H , J } Jameson-Schmidt-Turkel Total Lagrangian 
Formulation (JST-TLF) [46] is shown for completeness, as compared to the analytical solution described in (63). Their cor-
responding graphical representations are depicted in Figs. 4 and 5. As expected, both methodologies show very similar 

Table 1
Low dispersion cube: Numerical values for the relative error of the p1 component of linear momentum as compared to the exact solution, measured with 
L1 and L2 norms. Comparison between the {p, F , H , J } Upwind-TLF and {p, F , H , J } JST-TLF. Convergence rate calculated using the results of the two finest 
meshes.

h {p, F , H , J } JST-TLF {p, F , H , J } Upwind-TLF

L1 norm L2 norm L1 norm L2 norm

1/3 1.886 × 10−1 2.044 × 10−1 1.742 × 10−1 1.948 × 10−1

1/6 6.158 × 10−2 6.732 × 10−2 4.535 × 10−2 5.116 × 10−2

1/12 1.614 × 10−2 1.988 × 10−2 1.155 × 10−2 1.265 × 10−2

1/24 4.262 × 10−3 5.663 × 10−3 3.030 × 10−3 3.197 × 10−3

1/48 1.131 × 10−3 1.524 × 10−3 7.762 × 10−4 7.995 × 10−4

conv. rate 1.9134 1.8933 1.9652 1.9996
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Table 2
Low dispersion cube: Numerical values for the relative error of the P11 component of the stress as compared to the exact solution, measured with L1

and L2 norms. Comparison between the {p, F , H , J } Upwind-TLF and {p, F , H , J } JST-TLF. Convergence rate calculated using the results of the two finest 
meshes.

h {p, F , H , J } JST-TLF {p, F , H , J } Upwind-TLF

L1 norm L2 norm L1 norm L2 norm

1/3 1.634 × 10−1 7.326 × 10−2 1.621 × 10−1 7.379 × 10−2

1/6 6.684 × 10−2 3.743 × 10−2 6.108 × 10−2 3.435 × 10−2

1/12 2.017 × 10−2 1.271 × 10−2 1.692 × 10−2 1.068 × 10−2

1/24 5.337 × 10−3 3.538 × 10−3 4.267 × 10−3 2.837 × 10−3

1/48 1.396 × 10−3 1.009 × 10−3 1.079 × 10−3 8.073 × 10−4

conv. rate 1.9348 1.8093 1.9829 1.8136

Fig. 4. Low dispersion cube. Convergence of the (a) L1 norm and (b) L2 norm for the components of linear momentum at time t = 0.002 s. Results are 
obtained using {p, F , H , J } Upwind-TLF and {p, F , H , J } JST-TLF with parameters A = B = C = 1 and U0 = 5 × 10−4 m. A linear elastic material is used 
with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45 and αC F L = 0.3. JST stabilising parameters used: k(4)

p = 1/256, 
k(4)

J = 1/8192.

Fig. 5. Low dispersion cube. Convergence of the (a) L1 norm and (b) L2 norm for the diagonal components of the first Piola–Kirchhoff stress tensor P at 
time t = 0.002 s. Results are obtained using {p, F , H , J } Upwind-TLF and {p, F , H , J } JST-TLF with parameters A = B = C = 1 and U0 = 5 × 10−4 m. A 
linear elastic material is used with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45 and αC F L = 0.3. JST stabilising 
parameters used: k(4)

p = 1/256, k(4)
J = 1/8192.
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Fig. 6. Beryllium plate. Deformation shapes plotted with pressure at different time instants (from top to bottom): t = 1 × 10−5 s; 2 × 10−5 s; 3 × 10−5 s 
and 4 × 10−5 s. Results are obtained using the (a) {p, F } Upwind-TLF scheme with Poisson’s ratio ν = 0.0539 and (b) {p, F , J } Upwind-TLF scheme with 
Poisson’s ratio ν = 0.4995. A neo-Hookean material is used with density ρ0 = 1845 kg/m3, Young’s modulus E = 318.27 GPa and αC F L = 0.3. Discretisation 
of 8 × 8 × 48 × 6 linear tetrahedral elements.

convergence pattern, achieving equal second order convergence for both linear momentum and the components of the 
stress tensor. Remarkably, the Upwind-TLF method shows better accuracy than the JST-TLF algorithm, with the same slope 
but with a lower translation error (see Figs. 4 and 5). This is due to the fact that JST-TLF method requires careful selection 
of a number of artificial stabilisation parameters for properly controlling the amount of numerical dissipation introduced by 
the algorithm.

6.2. Elastic vibration of a Beryllium plate

Following References [38,46,69], the main purpose of this benchmark problem is to assess the accuracy of the proposed 
Upwind-TLF method in the elastic regime. A Beryllium plate, of dimensions [−0.5, −3, −0.5] m × [0.5, 3, 0.5] m, is simu-
lated using a neo-Hookean model with material properties given as density ρ0 = 1845 kg/m3, Young’s modulus E = 318.27
GPa and Poisson’s ratio ν = 0.0539. The plate, with no supports or constraints, is oscillating freely at time t = 0 via the 
imposition of a specific form of initial velocity field that purely excites its first flexural mode [45] as

v0 = [0,0, vz]T ; vz = Aω [g1 (sinh(BY) + sin(BY)) − g2 (cosh(BY) + cos(BY))] . (64)
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Fig. 7. Satellite-like structure configuration. The structure is free everywhere and initialised with a constant angular velocity ω0 = [0,0,1]T rad/s.

Fig. 8. Satellite-like structure. Time evolution of (a) linear momentum and (b) z-component of angular momentum, with and without the consideration of 
the discrete angular momentum projection algorithm (AMPA). Results are obtained using the {p, F } Upwind–TLF scheme with an initial angular velocity 
ω0 = [0, 0, 1]T rad/s. A neo-Hookean material is used with density ρ0 = 1000 kg/m3, Young’s modulus E = 50.05 kPa, Poisson’s ratio ν = 0.3 and αC F L =
0.3. The domain is discretised using a linear tetrahedral mesh with 2496 nodes.

In this case, the parameters are set as g1 = 56.637, g2 = 57.646, ω = 2.3597 s−1, A = 4.3369 × 10−5 m, B = 78.834 m−1

and Y = Y + 0.03.
For quantitative comparison purposes, a sequence of snapshots capturing the deformation of the plate is depicted in the 

first column of Fig. 6. Smooth pressure field is observed. Our results are in very good agreement with those results published 
in [38], with the latter being obtained using an excessively fine mesh. For completeness, Fig. 9a monitors the time evolution 
of the vertical component of the displacement at the origin X = [0, 0, 0]T . It is clear that the solution converges with a 
progressive level of refinement. The time history of the P yY component of the first Piola–Kirchhoff stress tensor P at point 
X = [0, 0, 0.5]T is plotted in Fig. 9b. As can be seen, as the mesh is refined (although still coarse), the solution picks up a 
higher energy mode which is clearly shown by the higher oscillatory behaviour of the stress component displayed in the 
figure. This is not noticeable in Fig. 9a, due to the time integrated nature of the displacements. First order formulations 
(with not reconstruction) might not pick up this higher energy mode unless very refined meshes are employed (due the
higher dissipative nature of these schemes).

Finally, we further assess the performance of the {p, F , J } Upwind-TLF algorithm by using a large value of the Poisson’s 
ratio ν = 0.4995 (refer to the second column of Fig. 6). As can be observed, the proposed method can be efficiently used 
for the simulation of this problem without experiencing locking difficulties.

6.3. Satellite-like structure

A flexible satellite-like structure [70] is studied in this section. The main objective of this problem is to examine the 
capability of the proposed methodologies in preserving the linear and angular momenta of a system. The structure, as 
displayed in Fig. 7, consists of a central truncated cone of base radius 4 m, of top radius 2 m and of height 3 m, along 
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Fig. 9. Beryllium plate. (a) Time history of the z-displacement of the point X = [0, 0, 0]T and (b) P yY component of first Piola–Kirchhoff stress tensor P at 
point X = [0, 0, 0.5]T . Results are obtained using the {p, F } Upwind-TLF scheme with different mesh sizes. A neo-Hookean material is used with density 
ρ0 = 1845 kg/m3, Young’s modulus E = 318.27 GPa, Poisson’s ratio ν = 0.0539 and αC F L = 0.3.

Fig. 10. Satellite-like structure. Time evolution of the deformation along with the pressure distribution. Results are obtained using the {p, F } Upwind–TLF 
scheme with an initial angular velocity ω0 = [0, 0, 1]T rad/s. A neo-Hookean material is used with density ρ0 = 1000 kg/m3, Young’s modulus E = 50.05
kPa, Poisson’s ratio ν = 0.3 and αC F L = 0.3. The domain is discretised using linear tetrahedral mesh with 2496 nodes.

with four attached arms of unit cross-section that extend 6.5 m from the centre of the structure. The satellite is released 
without any initial deformation but with an initial angular velocity of � = 1 rad/s about the centre of mass. The velocity 
field relative to its centre of mass X cm is given as
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Fig. 11. Satellite-like structure. Comparison of deformed shapes plotted with pressure distribution at times t = 0.5 s and t = 6 s using different schemes: 
(a) {p, F } Upwind–TLF; (b) {p, F } JST–TLF and (c) {p, F } JST–TLF (fine). Results are obtained with an initial angular velocity ω0 = [0, 0, 1]T rad/s. A neo-
Hookean material is used with density ρ0 = 1000 kg/m3, Young’s modulus E = 50.05 kPa, Poisson’s ratio ν = 0.3, k(4)

p = 1/256 and αC F L = 0.3.

v0(X) = ω × (X − Xcm) ; ω = (0,0,�)T ; X = (X, Y ,0) . (65)

In this particular case, a neo-Hookean model is chosen and its material properties are given as density ρ0 = 1000 kg/m3, 
Young’s modulus E = 50.05 kPa and Poisson’s ratio ν = 0.3.

Fig. 10 shows the time evolution of the pressure field during the deformation process, simulated using the {p, F , H , J }
Upwind-TLF method. With respect to the accuracy of the methodologies used, it is important to notice that, for the exact 
same number of degrees of freedom, the Riemann based upwind stabilisation employed in Upwind-TLF gives a higher spatial 
resolution of pressure field, as compared with the {p, F , H , J } JST-TLF counterpart (see Figs. 11a and 11b). Specifically, 
compressive stresses at the bending region of each arm at time t = 6 s are captured accurately when employing a Upwind-
TLF. In the case of the JST-TLF, it is essential to employ a sufficiently fine mesh in order to obtain a similar pressure 
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Fig. 12. Blake problem: (a) mesh of one-eighth of a shell and (b) mesh of a needle.

Fig. 13. Blake problem. The spatial distribution of radial pressure at time t = 1.6 × 10−4 s simulated using (a) piecewise constant reconstruction, (b) 
piecewise linear reconstruction and (c) piecewise linear reconstruction with the Barth and Jespersen limiter. Results are obtained using the {p, F , H , J }
Upwind–TLF scheme with a boundary traction vector t B = −pn (with p = 1 × 106 Pa) constantly applied to the inner face. A neo-Hookean material is used 
with density ρ0 = 3000 kg/m3, Young’s modulus E = 62.5 GPa, Poisson’s ratio ν = 0.25 and αC F L = 0.3. The domain is discretised using a linear tetrahedral 
mesh.

representation, which in this case is almost 5 times greater than the number of nodes used in Upwind-TLF. This can be 
demonstrated by comparing Figs. 11c and 11b. Fig. 8 demonstrates the ability of the proposed algorithm in preserving 
both the angular and linear momenta of the system. Without activation of the angular momentum projection procedure, a 
significant reduction in total angular momentum can be clearly observed.

6.4. Blake problem

In this section, we present the Blake problem [38], of interest to the scientific community. The domain considered is 
a shell of inner radius ri = 0.1 m and outer radius ro = 1 m (see Fig. 12a). A constant in time boundary traction vector 
t B = −pn (with p = 1 × 106 Pa) is applied to the inner surface of the shell, whereas the remaining surfaces are treated as 
traction free boundary conditions such that t B = 0. As reported in [38], for computational efficiency, the shell domain can 
be simplified to a needle of 10 aperture angle, as shown in Fig. 12b. In this case, all the boundary faces introduced by this 
geometrical simplification are subjected to symmetry boundary conditions (also known as roller support). The problem is 
simulated using the {p, F , H , J } Upwind-TLF scheme with a neo-Hookean material. The material properties are described as 
density ρ0 = 3000 kg/m3, Young’s modulus E = 62.5 GPa and Poisson’s ratio ν = 0.25. Fig. 13 shows the spatial distribution 
of radial pressure at time t = 1.6 × 10−4 s, as compared to the analytical solution. As it can be observed, the first order 
FVM shows excellent smooth results though with considerable numerical diffusion and then leads to a stable yet slightly 
inaccurate solution (see Fig. 13a). To enhance the accuracy, we introduce a piecewise linear reconstruction. The second 
order FVM, as seen in Fig. 13b, gives much better resolution but fails near discontinuities, where non-physical oscillations 
are generated. In order to control these spurious oscillations, the Barth and Jespersen limiter [46] is implemented. A great 
improvement is observed in Fig. 13c.
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Fig. 14. Twisting column. Comparison of deformed shapes plotted with pressure distribution at time t = 0.1 s using different schemes: (a) {p, F } Upwind-
TLF; (b) {p, F } Upwind-PULF and (c) {p, F } Upwind-ULF. Results are obtained with an angular velocity field ω0 = [0, 0, � sin(π Z/2L)]T where � = 105
rad/s and L = 6 m. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.495 and αC F L = 0.3.

6.5. Nearly incompressible twisting column

Aiming to illustrate the applicability and robustness of the proposed algorithm, a very challenging problem, previously 
explored in References [44,46,53,55], is presented. A unit squared cross section column is twisted along its height. The 
column is subject to an initial rotational velocity field expressed as

v0 = ω0 × X; ω0 =
[

0,0,� sin

(
π Z

2L

)]T

, (66)

where � = 105 rad/s and L = 6 m is the length of the column. This example is modelled using a neo-Hookean model with 
parameters given as follows: Young’s modulus E = 17 MPa, density ρ0 = 1100 kg/m3 and Poisson’s ratio ν = 0.4995.
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Fig. 15. Twisting column. Comparison of deformed shapes plotted with pressure distribution at time t = 0.1 s using different schemes: (a) TL–UW {p, F }; (b) 
TL–JST {p, F }; (c) Mixed-based {p, F , H , J } SUPG-SPH-H1 [53], (d) Upwind-SPH and (e) C-TOUCH. A neo-Hookean material is used with density ρ0 = 1100
kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.495.

On another front, Fig. 14 shows the comparison between three different upwind schemes proposed in this paper, namely 
{p, F , J } Upwind-TLF, {p, F , J } Upwind-ULF and {p, F , J } Upwind-PULF. Remarkably, the results obtained using the Upwind-
TLF are in extremely good agreement with the Upwind-ULF counterpart. This shows that the selection of the continuum 
description of the system exclusively depends on the user’s preference, regardless of accuracy of the method. More inter-
estingly, Upwind-TLF is more computationally efficient as the integral evaluations are carried out at the initial undeformed 
configuration. Such evaluations only need to be computed once throughout the time integration process. As a viable al-
ternative to the Upwind-ULF, an extremely competitive method, named Upwind-PULF, is also assessed. Practically identical 
results are obtained. As illustrated in the top view of the simulation of Fig. 14, no out-of-plane deformation can be ob-
served.

For benchmarking purposes, Fig. 15 depicts a comparison of the new {p, F , J } Upwind-TLF and {p, F , J } JST-TLF method-
ologies against other in-house mixed-based methodologies, including Cell Centred FVM [43,44], Upwind-SPH [54] and 
Streamline Upwind Petrov Galerkin SPH [53] mesh-free methods. All of these schemes produce very similar results in terms 
of deformed shape and pressure field.

Finally, we can further examine the robustness of the algorithm by increasing the value of Poisson’s ratio to the up-
per limit of ν = 0.5. The main objective is to show the efficiency of the proposed artificial compressibility approach (see 
Section 5.1), especially in problems characterised by nearly or truly incompressible behaviours. Fig. 16 shows a qualita-
tive comparison between the {p, F , p} artificial compressibility algorithm and the explicit {p, F , p} Upwind-TLF, with the 
interior pressure being displayed on the final deformed state. The artificial compressibility algorithm introduces a larger 
amount of numerical dissipation due to the use of the Pseudo viscosity term described in (62), which, as expected, is 
addressed with mesh refinement. A mesh refinement study is also carried out in Fig. 17. It is remarkable that the defor-
mation pattern predicted using a small number of elements agrees extremely well with those results obtained using a finer 
discretisation.
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Fig. 16. Twisting column. Time evolution of the deformation along with the pressure distribution using: (a) Explicit {p, F , J } Upwind-TLF and (b) Upwind-
TLF Artificial compressibility. Results are obtained with an angular velocity field ω0 = [0, 0, � sin(π Z/2L)]T where � = 105 rad/s and L = 6 m. A neo-
Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, ν = 0.4995, ν f ic = 0.495, Lp = 0.2 and αC F L = 0.3.
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Fig. 17. Twisting column. Comparison of the deformation along with the pressure distribution at time t = 0.1 s for various mesh sizes: (a) 3 × 3 × 18 × 6; 
(b) 5 × 5 × 30 × 6; (c) 7 × 7 × 42 × 6 elements and (d) 20 × 20 × 120 × 6. Results are obtained using the Upwind–TLF artificial compressibility scheme with 
an angular velocity field ω0 = [0, 0, � sin(π Z/2L)]T where � = 105 rad/s and L = 6 m. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, 
Young’s modulus E = 17 MPa, ν = 0.5, ν f ic = 0.495, Lp = 0.2 and αC F L = 0.3.

6.6. Punch test

A rubber block is left free on its top face and constrained with roller supports (i.e. symmetric boundary conditions) on 
the rest of the boundaries. The 1 × 1 × 0.5 m3 block has a 3 × 3 array of vertical holes with a diameter of 0.2 m. The 
main aim of this example is to show the capability of the algorithm in suppressing spurious pressure oscillations in highly 
constrained problems. The deformation of the block is initiated with the following velocity field

v0 = −V [0,0, (L/2 − |X |)(L/2 − |Y |)(Z/H)]T , (67)

where V = −700 m/s, L is the length of the block and H is its height.
A nearly incompressible neo-Hookean constitutive model is used where Young’s modulus E = 17 MPa, density ρ0 = 1100

kg/m3 and Poisson’s ratio ν = 0.495. Fig. 18 depicts the deformation pattern of a rubber block solved using the {p, F , H , J }
Upwind-TLF, displaying very smooth pressure contour. Fig. 19 compares the results against those obtained using the Upwind-
SPH framework [53]. Both sets of results agree extremely well, without showing any signs of hourglassing.
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Fig. 18. Punch test. Time evolution of the deformation along with pressure distribution. Results are obtained using the {p, F , H , J } Upwind-TLF scheme. A 
neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.495 and αC F L = 0.3.

Fig. 19. Punch test. Comparison of deformed shapes plotted with pressure distribution at different snapshots in time using different schemes: (a) {p, F , H , J }
Upwind-TLF and (b) Upwind-SPH. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.495
and αC F L = 0.3.

6.7. Taylor impact

The impact of a copper bar against a rigid wall is investigated. The bar has an initial length of 0.0324 m and initial 
radius of 0.0032 m. The bar is dropped with a velocity of 227 m/s at time t = 0 s. A von Mises hyperelastic–plastic model 
with isotropic hardening is chosen to simulate the problem where the material properties being used are Young’s modulus 
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Fig. 20. Taylor impact. Comparison of deformed shapes plotted with pressures using various numerical schemes at a specific time t = 20 μs. (a) {p, F } JST–
TLF, (b) {p, F , J } JST–TLF, (c) {p, F } Upwind–TLF and (d) {p, F , J } Upwind–TLF. Results are obtained with a constant velocity field v0 = [0, 0, −227]T m/s. 
A von Mises hyperelastic–plastic material with isotropic hardening is chosen with parameters, Young’s modulus E = 117 GPa, density ρ0 = 8930 kg/m3, 
Poisson’s ratio ν = 0.35, Yield stress, τ̄ 0

y = 0.4 GPa, Hardening modulus H = 0.1 GPa, k(4)
p = 1/256, k(4)

J = 1/8192 and αC F L = 0.3.

E = 117 GPa, density ρ0 = 8930 kg/m3, Poisson’s ratio ν = 0.35, yield stress τ̄ 0
y = 0.4 GPa and hardening modulus H = 0.1

GPa.
As shown in References [44,52,53], addition of the volume map conservation law to the {p, F } system seems to be 

very efficient when solving problems with predominant nearly incompressible behaviours. In Figs. 20a,c, it is clear that 
both {p, F } JST-TLF and {p, F } Upwind-TLF schemes introduce spurious pressure modes. These non-physical pressure in-
stabilities can be effectively removed using their counterpart {p, F , J } stabilised methodologies (see Figs. 20b,d). Crucially, 
the {p, F , J } Upwind-TLF and JST-TLF methodologies produce practically identical contours for both plastic strain and pres-
sure at three different time instants (see Fig. 21). For verification purposes, the time history of the current coordinate of 
the material point X = [0.0032, 0, 0]T is monitored, as shown in Fig. 22a. The figure also shows a mesh sensitivity study 
where a quarter of the domain is discretised using a linear tetrahedral mesh with 3 different mesh sizes: 3,833 (Coarse), 
13,467 (Medium) and 60,957 elements (Fine). It is clear that the JST scheme requires a finer mesh in order to approach 
the converged solution. Both methodologies predict similar locking-free deformation with the final radius falling within an 
acceptable range of [6.8–7.3] mm [71].

6.8. Complex structure

In the last example of this paper, we demonstrate the robustness of the proposed finite volume algorithm on a complex 
geometry displayed in Fig. 22b. The geometry used in this example is that of a cardiovascular stent as reported in Reference 
[72]. The structure has an initial outer diameter of 20 mm, a thickness of 0.5 mm and a total length of 20 mm. The diameter 
of every hole is 2 mm. In this problem, we study the deformation pattern of the stent by applying a velocity field at the 
top and bottom of the structure, described as follows

v0 =
{ [

0,0,− abγ
(γ +1)2

]T
if t ≤ 0.03 s

0 otherwise
; γ = exp [a(c − t)], (68)
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Fig. 21. Taylor impact. Comparison of deformed shapes at different times plotted with plastic strains (Left) and pressures (Right) using two different 
numerical schemes: (a) {p, F , J } JST–TLF and (b) {p, F , J } Upwind–TLF. Results are obtained with a constant velocity field v0 = [0, 0, −227]T m/s. A von 
Mises hyperelastic–plastic material with isotropic hardening is chosen with parameters, Young’s modulus E = 117 GPa, density ρ0 = 8930 kg/m3, Poisson’s 
ratio ν = 0.35, Yield stress, τ̄ 0

y = 0.4 GPa, Hardening modulus H = 0.1 GPa, k(4)
p = 1/256, k(4)

J = 1/8192 and αC F L = 0.3.
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Fig. 22. (a) Taylor impact: results are obtained using the {p, F , J } Upwind–TLF scheme with a constant velocity field v0 = [0, 0, −227]T m/s. A von Mises 
hyperelastic–plastic material with isotropic hardening is chosen with parameters, Young’s modulus E = 117 GPa, density ρ0 = 8930 kg/m3, Poisson’s ratio 
ν = 0.35, Yield stress, τ̄ 0

y = 0.4 GPa, Hardening modulus H = 0.1 GPa, and αC F L = 0.3. Quarter of the domain is discretised using linear tetrahedral mesh 
with 3,833 (Coarse), 13,467 (Medium) and 60,957 elements (Fine). (b) Medical stent geometry which is similar to the one reported in [72].

Fig. 23. Medical stent. Comparison of deformed shapes plotted with pressures using different meshes at a specific time t = 0.016 s. Results are obtained 
using the {p, F } Upwind–TLF scheme with (a) coarse mesh, (b) medium mesh with one element across the thickness, and (c) fine mesh. A neo-Hookean 
material is used with density ρ0 = 1000 kg/m3, Young’s modulus E = 0.9 MPa, Poisson’s ratio ν = 0.45 and αC F L = 0.3.

where a = 800 s−1, b = 0.006 m and c = 0.015 s. Due to the presence of three symmetry planes, only one eighth of the 
problem is solved with appropriate boundary conditions. The structure is made of a nearly incompressible neo-Hookean 
material with density ρ0 = 1100 kg/m3, Young’s Modulus E = 17 MPa and Poisson’s ratio ν = 0.45.

A mesh refinement study using the {p, F } Upwind-TLF is presented in Fig. 23. Sequentially refined meshes of 7567, 
45270 and 50,527 tetrahedral elements are used with the purpose of comparing the resolution of the deformed structure 
at time t = 0.016 s. It is interesting to notice that reasonably accurate deformations can be obtained even with the use of 
only one element across the thickness of the structure.

As illustrated in Fig. 24, all of the proposed Total Lagrangian upwind methodologies, namely {p, F }, {p, F , J } and 
{p, F , H , J } Upwind-TLF schemes, are capable of capturing highly nonlinear structural deformations without exhibiting any 
spurious pressure modes.

For completeness, the time history of the vertical displacement monitored at point X = [r/2, 0, 
√

3/4 r]T is also shown 
in Fig. 25. Remarkably, it is clear from observation that the deformation is locking-free and with a smooth pressure pat-
tern, showing optimal convergence for the proposed method. This opens up interesting possibilities for the modelling in 
biomechanics [72], where this consideration is very relevant.
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Fig. 24. Medical stent. Comparison of deformed shapes plotted with pressures using different schemes at a specific time t = 0.016 s. Results are obtained 
using the (a) {p, F } Upwind–TLF, (b) {p, F , J } Upwind–TLF and (c) {p, F , H , J } Upwind–TLF scheme. A neo-Hookean material is used with density ρ0 =
1000 kg/m3, Young’s modulus E = 0.9 MPa, Poisson’s ratio ν = 0.45 and αC F L = 0.3.

Fig. 25. Medical stent. Time history of the z displacement of the point X = [r/2, 0, √3/4 r]T . Results are obtained using the {p, F } Upwind–TLF scheme. 
A neo-Hookean material is used with density ρ0 = 1000 kg/m3, Young’s modulus E = 0.9 MPa, Poisson’s ratio ν = 0.45 and αC F L = 0.3. Linear tetrahedral 
mesh is used to discretise 1

8 of the domain with 7,567 (Mesh 1), 45,270 (mesh 2), 50,527 (Mesh 3) and 134,168 elements (Mesh 4).

7. Concluding remarks

The paper presents a vertex centred finite volume method for the solution of fast transient isothermal large strain solid 
dynamics, where a mixed system of first order conservation laws is solved. Both Total and Updated Lagrangian formulations 
are presented and compared at the discrete level, where very small differences between both descriptions are observed due 
to the excellent discrete satisfaction of the involutions. It has been shown that non-physical zero energy modes and spurious 
pressure instabilities can be effectively alleviated when attempting to model nearly incompressible solids. This is done by 
means of upwinding dissipation which is compared against a JST algorithm. In terms of computational efficiency, an artificial 
compressibility approach is formulated and suitably adapted when dealing with very large (or even indefinite) wave speeds. 
Finally, a comprehensive set of challenging numerical examples is presented in order to assess the accuracy, reliability and 
robustness of the proposed methodologies. The proposed framework shows excellent behaviour in nearly incompressible 
bending dominated scenarios, yielding second order of convergence for velocities, deviatoric and volumetric components of 
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the stress. The consideration of an Arbitrary Lagrangian Eulerian description within the current computational framework is 
the next step of our work.
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Appendix A. Entropy property

For completeness, it is possible to include the total energy conservation law into our mixed system as

d

dt

∫
�0

E d�0 =
∫

∂�0

1

ρ0
p · t dA −

∫
∂�0

Q · N dA +
∫
�0

s d�0 +
∫
�0

1

ρ0
p · f 0 d�0, (69)

where E is the total energy per unit of undeformed volume and Q and s represent the heat flux and the heat source terms, 
respectively. In the case of an adiabatic deformation, the heat flux Q and the heat source s are neglected. In addition, when 
dealing with non-thermomechanical materials, equation (69) is fully decoupled from the rest of the system of conservation 
laws (10). Even in this case, from the computational point of view, this equation is still very useful when evaluating the 
time rate of numerical entropy (diffusion) Ḋp(t) introduced by the algorithm.

To achieve this, it is necessary to discretise the above conservation equation for an arbitrary control volume a to give

�0
a

dEa

dt
=

∑
b∈�a

1

ρ0
pAve

ab ·
(

P Ave
ab Cab

)
+

∑
γ ∈�B

a

1

ρ0
pγ

a · tγ
a ||Cγ || + �0

a

ρ0
pa · f a

0. (70)

Multiplying the complete set of {pa, F a, Ha, Ja} semi-discrete equations (expressed in (40a) and (43a)–(43c)) by their dual 
conjugate variables {va, �a

F , �a
H , �a

J }, subtracting them from equation (70) and adding over all nodes a of the computational 
mesh, gives, after some simple algebra,

Ḋp(t) :=
∑

a

�0
a

[
dEa

dt
− pa

ρ0
· dpa

dt
− �a

F : dF a

dt
− �a

H : dHa

dt
− �a

J
d Ja

dt

]
(71a)

=
∑

a

∑
b∈�a

[(
P Ave

ab Cab

)
· pAve

ab

ρ0
−

(
P Ave

ab Cab

)
· pa

ρ0
− P a :

(
pAve

ab

ρ0
⊗ Cab

)]

−
∑

a

∑
b∈�a

(
pa

ρ0
·Dp

ab + �a
JD

J
ab

)
(71b)

=
∑

a

1

2ρ0

⎡
⎣∑

b∈�a

(
P Ave

ab Cab

)
· (pb − pa) −

∑
b∈�a

(P aCab) · (pa + pb)

⎤
⎦

−
∑

a

∑
b∈�a

(
pa

ρ0
·Dp

ab + �a
JD

J
ab

)
, (71c)

where P a = �a
F + �a

H F a + �a
J Ha . Since 

∑
b∈�a

Cab = 0, we could then add the redundant term 1
ρ0

∑
b∈�a

(P aCab) · pa to 
the above expression, yielding

Ḋp(t) =
∑

a

1

2ρ0

⎡
⎣∑

b∈�a

(
P Ave

ab Cab

)
· (pb − pa) −

∑
b∈�a

(P aCab) · (pa + pb) +
∑

b∈�a

2 (P aCab) · pa

⎤
⎦

−
∑

a

∑ (
pa

ρ0
·Dp

ab + �a
JD

J
ab

)
,

(72)
b∈�a
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After substitution of (41) into (72), it yields

Ḋp(t) = 1

4ρ0

∑
a

∑
b∈�a

[(P b − P a) Cab] · (pb − pa

)

− 1

2ρ0

∑
a

∑
b∈�a

||Cab||pa · [S p
ab

(
pb − pa

)]

− 1

2ρ0

∑
a

∑
b∈�a

�a
J ||Cab||

(
�b

J − �a
J

)
(H Ave

ab Nab) ·
[
St

ab

(
H Ave

ab Nab

)]
. (73)

Notice here that the evaluation of {Dp
ab, D

J
ab} is carried out by utilising a piecewise constant representation for {p, � J }

and, more importantly, the summation is carried out over control volumes. Rearranging the above summation over edges 
connecting a and b gives

Ḋp(t) =
∑

edges
a↔b

Ḋab
p (t), (74)

where the edge based entropy production is defined as

Ḋab
p (t) := 1

2ρ0
||Cab||

[(
pb − pa

) · [S p
ab

(
pb − pa

)]+
(
�b

J − �a
J

)2
(H Ave

ab Nab) ·
[
St

ab

(
H Ave

ab Nab

)]]
. (75)

It is now easy to show that both positive definite stabilisation matrices {S p
ab, S

t
ab} (refer to (37)) used in this paper guarantee 

non-negative local entropy production for every edge, that is Ḋab
p (t) ≥ 0. This demonstrates the entropy production for the 

semi-discrete scheme. It is now easy to show that this is also respected in the fully discrete case for the particular TVD-RK 
time integration scheme used in this work. Indeed, equations (50) can be combined to give (after replacing Ua with Dab

p )

Dab,n+1
p −Dab,n

p

�t
= 1

2

(
Ḋab,n

p + Ḋab,�
p

)
. (76)

By noticing that both terms on the right hand side of above equation are positive each (as demonstrated in (75)), it is 
immediate to conclude the satisfaction of entropy production in the discrete setting.

Appendix B. Involutions

One of the challenging issues in the process of the time-evolving expressions (44b), (44c) is the ability to control the 
onset and propagation of spurious mechanisms over a long term response [43]. To ensure the fulfilment of specific invo-
lutions (3), a discrete area map projection algorithm is presented. Specifically, the area map tensors {H Ave

ab , Ha} described 
in (44b)–(44c) must be suitably modified (in a least-square sense) in order to satisfy the following mapping constraints 
described as follows

H Ave
ab Cab = cab; HaCγ = cγ . (77)

A least-square minimisation procedure is first used to obtain a modified set of area map HAve
ab that satisfy the above 

condition (77a). This can be achieved by introducing a functional � defined by

�(HAve
ab ,λab) = 1

2
(HAve

ab − H Ave
ab ) : (HAve

ab − H Ave
ab ) − λab ·

(
HAve

ab Cab − cab

)
. (78)

The stationary condition of the above functional with respect to λab and HAve
ab will be considered separately. To this effect, 

note firstly that the derivative of � with respect to λab leads to the mapping constraint (77a) applied to the modified area 
map HAve

ab .
Additionally, the derivative of the functional in (78) with respect to HAve

ab results in

HAve
ab = H Ave

ab + λab ⊗ Cab. (79)

Use of (77a) with H Ave
ab replaced with HAve

ab in conjunction with (79), the Lagrange multiplier λab is the solution to the 
following system of equations, that is

λab = 1

(Cab · Cab)

[
cab − H Ave

ab Cab

]
. (80)

Similarly, a modified boundary area map, namely Ha , can be obtained by replacing {HAve
ab , H Ave

ab , Cab, cab, λab} in (79) and 
(80) with {Ha, H a, Cγ , cγ , λγ }, respectively.
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